TWM294095U - Switching LED driver - Google Patents

Switching LED driver Download PDF

Info

Publication number
TWM294095U
TWM294095U TW94223194U TW94223194U TWM294095U TW M294095 U TWM294095 U TW M294095U TW 94223194 U TW94223194 U TW 94223194U TW 94223194 U TW94223194 U TW 94223194U TW M294095 U TWM294095 U TW M294095U
Authority
TW
Taiwan
Prior art keywords
signal
emitting diode
light
current
switch
Prior art date
Application number
TW94223194U
Other languages
Chinese (zh)
Inventor
Ta-Yung Yang
Original Assignee
System General Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by System General Corp filed Critical System General Corp
Priority to TW94223194U priority Critical patent/TWM294095U/en
Publication of TWM294095U publication Critical patent/TWM294095U/en

Links

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

• M294095 -八、新型說明: 【新型所屬之技術領域】 本創作係有關於一種發光二極體驅動裝置,尤指一種控制電路用以控制發 光二極體的光亮度之裝置。 【先前技術】 發光元件,如發光二極體(light emission diode ; LED)的發光效果,係由 流過發光二極體電流的大小而定,高電流流過發光二極體將獲得高光亮度的發 ® 光效果,反之,若是減少流過發光二極體電流,則發光二極體的光亮度將相對 的減弱。但持續提供高電流會減少發光二極體的使用壽命,並且浪費許多電力。 第一圖為習知發光二極體驅動電路之第一實施例。可調整之電壓源1〇透過電阻 器15,用以提供流過發光二極體2〇、21—25之發光二極體電流ILm),並可由下 面公式(1)得知: •其中Vf2〇、Vf21...Vf25分別為發光二極體20、21…25的順向壓降;R15為電阻器 15之電阻值。 在第一貫施例中,習知發光二極體驅動電路的主要缺點在於發光二極體2〇、 21 25的順向壓降並不為固定值,會受到大量生產與溫度的變異而影響發光二 極體電流ILED;同時電阻器15會造成電路的功率損失。 第二圖為習知發光二極體驅動電路之第二實施例。第二實施例中電壓源3〇 用以提供一固定電力給該些發光二極體2〇、2卜.25使用。而發光二極體2〇、21··· 25的發光效果,可由電流源35加以調整。然而,此種控制方式下,因為電壓源 ^ M294095 -30為高壓,發光二極體20、21…25的壓降為低壓,因此電流源35會產生極大 的功率損失。 【新型内容】 有鑑於此’本創作提供一種切換式的發光二極體驅動裝置來控制一發光二 極體之光亮度。 本創作之發光二極體驅動裝置包括有一能量轉換元件,能量轉換元件具有 一第一線圈,係串聯耦接於該發光二極體,能量轉換元件可為一電感器或一變 鲁壓器;一切換開關串聯搞接於該發光二極體與該能量轉換元件之第一線圈,該 切換開關用來控制該發光二極體電流;一第一電阻串聯耦接於該切換開關,該 第一電阻偵測該發光二極體電流,並輸出一電流訊號;一控制電路柄接於該能 篁轉換元件之一第一線圈、該第一電阻及該切換開關,該控制電路從該能量轉 '換元件取得一反射祝號與從該第一電阻取得電流訊號,用以輸出一控制訊號到 該切換開關;一二極體並聯耦接於該能量轉換元件與該發光二極體,係透過該 發光二極體,用以對該能量轉換元件之儲存能量進行放電。 * 該控制訊號控制該切換開關與發光二極體電流,當該電流訊號大於一第一 臨界值時,該切換開關截止。當該能量轉換元件之儲存能量完全放電,再經過 一可調整延遲時間後,該切換開關導通。此外,該第一臨界值係根據該能量轉 換元件之該反射訊號而變動。該反射訊號之振幅值係呈現發光二極體之順向電 壓,而發光二極體之順向電壓係與發光二極體之溫度相關。因此,本創作係以 調整發光二極體電流,用以補償發光二極體隨溫度變化的色度(chr〇maticity) 與流明度(luminosity )。 以上的概述與接下來的詳細說明皆為示範性質,是為了進一步說明本創作 • M294095 的申請專利範圍。而有關本劊祚&甘^ Q ^ t 的,、他目的與優點,將在後續的說明與圖示加 以闡述。 【實施方式】 ^考第11林創柄彳賦的發光二極體驅練置之電赫意圖。本 創作切換式的發光二極體驅動裝置使用一能量轉換元件5〇之一第一線圈凡串 聯編妾於發光二鋪20〜25,該第一線_為-電感器,能量轉換元件50可為 Μ文壓w切換開關70串聯輕接於發光二極體2〇〜25與能量轉換元件50之 第線圈R切換開關70用來控制發光二極體電流。一第一電阻乃串聯 输於該切換開關70,該第一電阻乃翻該發光二極體電流W輸出一電流 喊vs到控制電路100。當電流訊號高於控制電路卿中之一第一臨界值 R時切換開關7G截止’而得以限制發光二極體電流〗。發光二極體電流& 之最大值可由下面公式(2)得知: ^50• M294095 - VIII, new description: [New technical field] This creation is about a light-emitting diode driving device, especially a device for controlling the brightness of the light-emitting diode. [Prior Art] The illuminating effect of a light-emitting element such as a light emitting diode (LED) is determined by the magnitude of current flowing through the light-emitting diode, and a high current flowing through the light-emitting diode will obtain high luminance. The light effect is reversed. Conversely, if the current flowing through the light-emitting diode is reduced, the brightness of the light-emitting diode will be relatively weakened. However, continuous supply of high current reduces the life of the light-emitting diode and wastes a lot of power. The first figure is a first embodiment of a conventional light emitting diode driving circuit. The adjustable voltage source 1〇 is transmitted through the resistor 15 for providing the light-emitting diode current ILm flowing through the light-emitting diodes 2〇, 21-25, and can be obtained by the following formula (1): • wherein Vf2〇 Vf21...Vf25 are the forward voltage drops of the light-emitting diodes 20, 21...25, respectively; R15 is the resistance value of the resistor 15. In the first embodiment, the main disadvantage of the conventional light-emitting diode driving circuit is that the forward voltage drop of the light-emitting diodes 2〇, 21 25 is not a fixed value, and is affected by