TWM341857U - A flat panel display capable of multi-sided viewings and its back light module - Google Patents

A flat panel display capable of multi-sided viewings and its back light module Download PDF

Info

Publication number
TWM341857U
TWM341857U TW97205260U TW97205260U TWM341857U TW M341857 U TWM341857 U TW M341857U TW 97205260 U TW97205260 U TW 97205260U TW 97205260 U TW97205260 U TW 97205260U TW M341857 U TWM341857 U TW M341857U
Authority
TW
Taiwan
Prior art keywords
light
wavelength
backlight module
display
wavelength conversion
Prior art date
Application number
TW97205260U
Other languages
Chinese (zh)
Inventor
Chun-Chung Hsiao
Yi-Sing Peng
Sung-Po Chen
Hsin-Tao Huang
Original Assignee
Kismart Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kismart Corp filed Critical Kismart Corp
Priority to TW97205260U priority Critical patent/TWM341857U/en
Publication of TWM341857U publication Critical patent/TWM341857U/en

Links

Abstract

The invention is related to a flat panel display capable of multi-sided viewings and its back light module. The back light module comprises a light source and a plurality of optical wavelength converters. The light source consists of several luminous elements being arranged and the luminous elements radiate light with first optical wavelength towards the optical wavelength converters. The optical wavelength converters are disposed approximately to the luminous elements and will convert the light with first optical wavelength into light with second optical wavelength and radiate outwardly, in which one part of the light with second optical wavelength is emitting outward directly from the optical wavelength converters, and another part of the light with second optical wavelength is emitting from the optical wavelength converter towards other optical wavelength converters. The invention also discloses another flat panel display and its back light module.

