TWM296567U - LED drive circuit having temperature compensation - Google Patents

LED drive circuit having temperature compensation Download PDF

Info

Publication number
TWM296567U
TWM296567U TW95202395U TW95202395U TWM296567U TW M296567 U TWM296567 U TW M296567U TW 95202395 U TW95202395 U TW 95202395U TW 95202395 U TW95202395 U TW 95202395U TW M296567 U TWM296567 U TW M296567U
Authority
TW
Taiwan
Prior art keywords
signal
current
circuit
control
emitting diode
Prior art date
Application number
TW95202395U
Other languages
Chinese (zh)
Inventor
Ta-Yung Yang
Original Assignee
System General Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by System General Corp filed Critical System General Corp
Priority to TW95202395U priority Critical patent/TWM296567U/en
Publication of TWM296567U publication Critical patent/TWM296567U/en

Links

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Description

M296567 八、新型說明: 【新型所屬之技術領域】 本創作係有關於一種發光二極體(LED)够動哭,爭目躺 J ·犯勳杰,更具體而言,本創作涉 及一種用於控制該發光二極體驅動器的控制電路。 【先前技術】 發光二極體驅動器可根據該發光二極體的溫度特徵來控制它的亮度。該發 光二極體驅動器用來控制流經發光二極體的電流值。雖然較高的電流可以增強 ❿發光二極翻亮度,但是會降低發光二極體的使用壽命。圖i為—現有發光二 極體驅動器電路。該發光二極體驅動器電路是由調整電壓電源ι〇透過一電阻 為15提供電流ILE:D給多個發光二極體2〇〜25。電流jled為· ILED^ -VF20 - VF21 - VF25M296567 VIII. New description: [New technology field] This creation department is about a kind of light-emitting diode (LED) that is full of crying, arguing for lying, and more specifically, this creation involves a kind of A control circuit for controlling the LED driver. [Prior Art] A light-emitting diode driver can control its brightness according to the temperature characteristics of the light-emitting diode. The light emitting diode driver is used to control the current value flowing through the light emitting diode. Although the higher current can enhance the brightness of the LED, it will reduce the lifetime of the LED. Figure i is an existing LED driver circuit. The LED driver circuit is provided with a current ILE:D from a regulated voltage source ι through a resistor 15 to a plurality of LEDs 2 〇 25 25 . Current jled is · ILED^ -VF20 - VF21 - VF25

Rl5 .....................* (Ο 其中VF2〇〜VF25分別是多個發光二極體20〜25的順向電壓。 第1圖中所示的現有發光二極體驅動器的缺點是電流lLm的易變性。順向 電壓VF2G〜VF25變化時,電流ILED隨之發生變化。由於大量生產與工作溫度的變 φ 化,順向電壓VF2〇〜VF25並非恒定不變的。 第2圖示出了現有發光二極體驅動電路的另一實施電路。電流源%與發 先一^亟體20〜25串聯’用以向發光二極體20〜25提供一恒定電流。然而,上 述電路的缺點在於該發光二極體的色度和亮度隨著發光二極體溫度的變化而 發生變化。為保持發光二極體的色度及/或亮度恒定不變,必須隨溫度的變化而 周1¾光一極體的電流。本創作的目標是開發一種具有溫度補償的發光二極體 驅動器。 【新型内容】 本創作提供了一種用於控制發光二極體亮度的發光二極體驅動電路。 M296567 _光二極體驅動電路包括—控制電路,用於產生—發光二極體電流,以控制 該發光二極體。該控制電路的一控制端用來接收一控制信號,以用於決定該發 光二極體電流的工作週期。該控制電路的一檢測端被輪至該發光二極體,以 用於檢測-發光二極體電壓。該發光二極體電壓用於調整該發光二極體電流。 另外透過連接至該控制電路的—第—電阻器與—第二電阻器,可麟決定該發 光-極體的電流值’以及決定該發光二極體電流的調整斜率。其中該調整斜率 表示該發光二極體電流的變化對應於該發光二極體電壓的變化。該發光二極體 籲$壓值與该發光二極體溫度相關。因此,可以根據該發光二極體溫度來調整該 發光二極體電流,以補償該發光二極的色度及亮度的改變。 人 【實施方式】 第3圖及第4圖示出了本創作發光二極體鷄電路的多個實施例,其中發 光二極體20〜25是串聯的。一電壓源%是供給發光二極體2〇〜25。一控制 電路1〇〇與發光二極體20〜25相搞接。第3圖示出了該控制電路卿的電源 由^源Vcc提供。第4圖示出了控制電路1〇〇的電源直接由電壓源v以提 •供。控制電路卿的一輸出端ουτ產生一發光二極體電流,以用於控制發光 -極體20〜25。控制電路1〇〇的一控制端爪用於接收一控制信號ν⑽,以開 啟/切斷發光二極體電流,以及決定發光二鋪電流的功猶。㈣電路⑽ 的-檢測端VS與發光二極體20〜25相連,用於檢測一發光二極體電壓。發光 二極體電壓被進一步用來調整發光二極體電流。另外透過-第-電阻器57連 接至控制電路1()(),可用於蚊發光二極體電流的電流值。喊過—第二電阻 器59搞接至控制電路⑽,可麟決定—調整斜率。該調整斜率表示發光二極 體電流的變化對應于發光二極體電壓的變化。發光二極體電壓值與發光二極體 M296567 的恤度相關。因此,可以根據發光二極體溫度的變化來調整發光二極體電流, 以補償色度及亮度的變化。 為:偵測發光二極體的溫度,發光二極體電流包括-第-發光二極體電流 I】及-弟二發光二極體電流l2。第二發光二極體電流與第—發光二極體電流 h相關。發光二極體電壓包括一第一發光二極體順向電壓乂及一第二發光二極 體順向電壓v2。根據第-發光二極體電流Μ第二發光二極體電流^分別產 生第-發光二極體順向電壓Vi及第二發光二極體順向電壓ν2。 • 第5圖示出了本創作的控制電路100的電路示意圖。-脈寬調製電路200 耦接至控制電路獅的控制端ΙΝ,以產生一第一控制信號s】,該第一控制信號 S,用於控制發光二極體電流的卫作週期。—取樣電路· _至檢測端及 透過控制電路100的輸入端RT_第二電阻器59,並根據發光二極體電壓及 第二電阻器59的電阻值產生一調整信號Ia。一調製電路輛接至脈寬調製 電路200、取樣電路300以及透過控制電路1〇〇的幻翻接至第一電阻器^, 並根據第-電阻器57的電阻值及調整信號Ia,用於產生一調製信號^。多個 馨電晶體力、72、74、75及8〇形成一第一電流鏡電路5〇〇,根據第一控制信號 S〗及調製錢IM ’在控制電路励的輪出端爾產生發光二鋪電流。根據 第一控制信號S!的停用,因而切斷發光二極體電流。 第6圖不出了脈見調製電路200的電路示意圖。脈寬調製電路包括一振盪 器250,用於產生-斜坡信號RAMP、-第二控制信號心、一第一脈衝信號SMpi 以及一第二脈衝信號SMP2。一旦控制信號Vcnt低於斜坡信號MMp,一第一 比較裔210就會產生一第一重置(reset)信號RST1。一旦控制信號低於一 臨界信號(threshold signal)VTH,一第二比較器215就會產生一第二重置信號 M296567 跡-正反叫_235、—反細36、—反相㈣以及多個及卿 232形成-鎖存電路⑽ch c刪it) ’鎖存電路_至第二控制信號&、第一重置 信號則以及第二重置信號觀。第二控制信號&透過反相謂為正反 器235提供啟用的時脈(cl〇ck)。第二控制錢&進一步連接至及_的輸入 端及閘的另輸入立而連接至第二比較器215的輸出端。及閉⑼的輸出 端連接至反或f細的輸人端以及及請的輸人端。及卩細的另—輸入端 連接至第-比較器21〇的輸出端。及間232的輸出端輸出的訊號被施加用於使 正反器235重置。正反器235的輸出端連接至反或閑说的另—輸入端,用於 在反或間236的輸出端產生第一控制信號&。根據第二控制信號&,鎖存電路 產生第-控舰號Sl。根據第二控繼號&峨能第—控輸號&,且根據 第-重置信號RST1及/或第二重置信號顧以使第一控制信號^根據第二控 制信號&的下降沿_啤edge)和上升沿(論g 分別產生第一脈齡 SMP1及第二脈衝信號SMP2。 第7圖不出了本創作的脈寬調製電路2〇〇的振盈器25〇的電路示意圖。一 電流源251透過-開關253與-電容器扮相連,以用於對電容器扮充電。 -電流源2S2透過-開關2M與電容器扮相連,以用於對電容器255放電。 -具有-第-觸發點⑻P-p〇int)電壓%的比較器261連接至電容器况,用於 -旦電容H 255的電壓低於第-觸發點電壓%時產生—充電信號。—具有一第 -觸發點電壓%的比較器26〇連接至電容器255,用於一旦電容器255的電壓 南於第二觸發點電壓V2時產生-放電信號。多個反及閘π:及加形成—沾 鎖存電路(RS-latch),分別與充電信號及放電信號相連。從而反及閘262的輸出 端產生第二控制信號S2。透過反相器綱,第二控制信號料接至一脈衝產 M296567 生器270,用於產生第一脈衝信號8?41>1。第二控制信號幻連接至一脈衝產生 器280,以用於產生第二脈衝信號SMp2。第二控制信號心和反相器綱的輸 出立而連接’以用於分別控制開關254及253。在電容器255產生斜坡信號RAMp。 第8圖不出了取樣電路3〇〇的電路示意圖,其中多個運算放大器3i〇、32〇 及夕個电阻态305、306、307、308、31卜312形成一第一差動電路(differential circmt)301。電阻器305和306形成一分壓器,從控制電路1〇〇的檢測端%連 接至運异放大器310的輸入端,以用於檢測發光二極體電壓。電阻器3〇7及3〇8 _形成另-分壓器,從控制電路廳的輸出端〇υτ連接至運算放大器32〇的輸 入端。運算放大器320用作為一緩衝器進行操作。運算放大器31〇與電阻器311 和312相連,用作為一差動放大器進行操作。因此,運算放大器31〇輸出檢測 ^ vs和輸出‘ OUT的訊號差值。上述差值表示發光二極體電壓。一開關 及-電容器326形成-第-取樣電路。一開關327及一電容器328形成一第二 取樣電路1關325和327分別由第一脈衝信號SMP1和第二脈衝信號SMp2 控制。運异放大器310的輸出端連接至第一取樣電路和第二取樣電路。因此, _根據第-脈衝信f虎SMP1,第一取樣電路對發光二極體電壓的第一發光二極體 順向電壓V!進行取樣。根據第二脈衝信號SMp2,第二取樣電路對發光二極體 電壓的第二發光二極體順向電壓^進行取樣。多個運算放大器33()、34〇,電 晶體34卜342、343及電阻器335、345形成一第二差動電路3〇2,連接至第一 取樣電路和第二取樣電路,用以根據第一發光二極體順向電s %和第二發光二 極體順向電壓v2的差值產生_差動信號。電容器328及開關327連接至運算放 大崙340的輸入端。運算放大器34〇作為一緩衝器。電容器326及開關3乃連 接至運异放大态330的輸入端。運算放大器33〇、34〇,電阻器335及電晶體 M296567 341產生一電流1341。電晶體342和343形成一第一電流鏡,連接至電流1341, 用於產生-電流1343。電流1343和電阻器345產生差動信號。一運算放大器 350和多個電晶體35卜352、353、354、367、368形成-電壓對電流轉換器。 運异放大器350的輸入端接收該差動信號。運算放大器35〇的另一輸入端,透 過控制電路1GG的RI端連接至第二電阻器59。因此,電壓對電流轉換器根據 差動信號和第二電阻器59的電阻值來產生調整信號Ia。一電阻器37〇從電晶 體351透過RI端連接至第二電阻器59,用於保護電壓對電流轉換器,不與透 φ 過RI端的第二電阻器59短路。 第9圖示出了本創作的控制電路1〇〇的調製電路4〇〇。一運算放大器41〇 和-電晶體411形成了-電流產生器。一參考電壓Vr連接至運算放大器41〇 的輸入端。運算放大器410的另一輸入端透過控制電路1〇〇的輸入端圯連接 至第一電阻器57,以用於根據參考電壓Vr和第一電阻器57的電阻值產生一參 考電流1411。一電阻器47〇從電晶體411連接至第一電阻器57,用於保護電流 產生器不與第一電阻器57短路。多個電晶體412〜418形成一第二電流鏡電路 ♦ 480,以用於根據參考電流和調整信號u產生調言號^。電晶體犯、 413及414形成一第二電流鏡,根據參考電流1411和調整信號Ia,用於產生電 々il 1413和1414。電晶體415及416形成一第三電流鏡,用於根據電流1413產 生一電流1416。電晶體417及418形成一第四電流鏡,用於根據電流抖抖產生 一電流1418。根據電流1416和1418產生調t信號IM。第-控制信號Sl透過反 相器420傳送至一電晶體430。電晶體430進一步耦接至第二電流鏡,用於根 據第控制彳5旒S〗切斷電流I4i3和1414。一電晶體431耦接至第三電流鏡, 用於根據第二控制信號心切斷電流1416。因此,根據第-控制信號Sl的致能 M296567 來致能調製信號Im,以產生第-發光二極體電流。根據第二控制信號S2,進 一步控制調製信號Im ’以產生第二發光二極體電流工2。 第10圖示出了第-控制信號S!的波形,在斜坡信?虎ramp上升週期過程 中,透過比較控制信號VCNT與斜坡信號mmp而產生第一控制信號&。第二Rl5 .....................* (Ο where VF2〇~VF25 are the forward voltages of the plurality of light-emitting diodes 20 to 25, respectively. The disadvantage of the existing LED driver shown is the variability of the current lLm. When the forward voltage VF2G~VF25 changes, the current ILED changes accordingly. Due to the mass production and the change of the operating temperature, the forward voltage VF2〇 ~VF25 is not constant. Fig. 2 shows another implementation circuit of the conventional LED driving circuit. The current source % is connected in series with the first body 20 to 25' to the light emitting diode 20 ~25 provides a constant current. However, the above circuit has the disadvantage that the chromaticity and brightness of the light-emitting diode change with the temperature of the light-emitting diode. To maintain the chromaticity and/or brightness of the light-emitting diode. Constantly constant, it must be the same as the temperature of the light. The goal of this creation is to develop a temperature-compensated LED driver. [New content] This creation provides a control for the light-emitting diode Light-emitting diode driving circuit with body brightness. M296567 _Light diode driving The circuit includes a control circuit for generating a light-emitting diode current to control the light-emitting diode. A control terminal of the control circuit is configured to receive a control signal for determining the operation of the light-emitting diode current. a detecting end of the control circuit is turned to the light emitting diode for detecting a light emitting diode voltage. The light emitting diode voltage is used to adjust the light emitting diode current. a first resistor and a second resistor of the control circuit determine a current value of the light-emitting body and an adjustment slope determining a current of the light-emitting diode, wherein the adjusted slope indicates the light-emitting diode current The change corresponds to the change of the voltage of the light-emitting diode. The light-emitting diode is related to the temperature of the light-emitting diode. Therefore, the light-emitting diode current can be adjusted according to the temperature of the light-emitting diode. In order to compensate for the change of the chromaticity and the brightness of the light-emitting diode. [Embodiment] FIGS. 3 and 4 show a plurality of embodiments of the present LED body circuit, wherein the light-emitting diode 20~ 25 is connected in series. A voltage source % is supplied to the light-emitting diodes 2 〇 25 to 25. A control circuit 1 搞 is connected to the light-emitting diodes 20 to 25. Figure 3 shows the power supply of the control circuit Provided by ^ source Vcc. Figure 4 shows that the power supply of the control circuit 1〇〇 is directly supplied by the voltage source v. An output terminal ουτ of the control circuit generates a light-emitting diode current for controlling the light emission. - Pole bodies 20 to 25. A control terminal of the control circuit 1 is for receiving a control signal ν (10) for turning on/off the LED current and determining the current of the two currents. (4) Circuit (10) The detecting terminal VS is connected to the light emitting diodes 20 to 25 for detecting a light emitting diode voltage. The light emitting diode voltage is further used to adjust the light emitting diode current. Further, the through-resistor 57 is connected to the control circuit 1()(), which can be used for the current value of the mosquito light-emitting diode current. Shouted - the second resistor 59 is connected to the control circuit (10), which can be determined by adjusting the slope. The adjustment slope indicates that the change in the light-emitting diode current corresponds to the change in the voltage of the light-emitting diode. The light-emitting diode voltage value is related to the brightness of the light-emitting diode M296567. Therefore, the LED current can be adjusted according to the change in the temperature of the LED to compensate for changes in chromaticity and brightness. To detect the temperature of the light-emitting diode, the light-emitting diode current includes a -first-light diode current I] and a second light-emitting diode current l2. The second illuminating diode current is related to the first illuminating diode current h. The light-emitting diode voltage includes a first light-emitting diode forward voltage 乂 and a second light-emitting diode forward voltage v2. The first-light-emitting diode forward voltage Vi and the second light-emitting diode forward voltage ν2 are respectively generated according to the first-light-emitting diode current Μ second light-emitting diode current. • Fig. 5 shows a circuit diagram of the control circuit 100 of the present creation. The pulse width modulation circuit 200 is coupled to the control terminal of the control circuit lion to generate a first control signal s, which is used to control the duty cycle of the LED current. a sampling circuit _ to the detecting terminal and through the input terminal RT_second resistor 59 of the control circuit 100, and generating an adjustment signal Ia according to the voltage of the LED and the resistance of the second resistor 59. A modulation circuit is connected to the pulse width modulation circuit 200, the sampling circuit 300, and the magic circuit through the control circuit 1 to the first resistor, and is used according to the resistance value of the first resistor 57 and the adjustment signal Ia. A modulation signal ^ is generated. A plurality of sinusoidal force, 72, 74, 75 and 8 〇 form a first current mirror circuit 5 〇〇, according to the first control signal S 〗 and the modulation money IM ′ in the rotation of the control circuit to generate a second light Spread the current. According to the deactivation of the first control signal S!, the LED current is thus switched off. Fig. 6 shows a schematic diagram of the circuit of the modulation circuit 200. The pulse width modulation circuit includes an oscillator 250 for generating a ramp signal RAMP, a second control signal core, a first pulse signal SMpi, and a second pulse signal SMP2. Once the control signal Vcnt is lower than the ramp signal MMp, a first comparator 210 generates a first reset signal RST1. Once the control signal is lower than a threshold signal VTH, a second comparator 215 generates a second reset signal M296567 trace-positive-reverse_235, - inverse 36, - inverted (four), and multiple And qing 232 forms a latch circuit (10) ch c delete it) 'latch circuit _ to the second control signal & first reset signal and second reset signal view. The second control signal & is inverted to provide the enabled clock (cl〇ck) for the flip-flop 235. The second control money & is further connected to the input of the AND and the further input of the gate to the output of the second comparator 215. And the output of the closed (9) is connected to the input end of the reverse or f fine and the input end of the request. And the thinner other input terminal is connected to the output of the first comparator 21〇. The signal output from the output of the 232 is applied to reset the flip flop 235. The output of flip-flop 235 is coupled to the other input of the opposite or idler for generating a first control signal & According to the second control signal &, the latch circuit generates the first control ship number S1. Determining the first control signal according to the second control signal & and according to the first reset signal RST1 and/or the second reset signal according to the second control signal & The falling edge_beer edge and the rising edge (the g produces the first pulse age SMP1 and the second pulse signal SMP2, respectively. Fig. 7 shows the circuit of the vibrator 25〇 of the pulse width modulation circuit 2〇〇 of the present invention. Schematically, a current source 251 is connected to the capacitor through the -switch 253 for charging the capacitor. - The current source 2S2 is connected to the capacitor through the -switch 2M for discharging the capacitor 255. - With - - The trigger point (8) P-p〇int) voltage comparator 261 is connected to the capacitor condition for generating a charge signal when the voltage of the capacitor H 255 is lower than the first trigger point voltage %. - Comparator 26 having a first - trigger point voltage % is coupled to capacitor 255 for generating a -discharge signal once the voltage of capacitor 255 is about the second trigger point voltage V2. A plurality of anti-gate π: and an add-drain latch circuit (RS-latch) are respectively connected to the charging signal and the discharging signal. Thus, the output of the gate 262 is reversed to produce a second control signal S2. Through the inverter, the second control signal is connected to a pulse generating M296 567 for generating the first pulse signal 8?41>1. The second control signal is phantomly coupled to a pulse generator 280 for generating a second pulse signal SMp2. The second control signal heart and the output of the inverter are connected "for control of switches 254 and 253, respectively. A ramp signal RAMp is generated at capacitor 255. Figure 8 is a circuit diagram of the sampling circuit 3, wherein a plurality of operational amplifiers 3i, 32, and 305, 306, 307, 308, 31 312 form a first differential circuit (differential Circmt) 301. Resistors 305 and 306 form a voltage divider that is coupled from the sense terminal of control circuit 1 to the input of sense amplifier 310 for detecting the LED voltage. The resistors 3〇7 and 3〇8_ form a further voltage divider connected from the output terminal 〇υτ of the control circuit hall to the input terminal of the operational amplifier 32A. The operational amplifier 320 operates as a buffer. The operational amplifier 31 is connected to resistors 311 and 312 and operates as a differential amplifier. Therefore, the operational amplifier 31 outputs the signal difference between the detection ^ vs and the output 'OUT. The above difference represents the light-emitting diode voltage. A switch and capacitor 326 form a -sampling circuit. A switch 327 and a capacitor 328 form a second sampling circuit 1 and the switches 325 and 327 are controlled by the first pulse signal SMP1 and the second pulse signal SMp2, respectively. The output of the operational amplifier 310 is coupled to a first sampling circuit and a second sampling circuit. Therefore, according to the first pulse signal, the first sampling circuit samples the first light-emitting diode forward voltage V! of the light-emitting diode voltage. According to the second pulse signal SMp2, the second sampling circuit samples the second light-emitting diode forward voltage ^ of the light-emitting diode voltage. A plurality of operational amplifiers 33(), 34A, transistors 34, 342, 343 and resistors 335, 345 form a second differential circuit 〇2 connected to the first sampling circuit and the second sampling circuit for The difference between the first illuminator forward s % and the second illuminator forward voltage v2 produces a _ differential signal. Capacitor 328 and switch 327 are coupled to the input of the operational amplifier 340. The operational amplifier 34 is used as a buffer. Capacitor 326 and switch 3 are coupled to the input of the differentiated state 330. The operational amplifiers 33A, 34A, resistor 335 and transistor M296567 341 generate a current 1341. Transistors 342 and 343 form a first current mirror coupled to current 1341 for generating a current 1343. Current 1343 and resistor 345 generate a differential signal. An operational amplifier 350 and a plurality of transistors 35, 352, 353, 354, 367, 368 form a voltage to current converter. The input of the differential amplifier 350 receives the differential signal. The other input terminal of the operational amplifier 35A is connected to the second resistor 59 through the RI terminal of the control circuit 1GG. Therefore, the voltage-to-current converter generates the adjustment signal Ia based on the differential signal and the resistance value of the second resistor 59. A resistor 37 is coupled from the transistor 351 through the RI terminal to the second resistor 59 for protecting the voltage to current converter from shorting the second resistor 59 through the RI terminal. Fig. 9 shows the modulation circuit 4 of the control circuit 1 of the present creation. An operational amplifier 41 〇 and - transistor 411 form a current generator. A reference voltage Vr is connected to the input of the operational amplifier 41A. The other input terminal of the operational amplifier 410 is coupled to the first resistor 57 through an input terminal 控制 of the control circuit 1 , for generating a reference current 1411 based on the reference voltage Vr and the resistance value of the first resistor 57. A resistor 47A is connected from the transistor 411 to the first resistor 57 for protecting the current generator from being short-circuited with the first resistor 57. The plurality of transistors 412 to 418 form a second current mirror circuit ♦ 480 for generating a modulation number based on the reference current and the adjustment signal u. The transistors, 413 and 414 form a second current mirror for generating the electrodes il 1413 and 1414 based on the reference current 1411 and the adjustment signal Ia. Transistors 415 and 416 form a third current mirror for generating a current 1416 based on current 1413. Transistors 417 and 418 form a fourth current mirror for generating a current 1418 based on current dithering. A t-modulation signal IM is generated based on currents 1416 and 1418. The first control signal S1 is transmitted to a transistor 430 through the inverter 420. The transistor 430 is further coupled to the second current mirror for cutting off the currents I4i3 and 1414 according to the first control 旒5旒S. A transistor 431 is coupled to the third current mirror for cutting the current 1416 according to the second control signal. Therefore, the modulation signal Im is enabled in accordance with the enablement M296567 of the first control signal S1 to generate the first-light-emitting diode current. The modulation signal Im' is further controlled in accordance with the second control signal S2 to produce a second LED current 2. Fig. 10 shows the waveform of the first control signal S!, during which the first control signal & is generated by comparing the control signal VCNT with the ramp signal mmp during the ramp-up ramp period. second

控制信號S2在斜坡信號RAMP下降週期過程巾產生。根據控制信號&的 失效(高準位)來使調製信號IM失效(低準位)。根據第—控制信號§1的致能 (低準位)來控制調製錢IM,以產生第—發光二極體電流^,而根據第二控 制信號s2的致能(高準位),卩產生第二發光二極體電流l2。在第一發光二極 體電流1丨週期過程巾,振in 250產生第—脈衝信號SMp卜简第一發光一 極體順向電壓Vl進行取樣。在第二發光二極體電流l2週期過程巾,振靈器㈣ 產生第二脈衝信號SMP2以對第二發光二極體順向電壓% 斤 …丁取樣。因此根據 第-發光二極體電流1】和第二縣二極體電流l2 ’可定義第一發光二極體順向The control signal S2 is generated during the falling period of the ramp signal RAMP. The modulation signal IM is disabled (low level) according to the failure (high level) of the control signal & The modulation money IM is controlled according to the enablement (low level) of the first control signal §1 to generate the first light emitting diode current ^, and according to the enablement (high level) of the second control signal s2, the chirp is generated. The second illuminating diode current l2. In the first light-emitting diode current period of 1 丨, the vibration in 250 generates a first pulse signal SMp, and the first light-emitting body forward voltage V1 is sampled. In the second light-emitting diode current l2 period process, the vibrator (4) generates a second pulse signal SMP2 to sample the second light-emitting diode forward voltage. Therefore, the first light-emitting diode current direction can be defined according to the first-light diode current 1] and the second county diode current l2 ’

電壓% ’以及確認第二發光二極體順向電壓%,其中電流1心2可由下列公 式得知: A U = \〇xevllVT ........ —(5) 〜(6) …(7) \2 = \〇xeV2/VT ....... VT = k x Temp q 而Temp是 其中k疋玻爾茲曼常數(B〇itzmann,s ,q是電子電荷量 絕對溫度。 ⑻Voltage % 'and confirm the second illuminating diode forward voltage %, where the current 1 core 2 can be known by the following formula: AU = \〇xevllVT ........ —(5) ~(6) ...( 7) \2 = \〇xeV2/VT ....... VT = kx Temp q and Temp is where k疋 Boltzmann constant (B〇itzmann, s , q is the absolute temperature of the electron charge. (8)

Temp Κ Ιηώ 12 由上述方程式可得知可從發光二極體電壓精確地檢測出發光二極體的溫 11 M296567 度。因此發光二極體的溫度町進一步被用於調整發光二極體電流,以補償發光 4 亟體的色度和亮度Temp Κ Ιηώ 12 From the above equation, it can be seen that the temperature of the light-emitting diode can be accurately detected from the light-emitting diode voltage by 11 M296567 degrees. Therefore, the temperature of the light-emitting diode is further used to adjust the light-emitting diode current to compensate for the chromaticity and brightness of the light-emitting diode.

准,以上所述,僅為本創作最佳之一的具體實施例之詳細說明與圖式,任 何熟悉該項技藝者在本創作之領域内, 下本案之專利範圍。 可輕易思及之變化或修飾皆可涵蓋在以 12 M296567 【圖式簡單說明】 第1圖為習知的發光二極體驅動電路之電路示意圖。 第2圖為習知另-發光二極體驅動電路之電路示意圖。 第3圖為本創作的第—較佳實施例。 第4圖為本創作的第二較佳實施例。 第5圖為本創作的控制電路的電路示意圖。 第6圖為本創作的控制電路中之脈寬調製電路之電路示音圖。 鲁P圖為本創作的控制電路中之脈寬調製電路的振盈器之電路示意圖。 弟8圖為本創作的控制電路中之取樣電路的電路示意圖。 第9圖為本創作的控制電路的中之調製電路的電路示意圖。 第10圖為本創作的控制電路之訊號波形示意圖。 【主要元件符號說明】 調整電壓電源10 電流Ili:D 電流源35As mentioned above, it is only a detailed description and drawing of the specific embodiment of one of the best creations of the present invention, and any one who is familiar with the skill of the artist in the field of the present invention has the patent scope of the present invention. The change or modification that can be easily thought of can be covered by 12 M296567 [Simple description of the drawing] Fig. 1 is a schematic circuit diagram of a conventional LED driving circuit. FIG. 2 is a schematic circuit diagram of a conventional dual-light-emitting diode driving circuit. Figure 3 is a first preferred embodiment of the present invention. Figure 4 is a second preferred embodiment of the creation. Figure 5 is a schematic circuit diagram of the control circuit of the present invention. Figure 6 is a circuit diagram of the pulse width modulation circuit in the control circuit of the present invention. Lu P diagram is a circuit diagram of the oscillator of the pulse width modulation circuit in the control circuit of the creation. Figure 8 is a circuit diagram of the sampling circuit in the control circuit of the present invention. Figure 9 is a circuit diagram of the modulation circuit in the control circuit of the present invention. Figure 10 is a schematic diagram of the signal waveform of the control circuit of the present invention. [Main component symbol description] Adjust voltage supply 10 Current Ili: D Current source 35

發光二極體(20、21···25) 控制電路100 輸出端OUT 控制信號VCNT 第一電阻器57 第一發光二極體電流I: 電阻器15Light-emitting diode (20, 21···25) Control circuit 100 Output terminal OUT Control signal VCNT First resistor 57 First light-emitting diode current I: Resistor 15

二極體(2〇、21···25) 順向1:壓vF2。〜Vf25 電壓源vIN 電壓源 控制端IN 檢測端Vs 第二電阻器59 第二發光二極體電流L 13 第二發光二極體順向電壓V2 第一控制信號Si 調整信號IA 調製信號IM 、運算放大器 310、320、330、340、350、 410 斜坡信號RAMP 第一脈衝信號SMP1 控制k號ν〇ΝΤ 第一重置信號RSIl 第二比較器215 正反器235 反相器 230、264、420 電流源251、252 電容器 255、326、328 比較器260、261 反及閘262及263 第一電流鏡電路500 電流 1341、1343、1413、1414、1416、 1418 M296567 第一發光二極體順向電壓v, 脈寬調製電路200 取樣電路300 調製電路400 電晶體 71、72、74、75、80、34卜 342 343、35 卜 352、353、354、367、368 411 〜418、430 • 振盪器250 第二控制信號S2 第二脈衝信號SMP 第一比較器210 臨界信號Vth 第二重置信號RST2 反或閘236 籲及閘23卜232 開關 253、254 第一觸發點電壓乂! 第二觸發點電壓V2 脈衝產生器270、280 電阻器 305、306、307、308、3U、312、 370、470 14 M296567 開關 325、327 第二差動電路302 參考電壓VR 參考電流1411Diode (2〇, 21···25) Forward 1: Pressure vF2. ~Vf25 voltage source vIN voltage source control terminal IN detection terminal Vs second resistor 59 second light emitting diode current L 13 second light emitting diode forward voltage V2 first control signal Si adjustment signal IA modulation signal IM, operation Amplifier 310, 320, 330, 340, 350, 410 Ramp signal RAMP First pulse signal SMP1 Control k number ν 〇ΝΤ First reset signal RSI1 Second comparator 215 Forward 235 Inverter 230, 264, 420 Current Source 251, 252 capacitors 255, 326, 328 comparators 260, 261 opposite gates 262 and 263 first current mirror circuit 500 currents 1341, 1343, 1413, 1414, 1416, 1418 M296567 first light-emitting diode forward voltage v , pulse width modulation circuit 200 sampling circuit 300 modulation circuit 400 transistors 71, 72, 74, 75, 80, 34 342 343, 35 352, 353, 354, 367, 368 411 ~ 418, 430 • oscillator 250 Second control signal S2 Second pulse signal SMP First comparator 210 Critical signal Vth Second reset signal RST2 Reverse or gate 236 Call gate 23 232 Switch 253, 254 First trigger point voltage 乂! Second trigger point voltage V2 pulse generator 270, 280 resistor 305, 306, 307, 308, 3U, 312, 370, 470 14 M296567 switch 325, 327 second differential circuit 302 reference voltage VR reference current 1411

電阻器335、345 第一差動電路301 輸入端RI 第二電流鏡電路480Resistor 335, 345 first differential circuit 301 input terminal RI second current mirror circuit 480

1515

Claims (1)

M296567 九、申請專利範圍·· 1、一種發光二極體驅動電路,其包括: 控制電路,用以產生控制_發光二極體的―發光二極體電流; 第甩阻口口連接至该控制電路,用以決定該發光二極體電流的電流值; 制包路的鮮 —’用於接收_控制信鏡,以決定該發光二極體 電流的工作週期; 此制电路的—檢測端,減至該發光二極體,用以檢測一發光二極體電 壓’其中雜光二極體賴可絲調髓發光二極體電流;以及 _第電阻,連接至該控制電路,祕決定1整斜率,其巾該調整斜 率表不該1光—極體電流的變化對應於該發光二極體電壓的變化。 2、 如申請專利範圍第丨項所述的發光二極體驅動電路,其中該發光二極體電 流包括一第一發光二極體電流及一第二發光二極體電流;該第二發光二極體電 4亥弟-發細峨侧;_:極細紐—第―順向電壓及一 :二軸《,㈣細-陳極細無故極體電流分別 生該第一順向電壓與該第二順向電壓。 3、 如申料利範圍第i項所述的發光二極體驅動電路,該控制電路包括: -脈寬調製電路,耦接至該控制端,用以產生_第_ 光二極體電流紅作週期; I 4以控制該發 取樣私路,輕接至該檢測端及該第二電阻器 觀該第二電阻器的電阻值產生一調整信號;趨據雜光二極體電 、—调製電路至該第—電阻器、該脈寬調製電路以及該 以根據該第-獅的梅及賴整嶋生—咖 1路’用 16 M296567 一第一電流鏡電路,耦接至該脈寬調製電路 兒峪及δ亥调製電路,用以根據該第 一控制信號及該調製信號產生該發光二極體電流。 4、 如申請專利範圍第3項所述的發光二極體驅動電路,該脈寬調製電路包括: -«器,翻以產生—斜坡信號、―第二控制信號、—第—脈衝信號以 及一第二脈衝信號; -第-比較ϋ,翻以在該控制信號小於該斜坡信號時產生—第一重置信 號; -第二比較器,其用以在該控制信號低於—臨界信麟產生—第二重置信 號;以及 -鎖存電路,输至娜二控繼號,麟根義第二控·號產生該第 一控制信號; 其中根據該第二控制信號减能該第—控制錢,根_第—重置信號及 該第二重置信號,以錢第-控繼餘效,錄據該第二控廳號的下降沿 及上升沿,分別產生該第一脈衝信號及該第二脈衝信號。 5、 如申請專利範圍第4項所述的發光二極體驅動電路,其中該第一重置信號 或該第二重置信號係可使該第一控制信號失效。 6、 如申請專利範圍第3項所述的發光二極體驅動電路,該取樣電路包括: 一第一差動電路,耦接至該檢測端,用以檢測該發光二極體電壓; 一第一取樣電路,用以根據該第一脈衝信號對該發光二極體電壓之該第一 順向電壓進行取樣; 一第二取樣電路’用以根據該第二脈衝信號對該發光二極體電壓之該第二 順向電壓進行取樣; 17 M296567 -第-差《路,用以根據該第—軸電壓與該第二順向電壓的差值產生 一差動信號;以及 弘壓對電流轉換器,_至該第二電_,服根據該差動信號及該第 二電阻器的電阻值產生該調整信號。 7、 如申睛專她圍第3項所述的發光二極體鶴電路,該調製電路包括·· -電流產生H ’用於根據—參考電壓及該第—電阻器的電阻值產生一參考 電流;以及 _ —第二電錄電路’麟輯够考電流及賴整健纽賴製信號; 其中該第-控制信號的致能可致能該調製信號,以產生該第—發光二極體 電肌’並且根據§亥第二控制信來控制賴製信號,以用於產生該第二發光二 極體電流。 8、 一種發光二極體控制器,其包括: -控制電路,翻以產生控制—發光二極體的_發光二極體電流; 4控制電路的一控制端,用以接收決定該發光二極體電流的一控制信號; •以及 该控制電路的一檢測端,耦接至該發光二極體,用以檢測一發光二極體電 壓’其中該發光二極體電壓用於調整該發光二極體電流。 9、 如申請專利範圍第8項所述的發光二極體控制器,其進一步包括: 一第一電阻器,耦接至該控制電路,用以決定該發光二極體電流的電流 值;以及 弟一 阻器,耗接至該控制電路,用以決定一調整斜率,其中該調整斜 率表示該發光二極體電流的變化對應于該發光二極體電壓的變化。 18 M296567 10、 如申請專利範圍第8項所述的發光二極體控制器,其中該發光二極體電流 包括一第一發光二極體電流及/第二發光二極體電流,該第二發光二極體電流 與該第一發光二極體電流相關’並且该發光二極體電壓包括一第一順向電壓及 一第二順向電壓,其中根據該第一發光二極體電流和該第二發光二極體電流分 別產生該第一順向電壓及該第二順向電壓。 11、 如申請專利範圍第8項所述的發光二極體控制器,該控制電路包括: 一脈寬調製電路,耦接至該控制端,用於產生一第一控制信號以控制該發 # 光二極體電流的工作週期; -取樣電路,_至驗綱’用於根據紐光二減賴以產生一調整 信號; 一調製電路,耦接至該脈寬調製電路及該取樣電路, 以產生一調製信號;以及 ,用以根據該調整信號 第一電流鏡電路,搞接至该脈寬調製電路及該調製電路 一控制信號及該調製信號產生該發光二極體電流。 ,用以根據該第M296567 IX. Patent Application Range·· 1. A light-emitting diode driving circuit, comprising: a control circuit for generating a “light-emitting diode current” of a control light-emitting diode; a third-dimensional resistance port connected to the control a circuit for determining a current value of the light-emitting diode current; a fresh-form for the receiving path to determine a duty cycle of the light-emitting diode current; a detecting end of the circuit Reduction to the light-emitting diode for detecting a light-emitting diode voltage 'where the stray light diodes are tunable to the core-lighting diode current; and _ the first resistor, connected to the control circuit, the secret determines the 1 full slope The adjustment slope of the towel indicates that the change of the 1 -pole current corresponds to the change of the voltage of the LED. 2. The LED driving circuit of claim 2, wherein the LED current comprises a first LED current and a second LED current; the second LED Polar body electric 4 Haidi - hair thin side; _: very fine new - first - forward voltage and one: two axis ", (four) fine - Chen extremely fine no body current respectively generated the first forward voltage and the second Forward voltage. 3. The illuminating diode driving circuit according to the item ii, wherein the control circuit comprises: a pulse width modulation circuit coupled to the control terminal for generating a _ _ photodiode current red a period of time; I 4 to control the sampling private circuit, lightly connected to the detecting end and the second resistor to observe the resistance value of the second resistor to generate an adjustment signal; trending stray diode power, - modulation circuit Up to the first resistor, the pulse width modulation circuit, and the first current mirror circuit coupled to the pulse width modulation circuit by the 16 M296567 according to the first and the lion's And the 亥 调制 modulation circuit is configured to generate the illuminating diode current according to the first control signal and the modulating signal. 4. The illuminating diode driving circuit according to claim 3, wherein the pulse width modulation circuit comprises: - a device, a flipping signal, a second control signal, a - a pulse signal, and a a second pulse signal; - a first comparison buffer, which is generated when the control signal is less than the ramp signal - a first reset signal; - a second comparator for generating a control signal lower than - a critical signal generation a second reset signal; and a latch circuit, which is input to the second control number, and the second control number generates the first control signal; wherein the first control signal is deactivated according to the second control signal The root_first-reset signal and the second reset signal are respectively generated by the money-control succession effect, and the first pulse signal and the first phase are generated respectively according to the falling edge and the rising edge of the second control hall number Two pulse signals. 5. The LED driving circuit of claim 4, wherein the first reset signal or the second reset signal disables the first control signal. 6. The illuminating diode driving circuit of claim 3, wherein the sampling circuit comprises: a first differential circuit coupled to the detecting end for detecting the voltage of the illuminating diode; a sampling circuit for sampling the first forward voltage of the LED voltage according to the first pulse signal; a second sampling circuit 'for illuminating the LED voltage according to the second pulse signal The second forward voltage is sampled; 17 M296567 - a first-difference "path for generating a differential signal based on a difference between the first-axis voltage and the second forward voltage; and a voltage-to-current converter And _to the second electric_, the service generates the adjustment signal according to the differential signal and the resistance value of the second resistor. 7. The illuminating diode circuit of the third embodiment of the present invention, the modulation circuit comprising: - current generating H' for generating a reference according to the reference voltage and the resistance value of the first resistor Current; and __the second recording circuit 'Lin' is capable of testing the current and the signal of the whole button; wherein the enabling of the first control signal enables the modulated signal to generate the first light emitting diode The electromuscular 'and controls the sizing signal according to the second control signal for generating the second illuminating diode current. 8. A light-emitting diode controller, comprising: - a control circuit that converts to generate a light-emitting diode current of the light-emitting diode; and a control terminal of the control circuit for receiving and determining the light-emitting diode a control signal of the body current; and a detecting end of the control circuit coupled to the light emitting diode for detecting a light emitting diode voltage, wherein the light emitting diode voltage is used to adjust the light emitting diode Body current. 9. The illuminating diode controller of claim 8, further comprising: a first resistor coupled to the control circuit for determining a current value of the illuminating diode current; The resistor is consuming to the control circuit for determining an adjustment slope, wherein the adjustment slope indicates that the change of the LED current corresponds to the change of the LED voltage. The illuminating diode controller of claim 8, wherein the illuminating diode current comprises a first illuminating diode current and/or a second illuminating diode current, the second The light emitting diode current is related to the first light emitting diode current' and the light emitting diode voltage includes a first forward voltage and a second forward voltage, wherein the first light emitting diode current and the The second light emitting diode current generates the first forward voltage and the second forward voltage, respectively. 11. The illuminating diode controller of claim 8, wherein the control circuit comprises: a pulse width modulation circuit coupled to the control terminal for generating a first control signal to control the transmission# a working period of the photodiode current; - a sampling circuit, the _ to the syllabus is used to generate an adjustment signal according to the luminosity reduction; a modulation circuit coupled to the pulse width modulation circuit and the sampling circuit to generate a a modulation signal; and a first current mirror circuit for engaging the pulse width modulation circuit and the modulation circuit with a control signal and the modulation signal to generate the LED current. For the purpose of 及一第二脈衝信號; ,該脈寬調製電路包括: 第二控制信號、一第一脈衝信號以 一第一比較器,And a second pulse signal; the pulse width modulation circuit comprises: a second control signal, a first pulse signal and a first comparator, 信號; 一第二比較器,其用以在該控制信號小於 ’產生一第一重置 信號;以及 一臨界信號時,產生一第二重置 一鎖存電路,耦接至該第二控制信號, 用以根據轉二控繼號產生該第 19 M296567 一控制信號; 其中根據該第二控制信號以致能該第一控制信號,根據該第一重置信號及 該第二重置信號以使該第一控制信號失效,且根據該第二控制信號的下降沿及 上升沿分別產生該第一脈衝信號及該第二脈衝信號。 13、 如申請專利範圍第12項所述的發光二極體控制器,其中該第一重置信號 或該第二重置信號係可使該第一控制信號失效。 14、 如申請專利範圍第11項所述的發光二極體控制器,該取樣電路包括: I 一第一差動電路,耦接至該檢測端,用以檢測該發光二極體電壓; 一第一取樣電路,用以根據該第一脈衝信號對該發光二極體電壓的該第一 順向電壓進行取樣; 一弟一取樣電路,用以根據該弟二脈衝信號對該發光二極體電壓的該第二 順向電壓進行取樣; 一第二差動電路,用以根據該第一順向電壓和該第二順向電壓的差值產生 一差動信號;以及 I 一電壓對電流轉換器,用以根據該差動信號產生該調整信號。 15、 如申請專利範圍第11項所述的發光二極體控制器,該調製電路包括: 一電流產生器,用以根據一參考電壓產生一參考電流;以及 弟一電流鏡電路’用以根據该參考電流及該調整信號產生該調製信號; 其中5亥弟一控制信號的致能係可致此该调製k號,以產生該第一發光二極 體電流,並且根據該第二控制信號來控制該調製信號,以用於產生該第二發光 二極體電流。 20a second comparator, configured to generate a second reset-latch circuit coupled to the second control signal when the control signal is less than 'generating a first reset signal; and a threshold signal And generating the 19th M296567 control signal according to the second control signal; wherein the first control signal is enabled according to the second control signal, according to the first reset signal and the second reset signal The first control signal is disabled, and the first pulse signal and the second pulse signal are respectively generated according to the falling edge and the rising edge of the second control signal. 13. The illuminating diode controller of claim 12, wherein the first reset signal or the second reset signal disables the first control signal. 14. The illuminating diode controller of claim 11, wherein the sampling circuit comprises: a first differential circuit coupled to the detecting end for detecting the voltage of the illuminating diode; a first sampling circuit, configured to sample the first forward voltage of the LED voltage according to the first pulse signal; and a sampling circuit for the LED according to the second pulse signal Sampling the second forward voltage of the voltage; a second differential circuit for generating a differential signal according to the difference between the first forward voltage and the second forward voltage; and I-voltage-to-current conversion And generating the adjustment signal according to the differential signal. 15. The illuminating diode controller of claim 11, wherein the modulating circuit comprises: a current generator for generating a reference current according to a reference voltage; and a current mirror circuit 'for The reference current and the adjustment signal generate the modulation signal; wherein the enabling of the control signal is such that the modulation k number is generated to generate the first LED current, and according to the second control signal The modulated signal is controlled for generating the second light emitting diode current. 20
TW95202395U 2006-02-10 2006-02-10 LED drive circuit having temperature compensation TWM296567U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95202395U TWM296567U (en) 2006-02-10 2006-02-10 LED drive circuit having temperature compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95202395U TWM296567U (en) 2006-02-10 2006-02-10 LED drive circuit having temperature compensation