mass production and temperature variation. Light-emitting diode current ILED; at the same time resistor 15 will cause power loss of the circuit. The second figure is a second embodiment of a conventional light emitting diode driving circuit. In the second embodiment, the voltage source 3 is used to provide a fixed power for the light-emitting diodes 2, 2, and .25. The light-emitting effects of the light-emitting diodes 2〇, 21··· 25 can be adjusted by the current source 35. However, in this control mode, since the voltage source ^ M294095 -30 is a high voltage, the voltage drop of the light-emitting diodes 20, 21...25 is a low voltage, so the current source 35 generates a great power loss. [New content] In view of the above, the present invention provides a switching type LED driving device for controlling the brightness of a light emitting diode. The light-emitting diode driving device of the present invention comprises an energy conversion component, the energy conversion component has a first coil coupled to the light-emitting diode in series, and the energy conversion component can be an inductor or a transformer; a switching switch is connected in series to the first coil of the LED and the energy conversion component, the switch is used to control the LED current; a first resistor is coupled in series to the switch, the first The resistor detects the current of the LED and outputs a current signal; a control circuit handle is connected to the first coil of the energy conversion component, the first resistor and the switch, and the control circuit rotates from the energy The switching component obtains a reflection and obtains a current signal from the first resistor for outputting a control signal to the switch; a diode is coupled in parallel to the energy conversion component and the LED, a light emitting diode for discharging the stored energy of the energy conversion element. * The control signal controls the switch and the LED current. When the current signal is greater than a first threshold, the switch is turned off. When the stored energy of the energy conversion element is completely discharged, and after an adjustable delay time, the switch is turned on. Moreover, the first threshold value varies according to the reflected signal of the energy conversion element. The amplitude value of the reflected signal is the forward voltage of the light-emitting diode, and the forward voltage of the light-emitting diode is related to the temperature of the light-emitting diode. Therefore, this creation is to adjust the LED current to compensate for the chr〇maticity and luminosity of the LED as a function of temperature. The above summary and the following detailed description are exemplary in order to further illustrate the scope of the patent application for this creation • M294095. The purpose and advantages of Benedict & Gan ^ Q ^ t will be explained in the following explanations and illustrations. [Embodiment] ^ The eleventh chapter of the stalk of the stalk of the light-emitting diodes of the eleventh forest. The creative switching type LED driving device uses an energy conversion element 5 第一 one of the first coils is serially coupled to the illuminating two tiles 20 to 25, the first line _ is an inductor, and the energy conversion element 50 can be For example, the switch 70 is connected in series to the light-emitting diodes 2〇25 and the first coil of the energy conversion element 50. The switch 150 is used to control the light-emitting diode current. A first resistor is connected in series to the switch 70. The first resistor turns the LED current W to output a current to the control circuit 100. When the current signal is higher than a first threshold value R of the control circuit, the switch 7G is turned off to limit the light-emitting diode current. The maximum value of the light-emitting diode current & can be known by the following formula (2): ^50

,、T0N (2) 上逑公式⑵中’ l5G表示能量轉換元件5G的賴值;了⑽表示切換開關 兀的導通時間;VF20、VF21...VF25分別為發光二極體20、21...25的順向壓降。 控制電路HK)更透過電阻器57、58 _愧量轉換元件5G之—第二線圈 2用以接收-反射《 VD。_二極體分並聯耗接於該能量轉換元件%盥發 光二極體2〇〜25。當切換開關70截止時,儲存在能量轉換元件50上之能量^ ^ 55進彳爾。在城關顯止_,發光 -極體20〜25的順向電壓會從能量轉換元件%之第一線圈冲反射到能麵 疋件50之第二線圈n2。 7 0 M294095 - 因此’能量轉換元件50之第二線圈N2所得到之反射訊號VD係可以呈現出 發光二極體20〜25的順向電壓。在此,發光二極體2〇〜25的順向電壓係與發光 二極體20〜25之溫度相關,當順向電壓減小則溫度增高,反之,順向電壓增大 則溫度下降。因此,反射訊號乂〇可以呈現出發光二極體2〇〜25之溫度的變化。 此外,當儲存在能量轉換元件5〇上之能量已經完全放電後,反射訊號Vd會下 降到零。 一旦儲存在能量轉換元件5〇上之能量已經完全放電後,控制電路1〇〇偵測 鲁到下降到零的反射訊號Vd,會經過一延遲時間τ〇而導通切換開關7〇。請參考 第四A圖與第四B圖,為本創作發光二極體電流波形示意圖。其中,第一臨界 值VR的最大值65限制了發光二極體電流lLm)波形6〇的峰值,第一臨界值Vr 的最大值65可決定發光二極體電流^卽的平均值。因此,發光二極體電流 的平均值文到控制,係為-固定值,而不會隨著能量轉換元件5〇的電感值而改 變。然而,延遲時間TD係可調整,用纟控制發光二極體電济“之振幅值與發 光二極體20〜25之發光亮度。 魯 控制電路100係擷取發光二極體電流Iled,並且,從該能量轉換元件%取 得反射訊號VD,同時,控制電路励根據該反射訊號%與發光二極體電流— 以產生-控制訊?虎VG,控制訊號%絲控制切換開目7〇的切換動作,進而調 整發光二極體電流ILED。為了保持發光二極體2〇〜25之色度與流明度的穩定,發 光二極體20〜25必需考慮發光二極體20〜μ之溫度的影響,而需隨著溫度調整 發光二極體電流ILED的大小。 本創作中,第-臨界值Vr和反祕號%係麵與發光二減電流^和 溫度相關。第-臨界值VJ變動係根據反射訊號Vd,第一臨界值Vr用以補償 (8) 8 M294095 發光二極體2G〜25之色度錢贿。另外,本創作為了軸各種發光二極體的 特性,係可進-步使用一第二電阻59墟於該控制電路勘,用以決定一調整 斜率(slope) ’該調整斜率表示第一臨界值Vr的變化與該反射訊號%的變化之 相對關係。 請參考第五圖,為本創作之控制電路之電路示意圖。在控制電路励中, 當該電流訊號Vs大於第__臨界值Vr時,控制訊號%會被剌,進·切換開 關70截止。在控制電路1〇〇中,當反射訊號%小於—第二臨界值,則控 制訊號VG會被_,進而該切換開關70導通。一第—控制電路包括有一及閑 18〇、-反相器131及-正反器14〇,第—控制電路根據—延遲訊號麵與一致 能訊號vF用以輸出該控制訊號Vg。及閘180之輸出端輕接於正反器14〇,且該 控制訊號VG#從正反器14G的輸出端產生。—第二控制電路115触於正反器 140,當電流訊號vs大於第一臨界值VR時,第二控制電路115即透過正反器14〇 停用該控制訊號vG。 一延遲電路200透過反相器131耦接於及閘180的第一輸入端,延遲電路 200係在控制訊號Vg停用狀態下,輸出一具有延遲時間Td之延遲訊號^到 該及閘180之第一輸入端。如此,控制訊號Vg係在延遲時間τ〇這段期間内被 停用。一取樣電路300透過電阻57、58耦接到能量轉換元件5〇之第二線圈, 該取樣電路300係根據該反射訊號VD,用以輸出一第一取樣訊號Vhi、一第二 取樣訊號Vm及一過電壓訊號0VP。過電壓訊號0VP傳送到及閘180的第二輸 入端,用以停用控制訊號VG,作發光二極體20〜25的過電壓保護。一調整電路 600耦接於取樣電路300與一定電流IR,調整電路600接收第一取樣訊號Vhi、 第二取樣訊號Vm及定電流Ir,係用以調整第一臨界值乂11之振幅值。 M294095 ‘ 一監視計時器(watchdog timer)500耦接於正反器140的輸出端與取樣電路 300 ’監視計時器500根據控制訊號VG,用以輸出一重置訊號rsT,並將重置 訊號RST傳送到取樣電路3〇〇,用以重置取樣電路3〇〇。一比較電路ho耦接於 及閘180的第三輸入端,根據該反射訊號Vd小於第二臨界值乂阳,用以輸出一 致能訊號VF,該致能訊號Vf耦接於及閘180的第三輸入端,可以致能該控制訊 號Vq 0 請參考第六圖,為本創作之延遲電路之電路示意圖。在延遲電路2⑻中, • 一定電流源250耦接於控制電路1〇〇的輸入端IN,控制電路1〇〇藉由該輸入端 IN耦接於一電阻器(未標示)之一端,該電阻器之另一端可以耦接到一接地參 考端,或是該輸入端IN也可耦接於一控制電壓Vcnt,係可以用來調整延遲時間 ’ TD,進而控制發光二極體20〜25的亮度。 一電壓/電流轉換電路包括有一運算放大器21〇、一電阻器及一電晶體 220、230、23卜電壓/電流轉換電路根據減於輸入端m之電阻器上的電壓而 於電晶體231 Ji產生-充電電流。延遲電路2〇〇中更使用一電容器施耦接於 _電晶體231與-電晶體270,該電晶體27(M系受控於控制訊號%。當控制訊號 VG#用使得電晶體270截止時,電晶體231上產生的充電電流立即對該電容器 26〇充電,然而當電晶體27〇導通時,電容器26〇上的電壓即透過電晶體27〇進 打放電。-反相1§ 280的輸入端輕接於電容器26〇,反相器28〇根據電容器26〇 上建立的電壓而於輸出端產生該延遲訊號INh。 請參考第七圖,為本創作之取樣電路之電路示意圖。在取樣電路中, -脈波產生器350係根據控制訊號%的停用與反射訊號%用以產生一第一脈 波SMP1與第一脈波SMP2。配合第八圖,為本創作控制電路之訊號波形示意 .M294095 ‘ 圖。其中,第一脈波SMP1係於控制訊號VG停用後經過_第一延遲時間τ〇ι而 產生。該第一延遲時間Tdi係可以確保在致能第一脈波SMP1之前,反射訊號 VD是穩定狀態。第二脈波SMP2係於反射訊號VD下降到零值之前產生,而第 二延遲時間τΜ可以確保反射訊號vD下降到零值之前,產生第二脈波SMP2。 第一脈波SMP1與第二脈波SMP2分別控制切換開關31〇、311的導通或截止。 切換開關310、311係分別對反射訊號VD進行取樣,而分別在電容器315、317 上建立'^苐一取樣訊號Vhi與一第^一取樣訊遠Vh2。因此,第一取樣訊號VH1斑 鲁第二取樣訊號Vh:2係根據流過發光二極體20〜25之一第一電流與一第二電流, 而分別表示發光二極體20〜25之一第一順向電壓與一第二順向電壓。 取樣電路300中,更包括一電晶體316耦接於電容器315,電晶體316受控 於一重置訊號RST而對該電容器315放電。一比較電路320耦接於電容器315, 比較電路320係比較第一取樣電壓Vm與一臨界電壓Vr2,當第一取樣電壓vH1 大於臨界電壓Vr2則產生過電壓訊號〇VP。 請參考第九圖,為本創作之監視計時器之電路示意圖。在監視計時器500 *中,一重置電路包括一電容器562、一電晶體56卜一電流源560、一反相器525 及電阻器531、532。重置電路係根據電源Vcc的啟用而產生一啟動電源重置 (power-on reset)訊號。一計時器51〇透過一反相器52〇接收控制訊號%,當控 制訊號VG停用超過一逾時(time_〇ut)週期後,計時器5丨〇即產生一逾時訊號輸 出。一及閘580耦接於重置電路與計時器510,及閘58〇接收啟動電源重置訊號 與逾時訊號,以產生該重置訊號RST輸出。 請參考第十圖,為本創作之電流調整電路之電路示意圖。電流調整電路6〇〇 中,一差動電路包括有運算放大器61〇、611與電阻器62〇、62卜差動電路係接 11 M294095 收第一取樣訊號VH丨與第二取樣訊號Vm,並且於差動電路的輸出端輸出—電壓 差值。差動電路的輸出端即運算放大器610的輪出端麵接於一運算放大器615 的輸入端。運算放大器615、電晶體630〜635及一電阻器刪)成另一電壓/電 流轉換電路。該另m鎌換電路根據健絲與第二電阻59之電阻值而 產生電流1633、1635。電阻器650搞接於定電流IR、電流1633及&,而產生第一 臨界值VR。透過調整電流^^的電流值係可以有效的調整第一臨界值^ 的值。, T0N (2) In the upper formula (2), 'l5G denotes the dependence of the energy conversion element 5G; (10) denotes the on-time of the switching switch ;; VF20, VF21...VF25 are the light-emitting diodes 20, 21. respectively. The forward pressure drop of .25. The control circuit HK) is further transmitted through the resistors 57, 58 _ 转换 conversion element 5G - the second coil 2 is used to receive - reflect "VD. The _ diode is connected in parallel to the energy conversion element % 盥 light dipole 2 〇 ~ 25. When the changeover switch 70 is turned off, the energy stored on the energy conversion element 50 is increased. At the city gate _, the illuminating voltage of the polar body 20 to 25 is reflected from the first coil of the energy conversion element % to the second coil n2 of the energy surface element 50. 7 0 M294095 - Therefore, the reflected signal VD obtained by the second coil N2 of the 'energy conversion element 50' can exhibit the forward voltage of the light-emitting diodes 20 to 25. Here, the forward voltage of the light-emitting diodes 2 〇 25 is related to the temperature of the light-emitting diodes 20 to 25, and the temperature is increased when the forward voltage is decreased, whereas the temperature is decreased when the forward voltage is increased. Therefore, the reflected signal 乂〇 can exhibit a change in temperature of the light-emitting diodes 2 to 25 . Further, when the energy stored in the energy conversion element 5 is completely discharged, the reflected signal Vd is lowered to zero. Once the energy stored on the energy conversion element 5〇 has been completely discharged, the control circuit 1 detects the reflected signal Vd that has fallen to zero, and turns on the switch 7〇 after a delay time τ〇. Please refer to the fourth A and fourth B diagrams for the current waveform of the LED. The maximum value 65 of the first critical value VR limits the peak value of the waveform 6〇 of the light-emitting diode current lLm), and the maximum value 65 of the first critical value Vr determines the average value of the light-emitting diode current. Therefore, the average value of the light-emitting diode current is controlled to be a fixed value and does not change with the inductance value of the energy conversion element 5A. However, the delay time TD can be adjusted to control the amplitude value of the light-emitting diode and the light-emitting luminance of the light-emitting diodes 20 to 25. The control circuit 100 draws the light-emitting diode current Iled, and The reflected signal VD is obtained from the energy conversion element %, and at the same time, the control circuit excites the switching signal according to the reflected signal % and the LED current - to generate - control the signal 虎, the control signal % wire controls the switching action of the switch 7 Further, the light-emitting diode current ILED is adjusted. In order to maintain the chromaticity and the brightness of the light-emitting diodes 2 to 25, the light-emitting diodes 20 to 25 must take into consideration the influence of the temperature of the light-emitting diodes 20 to μ. However, it is necessary to adjust the size of the light-emitting diode current ILED with temperature. In the present creation, the first-threshold value Vr and the anti-secret number% are related to the illuminating two-reduction current and the temperature. The first-threshold value VJ varies according to the reflection. The signal Vd, the first threshold value Vr is used to compensate the color of the (8) 8 M294095 light-emitting diode 2G~25. In addition, the present invention can be used in advance for the characteristics of various LEDs. The second resistor 59 is in the control The survey is used to determine an adjustment slope. The adjustment slope indicates the relative relationship between the change of the first threshold value Vr and the change of the reflected signal %. Please refer to the fifth figure for the circuit diagram of the control circuit of the present invention. In the control circuit excitation, when the current signal Vs is greater than the __threshold value Vr, the control signal % is 剌, and the switch 270 is turned off. In the control circuit 1 ,, when the reflected signal % is smaller than - second The threshold value is such that the control signal VG is turned on by _, and the switch 70 is turned on. A first control circuit includes an idle 18 〇, an inverter 131 and a flip flop 14 〇, and the first control circuit is delayed. The signal surface and the coincidence signal vF are used to output the control signal Vg. The output of the gate 180 is lightly connected to the flip-flop 14〇, and the control signal VG# is generated from the output of the flip-flop 14G. The circuit 115 is in contact with the flip-flop 140. When the current signal vs is greater than the first threshold VR, the second control circuit 115 disables the control signal vG through the flip-flop 14. The delay circuit 200 is coupled through the inverter 131. Connected to the first input of the gate 180, delaying the electricity The road 200 outputs a delay signal having a delay time Td to the first input terminal of the gate 180 when the control signal Vg is inactive. Thus, the control signal Vg is stopped during the delay time τ〇. A sampling circuit 300 is coupled to the second coil of the energy conversion element 5 through the resistors 57 and 58. The sampling circuit 300 is configured to output a first sampling signal Vhi and a second sampling signal according to the reflected signal VD. Vm and an overvoltage signal 0VP. The overvoltage signal 0VP is transmitted to the second input terminal of the AND gate 180 for deactivating the control signal VG for overvoltage protection of the LEDs 20-25. An adjustment circuit 600 is coupled to the sampling circuit 300 and a certain current IR. The adjustment circuit 600 receives the first sampling signal Vhi, the second sampling signal Vm and the constant current Ir for adjusting the amplitude value of the first threshold 乂11. M294095' A watchdog timer 500 is coupled to the output of the flip-flop 140 and the sampling circuit 300. The watchdog timer 500 outputs a reset signal rsT according to the control signal VG, and resets the signal RST. It is sent to the sampling circuit 3〇〇 to reset the sampling circuit 3〇〇. A comparison circuit ho is coupled to the third input end of the AND gate 180, and is configured to output a uniform energy signal VF according to the reflected signal Vd being less than the second threshold value, and the enable signal Vf is coupled to the gate 180 The three-input terminal can enable the control signal Vq 0. Please refer to the sixth figure, which is a schematic circuit diagram of the delay circuit of the present invention. In the delay circuit 2 (8), a certain current source 250 is coupled to the input terminal IN of the control circuit 1 , and the control circuit 1 is coupled to one end of a resistor (not labeled) through the input terminal IN. The other end of the device can be coupled to a ground reference terminal, or the input terminal IN can be coupled to a control voltage Vcnt, which can be used to adjust the delay time 'TD, thereby controlling the brightness of the LEDs 20-25. . A voltage/current conversion circuit includes an operational amplifier 21A, a resistor, and a transistor 220, 230, 23. The voltage/current conversion circuit is generated in the transistor 231 Ji according to the voltage on the resistor minus the input terminal m. -recharging current. In the delay circuit 2, a capacitor is further coupled to the transistor 231 and the transistor 270. The transistor 27 is controlled by the control signal %. When the control signal VG# is used to turn off the transistor 270. The charging current generated on the transistor 231 immediately charges the capacitor 26, but when the transistor 27 is turned on, the voltage on the capacitor 26 is discharged through the transistor 27. - Inverting the input of 1 § 280 The terminal is lightly connected to the capacitor 26〇, and the inverter 28〇 generates the delay signal INh according to the voltage established on the capacitor 26〇. Please refer to the seventh figure, which is a schematic circuit diagram of the sampling circuit of the present invention. The pulse generator 350 is configured to generate a first pulse SMP1 and a first pulse SMP2 according to the deactivation and reflection signal % of the control signal %. With the eighth figure, the signal waveform of the creation control circuit is indicated. .M294095', wherein the first pulse SMP1 is generated after the control signal VG is deactivated by the first delay time τ〇ι. The first delay time Tdi is ensured before the first pulse SMP1 is enabled. , the reflected signal VD is stable The second pulse SMP2 is generated before the reflected signal VD drops to zero, and the second delay time τΜ ensures that the second pulse SMP2 is generated before the reflected signal vD falls to zero. The first pulse SMP1 and the first pulse The two-pulse SMP2 controls the on or off of the changeover switches 31〇, 311, respectively. The switch 310, 311 respectively samples the reflected signal VD, and respectively establishes a “^” sampling signal Vhi and a first on the capacitors 315 and 317. ^Sampling the far Vh2. Therefore, the first sampling signal VH1, the second sampling signal Vh: 2 is based on one of the first current and the second current flowing through the light emitting diodes 20 to 25, respectively The first forward voltage and the second forward voltage of the pole body 20 to 25. The sampling circuit 300 further includes a transistor 316 coupled to the capacitor 315, and the transistor 316 is controlled by a reset signal RST. The capacitor 315 is discharged. A comparison circuit 320 is coupled to the capacitor 315. The comparison circuit 320 compares the first sampling voltage Vm with a threshold voltage Vr2. When the first sampling voltage vH1 is greater than the threshold voltage Vr2, an overvoltage signal 〇VP is generated. Refer to the ninth A schematic diagram of the watchdog timer of the present invention. In the watchdog timer 500*, a reset circuit includes a capacitor 562, a transistor 56, a current source 560, an inverter 525, and resistors 531, 532. The reset circuit generates a power-on reset signal according to the activation of the power source Vcc. A timer 51 receives the control signal % through an inverter 52, and the control signal VG is deactivated by more than one. After the (time_〇ut) period, the timer 5 generates a timeout signal output. The gate 580 is coupled to the reset circuit and the timer 510, and the gate 58 receives the power-on reset signal and the time-out signal to generate the reset signal RST output. Please refer to the tenth figure for the circuit diagram of the current adjustment circuit of the creation. In the current adjustment circuit 6A, a differential circuit includes an operational amplifier 61〇, 611 and a resistor 62〇, 62, a differential circuit connection 11 M294095, a first sampling signal VH丨 and a second sampling signal Vm, and Output - voltage difference at the output of the differential circuit. The output end of the differential circuit, that is, the output end of the operational amplifier 610 is connected to the input terminal of an operational amplifier 615. The operational amplifier 615, the transistors 630 to 635, and a resistor are divided into another voltage/current conversion circuit. The further circuit generates currents 1633, 1635 based on the resistance values of the wire and the second resistor 59. Resistor 650 is coupled to constant current IR, current 1633, and & to produce a first threshold VR. The value of the first threshold value ^ can be effectively adjusted by adjusting the current value of the current ^^.