Description

M341857 八、新型說明: 【新型所屬之技術領域】 本新型是有關於一種背光模組,特別是有關於一種可 供多面顯示之平面顯示器之背光模組。 【先前技術】 當今背光模組以大發光面積之平面光源為目前的發展 趨勢,尤其更被大尺寸面板液晶顯示器之廠商所重視。傳 統液晶顯示器之光源係應用冷陰極燈管(cold cathode Fluorescent lamp,CCFL )、外部電極螢光管技術(external electrode fluorescent lamp ; EEFL )、發光二極體技術(light emitting diode ; LED )、奈米碳管技術(carbon nanotube ; CNT )、平面光源技術(Flat Fluorescent Lamp ; FFL )以及 有機發光二極體技術(organic light emitting display; OLED)等,均以發出可見光波長之光的方式,以提供液 晶顯示器之照明光源。 這些發出可見光波長之光源類型中,例如冷陰極燈管 (CCFL ),係於一真空燈管中内壁塗覆一螢光層(如:磷), 並在此真空燈管中内部封入少量惰性氣體及汞蒸氣,汞蒸 氣於電極放電過程中經電子衝擊而產生紫外光,紫外光經 撞擊真空燈管壁上之螢光層而轉換為可見光,而對外釋出 可見光波長。 然而,此種冷陰極燈管(CCFL)受限於螢光塗層需 M341857 與發光源置於同一真空燈管中,且於傳統冷陰極燈管製 程’螢光層之原料(如:填泥)由直立時之真空燈管頂端衣 依序由其頂部至底部利用重力塗佈於真空燈管内壁,因此 螢光塗層不易塗佈均勻,則真空燈管所發出之可見光波長 便無法有效均句,此現象於大尺寸管柱真空燈管更為明顯。 而液晶顯示器具冷陰極燈管之背光模組時,於追求薄 型化之過程中’會嘗試縮短其液晶面板與f光模組之光源 間之距離,倘若液晶面板與照明模組間之距離不當,則光 之干涉與反射現象會益加明顯’並因此於照亮區域所造成 之輝度差異,稱作光不均勻現象(mura),降低照明品質。 此外,具冷陰極燈管之背光模組應用於雙面螢幕之液 晶顯示器時’由於冷陰極燈管所釋出之可見光波長通過一 面螢幕之擴散片時’由於能量之消逝’無法有效被反射至 另面螢幕’以提供強化另一面螢幕之照明光源,使得雙 面螢幕照亮區域外之位置仍有不均勻照明之缺點。 口此有I於上述利用可見光波長之冷陰極燈管所發 展之薄型平面顯示器’於追求薄型化之過程中,所面臨光 不均勻現象之缺點’勢必無法於平面顯示器之銷售市場 中^到消費者之肯定’故,發展一可供多面顯示之平面 頁不益及其为光模組’而提供一可同時具有均句照明及薄 型化優點之解決方案,,提供多種類選擇之多面顯示 器,便為現今業界共同努力之目標。 M341857 【新型内容】 ,以降低發 本新型之目的之-是在提供—種背光模組 射光之光不均勻現象。 種背光模組,以強化其 源’均勻照亮區域外位 本新型之目的之一是在提供_ 他螢幕或螢幕之其他位置之照明光 置之亮度。 種背光模組,以使所搭 之目標。 種背光模組,提供一背 本新型之目的之一是在提供— 配之平面顯示器,達成薄型化優點 本新型之目的之一是在提供一 光模組之薄型化體積的解決方案。 本新型之目的之—是在提供—種背光模組,提供光源 發光7G件排列之多種組合方式。 此根據眾述之目的,本新型提供一種背光模組,其中之 背光模組包括-光源及多個波長轉換結構,光源由^個發 先兀件所組成,此些發光元件分別以輻射之方向發出第一 種光波長之光,而此些波長轉換結構設置於鄰近光源 置,當此些波長轉換結構接受第一種光波長之光時,便分 別使其轉換為第三種光波長之光,並輻射地發出該些第二 種光波長之光’其中—部份之第二種光波長之光麵別由 對應之波長轉換結構朝外發出,而另—部份之第二種光波 長係各別自此波長轉換結構而朝其他波長轉換結構發出 本新型之另一態樣,係提供一種背光模組,應用於一 可供多面顯示之平面顯示器,其中之背光模組包括一光源 M341857 及一波長轉換結構’光源由多個發光树所排列而成,而 此波長轉換結構㈣此光源,當此些發光元件分別以輻射 之方向發出弟-種光波長之光至此波長轉換結構時,此波 長轉換結構便轉換此些第一種光波長之光為第二種光波長 之光,並以輻射之方向發出第二種光波長之光,如此_部 :分弟二種光波長之光朝外釋出,另—部份第二種光波長則 朝此波長轉換結構之其他位置發出。 本新型之另外-目的是在提供一種可供多面顯示之平 面顯不器,以提供多種類選擇之平面顯示器。 為達成此目的,本新型依據上述之背光模組而提供二 種:供多面顯示之平面顯示器之態樣,其一平面顯示器包 括複數個顯示面板及—背光模組,此些顯示面板相互圍 繞,其中並形成-可容納背光模組之容納空間,背光模組 包括-光源及多個波長轉換結構,光源由多個發光元件所 組成’此些發光元件分別以輻射之方向發出第一種光波長 之光,而此些波長轉換結構設置於鄰近光源之位置,此些 波長轉換結構並於接受此些第一種光波長之光時,而使: 轉換為第二種光波長之光’並以輻射之方向發出第二種光 波長之光,如此一部份第二種光波長之光朝外釋出,另一 部份第二種光波長則朝其他波長轉換結構發出。 ^另一態樣之平面顯示器可包括一捲曲之顯示面板及一 背光模組,此顯示面板圍繞出一可容納背光模組之容納空 間’背光模組設於容納空間中,包括一光源及一波長轉換 結構’光源由多個發光元件所排列而成,而此波長轉換結 M341857 構圍繞此光源,當此些發光元件分別以輻射之方向發出第 一種光波長之光至此波長轉換結構時,此波長轉換結構便 轉換此些第一種光波長之光為第二種光波長之光,並以輻 射之方向發出第二種光波長之光,如此一部份第二種光波 長之光朝外釋出,另一部份第二種光波長則朝此波長轉換 結構之其他位置發出。 【實施方式】 以下將以圖示及詳細說明清楚說明本新型之精神,如 熟悉此技術之人員在瞭解本新型之實施例後,當可由本新 型所教示之技術,加以改變及修飾,其並不脫離本新型之 精神與範圍。 本新型係揭示出一種可供多面顯示之平面顯示器及其 中之背光模組,請參閱第丨、2圖所示,第i圖為本新型平 面顯不器中一第一實施例之示意圖,而第2圖為本新型第 一實施例之光線運動方向示意圖。其中背光模組1〇包括光 源120及波長轉換結構13〇,光源12〇由多個發光元件 所排列而成,波長轉換結構13〇設置於鄰近光源12〇之位 置,此些發光元件121分別以輻射之方向發出第一種光波 長之光122,此些發光元件121可為一短波段紫外光燈管 (Ultraviolet,簡稱UVc燈管)或藍光之發光二極體元件 等等’其中UVc :!:登管所發出之第一種光波長之光122為 「UVc」光,係指一種不可見光波長之光,其波長不大於 280 nm之紫外光,例如2〇〇至28〇 nm之光、特別是25〇 M341857 至260 nm之光,尤其是指253.7 nm之光。而藍光之發光 二極體元件所發出之第一種光波長之光122為一種具藍光 波長之光,例如430nm至490nm之光。 其中上述之此些UVc燈管於一燈座11〇中之排列方式 :視其平面顯示器1之螢幕數量或形狀之不同,而排列出 提供各面㈣照明亮度之形狀,其排列方式將詳細地揭露 於後續說明書中。 其中波長轉換結構130可包括多個附著基材131及依 附其上之波長轉換物132,波長轉換物132可由材質為磷 粉、感光材質、螢光色轉換媒介、有機錯合物材質、發光 顏料、量子點為底材質、量子線為底材質、或量子阱為底 材質所製成之組合物漿料,而塗佈於附著基材131上,或 附著基材13 1中之任一層面上。 附著基材131為任何合宜之光學元件,除了本身於背 光模組ίο之被運用之特性外,尚提供承載波長轉換物ι32 之功用’例如擴散板(Diffusion plate)、稜鏡片(prism sheet )、凸鏡片(Lenticular Film )、偏光板等硬質光學元 件’·或擴散膜(Diffusion Film )、增亮膜(Brightness Enhancement Film ; BEF )、反射式增亮膜(Dual Brightness Enhancement Film ; DBEF)等撓性光學元件。除此之外, 附著基材13 1亦可為上述元件以外之可透光薄片(或薄 膜)。 前述基材之材質可為橡膠、玻璃、石英、塑膠(如:聚 曱基丙烯酸甲酯(poly methyl methacrylate,PMMA )、聚苯 M341857 乙烯(polystyrene,PS)、聚甲基丙烯酸甲酯-苯乙烯共聚物 (methyl methacrylate-co_styrene,MS)、或聚碳酸酉旨 (polycarbonate,PC )、聚對苯二甲酸乙二酯(〜以她咖此 Terephthalate,PET)、聚亞醯胺(polyimide)、可透光纖維織物 及其組合等。而此些撓性光學元件、硬質光學元件或可透 光薄片(或薄膜)可分別以多個支樓柱133所支撐(見第 3圖所示)。 而第一實施例中,以發光元件121以UVc燈管為例, 波長轉換結構130為多數時,如第2圖中之上波長轉換結 構130a及下波長轉換結構13〇b,其外型可呈平面狀或撓 狀,可視平面顯示器丨之螢幕數量或形狀,分別排列於燈 座110外鄰近此些UVc燈管之位置,如此,此些uVc燈 管輻射地發出不可見光波長之uvc光後,此些uvc光便 朝各波長轉換結構130a、130b射去。 而上波長轉換結構130a之波長轉換物132中之螢光體 粉末被UVc光所激發後,而轉換成具目標波長之可見光, 並以輻射方向發出(如第2圖中之一部份第二種光波長之 光123a及另一部份第二種光波長之光123b),而一部份之 可見光(相當於第2圖中之一部份第二種光波長之光i23a) 可自上波長轉換結構13〇a中之附著基材131對外發出,而 另一部份可見光(相當於第2圖中之另'一部份第二種光波 長之光123b)於此附著基材m上朝下波長轉換結構 130b 射去。 而下波長轉換結構130b之波長轉換物132中之螢光體 12 M341857 粉末亦被UVc光所激發,而轉換成具目標波長之可見光, 二、幸田射方向u (如第2圖中之_部份第二種光波長之 光124a及另-部份第二種光波長之光丨⑽),而—部份之 可見光(相當於第2圖中之一部份第二種光波長之光心) 可自下波長轉換結構13Gb中之附著基材13i對外發出,而 另一部份可見光(相當於第2圖中之另一部份第二種光波 長之光124b)於此附著基材131上朝上波長轉換結構 130a & 射去。 如此,當另一部份可見光(相當於第2圖中之另一部 份第二種光波長之光123b或124b)射至其他波長轉換結 構13〇a或13〇b時,可補強直接朝波長轉換結構130a或 130b外發出之一部份可見光(相當於第2圖中之另一部份 第一種光波長之光123a或124a),以共同形成較為均勻之 面光源。 關於此實施例中,請參閱第4-7圖所示,為各式UVc . 燈官排列方式之表現,此些UVc燈管可以下列之排列方式 5又置於燈座110中,而各波長轉換結構13 0與此些UVc燈 管之相互關係亦說明其中: i·以陣列之方式排列: 請見第4圖所示,此些UVc燈管可以多排或單排之陣 列排列方式,被設置於燈座110中,以適合雙面螢幕之平 面顯示器1,而此些UVc燈管之兩對應側可分別設置於二 波長轉換結構130間,以使得各波長轉換結構130可面對 此些UVc燈管,以供轉換不可見光波長之光; 13 M341857 π.以前後交錯之方式排列: 凊見第5圖所示,對於雙面螢幕之平面顯示器丨,此 些UVc燈管可以前後交錯之排列方式,排列成如「w」字 形之形狀,藉由UVc燈管分別接近或遠離其對應之波長轉 換結構130,以均勻此些UVc燈管所造成之輝度差異,進 一步降低光不均勻現象(mura)。如第5圖中,第一排各uVc 燈官之中心點相距上方之波長轉換結構13〇為「&」單位, 而相距下方之波長轉換結構130為「b」單位。反之,第二 排各UVe燈管之中心、點相距下方之波長轉換結構⑽為 「a,」單位,而相距上方之波長轉換結構13〇為「^」單 位,由於a(或a’)單位<b(或b’)單位,因此,第一排^二 UVc燈管間所可能造成不均句亮度之狀況,將由第二敎 UVc燈管所補強,以均句此些·燈管於—面所造成之輝 度差異,進一步降低光不均勻現象(mura)。 另外,此排列方式亦可使用於雙面不同亮度之需求, 亦即、b朴,,藉由控制發光元件121鱼:: 130間的距離,達成雙面不同亮度之要求" 、、、、°構 iii·以多邊形之方式排列: 請搭配第6八及此圖所示,由於平面顯 數量或形狀之不同’此# UVe燈管可以模擬多邊來 廓,提供多面之發光光源,例如三角形、四 / : (圖中未示)等等,可適合三面以上瑩幕之平 、$ 而此些UVc燈管所模擬之多邊形的各邊緣可分別排^ ’ 少-波長轉換結構130,且除此之外,尚可於幕抓燈管 14 M341857 中安置至少另-波長轉換結構14〇(如第犯圖),而且, 此另一波長轉換結構140之附著基材(圖中未示)為撓性 先學=件,捲曲於光源12〇巾,且圍繞至少—短波段紫外 先燈官或CCFL燈管,如此,另—波長轉換結構14〇便可 =此些UVe燈管朝内所射出之不可見光波長之光(相當於 弟2圖中之第—種光波長之光122),轉換並釋出可見光(相 當於第2圖中之第二種光波長之光123a及123b、124a及 1則’以補強此些UVe燈管透過波長轉換結構i3〇發出 之原有輝度; iv·以環形之方式排列: 請見第7圖所示,此些UVc燈管可模擬環形之輪廓, ^繞出環形的形狀,以提供弧面螢幕之發光光源,可適合 多螢幕之平面顯示器丨,而此排列成環形輪廓之圓周面, 可分別面對多個環繞於燈座11〇之波長轉換結構13〇,以 使得各波長轉換結構130可面對此些UVc燈管,以供轉換 不可見光波長之光(相當於第2圖中之第一種光波長之光 122 ),同時,除此之外,尚可於眾UVc燈管中安置至少另 一波長轉換結構140,而且,此另一波長轉換結構14〇之 附著基材(圖中未示)為撓性光學元件,捲曲於光源12〇 中’且圍繞至少一短波段紫外光燈管或CCFL燈管,如此, 另一波長轉換結構140便可將此些UVc燈管朝内所射出之 不可見光波長之光(相當於第2圖中之第一種光波長之光 122),轉換並釋出可見光,以補強此些uvc燈管透過波長 轉換結構130發出之原有輝度。 15 M341857 如此,本實施例之背光模組ι〇所應用之平面顯示器i 中可為-多螢幕液晶顯示器(如:雙、三螢幕之液晶顯示 器=),因此,可包括多個顯示面板20,這些顯示面板2〇 通吊為液日日面板(LiqUld Crystal Display panel ),為配合上 述UVc燈管之排列方式,這些顯示面板2〇可以平行排列 (如:雙勞幕)、乡邊形或環形的方式排列,其中並定義有 一容納空間21,背光模組10放置於此容納空間21中,且 各波長轉換結構140分別對應其申一顯示面板2〇,因此, 背光杈組ίο便可提供第二種光波長之光123a、i23b、乜 及124b至所有的顯示面板2〇,均勻一定之照明亮度。 而第二實施例中,請參閱第8圖所示,第8圖為本新 型平面顯示器中一第二實施例之截面示意圖。波長轉換結 構130’為單一數量時,其附著基材131為撓性光學元件, 波長轉換結構130’並圍繞於光源120外,且鄰近此些發光 το件121,此些發光元件ι21之光源12〇中尚可安置另一 波長轉換結構140,。 此些發光元件121在此以UVc燈管為例,當此些uvc 燈管輻射地發出UVc光(可參考第8圖中之第一種光波長 之光122),後,此些uVc光便朝此波長轉換結構13〇,射 去’而波長轉換物132中之螢光體粉末將被uvc光所激 發’而轉換成具目標波長之可見光(可參考第8圖中之第 一種光波長之光123c及123d)’如此,一部份之可見光(相 當於第8圖中之一部份第二種光波長之光123c)可自此波 長轉換結構130,對外發出,而另一部份可見光(相當於第 16 M341857 8圖中之另一部份第二種光波長之光123d)朝波長轉換結 構130之其他位置射去,如此,當另一部份可見光(相當 於第8圖中之另一部份第二種光波長之光i23d)射至波長 轉換、、、。構13 G之其他位置時,可補強直接朝波長轉換結構 130’外發出之一部份可見光(相當於第8圖中之另一部份 苐種光波長之光123c)’以共同形成較為均勻之面光源。 關於此第二實施例中,此些UVc燈管可以陣列、前後 父錯、多邊形或環形之排列方式設置於燈座110中,只要 波長轉換結構130,圍繞於燈座110的外圍,或甚至只要圍 、’&於此二UVc燈管之外圍,使波長轉換結構丨3 〇,之波長轉 換物132,可面對此些UVc燈管,以供轉換不可見光波長之 光,因此,此實施例中,此波長轉換結構13〇,之附著基材 131’較適合為擴散膜、增亮膜、反射式增亮膜等撓性光學 元件,而這些撓性光學元件分別由上述之支撐柱133所支 撐(見弟9圖所示)。 如此’本實施例之背光模組1〇,所應用之平面顯示器^ 中可為一單螢幕液晶顯示器,因此Μ堇包括-個捲曲之顯 示面板22 (如··撓性面板,flexibkpanei),這個 顯示面板22以環形的方式圍繞出一容納空間2i,背光模 組ίο,放置於此容納空間21十,且波長轉換結構13〇,分別 於容納空f曰1 21中面對顯示面板22,因此,背光模组1〇,配 合上述UVc燈管之排列方式,便可提供第二種光波長之光 123c、123d至顯示面板22之所有位置,均勻一定之照明 亮度。 17 M341857 其中值得說明的是,第一、二實施例中所述之一部份 第二種光波長之光123 a、123c及l24a以及另一部份第二 種光波長之光123b、123d及124b僅為方便說明被波長轉 換結構130或130,轉換後,其第二種光波長之光之運動狀 態’並非不同種光波長之光。 由於本新型必須搭配波長轉換結構,使得光源所發出 之第一種光波長之光可被轉換並以輻射之方向發出第二種 光波長之光,使得另一部份之第二種光波長之光可朝其他 波長轉換結構或波長轉換結構其他位置,以彌補並降低光 :均勻現象(mUra),同時滿足多面顯示需求之平面顯示 益,加上波長轉換結構越接近發光元件,越可以提升亮度, 因此’以達成薄型化優點之目標。 而且本新型所揭露如上之各實施例中,並非用以限定 本新型’任㈣習此㈣者,在残離本_ ,内1可作各種之更動與潤飾,因此本新型之保護範”巳 當視後附之申請專利範圍所界定者為準。 〃 【圖式簡單說明】 優點與實施例 貫施例之示意 為讓本新型之上述和其他目的、特徵 能更明顯易懂,所附圖式之詳細說明如下 第1圖繪示本新型平面顯示器中—第 圖 貫施例之光線運動方向示意 18 M341857 第3圖繪示本新型第-實施例中具支撐柱之波長轉換 結構之示意圖。 第4圖繪示本新型發光元件之陣列排列示意圖。 第5圖緣示本新型發光元件之前後交錯排列之示意M341857 VIII. New Description: [New Technology Field] The present invention relates to a backlight module, and more particularly to a backlight module for a flat panel display capable of multi-face display. [Prior Art] Today's backlight modules are currently developing with planar light sources with large light-emitting areas, and are particularly valued by manufacturers of large-sized panel liquid crystal displays. The light source of the conventional liquid crystal display is a cold cathode fluorescent lamp (CCFL), an external electrode fluorescent lamp (EEFL), a light emitting diode (LED), a nanometer. Carbon nanotube technology (CNT), flat light source technology (FFL), and organic light emitting display (OLED), etc., all emit light in the visible wavelength to provide liquid crystal The illumination source of the display. Among these types of light sources that emit visible light wavelengths, such as a cold cathode fluorescent lamp (CCFL), a fluorescent layer (such as phosphorus) is applied to the inner wall of a vacuum tube, and a small amount of inert gas is sealed inside the vacuum tube. And mercury vapor, mercury vapor generates ultraviolet light by electron impact during discharge of the electrode, and the ultraviolet light is converted into visible light by impacting the fluorescent layer on the wall of the vacuum lamp tube, and the visible light wavelength is released. However, such a cold cathode fluorescent lamp (CCFL) is limited to the fluorescent coating. The M341857 is placed in the same vacuum tube as the illuminating source, and the raw material of the fluorescent layer in the conventional cold cathode lamp control process (eg, filling mud) The top end of the vacuum tube is placed on the inner wall of the vacuum tube by gravity from the top to the bottom of the vacuum tube. Therefore, the fluorescent coating is not easily coated uniformly, and the visible light wavelength emitted by the vacuum tube cannot be effectively Sentence, this phenomenon is more obvious in large-sized tubular vacuum tubes. When the backlight module of the cold cathode lamp of the liquid crystal display device is in the process of pursuing thinning, 'will try to shorten the distance between the liquid crystal panel and the light source of the f-light module, if the distance between the liquid crystal panel and the lighting module is improper The interference and reflection of light will add to the obvious 'and thus the difference in brightness caused by the illuminated area, called mura, which reduces the quality of illumination. In addition, when the backlight module with the cold cathode lamp is applied to the liquid crystal display of the double-sided screen, the visible light wavelength emitted by the cold cathode lamp can not be effectively reflected due to the disappearance of the screen due to the diffusion of the screen. The other screen 'is provided with an illumination source that enhances the other side of the screen, so that there is still the disadvantage of uneven illumination at the position outside the illuminated area of the double-sided screen. The thin-type flat-panel display developed by the above-mentioned cold-cathode tube using visible light wavelengths in the process of pursuing thinning, the shortcoming of the phenomenon of uneven light is inevitable in the sales market of flat-panel displays. Affirmation of the fact that the development of a flat-panel display for multi-faceted display and its provision for a light module can provide a multi-faceted display with multiple choices of illumination and thinning. It is the goal of the joint efforts of the industry today. M341857 [new content], in order to reduce the purpose of the new type of hair - is to provide a kind of backlight module to shoot light unevenness. A backlight module to enhance the source's uniform illumination area. One of the purposes of this new type is to provide illumination for the illumination of other locations on the screen or screen. A backlight module to achieve the goal. One type of backlight module provides one back. One of the purposes of the present invention is to provide a flat panel display with a thinning advantage. One of the objects of the present invention is to provide a thin volume solution of an optical module. The purpose of the novel is to provide a backlight module that provides a plurality of combinations of light source 7G pieces. According to the purpose of the present invention, the present invention provides a backlight module, wherein the backlight module comprises a light source and a plurality of wavelength conversion structures, and the light source is composed of a plurality of light-emitting elements, wherein the light-emitting elements respectively radiate directions. Light of a first wavelength of light is emitted, and the wavelength conversion structures are disposed adjacent to the light source. When the wavelength conversion structures receive the light of the first wavelength, respectively, the light is converted into the light of the third wavelength And radiating the light of the second wavelength of light 'where part of the second wavelength of the light wavelength is emitted outward by the corresponding wavelength conversion structure, and the other part of the second wavelength of light According to another aspect of the present invention, the backlight module is applied to a flat panel display capable of multi-face display, wherein the backlight module includes a light source M341857. And a wavelength conversion structure 'the light source is arranged by a plurality of light-emitting trees, and the wavelength conversion structure (4) the light source, when the light-emitting elements respectively emit the wavelength of the light in the direction of radiation When the wavelength conversion structure is reached, the wavelength conversion structure converts the light of the first optical wavelength to the light of the second optical wavelength, and emits the light of the second optical wavelength in the direction of the radiation, such that: The two wavelengths of light are emitted outward, and the other part of the second wavelength of light is emitted at other locations of the wavelength conversion structure. Another object of the present invention is to provide a flat panel display for multi-face display to provide a wide variety of flat panel displays. In order to achieve the above, the present invention provides two types of flat-panel displays for multi-face display according to the above-mentioned backlight module. A flat-panel display includes a plurality of display panels and a backlight module, and the display panels are surrounded by each other. And forming a space for accommodating the backlight module, the backlight module comprises a light source and a plurality of wavelength conversion structures, and the light source is composed of a plurality of light-emitting elements, wherein the light-emitting elements respectively emit the first light wavelength in a radiation direction The light-converting structure is disposed at a position adjacent to the light source, and the wavelength-converting structures are configured to convert the light of the first optical wavelength to: The direction of the radiation emits light of a second wavelength of light such that a portion of the second wavelength of light is emitted outwardly and another portion of the second wavelength of light is emitted toward the other wavelength conversion structure. Another aspect of the flat panel display can include a curled display panel and a backlight module. The display panel surrounds an accommodating space for accommodating the backlight module. The backlight module is disposed in the accommodating space, including a light source and a The wavelength conversion structure 'the light source is arranged by a plurality of light-emitting elements, and the wavelength conversion junction M341857 surrounds the light source. When the light-emitting elements respectively emit light of the first light wavelength to the wavelength conversion structure in the direction of radiation, The wavelength conversion structure converts the light of the first optical wavelength to the light of the second optical wavelength, and emits the light of the second optical wavelength in the direction of the radiation, such that the second optical wavelength of the light Externally released, another portion of the second wavelength of light is emitted at other locations of the wavelength conversion structure. BRIEF DESCRIPTION OF THE DRAWINGS The spirit of the present invention will be clearly described in the following description and detailed description, and those skilled in the art, after having understood the embodiments of the present invention, may be modified and modified by the teachings of the present invention. Without departing from the spirit and scope of the novel. The present invention discloses a flat-panel display for multi-face display and a backlight module thereof, as shown in FIGS. 2 and 2, which is a schematic view of a first embodiment of the novel flat display device, and Fig. 2 is a schematic view showing the direction of light movement of the first embodiment of the present invention. The backlight module 1〇 includes a light source 120 and a wavelength conversion structure 13〇. The light source 12〇 is arranged by a plurality of light-emitting elements, and the wavelength conversion structure 13 is disposed at a position adjacent to the light source 12〇, and the light-emitting elements 121 respectively The direction of the radiation emits light 122 of the first wavelength of light. The light-emitting elements 121 can be a short-wavelength ultraviolet light tube (Ultraviolet, abbreviated as UVc tube) or a blue light-emitting diode element, etc. 'where UVc :! The light 122 of the first wavelength of light emitted by the board is "UVc" light, which refers to light of invisible wavelength, ultraviolet light having a wavelength of not more than 280 nm, for example, light of 2 to 28 nm, In particular, 25 〇 M341857 to 260 nm light, especially 253.7 nm light. The light of the first wavelength of light emitted by the blue light emitting diode element 122 is light having a blue wavelength, such as light of 430 nm to 490 nm. The arrangement of the above-mentioned UVc lamps in a lamp holder 11〇: according to the difference in the number or shape of the screens of the flat display 1 , the shapes of the illumination brightness of each face (4) are arranged, and the arrangement manner thereof will be detailed. Revealed in the subsequent instructions. The wavelength conversion structure 130 may include a plurality of adhesion substrates 131 and a wavelength conversion material 132 attached thereto. The wavelength conversion material 132 may be made of phosphor powder, photosensitive material, fluorescent color conversion medium, organic complex material, and luminescent pigment. The quantum paste is a bottom material, a quantum wire is used as a base material, or a quantum paste is used as a primer slurry, and is coated on the adhesion substrate 131 or attached to any of the substrates 13 1 . . The attached substrate 131 is any suitable optical component, and in addition to the characteristics of the backlight module ίο, it also provides a function of carrying the wavelength conversion material ι32, such as a diffusion plate, a prism sheet, Flexibility such as Lenticular Film, polarized optical element such as polarizer, Diffusion Film, Brightness Enhancement Film (BEF), and Reflective Brightness Enhancement Film (DBEF) Optical element. In addition to this, the adhering substrate 13 1 may be a light transmissive sheet (or film) other than the above elements. The material of the foregoing substrate may be rubber, glass, quartz or plastic (for example: polymethyl methacrylate (PMMA), polystyrene M341857, polystyrene (PS), polymethyl methacrylate-styrene Copolymer (methyl methacrylate-co_styrene, MS), or polycarbonate (PC), polyethylene terephthalate (~Terphthalate, PET), polyimide, Light transmissive fiber fabrics, combinations thereof, etc., and such flexible optical elements, hard optical elements or light transmissive sheets (or films) can be supported by a plurality of column columns 133, respectively (see Figure 3). In the first embodiment, the light-emitting element 121 is exemplified by a UVc lamp. When the wavelength conversion structure 130 is a plurality of, as in the upper wavelength conversion structure 130a and the lower wavelength conversion structure 13〇b in FIG. 2, the appearance may be Plane or flexible, the number or shape of the screens of the visible flat display are arranged adjacent to the positions of the UVc tubes outside the socket 110, such that the uVc tubes radiate uvc light of invisible wavelengths, These uvc lights The phosphors in the wavelength converter 132 of the upper wavelength converting structure 130a are excited by the UVc light, and then converted into visible light having a target wavelength and emitted in the radiation direction ( As shown in Fig. 2, part of the second light wavelength light 123a and the other part of the second light wavelength light 123b), and a part of the visible light (equivalent to one part of the second figure) The light of the two wavelengths of light i23a) can be emitted from the attached substrate 131 in the upper wavelength conversion structure 13a, and the other part of the visible light (equivalent to the other part of the second wavelength in the second figure) The light 123b) is irradiated toward the lower wavelength conversion structure 130b on the adhesion substrate m. The phosphor 12 M341857 powder in the wavelength conversion material 132 of the lower wavelength conversion structure 130b is also excited by the UVc light, and is converted into a light. The visible light of the target wavelength, 2. The direction of the Koda field (such as the light of the second light wavelength 124a in the second picture and the light (10) of the other second light wavelength), and Visible light (equivalent to one of the second wavelengths of light in Figure 2) The attached substrate 13i in the long conversion structure 13Gb is emitted outward, and the other portion of visible light (corresponding to another portion of the second optical wavelength light 124b in FIG. 2) is on the attached substrate 131 upward wavelength The conversion structure 130a & is emitted. Thus, when another portion of visible light (corresponding to another portion of the second wavelength of light 123b or 124b in FIG. 2) is incident on the other wavelength conversion structure 13a or 13 In the case of 〇b, a portion of visible light (corresponding to the light of the first first wavelength of light 123a or 124a in another portion of FIG. 2) may be directly emitted toward the outside of the wavelength conversion structure 130a or 130b to form a relatively uniform light. The surface light source. In this embodiment, please refer to the figure 4-7, for the performance of various types of UVc. The UVc lamps can be placed in the lamp holder 110 in the following arrangement 5, and the wavelengths are The relationship between the conversion structure 130 and the UVc lamps is also illustrated by: i. Arranged in an array: As shown in Fig. 4, the UVc lamps can be arranged in a multi-row or single-row array. The two sides of the UVc tube are respectively disposed between the two wavelength conversion structures 130, so that the wavelength conversion structures 130 can face the surface display 1 of the double-sided screen. UVc lamp for converting the wavelength of invisible light; 13 M341857 π. Arranged before and after the interlacing: See Figure 5 for the flat-panel display on the double-sided screen, these UVc lamps can be interlaced The arrangement is arranged in a shape of a "w" shape, and the UVc lamps are respectively brought closer to or away from the corresponding wavelength conversion structure 130 to evenly reduce the difference in luminance caused by the UVc lamps, thereby further reducing the light unevenness ( Mura). As shown in Fig. 5, the wavelength conversion structure 13 of the center point of each of the first row of the respective UVc lamps is "&" unit, and the wavelength conversion structure 130 below is the unit of "b". Conversely, the center of the second row of UVe lamps, the wavelength conversion structure (10) below the point is "a," units, and the wavelength conversion structure 13〇 above is the "^" unit, due to the a (or a') unit <b (or b') unit, therefore, the condition of the unevenness of the sentence between the first row and the second UVc lamp will be reinforced by the second 敎UVc lamp, so that the lamp is - The difference in luminance caused by the surface, further reducing the light unevenness (mura). In addition, this arrangement can also be used for the requirement of different brightness on both sides, that is, b, by controlling the distance of the light-emitting element 121 fish: 130, to achieve the requirements of different brightness on both sides ",,,, ° iii· Arranged in a polygonal manner: Please match the 6th and 8th, because the number of planes is different or the shape is different. 'This #UVe tube can simulate a polygonal profile, providing a multi-faceted illuminating light source, such as a triangle, Four / : (not shown), etc., can be suitable for three or more screens, $ and the edges of the polygons simulated by these UVc lamps can be respectively arranged in the less-wavelength conversion structure 130, and In addition, at least another wavelength conversion structure 14〇 can be disposed in the curtain light tube 14 M341857 (as shown in the figure), and the attached substrate (not shown) of the other wavelength conversion structure 140 is scratched. Sex first learn = piece, curled on the light source 12 wipes, and surround at least - short-wavelength ultraviolet first lamp or CCFL lamp, so that the other - wavelength conversion structure 14 can be = these UVe lamps are shot inward Light of invisible wavelength (equivalent to the first light in the picture of brother 2) The wavelength of light 122) converts and emits visible light (corresponding to the second wavelength of light 123a and 123b, 124a and 1 in FIG. 2) to reinforce the UVe tube through the wavelength conversion structure i3 Original brightness; iv· Arranged in a ring: As shown in Figure 7, these UVc lamps can simulate the contour of the ring, ^ around the shape of the ring to provide the illuminating light source of the curved screen, suitable for many The flat display of the screen is arranged, and the circumferential surface of the annular contour is arranged to face a plurality of wavelength conversion structures 13A surrounding the lamp holder 11〇, so that the wavelength conversion structures 130 can face the UVc lamps. For converting the light of the invisible wavelength (corresponding to the light 122 of the first optical wavelength in FIG. 2), and at the same time, at least another wavelength conversion structure 140 may be disposed in the UVc tube. Moreover, the attached substrate (not shown) of the other wavelength conversion structure 14 is a flexible optical element that is crimped in the light source 12' and surrounds at least one short-wavelength ultraviolet tube or CCFL tube. Another wavelength conversion structure 140 can The invisible wavelength light emitted by the UVc tube (corresponding to the first wavelength of light 122 in FIG. 2) converts and emits visible light to reinforce the uvc tube through the wavelength conversion structure 130. The original brightness. 15 M341857 Thus, the flat panel display i used in the backlight module of the embodiment can be a multi-screen liquid crystal display (for example, a liquid crystal display of two or three screens), and therefore, can include many Display panel 20, these display panels 2 are hanged into a liquid day and day panel (LiqUld Crystal Display panel), in order to match the arrangement of the above UVc lamps, these display panels 2〇 can be arranged in parallel (eg, double screen), Arranged in a ridged or circular manner, and a accommodating space 21 is defined, and the backlight module 10 is placed in the accommodating space 21, and each of the wavelength conversion structures 140 respectively corresponds to the display panel 2 〇, therefore, the backlight 杈 group Ίο can provide the second light wavelength light 123a, i23b, 乜 and 124b to all the display panels 2 〇, uniform illumination brightness. In the second embodiment, please refer to Fig. 8. Fig. 8 is a schematic cross-sectional view showing a second embodiment of the novel flat panel display. When the wavelength conversion structure 130' is a single number, the attached substrate 131 is a flexible optical element, and the wavelength conversion structure 130' surrounds the light source 120, and adjacent to the light-emitting elements 121, the light source 12 of the light-emitting elements 119 Another wavelength conversion structure 140 can be placed in the crucible. Here, the light-emitting elements 121 are exemplified by UVc lamps. When the uvc lamps radiate UVc light (refer to the first wavelength of light 122 in FIG. 8), the uVc light is then used. To this wavelength conversion structure 13 〇, the 'the phosphor powder in the wavelength converter 132 will be excited by the uvc light' to be converted into visible light having a target wavelength (refer to the first wavelength of light in FIG. 8) Light 123c and 123d) Thus, a portion of the visible light (corresponding to a portion of the second wavelength of light 123c in FIG. 8) may be emitted from the wavelength conversion structure 130 and the other portion Visible light (corresponding to another portion of the second wavelength of light 123d in the 16th M341857 picture) is directed toward the other position of the wavelength conversion structure 130, such that when another portion of the visible light (equivalent to Fig. 8) The other part of the second optical wavelength light i23d) is incident on the wavelength conversion, . When the other position of the 13 G is configured, the portion of the visible light (corresponding to the light of the other part of the wavelength of the light of the light beam 123c) in the light-emitting structure 130' can be directly reinforced to form a uniform The surface light source. In this second embodiment, the UVc lamps may be disposed in the socket 110 in an array, front-rear, polygonal or circular arrangement, as long as the wavelength conversion structure 130 surrounds the periphery of the socket 110, or even Around the 'UV filter', the wavelength conversion structure 丨3 〇, the wavelength converter 132 can face the UVc tube for converting the light of the invisible wavelength, therefore, this implementation In the example, the wavelength conversion structure 13A is suitable for a flexible optical element such as a diffusion film, a brightness enhancement film, or a reflective brightness enhancement film, and the flexible optical elements are respectively supported by the support pillars 133 described above. Supported (see the picture shown in Figure 9). Thus, the backlight module 1 of the present embodiment can be a single-screen liquid crystal display, and thus includes a curled display panel 22 (such as a flexible panel, flexibkpanei). The display panel 22 surrounds an accommodating space 2i in a ring-shaped manner, and the backlight module ίο is placed in the accommodating space 21, and the wavelength conversion structure 13 〇 faces the display panel 22 in the accommodating space 121, respectively The backlight module 1 〇, together with the arrangement of the UVc lamps, can provide all the positions of the second light wavelength light 123c, 123d to the display panel 22, and uniform illumination brightness. 17 M341857 It is worth noting that one part of the second light wavelengths 123 a, 123c and l24a and the other part of the second wavelength light 123b, 123d are described in the first and second embodiments. 124b is only for convenience of description by the wavelength conversion structure 130 or 130. After the conversion, the motion state of the light of the second optical wavelength is not the light of different wavelengths of light. Since the present invention must be combined with a wavelength conversion structure, the light of the first wavelength of light emitted by the light source can be converted and emit light of the second wavelength of light in the direction of the radiation, so that the second wavelength of the other part of the light Light can be converted to other wavelengths or other positions of the wavelength conversion structure to compensate for and reduce the light: uniform phenomenon (mUra), while meeting the flat display benefit of multi-face display requirements, and the closer the wavelength conversion structure is to the light-emitting elements, the higher the brightness can be. Therefore, 'to achieve the goal of thinning advantages. Moreover, the present invention disclosed in the above embodiments is not intended to limit the present invention, and the present invention can be used for various changes and retouchings. The above-mentioned and other objects and features of the present invention are more apparent and can be understood from the following description of the appended claims. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 is a schematic diagram showing the direction of light movement in the present embodiment of the present invention. FIG. 3 is a schematic view showing a wavelength conversion structure having a support column in the first embodiment. FIG. 4 is a schematic view showing the arrangement of the array of the novel light-emitting elements. FIG. 5 is a schematic view showing the staggered arrangement of the novel light-emitting elements before and after.

第型發^件之三角形排列之示意圖 第6B圖繪示本新型發光元件之四邊形排列之示咅圖 第7圖繪示本新塑發光元件之環形排列之示意圖。 第8圖緣示本新型平面顯 圖0 不裔中第二實施例之示意 第9圖繪示本新型第二實施例中具支樓柱之波長轉換 結構之截面示意圖。 【主要元件符號說明】 Π0、13〇a、130b、130,: 波長轉換結構 131、 131’ :附著基材 132、 132’ ·波長轉換物 133 :支撐柱 20 :顯示面板 21 :容納空間 22 ·捲曲之顯示面板 140 、 140,: 另一波長轉換結構 1、1 ’ :平面顯示器 1〇、10,:背光模組 110 :燈座 12〇 :光源 121 :發光元件 122 :第一種光波長之光 123a、123c、124a : 一部份第二種光波長之光 123b 、 123d 、 124b : 另一部份第二種光波長之光 19FIG. 6B is a schematic diagram showing the arrangement of the quadrilateral arrangement of the novel light-emitting element. FIG. 7 is a schematic view showing the annular arrangement of the novel-shaped light-emitting element. Fig. 8 is a schematic view showing the second embodiment of the present invention. Fig. 9 is a schematic cross-sectional view showing the wavelength conversion structure of the column column in the second embodiment of the present invention. [Description of main component symbols] Π0, 13〇a, 130b, 130,: wavelength conversion structures 131, 131': adhesion substrates 132, 132' - wavelength converter 133: support column 20: display panel 21: accommodation space 22 Curled display panels 140, 140,: another wavelength conversion structure 1, 1 ': flat panel display 1 〇, 10, backlight module 110: lamp holder 12 〇: light source 121: illuminating element 122: first wavelength of light Lights 123a, 123c, 124a: a portion of the second wavelength of light 123b, 123d, 124b: another portion of the second wavelength of light 19

Claims (1)

M341857 十、申請專利範圍: 1· 一種背光模組,應用於一可供多面顯示之平面顯示 器中,該背光模組至少包含: 一光源,由複數個發光元件所排列而成,分別輻射地 發出第一種光波長之光;以及M341857 X. Patent application scope: 1. A backlight module is applied to a flat panel display capable of multi-face display. The backlight module comprises at least: a light source, which is arranged by a plurality of light-emitting elements and radiated separately The first wavelength of light; and 複數個波長轉換結構,鄰近於該光源,並於接受該些 第一種光波長之光時,分別轉換該些第一種光波長之光為 第二種光波長之光,並輻射地發出該些第二種光波長之光, 其中一部份之該些第二種光波長之光係各別由該些波 長轉換結構朝外發出,而另一部份之該些第二種光波長係 各別由該些波長轉換結構朝其他波長轉換結構發出。 2·如請求項1所述之背光模組,其中該些波長轉換結 構包括: 複數個附著基材;以及 至少一波長轉換物,分別依附於該些附著基材,其材 質至少包含磷粉、感光材質、螢光色轉換媒介、有機錯合 物材質、發光顏料、量子點為底材質、量子線為底材質、 或量子阱為底材質或上述材質組合。 3·如請求項2所述之背光模組,其中每一該些附著基 材為硬質光學元件,該硬質光學元件包含選自以下群組之 光學材料:擴散板、稜鏡板、凸鏡片、偏光板及其組合。 M341857 4·如請求項2所述之背光模組,其中每一該些附著 基材為一挽性光學元件,該撓性光學元件包含選自以下群 、组之光學材料:擴散膜、增亮膜、反射式增亮膜及其組合。 5·如請求項3或4所述之背光模組,更包括複數個支 撑柱’該些支撐柱分別支撐該附著基材。 6.如請求項2所述之背光模組,其中該至少一附著基 材之材質係為一選自下列群組:為塑膠、橡膠、玻璃、石 英及其組合。 7·如請求項6所述之背光模組,其中該塑膠之群組係 包括一選自下列群組:聚(曱基丙烯酸甲酯)(poiy^ethyi methacrylate),PMMA)、聚苯乙烯(polystyrene,PS)、聚 (甲基丙烯酸甲酯-苯乙稀)共聚物(methyl methacrylate_co-styrene,MS)、或聚碳酸酯(polycarbonate, PC )、聚對苯二曱酸乙二酯(Polyethylene Terephthalate, PET)、聚亞醯胺(polyimide)及其組合。 8.如請求項1所述之背光模組,其中每一該些發光元 件為一短波段紫外光(Ultraviolet)燈管。 9·如請求項8所述之背光模組,其中該第一種光波長 之光為具不可見光波長之光;該第二種光波長之光為具目 21 M341857 標波長之光。 1〇_如請求項9所述之背光模組,其中該些短波段紫 外光燈管以多邊形之方式排列。 11·如請求項9所述之背光模組,其中該些短波段紫 外光燈管以陣列之方式排列。 12.如請求項9所述之背光模組,其中該些短波段紫 外光燈管以一前後交錯之方式排列。 13·如請求項9所述之背光模組,其中該些短波段紫 外光燈管以環形之方式排列。 14·如請求項9所述之背光模組,其中一部份之該些 波長轉換結構圍繞該光源,並面對該些短波段紫外光燈管。 15·如睛求項14所述之背光模組,其中一該些波長轉 換結構捲曲於該光源巾,且圍繞至少—短波段紫外光燈管。 16·如印求項丨所述之背光模組,其中每一該些發光 元件為一藍光之發光二極體元件(blue light LED)。 17·如睛求項16所述之背光模組,其中該第一種光波 22 M341857 長之光為具藍光波長之光;該第二種光波長之光為具白光 波長之光。 , 18· —種背光模組,應用於一可供多面顯示之平面顯 * 示器,該背光模組至少包含: 一光源,由複數個發光元件所排列而成,分別輻射地 發出第一種光波長之光;以及 一波長轉換結構,圍繞該光源,並於接受該些第一種 • 光波長之光時,分別轉換該些第一種光波長之光為第二種 光波長之光,並輻射地發出該些第二種光波長之光, 其中一部份之該些第二種光波長之光係各別由該波長 轉換結構朝外發出,而另一部份之該些第二種光波長係各 別朝該波長轉換結構之其他位置發出。 19.如睛求項18所述之背光模組,其中該波長轉換結 構包括: Φ 至少一附著基材;以及 至少一波長轉換物,分別依附於該些附著基材,其材 質至少包含磷粉、感光材質、螢光色轉換媒介、有機錯合 物材質、發光顏料、量子點為底材質、量子線為底材質、 或量子阱為底材質或上述材質組合。 20·如請求項19所述之背光模组,其中該至少一附著 基材為硬質光學元件,該硬質光學元件包含選自以下群組 23 M341857 之光學材料:擴散板、稜鏡板、凸鏡片、偏光板及其組合。 21. 如請求項19所述之背光模組,其中該至少一附 , 著基材為一撓性光學元件,該撓性光學元件包含選自以下 - 群組之光學材料:擴散膜、增亮膜、反射式增亮膜及其組合。 22. 如請求項20或21所述之背光模組,更包括複數 個支撐柱,該些支撐柱分別支撐該至少一附著基材。 23. 如請求項19所述之背光模組,其中該至少一附著 基材之材質係為一選自下列群組:為塑膠、橡膠、玻璃、 石英及其組合。 24·如請求項23所述之背光模組,其中該塑膠之群組 係包括一選自下列群組:聚(甲基丙烯酸曱酯) (poly(methyl methacrylate),PMMA )、聚苯乙浠 Φ ( polystyrene,PS)、聚(甲基丙烯酸曱酯-苯乙烯)共聚物 (methyl methacrylate-co-styrene » MS )、或聚碳酸酉旨 (polycarbonate,PC )、聚對苯二曱酸乙二酯(Polyethylene Terephthalate,PET)、聚亞醯胺(polyimide)及其組合。 . 25.如請求項18所述之背光模組,其中每一該些發光 元件為一短波段紫外光(Ultraviolet)燈管。 24 M341857 26·如請求項25所述之背光模組,其中該第一種光波 長之光為具不可見光波長之光;該第二種光波長之光為具 目標波長之光。 27·如請求項26所述之背光模組,其中該些短波段紫 外光燈管以多邊形、陣列、前後交錯或環形之方式排列。 28·如請求項26所述之背光模組,更包括另一波長轉 換結構’其中該另一波長轉換結構捲曲於該光源中,且圍 繞至少一短波段紫外光燈管。 29.如請求項18所述之背光模組,其中每一該些發光 元件為一藍光之發光二極體元件(blue light LED)。 3〇·如請求項29所述之背光模組,其中該第一種光波 長之光為具藍光光波長之光;該第二種光波長之光為具白 光光波長之光。 31·—種可供多面顯示之平面顯示器,包括: 複數個顯示面板,該些顯示面板圍繞出一容納空間; 以及 一如請求項1所述之背光模組,設置於該容納空間 中,其中每一該些波長轉換結構分別對應其中一顯示面 板’並提供每一該些第二種光波長之光至所有的顯示面板。 25 M341857 32.如請求項31所述之平面顯示器,其中該平面顯示 器為一多螢幕液晶顯示器,其中該些顯示面板圍繞成多邊 形0 33. 如請求項31所述之平面顯示器,其中該平面顯示 器為一多螢幕液晶顯示器,其中該些顯示面板圍繞成一環 形。 34. —種可供多面顯示之平面顯示器,包括: 一顯示面板,呈捲曲狀,其中圍繞出一容納空間;以 及 一如請求項18所述之背光模組,設置於該容納空間 中,其中華波長轉換結構面對該顯示面板,並提供每一該 些第二種光波長之光至該顯示面板。 # 35.如請求項34所述之平面顯示器,其中該平面顯示 器為一單螢幕液晶顯示器,其中該顯示面板圍繞成一環形。 26a plurality of wavelength conversion structures adjacent to the light source and respectively converting the light of the first optical wavelength to the light of the second optical wavelength when the light of the first optical wavelength is received, and radiating the light The light of the second light wavelength, wherein a part of the light of the second light wavelength is emitted outward by the wavelength conversion structures, and the other part of the second light wavelength system Each of the wavelength conversion structures is emitted toward the other wavelength conversion structure. The backlight module of claim 1, wherein the wavelength conversion structures comprise: a plurality of attached substrates; and at least one wavelength conversion device respectively attached to the attached substrates, the material comprising at least phosphor powder, Photosensitive material, fluorescent color conversion medium, organic complex material, luminescent pigment, quantum dot base material, quantum wire bottom material, or quantum well bottom material or a combination of the above materials. 3. The backlight module of claim 2, wherein each of the attachment substrates is a rigid optical component comprising an optical material selected from the group consisting of: a diffusion plate, a seesaw, a convex lens, and a polarized light. Board and its combination. The illuminating module of claim 2, wherein each of the attachment substrates is a harbing optical element comprising an optical material selected from the group consisting of: a diffusion film, brightness enhancement Films, reflective brightness enhancing films, and combinations thereof. The backlight module of claim 3 or 4, further comprising a plurality of support columns, wherein the support columns respectively support the attached substrate. 6. The backlight module of claim 2, wherein the material of the at least one attachment substrate is selected from the group consisting of plastic, rubber, glass, quartz, and combinations thereof. The backlight module of claim 6, wherein the group of plastics comprises a group selected from the group consisting of poly(methyl methacrylate), PMMA, and polystyrene ( Polystyrene, PS), poly(methyl methacrylate-co-styrene, MS), or polycarbonate (PC), polyethylene terephthalate (Polyethylene Terephthalate) , PET), polyimide (polyimide) and combinations thereof. 8. The backlight module of claim 1, wherein each of the illuminating elements is a short-band ultraviolet (Ultraviolet) lamp. 9. The backlight module of claim 8, wherein the first wavelength of light is light having an invisible wavelength; and the second wavelength of light is light having a wavelength of 21 M341857. The backlight module of claim 9, wherein the short-wavelength ultraviolet tubes are arranged in a polygonal manner. The backlight module of claim 9, wherein the short-band ultraviolet lamps are arranged in an array. 12. The backlight module of claim 9, wherein the short-band ultraviolet light tubes are arranged in a staggered manner. 13. The backlight module of claim 9, wherein the short-band ultraviolet lamps are arranged in a ring shape. The backlight module of claim 9, wherein a portion of the wavelength conversion structures surround the light source and face the short-wavelength ultraviolet lamps. The backlight module of claim 14, wherein one of the wavelength conversion structures is crimped to the light source and surrounds at least the short-wavelength ultraviolet tube. 16. The backlight module of claim 1, wherein each of the light emitting elements is a blue light LED. The backlight module of claim 16, wherein the first light wave 22 M341857 long light is light having a blue wavelength; and the second light wavelength light is light having a white light wavelength. , a backlight module is applied to a flat display device for multi-face display, the backlight module comprises at least: a light source, which is arranged by a plurality of light-emitting elements, respectively radiating the first type Light of a wavelength of light; and a wavelength conversion structure surrounding the light source and respectively converting the light of the first wavelength of light into the light of the second wavelength of light when receiving the light of the first wavelength of light And radiating the light of the second wavelength of light, wherein a part of the light of the second wavelength of light is emitted outward by the wavelength conversion structure, and the second part of the other part The light wavelengths are each emitted at other locations of the wavelength conversion structure. The backlight module of claim 18, wherein the wavelength conversion structure comprises: Φ at least one attached substrate; and at least one wavelength converter respectively attached to the attached substrates, the material comprising at least phosphor powder Photosensitive material, fluorescent color conversion medium, organic complex material, luminescent pigment, quantum dot base material, quantum wire bottom material, or quantum well bottom material or a combination of the above materials. The backlight module of claim 19, wherein the at least one attachment substrate is a hard optical element comprising an optical material selected from the group 23 M341857: a diffusion plate, a seesaw, a convex lens, Polarizers and combinations thereof. The backlight module of claim 19, wherein the at least one attached substrate is a flexible optical element comprising an optical material selected from the group consisting of: a diffusion film, brightness enhancement Films, reflective brightness enhancing films, and combinations thereof. 22. The backlight module of claim 20 or 21, further comprising a plurality of support columns, each of the support columns supporting the at least one attachment substrate. The backlight module of claim 19, wherein the at least one attached substrate is made of a material selected from the group consisting of plastic, rubber, glass, quartz, and combinations thereof. The backlight module of claim 23, wherein the group of plastics comprises a group selected from the group consisting of poly(methyl methacrylate) (PMMA) and polystyrene. Φ (polystyrene, PS), poly(methyl methacrylate-co-styrene) (MS), or polycarbonate (PC), polyethylene terephthalate Polyethylene Terephthalate (PET), polyimide, and combinations thereof. 25. The backlight module of claim 18, wherein each of the light emitting elements is a short band ultraviolet (Ultraviolet) tube. The backlight module of claim 25, wherein the light of the first optical wavelength is light having an invisible wavelength; and the light of the second optical wavelength is light having a target wavelength. The backlight module of claim 26, wherein the short-band ultraviolet light tubes are arranged in a polygonal shape, an array, a front-back staggered or a circular shape. The backlight module of claim 26, further comprising another wavelength conversion structure wherein the other wavelength conversion structure is crimped into the light source and surrounds at least one short-wavelength ultraviolet light tube. 29. The backlight module of claim 18, wherein each of the light emitting elements is a blue light LED. The backlight module of claim 29, wherein the light of the first optical wavelength is light having a wavelength of blue light; and the light of the second optical wavelength is light having a wavelength of white light. A flat display for a multi-faceted display, comprising: a plurality of display panels surrounding the receiving space; and a backlight module as claimed in claim 1 disposed in the receiving space, wherein Each of the wavelength conversion structures respectively corresponds to one of the display panels 'and provides each of the second wavelengths of light to all of the display panels. The flat-panel display of claim 31, wherein the flat-panel display is a multi-screen liquid crystal display, wherein the display panels are surrounded by a polygon 0. 33. The flat-panel display of claim 31, wherein the flat-panel display It is a multi-screen liquid crystal display, wherein the display panels are surrounded by a ring shape. 34. A flat panel display for a multi-faceted display, comprising: a display panel that is curled to surround a receiving space; and a backlight module as claimed in claim 18, disposed in the receiving space, The Chinese wavelength conversion structure faces the display panel and provides light of each of the second wavelengths of light to the display panel. The flat panel display of claim 34, wherein the flat panel display is a single screen liquid crystal display, wherein the display panel is surrounded by a ring shape. 26
TW97205260U 2008-03-27 2008-03-27 A flat panel display capable of multi-sided viewings and its back light module TWM341857U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97205260U TWM341857U (en) 2008-03-27 2008-03-27 A flat panel display capable of multi-sided viewings and its back light module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97205260U TWM341857U (en) 2008-03-27 2008-03-27 A flat panel display capable of multi-sided viewings and its back light module

Publications (1)

Publication Number Publication Date
TWM341857U true TWM341857U (en) 2008-10-01

Family

ID=44334555

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97205260U TWM341857U (en) 2008-03-27 2008-03-27 A flat panel display capable of multi-sided viewings and its back light module

Country Status (1)

Country Link
TW (1) TWM341857U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8622600B2 (en) 2011-08-04 2014-01-07 Au Optronics Corp. Backlight module and display device using the same
CN103982819A (en) * 2014-05-14 2014-08-13 京东方科技集团股份有限公司 Multi-surface display device
US10126852B2 (en) 2016-01-12 2018-11-13 Au Optronics Corporation Display module having double-sided illumination design

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8622600B2 (en) 2011-08-04 2014-01-07 Au Optronics Corp. Backlight module and display device using the same
CN103982819A (en) * 2014-05-14 2014-08-13 京东方科技集团股份有限公司 Multi-surface display device
US10126852B2 (en) 2016-01-12 2018-11-13 Au Optronics Corporation Display module having double-sided illumination design

Similar Documents

Publication Publication Date Title
TW200938913A (en) A flat panel display capable of multi-sided viewings and its back light module
JP4327157B2 (en) Backlight unit and liquid crystal display device using the same
TWI332562B (en) Optical lens system, backlight assembly and display device
EP2082160B1 (en) Thin illumination device, display device and luminary device
US7722225B2 (en) Backlight unit and method of manufacturing a diffuser employed in the same
US8240865B2 (en) Light unit and display apparatus having the same
JP2006267991A (en) Backlight module
JP6914246B2 (en) Light emitting device, display device and lighting device
JP2009223314A (en) Apparatus and method for multiplanar optical diffuser and display panel for using the same
JP2010056061A (en) Backlight unit, and liquid crystal display device using the same
JP2004186080A (en) Backlight device
US20050168969A1 (en) Backlight module
CN100376974C (en) Direct type back light module
US7553056B2 (en) Backlight unit
TWM341857U (en) A flat panel display capable of multi-sided viewings and its back light module
US20050281051A1 (en) Direct type backlight unit and liquid crystal display device having the same
JP2007316421A (en) Illuminator and display device with the same
JP2007294252A (en) Light emitting panel, luminaire, and electric illumination panel
TWI332104B (en) Double layer tube, backlight module and liquid crystal display device using the same
KR102472917B1 (en) Direct Type Back Light Unit
KR100918870B1 (en) A tiling flat lamp for improved light uniformity
WO2013094480A1 (en) Illumination device, ceiling light, backlight, liquid-crystal display, and television receiver
TWI281070B (en) Backlight moduld
US8864330B2 (en) Back light unit and liquid crystal display module using the same
TWM338317U (en) Lighting module with wavelength converting structure

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees