TWM342510U - MEMS scan controller with clock frequency - Google Patents

MEMS scan controller with clock frequency Download PDF

Info

Publication number
TWM342510U
TWM342510U TW96222681U TW96222681U TWM342510U TW M342510 U TWM342510 U TW M342510U TW 96222681 U TW96222681 U TW 96222681U TW 96222681 U TW96222681 U TW 96222681U TW M342510 U TWM342510 U TW M342510U
Authority
TW
Taiwan
Prior art keywords
signal
frequency
laser
controller
scanning
Prior art date
Application number
TW96222681U
Other languages
Chinese (zh)
Inventor
wei-xin Yan
Original Assignee
E Pin Optical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Pin Optical Industry Co Ltd filed Critical E Pin Optical Industry Co Ltd
Priority to TW96222681U priority Critical patent/TWM342510U/en
Publication of TWM342510U publication Critical patent/TWM342510U/en

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

^3,42510 312a :光電感測信號(PD signal) 313 :啟動致能信號(ENB signal) 314 :調整信號(Adjust signal) 、 315 :穩定信號(Stable signal) 316a :第一調變信號(P丽1 signal) 316b :第二調變信號(PWM2 signal) 316c :第三調變信號(P丽3 signal) 321 :共振頻率信號(Resonant frequency signal) 參 322 :制動信號(Trigger signal) 323 :振盪信號(Q signal) 八、新型說明: 【新型所屬之技術領域】 本創作係有關一種產生時序頻率的微機電掃描控制器 (MEMS scan controller with clock frequency),尤指一種用 於雙向雷射掃描裝置(bi-direction laser scanning unit, 簡稱雙向LSU)之微機電反射鏡(micro-electric-mechanical mirror,簡稱MEMS mirror)的控制器,藉產生時序頻率信 • 號,使雷射光源可依據該時序頻率以在有效掃描視窗内傳 送雷射光線。 【先前技術】 目前在雷射掃描裝置(laser scanning unit,簡稱 LSU)大都使用旋轉多面鏡(Polygon Mirror)以高速旋轉操 控雷射光線的掃描,但由於旋轉多面鏡係用液壓趨動,其 轉速限制、價格高、聲音大、啟動慢等因素,已漸無法符 合高速且高精度的要求。近年以來,具有轉矩振盪器 3 «Μ3.42510 (torsion oscillators)之微機電反射鏡 (microbe1ectronic-mechanic system osci11atory mirror,簡稱MEMS mirror)已開始發展,未來將可應用於 、 影像系統(imaging system )、掃描器(scanner)或雷射印 表機(laser printer)之雷射掃描裝置(laser scanning unit,簡稱LSU),其掃描效率(Scanning efficiency)將可 高於傳統的旋轉多面鏡。 在雷射掃描裝置(LSU)中的微機電反射鏡(MEMS _ mirror),係由具有橋式電路之控制板、轉矩振盪器及反 射鏡面所構成,藉由共振磁場趨動鏡面以軸心左右方向來 回擺動;當雷射光線射向微機電反射鏡的鏡面時,鏡面藉 由隨時間變化的轉動角度,使入射到微機電反射鏡的鏡面 上的雷射光線,被反射到微機電反射鏡中心軸各種不同的 , 角度上以進行掃描。由於微機電反射鏡可以忽視光波長的 影響,而達到高解析度和大轉動角度的特點,使得它被廣 泛應用在商品、科學與工業應用上,如US5,408,352、 φ US5,867,297、US6,947,189、US7,190,499、TW M253133、 JP 2006-201350等。由於微機電反射鏡係以轴心以左右方 向來回擺動,為提高掃描效率可發展為雙向掃描,而構成 雙向雷射掃描裝置(bi-direction laser scanning imii:),但 此也增加了控制的困難度。 由於微機電反射鏡係以共振方式來回擺動,其擺動的 角度與穩定性將會影響雷射掃描裝置的精度,在微機電反 射鏡之雙向雷射掃描裝置的控制器上,習知的技術著重於 微機電反射鏡的穩定控制,如調整微機電反射鏡共振頻 4 tM3,42510 率、調整微機電反射鏡工作角度、或利用壓振電路 (voltage controlled oscillator,VCO)以調整頻率,其 中,壓振電路原理是以電流控制介質的導磁技術或利用電 ’ 壓改變電容量以達到改變頻率的目的,如美國專利 US2006/00139113 、 US2005/0139678 、 US2007/0041068 、 US2004/0119002、US7,304,411、US5,121,138 ;日本專利 JP63-314965等。然而雙向雷射掃描裝置,以A4尺寸之 600DPI ( dot per inch )的精度為例,在每個方向掃描時 • 必須送出5102個雷射光線的光點(light spot),使這5102 個光點可以在有效掃描視窗(imaging interval)内完整發 出,而不會因微機電反射鏡之頻率變動或振幅變動造成有 效掃描視窗移動,使5102個光點偏移而不能完整於目標物 上成像。因此計算微機電反射鏡的頻率給予發出雷射光線 的雷射控制器正確的信號,則為主要的控制重點之一。美 國專利US2006/0279364揭露使用微機電反射鏡之共振模 式,利用參考表而以時序計數器為控制;美國專利 • US6,891,572揭露使用鎖相電路以控制掃瞄信號同步存入 記憶體;美國專利US6,838,661揭露利甩光電感測器控制 微機電反射鏡擺動穩定;美國專利邶6,870,560、 US6, 987, 595揭露利用計數控制器或動態調整共振頻率以控 制感光鼓(drum)的轉動與雷射掃描光線的頻率。然而對於 雙向的掃描,在有效掃描視窗(scanning wind〇w)使掃描光 線能不偏移而完整於目標物上成像,則須要發展更快速有 效的控制方法及控制器。 本創作即揭露可以產生時序信號的控制方法及藉此方 5 M342510 法所構成的微機電掃描控制器,除可以發出微機電反射鏡 之頻率调變信號及振幅調變信號,使微機電反射鏡之橋式 電路調整穩定,並可發出對應於當時微機電反射鏡共振頻 率的a寸序彳a號’藉由此時序信號提供給雷射控制器,使雷 射光線可在有效掃描視窗内發出掃瞄光線,以達到高精度 的掃描效果。 【新型内容】 本創作主要目的乃在於提供一種微機電掃描控制器供 應用於雙向掃描的微機電雷射掃描裝置,其係用以偵測徵 枯:電反射鏡的振動頻率與振幅,並藉以產生信號給雷射控 制裔及控制微機電反射鏡的橋式電路,用以調整微機電反 f鏡之振動頻率與振幅,並使微機電反射鏡的振動穩定, 藉以使雷射光線可正確地在有效的掃描區域進行掃描。 π對於微機電雷射掃描裝置,裝置中雷射光源受雷射控 制器所控制’當雷射控制器發出掃描數據時,則經由雷射 t源產生雷射光線,射向微機電反射鏡之反射用鏡面,微 & 反射I兄以/共振頻率(res〇nant )使鏡面以正 向及反向振動(擺動),使雷射光線在有效的掃描區域, 稱為有效掃&視窗(scanni呢wind〇w)内進行掃描,雷射光 線經掃目苗後為掃瞄光線,掃瞄光線經由掃瞄鏡片於目標物 上成像;而超過有效掃描視窗的掃描光線則被光電感測器 所備測。微機電反射鏡則受橋式電路所控制,當微機電反 射鏡擺動過大時,可控制橋式電路使微機電反射鏡擺動減 J ’同理’當微機電反射鏡擺動過小時,可控制橋式電路 使祕機電反射鏡擺動增大。當微機電反射鏡穩定時,可發 6 ^3A25l〇 二二ft知ί射印表機或多功能事務機之雷射控制器 X出知描數據之時機及發出掃描數據的頻率。 旬二 信號為依據掃描當時之微機電反射鏡的頻率 童、4所—出,可於有效掃描視窗内產生$個光點或其倍 :巧::,對於_DPI、Α4尺寸,石可設為嶋 先』’可於有效掃描視窗内產生万個光點。 一個或多 該邏輯單 並計算每 以產生微 本創作之微機電掃描控制器包含邏輯單元 個D型正反器、鎖相電路及計數比較器,·其中 兀可接收光電感測器產生的觸發光電感測j言號 =電感測器產生的光電感測信號之間隔時間,以屋生微 產生日==頻率調變信號與振幅調變信號;鎖相電路可 間t = ’该時序信號之頻率為/ακ⑴,係對應於時 相頻率’使雷射控制器接收到鎖 電路务出的知序信號,以將掃描數據送出。、 由於微機電反射鏡係以/頻率來回振動,由左向右 動元成一個週期的時間為了,掃描之角度 》、 角度$與時間之關择兔 、、、知^田之 形,名約關為弦關係,如圖2,為避免掃描變 tbr Γ的時間了内以最接近直線的二段時間, 間關係如下: ”h、t2、t3、t< "2π/ Κθ/ 2π f (1) r2=2sin'i).^7 (2) (3) M342510 Τ,=--(Τ-2Τ2) t4=t2 (4) y、中T1為延時時間,T2為正向掃描 時時間,T4為反向掃描的時間,/為微機雷^間,T3為延 頻率,4為微機電反射鏡掃描角度,2θ 射鏡的振動 度,h為有致掃插角度,所構成的為有=電感測器角 • 賴作再—目的乃在於提供-種微機電見窗。 其係在微機電掃描控制器發出時序信號=田控制器, 時發出數據制動信號,以驅動雷射控制器開同 據,使傳送掃描數據時更為準確。 、、π描數 【實施方式】 ' 域本創作更為明確詳實,紐合下列較佳實 示詳述如後: φ <實施例一>:一個光電感測器的微機電雷射掃描裝置 本實施例應用於一個光電感測器的微機電雷射掃插I 置;如圖1,對於微機電雷射掃描裝置,裝置中雷射光源 11是受雷射控制器23所控制,當雷射控制器23發出掃插數 據318時,則經由雷射光源11產生雷射光線111 ;雷射光 線111射向微機電反射鏡10之反射鏡面,微機電反射鏡1〇 以/共振頻率使鏡面以正向及反向振動;本實施例使用頻 率/=2500 ± 5% HZ、最大掃描角度為±23 °的微機電反射 鏡10 ;雷射光線111則以乂 = ± 23*2 °角度掃描成為右侧 8 M342510 邊緣掃描光線115a至左側邊緣掃描光線115b ; 2乂範圍之 掃描光線係由113a至113b所構成,此即為有效掃描視窗, 本實施例設於仏=± 19*2。;而在本實施例,光電感測器 ‘ 14a設於力=± 21*2。角度處,使掃描光線114a被光電感 測器14a所偵測。光電感測器14a可接收掃描光線114a而 將光線轉變成電性之觸發信號。掃描光線113a至113b則經 由後掃描鏡片13於目標物15如感光鼓上成像。為要維持 2 &角度的穩定’微機電反射鏡1 〇則由橋式電路22所控 # 制,橋式電路22可發出驅動信號311使微機電反射鏡10進 行擺動,當微機電反射鏡1〇擺動過大時,可控制橋式電路 22使發出驅動信號311,同理,當微機電反射鏡10擺動過 小時,可控制橋式電路22使發出驅動信號311,橋式電路 22係依據微機電掃瞄控制器21輸出之第一調變信號316a、 • 第二調變信號31肋及第三調變信號316c所控制。另,雷射 控制器23為雷射印表機或多功能事務機的主控台,係用以 發出掃描數據318以控制雷射光源η、發出啟動微機電反 • 射鏡10之啟動致能信號313、發出調整微機電反射鏡10的 調整信號314,藉以判別微機電反射鏡1〇是否已穩定、是 否可以發出掃描數據318、及以何頻率發出掃描數據 318。 微機電掃描控制器21接受雷射控制器23之啟動致能信 號313、接受雷射控制器23之調整信號314、產生頻率調 變之第一調變信號316a、產生頻率調變之第二調變信號 316b及產生振幅調變之第三調變信號316c、及產生微機電 反射鏡10已穩定的穩定信號315,經由接受光電感測器 9 M342510 14a發出的光電感測信號312a以偵測微機電反射鏡10之共 振頻率並產生時序信號310以提供給雷射控制器23以適時 ' 驅動雷射光源11,使雷射光源11發出的影像信號,藉由微 • 機電掃描控制器21的計算與相位,使時序信號310為正確 的時序頻率,使雷射光線111掃描後之掃描光線113a至 113b位於有效掃描視窗内,即使掃描光線113a至113b於目 標物15上產生η /5個光點。 微機電掃描控制器21包含邏輯單元211、D型正反器 • I 212、D型正反器II 213、鎖相電路214及計數比較器 215。該邏輯單元211可接收光電感測器14a產生的觸發 光電感測信號312a,並計算每次光電感測器14a產生的光 電感測信號312a,以產生微機電反射鏡10之頻率調變信號 與振幅調變信號,第一調變信號316a、第二調變信號316b 與振幅之第三調變信號316c ;鎖相電路214可產生時序信 號310,當雷射控制器23接收到微機電掃描控制器21之鎖 相電路214發出的時序信號310,則可依此時序信號310 春 的頻率而將掃描數據318送出,說明如下: 如圖2,微機電反射鏡10係依Y轴沿X轴左右振動, 其左右振動為± A,在任一時間ΐ,雷射光線111入射後 反射之掃描光線與中心光軸(113c)夾角6» (t)為隨時間呈 現正弦波形,而於反射之掃描光線至光電感測器14a時, 產生第一次觸發的光電感測信號312a,當微機電反射鏡10 向右振動至最大角度A時,β (t)角度最大;其後,微機 電反射鏡10則開始回振,0 (t)角度減小,反射之掃描光 線至光電感測器14a時,產生第二次觸發的光電感測信號 10 M342510 312a,當掃描光線到達有效掃描视窗内(ία 圖2之a至b點之間),此時角度θ a至1131),即 又σ U:)與時間十 為最接近直線,此為正向掃描的有致掃打、* 、,之關係 反射鏡10向左振動至最大角度-Α時,=視固’當微機電 其後,微機電反射鏡10則開始回振,θ (ΐ) ,取大, 掃描光線到達有效掃描視窗内(113b至m 广滅小’當 b’至a’點之間),此為反向掃描的有效掃插,舍 微機電反射鏡10繼續向右振動,掃描弁绩5_ 田^3,42510 312a: PD signal 313: ENB signal 314: Adjust signal, 315: Stable signal 316a: First modulation signal (P)丽1 signal) 316b: second modulation signal (PWM2 signal) 316c: third modulation signal (P 3 signal) 321 : resonance frequency signal (Resonant frequency signal) 322: brake signal (Trigger signal) 323 : oscillation Signal (Q signal) Eight, new description: [New technology field] This is a MEMS scan controller with clock frequency, especially for two-way laser scanning device (bi-direction laser scanning unit, referred to as bidirectional LSU) micro-electric-mechanical mirror (MEMS mirror) controller, by generating a timing frequency signal, so that the laser source can be based on the timing frequency To transmit laser light within an effective scanning window. [Prior Art] At present, most of the laser scanning units (LSUs) use a rotating polygon mirror (Polygon Mirror) to control the scanning of laser light at high speed, but since the rotating polygon mirror is hydraulically driven, its rotation speed Factors such as restrictions, high prices, loud sounds, slow start-up, etc., have gradually failed to meet the