第一取樣訊號VH1#第二取樣訊號VH2係分別由下面公式⑶、⑷得之:The first sampling signal VH1# second sampling signal VH2 is obtained by the following formulas (3), (4):

VmVm

R 58 X- 'T2 xVl (3) 面a式(3)、(4)中’Ντ1、Ντ2分別表示第—線圈&與第二線圈N2 的線随數;知、R58分別為電阻器57、%的電阻值^、%分別為第—順 向電壓與第二順向電壓。 第順向電壓VI與第二順向電壓V2對應於第一發*二極體電流^與第二 發先-極體電流12,第_發光二鋪電流W第二發光二極體電流12係分別由 下面公式(5)、(6)得之: (5) (6) — IoXe"丨 ντR 58 X- 'T2 xVl (3) In the plane a (3), (4), 'Ντ1, Ντ2 respectively represent the line-to-number of the first coil & and the second coil N2; respectively, R58 is the resistor 57 The % resistance values ^, % are the first forward voltage and the second forward voltage, respectively. The forward direction voltage VI and the second forward voltage V2 correspond to the first hair diode current and the second hair body current 12, the first light emitting current, and the second light emitting diode current 12 They are obtained by the following formulas (5) and (6): (5) (6) — IoXe"丨ντ

72 ^1〇XeVVVT 在公式(5)、72 ^1〇XeVVVT in formula (5),

<1 (6)中,VT可由公式(7)得之: (7) 在公式(7)中,TemP可由公式(8)得之: 12 M294095In <1 (6), VT can be obtained by the formula (7): (7) In the formula (7), TemP can be obtained by the formula (8): 12 M294095

Temp = i,nzI2 (§) inTemp = i,nzI2 (§) in

UJ 上述A式(5)到(8)中’k為保爾茲曼常數(B〇itzmann ’ s c〇nstant) ; q為電子電 荷量;Temp為絕對溫度。 綜上所述,本創作發光二極體驅動裝置藉由反射訊號^^可以精確的取得發 光二極體20〜25的溫度,並且利用溫度來調整流過發光二極體2〇〜25電流,以 補償發光二極體20〜25的色度與流明度。 ’惟,以上所述,僅為本創作最佳之一的具體實施例之詳細說明與圖式,任 何熟悉該項技藝者在本創作之領域内,可輕易思及之變化或修錦皆可涵蓋在以 下本案之專利範圍。UJ In the above equations (5) to (8), 'k is a Boltzmann's s c〇nstant; q is the amount of electron charge; and Temp is the absolute temperature. In summary, the light-emitting diode driving device can accurately obtain the temperature of the light-emitting diodes 20 to 25 by using the reflected signal, and adjust the current flowing through the light-emitting diodes 2 to 25 by using the temperature. To compensate for the chromaticity and lumen of the light-emitting diodes 20 to 25. 'However, as described above, it is only a detailed description and drawing of the specific embodiment of one of the best creations of the present invention. Anyone familiar with the art can easily think of changes or repairs in the field of the creation. Covered in the following patent scope of this case.

13 • M294095 . 【圖式簡單說明】 第一圖為習知發光二極體控制電路之第一實施例; 第二圖為習知發光二極體控制電路之第二實施例; 第三圖為本創作切換式的發光二極體驅動裝置之電路示意圖; 第四A圖與第四B圖為本創作流過發光二極體之電流波形示意圖; 第五圖為本創作之控制電路之電路示意圖; 第六圖為本創作之延遲電路之電路示意圖; • 第七圖為本創作之取樣電路之電路示意圖; 第八圖為本創作控制電路之訊號波形示意圖; 第九圖為本創作之監視計時器之電路示意圖;及」 * 第十圖為本創作之電流調整電路之電路示意圖。 【主要元件符號說明】 習知: 發光二極體(20、21…25) 電壓源10 電阻器15 發光二極體電流Led 電壓源30 電流源35 本創作: 能量轉換元件50 第一線圈凡 第二線圈n2 發光二極體20〜25 切換開關70 發光二極體電流Ii^ed 第一電阻75 電流訊號Vs 控制訊號VG 反射訊號VD 控制電路100 電阻器57、58 14 ④ M294095 二極體55 電源Vcc 控制電壓VcNT 電流Ieed波形60 第一臨界值VR的最大值65 弟^一臨界值Vjh 及閘180 反相器131 正反器140 延遲訊號INH 致能訊號Vp 第二電路115 延遲電路200 第一取樣訊號Vm 弟二取樣訊號Vh2 過電壓訊號OVP 調整電路600 定電流Ir_ 監視計時器500 重置訊號RST 比較電路110 致能訊號VF 第一臨界值VR 取樣電路300 定電流源250 操作放大器210 電阻器205 第二電阻59 電晶體 220、230、23卜 270 電容器260 反相器280 脈波產生器350 第一脈波SMP1 第二脈波SMP2 第一延遲時間TD1 笫二延遲時間Td2 切換開關310、311 電容器315、317 電晶體316 比較電路320 電容器562 電晶體561 電流源560 反相器525 15 / 15 M294095 電阻器53卜532 反相器520 操作放大器610、611 操作放大器615 電流〗633、工635 計時器510 及閘580 電阻器620、621 電晶體630〜635 電阻器65013 • M294095 . [Simple Description of the Drawings] The first figure is a first embodiment of a conventional light-emitting diode control circuit; the second figure is a second embodiment of a conventional light-emitting diode control circuit; The circuit diagram of the switching type LED driving device of the present invention; the fourth A picture and the fourth B picture are schematic diagrams of the current waveform flowing through the light emitting diode; the fifth picture is a circuit diagram of the control circuit of the creation The sixth diagram is a circuit diagram of the delay circuit of the creation; • The seventh diagram is a circuit diagram of the sampling circuit of the creation; the eighth diagram is a schematic diagram of the signal waveform of the creation control circuit; Schematic diagram of the circuit; and * * The tenth figure is the circuit diagram of the current adjustment circuit of the creation. [Main component symbol description] Convention: LED (20, 21...25) Voltage source 10 Resistor 15 LED current Led Voltage source 30 Current source 35 Creation: Energy conversion component 50 First coil Fandi Two coils n2 Light-emitting diodes 20~25 Switching switch 70 Light-emitting diode current Ii^ed First resistor 75 Current signal Vs Control signal VG Reflected signal VD Control circuit 100 Resistor 57, 58 14 4 M294095 Diode 55 Power supply Vcc control voltage VcNT current Ieed waveform 60 maximum value of the first threshold VR 65 ^ 一 threshold value Vjh and gate 180 inverter 131 flip-flop 140 delay signal INH enable signal Vp second circuit 115 delay circuit 200 first Sample signal Vm second sample signal Vh2 over voltage signal OVP adjustment circuit 600 constant current Ir_ watchdog timer 500 reset signal RST comparison circuit 110 enable signal VF first threshold VR sampling circuit 300 constant current source 250 operation amplifier 210 resistor 205 second resistor 59 transistor 220, 230, 23 270 capacitor 260 inverter 280 pulse generator 350 first pulse SMP1 second pulse SMP2 first delay TD1 延迟2 delay time Td2 switch 310, 311 capacitor 315, 317 transistor 316 comparison circuit 320 capacitor 562 transistor 561 current source 560 inverter 525 15 / 15 M294095 resistor 53 532 inverter 520 operation amplifier 610, 611 Operational Amplifier 615 Current 633, 635 Timer 510 and Gate 580 Resistor 620, 621 Transistor 630~635 Resistor 650