Publications (1)

Publication Number Publication Date
TWM296567U true TWM296567U (en) 2006-08-21

Family

ID=37874642

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95202395U TWM296567U (en) 2006-02-10 2006-02-10 LED drive circuit having temperature compensation

Country Status (1)

Country Link
TW (1) TWM296567U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI393483B (en) * 2007-06-18 2013-04-11 Ricoh Co Ltd Load driving circuit and method of setting load current thereof
TWI410170B (en) * 2007-03-23 2013-09-21 Nat Semiconductor Corp Circuit for driving and monitoring an led
TWI508626B (en) * 2010-12-08 2015-11-11 Rohm Co Ltd A light-emitting element driving circuit, a light-emitting device and an electronic device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI410170B (en) * 2007-03-23 2013-09-21 Nat Semiconductor Corp Circuit for driving and monitoring an led
TWI393483B (en) * 2007-06-18 2013-04-11 Ricoh Co Ltd Load driving circuit and method of setting load current thereof
TWI508626B (en) * 2010-12-08 2015-11-11 Rohm Co Ltd A light-emitting element driving circuit, a light-emitting device and an electronic device using the same

Similar Documents

Publication Publication Date Title
TWI486098B (en) Control circuit of led driver and offline control circuit thereof
US10028348B2 (en) Driving circuit for light-emitting element with burst dimming control
US20070132692A1 (en) LED drive circuit having temperature compensation
JP5464204B2 (en) Light emission drive device
TWI586206B (en) Led driver apparatus
TWI522003B (en) A controller for led driver and led driver
US20190394845A1 (en) Current Source Circuit and LED Driving Circuit
JP2006120910A (en) Power supply for semiconductor light emitting element, and lighting apparatus
TW200945942A (en) Light emitting diode module
KR101010380B1 (en) Circuit arrangement and method for controlling at least one light source
TW201129235A (en) A LED drive circuit
TW201116158A (en) Current-type driver of light emitting device
TWI543663B (en) Controller and method for dimming light-emitting diodes
JP2008146949A (en) Backlight driving device
JP2014160803A (en) Led driving device
JP5973164B2 (en) Control circuit for switching power supply for driving light emitting element, and light emitting device and electronic device using the same
US8975830B2 (en) Light emitting system, optical power control device, and control signal module
JP6979588B2 (en) Illumination optical communication device
TWM296567U (en) LED drive circuit having temperature compensation
TW201230863A (en) Driving circuit for driving light emitting diodes
US9825703B2 (en) Optical communication device and control method thereof
JP2014064367A (en) Power supply device and lighting device
JP6277548B2 (en) Illumination light communication device
TWI468889B (en) Automatic luminous flux control system, device, circuit and detection module
TWI274315B (en) LED drive circuit having temperature compensation

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees