TWM326704U - Solar cell module with a super capacitor - Google Patents

Solar cell module with a super capacitor Download PDF

Info

Publication number
TWM326704U
TWM326704U TW96214942U TW96214942U TWM326704U TW M326704 U TWM326704 U TW M326704U TW 96214942 U TW96214942 U TW 96214942U TW 96214942 U TW96214942 U TW 96214942U TW M326704 U TWM326704 U TW M326704U
Authority
TW
Taiwan
Prior art keywords
solar cell
supercapacitor
charge
super capacitor
solar
Prior art date
Application number
TW96214942U
Other languages
Chinese (zh)
Inventor
Hung Guan
Sheng-Shiung Jang
Ru-Yuan Yang
Original Assignee
Univ Southern Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Southern Taiwan filed Critical Univ Southern Taiwan
Priority to TW96214942U priority Critical patent/TWM326704U/en
Publication of TWM326704U publication Critical patent/TWM326704U/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention discloses a solar cell module with a super capacitor. By using the high efficiency super capacitor have high storage ability and charge-discharge, the solar power absorbed in the solar cells can be well stored in the super capacitors bank. According to the characteristics of high capacity, charge-discharge fast, long lifetime and so on, the super capacitor can provide instantaneous high power. So, the capacitor is a good storage device.

Description

M326704 八、新型說明: - 【新型所屬之技術領域】 本新型是有關於一種太陽能電池裝置,特別是指一種 結合超電容之太陽能電池裝置。 【先前技術】 隨著能源的日漸短缺及消耗,新能源之開發成為一項 , 相當重要的議題,而太陽能係為可長期使用的再生能源, 藝因此,可將太陽能轉換成電能之太陽能電池裴置備受矚目 。已知太陽能電池裝置通常是包含一個可接收太陽能的太 陽能板(一般亦直接稱為太陽能電池),以及一個連接該太 陽能板的儲能元件,所述儲能元件是例如電容器,或是可 重覆充電的二次電池,藉由太陽能板吸收太陽能並轉換成 電能而可對該儲能元件充電。 然而,雖然有太陽能電池裝置之研究與開發,但是目 前所使用的太陽能電池裝置之儲能件都無法充分的儲放電 I 能。因為傳統的電容器雖能應用於儲能元件,但是其能量 始、度太低,所以無法滿足高電容量儲能元件之需求。而鋰 電池等可充電的二次電池雖然具有較大的儲能容量,但是 由於二次電池是利用電極表面化學反應來達到充放電功能 所以充放電速度較慢,且使用壽命、充放電次數,瞬間 南功率之輸出等特性皆不及於傳統電容,因此,以二次電 池作為儲能元件在使用上亦有所限制。而電能未能快速、 有效率地儲存與輸出,將會是太陽能電池裝置的重大缺失 5 M326704 【新型内容】 因此’本新型之目的’即在提供一種兼具高電容量與 快速充放電特性之結合超電容之太陽能電池裝置。 於是,本新型結合超電容之太陽能電池裝置,包含: 一接收光線並將光能轉換成電能的太陽能電池、一電連接 該太陽能電池的充放電控制器,以及一電連接該充放電控 制器的超電容,該超電容是被該充放電控制器控制而可接 受該太陽能電池輸出之電能來充電。 【實施方式】 有關本新型之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 參閱圖1、2、3,本新型結合超電容之太陽能電池裝置 之較佳實施例,是可連接一負載5而對負載5輸出電能, 所述負載5可以是-直流負冑5卜也可以是_交流負載^ ,而該太陽能電池裝置包含:一太陽能電池丨、一充放電控 制态2、一超電容(suPer capacitor) 3,以及一電力轉換器 4 〇 該太陽能電池1包括一 P型半導體層u、一連接該P 型半導體層11的n型半導體層12、一個位於p型半導體層 之側的p側電極13,以及一個位於n型半導體層丨2之 η側電極14。而適用於本新型之太陽能電池工的種 :’其主要以「矽類別」和「非矽類別」作為分類。 其中,石夕類別依照不同的石夕晶格排列,又分為單晶石夕 6 M326704 (single crystal)太陽能電池、多晶矽(p〇ly_silic〇n)太陽 能電池,以及非晶矽(amorphous silic〇n)太陽能電池三種 。非梦類別有化合物半導體太陽能電池及其他種類太陽能 電池,所述化合物半導體太陽能電池主要有:(1 )以週期 表中ΠΙ族元素(Ga、In等)與v族元素(p、as等)所構 成之半導體(例如GaAs、InP等),稱為]]族化合物半 導體太陽能電池。(2)以週期表中π族元素(Zn、Cd等) 與VI族元素(S、Se、Te等)構成之半導體(例如CdS、 CdTe等),稱為Π-VI族化合物半導體太陽能電池。而其他 種類太陽能電池,例如無機太陽能電池包含有··磷化辞太 陽能電池、Se系太陽能電池、cws系太陽能電池等種類。 雖然上述眾多種類的太陽能電池皆適用於本新型,然而由 於製程的整合性,本實施例之太陽能電池1較佳地為單晶 矽太陽能電池、多晶砍太陽能電池,或非晶矽太陽能電池 〇 本實施例之充放電控制器2是電連接該太陽能電池1 與超電容3,使該太陽能電池丨吸收光能而轉換的電能藉由 該充放電控制器2之控制,而可對該超電容3進行充電。 所述超電容3是與該太陽能電池1並聯,並包括二個 間隔的電極31、二個間隔設置在該等電極31間的電解質層 32,以及一個位在該等電解質層32間並用於減少漏電流^ 隔離層33。所述超電容3之電極31表面與電解質層32的 接觸面上聚集了正、負離子而形成電雙層(electric加汕化 layers)之結構,利用該等電極31表面及電解質層32的接 7 M326704 觸面,產生大面積的電荷儲存界面,故該超電容3的電容 量可以高於傳統的電容器。 而該電力轉換器4是電連接該超電容3,用於將超電容 3輸出之直流電轉換成交流電,而可將交流電提供至交流負 載52。 本新型在使用時,當該太陽能電池丨受到光照時,其 内邛電/同與電子文到内建電場作用而分別朝p型半導體層 11與η型半導體層12移動,電洞及電子之分離造成電位差 ,使該太陽能電池1與該充放電控制器2、超電容3構成一 充電迴路,太陽旎電池1輸出之電流藉由該充放電控制器2 之控制來對该超電容3充電,所以該超電容3可藉由充電 而儲存電力。 _ *本新型外接該直流負載51時,由於太陽能電池i是 輸出直流電流來對該超電容3充電,所以該超電容3可透 過該充放電控制器2的控制而直接對直流負載51進行直流 供電,需要說明的是,雖然該超電容3的電力是透過該電 力轉換器4傳送到該直流負冑51,但此時該電力轉換器4 不需進行任何直流交流的轉換動作。另一方面,當本新型 外接該父流負載52時’超電容3之直流電流不能供交流負 载52使用,因此須經由電力轉換器4處理,將直流電轉換 為交流電以供該交流負載52使用。 由於超電容3的電容量較傳統電容器大,其電容量為 傳統電谷斋的千倍甚至萬倍以上,而且超電容3充放電次 數可達十萬次以上、使用壽命長、充放電速度快、體積小 8 M326704 、可靠度高,並可提供瞬間高功率,所以超電容3結合了 傳統電容器與一般二次電池之優點。 由以上說明可知,藉由該超電容3作為儲能與供電元 件,確實可以達到具有高電容量、快速充放電、可提供瞬 間高功率等功效,而本新型可應用於手機、pda、電動汽機 車等產品,實有助於提升產業發展。 惟以上所述者,僅為本新型之較佳實施例而已,當不 能以此限定本新型實施之範圍,即大凡依本新型申請專利 範圍及新型說明内容所作之簡單的等效變化與修飾,皆仍 屬本新型專利涵蓋之範圍内。 【圖式簡單說明】 圖1是本新型結合超電容之太陽能電池裝置之_較佳 實施例的簡易電路示意圖; 圖2是該較佳實施例的功能方塊示意圖;及 圖3是該較佳實施例之一超電容的結構示意圖。 M326704 【主要元件符號說明】 1…… …太陽能電池 1 χ ^ 電極 11 …> p型半導體層 32 m,'' ¥ …電解質層 1 K « …η型半導體層 3 3 '" s…隔離層 1 <· « ❖ …κ ρ側電極 * Κ >:. Κ ί …電力轉換器 1 S ·ΐ 、η側電極 5 ί· >' ·.* * ΐ- >' …負載 W Ψ X > < 1…充放電控制器 5 1 κ *-%ί ^>: …直流負載 t « i. e. …超電容 ¢. ·> ί. > ¢. 交流負載 10M326704 VIII. New Description: - [New Technology Field] The present invention relates to a solar cell device, and more particularly to a solar cell device incorporating a supercapacitor. [Prior Art] With the increasing shortage and consumption of energy, the development of new energy has become a very important issue, and solar energy is a renewable energy that can be used for a long time. Therefore, solar cells that can convert solar energy into electrical energy 裴The equipment is subject to attention. Solar cell devices are generally known to comprise a solar panel that can receive solar energy (generally also directly referred to as a solar cell), and an energy storage component that connects the solar panel, such as a capacitor, or can be repeated. The charged secondary battery can be charged by the solar panel by absorbing solar energy and converting it into electrical energy. However, despite the research and development of solar cell devices, the energy storage devices of the solar cell devices currently used are not capable of adequate storage and discharge. Because conventional capacitors can be applied to energy storage components, their energy levels are too low to meet the needs of high-capacity energy storage components. While a rechargeable secondary battery such as a lithium battery has a large energy storage capacity, since the secondary battery uses a chemical reaction on the surface of the electrode to achieve a charge and discharge function, the charge and discharge speed is slow, and the service life, charge and discharge times, The characteristics of the instantaneous south power output are not as good as the conventional capacitors. Therefore, the use of secondary batteries as energy storage components is also limited. The failure to store and output energy quickly and efficiently will be a major loss of solar cell devices. 5 M326704 [New content] Therefore, the purpose of the present invention is to provide a high capacitance and fast charge and discharge characteristics. A solar cell device incorporating a supercapacitor. Therefore, the novel solar cell device combining the supercapacitor comprises: a solar cell that receives light and converts the light energy into electrical energy, a charge and discharge controller electrically connected to the solar cell, and an electrical connection to the charge and discharge controller. An ultracapacitor that is controlled by the charge and discharge controller to receive electrical energy output by the solar cell for charging. The above and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the preferred embodiments. Referring to Figures 1, 2 and 3, a preferred embodiment of the solar cell device incorporating the ultracapacitor is that a load 5 can be connected to output power to the load 5, and the load 5 can be - DC negative 胄 5 Is a _AC load ^, and the solar cell device comprises: a solar cell 丨, a charge and discharge control state 2, a supercapacitor (suPer capacitor) 3, and a power converter 4 〇 the solar cell 1 includes a P-type semiconductor The layer u, an n-type semiconductor layer 12 connecting the P-type semiconductor layer 11, a p-side electrode 13 on the side of the p-type semiconductor layer, and an n-side electrode 14 on the n-type semiconductor layer 丨2. The types of solar cell manufacturers that apply to this new type are: 'The main categories are '矽 category' and 'non-矽 category'. Among them, the Shi Xi category is arranged according to different Shi Xi lattices, and is divided into single crystal stone 6 M326704 (single crystal) solar cells, polycrystalline germanium (p〇ly_silic〇n) solar cells, and amorphous silicium (amorphous silic〇n ) Three types of solar cells. The non-dream type includes a compound semiconductor solar cell and other types of solar cells, and the compound semiconductor solar cell mainly includes: (1) a steroid element (Ga, In, etc.) and a v group element (p, as, etc.) in the periodic table. A semiconductor (for example, GaAs, InP, etc.) is called a compound semiconductor solar cell. (2) A semiconductor (for example, CdS, CdTe, etc.) composed of a group π element (Zn, Cd, etc.) and a group VI element (S, Se, Te, etc.) in the periodic table is called a Π-VI compound semiconductor solar cell. Other types of solar cells, such as inorganic solar cells, include phosphoric acid solar cells, Se solar cells, and cws solar cells. Although the above various types of solar cells are suitable for the present invention, the solar cell 1 of the present embodiment is preferably a single crystal germanium solar cell, a polycrystalline chopped solar cell, or an amorphous germanium solar cell due to process integration. The charge and discharge controller 2 of the embodiment is electrically connected to the solar cell 1 and the ultracapacitor 3, so that the energy converted by the solar cell 丨 absorbs light energy is controlled by the charge and discharge controller 2, and the supercapacitor can be 3 to charge. The supercapacitor 3 is connected in parallel with the solar cell 1 and includes two spaced electrodes 31, two electrolyte layers 32 spaced between the electrodes 31, and one bit between the electrolyte layers 32 for reducing Leakage current ^ isolation layer 33. A structure in which positive and negative ions are collected on the surface of the electrode 31 of the ultracapacitor 3 and the electrolyte layer 32 to form an electric double layer (electric layered), and the surface of the electrode 31 and the electrolyte layer 32 are connected. The M326704 touch surface produces a large area of charge storage interface, so the capacitance of the ultracapacitor 3 can be higher than that of a conventional capacitor. The power converter 4 is electrically connected to the super capacitor 3 for converting the direct current output of the super capacitor 3 into an alternating current, and the alternating current is supplied to the alternating current load 52. When the solar cell is exposed to light, the neon/synergy and the electronic text move to the built-in electric field to move toward the p-type semiconductor layer 11 and the n-type semiconductor layer 12, respectively, and the hole and the electron. The separation causes a potential difference, and the solar cell 1 and the charge and discharge controller 2 and the super capacitor 3 form a charging circuit, and the current output from the solar cell 1 is charged by the charge and discharge controller 2 to charge the super capacitor 3, Therefore, the ultracapacitor 3 can store power by charging. _ * When the DC load 51 is externally connected, since the solar battery i is outputting a direct current to charge the super capacitor 3, the super capacitor 3 can directly directly DC the DC load 51 through the control of the charge and discharge controller 2. Power supply, it should be noted that although the power of the super capacitor 3 is transmitted to the DC port 51 through the power converter 4, the power converter 4 does not need to perform any DC AC switching operation. On the other hand, when the present invention is externally connected to the parent load 52, the DC current of the supercapacitor 3 cannot be used by the AC load 52, so it must be processed by the power converter 4 to convert the DC power to AC power for use by the AC load 52. Since the capacitance of the supercapacitor 3 is larger than that of the conventional capacitor, its electric capacity is thousands or even more than 10,000 times that of the conventional electric valley, and the number of times of charging and discharging of the supercapacitor 3 can reach more than 100,000 times, the service life is long, and the charging and discharging speed is fast. Small size 8 M326704, high reliability, and can provide instantaneous high power, so super capacitor 3 combines the advantages of traditional capacitors and general secondary batteries. It can be seen from the above description that the ultracapacitor 3 can be used as an energy storage and power supply component to achieve high capacitance, fast charge and discharge, and instant high power, and the novel can be applied to mobile phones, PDAs, and electric steam. Products such as locomotives help to improve the industry. However, the above description is only a preferred embodiment of the present invention, and the scope of the present invention cannot be limited thereto, that is, the simple equivalent change and modification made by the novel patent application scope and the novel description content, All remain within the scope of this new patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a simplified circuit diagram of a preferred embodiment of a solar cell device incorporating a supercapacitor; FIG. 2 is a functional block diagram of the preferred embodiment; and FIG. 3 is a preferred embodiment of the preferred embodiment. A schematic diagram of the structure of an ultracapacitor. M326704 [Description of main component symbols] 1... Solar cell 1 χ ^ Electrode 11 ...> p-type semiconductor layer 32 m,'' ¥ ... electrolyte layer 1 K « ...n-type semiconductor layer 3 3 '" s...isolated Layer 1 <· « ❖ ... κ ρ side electrode * Κ >:. Κ ί ... power converter 1 S · ΐ , η side electrode 5 ί · > ' ·.* * ΐ - > ' ... load W Ψ X >< 1... charge and discharge controller 5 1 κ *-% ί ^>: ...DC load t «ie ...supercapacitor ¢. ·> ί. > ¢. AC load 10

Claims (1)

M326704 九、申請專利範圍: 1· 一種結合超電容之太陽能電池裝置,包含: 一太陽能電池,接收光線並將光能轉換成電能; 一充放電控制器’電連接該太陽能電池;及 一超電容,電連接該充放電控制器,並被該充放電 控制器控制而可接受該太陽能電池輸出之電能來充電。 2·依據申睛專利範圍第丨項所述之結合超電容之太陽能電 池裝置’其中,該超電容包括二個間隔的電極、二個間 隔δ又置在该等電極間的電解質層,以及一個位在該等電 解質層間的隔離層。 3.依據申請專利範圍第丨項所述之結合超電容之太陽能電 池裝置,是可外接一直流負載,該超電容是透過該充放 電控制器而對該直流負載供應直流電。 4·依據申請專利範圍第丨項所述之結合超電容之太陽能電 池裝置’更包含一電連接該超電容並將超電容輸出之直 流電轉換成交流電的電力轉換器。 5 ·依據申明專利範圍第1項所述之結合超電容之太陽能電 池裝置,其中,該太陽能電池是選自下列群組:單晶矽 太陽能電池、多晶矽太陽能電池,或非晶矽太陽能電池 11M326704 IX. Patent application scope: 1. A solar cell device combining supercapacitor, comprising: a solar cell, receiving light and converting light energy into electric energy; a charging and discharging controller electrically connecting the solar cell; and a super capacitor And electrically connecting the charge and discharge controller, and being controlled by the charge and discharge controller to receive the electric energy output by the solar battery to be charged. 2. The solar cell device according to the second aspect of the invention, wherein the supercapacitor comprises two spaced electrodes, two electrolyte layers with a spacing δ and disposed between the electrodes, and a An isolation layer between the electrolyte layers. 3. The solar cell device incorporating the supercapacitor according to the scope of the patent application is an externally connected direct current load, and the super capacitor supplies direct current to the direct current load through the charge and discharge controller. 4. The solar cell device incorporating the supercapacitor according to the scope of the patent application of the patent application further comprises a power converter electrically connecting the supercapacitor and converting the direct current of the supercapacitor output into an alternating current. 5. The solar cell device according to the first aspect of the invention, wherein the solar cell is selected from the group consisting of a single crystal germanium solar cell, a polycrystalline germanium solar cell, or an amorphous germanium solar cell.
TW96214942U 2007-09-06 2007-09-06 Solar cell module with a super capacitor TWM326704U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96214942U TWM326704U (en) 2007-09-06 2007-09-06 Solar cell module with a super capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96214942U TWM326704U (en) 2007-09-06 2007-09-06 Solar cell module with a super capacitor

Publications (1)

Publication Number Publication Date
TWM326704U true TWM326704U (en) 2008-02-01

Family

ID=39540138

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96214942U TWM326704U (en) 2007-09-06 2007-09-06 Solar cell module with a super capacitor

Country Status (1)

Country Link
TW (1) TWM326704U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2397471A1 (en) * 2010-07-22 2013-03-07 Instituto Tecnológico De La Energía Ite Photovoltaic panel. (Machine-translation by Google Translate, not legally binding)
TWI396064B (en) * 2009-09-24 2013-05-11 Atomic Energy Council Dc power system using hcpv and bipv

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396064B (en) * 2009-09-24 2013-05-11 Atomic Energy Council Dc power system using hcpv and bipv
ES2397471A1 (en) * 2010-07-22 2013-03-07 Instituto Tecnológico De La Energía Ite Photovoltaic panel. (Machine-translation by Google Translate, not legally binding)

Similar Documents

Publication Publication Date Title
Gurung et al. Solar charging batteries: advances, challenges, and opportunities
Shukla et al. Electrochemical capacitors: Technical challenges and prognosis for future markets
CN102800734B (en) Solar power generation accumulate integrated device
KR20130138611A (en) Energy storage system
Chukwuka et al. Batteries and super-capacitors
JP2012089825A (en) Lithium ion capacitor
US9385539B2 (en) Surface-mediated cell-powered portable computing devices and methods of operating same
Khawaja et al. Fabrication and electrochemical characterization of graphene-oxide supercapacitor electrodes with activated carbon current collectors on graphite substrates
Yasin et al. Battery-nanogenerator hybrid systems
Njema et al. A review on the recent advances in battery development and energy storage technologies
CN202817783U (en) Super capacitor and storage battery combined energy storage energy management circuit for photovoltaic grid-connected power generation
EP1803203B1 (en) Apparatus and method for charging an accumulator
Qureshi et al. Enhancing Battery Life of Electric Vehicle with Super-capacitor
TWM326704U (en) Solar cell module with a super capacitor
CN202602378U (en) Photovoltaic energy storage power station
Bhajekar et al. Comparative analysis of symmetrical, asymmetrical and hybrid supercapacitors as a pulse current device
CN100481601C (en) Three-electrode electro chemical cell
Kumar et al. Battery-supercapacitor hybrid systems: An introduction
Kansal et al. Integrated energy generation and storage systems for low‐power device applications
KR20140055011A (en) Capacitor charge and discharge management device and method thereof
CN206041608U (en) Rechargeable hybrid power source for electric tool
CN208656488U (en) A kind of Li-ion batteries piles energy-storage battery case of solar energy and mains hybrid charging
CN205985216U (en) Lithium ion battery set
TWI755107B (en) energy storage system
CN205846807U (en) A kind of lithium battery and the photovoltaic generating system of super capacitor hybrid energy-storing