16 ⑧16 8

Claims (1)

,M294095 . 九、申請專利範圍: 1· 一種發光二極體驅動裝置,係驅動一發光二極體,其特徵在於,包括: 一電感器,具有一第一線圈與一第二線圈,該第一線圈串聯耦接於該發光 二極體; 一切換開關,串聯耦接於該發光二極體與該第一線圈,該切換開關係控制 一發光二極體電流,該發光二極體電流係為流過該發光二極體之電流; 一第一電阻,串聯耦接於該切換開關,該第一電阻偵測該發光二極體電流, # 以及輸出一電流訊號; 一控制電路,耦接於該第二線圈、該第一電阻及該切換開關,該控制電路 從該電感器取得-反射訊號並且從該第一電阻取得該電流訊號,以及輸 • 出一控制訊號到該切換開關; -—二減’並_接於該電«與歸光三極體,魏職發光二極體對 該電感器之儲存能量進行放電;及 一第二電阻,耦接於該控制電路; • 其中,該控制訊號控制該切換開關與該發光二極體電流,當該電流訊號大 於-第-臨界值時,該切換開關截止;t該電感器之儲存能量完全放電, 再經過一可調整延遲時間後,該切換開關導通。 2. 如申請專利範圍第1項所述之發*二極體驅動褒置,其特徵在於,該第一臨 界值係跟隨該反射訊號變動。 3. 如申請柳刪丨循述之發光二極體驅動裝置,其特徵在於,該控制電 路包括: 一延遲電路,係於該控制訊號截止時,輸出一 延遲汛旒,該延遲訊號具有 17 M294095 - 該可調整延遲時間; 一比較電路,係於該反射訊號小於一第二臨界值時,輸出一致能訊號; 一第一控制電路,係接收該延遲訊號與該致能訊號,以及致能該控制訊號; 一第二控制電路,係於該電流訊號大於該第一臨界值時,停用該控制訊號; 及 一取樣電路,耦接於該電感器之該第二線圈,該取樣電路係跟隨該反射訊號, 以及輸出一第一取樣訊號與一第二取樣訊號。 春4.如申請專利範圍第3項所述之發光二極體驅動裝置,其特徵在於,該第一取 樣讯號與該第二取樣訊號係依據一第一發光二極體電流與一第二發光二極體 電流,而分別表示該發光二極體之一第一順向電壓與該發光二極體之一第二 順向電壓。 .5·如申請專利範圍第1項所述之發光二極體驅動裝置,其特徵在於,該電感器 係為一變壓器。 6· —種發光二極體驅動裝置,係驅動一發光二極體,其特徵在於,包括: ® 一月b畺轉換元件,串聯耗接於該發光二極體,輸出一反射訊號; -切換開關,串輪接於該發光二極體與該能量轉換元件,該切換開關控 制-發光二極體電流,該發光二極體電流係為流過該發光二極體之電流·, 一控制電路,減於該能量轉換元件與該切換開關,該控制電路取得該反 射訊號與該發光二極體電流,以及輸出一控制訊號·,及 一二極體,並聯減於該能量轉換元件與該發光二極體,係透過該發光二 極體對該能量轉換元件之儲存能量進行放電; 其中,該控制電路輸出之該控制訊號控制該切換開關與該發光二極體電 18 M294095 -流,當該電流訊號大於一第一臨界值時,該切換開關截止。 7·如申請專利範圍第6項所述之發光二極體驅動裝置,其特徵在於,該第一臨 界值係跟隨該反射訊號變動。 8·如申請專利範圍第6項所述之發光二極體驅動裝置,其特徵在於,進一步包 括: 一第一電阻,串聯耦接於該切換開關,該第一電阻偵測該發光二極體電流, 以及輸出一電流訊號到該控制電路;及 φ 一第二電阻,耦接於該控制電路。 、9·如申請專利範圍第6項所述之發光二極體驅動裝置,其特徵在於,該控制電 路包括: , 一延遲電路’係於該控制訊號截止時,輸出一延遲訊號,該延遲訊號具有 * 一可調整延遲時間; 一比較電路,係於該反射訊號小於一第二臨界值時,輸出一致能訊號; 一第一控制電路,係接收該延遲訊號與該致能訊號,以及致能該控制訊號; • 一第二控制電路,係於該電流訊號大於該第一臨界值時,停用該控制訊號; 及 一取樣電路,耦接於該能量轉換元件,該取樣電路係跟隨該反射訊號,以 及輸出一第一取樣訊號與一第二取樣訊號。 10·如申請專利範圍第9項所述之發光二極體驅動裝置,其特徵在於,該第一取 樣訊號與该弟一取樣訊號係依據一第一發光二極體電流與一第二發光二極體 電流,而分別表示該發光二極體之一第一順向電壓與該發光二極體之一第二 順向電壓。 Cs), M294095. IX. Patent application scope: 1. A light-emitting diode driving device for driving a light-emitting diode, comprising: an inductor having a first coil and a second coil, the first a coil is coupled in series to the light emitting diode; a switch is coupled in series to the light emitting diode and the first coil, and the switching relationship controls a light emitting diode current, the light emitting diode current system a current flowing through the light-emitting diode; a first resistor coupled in series to the switch, the first resistor detecting the LED current, # and outputting a current signal; a control circuit coupled In the second coil, the first resistor and the switch, the control circuit obtains a -reflection signal from the inductor and obtains the current signal from the first resistor, and outputs a control signal to the switch; - 2 minus 'and _ connected to the electricity « and the return light triode, the Wei luminescent diode discharges the stored energy of the inductor; and a second resistor coupled to the control circuit; The The control signal controls the switch and the LED current. When the current signal is greater than the -th threshold, the switch is turned off; t the stored energy of the inductor is completely discharged, and after an adjustable delay time, The switch is turned on. 2. The hair-emitting diode driving device of claim 1, wherein the first critical value follows the reflection signal. 3. The method of claim 1, wherein the control circuit comprises: a delay circuit for outputting a delay 汛旒 when the control signal is turned off, the delay signal having 17 M294095 - the adjustable delay time; a comparison circuit that outputs a uniform energy signal when the reflected signal is less than a second threshold; a first control circuit receives the delayed signal and the enable signal, and enables the a second control circuit that disables the control signal when the current signal is greater than the first threshold; and a sampling circuit coupled to the second coil of the inductor, the sampling circuit is followed The reflected signal, and outputs a first sampled signal and a second sampled signal. The illuminating diode driving device of claim 3, wherein the first sampling signal and the second sampling signal are based on a first illuminating diode current and a second The light-emitting diode currents respectively indicate a first forward voltage of the light-emitting diode and a second forward voltage of the light-emitting diode. The light-emitting diode driving device according to claim 1, wherein the inductor is a transformer. The invention relates to a light-emitting diode driving device for driving a light-emitting diode, which comprises: a January b-switching component, which is connected in series to the light-emitting diode and outputs a reflected signal; a switch, the string is connected to the light emitting diode and the energy conversion component, the switch controls a light emitting diode current, and the light emitting diode current is a current flowing through the light emitting diode, and a control circuit Subtracting the energy conversion component and the switch, the control circuit obtains the reflected signal and the LED current, and outputs a control signal, and a diode, which is paralleled to the energy conversion component and the light The diode discharges the stored energy of the energy conversion element through the light emitting diode; wherein the control signal outputted by the control circuit controls the switch and the light emitting diode 18 M294095 - when When the current signal is greater than a first threshold, the switch is turned off. The illuminating diode driving device of claim 6, wherein the first critical value follows the reflected signal. The light-emitting diode driving device of claim 6, further comprising: a first resistor coupled in series to the switch, the first resistor detecting the light-emitting diode And outputting a current signal to the control circuit; and φ a second resistor coupled to the control circuit. The illuminating diode driving device of claim 6, wherein the control circuit comprises: a delay circuit that outputs a delay signal when the control signal is turned off, the delay signal Having an adjustable delay time; a comparison circuit for outputting a uniform energy signal when the reflected signal is less than a second threshold; a first control circuit receiving the delayed signal and the enable signal, and enabling The control signal is: a second control circuit that disables the control signal when the current signal is greater than the first threshold; and a sampling circuit coupled to the energy conversion component, the sampling circuit follows the reflection And outputting a first sampled signal and a second sampled signal. The illuminating diode driving device of claim 9, wherein the first sampling signal and the sampling signal are based on a first LED current and a second LED The polar body current represents a first forward voltage of the light emitting diode and a second forward voltage of the light emitting diode, respectively. Cs)
TW94223194U 2005-12-30 2005-12-30 Switching LED driver TWM294095U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94223194U TWM294095U (en) 2005-12-30 2005-12-30 Switching LED driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94223194U TWM294095U (en) 2005-12-30 2005-12-30 Switching LED driver

