M340570 八、新型說明: 【新型所屬之技術領域】 本新型係關於一種高頻組件,尤其涉及 ► 濾波器。 * 【先前技術】 近年來,由於移動通訊産品之市場需 ' 增,使得無線通訊之發展更為迅速,在衆多 ‘ 通訊標準中,最引人注目的為美國電子電機 鲁師協會(以下簡稱:IEEE)制定的8〇2·11無 域網路(Wireless Local Area Network)協定 協定制定於1 9 9 7年,其不僅提供無線通訊 多前所未有之功能,而且提供可令各種不同 之無線通訊産品得以相互溝通之解決方案。 定之制定無疑為無線通訊發展開啓了一個 里程碑。在 IEEE所制定的諸多標準中 鲁8 02.1 1 b/g為當前較常用之標準,其工作頻 2.45GHz。 同時濾波器為移動通訊產品中之一必 - 頻組件,其主要功能係用來分隔頻率,即, - 一些頻率的訊號而阻斷另一些頻率的訊號。 之濾波器特性應當是通帶無衰減而在截止 内衰減無窮大,通帶與截止頻率的跳變應當 能的陡峨。在 IE E E 8 0 2 · 1 1 b / g產品之射頻 (Radio Frequency Module)中,部分元件於 一種 求大 無線 工程 線區 〇該 上許 品牌 該協 新的 IEEE 段為 備南 通過 理想 頻率 盡可 模組 鄰近 6 M340570 通帶(2.4 5 GHz)之兩側,仍具有產生或接 要訊號(稱為雜訊)的能力。此諧波易對於 品產生許多負面之影響。對產品外部而言 生如電磁干擾(Ε ΜI)的問題,對產品内部 ‘ 則會造成發射/接收的訊號品質不佳,產 能因此大受影響。故,為提高濾波器之 能,通常透過提高衰減速度來提高濾波器 的抑制能力。 •【新型内容】 有鑒於此,有必要提供一種具有較快 度的滤波。 一種濾波器,包括輸入端、輸出端、 傳輸部、一對低阻抗傳輸線及電容。輸入 饋入電磁波訊號。輸出端用於饋出電磁波 高阻抗傳輸部分別與輸入端和輸出端 籲接。其中一低阻抗傳輸線與輸入端和高阻 部的一端電性連接,另一低阻抗傳輸線與 和南阻抗傳輸部的另一端電性連接。電容 與該高阻抗傳輸部電性連接。其中,該高 • 輸部相對該電容呈對稱設計。 本新型實施方式所提供之濾波器,藉 提高衰減速度,從而提高濾波器的濾波敍 【實施方式】 請參閱圖1,所示為本新型之實施方 收不必 通訊產 ,會產 而言, 品的效 濾波效 在止帶 哀減速 高阻抗 端用於 訊號。 電性連 抗傳輸 輸出端 的一端 阻抗傳 由電容 L力。 式之濾 7 M340570 波器1 〇之結構示意圖。 在本實施方式中,濾波器10 包括輸入端 100、輸出端120、高阻抗傳輸部140、第一連接 線1 5 2、第二連接線1 5 4、第三連接線1 5 6、第 ^ 一低阻抗傳輸線1 6 0、第二低阻抗傳輸線1 8 0, 以及一對金屬片190。 輸入端1 0 0係用於饋入電磁波訊號,輸出端 1 2 0係用於饋出電磁波訊號。輸入端1 0 0與輸出 ® 端1 2 0為濾波器1 0之5 0歐姆匹配阻抗。在本實 施方式中’輸入端100與輸出端120位於同一^直 線。 高阻抗傳輸部1 4 0相對第三連接線1 5 6呈對 稱設計,其一端與輸入端1 〇 〇和第一連接線1 5 2 電性連接,其另一端與輸出端1 2 0和第二連接線 1 5 4電性連接,其中間與第三連接線1 5 6電性連 •接。高阻抗傳輸部 1 4 0包括第一高阻抗傳輸線 1 4 2及第二高阻抗傳輸線1 4 4,第一高阻抗傳輸 線1 42和第二高阻抗傳輸線1 44相對第三連接線 1 5 6呈對稱設計。 .第一低阻抗傳輸線 1 6 0與第二低阻抗傳輸 線1 8 0係平行設置,且相對形成一間隙1 7 0。在 本實施方式中,第一低阻抗傳輸線1 6 0與第二低 阻抗傳輸線 1 8 0均為長方形,且長度及寬度相 同。第一低阻抗傳輸線1 6 0的一端與第一連接線 8 M340570 1 5 2電性連接,其另一端為開路端。第二低阻抗 傳輸線1 8 0的一端與第二連接線1 5 4電性連接, 其另一端為開路端。 在本實施方式中,其中一金屬片190位於第 三連接線 1 5 6 的末端,並透過第三連接線 1 5 6 電性連接於高阻抗傳輸部1 4 0的中點附近,另一 金屬片190透過導電過孔22與電路板20的接地 電性連接。兩金屬片1 9 0形成一電容C (請參照 圖2) 〇 在本實施方式中,第一高阻抗傳輸線142、 第二局阻抗傳輸線1 4 4、第一低阻抗傳輸線1 6 0 及第二低阻抗傳輸線 1 8 0 圍成一大致封閉區 域,電容 C位於該封閉區域内。同時,輸入端 1 0 0和輸出端1 2 0相對電容C呈對稱設計,且高 阻抗傳輸部1 4 0也相對電容C呈對稱設計。 在本實施方式中,濾波器 10 的總長為 8.36mm,總寬為 3.53mm,面積為 29.51mm2。 高阻抗傳輸部140之全長為9·83毫米(mm), 線寬為0 · 2 3毫米。第一低阻抗傳輸線1 6 0以及 第二低阻抗傳輸線 1 8 0之長度及寬度分別為 4.55毫米及1.65毫米。 請參照圖2,所示為本新型濾波器1 0之等 效電路圖。圖2之電感L1、L2及L3係分別由 本新型濾波器1 0之第一連接線1 5 2、第二連接 9 M340570 線1 5 4、第三連接線1 5 6所等效形成,電感L4 和L 5係分別由第一高阻抗傳輸線1 4 2和第二高 阻抗傳輸線14 4所等效形成,電容C1和C 2係 ^ 分別由第一低阻抗傳輸線 1 6 0和第二低阻抗傳 1 輸線 1 8 0與電路板 2 0之接地金屬面所等效形 成,電容C 3係由第一低阻抗傳輸線1 6 0與第二 低阻抗傳輸線1 8 0粞合形成。電容C係由兩金 屬片1 9 0耦合形成。 ® 請參閱圖3,所示為經電磁模擬所得本新型 之濾波器1 0之測試圖。圖中橫軸表示通過濾波 器 10 的訊號的頻率(單位:GHz),縱軸表示幅 度(單位元:dB ),象限區包括透射之散射參數 (S_parameter:S21)的幅度以及反射之散射參數 (S-parameter:Sll)的幅度。透射之散射參數(S21) 表示通過濾波器1 0的訊號的輸入功率與訊號的 @輸出功率之間的關係,其相應的數學函數為: S2 1 ( dB ) =10Lg (輸出功率/輸入功率)。在濾 波器1 0的訊號傳輸過程中,訊號的部份功率被 反射回訊號源。被反射回訊號源的功率稱為反射 功率。通過濾波器1 0的訊號的輸入功率與訊號 的反射功率之間的關係,其相應的數學函數為: Sll(dB) =10Lg (反射功率/入射功率)。 由圖3可知,本新型之濾波器1 0具有良好 之濾波效能。從曲線| S 2 1 |可觀察到,通帶頻段 M340570 與衰減頻段間形成陡的“過渡坡”,並且在通帶 頻率範圍内的訊號的插入損耗接近〇。 在本實施方式中,利用電容c,提高了濾波 器1 0的衰減速度。而且,在通帶頻段内,具有 較低之損耗值。 綜上所述,本新型符合新型專利要件,爰依 法提出專利申請。惟,以上所述者僅為本新型之 較佳實施例,舉凡熟悉本案技藝之人士,在爰依 本案新型精神所作之等效修飾或變化,皆應包含 於以下之申請專利範圍内。 【圖式簡單說明】 圖1為本新型濾波器之結構示意圖。 圖2為新型濾波器之等效電路圖。 圖3為新型濾波器之測試圖。 【主要元件符號說明】 濾 波 器 10 電 路 板 20 入 端 100 出 端 120 阻 抗 傳 輸 部 140 第 一 阻 抗 傳 線 142 第 二 高 阻 抗 傳 輸 線 144 第 一 連 接 線 152 第 ^—— 連 接 線 154 M340570 第三連接線 156 第一低阻抗傳輸線 160 間隙 170 ^ 第二低阻抗傳輸線 180 4 金屬片 190 過孔 2 2 12M340570 VIII. New description: [New technical field] The new type relates to a high frequency component, especially to the ► filter. * [Prior Art] In recent years, due to the increasing demand for mobile communication products, the development of wireless communication has become more rapid. Among the many 'communication standards, the most striking is the American Electronic Motor Lushi Association (hereinafter referred to as: The IEEE 4.2 Wireless Local Area Network (AST) protocol was established in 1987. It not only provides unprecedented functions of wireless communication, but also provides a variety of wireless communication products. Solutions to communicate with each other. Setting it up undoubtedly opened a milestone for the development of wireless communications. Among the many standards developed by IEEE, Lu 8 02.1 1 b/g is the currently used standard, and its working frequency is 2.45 GHz. At the same time, the filter is a must-frequency component in mobile communication products. Its main function is to separate the frequencies, that is, - some frequency signals and block other frequencies. The filter characteristics should be that the passband has no attenuation and the attenuation is infinite within the cutoff, and the transition between the passband and the cutoff frequency should be steep. In the Radio Frequency Module of IE EE 8 0 2 · 1 1 b / g products, some components are used in a large wireless engineering line area. The IEEE segment of the brand is the best frequency for the South. The module is adjacent to the 6 M340570 passband (2.4 5 GHz) and still has the ability to generate or receive signals (called noise). This harmonic has many negative effects on the product. The problem of electromagnetic interference (Ε Μ I) on the outside of the product, the quality of the signal transmitted/received inside the product is ok, and the production capacity is greatly affected. Therefore, in order to improve the performance of the filter, the suppression capability of the filter is usually improved by increasing the attenuation speed. • [New Content] In view of this, it is necessary to provide a filter with faster speed. A filter includes an input terminal, an output terminal, a transmission portion, a pair of low impedance transmission lines, and a capacitor. Input Feeds electromagnetic wave signals. The output is used to feed out electromagnetic waves. The high-impedance transmission part is respectively connected to the input end and the output end. One of the low-impedance transmission lines is electrically connected to one end of the input end and the high-resistance part, and the other low-impedance transmission line is electrically connected to the other end of the south impedance transmission part. A capacitor is electrically connected to the high impedance transmission portion. Wherein, the high-transmission portion is symmetrically designed with respect to the capacitor. The filter provided by the new embodiment improves the filtering speed of the filter by increasing the attenuation speed. [Embodiment] Please refer to FIG. 1 , which shows that the implementation of the present invention does not require communication products, and the product is produced. The effect of the filter is used for the signal at the high impedance end of the stop band. The impedance of one end of the electrical connection transmission output is transmitted by the capacitance L. Filter of the type 7 M340570 Waveform 1 结构 structure diagram. In the present embodiment, the filter 10 includes an input terminal 100, an output terminal 120, a high-impedance transmission portion 140, a first connection line 15 2, a second connection line 1 5 4, a third connection line 1 5 6 , and a ^ A low impedance transmission line 160, a second low impedance transmission line 180, and a pair of metal sheets 190. The input terminal 1 0 0 is used to feed the electromagnetic wave signal, and the output terminal 1 2 0 is used to feed out the electromagnetic wave signal. Input 1 0 0 and Output ® Terminal 1 2 0 are the 50 ohm matching impedance of filter 10. In the present embodiment, the input terminal 100 and the output terminal 120 are located in the same line. The high-impedance transmission portion 1 40 is symmetrically designed with respect to the third connecting line 156, and one end thereof is electrically connected to the input end 1 〇〇 and the first connecting line 1 5 2, and the other end thereof is connected to the output end 1 2 0 and the The two connecting wires are electrically connected, and the middle connecting wire is connected to the third connecting wire 156. The high-impedance transmission portion 140 includes a first high-impedance transmission line 142 and a second high-impedance transmission line 144, and the first high-impedance transmission line 142 and the second high-impedance transmission line 144 are opposite to the third connection line 156. Symmetrical design. The first low-impedance transmission line 160 is disposed in parallel with the second low-impedance transmission line 180, and a gap 170 is formed. In the present embodiment, the first low-impedance transmission line 160 and the second low-impedance transmission line 180 are both rectangular and have the same length and width. One end of the first low-impedance transmission line 160 is electrically connected to the first connection line 8 M340570 1 5 2, and the other end is an open end. One end of the second low-impedance transmission line 180 is electrically connected to the second connecting line 154, and the other end is an open end. In this embodiment, one of the metal pieces 190 is located at the end of the third connecting line 156 and is electrically connected to the midpoint of the high-impedance transmitting portion 1 40 through the third connecting line 156. The other metal The sheet 190 is electrically connected to the ground of the circuit board 20 through the conductive via 22 . The two metal sheets 190 form a capacitor C (please refer to FIG. 2). In this embodiment, the first high-impedance transmission line 142, the second local impedance transmission line 144, and the first low-impedance transmission line 1600 and the second The low impedance transmission line 180 forms a substantially enclosed area in which the capacitor C is located. At the same time, the input terminal 1 0 0 and the output terminal 1 2 0 are symmetrically designed with respect to the capacitance C, and the high-impedance transmission portion 1 40 is also symmetrically designed with respect to the capacitance C. In the present embodiment, the filter 10 has a total length of 8.36 mm, a total width of 3.53 mm, and an area of 29.51 mm2. The high-impedance transmission portion 140 has a total length of 9.83 mm (mm) and a line width of 0 · 23 mm. The length and width of the first low-impedance transmission line 160 and the second low-impedance transmission line 180 are 4.55 mm and 1.65 mm, respectively. Referring to Figure 2, an equivalent circuit diagram of the novel filter 10 is shown. The inductors L1, L2 and L3 of Fig. 2 are respectively formed by the first connection line 15 of the novel filter 10, the second connection 9 M340570 line 1 5 4, and the third connection line 156 respectively, and the inductance L4 And the L 5 system are respectively formed by the first high-impedance transmission line 142 and the second high-impedance transmission line 14 4, and the capacitors C1 and C 2 are respectively transmitted by the first low-impedance transmission line 1 60 and the second low-impedance 1 The transmission line 180 is formed equivalent to the grounded metal surface of the circuit board 20, and the capacitor C3 is formed by the first low-impedance transmission line 160 and the second low-impedance transmission line 180. Capacitor C is formed by coupling two metal sheets 1 90. ® See Figure 3, which shows a test diagram of the filter 10 of the present invention obtained by electromagnetic simulation. In the figure, the horizontal axis represents the frequency (unit: GHz) of the signal passing through the filter 10, the vertical axis represents the amplitude (unit: dB), and the quadrant region includes the amplitude of the transmission scattering parameter (S_parameter: S21) and the scattering parameter of the reflection ( S-parameter: Sll) amplitude. The transmission scattering parameter (S21) represents the relationship between the input power of the signal passing through the filter 10 and the @output power of the signal. The corresponding mathematical function is: S2 1 (dB) = 10Lg (output power / input power) . During the signal transmission of the filter 10, part of the power of the signal is reflected back to the signal source. The power that is reflected back to the signal source is called the reflected power. The corresponding mathematical function of the relationship between the input power of the signal of the filter 10 and the reflected power of the signal is: Sll(dB) = 10Lg (reflected power / incident power). As can be seen from Fig. 3, the filter 10 of the present invention has good filtering performance. From the curve | S 2 1 |, it can be observed that the passband band M340570 forms a steep “transition slope” with the attenuation band, and the insertion loss of the signal in the passband frequency range is close to 〇. In the present embodiment, the attenuation speed of the filter 10 is increased by the capacitance c. Moreover, it has a lower loss value in the passband band. In summary, the new model complies with the new patent requirements and is filed under the law. The above description is only the preferred embodiment of the present invention, and equivalent modifications or variations made by those skilled in the art will be included in the following claims. [Simple description of the drawing] Fig. 1 is a schematic structural view of the novel filter. Figure 2 is an equivalent circuit diagram of the new filter. Figure 3 shows the test chart of the new filter. [Main component symbol description] Filter 10 Circuit board 20 Inlet 100 Output 120 Impedance transmission portion 140 First impedance transmission line 142 Second high impedance transmission line 144 First connection line 152 ^ - Connection line 154 M340570 Third connection Line 156 first low impedance transmission line 160 gap 170 ^ second low impedance transmission line 180 4 metal piece 190 via 2 2 12