requirements of high speed and high precision. In recent years, the microbe1ctronic-mechanic system osci11atory mirror (MEMS mirror) has been developed and will be applied to the imaging system in the future. The laser scanning unit (LSU) of a scanner or laser printer will have a higher scanning efficiency than conventional rotating polygon mirrors. A microelectromechanical mirror (MEMS _ mirror) in a laser scanning device (LSU) is composed of a control board having a bridge circuit, a torque oscillator and a mirror surface, and the mirror surface is driven by a resonant magnetic field. Swinging back and forth in the left and right direction; when the laser beam is directed at the mirror surface of the microelectromechanical mirror, the mirror beam is reflected to the microelectromechanical reflection by the angle of rotation that changes with time, so that the laser beam incident on the mirror surface of the microelectromechanical mirror is reflected. The center axis of the mirror is varied and angled for scanning. Since the microelectromechanical mirror can ignore the influence of the wavelength of light and achieve high resolution and large rotation angle, it is widely used in commercial, scientific and industrial applications, such as US5,408,352, φ US5,867,297, US6. 947, 189, US 7,190,499, TW M253133, JP 2006-201350, and the like. Since the microelectromechanical mirror swings back and forth in the left and right direction with the axial center, it is possible to develop a bidirectional scanning to improve the scanning efficiency, and constitute a bi-direction laser scanning imii:, but this also increases the difficulty of control. degree. Since the microelectromechanical mirror swings back and forth in a resonant manner, the angle and stability of the swing will affect the accuracy of the laser scanning device. On the controller of the two-way laser scanning device of the microelectromechanical mirror, the conventional technology focuses on For the stability control of the microelectromechanical mirror, such as adjusting the resonant frequency of the microelectromechanical mirror 4 tM3, 42510, adjusting the working angle of the microelectromechanical mirror, or using a voltage controlled oscillator (VCO) to adjust the frequency, wherein, The principle of the oscillating circuit is to control the magnetic medium of the current control medium or to change the capacitance by using the electric pressure to achieve the purpose of changing the frequency. For example, US Patent Nos. 2006/00139113, US2005/0139678, US2007/0041068, US2004/0119002, US7,304,411, US 5,121,138; Japanese patent JP 63-314965 and the like. However, the two-way laser scanning device, taking the accuracy of 600 DPI (dot per inch) of A4 size as an example, when scanning in each direction • 5102 laser light spots must be sent to make these 5102 spots It can be completely emitted within the effective scanning interval without causing the effective scanning window to move due to the frequency variation or amplitude variation of the microelectromechanical mirror, so that 5102 spots are offset and cannot be completely imaged on the target. Therefore, calculating the frequency of the microelectromechanical mirror to give the correct signal to the laser controller that emits the laser light is one of the main control points. U.S. Patent No. 2006/0279364 discloses the use of a resonant mode of a microelectromechanical mirror, which is controlled by a timing counter using a reference table; U.S. Patent No. 6,891,572 discloses the use of a phase lock circuit to control the simultaneous storage of a scan signal into a memory; U.S. Patent No. 6,838,661, the disclosure of which is incorporated herein by reference in its entirety by U.S. Patent No. 6, 870, 560, U.S. Patent No. 6, 987, 595, the disclosure of which is incorporated herein by reference. The frequency at which the light is scanned. However, for two-way scanning, in the effective scanning window (scanning wind 〇 w) so that the scanning light can be imaged without being offset and complete on the target, it is necessary to develop a more efficient and effective control method and controller. This creation reveals a control method that can generate timing signals and a microelectromechanical scanning controller composed of the 5 M342510 method, in addition to the frequency modulation signal and amplitude modulation signal of the microelectromechanical mirror, so that the microelectromechanical mirror The bridge circuit is stable and can emit an a-number sequence corresponding to the resonant frequency of the microelectromechanical mirror at that time. The timing signal is provided to the laser controller so that the laser light can be emitted in the effective scanning window. Scan the light for high-precision scanning. [New content] The main purpose of this creation is to provide a microelectromechanical scanning controller that supplies a microelectromechanical laser scanning device for bidirectional scanning, which is used to detect the vibration frequency and amplitude of the regenerative mirror. Generating a signal to the laser control and controlling the microelectromechanical mirror bridge circuit to adjust the vibration frequency and amplitude of the microelectromechanical anti-f mirror, and stabilize the vibration of the microelectromechanical mirror, so that the laser light can be correctly Scan in a valid scan area. π For MEMS laser scanning devices, the laser source in the device is controlled by the laser controller. When the laser controller sends the scan data, the laser light is generated by the laser source to the microelectromechanical mirror. Reflective mirror, micro & reflection I brother / resonance frequency (res〇nant) so that the mirror in the forward and reverse vibration (swing), so that the laser light in the effective scanning area, called the effective sweep & window ( Scanni is scanned inside the wind〇w). After the laser beam is scanned, the scanning light is scanned, the scanning light is imaged on the target through the scanning lens, and the scanning light exceeding the effective scanning window is detected by the optical detector. Prepared for testing. The MEMS mirror is controlled by the bridge circuit. When the MEMS mirror swings too large, the bridge circuit can be controlled to make the MEMS mirror swing less than the same. When the MEMS mirror swings too small, the bridge can be controlled. The circuit increases the swing of the electromechanical mirror. When the MEMS mirror is stable, it can send 6 ^ 3A25l 〇 二 知 ί ί 射 射 射 或 或 或 或 或 或 或 或 或 或 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷According to the frequency of the micro-electromechanical mirror at the time of scanning, the four-in-one signal can generate $ light spots or multiples in the effective scanning window: Q:: For _DPI, Α4 size, stone can be set For the first time, you can generate 10,000 light spots in the effective scanning window. One or more of the logic and calculations each of the micro-electromechanical scanning controllers that generate the micro-inventory includes a logic unit, a D-type flip-flop, a phase-locked circuit, and a counter comparator, wherein the trigger can be generated by the optically-receiving photodetector Photo-inductance measurement j-name = the interval between the photo-sensing signals generated by the inductive detector, to generate the day == frequency modulation signal and amplitude modulation signal; the phase-locked circuit can be t = 'the timing signal The frequency is /ακ(1), which corresponds to the phase frequency 'to enable the laser controller to receive the order signal from the lock circuit to send the scan data. Since the microelectromechanical mirror vibrates back and forth at / frequency, the time from left to right is a period of time. In order to scan the angle, the angle and the time are selected, the shape of the rabbit, and the shape of the field Closed as a chord relationship, as shown in Figure 2, in order to avoid scanning the time of the change of tbr Γ to the nearest two straight time, the relationship is as follows: "h, t2, t3, t<"2π/ Κθ/ 2π f ( 1) r2=2sin'i).