Publications (1)

Publication Number Publication Date
TWM294095U true TWM294095U (en) 2006-07-11

Family

ID=37769237

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94223194U TWM294095U (en) 2005-12-30 2005-12-30 Switching LED driver

Country Status (1)

Country Link
TW (1) TWM294095U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI394125B (en) * 2008-04-11 2013-04-21 Chunghwa Picture Tubes Ltd Back light module
TWI415509B (en) * 2008-10-31 2013-11-11 Sanyo Electric Co Driving circuit for illumination element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI394125B (en) * 2008-04-11 2013-04-21 Chunghwa Picture Tubes Ltd Back light module
TWI415509B (en) * 2008-10-31 2013-11-11 Sanyo Electric Co Driving circuit for illumination element

Similar Documents

Publication Publication Date Title
JP5554398B2 (en) A high voltage source that accelerates the rise time of the current flowing through the light source in an optical sensor system
US8044603B2 (en) Light emitting diode driving device and light system
US9018847B2 (en) Thyristor dimming circuit with lossless discharging circuit and method thereof
US9240739B2 (en) Driving system for driving switching element
US20120249000A1 (en) Led dimmer circuit
TWI502866B (en) Soft start switching power converter means
TW201112876A (en) Dimmer for a light emitting device
JP5691712B2 (en) Constant current power supply
US9596726B2 (en) Driver device and driving method for driving a load, in particular an LED unit
CN103748965A (en) Controlling the light output of one or more LEDs in response to the output of a dimmer
TW201927074A (en) System and method for control related to TRIAC light modulator and based on periods
US20140103834A1 (en) Device for controlling a lighting device
CN103427642B (en) Constant current control buck converter without current sense
TW200930147A (en) A LED driving circuit and a secondary side controller thereof
TWI360937B (en) Switcing power conversion circuit
JP2017123329A (en) LED driving device equipped with time delay circuit
WO2005096480A1 (en) Power supply and display
TWM294095U (en) Switching LED driver
FI125106B (en) PWM dimming
JP2011244619A (en) Switching power supply
TWM441288U (en) LED driving apparatus
JP5275186B2 (en) LED drive circuit for lighting
TWM522537U (en) Open loop constant current driving circuit
US20190342959A1 (en) Light emitting element driving device and driving method thereof
CN213028642U (en) Signal detection circuit, isolated dimming signal detection circuit and flyback driving power supply

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees