M351357 八、新型說明: 【新型所屬之技術領域】 本新型是一種光源系統,尤其是應用在投影裝置上的 一種光源系統。 【先前技術】 ίο 15 20 對比度(contrast)與亮度(brightness)是衡量投影 機成效的兩個重要標準。一般來說,高階家庭劇院投影機 (Home Theater Projector )的主要需求為對比度,因此往 往被迫放棄亮度需求,必須在關燈的環境下觀賞影片;對 於低階教育市場和公司行號所使用的投影機而言,亮度則 是它的主要需求,而往往被迫降低對比度。在無法有效阻 隔環境光的使用場合’提高亮度顯得尤為重要。 目4市場上的傳統單燈型投影機都不能兼具高亮度 和高對比度,若要提高亮度,除了更換高功率燈泡外,不 外乎變更光學設計。更換高功率燈泡不僅成效有限,其壽 命較短的特性也是一大困擾;變更光學設計不僅增加了投 影機研發的時間和成本,且難以維持既有的成像品質。 申請號為200610002543.2的中國發明專利申請公開 了-種雙燈照明系、统,如圖i所示,該雙燈照明系統包括 兩個照明模組卜2 ’光束折射單元3,以及光線均化器4。 第-照明模組1包括光源i!和橢圓形燈罩12,第二照明 模纽2包括光源21和才隋圓形燈罩22。各光源^、η發出 的光線分別經各自的橢圓形燈罩12、22内壁反射,到達光 束折射早tl3表面,之後再經過光束折射單元3反射,並 6 M351357 會聚於光線均化n 4,最後,光線均化器4將光線勻化成 平仃光線,輸入光學系統。這種雙燈照明系統雖然在—定 程度上可提南投影影像的亮度,但是存在以下缺點:為了 輸出平订的光線,必須增設光線均化器,在一定程度上增 5加了成本;此外該雙燈照明系統對光束折射單元3的形狀 精度以及它與光線均化器4之間的位置精度有較高的要 求0 10 15 20 【新型内容】 因此,本新型為解決上述的缺點,提供一種雙光源模 組’可提高投影機的亮度’同時可減少額外的元件。 本新型提供-種雙光源模組,包括:—第一光源 第一光源;一第一燈罩,具有拋物線曲面;一第二燈罩, 具:拋物線曲®;以及-反射體,用以反射分別裝設在該 第燈罩和该第二燈罩焦點處的該第一光源及第二光源所 ::的光線,纟中戎反射體在沿著垂直於各該第一燈罩及 〜第燈罩中心軸方向上的截面積不小於對應燈罩開口面 積的一半。 本新型的雙光源模組’利用在具有拋物線燈罩的焦點 發出的光線可被该燈罩反射並平行輸出的原理,在光 ^瘦過透鏡陣列之前就匯整成單―光源,@此可㈣照明 ^與成像系統的設計,同時維持對比度與成像品質,且 U為輸出光線的行進方向硌 、 $保持平行,所以輸出的光源可 h不經過額外的元件就可得到平行的光源,因而減少投影 7 M351357 機的研發成本與時間。 【實施方式】M351357 VIII. New description: [New technical field] The new type is a light source system, especially a light source system applied to a projection device. [Prior Art] ίο 15 20 Contrast and brightness are two important criteria for measuring the effectiveness of a projector. In general, the main demand for the Home Theater Projector is the contrast, so it is often forced to abandon the brightness requirements, and must watch the film in the light-off environment; for the low-end education market and company line number For projectors, brightness is its main requirement and is often forced to reduce contrast. In situations where it is not possible to effectively block ambient light, it is especially important to increase the brightness. The traditional single-lamp projectors on the market can't combine high brightness and high contrast. To increase the brightness, in addition to replacing the high-power bulbs, the optical design is changed. Replacing high-power bulbs has not only limited success, but its short life is also a major problem; changing optical design not only increases the time and cost of projector development, but also makes it difficult to maintain the quality of existing imaging. The Chinese invention patent application with the application number of 200610002543.2 discloses a dual-light illumination system, as shown in Fig. i, the two-lamp illumination system comprises two illumination modules, a 'beam refraction unit 3, and a light homogenizer. 4. The first illumination module 1 includes a light source i! and an elliptical globe 12, and the second illumination module 2 includes a light source 21 and a circular dome 22. The light rays emitted by the respective light sources ^, η are respectively reflected by the inner walls of the respective elliptical lamp covers 12, 22, reaching the surface of the light beam refracting earlier t13, and then reflected by the beam refraction unit 3, and 6 M351357 converges on the light equalization n 4, and finally, The light homogenizer 4 homogenizes the light into a flat light and enters the optical system. Although the dual-light illumination system can increase the brightness of the south projection image to a certain extent, it has the following disadvantages: in order to output the flat light, a light homogenizer must be added, which increases the cost by a certain amount; The dual-lamp illumination system has a high requirement for the shape accuracy of the beam refraction unit 3 and its positional accuracy with the light homogenizer 4. 0 10 15 20 [New content] Therefore, the present invention provides a solution to the above disadvantages. A dual light source module 'can increase the brightness of the projector' while reducing additional components. The present invention provides a dual light source module comprising: a first light source first light source; a first light cover having a parabolic curved surface; a second light cover having a parabolic curve®; and a reflector for reflecting the respective light The light source of the first light source and the second light source disposed at the focus of the first lampshade and the second lampshade, wherein the 戎 reflector is in a direction perpendicular to a central axis of each of the first lampshade and the hood The cross-sectional area is not less than half of the area corresponding to the opening of the lampshade. The dual light source module of the present invention utilizes the principle that the light emitted from the focal point of the parabolic lampshade can be reflected by the lampshade and output in parallel, and is integrated into a single light source before the light lens is thinned through the lens array, and this can be (four) illumination ^ With the design of the imaging system, while maintaining contrast and imaging quality, and U is the direction of travel of the output light 硌, $ parallel, so the output light source can obtain parallel light source without additional components, thus reducing projection 7 R&D costs and time for the M351357. [Embodiment]
10 1510 15
20 圖2是本新型中雙光源模組的第一實施例的結構 示意圖。如圖2所示,該雙光源模組1 0 0應用於投影 系統中,例如’可用作穿透式或反射式液晶投影機的 光源’並在光線通過其透鏡陣列(Lens Array ) 110 之前’將光線匯整成單一的平行光,使二光源的光線 最終能夠會聚且均勻輸出。 該雙光源模組1 〇〇包括彼此相對設置的一第一燈 罩101和一第二燈罩1〇2,各燈罩均為拋物線的曲線 體’且内表面均鍍有反射塗覆層,可使入射光全部反 射。在該第一燈罩1 〇 1的焦點上設置有一第一光源 103,在該第二燈罩102的焦點上設置有一第二光源 1 0 4這樣由為第、第二光源j 3j 4發出的光線 經兩個拋物線的該第一、第二燈罩i 〇丨、丨〇2反射後, 沿著與拋物線燈罩的軸之平行方向射出該第一、第二 燈罩。 圖11疋本新型的該第―、笫_ 弟一燈罩101、102所 在的圓錐曲線圖。參照圖i丨, 忒W錐曲線上的點p到 兩個焦點f 1、f 2的距離分別a r , 乃J马r、r ,p點與π之 間的連線與坐標轴的夾角A 〇 以為α,焦點fl處的焦距為 f,且兩個焦點fl、f2之間的距離為§。 根據三角函數: 8 M351357 (r ')2 =r2 +s2 ~2π cos(^· - a) ㈠) 根據圓錐曲線的定義: r + r' = s + 2 f (2) 將(2 )代入(1 ),得到: 2/ r --七--- 1 +1+ 5//cos^ ( 3) 當圓錐曲線夺,S = 0,:Γ = ί; 當圓錐曲線為拋物線時, 2/20 is a schematic view showing the structure of the first embodiment of the dual light source module of the present invention. As shown in FIG. 2, the dual light source module 100 is applied to a projection system, such as 'can be used as a light source for a transmissive or reflective liquid crystal projector' and before the light passes through its lens array (Lens Array) 110 'Converging the light into a single parallel light, so that the light from the two sources can finally converge and output evenly. The dual light source module 1 includes a first lamp cover 101 and a second lamp cover 1〇2 disposed opposite to each other, each of the lampshades is a parabolic curved body and the inner surface is coated with a reflective coating layer for incident The light is totally reflected. A first light source 103 is disposed at a focus of the first lamp cover 1 〇1, and a second light source 104 is disposed at a focus of the second lamp cover 102 such that the light emitted by the first and second light sources j 3j 4 After the first and second lampshades i 〇丨 and 丨〇 2 of the two parabolas are reflected, the first and second lampshades are emitted in a direction parallel to the axis of the parabolic lampshade. Fig. 11 is a conic diagram of the first and second lampshades 101, 102 of the present invention. Referring to Figure i, the distance p from the point p on the 锥W cone curve to the two focal points f 1 and f 2 is ar , which is the angle between the line connecting the J horse r, r, p point and π and the coordinate axis A 〇 Considering α, the focal length at the focus fl is f, and the distance between the two focal points fl and f2 is §. According to the trigonometric function: 8 M351357 (r ')2 =r2 +s2 ~2π cos(^· - a) (1) According to the definition of the conic curve: r + r' = s + 2 f (2) Substituting (2) 1), get: 2/ r -- seven --- 1 +1+ 5//cos^ ( 3) When the conic curve is taken, S = 0,: Γ = ί; When the conic curve is a parabola, 2/
ίο S 二 〇〇, r — —---- ’ Ι + cosa ( 4) 圖12是本新型的拋物線燈罩的截面圖。參照圖 12’本新型將拋物線的該第一、第二燈罩ι〇1、ι〇2 之開口半徑的範圍限定在Rmin〜Rmax之間在一個較 佳實施例中,拋物線上的點到焦點的連線與χ軸的夾 角α為4 5 °時,得到Rm i η ;拋物線上的點到焦點的連 線與X軸的夾角α為135。時,得到Rmax。 根據得到的拋物線函數r = 2’ —,當α為4 R。 1 + cosa 時,42(2 — ^)/,及·=’*c〇S45。’ 得到 ^=(2^ + 2)/ ;當 α 為 135。時,r = 2(2 + V^)/,,得到 i?nijn =(271-2)/。 這樣,可確定拋物線的該第一、第二燈罩101、102 的開口半徑的範圍為(2万—2)/〜(2心+2)/。 再參照圖2,在該第一、第二燈罩1 0 1、102之間 的光路上,設置有一反射體,用於使光線垂直反射到 一透鏡陣列11 〇。該反射體可以是一反射直角棱鏡 9 20 • M351357 105,該反射直角棱鏡105是直角等腰三角柱,其截 面的頂角A為90 ,另兩個角B為45。,且面向該第 一、第二燈罩101、1〇2的兩個面上塗覆有反射層, 可使入射光線1 00%反射。為了使該反射直角棱鏡1 〇5 反射後的光線垂直入射到該透鏡陣列丨丨〇,該第一、 第二燈罩1 〇 1、1 〇 2相對設置,且兩者的焦點連線與 s亥反射直角棱鏡105的底面平行。該反射直角棱鏡 沿著垂直於各該第一、第二燈罩1〇1、1〇2中心軸方 向的最大截面積不小於對應燈罩的開口面積的一 半。並且,該反射直角棱鏡1〇5的高度至少為該第一、 第二燈罩的開口直徑的丨/2,其底面可以與該第一、 第一燈罩101、102的最下端平齊,頂部的高度至少 與该第一、第二燈罩1 〇 1、1 〇 2的焦點連線平齊,以 保6登§亥第一、第一光源1 〇 3、1 〇 4發出的至少—半光 線能夠直接地被反射到該反射直角棱鏡1〇5上。具體 而言,其中一個燈罩的至少一半光線平行入射到該反 射直角棱鏡105上,並被反射到該透鏡陣列n〇 ;而 另一部分光線由於該反射直角棱鏡1〇5的高度不夠, 直接入射到相對的另一個燈罩内,另一個燈罩將光線 反射到其下部,並再次反射,到達該反射直角棱鏡 1 05,這樣同樣可以到達該透鏡陣列丨丨〇。 由於被該第一、第二燈罩101、1〇2反射到該反 射直角棱鏡105上的光線均是彼此平行的,被該反射 直角棱鏡105反射後,即可平行入射到該透鏡陣列 10 M351357 110。 的結構 參照圖 較大, 直徑相 最下端 102的 104發 反射後 角棱鏡 要經過 一立 疋本新型中雙光源模組的第二實施例 不意圖’與第—實施例相同的部分不再贅述。 一 X實施例中,該反射直角棱鏡1 05的體積 其高度與該第―、 _ 弟二燈罩101、102的開口 同且底面與該第-、第二燈罩101、102的 平齊’頂部的高度與該第-、第二燈罩101、 最上端平齊,衿禅 ίο 15 ^樣’该第一、第二光源1 〇 3、 出的光線分別經該第一、第二燈罩⑽ 直接到㈣反射直肖棱鏡⑽;再經該反射直 105反射後平行入射到該透鏡陣列110。不需 燈罩的多次反射。 圖4是本新型中雙光源模組的第三實施例的結構 不意圖,與第—實施例相同的部分不再贅述。參照圖 4 ’在第一實施例的基礎上,增設了一反射鏡1 06。該 反射鏡106設置在其中—個燈罩上,從該燈罩的最高 點向下延伸並垂直於該第一、第二燈罩1〇1、1〇2的 焦點連線。圖4中示出了將該反射鏡1 〇 6設置在該第 一燈罩1 〇 1上的例子’它也可設置在該第二燈罩1 〇 2 上°如此,該第一、第二光源103、W4發出的一部 分光線分別經對應的該第一、第二燈罩1 〇丨 ' 丨〇2反 射後’入射到該反射直角棱鏡105上,並被反射到該 透鏡陣列11 〇 ;另一部分光線經對應的該第—、第二 燈罩1 〇 1、1 02反射後,入射到該反射鏡1 06,並被該 20 M351357 反射鏡106反射,返回對應的燈罩’再經過燈罩的兩 次反射,入射到該反射直角棱鏡丨〇 5上,並最終被反 射到該透鏡陣列11 〇。該反射鏡丨〇 6也可從該燈罩的 最低點向上延伸並垂直於此處光線的行進方向。 5 圖5是本新型中雙光源模組的第四實施例的結構 不意圖,與第一實施例相同的部分不再贅述。該實施 例在圖4的基礎上增設了一反射鏡1 〇 。即兩個該反 射鏡106、107分別設置在該第一、第二燈罩1〇1、1〇2 _ 上’從各自燈罩的最高點垂直向下延伸,並垂直於此 處光線的行進方向,。該第一光源1 〇3發出的一部分 光線經第一燈罩1 〇 1反射後,入射到該反射直角棱鏡 105上,並被反射到該透鏡陣列11〇 ;另一部分光線 經該第一燈罩101反射後,入射到該反射鏡1〇6,並 1 被該反射鏡106反射,返回該第一燈罩1〇1,再經過 該第一燈罩101的兩次反射,入射到該反射直角棱鏡 g 1 0 5上,並最終被反射到該透鏡陣列11 〇。 相同地’該第二光源1 〇 4發出的一部分光線經該 第二燈罩102反射後,入射到該反射直角棱鏡1〇5 上’並被反射到該透鏡陣列11 〇 ;另一部分光線經該 2〇 ^ 、 第二燈罩1 0 2反射後,入射到該反射鏡丨〇 7,並被該 反射鏡107反射,返回該第二燈罩1〇2,再經過該第 二燈罩102的兩次反射’入射到該反射直角棱鏡ι〇5 上,並最終被反射到該透鏡陣列1丨〇。 圖6是本新型中雙光源模組的第五實施例的結構 12 M351357 示意圖’與第一實施例相同的部分不再贅述。與圖4 所示的第三實施例不同的是,該實施例中,將該反射 鏡106設置在該反射直角棱鏡105的頂部,向上延伸 並垂直於此處光線的行進方向。這樣,該第一、第二 5 光源1 0 3、1 0 4發出的一部分光線分別經對應的該第 一、第二燈罩101、1〇2反射後,入射到該反射直角 棱鏡1 0 5上,並被反射到該透鏡陣列丨丨〇 ;另一部分 光線經對應的該第一燈罩101、1〇2反射後,入射到 i 該反射鏡1 06,並被該反射鏡丨〇6反射,返回對應的 10 燈罩,再經過燈罩的兩次反射,入射到該反射直角棱 鏡1 0 5上,並最終被反射到該透鏡陣列11 〇。 在以上的第一實施例中’該反射直角棱鏡1 〇 5的 頂角A為90 °,另兩個角b為45。,因此可保證光線 水平入射、垂直出射。實際上該反射體也可以有其他 15 的角度參數,只要能夠將入射的光線垂直反射到該透 鏡陣列11 0即可。圖7是本新型申雙光源模組的另一 ® 種反射體的結構示意圖。參照圖7,該反射體丨丨丨為 等腰二角柱,其截面的頂角為A,另兩個角為B,這 些參數滿足以下關係: 2〇 A+2B-1800 (5) 若反射體111的兩個反射面與垂直於透鏡陣列 11 〇的方向之間的夾角為c,B和C之間滿足以下關係: B + C,。 (6) 根據反射定律,拋物線的該第一、第二燈罩1 〇 ^、 13 M351357 1 Ο 2反射後的光線入射到該反射體111的反射面上 時,與反射面之間的夾角也必須為C。如此可確定該 第一、第二燈罩1 01、1 02與反射直體丨丨丨之間的相 對位置關係。在這種情況下,該第一、第二燈罩丨〇 i、 5 102的焦點連線與各自的對稱軸之間有一定的失肖。 圖8是本新型中反射體的替換結構的示意圖。如 圖8所示’圖2中的該反射體可以由一三角柱和 兩個設置在其斜面上的反射鏡1 0 9組合而成。例如, • 該三角柱108可以為等腰直角三角柱’其頂角a為90 10 。,另兩個角B為4 5 °。兩個反射鏡1 0 9可使入射光線 1 00%反射。如此可以實現與各實施例中的該反射直角 棱鏡105相同的作用。 圖9和圖10是圖8中與三角柱配合形成替換結 構的反射鏡的兩個實施例的主視圖。參照圖9,反射 15 鏡1 0 9可以是矩形,其背面貼置於該三角柱上。參照 圖1 0,反射鏡1 〇 9也可以是半環形。由於從拋物線燈 B 罩的焦點處發出即直接平行入射到反射鏡的光束相 對較少,因此反射鏡1 〇 9中心可以設置同心圓孔。 圖13和14是圖10中的反射鏡與三角柱配合、 20 應用於第五實施例的示意圖。如圖13所示’該反射 鏡109貼置於該三角柱108上,並在該三角柱108的 頂部設置矩形的該反射鏡1 06。如圖1 4所示,該三角 柱1 08頂面上的該反射鏡1 06也可以是半環形’與該 反射鏡1 0 9類似。 14 M351357 與該二角柱108配合的該反射鏡1〇6也可以是其 他形狀,如圓形、環形等。15是另一種反射鏡與 三角柱配合、應用於第二實施例的示意圖。在該圖 中,该反射鏡1 06為環形。由於拋物線燈罩為曲線體, 且從拋物線燈罩的焦點處發出即直接平行入射到反 射鏡的光束相對較少,因此這種環形的反射鏡ι〇6可 以使近100%的光線反射,並到達該透鏡陣列11〇。 在本新型中,利用了反射直角棱鏡等光學元件可 以使光線100%反射的特性,以及在拋物線燈罩的焦點 上發出的光線可被該燈罩反射並平行輸出的原理,在 光源經過透鏡陣列之前就匯整成單一光源;可維持照 明系統與成像系統的設計,僅對光源模組進行延伸設 計就可以提高投影機的亮度並延長燈泡的更換時 間’同時維持對比度與成像品質’減少投影機的研發 成本與時間。同時使用者也可依據使用需求與條件, 控制使用光源的數量,以配合外界環境光的變化。 15 M351357 【圖式簡單說明】 圖1是習知技術的一種雙燈照明系統的結構示意圖; 圖2是本新型中雙光源模組的第一實施例的結構示意圖, 圖3是本新型中雙光源模組的第二實施例的結構示意圖’ 5圖4是本新型中雙光源模組的第三實施例的結構示意圖; 圖5是本新型中雙光源模組的第四實施例的結構示意圖; 圖6是本新型中雙光源模組的第五實施例的結構示意圖; 圖7是本新型中雙光源模組的另一種反射體的結構示意 φ 圖; 1〇圖8是本新型中反射體的替換結構的示意圖; 圖9是圖8中與三角柱配合形成替換結構的反射鏡的正視 圖, 圖10是圖8中與三角柱配合形成替換結構的另一種反射鏡 的正視圖; 15圖11疋使用在本新型的燈罩外形之之曲線圖; 圖12是本新型之燈罩的剖面圖; 籲圖13疋圖10中的反射鏡與三角柱配合、應用於第五實施 例的示意圖; 圖14疋圖1〇中的反射鏡與三角柱配合、應用於第五實施 2〇 例的另一示意圖; 圖15是另一種反射鏡與三角枉配合、應用於第二實施例的 示意圖。 16 M351357 【主要元件符號說明】 100-雙光源模組 101 -第一燈罩 102- 第二燈罩 103- 第一光源 104- 第二光源 105- 反射直角棱鏡 # 110-透鏡陣列Οο 2 〇〇, r — —---- ′ Ι + cosa ( 4) Figure 12 is a cross-sectional view of the parabolic lampshade of the present invention. Referring to Figure 12, the present invention limits the range of opening radii of the first and second shades ι 〇 1, ι 〇 2 of the parabola between Rmin 〜 Rmax. In a preferred embodiment, the point to focus on the parabola When the angle α between the line and the χ axis is 45 °, Rm i η is obtained; the angle from the point-to-focus line on the parabola to the X-axis is 135. When, get Rmax. According to the obtained parabolic function r = 2' - when α is 4 R. When 1 + cosa, 42(2 - ^)/, and ·=’*c〇S45. ' Get ^=(2^ + 2)/ ; when α is 135. When r = 2(2 + V^)/,, get i?nijn =(271-2)/. Thus, the range of the opening radius of the first and second lampshades 101, 102 of the parabola can be determined to be (20,000 - 2) / ~ (2 hearts + 2) /. Referring again to Figure 2, a reflector is disposed on the optical path between the first and second lamp covers 10, 102 for vertically reflecting light into a lens array 11''. The reflector may be a reflective right-angle prism 9 20 • M351357 105 which is a right-angled isosceles triangular prism having a top angle A of 90 for the cross section and 45 for the other two angles B. And the two surfaces facing the first and second lampshades 101 and 1〇2 are coated with a reflective layer to reflect 100% of the incident light. In order to make the light reflected by the reflective right-angle prism 1 〇5 perpendicularly incident on the lens array 丨丨〇, the first and second lampshades 1 〇1, 1 〇2 are oppositely disposed, and the focus of the two is connected with the shai The bottom surface of the reflective right-angle prism 105 is parallel. The maximum cross-sectional area of the reflective right-angle prism along a direction perpendicular to a central axis of each of the first and second lamp covers 1〇1, 1〇2 is not less than half of an opening area of the corresponding lamp cover. Moreover, the height of the reflective right-angle prism 1〇5 is at least 丨/2 of the opening diameters of the first and second lampshades, and the bottom surface thereof may be flush with the lowermost ends of the first and first lampshades 101 and 102, and the top portion The height is at least flush with the focus of the first and second lampshades 1 〇1, 1 〇2, so as to ensure at least half of the light emitted by the first light source 1 〇 3, 1 〇 4 Directly reflected onto the reflective right-angle prism 1〇5. Specifically, at least half of the rays of one of the lampshades are incident on the reflective right-angle prism 105 in parallel and are reflected to the lens array n〇; and another portion of the light is directly incident on the reflective right-angle prism 1〇5 due to insufficient height In the opposite lampshade, the other lampshade reflects the light to its lower portion and reflects again to reach the reflective right-angle prism 105, so that the lens array can also be reached. Since the light reflected by the first and second lampshades 101, 1 〇2 to the reflective right-angle prism 105 is parallel to each other, after being reflected by the reflective right-angle prism 105, it can be incident in parallel to the lens array 10 M351357 110 . The structure of the structure is larger, and the 104-reflexed prism of the lowermost end of the diameter phase passes through a second embodiment of the novel dual-light source module. The second embodiment of the present invention is not intended to be the same as the first embodiment. . In an embodiment, the height of the reflective right-angle prism 105 is the same as the opening of the first and second lampshades 101, 102, and the bottom surface is flush with the top of the first and second lampshades 101, 102. The height is flush with the first and second lampshades 101 and the uppermost end, and the light of the first and second light sources 1 〇3 is directly passed through the first and second lampshades (10) to (4) The reflected straight prism (10) is reflected by the reflection straight 105 and then incident on the lens array 110 in parallel. Multiple reflections of the lampshade are not required. 4 is a structure of a third embodiment of the dual light source module of the present invention, and the same portions as those of the first embodiment are not described again. Referring to Fig. 4', on the basis of the first embodiment, a mirror 106 is added. The mirror 106 is disposed on one of the lamp covers, extending downward from the highest point of the lamp cover and perpendicular to the focus lines of the first and second lamp covers 1〇1, 1〇2. An example in which the mirror 1 〇 6 is disposed on the first lamp cover 1 ' 1 is shown in FIG. 4 . It may also be disposed on the second lamp cover 1 〇 2 such that the first and second light sources 103 are provided. A part of the light emitted by the W4 is reflected by the corresponding first and second lamp covers 1 〇丨' 丨〇 2 and then incident on the reflective right-angle prism 105 and reflected to the lens array 11 〇; After the corresponding first and second lampshades 1 〇1 and 102 are reflected, they are incident on the mirror 106, and are reflected by the 20 M351357 mirror 106, and return to the corresponding lampshade 'two reflections through the lampshade, incident To the reflective right-angle prism 丨〇5, and finally reflected to the lens array 11 〇. The mirror 丨〇 6 can also extend upward from the lowest point of the lamp cover and perpendicular to the direction of travel of the light there. 5 is a structure of a fourth embodiment of the dual light source module of the present invention. It is not intended to be the same as the first embodiment. This embodiment adds a mirror 1 在 to Fig. 4 . That is, the two mirrors 106, 107 are respectively disposed on the first and second lamp covers 1〇1, 1〇2 _ 'extending vertically downward from the highest point of the respective lampshade, and perpendicular to the traveling direction of the light here, . A part of the light emitted by the first light source 1 〇3 is reflected by the first lamp cover 1 〇1, is incident on the reflective right-angle prism 105, and is reflected to the lens array 11〇; another part of the light is reflected by the first lamp cover 101 Then, it is incident on the mirror 1〇6, and 1 is reflected by the mirror 106, returns to the first lampshade 1〇1, and then passes through the two reflections of the first lampshade 101, and is incident on the reflective right-angle prism g 1 0 5, and finally reflected to the lens array 11 〇. Similarly, a part of the light emitted by the second light source 1 〇4 is reflected by the second lamp cover 102, incident on the reflective right-angle prism 1〇5 and reflected to the lens array 11 〇; another part of the light passes through the 2 After the second lamp cover 102 is reflected, it is incident on the mirror 丨〇7, is reflected by the mirror 107, returns to the second lamp cover 1〇2, and passes through the second reflection of the second lamp cover 102. It is incident on the reflective right-angle prism ι〇5 and is finally reflected to the lens array 1丨〇. Fig. 6 is a view showing a structure of a fifth embodiment of the dual light source module of the present invention. 12 M351357 A schematic view of the same portion as that of the first embodiment will not be described again. Different from the third embodiment shown in Fig. 4, in this embodiment, the mirror 106 is disposed at the top of the reflective right-angle prism 105, extending upward and perpendicular to the traveling direction of the light there. In this way, a part of the light rays emitted by the first and second 5 light sources 1 0 3 and 1 0 4 are respectively reflected by the corresponding first and second lamp covers 101 and 1〇2, and then incident on the reflective right angle prism 1 0 5 . And being reflected to the lens array 丨丨〇; another portion of the light is reflected by the corresponding first lampshade 101, 1 〇 2, incident on i the mirror 106, and reflected by the mirror 丨〇6, returning The corresponding 10 lampshade, after two reflections through the lampshade, is incident on the reflective right-angle prism 105 and is finally reflected to the lens array 11 〇. In the above first embodiment, the apex angle A of the reflecting right-angle prism 1 〇 5 is 90 °, and the other two corners b are 45. Therefore, it is ensured that the light is incident horizontally and vertically. In fact, the reflector may have other angle parameters of 15 as long as the incident light can be reflected perpendicularly to the lens array 110. FIG. 7 is a schematic structural view of another ® reflector of the present invention. Referring to Fig. 7, the reflector 丨丨丨 is an isosceles dihedral column, the apex angle of the cross section is A, and the other two angles are B. These parameters satisfy the following relationship: 2〇A+2B-1800 (5) If the reflector The angle between the two reflecting faces of 111 and the direction perpendicular to the lens array 11 为 is c, and the following relationship is satisfied between B and C: B + C,. (6) According to the law of reflection, when the light reflected by the first and second lampshades 1 、^, 13 M351357 1 Ο 2 of the parabola is incident on the reflecting surface of the reflector 111, the angle between the reflecting surface and the reflecting surface must also be For C. Thus, the relative positional relationship between the first and second lampshades 101 and 102 and the reflected straight body 可 can be determined. In this case, there is a certain loss between the focus lines of the first and second lampshades 、 i, 5 102 and the respective axes of symmetry. Figure 8 is a schematic illustration of an alternative construction of the reflector of the present invention. As shown in Fig. 8, the reflector of Fig. 2 can be composed of a triangular prism and two mirrors 1 0 9 disposed on the inclined surface thereof. For example, • The triangular prism 108 can be an isosceles right angle triangular prism with an apex angle a of 90 10 . The other two corners B are 4 5 °. Two mirrors 1 0 9 can reflect 100% of the incident light. This can achieve the same effect as the reflective right-angle prism 105 in each embodiment. Figures 9 and 10 are front elevational views of two embodiments of the mirror of Figure 8 mated with a triangular post to form an alternate structure. Referring to Figure 9, the reflection 15 mirror 1 0 9 may be rectangular with its back surface attached to the triangular prism. Referring to Fig. 10, the mirror 1 〇 9 may also be a semi-ring. Since the beam emerging from the focus of the parabolic lamp B cover, i.e., directly parallel to the mirror, is relatively small, the center of the mirror 1 〇 9 can be provided with concentric holes. 13 and 14 are schematic views of the mirror of Fig. 10 mated with a triangular prism, 20 applied to the fifth embodiment. The mirror 109 is attached to the triangular prism 108 as shown in Fig. 13, and a rectangular mirror 106 is provided at the top of the triangular prism 108. As shown in Fig. 14, the mirror 106 on the top surface of the triangular prism 108 may also be semi-annular, similar to the mirror 109. 14 M351357 The mirror 1〇6 cooperating with the double post 108 may also have other shapes such as a circle, a ring, and the like. 15 is a schematic view of another mirror applied to the second embodiment in cooperation with a triangular prism. In the figure, the mirror 106 is annular. Since the parabolic lampshade is curved and the light beam emerging from the focus of the parabolic lampshade, ie, directly parallel to the mirror, is relatively small, the annular mirror ι6 can reflect nearly 100% of the light and reach The lens array 11 is. In the present invention, the use of optical elements such as reflective right-angle prisms to make 100% reflection of light, and the light emitted from the focus of the parabolic lampshade can be reflected by the lampshade and output in parallel, before the light source passes through the lens array. Consolidate into a single light source; maintain the design of the lighting system and imaging system, and extend the design of the light source module to improve the brightness of the projector and extend the replacement time of the bulb while maintaining the contrast and imaging quality. Cost and time. At the same time, the user can also control the number of light sources used according to the needs and conditions of use to match the changes of ambient light. 15 M351357 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of a dual lamp illumination system of the prior art; FIG. 2 is a schematic structural view of a first embodiment of the dual light source module of the present invention, and FIG. 3 is a schematic diagram of the present invention. FIG. 4 is a schematic structural view of a third embodiment of the dual-light source module of the present invention; FIG. 5 is a schematic structural view of a fourth embodiment of the dual-light source module of the present invention; 6 is a schematic structural view of a fifth embodiment of the dual light source module of the present invention; FIG. 7 is a schematic view of the structure of another reflector of the dual light source module of the present invention; FIG. 8 is a reflection of the present invention. Figure 9 is a front elevational view of the mirror of Figure 8 in combination with a triangular prism to form an alternative structure, and Figure 10 is a front elevational view of another mirror of Figure 8 in combination with a triangular prism to form an alternative structure; 15 Figure 11 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 12 is a cross-sectional view of the lampshade of the present invention; FIG. 12 is a cross-sectional view of the lampshade of the present invention; FIG. 13 is a schematic view of the mirror of FIG. Figure 1〇 Mirror with the triangular column, a schematic view of another embodiment 2〇 fifth embodiment is applied; FIG. 15 is another vain with the triangular mirror, a schematic diagram of the second embodiment is applied. 16 M351357 [Main component symbol description] 100-dual light source module 101 - first lamp cover 102 - second lamp cover 103 - first light source 104 - second light source 105 - reflective right angle prism # 110 - lens array
1717