^7 (2) (3) M342510 Τ,=--(Τ-2Τ2) t4=t2 (4) y, middle T1 is the delay time, and T2 is the time during the forward scan. T4 is the time of reverse scan, / is the microcomputer thunder, T3 is the delay frequency, 4 is the microelectromechanical mirror scanning angle, the 2θ mirror vibration degree, h is the sweeping angle, and the composition is = inductance The angle of the detector is also used to provide a kind of MEMS window. It sends a data brake signal when the MEMS scanner sends a timing signal = field controller to drive the laser controller. , to make the transmission of scanned data more accurate.,, π trace number [implementation] 'domain creation is more clear and detailed, the following best practices As described later: φ <First Embodiment>: Microelectromechanical laser scanning device of a photo-electrical sensor This embodiment is applied to a micro-electromechanical laser scanning I of a photo-electrical sensor; as shown in Fig. 1, for a microelectromechanical laser scanning device in which the laser source 11 is controlled by a laser controller 23, and when the laser controller 23 emits the sweep data 318, the laser beam 111 is generated via the laser source 11; The light ray 111 is directed to the mirror surface of the microelectromechanical mirror 10, and the microelectromechanical mirror 1 振动 causes the mirror surface to vibrate in the forward and reverse directions at a resonance frequency; in this embodiment, the frequency is used == 2500 ± 5% HZ, and the maximum scanning angle is ±23 ° MEMS mirror 10; laser ray 111 is scanned at 乂= ± 23*2 ° to the right 8 M342510 edge scanning ray 115a to the left edge scanning ray 115b; 2 乂 range of scanning light is 113a To 113b, this is an effective scanning window. This embodiment is set to 仏=±19*2. In the present embodiment, the photo-electrical sensor '14a is set at force=±21*2. The scanning light 114a is detected by the photodetector 14a. The optical detector 14a can be connected. The light ray 114a is scanned to convert the light into an electrical trigger signal. The scanning ray 113a to 113b is imaged on the target 15 such as the photosensitive drum via the rear scanning lens 13. To maintain a 2 & angle stable 'microelectromechanical mirror 1 The bridge circuit 22 can be driven by the bridge circuit 22, and the bridge circuit 22 can emit the driving signal 311 to swing the microelectromechanical mirror 10. When the microelectromechanical mirror 1 is swung too large, the bridge circuit 22 can be controlled to be driven. The signal 311, similarly, when the microelectromechanical mirror 10 is swung too small, the bridge circuit 22 can be controlled to issue a driving signal 311. The bridge circuit 22 is based on the first modulation signal 316a output by the microelectromechanical scanning controller 21. • The second modulation signal 31 rib and the third modulation signal 316c are controlled. In addition, the laser controller 23 is a main stage of the laser printer or the multifunction printer, and is configured to emit scan data 318 to control the laser light source η, and to initiate activation of the microelectromechanical mirror 10 The signal 313 is sent to adjust the adjustment signal 314 of the microelectromechanical mirror 10 to determine whether the microelectromechanical mirror 1 is stable, whether the scan data 318 can be emitted, and the frequency at which the scan data 318 is emitted. The MEMS scanning controller 21 receives the start enable signal 313 of the laser controller 23, the adjustment signal 314 of the laser controller 23, the first modulation signal 316a for generating the frequency modulation, and the second modulation for generating the frequency modulation. The variable signal 316b and the third modulated signal 316c for generating amplitude modulation and the stable signal 315 for generating the microelectromechanical mirror 10 are detected by the photo-sensing signal 312a emitted from the photodetector 9 M342510 14a. The resonant frequency of the electromechanical mirror 10 produces a timing signal 310 for providing to the laser controller 23 to 'drive the laser source 11 in time to cause the image signal from the laser source 11 to be calculated by the microelectromechanical scanning controller 21. And the phase, so that the timing signal 310 is the correct timing frequency, so that the scanning rays 113a to 113b after the scanning of the laser beam 111 are located in the effective scanning window, even if the scanning rays 113a to 113b generate η /5 spots on the object 15 . The MEMS scan controller 21 includes a logic unit 211, a D-type flip-flop • I 212, a D-type flip-flop II 213, a phase-lock circuit 214, and a counter comparator 215. The logic unit 211 can receive the trigger photo-sensing signal 312a generated by the photo-inductor 14a, and calculate the photo-sensing signal 312a generated by the photo-inductor 14a to generate a frequency-modulated signal of the micro-electromechanical mirror 10. An amplitude modulation signal, a first modulation signal 316a, a second modulation signal 316b and a third amplitude modulation signal 316c; the phase lock circuit 214 can generate a timing signal 310 when the laser controller 23 receives the microelectromechanical scan control The timing signal 310 sent by the phase lock circuit 214 of the device 21 can send the scan data 318 according to the frequency of the timing signal 310 spring, as illustrated below: As shown in FIG. 2, the microelectromechanical mirror 10 is along the X axis according to the Y axis. Vibration, the left and right vibration is ± A. At any time, the angle between the scanning light reflected by the laser beam 111 and the central optical axis (113c) is 6» (t) is a sinusoidal waveform with time, and the scanning light is reflected. When the photodetector 14a is applied, the first triggered photo-sensing signal 312a is generated. When the microelectromechanical mirror 10 vibrates to the right to the maximum angle A, the angle β(t) is maximum; thereafter, the microelectromechanical mirror 10 Then start to oscillate, 0 (t) The angle is reduced, and when the reflected scanning light is applied to the photodetector 14a, a second triggered photo-sensing signal 10 M342510 312a is generated, when the scanning light reaches the effective scanning window (ία, point a to b of Fig. 2) Between the angles θ a to 1131), that is, σ U:) and the time ten is the closest straight line, which is the forward scan of the sweep, *, and the relationship mirror 10 vibrates to the left to the maximum Angle - Α, = 视固' When MEMS is followed, MEMS mirror 10 starts to oscillate, θ (ΐ), take large, scanning light reaches the effective scanning window (113b to m wide and small 'when b Between 'to a' point), this is the effective sweep of the reverse scan, and the microelectromechanical mirror 10 continues to vibrate to the right, scanning the performance 5_ field

u球卫尤電感制哭 14a時,產生第三次觸發的光電感測信號312a,二“、’二 週期的掃描,當微機電反射鏡10至最大角度一個 回振,g (t)角度減小,掃描光線至光電感測器^才日^ 產生第四次觸發的光電感測信號312a。 a、’ 如圖3,本實施例之微機電掃描控制器幻是由羅 7^211、二個D型正反器212/213 、鎖相電路214=計= 比較器215所構成;微機電掃描控制器21接受光電感測哭 14a所發出的光電感測信號312a,由於微機電反射^'〇 = 以/頻率來回振動,由左向右振動完成一個週期的時間為 T(t),稱為掃描週期正向掃描與反向掃描如圖4所示,在 掃描週期内,當0 (t)減小於掃描光線H4a位置起,即延 時1時間’此時角度θ (t)與時間t之關係為最接近直 線,雷射控制器23發出掃描數據318,發出數據時間為 T2,此為正向掃描的有效掃描視窗;當延時%之後,雷射 控制器23發出掃描數據318,發出數據時間為τ4,此為負 向掃描的有效掃描視窗;而Τ!、Τ2、Τ3、I是在一個掃描 週期Τ⑴内完成。Τι、Τ2、τ3、τ4之間關係如下:當 M342510 /=2500 HZ時,由 Eq.(l)〜Eq.(4)計算得 TW.137 χ 1(Γ5, Τ2=Τ4=1·2377 χ 1(Γ4,Τ3=7·623 χ 10·5。 當雷射控制器23發出啟動致能信號313為高電位時, 即是不發出微機電反射鏡1〇之啟動致能,由高電位轉成低 電位,即是發出微機電反射鏡10之啟動致能,如圖5,但 此時微機電反射鏡1〇啟動後尚不穩定,此時雷射控制器23 發出穩定信號315為低電位、發出調整信號314為低電 位’一段時間後,微機電反射鏡10已穩定,穩定信號315 轉為高電位、調整信號314轉為高電位,並發出第一調變 信號316a,經由橋式電路22成為驅動信號311,使微機電 反射鏡10向左振動;微機電反射鏡1〇來回振動後,每個掃 描週期T(t)會觸發二次光電感測器14a,由此可由邏輯單 疋2U計算出光電感測信號312a的觸發週期Τ(ΐ)。在控制 Τι、Τ2、Τ3、Τ4時,微機電掃描控制器21之邏輯單元211 可接收光電感測器14a產生的觸發信號312a,並計算每次 1電感測器14a產生的觸發信號312a,並產生微機電反射 ,ίο=頻率之第—調變信號316a、第二調變信號鳩與振 幅之第三調變信號316c ;第一調變信號31如、第二調變信 號316b與振幅之第三調變信號316c送出後,由 ^ 接受,用以調整微機電反射鏡1〇之振動頻率與振幅。 如圖6所示,第一調變信號316a、第二調變作 與振幅之第三調變信號施之脈衝關係狀如下:在°共振 時:第一5周變仏號316續第二調變信號3i6b之脈種; 一月〜/ ΤΑ3 ’且設TAl=TA3,第一調變信號316a與第 一調受“號31613脈衝的間隔時間為以2與a*,且設 12 M342510 TA2JTA4 H/TA4 ’ Hta3+H即在共振週期τ内完 成第-調變信號316a與第二調變錢316b各—次,即使第 一调變# #u 316 a與第二調變信號3丨6 b驅動微機電反射鏡丄〇 使微機電反射鏡1G的共振頻率為1/τ,其中了通4比值為 不限制’可視控制迴路而更改,在本實施例係使用 Tm/4 ;第三調變信制6e為由高電位降為低電位的 過程’藉由高電位維持的時間TAl〇與低電位維持的時間 TA9比值則為振幅調整的負荷D,設定第三調變信號槪 為1K的鮮(頻㈣不限制,在本實_係使襲的頻 ^ ^ti^TAn=l/1000 >D=TA1〇/TAn> ΤΑ9+ΤΑ10=ΤΑπ ^ 整D數值可調整第三調變信號账之波形,藉以經由橋式 電路22以改變微機電反射鏡1()的振幅。在微機電反射鏡1〇 ,射雷射光線111後,由左侧向右侧擺動而觸發光電感測 器14a二次的時間,如圖8,相鄰二次觸發光電感測器 14a的時間為TA6,與週期T(t)之比值為TA6/(T(t)/2), 因週期T(t)隨時間變化,則比值ΤΑβ/(τ⑴/2)也隨時間變 化,對於固定的光電感測器14a位置,觸發光電或測哭 Ua之掃描光線則中心袖構成夹角為二么反 射鏡10最大掃描角度為4,即,在週期為T時,R= TA6/(T(t)/2),或由计异比值R的變化也可以計算出週期 丁的變化,計算方法如下:u 球 尤 电感 电感 电感 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 Small, scanning light to the photo-sensing device ^ is the day ^ produces the fourth-triggered photo-sensing signal 312a. a, ' As shown in Figure 3, the MEMS scanning controller of this embodiment is made by Luo 7^211, two The D-type flip-flop 212/213, the phase-locked circuit 214=meter=the comparator 215; the MEMS scanning controller 21 receives the photo-sensing signal 312a emitted by the photo-sensing test 14a, due to the micro-electromechanical reflection ^' 〇 = vibrate back and forth at / frequency, vibrating from left to right to complete a period of time T (t), called scan period forward scan and reverse scan as shown in Figure 4, during the scan period, when 0 (t ) decreasing from the position of the scanning light H4a, that is, the delay 1 time 'At this time, the relationship between the angle θ (t) and the time t is the closest straight line, the laser controller 23 issues the scan data 318, and the data time is T2, which is Active scan window for forward scan; after delay %, the laser controller 23 issues the number of scans 318, the data sending time is τ4, which is the effective scanning window of the negative scanning; and Τ!, Τ2, Τ3, I are completed in one scanning period Τ(1). The relationship between Τι, Τ2, τ3, τ4 is as follows: when M342510 When /= 2500 HZ, TW.137 χ 1 (Γ5, Τ2=Τ4=1·2377 χ 1 (Γ4, Τ3=7·623 χ 10·5) is calculated from Eq.(l)~Eq.(4). When the laser controller 23 sends the enable enable signal 313 to a high level, that is, the activation of the microelectromechanical mirror 1 is not issued, and the high potential is turned to a low potential, that is, the start of the microelectromechanical mirror 10 is issued. Enable, as shown in Figure 5, but at this time, the microelectromechanical mirror 1〇 is unstable after starting. At this time, the laser controller 23 sends a stable signal 315 to a low potential, and sends an adjustment signal 314 to a low potential. The electromechanical mirror 10 has stabilized, the stable signal 315 is turned to a high potential, the adjustment signal 314 is turned to a high potential, and the first modulated signal 316a is emitted, and the drive signal 311 is turned via the bridge circuit 22, so that the microelectromechanical mirror 10 is left. Vibration; after the micro-electromechanical mirror 1 oscillates back and forth, each scanning period T(t) triggers secondary photo-sensing The triggering period Τ(ΐ) of the photo-sensing signal 312a can be calculated by the logic unit 2U. When the switches Τι, Τ2, Τ3, Τ4, the logic unit 211 of the MEMS scanning controller 21 can receive the photo-inductance. The trigger signal 312a generated by the detector 14a is calculated, and the trigger signal 312a generated by the 1 inductor 14a is calculated every time, and the microelectromechanical reflection is generated, ίο=the frequency of the first modulation signal 316a, the second modulation signal 鸠 and the amplitude The third modulation signal 316c; the first modulation signal 31, for example, the second modulation signal 316b and the third amplitude modulation signal 316c of the amplitude are sent out by ^, to adjust the vibration frequency of the microelectromechanical mirror 1〇 amplitude. As shown in FIG. 6, the first modulation signal 316a, the second modulation signal and the amplitude of the third modulation signal are pulsed as follows: at the time of resonance: the first 5 weeks change 仏 316 continues the second adjustment The pulse of the variable signal 3i6b; January~/ΤΑ3' and TAl=TA3, the interval between the first modulation signal 316a and the first modulation of the number 31316 pulse is 2 and a*, and 12 M342510 TA2JTA4 H /TA4 'Hta3+H, that is, the first modulation signal 316a and the second modulation money 316b are completed in the resonance period τ, even if the first modulation # #u 316 a and the second modulation signal 3丨6 b Driving the microelectromechanical mirror 丄〇 causes the resonant frequency of the microelectromechanical mirror 1G to be 1/τ, wherein the ratio of the pass 4 is not limited to the 'visible control loop, and the Tm/4 is used in the embodiment; the third modulation The signal system 6e is a process from a high potential to a low potential. The time TAl 维持 maintained by the high potential and the time TA9 maintained by the low potential are the amplitude-adjusted load D, and the third modulation signal is set to 1K. (Frequency (4) is not limited, in this real _ system attack frequency ^ ^ti^TAn=l/1000 >D=TA1〇/TAn> ΤΑ9+ΤΑ10=ΤΑπ ^ Adjustable D value The waveform of the third modulation signal account is used to change the amplitude of the microelectromechanical mirror 1() via the bridge circuit 22. After the laser mirror 111 is irradiated, the left side is swung from the left side to the right side. The time when the photodetector 14a is triggered twice, as shown in FIG. 8, the time of the adjacent secondary trigger photodetector 14a is TA6, and the ratio of the period T(t) is TA6/(T(t)/2), Since the period T(t) changes with time, the ratio ΤΑβ/(τ(1)/2) also changes with time. For the position of the fixed photo-inductor 14a, the scanning light of the triggering photoelectric or the crying Ua forms an angle of the center sleeve. Secondly, the maximum scanning angle of the mirror 10 is 4, that is, when the period is T, R=TA6/(T(t)/2), or the variation of the duty ratio R can also calculate the change of the period D, and the calculation Methods as below:

TA 2π ⑸ 由於微機電反射鏡10係利用電磁力或彈簧力產生振 盪,在任一時間t,其共振頻率為八t)、振幅為Α(ΐ),並 13 M342510 非固定不變的數值,其最下限為下限共振頻率/L、其最上 •限為上限共振頻率/η,即/L S /(t) g /H ;本實施例, • /l=2375、/h==2625 ;因微機電反射鏡10振動時會受環境或其 結構影響,共振頻率為/(t)變動將影響雷射光源丨丨將掃描 數據送出的時機,振幅為A(t)變動將影響反射角度0 (七),進而影響掃描光線113a、掃描光線ii3b所構成的有 效掃描視窗。因此,微機電掃描控制器21控制微機電反射 鏡10的共振頻率/(t)與振幅A(t)之方法如圖1〇所示,包含 • 下列步驟: 51 :設定負荷之初始值(本實施例設定j)=9〇%)、設定 週期初始值T(本實施例設定T=l/fL=4.21x l(T4sec),雷射 控制器23控制雷射光源11發出雷射光線in ; 52 :檢查光電感測信號312a在半個週期4.21 X l(T4sec 内是否被觸發二次; 53 :調整頻率則將第一調變信號316a、第二調變信號 316b及第三調變信號316c設為低電位; • S4 :檢查檢查光電感測信號312a的觸發時間比值, TA6/(T(t)/2),是否在 R it 5%内;如果 TA6/(T(t)/2)正確 則判斷是否連續穩定,如果連續穩定則由雷射控制器23發 出穩定信號315 ;如果TA6/(T(t)/2)不正確,則開始調整 振幅; 55 :調整振幅則先判斷TA6/(T(t)/2)低於上限5%或下 限5% ; 56 :調整振幅時,調整負荷D值,使D值調升或調 降,以改變振幅,使在半個週期内振幅能觸發二次光電感 M342510 測器14a ; . S7 ·振幅正確後則微调頻率,但頻率不能超過a。 在本實施例,光電感測器14a裝設於^ =21。,即在 • A2500 HZ時,由Eq.(5),可計算得胙0.26745。雷射控制器 23控制微機電反射鏡10的共振頻率/(t)與振幅之方法 中’當檢查檢查光電感測信號312a的觸發時間比值, TA6/(T(t)/2),即以 R=0.25408〜0·28082 為控制之判斷。 當微機電反射鏡10之頻率T(t)與振幅A(t)正確後,雷 ❿射控制裔23發出穩定信號315,則可以開始傳送掃描數據 318。在微機電掃描控制器21另包含一個或多數個D型正 反器I 212、D型正反器II 213,D型正反器ί 212、D 型正反器II 213可接受邏輯單元211產生的頻率調變信 號,第一調變信號316a與第二調變信號316b,並產生^振 頻率信號321及回授信號,或接收計數比較器215輸出'的 制動信號322,產生内部振盪信號323及回授信號;其 中,共振頻率信號321之低電位時間&與高電位時間Ti3, •如圖9 ;鎖相電路214則可接收D型正反器產生的共振頻 f信號321及/或内部振盛信號323回授信號並產生時序、 #號310,時序信號31〇係由共振頻率信號321之 之比1 直所決定,即在一個週期時間内產生η沒脈衝;計二 比較器215則可接受鎖相電路214的時序信號31〇,該時 序信號310為具有/(ΐ)倍率頻率的脈衝信號;計數比= 215則可累計時序信?虎31〇的脈衝至一定數量並產生 制動^號322,並清除累計時序信號310。 當微機電反射鏡1〇之頻率與振幅穩定後,其在t時間 15 .M342510 頻率為/(t),在有效掃描視窗内之掃描數據318傳送時間 為T2(或T4),即在有效掃描視窗内應傳送η /3 =1*5102 個光點,如圖9,即在此時間t,時序信號310之脈衝的 • 頻率/ακ(ΐ)。若在t時間,微機電反射鏡10之頻率為 2500 HZ時,經由Eq.(4)計算,/ακ=41·22 MHZ。計數比較 器215在Τ2内產生8244個脈衝信號。 當微機電反射鏡10之頻率T(t)與振幅Α(ΐ)正確穩定 後,雷射控制器23可以開始傳送掃描數據,傳送掃描數據 • 的方法如圖11,包含下列步驟: S1 :雷射控制器23若發出啟動致能信號313為低電 位,則使微機電掃描控制器21不發出時序信號310及數據 制動信號317a ;若雷射控制器23發出啟動致能信號313或 調整信號314時,則由微機電掃描控制器21發出第一調變 信號316a、第二調變信號316b及第三調變信號316c,以調 整並判斷微機電反射鏡10是否穩定,此時微機電反射鏡10 啟動完成; • S2 :微機電反射鏡10穩定後微機電掃描控制器21發出 穩定信號315 ; 53 ··微機電掃描控制器21發出時序信號310 ;該時序 信號310的頻率/aK(t)則以Eq· (4)所計算; 54 ··雷射控制器23將掃描數據318傳出,其傳出之頻 率則為時序信號310的頻率/aK(t)。 由此,時序信號310的頻率/aK(t)係經由微機電掃描 控制器21產生,供以雷射控制器23將掃描數據318傳出, 因為該時序信號310的頻率/aK(t)係由微機電掃描控制器 16 M342510 21依據微機電反射鏡10在任何時間t下的振動頻率f(t)所 計算與產生,可在T2或T4時間内傳送石個光點或其倍數n j個光點。本創作的目的,在於提供一種微機電掃描控制 21使在试機電反射鏡穩定振動後,由微機電掃描控 制=21發出時序信號31G的頻率/aK(t),達成在有效掃描 視窗(T2或T4時間内)傳送掃描數據318。 <實施例二 > 一個光電感測.器的微機電雷射掃描裝置 本實施例應用於一個光電感測器的微機電雷射掃描裝 ,,本貫施例之微機電掃描控制器21與控制方法是相同於 第一實施例。為使傳送掃描數據318時更為準確,則在微 機電掃描控制器21發出時序信號⑽的頻率/ω⑴之同時 進步可叙出數據制動彳§號317a,以驅動雷射控制器23開 始傳送掃描數據318。如圖12,邏輯單元211於微機電掃 描控制器21若接到穩定信號315,則發出時序信號31〇及 數據制動信號317a ;本實施例傳送掃描數據的方法包含下 列步驟: 51 :雷射控制器23若發出啟動致能信號313為低電 位’則使4機電掃描控制不發出時序信號及數據 制動^號317a ;若雷射控制器23發出啟動致能信號313或 凋正乜號314 s寸,則由微機電掃描控制器a發出第一調變 信號316a、第二調變信號_及第三調變信號施,以調 t亚判斷u機電反射㈣是否穩定,此時微機電反射鏡1〇 啟動(設定)完成; 52 · U機電反射鏡職定後微機 器21會發 出穩定信號315 ;TA 2π (5) Since the microelectromechanical mirror 10 is oscillated by electromagnetic force or spring force, at any time t, its resonant frequency is eight t), the amplitude is Α(ΐ), and 13 M342510 is not fixed. The lower limit is the lower limit resonance frequency / L, and the upper limit is the upper limit resonance frequency / η, that is, /LS /(t) g /H; in this embodiment, • /l=2375, /h==2625; When the mirror 10 vibrates, it will be affected by the environment or its structure. The resonance frequency of /(t) will affect the timing of the laser source to send the scanned data. The amplitude of the A(t) will affect the reflection angle of 0 (7). In turn, the effective scanning window formed by the scanning light 113a and the scanning light ii3b is affected. Therefore, the method of controlling the resonance frequency /(t) and the amplitude A(t) of the microelectromechanical mirror 10 as shown in FIG. 1A includes the following steps: 51: setting the initial value of the load (this In the embodiment, j)=9〇%), the initial value of the set period T is set (T=l/fL=4.21xl (T4sec) is set in the embodiment, and the laser controller 11 controls the laser source 11 to emit the laser light in; 52 : Checking whether the photo-sensing signal 312a is triggered twice in a half cycle of 4.21 X l (T4sec; 53: adjusting the frequency, setting the first modulation signal 316a, the second modulation signal 316b, and the third modulation signal 316c Low potential; • S4: Check the trigger time ratio of the photo-sensing signal 312a, TA6/(T(t)/2), whether it is within R 5%; if TA6/(T(t)/2) is correct Then, it is judged whether it is continuously stable. If it is continuously stable, the laser controller 23 sends a stable signal 315; if TA6/(T(t)/2) is not correct, the amplitude is adjusted; 55: Adjusting the amplitude first determines TA6/( T(t)/2) is lower than the upper limit of 5% or lower limit of 5%; 56: When adjusting the amplitude, adjust the load D value to increase or decrease the D value to change the amplitude and make the vibration in half cycle. Can trigger the secondary optical inductance M342510 detector 14a; S7 · After correct amplitude, fine-tune the frequency, but the frequency can not exceed a. In this embodiment, the photo-electrical sensor 14a is installed at ^ = 21, that is, at • A2500 HZ When Eq. (5), 胙 0.26745 can be calculated. The laser controller 23 controls the resonant frequency /(t) and amplitude of the microelectromechanical mirror 10 in the method of 'checking and checking the triggering time of the photo-sensing signal 312a The ratio, TA6/(T(t)/2), is judged by R=0.25408~0·28082. When the frequency T(t) and amplitude A(t) of the microelectromechanical mirror 10 are correct, the Thunder The shot control unit 23 sends a stable signal 315, and then can start transmitting the scan data 318. The microelectromechanical scan controller 21 further includes one or a plurality of D-type flip-flops I 212 and D-type flip-flops II 213, and the D-type positive and negative 214, D-type flip-flop II 213 can receive the frequency modulation signal generated by the logic unit 211, the first modulation signal 316a and the second modulation signal 316b, and generate the vibration frequency signal 321 and the feedback signal, or The receive count comparator 215 outputs a 'braking signal 322' to generate an internal oscillating signal 323 and a feedback signal; The low potential time of the vibration frequency signal 321 & and the high potential time Ti3, • as shown in FIG. 9; the phase lock circuit 214 can receive the resonance frequency f signal 321 generated by the D-type flip-flop and/or the internal vibration signal 323. And generate timing, #310, the timing signal 31 is determined by the ratio of the resonant frequency signal 321 to the ratio 1, that is, η no pulse is generated in one cycle time; the second comparator 215 can accept the phase locked circuit 214 The timing signal 31 〇, the timing signal 310 is a pulse signal having a frequency of / (ΐ) magnification; the counting ratio = 215 can accumulate the timing signal of the tiger 31 〇 pulse to a certain number and generate the brake ^ 322, and clear the accumulation Timing signal 310. When the frequency and amplitude of the microelectromechanical mirror 1 稳定 is stable, it is at /15 at the time t. The frequency of the M342510 is /(t), and the transmission time of the scan data 318 in the effective scanning window is T2 (or T4), that is, in the effective scanning. η /3 =1*5102 spots should be transmitted in the window, as shown in Figure 9, at this time t, the frequency of the pulse of the timing signal 310 / α κ (ΐ). If the frequency of the microelectromechanical mirror 10 is 2500 HZ at time t, it is calculated by Eq. (4), /ακ=41·22 MHZ. Count comparator 215 generates 8244 pulse signals in Τ2. When the frequency T(t) and the amplitude Α(ΐ) of the microelectromechanical mirror 10 are correctly stabilized, the laser controller 23 can start transmitting the scan data, and the method of transmitting the scan data is as shown in FIG. 11, which includes the following steps: S1: Ray If the firing controller 23 issues the start enable signal 313 to a low potential, the MEMS scan controller 21 is caused not to issue the timing signal 310 and the data brake signal 317a; if the laser controller 23 issues the enable enable signal 313 or the adjustment signal 314 When the microelectromechanical scanning controller 21 sends the first modulated signal 316a, the second modulated signal 316b and the third modulated signal 316c to adjust and determine whether the microelectromechanical mirror 10 is stable, the microelectromechanical mirror 10 startup completion; • S2: the microelectromechanical mirror 10 is stabilized and the microelectromechanical scanning controller 21 sends a stabilization signal 315; 53 · The microelectromechanical scanning controller 21 issues a timing signal 310; the frequency of the timing signal 310 / aK(t) Then, it is calculated by Eq·(4); 54. The laser controller 23 transmits the scan data 318, and the frequency of the transmission is the frequency /aK(t) of the timing signal 310. Thus, the frequency /aK(t) of the timing signal 310 is generated via the microelectromechanical scan controller 21 for the laser controller 318 to transmit the scan data 318 because the frequency of the timing signal 310 /aK(t) is Calculated and generated by the microelectromechanical scanning controller 16 M342510 21 according to the vibration frequency f(t) of the microelectromechanical mirror 10 at any time t, which can transmit stone spots or multiples of nj light in T2 or T4 time. point. The purpose of the present invention is to provide a microelectromechanical scanning control 21 for enabling the frequency of the timing signal 31G/aK(t) by the microelectromechanical scanning control=21 after the electromechanical mirror is stably vibrated, achieving the effective scanning window (T2 or Scan data 318 is transmitted within T4 time. <Second Embodiment> A microelectromechanical laser scanning device of a photo-sensing device The present embodiment is applied to a microelectromechanical laser scanning device of a photo-electrical sensor, and the microelectromechanical scanning controller 21 of the present embodiment The same as the control method is the first embodiment. In order to make the scan data 318 more accurate, the micro-electromechanical scan controller 21 outputs the timing signal (10) frequency / ω (1) while progressing the data brake 彳 § 317a to drive the laser controller 23 to start the transmission scan. Data 318. As shown in FIG. 12, the logic unit 211 issues a timing signal 31 and a data brake signal 317a when the MEMS scan controller 21 receives the stabilization signal 315. The method for transmitting the scan data in this embodiment includes the following steps: 51: Laser control If the enable enable signal 313 is low, the fourth electromechanical scan control does not issue the timing signal and the data brake 317a; if the laser controller 23 issues the enable enable signal 313 or the 314 s inch The micro-electromechanical scanning controller a sends the first modulated signal 316a, the second modulated signal_and the third modulated signal to determine whether the electromechanical reflection (4) is stable, and the microelectromechanical mirror 1 〇 start (set) is completed; 52 · U mechanical mirror will be issued after the micro-machine 21 will send a stable signal 315;

Claims (1)

M342510 九、申請專利範圍: 1· 一種產生時序頻率的微機電掃描控制器,其係應用於雷 射掃描裝置,該雷射掃描裝置包含一雷射光源其用以產 生雷射光線,一微機電反射鏡其利用共振方式驅動反射 鏡以正向掃描及反向掃描將雷射光線掃描於目標物上, 一個光電感測器其可接收掃描先線而將光線轉變成光電 感測信號,一控制微機電反射鏡之橋式電路及一雷射控 制器其控制雷射光源發出雷射光源; 該微機電掃描控制器係用以偵測微機電反射鏡之共振頻 率並產生時序信號以適時驅動雷射控制器發出雷射光源 並經由微機電反射鏡掃描,包含一邏輯單元、一個或多 數個D型正反器、一鎖相電路及一計數比較器,其中: 邏輯單元可接收一個光電感測器產生的光電感測信號, 並计算母次光電感測信號的間隔時間,以產生微機電反 射鏡之頻率調變信號、振幅調變信號與微機電反射鏡已 穩定之穩定信號; D型正反器可接受邏輯單元產生的頻率調變信號與振幅 調變信號並產生共振頻率信號及回授信號; 鎖相電路可接收D型正反ϋ產生的共振頻率信號並產生 時序信號; 計數=較器可接受時序信號,累計時序信號的脈衝至一 定數量並產生一個制動信號,並清除累計時序信號,該 制動信號再經由該D輕反器產生下―個回授信號;^ 雷射光源接❹m機電掃描控制-發出的時序信號,: 可依此時序信號由雷射控制器在有效掃描視窗内將掃插 26 97 97 — 一-丨 , --------^^…一·.-· ^ 5· 26 修iL: 年月曰、#女 充 M342510 數據送出。 2:請==:二生時序頻率的微機二 駆,制器開始二:數據制動信號,以 圍ί1項或第2項之產生時序頻率的微機 F控,其進-步可包含-職_nt F卿ency,頻率)延時電路,該 率)延時電路可將d型正反器輸出之庄 ===:::號脈衝產生時才送出數據 4如申請專利筋圍5 制器開始傳送掃描數據。 •電掃描控制器生時序頻率的微機 該數據驅動延時電二=含一數據驅動延時電路, 衝產生===, ς 4· + 控制器開始傳送掃描數據。 •射掃” ^序t的微機電掃描控制器,其係應用於雷 =:射掃描裳置包含-雷射光源其用4 ^ ’ 微機電反射鏡其利用共振方式驅動反射 鏡以正向勒及反向掃描將雷射光_描於目標物上,、 個或個以上的光電感測器其可接收掃描光線而將 線轉韻光電感測信號,—控制微機電反射鏡之橋式 路及-雷射控制器其控制雷射光源發出雷射光源; 该微機電掃描控制器係用以偵測微機電反射鏡之共振頰 率並產生時序信號以適時驅動雷射控制器發出雷射光源 並經由微機電反射鏡掃描,包含一邏輯單元、一個或多' 27 9? M342510 補充! 數個D型正反器、一鎖相電路及一計數比較器^^^ 邏輯單元可接收二個或二個以上的光電感測器產^的光 電感測信號,並計算每次光電感測信號的間隔時間,以 產生微機電反射鏡之頻率調變信號、振幅調變信^與微 機電反射鏡已穩定之穩定信號; D型正反器可接受邏輯單元產生的頻率調變信號與振幅 調變信號並產生共振頻率信號及回授信號; 〃 鎖相電路可接收D型正反器產生的共振頻率 時序信號; 。現亚座生 „器可接受時序信號,累計時序信號的脈衝至一 定數量並產生一個制動信號,並清除累計時序信號,該 制動信號再經由該D型正反器產生下—個回授;^ 雷射光源接收到微機電掃描控制器發出的時序^號二 序信號由雷射控制器在有效掃描视“將掃描 6·如申請專利範圍第5項之產生時序頻率的微機 制器’其中該邏輯單元可進—步送出數據制動信號= 驅動雷射控制器開始傳送掃描數據。 X 7. 如申請專利範圍第5項或第6項之產序 電掃描控制器,其進一步可包含- _esorI的微機 FreqUenCy共振頻率)延時電路,該RF(Resonant 振鮮)延時電路可將D型正反11輸出之北 率彳。號延時至頻率調變信號脈衝產生時才送姑 制動信號,以驅動雷射控制器開始傳送择描數據。 8. 如申請專利範圍第5項或第6項之產生時序頻率的微機 28 ^342510 97. 5. 26 年月曰 補充 電掃描控制器,其進一步可包含一數據驅動延時電路, 該數據驅動延時電路可將D型正反器輸出之共振頻率信 號延時至頻率調變信號脈衝產生時才送出數據制動信 號,以驅動雷射控制器開始傳送掃描數據。M342510 IX. Patent application scope: 1. A MEMS scanning controller for generating timing frequency, which is applied to a laser scanning device, the laser scanning device comprising a laser light source for generating laser light, a micro-electromechanical device The mirror uses a resonant mode to drive the mirror to scan the laser beam on the target in forward and reverse scans. A photo-electrical sensor can receive the scanning line and convert the light into a photo-sensing signal. a bridge circuit of a microelectromechanical mirror and a laser controller for controlling a laser source to emit a laser light source; the microelectromechanical scanning controller is configured to detect a resonant frequency of the microelectromechanical mirror and generate a timing signal to drive the lightning in a timely manner The shooting controller emits a laser light source and scans through the microelectromechanical mirror, and comprises a logic unit, one or a plurality of D-type flip-flops, a phase-locked circuit and a counting comparator, wherein: the logic unit can receive a photo-sensing measurement The photo-sensing signal generated by the device, and calculating the interval time of the mating photo-inductance signal to generate a frequency modulation signal of the micro-electromechanical mirror, vibration The amplitude modulation signal and the microelectromechanical mirror have stabilized stable signals; the D type flip-flop can receive the frequency modulation signal and the amplitude modulation signal generated by the logic unit and generate the resonance frequency signal and the feedback signal; the phase lock circuit can receive The D-type positive and negative ϋ generates a resonant frequency signal and generates a timing signal; the count=the comparator can receive the timing signal, accumulates the pulse of the timing signal to a certain number and generates a braking signal, and clears the accumulated timing signal, and the braking signal passes through the The D light-reactor generates the next feedback signal; ^ The laser source is connected to the m-electromechanical scan control-issued timing signal: According to this timing signal, the laser controller will sweep the 26 97 97 in the effective scanning window.一-丨, --------^^...一·.-· ^ 5· 26 Repair iL: Year of the month, #女充M342510 Data sent out. 2: Please ==: microcomputer timing of the second-order timing frequency, the start of the controller 2: data braking signal, to control the timing frequency of the microcomputer F control of the ί1 or the second item, the advance step can include - Nt F Qing ency, frequency) delay circuit, the rate) delay circuit can output the d-type positive and negative device output ===::: when the pulse is generated, the data is sent 4 as the patented ribs 5 start the transmission scan data. • The microcomputer that scans the timing frequency of the electric controller. The data drives the delay power two = one data drive delay circuit, the pulse generation ===, ς 4· + The controller starts to transmit the scan data. • Sweeping ^ 序 的 的 的 的 的 的 的 的 的 的 的 的 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷And the reverse scanning describes the laser light on the target object, and the one or more photo-sensing sensors can receive the scanning light and turn the line into the optical-sensing signal, and control the bridge path of the micro-electromechanical mirror and a laser controller that controls the laser source to emit a laser source; the microelectromechanical scanning controller is configured to detect the resonant buccal rate of the microelectromechanical mirror and generate a timing signal to drive the laser controller to emit the laser light source at the appropriate time Scanned by a microelectromechanical mirror, including a logic unit, one or more '27 9? M342510 supplements! Several D-type flip-flops, a phase-locked circuit, and a counter comparator ^^^ Logic unit can receive two or two More than one photo-sensing device produces a photo-sensing signal, and calculates the interval between each photo-sensing signal to generate a frequency-modulated signal, amplitude modulation signal, and microelectromechanical mirror of the microelectromechanical mirror. Stable and stable signal The D-type flip-flop can receive the frequency modulation signal and the amplitude modulation signal generated by the logic unit and generate the resonance frequency signal and the feedback signal; 〃 the phase-locked circuit can receive the resonance frequency timing signal generated by the D-type flip-flop; The sub-seat can receive the timing signal, accumulate the pulse of the timing signal to a certain number and generate a braking signal, and clear the accumulated timing signal, and the braking signal is then generated by the D-type flip-flop; The light source receives the timing of the MEMS scan controller issued by the second-order signal by the laser controller in the effective scan as "will scan 6 · as claimed in the patent scope 5th generation of the timing mechanism of the micro-mechanism" where the logic The unit can send the data brake signal in step-by-step = drive the laser controller to start transmitting the scan data. X 7. As in the patented scope 5 or 6 of the production sequence scanning controller, it can further include - _esorI microcomputer FreqUenCy resonance frequency) delay circuit, the RF (Resonant) delay circuit can output the north rate of the D-type positive and negative 11 output. Delay to the frequency modulation signal pulse The brake signal is sent to generate the brake signal to drive the laser controller to start transmitting the selected data. 8. The microcomputer that generates the timing frequency according to item 5 or item 6 of the patent application 28 ^342510 97. The electric scan controller may further comprise a data driving delay circuit, wherein the data driving delay circuit delays the resonant frequency signal outputted by the D-type flip-flop to when the frequency modulation signal pulse is generated, and sends the data braking signal to drive The laser controller begins transmitting scan data. 2929
TW96222681U 2007-12-31 2007-12-31 MEMS scan controller with clock frequency TWM342510U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96222681U TWM342510U (en) 2007-12-31 2007-12-31 MEMS scan controller with clock frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96222681U TWM342510U (en) 2007-12-31 2007-12-31 MEMS scan controller with clock frequency

Publications (1)

Publication Number Publication Date
TWM342510U true TWM342510U (en) 2008-10-11

Family

ID=44335163

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96222681U TWM342510U (en) 2007-12-31 2007-12-31 MEMS scan controller with clock frequency

Country Status (1)

Country Link
TW (1) TWM342510U (en)

Similar Documents

Publication Publication Date Title
TWI345381B (en) Mems scan controller with clock frequency and method of control thereof
TW200947164A (en) MEMS scan controller with inherence frequency and method of control thereof
US7750746B2 (en) Oscillator device and optical deflection device
JP2008310301A (en) Oscillator device, optical deflector and image forming apparatus using the optical deflector
JP2009265625A (en) Rocking member apparatus and optical deflector using the rocking member apparatus
KR101278862B1 (en) Oscillator device, optical deflecting device and method of controlling the same
JP2007086626A (en) Micromirror scanner and laser beam scanner using the same
WO2006104084A1 (en) Optical scanner, optical scanning display, and optical scanning method
JP2011201305A (en) Image forming apparatus
JP2006220745A (en) Micromirror scanner and laser optical scanner using the same
JP2009276481A (en) Optical deflection device and image forming apparatus
TWM342510U (en) MEMS scan controller with clock frequency
US7855606B2 (en) Oscillator device
JP5188315B2 (en) Oscillator device, optical deflection device, and optical apparatus using the same
US7262895B2 (en) Determining operating point of feedback controller applied to operation of oscillating scanning device
JP3787877B2 (en) Optical scanning device
CN101482651B (en) Time sequence frequency-generating micro-electromechanical scanning controller and its control method
JP4794676B1 (en) Mirror amplitude control device for optical scanning device
JP2009282299A (en) Mems scan controller for generating clock frequency, and its control method
CN201141943Y (en) Microcomputer electrical scanning controller for generating time sequence frequency
US7911160B2 (en) Oscillation device, optical deflection apparatus, and drive-signal generating method
CN201210199Y (en) Micro-computer electrically scanning controller with fixed scanning frequency
JP2012113233A (en) Light beam scanner, image forming device, and light beam scanning method
CN101598851B (en) MEMS scan controller with inherence frequency and control method thereof
TWM347767U (en) Mems scan controller with fixed scan frequency