TWM289566U - Implementing a smart antenna in a wireless local area network - Google Patents

Implementing a smart antenna in a wireless local area network Download PDF

Info

Publication number
TWM289566U
TWM289566U TW94215425U TW94215425U TWM289566U TW M289566 U TWM289566 U TW M289566U TW 94215425 U TW94215425 U TW 94215425U TW 94215425 U TW94215425 U TW 94215425U TW M289566 U TWM289566 U TW M289566U
Authority
TW
Taiwan
Prior art keywords
sta
antenna
antenna performance
information
frame
Prior art date
Application number
TW94215425U
Other languages
Chinese (zh)
Inventor
Paul Marinier
Arty Chandra
Inhyok Cha
Vincent Roy
Original Assignee
Interdigital Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/018,794 external-priority patent/US7376398B2/en
Priority claimed from US11/025,018 external-priority patent/US20060056345A1/en
Application filed by Interdigital Tech Corp filed Critical Interdigital Tech Corp
Publication of TWM289566U publication Critical patent/TWM289566U/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

M289566 九、創作說明: 本案係相關於無線區域網路(wireless l〇cal area networks (以下簡稱WLANs)),以及特別地是,相關於在 一 WLAN中實施一智慧天線的方法以及裝置,以支援在一 WLAN中使用一智慧天線,以及用於在一 WLAN中的站台 (以下簡稱STAs )之間傳送智慧天線效能資訊。 先前技術 在一於基礎建設模式(infrastructure mode)下操作的 WLAN中,一 STA乃會典型地執行掃瞄,以評估哪一個存 取點(以下簡稱AP)是提供其服務的最佳候選人,而所述 STA所執行的掃瞄則可以是被動的、或是主動的。在被動 知目田中’所述STA會聽從所述APs所發送的信標巾貞(beacon frames),而在主動掃瞄模式中,所述STA則是會發送出探 針请求,然後’所述APs即藉由發送一探針回應至所述sta 而做出反應。 為了增強覆蓋範圍以及增加輸貫量(throughput), APs係可以配備以先進的天線結構,以使得它們可以改變其 所使用的輻射型態(波束)。在此,所使用之名詞“智慧 天線”即表示,一組具有不同輻射型態的N個天線,而典型 地是,會指向所選擇的方式(或者是,在全方向性天線的 例子中,不指向任何特性的方向),其中,一個節點(AP 或STA)的傳送器級/或接收器乃會選擇做合適的天線(或 “波束”),以與其相對應者進行溝通,而所述最合適的天線 M289566 則典型地會是,於一個節點會傳送一封包至另一個特殊節 點的專屬連接(dedicated connections)例子中,在接收節 點處具有最高之信號與干擾及雜訊比 (signal-to-interference_plus-noise ratio,SINR)者。 覆蓋範圍的增加乃是所述AP發送出封包之所述sta 的位置、及/或時變頻道(time-varying channel)的位置的函 數。因為一 AP所發送至之信標幀並不會瞄準一特別的 STA ’而疋會猫準许多的STA,因此,它們乃會傾向於均勻 _地橫跨所有方向來進行發送(亦即,利用一全方向性波 束),而類似地,也因為其係需要一 AP從其所有相關的STAs 處聽取封包,所以,所述AP係典型地會利用一全方向性波 ^ 束來聽取頻道,不過,此種類型的波束並一定可以讓所述 .AP決定哪一個波束是服務一 STA的最佳波束,甚至是在其 已經自所述STA接收一探針請求之後,因此, 應 亦傾向於利用一全方向性波束來進行傳送。 心M289566 IX. Creation Description: This case relates to wireless local area network (WLANs) and, in particular, to a method and device for implementing a smart antenna in a WLAN to support A smart antenna is used in a WLAN, and smart antenna performance information is transmitted between stations in a WLAN (hereinafter referred to as STAs). Prior Art In a WLAN operating in an infrastructure mode, a STA typically performs a scan to evaluate which access point (AP) is the best candidate to provide its services. The scan performed by the STA may be passive or active. In the passive field, the STA will listen to the beacon frames sent by the APs, while in the active scan mode, the STA will send out the probe request, then The APs react by sending a probe response to the sta. To enhance coverage and increase throughput, APs can be equipped with advanced antenna structures so that they can change the type of radiation (beam) they use. As used herein, the term "intelligent antenna" means a set of N antennas having different radiation patterns, and typically will point to the selected mode (or, in the case of an omnidirectional antenna, Not pointing to the direction of any feature), where the transmitter level/or receiver of a node (AP or STA) will choose to make the appropriate antenna (or "beam") to communicate with its counterpart, The most suitable antenna M289566 will typically be the one in the dedicated connection where one node will transmit a packet to another special node, with the highest signal to interference and noise ratio at the receiving node (signal- To-interference_plus-noise ratio, SINR). The increase in coverage is a function of the location at which the AP sends out the sta of the packet, and/or the location of the time-varying channel. Because the beacon frame sent by an AP does not target a particular STA' and there are a lot of STAs in the cat, they tend to transmit evenly across all directions (ie, utilize An omnidirectional beam), and similarly, because it requires an AP to listen to packets from all its associated STAs, the AP system typically uses an omnidirectional wave to listen to the channel, but This type of beam must also allow the .AP to determine which beam is the best beam to serve a STA, even after it has received a probe request from the STA, and therefore should also An omnidirectional beam is transmitted. heart

一 STA除了會使用信標(被動掃晦)以 (主動掃瞄)來進行評估之外,還可利用、成二二 所獲得之無線連結的品f j J 稱職))來進行評估。典型地,信標以比(以:簡 述APs,基於上述的理由,利用一全方向性=回應乃疋所 而如此所會產生的狀況則是,-STA係可^束所發运的, 信標及/或探針回應所察覺之已接收信號品暂基於其自所述In addition to using a beacon (passive broom) for evaluation (a passive scan), a STA can also be evaluated by using the wirelessly-connected product f j J (). Typically, the beacon is compared to (by: a brief description of the APs, based on the above reasons, using a omnidirectionality = response to the situation, and the situation is such that the -STA system can be shipped, The beacon and/or probe responds to the perceived received signal product based on its self-described

事實上將會比另-個用於傳送可以利用、而在AF 、方向性之波束而 M289566 加以發送之流里幢(traffic frames )的AP執行的更差的時 候,將此假設的AP評估為最佳的候選人。 第1圖係顯示一示範的WLAN 100,包括一 STA 102 以及二個 APs,AP—A 110 以及 AP B 120。AP—A 110 係可 以利用一全方向性波束112以及複數個方向性波束114, 116,118,AP—A 120則是可以利用一全方向性波束122以 及複數個方向性波束124,126,128。 所述STA 102係會測量在表1中所顯示之各式波束的 #已接收功率。 表1 於STA102處所測量的已接收信號功率 信號出處 波束標號 波束型式 於STA 102處 之已接收功 率 AP—A 112 全方向性 -75 dBm AP 一 A 116 方向性 -85 dBm AP^A 118 方向性 -85 dBm AP_B 122 全方向性 -80 dBm AP_B 124 方向性 -70 dBm 比起藉由全方向性波束122來自APJB 120接收,所 述STA 102係可以藉由全方向性波束112而自ap_a 110接 收較強的信標、及/或探針回應,不過,用於傳送流量幀時, AP—B 120就比ap—a n〇是更好的候選人,因為,Ap b 12〇 M289566 位在一個利用其先進天線結構並將能量聚焦朝甸所述 " 102 (藉由方向性波束124)的較佳位置。 , 在一以ΑΡ為基礎的WLAN之中,多個STA係可以 - 在一設定的時間時相關於一設定的AP。若是所述多重存取 計晝係為一載波感測多重存取/碰撞避免(carrier sense multiple access/collision avoidance ( CSMA/CA))時,例如, 以802.11作為基礎的WLANs,則任何STA都容易受到影 響而在任何設定的時間時傳送一封包(亦稱之為一 “幀,,) 籲至其相關的AP,其中,所述AP乃會在一封包已經完全被 接收且被解碼之後,以在所述封包之媒體存取控制(medium access control (以下簡稱MAC))標頭(header)中所包含 - 的來源位址作為基礎而決定與其相關之STAs中的哪一個傳 送了所述封包,而所述AP在做出所述來源決定之前則是必 須要完成整個封包個接收,因為涵蓋所述mac標頭以及 MAC載荷(MAC payload)兩者的錯誤檢測位元乃是在所 述封包的末端進行接收。 鲁 在一網狀架構(mesh architecture )中,STAs(或是“網 狀節點(mesh nodes) 係亦可以配備以智慧天線,以改 善所接收之信號的SNR、或是為了例如減少干擾的其他目 的。 在以802.11作為基礎之WLANs中的所述多重存取 什晝’在有多於一個STA相關於所述AP時,乃會使得於 所述AP處選擇最適當用於接收封包的波束產生困難,而這 則疋因為STAs乃可以位在所述AP周圍的任何位置,也因 M289566 此,對每—個STA來說,—般而言,最適合的波束並不相 同’再者,由於所述STA的本質在沐、& ,柄包被完整接收之 中 刚係為未知,因此,所述AP並無,用此資訊來決定要選 擇哪一個天線來接收封包。而相同的問題也會發生在一個 :狀節點可以連結至多於-個之網狀節點的網狀架構之 為了防止此困難的發生’係有數種的#代方案,不 過,它們也都具有缺點。 # υ所述AP係可以將其本身限制為使用-種全方向 性型態來接收所有的封包,不過,因此也會喪失了利用一 智慧天線所獲得的潛在可能性。 曰 ' 2)所述ΑΡ係可以使用同時來自多個波束的信號, ‘然後將它們結合、或是選擇它們之中最佳的波束。不過, 此解決方案會增加所述接收器的複雜度,因為來自多個波 束的所述信號係必須要進行解調變。 3) 所述ΑΡ係可以在一接收倒封包之後馬上以-連 修續的方式在其可獲得的波束之間進行切換,挑選造成最佳 信號品質的波束,然後再切換至此波束,以用於所述封包 接收的剩餘持續期間。不過,此方法所具有的缺點卻是, 所述ΑΡ在其嘗試較少之合適於—特別封包的波束的同 時,其正冒著會不正確接收一些位元的風險,因而會造成 所述封包的遺失。In fact, this hypothetical AP will be evaluated as being worse than another AP that is used to transmit the traffic frames that can be utilized and transmitted in the AF, directional beam and M289566. The best candidate. Figure 1 shows an exemplary WLAN 100 comprising a STA 102 and two APs, AP-A 110 and AP B 120. The AP-A 110 system can utilize an omnidirectional beam 112 and a plurality of directional beams 114, 116, 118. The AP-A 120 can utilize an omnidirectional beam 122 and a plurality of directional beams 124, 126, 128. . The STA 102 will measure the #received power of the various beams shown in Table 1. Table 1 Received signal power signal measured at STA 102 Source beam label beam pattern Received power at STA 102 AP-A 112 Omnidirectionality - 75 dBm AP - A 116 Directionality - 85 dBm AP^A 118 Directionality -85 dBm AP_B 122 omnidirectionality - 80 dBm AP_B 124 directionality - 70 dBm is received from APJB 120 by omnidirectional beam 122, which can be received from ap_a 110 by omnidirectional beam 112 Strong beacons, and/or probe responses, however, AP-B 120 is a better candidate for transmitting traffic frames than ap-an〇 because Ap b 12〇M289566 is used in one Its advanced antenna structure focuses energy on the preferred location of the " 102 (via directional beam 124). In a ΑΡ-based WLAN, multiple STAs can be associated with a set AP at a set time. If the multiple access meter is a carrier sense multiple access/collision avoidance (CSMA/CA), for example, 802s based on 802.11, any STA is easy. A packet is transmitted (also referred to as a "frame,") at any given time to appeal to its associated AP, where the AP will be after the packet has been completely received and decoded. Determining which one of the STAs associated with the packet is transmitted based on the source address of the medium access control (hereinafter referred to as MAC) header of the packet, And the AP must complete the entire packet reception before making the source decision, because the error detection bit covering both the mac header and the MAC payload is in the packet. The end is received. In a mesh architecture, STAs (or "mesh nodes" can also be equipped with smart antennas to improve the SNR of the received signal, For the other purpose of reducing interference, for example. The multiple access in the 802.11-based WLANs is such that when there is more than one STA associated with the AP, the selection at the AP is most appropriate. The beam used to receive the packet is difficult to generate, and this is because the STAs can be located anywhere around the AP, and because of the M289566, for each STA, in general, the most suitable beam is Not the same 'again, because the essence of the STA is in Mu, & , the handle is completely unknown in the complete reception, therefore, the AP does not, use this information to decide which antenna to choose to receive Packets. The same problem can also occur in a network structure in which a node can be connected to more than one mesh node. In order to prevent this from happening, there are several generations of solutions, but they also have Disadvantages. # υ The AP system can limit itself to the use of an omnidirectional type to receive all packets, but it also loses the potential for using a smart antenna. 曰' 2) The Α The lanthanide system can use signals from multiple beams simultaneously, ‘and then combine them or select the best beam among them. However, this solution increases the complexity of the receiver because the signal from multiple beams must be demodulated. 3) The tether can switch between the available beams in a continuous manner after receiving the inverted packet, picking the beam that causes the best signal quality, and then switching to the beam for use in The remaining duration of receipt of the packet. However, this method has the disadvantage that the cymbal is at the same time as it is trying to apply a special packet beam, while it is risking that some bits will be incorrectly received, thus causing the packet. Lost.

4) 所述ΑΡ係可以利用—全方向性天線而嘗試地解 碼發送者的所述MAC位址(包含在所述封包的所述MAC M289566 標頭之中),然後再將於所述MAC標頭中所辨識之最適合 於所述STA的波束使用於所述封包的剩餘部分。不過,此 方法所具有的問題卻是,所述MAC標頭係會以與所述封包 之剩餘部分一樣的速率進行傳送’因此,若是所述全方向 性天線無法為所述mac載荷之足夠信號品質提供足夠的增 益時,則就不太可能所述MAC標頭會正確地進行解碼,而 在相反的例子中(若是所述全方向性天線確實地提供了足 夠的增益時),則一開始就不需要使用一智慧天線。 蒙 5 )所述STAs係可以被迫於利用請求發送/清除發送 ❿ (Request_to-Send/Clear-to_Send’ RTS/CTS)程序來發送每 一個封包,此將會使得所述AP可以在所述資料封包到達之 前即辨識出所述發送的STA,不過,此卻會由於所述rts 及CYS封包的冗餘作業而付出重要輸貫量損失的代價,因 而部分地擊敗使用智慧天線之目的。 6 )所述AP係可以輪流地利用不同的波束來輪詢 (poll) STAs。不過,此方法有兩個問題,第一,其於一具 籲有叢發流量(bursty traffic)的系統中,例如,—WLAN中,· 在試圖要預測於每一個波束上所花的時間時會產生困難, 第二,在考慮到於天線型態以及無線環境之不規則,例如, 影子化(shadowing),之間的必要重疊的時候,要避免STAs 對利用一對它們而言為次理想(但可聽取)之波束所發送 的一輪詢產生反應是有困難的。 在一 WLAN之中,智慧天線效能係可以存在於Ap、 於STA、或是兩者,而在沒有事先交換天線效能資訊的情 12 M289566 形下,所述AP並不會知道如何協調其以及一 stA的智慧 天線特徵,反之亦然。 所述由於未交換智慧天線資訊效能所造成之對於一 WLAN的潛在不利影響係於接下來之實例中舉例說明。假 設一 AP以及一 STA兩者都使用切換波束智慧天線 (switched-beam smart antennas ),但每一端的智慧天線效能 (舉例而言,可獲得且需要進行掃瞄之波束模式的數量, 以及測試所述可獲得波束之每一個所需要的時間持績期 春間)對另一端仍為未知時,則因為所述AP或是所述STA 都不知道其接收端的所述智慧天線效能,所以,其每一個 都將必須要:(1 )猜測關於另一端的智慧天線效能,或是 (2)在不知道所述接收端可能於同時間使用其所擁有的一 波束搜尋的情形下測試其所擁有的傳送天線波束。 若是位在雨端之所述智慧天線效能對彼此為已知 時,則兩個裝置就部可以依循簡單、預先同意的規則,以 避免同時間在雨端上的波束搜尋所造成的服務降級,舉例 馨而言,若是所述“波束搜尋時間”(Tsearch )對所述AP 以及所述STA皆為已知時’則一簡單而有用的規則就可能 會是,在嘗試給予(已開始進行傳送之)另一端足夠之時 間來引導其所擁有的波束搜尋的時候,在相關聯之後首先 接收一封包的裝ί (所述AP或所述STA)係應所述在其開 始其所擁有的波柬搜哥之前先等待持續期間Tsearch。 目前的天線技術乃是藉由使用接收及/或傳送密度來 增強接收,而這费技術則是可以藉由獲得任何增益需要較 13 M289566 長的時間,或是比起其他方法提供較少之增益而加以達 1 成,此外,目前的天線技術常常需要使用專有資訊 ^ ( proprietary messages )才能知道一 STA的所述天線效能, 而在缺乏此資訊的情形下,所述APs以及STAs就無法利用 天線效能來增加資料率、或範圍。 為了使得智慧天線特徵能更有效率地運作,有關所述STA 以及所述AP之效能的資訊係應所述要進行交換,再者,交 換天線資訊也使得在智慧天線特徵的最佳化期間的可能協 _調成為可能,例如,波束選擇,波束掃瞄,波束形成,多 ® 輸入多輸出(multiple input multiple output,以下簡稱 ΜΙΜΟ),以及使得改變波束型態及/或天線增益成為可能的 . 任何其他效能。 新型内容 一種用於在建立於一 WLAN中之一 STA以及一 AP 之間的關聯時、實施一智慧天線的方法的一開始係為,所 修述AP在一天線波束上傳送一信標幀,而所述信標幀則是會 ® 於所述STA處被接收,且所述STA係會測量所述信標幀的 一信號品質,然後,所述AP會切換至一不同的天線波束, 並且重複所述方法,直到所述信標幀已經在所有的天線波 束上完成傳送為止,接著,所述STA乃會與在其天線波束 的其中之一上利用最高信號品質而傳送所述信標幀的AP 產生關聯。一個類似的方法也可以使用於會發送一探針請 14 M289566 一求幀至所述AP的所述STA之中,而所述AP則是接著曰利 、用在多個天線波束上發送的探針回應幀作為回應。 種在建立於〆WLAN中之一 STA以及〆門 七· AP發 的關聯時、實施一智慧天線的系統係包括,一自所述 送$所述STA的信標幀,其中,所述信標幀乃會包拉一用 反一用 以辨識將會進行傳送之天線波束的總數的攔位’ 以辨識當前正在其上進行傳送之波束的攔位。 AP之 另一種在建立於一 WLAN中之一 STA以及〆a ^ 鲁間的關聯時、實施一智慧天線的系統係包括:一自所述STA 發送至所述Ap的探針請求幀,以及一自所述AP發送至所 述STA的探針回應幀,其中,所述探針請求幀乃會包括一 , 有關所述STA是否要掃瞄來自所述AP之多個天線波束的 指示,益且,所述探針回應幀乃會包括一用以辨識將會進 行傳送之天線波束的總數的欄位,以及一用以辨識當前正 在其上進行傳送之波束的攔位。 一種用於支援一智慧天線在一包括一 AP以及一 STA 鲁的WLAN中之使用的方法,一開始係為,所述AP選擇一 _ 天線波束,以用於與所述STA進行溝通,然後,所述所選 擇之波束寅訊會自所述AP被發送至所述STA,以及一封包 會自所述STA被傳送至所述Ap,且所述封包之中乃會包括 所述所選擇的波束資訊,藉此,所述Ap係邛以使用所述所 選擇的波束來接收所述封包的至少一部份。 一種用於支援一智慧天線在一包括一 AP以及一 STA 的WLAN中之使用的系統,其係包括一第一封包以及—第 15 M289566 二封包。所述第一封包乃是自所述AP發送至所述STA,並 會包括一選擇波束指示符,所述AP的一 MAC位址,以及 所述STA的一 MAC位址,其中,所述所選擇波束指示符係 會辨識所述AP所選擇的一天線波束,以用於與所述STA 進行溝通。所述第二封包乃是自所述STA被發送至所述 AP,並會包括所述所選擇波束指示符,藉此,所述AP即 <以藉由所述所選擇波束而接收所述第二封包的至少一部 份0 _ 一種用於在一無線通訊系統中的一傳送STA以及一 换收S TA之間交換智慧天線效能賀訊的糸統係包括,一天 線效能資訊單元(information element ,IE),而所述天線 姝能IE則是會在所述傳送STA以及所述接收STA之間的 資料傳送之前,自所述傳送STA發送至所述接收STA,且 當使用於一WLAN之中時,所述天線效能IE係可以加以發 送為一管理幀的部分。 一種用於在一無線通訊系統中的一傳送STA以及〆 •操收STA之間交換智慧天線效能資訊的方法係包括下列少 驊:自所述傳送STA發送天線效能資訊至所述接收STA, 決定所述接收STA是否能夠支援所述傳送STA的所述天線 姝能’若是所述接收STA可以支援所述傳送STA的所述夭 線效能時,調整於所述接收STA處的設定,以及若是所述 接收STA可以支援所述傳送STA的所述天線效能時,利用 所述天線效能而將資料自所述傳送STA傳送至所述接收 STA 〇 M289566 一種用於在一 WLAN之中貫施智慧天線特徵的糸統 係包括一 AP以及一 STA。所述AP係包括_第一天線效能 決定裝置;連接至所述第一天線效能決定裝置的一第一天 線效能資訊裝置,且所述第一天線效能決定裝置乃加以建 構以藉由檢驗儲存在所述第一天線效能資訊裝置之中的資 訊而決定所述AP的所述天線效能;連接至所述第一天線效 能決定裝置的一第一傳送裔/接收器,連接至所述傳送滤/接 收器的一第一天線;以及連接I所述傳送器/接收器的一波 束切換裝置,且所述波束切換裝置乃加以建構以切換所述 第一天線的波束。所述SAT係包括一弟一天線,連接至所 述第二天線的一第二傳送器/接收器,且所述第二傳送器/接 _乃加卩建構卩自料AP接收天纽能胃訊;連接至^ ::傳送器/接收器的一第二天線效能決定裝置Λ連Γ Α ^ +窄萝置的〆第二天線效能資訊衣置 所述第^天線效裝置乃加以建構以對接收自所述 且所述第二天線效^述、的所述天雜能以及願取自 第二傳送器/接收器之^ TA的所述天線效能進 ,所述第二天線效能資=第二夭線效能決定裝置的m 行b匕較;以及速衫似喊膽裝f乃加以建構以肩 設定韻整裝置定,以靡智慧天線效能。 敕所述STA的所述认疋 奋妳方式 ,、(STA)係包括’ 貫 么词“站台(st-η) 此後,所述名」 祜闲者設備,/固 认““專輸/接收單元,一使 但不I1艮於,一雜線得 17 M289566 或移動用戶單元,、-吟叫器,或是能夠在一無線環境中操 作的任何其他形式裝置。當於之後提及時,所述名詞“存 取點(access point ),,( AP )係包括,但不限於,〆基地台, -節點位置控制器’或是在—無線環境中的任何其他 形式介面裝置。 本案係會解決於被動掃H主動掃猫雨者中的波 束選擇問題,本案亦相關於-種可以在-AP以及〆STA 中實施的方法以及信號發送計晝,以使得在所述Ap處使用 _智慧天線而自STAs接收封包成為可能,其中,戶斤述方法在 -網狀架構關子中亦可以加以實施於網狀節點之中,此 外,本案係會定址在一 AP以及STA之間的天線效能資訊 交換,並且,乃是依照802.11標準所提供的當前資訊所建 立,以及係元王向後相谷(backward compatible)。 被動掃目苗 本案係提供用於一 AP的信號發送以及支援,以於多 個波束上發送其信標,而此則是可以藉由增加兩個欄位到 鲁WLAN信標管理幀,如第2圖中所示,之中而加以達成, 所得到的官理巾貞係稱之為一先進天線(Advanced Antenna, AA)信標幀200。所述幀200的許多欄位係正如所述802.11 標準所定義的既存攔位一樣,而這些欄位則是包括,幀控 制 202,持續期間 204,目標位址(destination address,DA) 206,來源位址(source address,SA) 208,基本服務集合 (basic service set,BSS)辨識(BSSID) 210,順序控制 (sequence control) 212,時間戳(timestamp) 214,信標 M289566 間距(beacon interval) 216,效能資訊218,SSID資訊單元 (information element,IE) 220 ’ 支援速率(supported rates) IE 222 ’跳頻/分配糸統參數集合IE ( frequency hop (FH)/distribution system (DS) parameter set IE) 224,無競爭 參數集合 IE ( contention free (CF) parameter set IE) 226, 獨立BSS( IBSS )參數集合IE 228’以及流量指示映像(traffic indication map,TIM) IE 230。 所述幀200的第一個新欄位232係在於指示所述 鲁STA,所述信標幀在一 AA信標間距的範圍内乃被發送了 n 次,其中,N係對應於所述AP將於其上發送所述信標之波 束的數量,而第二個新欄位234則是在於辨識已被用於傳 送所述信標的波束,亦即,波束辨識符(beam identifier), 因此,當接收由一 AP所發送之多個AA信標幀的其中任一 時,所述STA係能夠辨識被包含在所述ap所執行之波束 掃瞄中之波束的數量,並且,其亦能夠藉由察看所述波束 辨識符(234)而識別不同的版本。 ® 要注意的是,所述AA信標間距216係可以加以設定 為與所述非AA間距相同、或是不同的數值,而為了使得所 述系統能夠提供使用者服務,所述AA信標間距則是必須要 大於所述波束掃瞄持續期間,因此才有時間剩下來傳送流 量幀。此係可以強制實行為,舉例而言,一建構管理規則, 而避免一使用者以所述信標掃瞄佔據大部分所述AA信標 間距時間的方式而建構所述AP。 19 M289566 在一較佳實施例之中,所述N個aa信楳幀200乃 會於日守間上連續地進行發送。此乃是可以藉由讓戶斤述AP在 試著要存取於兩信標幀之傳送間的無線媒體時,使用一較 DIFS ( Distributed Inter-Frame Space,分散式巾貞間間隔)為 短但較SIFS ( Short Inter-Frame Space短鴨間間隔)為大的 延遲(X)而加以達成。在此,應所述要注意的是,所述 AP在存取所述無線媒體以用於傳送所述N個信襻幀的第一 個時,仍然需要等待一個完整的DIFS,而此則是將一上限 鲁設置在一 STA —旦已偵測到一 AP所通知之所述N個信標 幀的其中之一時,其掃瞄所述媒體所需要之時間的最大 值,藉此: 上限-(N - 1 ) X (信標持續期間+ X ) 方程式1 換言之,此係避免了一 STA在未曾得知所述AP是否 已經傳送所有所述N個信標的情形下,以未決定;ff之日寸間 •來掃瞄〆頻道。 所述被動掃瞄的時序圖係顯示於第3圖之中。在所述 AP開始所述AA信標間距3〇〇之前,其係會等待一個DIFS 302,然後,在所述AA信標間距3〇〇的〆開始,所述AP 係會傳送所述第一信標幀304,而在信標幀;3〇4之間,所述 AP則是會等待所述間距χ( 306),其中,又係較所述difs 為短,佴較所述SIFS為大。 M289566 一 /種用於在一被動掃瞄中傳送一 aa信標幀的方法 ' 400係顯承於第4圖之中。於所述方法40〇的一開始,所述 v AP係於N個天線波束的其中之一上傳送一 AA信標幀 200,且所述當前波束辨識符234乃加以設定為所述當前波 束(步驟402),然後,依照所述AA信標幀是否已經於所 有N個波束上進行傳輸而做出決定(步驟404),其中,若 是所述AA信標幀已經在所有N個波束上進行傳送,則所 述方法終土(步驟406 ),而若是所述AA信標幀尚未在所 φ有N個波束上進行傳送時(步驟404),則所述方法會等待 所述間距X (步驟408 ),接著,所述天線系統會切換至下 一個波束(步驟408),並在當前的波束上傳送所述AA信 標幀200,且所述當前波束辨識符234乃加以設定為所述當 前波束(步驟410),然後,所述方法接續步驟404。在此, 要注意的是,所述切換至下一個波束的步驟(步驟408)係 可以在等待所述間距X之前、或之後執行。 所述STA是否關聯於所述AP所使用的決定乃具有實 籲施特異性,其中,一個方法是,使用在所述信標上所察覺 的功率位準或是SNR來選擇要進行關聯的AP,此外,本案 係允許一 STA在使用此方法的同時,完全利用所述AP已 配備有一先進天線系統的事實。 主動掃瞄 本案亦藉由允許一 STA請求所述AP在多個波束上發 送探針回應而定址主動掃瞄,而此則是可以藉由將一新的 欄位增加至所述WLAN探針請求幀而加以達成,所述所得 21 M289566 到的幀係顯示於第5圖之中,並且,係稱之為一 AA探針請 求=500。所述幀5〇〇的許多攔位係正如所述8〇211標準 所定義的既存探針請求幀—樣,而這些欄位則是包括顿控 制 502,持續期間 504,DA 506 , SA 508,BSSID 510,順 序控制512 ’ SSID IE 514,以及支援速率IE 516,而所述 幀5〇〇的所述新欄位則是會將一有關所述STA要掃瞄所述 AP之所有波束的指示(以一是、或否的數值)提供至所述 AP 〇 I 此外’兩個新的攔位係會被增加至所述WLAN探針 回應幀,所得到的幀係顯示於第6圖之中,並且,係被稱 之為一 AA探針回應幀6〇〇,而所述幀6〇〇的許多攔位則正 如所述802.11標準所定義的既存探針請求幀一樣,其中, 所述幀600的攔位6〇2-628係與所述幀2〇〇的攔位2〇2_228 一樣0 所述幀600的所述第一個新攔位係在於指示所述 STA,所述AA探針回應在一 AA信標間距的範圍乃被發送 鲁了 N次,其中,n係對應於所述AP將於其上發送所述探針 回應之波束的數量,而所述第二個新攔位632則是在於辨 識已被用於傳送所述AA探針回應的波束,也就是,波束辨 識符,並且,一配備以一 AA系統的AP乃會藉由將多個(N) AA探針回應發送至所述STA而回應所述AA探針請求。 在一較佳實施例之中,所述N個AA探針回應乃合 於時間上連續地進行發送。此係可以藉由讓所述Ap在試^ 要存取於兩AA探針回應之傳送間的無線媒體時,使用一較 22 M289566 DIFS為短但較SIFS為大的延遲(X)而加以達成。在此, 應所述要注意的是,所述AP在存取所述無線媒體以用於傳 送所述N個探針回應的第一個時,仍然需要等待個元整 的DIFS,而此則是將一上限設置在〆§TA〆旦已接收到一 AP所發送之所述n個探針回應的其中之〆時,其而要等待 之時間的最大值,藉此: 上限=(N — 1 ) X (探針回應持續期間+ X ) 方程式2 所述主動掃瞄的時序圖係顯示於第7圖之中。在所述 STA發送所述AA探針請求幀7〇〇之後,所述AP乃會在發 送所述第一個探針請求幀704之前等待一個DIFS 702,然 後,在探針請求幀704之間,所述AP則是會等待所述間矩 X ( 7〇6),其中,X係較所述difs為短,但較所述SIFS為 大0 一種用於在一主動掃瞄中傳送一 AA探針回應幀的 $方法800係顯示於第8圖之中。於所述方法800的一開始, 所述STA乃會發送一 AA探針請求幀500,包括將所述指示 符518設定為掃瞄所述ap的所有波束(步驟802),然後, 所述AP係會接收所述AA探針請求幀,並等待所述mFs 期間(步驟804),接著,所述AP會在]^個天線波束的其 中之一上傳送一 AA探針回應幀600,且所述當前波束辨識 符632乃加以设定為所述當前波束(步驟8〇6),再者,依 照所述AA探針回應幀是否已經於所有^^個波束上進行傳 23 M289566 輸而做出決定(步驟808 ),其中,若是所述AA探針回應 '幀已經在所有N個波束上進行傳送時,則所述方法終止(步 驟810),而若是所述AA探針回應幀尚未在所有N個波束 上進行傳送時(步驟808),則所述方法會等待所述間距X (步驟812),接著,所述天線系統會切換至下一個波束(步 驟812 ),並在當前的波束上傳送所述AA探針回應幀600, 且所述當前波束辨識符632乃加以設定為所述當前波束(步 驟814),然後,所述方法接續步驟808。在此,要注意的 鲁是,所述切換至下一個波束的步驟(步驟812)係可以在等 ® 待所述間距X之前、或之後執行。 在習知技術的系統中,一 STA所做出之有關哪一個 AP要產生關聯的決定並不會考慮到於所述AP處之所述先 進天線結構所獲得的無線連結增益,此即表示,在所述信 標幀以及探針回應乃是APs利用一全方向性之方式而加以 發送的所述RF環境中,藉由掃瞄,無論是被動、或是主動, 所收集到的資料係可以將一 STA導向與一會提供較另一 AP 鲁更差之效能的AP產生關聯,旅已考慮到獲得自所述AA系 _ 統的增益。 藉由本案,在考慮到戶斤述AA系統於流量幀進行傳輸 時將會提供之增益的情形下,當掃瞄所述RF環境時,一 STA所收集的資料係使得對哪/個AP能夠提供最佳無線連 結的評估成為可能。 波束指示符 24 M289566 第9圖係為依照本案而進行操作之一系統9〇〇的圖 Λ 式。所述系統900係包括一 ΑΡ 902,一第一 STa (STA1) 904,以及一第二 STA ( STA 2) 906,其中,所述 AP 902 係會在一全方向性波束(或模式,b〇) 91〇上進行傳送,在 一弟一方向性波束(bl) 912上與所述sta 1 904〆起進行 傳送,以及在一第二方向性波束(b2) 914上與所述STA2 906 —起進行傳送,並且,在所述全方向性波束91〇能夠為 STA 1 904以及STA 2 906 (雖然是微弱地)所接收的同時, 鲁所述方向性波束912,914乃是較佳的選擇。 一新的欄位,在此稱之為一“波束指示符,,,係會增 加在自一 STA發送至一 AP之大部分封包的物理層會聚協 定(Physical Layer Convergence Protocol,plcp )標頭之後, 以用於指示所述AP其應所述選擇其波束(或天線)的哪一 個,進而接收所述封包的剩餘部分(MAC協定資料單元 (MAC protocol data unit,PDU )),在此,要注意的是,所 述波束指示符並不需要與所有的封包一起自所述STA被發 鲁送至所述AP,因為某些封包(例如,一確認(ACK)或一 CTS)乃是預期要藉由所述AP而自一特殊的STA加以接 收,若是所述AP事先得知哪一個STA將會發送下一個封 包時,則其係可以選擇最佳的波束,以用於接收所述封包, 並且,所述波束指示符並非為必要的,不過,所述波束指 示符係亦可以在所述些封包之中進行傳送。4) the system may attempt to decode the sender's MAC address (included in the MAC M289566 header of the packet) using an omnidirectional antenna, and then the MAC label The beam identified in the header that is most suitable for the STA is used for the remainder of the packet. However, this method has the problem that the MAC header is transmitted at the same rate as the rest of the packet. Therefore, if the omnidirectional antenna cannot provide sufficient signal for the mac payload. When the quality provides sufficient gain, it is unlikely that the MAC header will decode correctly, but in the opposite case (if the omnidirectional antenna does provide sufficient gain), then the There is no need to use a smart antenna. 5) The STAs may be forced to send each packet using a Request_to-Send/Clear-to_Send' RTS/CTS procedure, which will cause the AP to be in the data. The transmitted STA is recognized before the packet arrives. However, this will cost the important loss of the transmission due to the redundant operation of the rts and CYS packets, thus partially defeating the purpose of using the smart antenna. 6) The AP system can poll the STAs in turn using different beams. However, this method has two problems. First, it is in a system that calls for bursty traffic, for example, WLAN, when trying to predict the time spent on each beam. Difficulties arise. Second, when considering the necessary overlap between the antenna type and the irregularity of the wireless environment, for example, shadowing, it is necessary to avoid STAs being suboptimal for using a pair of them. It is difficult to react to a poll sent by a (but audible) beam. In a WLAN, the smart antenna performance system can exist in Ap, STA, or both, and the AP does not know how to coordinate it and the first one without the exchange of antenna performance information. The smart antenna feature of stA and vice versa. The potential adverse effects on a WLAN due to the unswapped smart antenna information performance are illustrated in the following examples. Suppose that both an AP and a STA use switched-beam smart antennas, but the smart antenna performance at each end (for example, the number of beam patterns available and required for scanning, and the test site) If the time required for each of the available beams is still unknown to the other end, then the AP or the STA does not know the smart antenna performance of the receiving end, so Each will have to: (1) guess the smart antenna performance on the other end, or (2) test it if it does not know that the receiver may use its own beam search at the same time Transmit antenna beam. If the smart antenna performances at the rain end are known to each other, then the two devices can follow simple, pre-agreed rules to avoid service degradation caused by beam search on the rain side at the same time. For example, if the "beam search time" (Tsearch) is known to the AP and the STA, then a simple and useful rule may be that the attempt is given (the transmission has begun) When the other end is sufficient time to direct the beam search it has, the first time after the association is received, the package ί (the AP or the STA) should be the wave that it has at the beginning of it. Before calling Cambodia, I waited for the duration of Tsearch. Current antenna technology enhances reception by using receive and/or transmit density, which can be achieved by obtaining any gain longer than 13 M289566 or providing less gain than other methods. In addition, the current antenna technology often needs to use proprietary information (custom messages) to know the antenna performance of a STA, and in the absence of this information, the APs and STAs cannot be utilized. Antenna performance to increase data rate, or range. In order to enable the smart antenna feature to operate more efficiently, information about the performance of the STA and the AP should be exchanged as described above. Furthermore, the exchange of antenna information also enables optimization during the smart antenna feature. It is possible to coordinate, for example, beam selection, beam scanning, beamforming, multiple input multiple output (hereinafter referred to as ΜΙΜΟ), and making it possible to change the beam pattern and/or antenna gain. Any other performance. A new method for implementing a smart antenna when establishing an association between a STA and an AP in a WLAN is that the modified AP transmits a beacon frame on an antenna beam. And the beacon frame is received at the STA, and the STA measures a signal quality of the beacon frame, and then the AP switches to a different antenna beam, and Repeating the method until the beacon frame has completed transmission on all of the antenna beams, and then the STA transmits the beacon frame with the highest signal quality on one of its antenna beams The AP generates an association. A similar method can also be used to send a probe to request 14 M289566 to find the frame into the STA of the AP, and the AP is then used for profit propagation on multiple antenna beams. The needle responds to the frame as a response. The system for implementing a smart antenna when the association is established in one of the STAs of the 〆 WLAN and the 七 七 AP AP includes: a beacon frame from the STA sent by the STA, wherein the beacon The frame will be used to identify the intercept of the total number of antenna beams that will be transmitted to identify the intercept of the beam on which the transmission is currently being transmitted. Another system for implementing a smart antenna when the AP is associated with one of the STAs and the 〆a ^ 鲁 in a WLAN includes: a probe request frame sent from the STA to the Ap, and a a probe response frame sent from the AP to the STA, wherein the probe request frame may include an indication of whether the STA is to scan multiple antenna beams from the AP, and The probe response frame may include a field for identifying the total number of antenna beams to be transmitted, and an intercept for identifying the beam currently being transmitted. A method for supporting the use of a smart antenna in a WLAN including an AP and a STA, initially, the AP selecting an _ antenna beam for communicating with the STA, and then, The selected beam burst will be sent from the AP to the STA, and a packet will be transmitted from the STA to the Ap, and the selected beam will be included in the packet. Information whereby the Ap system uses the selected beam to receive at least a portion of the packet. A system for supporting the use of a smart antenna in a WLAN comprising an AP and a STA, comprising a first packet and a 15th M289566 2 packet. The first packet is sent from the AP to the STA, and includes a selected beam indicator, a MAC address of the AP, and a MAC address of the STA, where the Selecting a beam indicator identifies an antenna beam selected by the AP for communicating with the STA. The second packet is sent from the STA to the AP and includes the selected beam indicator, whereby the AP is <receives by the selected beam At least a portion of the second packet 0 _ a system for exchanging smart antenna performance messages between a transmitting STA and a receiving S TA in a wireless communication system, including an antenna performance information unit (information) Element, IE), and the antenna enable IE is sent from the transmitting STA to the receiving STA before the data transmission between the transmitting STA and the receiving STA, and when used in a WLAN In the meantime, the antenna performance IE can be transmitted as part of a management frame. A method for exchanging smart antenna performance information between a transmitting STA and a receiving STA in a wireless communication system includes the following: transmitting antenna performance information from the transmitting STA to the receiving STA, determining Whether the receiving STA can support the antenna capability of the transmitting STA, if the receiving STA can support the trunking performance of the transmitting STA, adjust the setting at the receiving STA, and if When the receiving STA can support the antenna performance of the transmitting STA, the data is transmitted from the transmitting STA to the receiving STA by using the antenna performance. 289M289566. A smart antenna feature is used in a WLAN. The system includes an AP and a STA. The AP system includes a first antenna performance determining device, a first antenna performance information device connected to the first antenna performance determining device, and the first antenna performance determining device is constructed to borrow Determining the antenna performance of the AP by checking information stored in the first antenna performance information device; connecting to a first transmitter/receiver of the first antenna performance determining device, connecting a first antenna to the transmission filter/receiver; and a beam switching device connected to the transmitter/receiver of the I, and the beam switching device is configured to switch the beam of the first antenna . The SAT system includes a second antenna, a second transmitter/receiver connected to the second antenna, and the second transmitter/connector is configured to receive the antenna Stomach communication; a second antenna performance determining device connected to the ^:transmitter/receiver Λ Γ ^ + 窄 置 〆 〆 〆 天线 天线 〆 〆 〆 〆 〆 〆 〆 〆 Constructing to perform the antenna performance of the antennas received from the second antenna and the antennas that are to be taken from the second transmitter/receiver, the second day Line efficiency = the second line of performance determining device m line b匕; and the speed shirt seems to shout b is constructed to set the rhyme device to the smart antenna performance.所述 The above-mentioned STAs of the STA, the (STA) system includes the word "station" (st-η), then the name "the idler device, / "confirm" "special transmission / reception The unit, one that does not I1, has a 17 M289566 or mobile subscriber unit, a - squeak, or any other form of device that can operate in a wireless environment. As mentioned later, the term "access point", (AP) includes, but is not limited to, a base station, a node location controller, or any other form in a wireless environment. Interface device. This case will solve the problem of beam selection in passive scanning H active scanning cats, and this case is also related to a method that can be implemented in -AP and 〆STA and signal transmission, so that It is possible to use the _ smart antenna to receive packets from the STAs. The method of the user can also be implemented in the mesh node in the network structure. In addition, the case will be addressed to an AP and STA. The exchange of antenna performance information is based on the current information provided by the 802.11 standard, and the backward compatibility of the system. Passive scanning seedlings provide signal transmission and support for an AP. To transmit its beacon on multiple beams, and this can be achieved by adding two fields to the Lu WLAN beacon management frame, as shown in Figure 2, The official affiliation is referred to as an Advanced Antenna (AA) beacon frame 200. Many of the fields of the frame 200 are the same as the existing barriers defined by the 802.11 standard, and these fields are Then, the frame control 202, the duration 204, the destination address (DA) 206, the source address (SA) 208, the basic service set (BSS) identification (BSSID) 210, Sequence control 212, timestamp 214, beacon M289566 beacon interval 216, performance information 218, SSID information element (IE) 220 'supported rates IE 222 'jump Frequency hop (FH)/distribution system (DS) parameter set IE 224, contention free (CF) parameter set IE, 226, independent BSS (IBSS) parameter set IE 228' and a traffic indication map (TIM) IE 230. The first new field 232 of the frame 200 is indicative of the Lu STA, the beacon frame is in an AA letter The range of the spacing is sent n times, where N is the number of beams on which the AP will transmit the beacon, and the second new field 234 is in the identification has been used Transmitting a beam of the beacon, that is, a beam identifier, and therefore, when receiving any one of a plurality of AA beacon frames transmitted by an AP, the STA is capable of being recognized to be included in the The number of beams in the beam scan performed by ap, and it is also possible to identify different versions by looking at the beam identifier (234). ® It should be noted that the AA beacon spacing 216 can be set to the same or different value than the non-AA spacing, and in order for the system to provide user service, the AA beacon spacing It must be greater than the duration of the beam scan, so there is time left to transmit the traffic frame. This can be enforced as, for example, constructing management rules to prevent a user from constructing the AP in a manner that the beacon scan occupies most of the AA beacon spacing time. 19 M289566 In a preferred embodiment, the N aa beacon frames 200 are continuously transmitted on the day-to-day basis. This is because the user can use the DIFS (Distributed Inter-Frame Space) to be short when trying to access the wireless medium in the transmission between the two beacon frames. However, it is achieved by a large delay (X) compared to SIFS (Short Inter-Frame Space). Here, it should be noted that the AP still needs to wait for a complete DIFS when accessing the wireless medium for transmitting the first one of the N letter frames, and this is Setting an upper limit to a maximum value of the time required for the STA to scan the media when the STA has detected one of the N beacon frames notified by an AP, thereby: (N - 1 ) X (beacon duration + X) Equation 1 In other words, this avoids a STA in the case where it has not been known whether the AP has transmitted all of the N beacons, and has not decided; Between days and days • Come and scan the channel. The timing diagram of the passive scan is shown in FIG. Before the AP starts the AA beacon interval 3〇〇, it waits for a DIFS 302, and then, after the AA beacon interval is 3〇〇, the AP system transmits the first The beacon frame 304, and between the beacon frames; 3〇4, the AP will wait for the spacing χ ( 306), wherein it is shorter than the difs, and is larger than the SIFS . M289566 A method for transmitting an aa beacon frame in a passive scan. The 400 series is shown in Figure 4. At the beginning of the method 40, the v AP transmits an AA beacon frame 200 on one of the N antenna beams, and the current beam identifier 234 is set to the current beam ( Step 402), then, according to whether the AA beacon frame has been transmitted on all N beams (step 404), wherein if the AA beacon frame has been transmitted on all N beams Then, the method is finalized (step 406), and if the AA beacon frame has not been transmitted on the N beams of φ (step 404), the method waits for the spacing X (step 408). And then the antenna system switches to the next beam (step 408) and transmits the AA beacon frame 200 on the current beam, and the current beam identifier 234 is set to the current beam (Step 410), then the method continues with step 404. Here, it is to be noted that the step of switching to the next beam (step 408) may be performed before or after waiting for the interval X. Whether the STA is associated with the decision used by the AP has a specific appeal, wherein one method is to select the AP to be associated using the power level or SNR perceived on the beacon. In addition, the present case allows a STA to fully utilize the fact that the AP is already equipped with an advanced antenna system while using this method. The active scan also addresses the active scan by allowing a STA to request the AP to send a probe response on multiple beams, while this can be done by adding a new field to the WLAN probe request. The frame is achieved, and the resulting frame of 21 M289566 is shown in Figure 5, and is referred to as an AA probe request = 500. The plurality of blocks of the frame 5〇〇 are like the existing probe request frames defined by the 8〇211 standard, and the fields are including the control 502, the duration 504, the DA 506, the SA 508, BSSID 510, sequence control 512 'SSID IE 514, and support rate IE 516, and the new field of the frame 5 是 is an indication that all the beams of the AP are to be scanned by the STA (A value of YES or NO) is provided to the AP 〇I. In addition, 'two new splicing systems are added to the WLAN probe response frame, and the resulting frame is shown in Figure 6. And, is referred to as an AA probe response frame 6〇〇, and many of the blocks of the frame 6〇〇 are the same as the existing probe request frame defined by the 802.11 standard, wherein the frame The interception 6〇2-628 of 600 is the same as the interception 2〇2_228 of the frame 2〇〇. The first new interception of the frame 600 is to indicate the STA, the AA probe. The response is sent N times in the range of the AA beacon interval, where n is corresponding to the AP on which the probe will be sent back. The number of beams, and the second new block 632 is to identify the beam that has been used to transmit the AA probe response, that is, the beam identifier, and an AP equipped with an AA system. The AA probe request is responded to by sending a plurality of (N) AA probe responses to the STA. In a preferred embodiment, the N AA probe responses are transmitted continuously in time. This can be achieved by having the Ap be used to access the wireless medium between the transmissions of the two AA probes, using a delay (X) that is shorter than the SIFFS and shorter than the SIFS. . Here, it should be noted that when the AP accesses the wireless medium for transmitting the first one of the N probe responses, it still needs to wait for a DIIF, and this is Is an upper limit set to the maximum value of the time to wait for the n probe responses sent by an AP after receiving the AP, thereby: upper limit = (N - 1) X (probe response duration + X) The timing diagram of the active scan described in Equation 2 is shown in Figure 7. After the STA sends the AA probe request frame 7〇〇, the AP waits for a DIFS 702 before transmitting the first probe request frame 704, and then between the probe request frame 704 The AP waits for the inter-distance X (7〇6), where X is shorter than the difs but larger than the SIFS. One is used to transmit an AA in an active scan. The $800 method of the probe response frame is shown in Figure 8. At the beginning of the method 800, the STA sends an AA probe request frame 500, including setting the indicator 518 to scan all beams of the ap (step 802), and then, the AP Receiving the AA probe request frame and waiting for the mFs period (step 804), and then the AP transmits an AA probe response frame 600 on one of the antenna beams, and The current beam identifier 632 is set to the current beam (step 8〇6), and further, according to whether the AA probe response frame has been transmitted on all the beams, 23 M289566 is transmitted. Deciding (step 808), wherein if the AA probe response 'frame has been transmitted on all N beams, then the method terminates (step 810), and if the AA probe response frame is not yet at all When transmitting on the N beams (step 808), the method will wait for the spacing X (step 812), then the antenna system will switch to the next beam (step 812) and on the current beam. Transmitting the AA probe response frame 600, and the current beam identifier 632 It is set as the beam current (step 814), then the method 808 the next steps. Here, it is to be noted that the step of switching to the next beam (step 812) can be performed before or after the interval X to be used. In a prior art system, the decision made by a STA as to which AP is to be associated does not take into account the wireless link gain obtained by the advanced antenna structure at the AP, which means that In the RF environment in which the beacon frame and the probe response are transmitted by the APs in an omnidirectional manner, by scanning, whether passive or active, the collected data can be Linking a STA to an AP that would provide worse performance than another AP has taken into account the gains obtained from the AA system. In the present case, in consideration of the gain that the AA system will provide when transmitting the traffic frame, when the RF environment is scanned, the data collected by a STA enables which AP to be It is possible to provide an assessment of the best wireless links. Beam Indicator 24 M289566 Figure 9 is a diagram of one of the systems 9 依照 operating in accordance with the present case. The system 900 includes a first 902, a first STa (STA1) 904, and a second STA (STA 2) 906, wherein the AP 902 is in an omnidirectional beam (or mode, b〇) Transmitting on 91〇, transmitting with the sta 1 904 on a directional beam (bl) 912, and starting with the STA2 906 on a second directional beam (b2) 914 The transmission is performed, and while the omnidirectional beam 91 is capable of being received by STA 1 904 and STA 2 906 (although weakly), the directional beam 912, 914 is a preferred choice. A new field, referred to herein as a "beam indicator," is added after the Physical Layer Convergence Protocol (plcp) header sent from a STA to most of the AP's packets. For indicating which of the beams (or antennas) the AP should select, and then receiving the remaining portion of the packet (MAC protocol data unit (PDU)), where Note that the beam indicator does not need to be sent from the STA to the AP along with all the packets, because some packets (eg, an acknowledgment (ACK) or a CTS) are expected Receiving from a special STA by the AP, if the AP knows in advance which STA will send the next packet, it can select the best beam for receiving the packet. Moreover, the beam indicator is not necessary, but the beam indicator can also be transmitted among the packets.

第10圖係為一包括一 STA所發送之所述波束指示符 資訊的幀格式1000的圖式。所述幀1000係為一 PLCPPDU 25 M289566Figure 10 is a diagram of a frame format 1000 including the beam indicator information transmitted by a STA. The frame 1000 is a PLCPPDU 25 M289566

(PPDU)的一修飾版本,以及係包括一 PLCP前導碼(PLCP ' preamble) 1002,一 PLCP &頭 1004 ’ 一波束指示符搁位 1006,以及一 MAC 幀 1〇08 ° 此資訊乃是藉由所述STA傳送所述封包1 〇〇〇 ’以最 小的資料速率,而加以提供。所述AP係會使用其全方向性 天線來解碼所述PLCP標頭1004以及所述波束指示符欄位 1006,並且,在解碼所述波束指示符攔位1〇〇6之後,所述 AP係可以在不需要知道對於發送所述封包1000之所述 春STA的辨識的情形下,選擇相對應的波束來接收所述封包 1008的剩餘部分。 所述波束指示符1 〇⑽係為一介於〇以及Namax之間 _ 的整數,其中,Namax係為所述AP可使用之波束的最大數 量,而Namax的數值則可以是對相容於所述系統之所有裝 置皆為固定,或是在信標幀中、在探針回應幀中、或是其 他管理幀中藉由所述AP而進行信號發送,較佳地是,Namax 係為一相對而言較小的整數(亦即,7或是15 ),以便限制 籲所述波束指示符欄位1〇〇6所需要之額外位元的數量,並 且,所述數值的其中之一係較佳地預留為所述STA不知道 要在所述波束指示符攔位1006中使用什麼數值之狀況時的 一預設值(default value),而當使用此預設值,所述Ap就 可以簡單的使用未私向在一特殊方向中(例如,一全方向 性型態)的波束。 所述STA乃會在AP至STA的信號發送之前,以所 述AP所提供的貧訊作為基礎,而決定要在所述波束指示符 M289566 才:射立1006中使用哪一個數值。此信號發送所需要的資訊乃 疋由所述波束和不符其本身以及所述AP以及STA MAC位 址所構成,可選擇地是,—“年齡限制(age limit),,係可 、、力加以指示所述STA在所述波束指示符資訊被視 為不可罪、或是無效之外的一最大時間,並且,所述年齡 限制乃可以疋―固定的數值,或者可以是來自信標幅、探 針回應巾貞、或是其他管理幢的信號發送,而在務候的例子 中’所述年齡限制則是可以藉由AP、並以對STA移動性之 鲁考里作為基礎而進行設定。 鲁 所述AP將所述波束指示符資訊傳輸至所述STA乃具 有數種仏號發送的可能性,而其中—個方法則是,所述Ap 會發送僅包含此目的(AP以及STA定址,波束指示符,可 選擇之年齡限制)所需要之資訊的一特殊封包(一波束指 不符貧訊)。第11圖係為一 Ap所發送之一波束指示符資訊 1100的圖式,其中,所述資訊1100係包括一波束指示符攔 位1102,一 AP位址攔位Π04,一 STA位址欄位1106,以 隹及-可選擇性年齡限制欄位11〇8,在此,所述欄位11〇2 — · 1108的順序乃是作為示範之用,亦即,所述資訊1100的所 述欄位1102—H08係可以有任何的順序。 在一單點傳播(unicast)的情況中,較佳地是,所述 STA會往回發送一 ACK,因此,若是所述STA並未連續地 接收所述封包時,所述AP就可以重新傳送所述封包1100, 此外,若是所述AP必須為了數個STAs而更新所述波束指 27 M289566 示符時,則其係可以將一包含這些STAs分別之波束指示符 數值的多點傳播資訊(multicast message)發送給它們。 所述AP發送信號的另外一種可能性則是將所述所需 要的資訊插入、或揹負至一包含其他指定所述STA之資料 的封包之上,而所述資訊則是可以增加在所述PLCP標頭之 後,在所述MAC PDU之後,或是在所述MAC標頭中作為 另一個欄位。弟12a圖以及第12b圖即為包含一 AP所發送 之所述波束指示符資訊的幀格式1200,1220的圖式,而所 籲述幀12〇0,122〇則為所述PPDU的修飾版本。 鲁 第12a圖係顯示將所述波束指示符資訊增加在所述 PLCP標頭之後的一幀1200,所述幀1200包括了一 PLCP 前導1202,一 PLCP標頭1204,一波束指示符欄位12〇6, 一 AP位址欄位1208,一 STA位址攔位1210,一可選擇性 年齡限制欄位1212,以及一 MAC幀1214。 第12b圖則是顯示一將所述波束指示符資訊增加在 所述MAC幀1214之後的幀1220,而所述幀1220的攔位則 泰是與所述幀1200的所述欄位相同,其中的不同僅在於所述 鲁 攔位的順序。 另一種發送信號的可能性則是增加一用以指示所述 波束指示符資訊是否存在的旗標,而所述旗標則是使得所 述AP可以不需要在每一個朝向所述STA的封包中都發送 所述波束指示符資訊,亦即,所述波束指示符資訊係可以 週期性地(舉例而言,每五秒一次),及/或以事件驅動作為 28 M289566 基礎(舉例而言,以在所述AP處傳送至某一 STA之波束 中的改變作為基礎)而進行發送。 第13a圖以及第13b圖係為替代幀格式13〇〇,1320 的圖式,其係包括 AP所發送之所述波束指示符資訊,並 合併有所述波束指示符資訊旗標,且所述幀1300,1320乃 是所述PPDU的修飾版本。第13a圖係顯示一幀1300,包 括一 PLCP前導1302,一 PLCP標頭1304,一波束指示符 資訊旗標1306,一波束指示符攔位1308,一 ap位址攔位 隹1310,一 STA位址攔位Π12,一可選擇性年齡限制欄位肇 1314,以及一 MAC幀1316,其中,所述旗標13〇6僅有在 所述波束指示符資訊(欄位1308 - 1314)若被提供在所述 傾1300之中時才會進行設定。 第13b圖則是顯示一將所述波束指示符資訊增加在 所述MAC幀1316之後的幀1320,而所述幀1320的攔位則 是與所述幀1300的所述欄位相同,其中的不同僅在於所述 攔位的順序。 φ 所述STA係會在所述STA至AP之傳送(封包100〇) ® 中的所述波束指示符欄位1006裡填上由所述AP為了此 STA所發送的最新波束指示符(1102,1206,1308),而這 是在此最新的信號發送若是於其年齡限制屆期之前即已被 接收的時候,否則,所述STA就會將所述波束指示符欄位 1006填上所述預設值,正如上述,再者,對所述波束指示 符的每一個數值而言,所述AP乃會知道其波束(或天線) 29 M289566 的哪一個是與所述指示符相對應的,而所述STA並不需要 x 知道此相應性。 > 第I4圖係為一種用於藉由一 AP以及一 STA來傳送 智慧天線資訊之方法1400的流程圖。於所述方法1400的 一開始,所述AP係會選擇一用於與所述STA溝通的波束, 以及選擇對應於所述所選擇波束的波束指示符(步驟 1402),在此’雖然非為強制,但較位地是所述AP選擇會 讓在其接收器端之所述信號位準、或所述信號干擾比 _ ( signal-to-interference ratio,SIR)最大化的波束,而所述 AP則是可以藉由各式各樣的方法來學習哪一個波束對一特 殊的STA來說會最大化所述SIR。 舉例而言,所述AP在接收預期來自一特別之STA 所之封包時,乃可以嘗試不同的波束,並且,可以挑選造 * 成所述已接收信號之最佳品質的波束,而所預期之封包的 實例則是包括··緊接在一資料封包至一特別STA之傳送之 後的一 ACK,以及緊接在一 RTS封包至一特別STA之傳送 籲之後的一 CTS封包’再者,藉由所預期的封包’所述STA 並沒有必要將所述波束指示符欄位增加在所述PLCP 標頭1004之後,因為所述AP係預期所述封包會藉由某一 STA而進行發送,並且因此,所述AP將會已經知道要使用 哪一個波束。 接著,所述AP會將所述波束指示符資訊發送至所述 STA (步驟1404),其中,所述波束指示器資訊(正如前面 較清楚解釋的)係包括所述波束指示符,所述AP之位址, • M289566 所述STA之位址,以及一可選擇的年齡限制作為所述波束 指示符資訊的終結,此外,所述方法14〇〇乃是假設所述年 齡限制有出現在所述波束指示符資訊之中。 然後,乃會做出所述波束指示符資訊是否已經被達 到,亦即,所述波束指示符資訊是否仍然有效,的決定(步 驟1046),若是所述年齡限制尚未達到時,則所述STA就 加以設定為會將一封包的所述波束指示符傳送至所述所選 擇的波束(步驟1048),然後,所述STA會在所述所選擇 參的波束上發送具有所述波束指示符資訊的封包(步驟 1410 )’所述AP開始在所述全方向性波束上接收來自所述 STA的所述封包(步驟1412),然後,所述AP會解碼被包 含在所述封包之中的所述波束指示符資訊,並且將所述天 線切換至所述所選擇的波束,以接收所述封包的剩餘部分 (步鄉1414 )’接著’所述方法終止(步驟1416 )。 若是所述波束指示符資訊的所述年齡限制已經達 成,邡即,所述波束指示符資訊不再是有效時(步驟1406) ’ •則所述STA即加以設定為一封包的所述波束指示符會被傳 送至所述全方向性波束(或型態,步驟1420),接著,所述 STA會於所述全方向性波束上發送所述封包(步驟H22) ’ 所述AP會在所述全方向性波束上接收所述封包(少麟 1424),然後,所述方法終止(步驟1416)。在此,因為戶斤 述封包是在所述全方向性波束上進行傳送(由於來自所述 STA的所述封包並未包括所述波束指示符資訊、或是所述 31 M289566 STA已經將所述波束指示符設定為所述預設值),因此,所 述AP並不需要改變其天線波束。 第15圖係顯示所述方法1400的一實例。在此實例 中,其係假設所述AP 1500已經決定與STA 1 1502以及STA 2 1504溝通之最佳波束係分別為bl以及b2(如第9圖中所 示)。 第15圖係顯示事件的一可能順序,其中,STA 1 1502,STA 2 1504,以及所述AP1500係會彼此進行溝通。 _首先,所述AP意欲於傳送一封包至STA 1 ’而在獲得對媒 體的存取(步驟1510)之後,所述AP即切換至波束bl (步 驟1512 ),並且將一資料傳送至STA 1 ’包括一波束指示符 資訊,ϋ伴隨著所述波束指示符(bl )以及使用此波束指 示符的〆年齡限制(五秒鐘,步驟1514 )’接者’ STA 1將 一 ACK發送至所述Ap(步驟1516 ),而從這個時間開始(以 及至從這個時間起的五秒鐘),STA 1得知,其若必須傳送 一封包至所述AP ’則其應所述要將所述波束指示符攔位 _ ( 1006)設定為bl (步驟1518),而在自STA 1接收所述 ACK之後,所述AP就會將其天線切換至一全方向性型態 (b0 ’ 步驟 1520 )。 接下來,所述AP再次獲得對所述媒體的存取(步驟 1522),並且會切換至波束b2 (步驟1524),以將一封包傳 送至STA 2,包括一波束指示符資訊,並伴隨著所述波束指 示符(b2)以及使用此波束指示符的一年齡限制(五秒鐘, 步驟1526),接著,STA2會將一 ACK發送至所述AP (步 M289566 驟1528),並且,STA 2係得知,為了要將任何封包(除 了一 ACK、或一 CTS)傳送至所述Ap,其就應所述要在從 這個時間起的五秒鐘内將所述波束指示符欄位( 1006)設 定為b2 (步驟1530),然後,在自STA2接收所述ACK之 後,所述AP就會將其天線切換至一全方向性型態(b〇,步 驟 1532)。 接著,STA 1獲得對所述媒體的存取(步驟1534), 並會將一資料封包傳送至所述AP ’且所述波束指示符欄位 _ ( 1006)乃加以設定為bl (假設流逝的時間少於五秒鐘, 步驟1536),再者,於解碼所述波束指示符攔位之後,所述 AP會立即地切換至波束Μ (步驟1538),以解碼所述封包 的剩餘部分(步驟1540),而在所述封包接收終止之後,所 述ΑΡ則是會將一 ACK發送至STA 1 (步驟1542),並將其 天線切換至所述全方向性型態(b0,步驟1544)。 然後,STA 2獲得對所述媒體的存取(步驟1546) ’ 並會將一資料封包傳送至所述AP,且所述波束指示符攔位 • ( 1006)乃加以設定為b2 (假設流逝的時間少於五秒鐘, 步驟1548),再者,於解碼波束指示符攔位之後,所述AP 會立即地切換至波束b2 (步驟1550),以解碼所述封包的 剩餘部分(步驟1552),而在所述封包接收終止之後,所述 AP則是會將一 ACK發送至sta 1 (步驟丨554),並將其夭 線切換至所述全方向性型態(b〇,步驟1556)。A modified version of (PPDU), and includes a PLCP preamble 1002, a PLCP & head 1004 'one beam indicator shelf 1006, and a MAC frame 1〇08 °. This information is borrowed. The packet 1 〇〇〇' transmitted by the STA is provided at a minimum data rate. The AP system will use its omnidirectional antenna to decode the PLCP header 1004 and the beam indicator field 1006, and after decoding the beam indicator block 1〇〇6, the AP system The corresponding beam may be selected to receive the remainder of the packet 1008 without the need to know the identity of the spring STA transmitting the packet 1000. The beam indicator 1 〇(10) is an integer between 〇 and Namax, where Namax is the maximum number of beams that the AP can use, and the value of Namax can be compatible with the All devices of the system are fixed, or are signaled by the AP in a beacon frame, in a probe response frame, or in other management frames. Preferably, Namax is a relative a smaller integer (ie, 7 or 15) to limit the number of extra bits required to invoke the beam indicator field 1〇〇6, and one of the values is preferred. Predetermined as a default value when the STA does not know what value to use in the beam indicator block 1006, and when using the preset value, the Ap can be simple The use of a beam that is not privately directed in a particular direction (eg, an omnidirectional pattern). The STA determines which value to use in the beam indicator M289566: illuminating 1006 based on the poor information provided by the AP before the AP to STA signal is transmitted. The information required for the transmission of this signal consists of the beam and the discrepancies and the AP and STA MAC addresses, optionally, - "age limit", "system", and force Instructing the STA to be at a maximum time other than the beam indicator information is considered to be innocent or invalid, and the age limit may be a fixed value, or may be from a beacon, The needle responds to the frame, or the signalling of other management buildings, and in the case of the case, the age limit can be set by the AP and based on the Lukeley of the STA mobility. The AP transmits the beam indicator information to the STA with the possibility of several nickname transmissions, and one of the methods is that the Ap will only transmit the destination (AP and STA addressing, beam) Indicator, optional age limit) A special packet of information required (a beam refers to a poor message). Figure 11 is a diagram of a beam indicator information 1100 sent by an Ap, wherein Information 1100 Series Including a beam indicator block 1102, an AP address block Π04, a STA address field 1106, and a selectable age limit field 11〇8, where the field is 11〇2 The sequence of 1108 is used as an example, that is, the fields 1102-H08 of the information 1100 may be in any order. In the case of a unicast, preferably The STA sends an ACK back. Therefore, if the STA does not continuously receive the packet, the AP may retransmit the packet 1100. In addition, if the AP has to use several STAs. When the beam indicator 27 M289566 is updated, it can send a multicast message containing the respective beam indicator values of the STAs to them. Another possibility for the AP to send a signal Then inserting or carrying the required information onto a packet containing other data specifying the STA, and the information may be added after the PLCP header, after the MAC PDU Or in the MAC header Another field, brother 12a and 12b, is a diagram of a frame format 1200, 1220 containing the beam indicator information sent by an AP, and the frame 12 〇 0, 122 吁 is said to be A modified version of the PPDU is shown. Lu 12a shows a frame 1200 that adds the beam indicator information to the PLCP header. The frame 1200 includes a PLCP preamble 1202, a PLCP header 1204, and a Beam indicator field 12〇6, an AP address field 1208, a STA address block 1210, a selectable age limit field 1212, and a MAC frame 1214. Figure 12b is a display showing a frame 1220 after the beam indicator information is added after the MAC frame 1214, and the block 1220 is in the same position as the field of the frame 1200, wherein The only difference is the order of the lugs. Another possibility to transmit a signal is to add a flag indicating whether the beam indicator information exists, and the flag is such that the AP may not need to be in every packet facing the STA. Transmitting the beam indicator information, that is, the beam indicator information may be periodically (for example, every five seconds), and/or driven by events as the basis of 28 M289566 (for example, The transmission is performed at a change in the beam transmitted to the STA at the AP as a basis. 13a and 13b are diagrams of alternate frame formats 13〇〇, 1320, including the beam indicator information transmitted by the AP, and incorporating the beam indicator information flag, and the Frames 1300, 1320 are modified versions of the PPDU. Figure 13a shows a frame 1300 comprising a PLCP preamble 1302, a PLCP header 1304, a beam indicator information flag 1306, a beam indicator block 1308, an ap address block 隹 1310, a STA bit. An address block Π12, a selectable age limit field 肇 1314, and a MAC frame 1316, wherein the flag 13 〇 6 is only provided if the beam indicator information (fields 1308 - 1314) is provided The setting is made only when the tilt is 1300. Figure 13b is a frame 1320 showing that the beam indicator information is added after the MAC frame 1316, and the block 1320 is the same as the field of the frame 1300, wherein The difference is only in the order of the blocks. φ the STA will fill in the beam indicator field 1006 in the STA-to-AP transmission (packet 100〇) ® with the latest beam indicator sent by the AP for the STA (1102, 1206, 1308), and this is when the latest signal transmission has been received before the age limit period, otherwise the STA will fill the beam indicator field 1006 with the pre- The value, as described above, further, for each value of the beam indicator, the AP will know which of its beams (or antennas) 29 M289566 corresponds to the indicator, and The STA does not need x to know this correspondence. > Figure I4 is a flow diagram of a method 1400 for transmitting smart antenna information by an AP and a STA. At the beginning of the method 1400, the AP system selects a beam for communicating with the STA, and selects a beam indicator corresponding to the selected beam (step 1402), where Mandatory, but more intimately, the AP selects a beam that maximizes the signal level at its receiver or the signal-to-interference ratio (SIR) The AP can learn which beam will maximize the SIR for a particular STA by a variety of methods. For example, the AP may try different beams when receiving a packet expected from a particular STA, and may select a beam that is the best quality of the received signal, and is expected An example of a packet is an ACK followed by a transmission of a data packet to a special STA, and a CTS packet immediately following the transmission of an RTS packet to a special STA. The expected packet 'the STA does not have to add the beam indicator field after the PLCP header 1004 because the AP expects the packet to be sent by a certain STA, and thus The AP will already know which beam to use. Next, the AP sends the beam indicator information to the STA (step 1404), wherein the beam indicator information (as explained more clearly above) includes the beam indicator, the AP Address, M289566, the address of the STA, and an optional age limit as the end of the beam indicator information. In addition, the method 14 is based on the assumption that the age limit appears in the Among the beam indicator information. Then, a determination is made as to whether the beam indicator information has been reached, that is, whether the beam indicator information is still valid (step 1046), if the age limit has not been reached, then the STA Arranging to transmit the beam indicator of a packet to the selected beam (step 1048), and then the STA transmits the beam indicator information on the selected reference beam Packet (step 1410) 'The AP begins receiving the packet from the STA on the omnidirectional beam (step 1412), and then the AP decodes the location included in the packet The beam indicator information is described and the antenna is switched to the selected beam to receive the remainder of the packet (Step 1414) 'Next' the method terminates (step 1416). If the age limit of the beam indicator information has been reached, that is, when the beam indicator information is no longer valid (step 1406), the STA is set to the beam indication of a packet. The symbol will be transmitted to the omnidirectional beam (or type, step 1420), and then the STA will send the packet on the omnidirectional beam (step H22) 'the AP will be in the The packet is received on the omnidirectional beam (Leo Lin 1424), and then the method terminates (step 1416). Here, because the packet is transmitted on the omnidirectional beam (since the packet from the STA does not include the beam indicator information, or the 31 M289566 STA has already described The beam indicator is set to the preset value), and therefore, the AP does not need to change its antenna beam. Figure 15 shows an example of the method 1400. In this example, it is assumed that the AP 1500 has decided that the best beam systems to communicate with STA 1 1502 and STA 2 1504 are bl and b2, respectively (as shown in Figure 9). Figure 15 shows a possible sequence of events in which STA 1 1502, STA 2 1504, and the AP 1500 are in communication with each other. First, the AP intends to transmit a packet to the STA 1 ' and after obtaining access to the medium (step 1510), the AP switches to the beam bl (step 1512) and transmits a profile to the STA 1 'Includes a beam indicator information, ϋ accompanied by the beam indicator (bl) and the age limit using the beam indicator (five seconds, step 1514) 'setter' STA 1 sends an ACK to the Ap (step 1516), and from this time (and to five seconds from this time), STA 1 knows that if it has to transmit a packet to the AP' it should be said to be the beam The indicator block _ (1006) is set to bl (step 1518), and after receiving the ACK from STA 1, the AP switches its antenna to an omnidirectional pattern (b0 'step 1520). Next, the AP again obtains access to the media (step 1522) and switches to beam b2 (step 1524) to transmit a packet to STA 2, including a beam indicator information, accompanied by The beam indicator (b2) and an age limit using the beam indicator (five seconds, step 1526), then STA2 will send an ACK to the AP (step M289566 step 1528), and STA 2 It is known that in order to transmit any packet (except an ACK, or a CTS) to the Ap, the beam indicator field (1006) should be said to be within five seconds from this time. ) is set to b2 (step 1530), and then, after receiving the ACK from STA2, the AP switches its antenna to an omnidirectional pattern (b〇, step 1532). Next, STA 1 obtains access to the media (step 1534) and transmits a data packet to the AP' and the beam indicator field _ (1006) is set to bl (assuming an lapse The time is less than five seconds, step 1536), and further, after decoding the beam indicator block, the AP immediately switches to beam Μ (step 1538) to decode the remainder of the packet (steps) 1540), and after the packet reception is terminated, the UI sends an ACK to STA 1 (step 1542) and switches its antenna to the omnidirectional pattern (b0, step 1544). STA 2 then gains access to the media (step 1546)' and transmits a data packet to the AP, and the beam indicator blocker (1006) is set to b2 (assuming an lapse The time is less than five seconds, step 1548), and further, after decoding the beam indicator block, the AP will immediately switch to beam b2 (step 1550) to decode the remainder of the packet (step 1552) And after the packet reception is terminated, the AP sends an ACK to sta 1 (step 554), and switches its squall to the omnidirectional pattern (b〇, step 1556) .

應所述要注意的是,若是所述波束指示符資訊的所述 年齡限制已經屆滿時(在此例子中為五秒鐘),則一 STA 33 M289566 • (STA1、或是STA2)就會將所述波束指示符攔位( 1006) ·:加以設定為b〇 (所述預設值)。“ /主1 本案係使得讚不需要造成任何重大不便的情形下可 以於所述AP處利用所述智慧天線’並且’在所述PLCP標 頭中增加所述波束指示符欄位據不會造成過量的冗餘作 •業,因3為可能波束的數量通常是邛以被限制為八、或是更 ^ (例如,對所述波束指示符欄位而言,三、或四個位元)。 為了向後相容的目的,所述PLCP標頭的一個攔位係 籲可以被赋予^一新的數值’以用於傳送自貫施本案之STAs的 鲁 封包,因此,所述AP就可以決定一輸入的封包是否已經傳 送自實施本案的一 STA,舉例而言,在所述PLCP標頭之 “服務(service)’’欄位中,目前所保留之位元的其中之一就 可以被用以指示所述STA是否實施了本案(,以及因此, 是否將會有一波束指示符攔位位在所述PLCP之後),若是 答案為否時,則所述AP就會知道其不應所述預期在所述 PLCP標頭之後的波束指示符攔位,而可以簡單地使用所述 · _全方向性型態來解碼所述封包的剩餘部分。 本案亦可以應用在一網狀節點容易受到來自多於一 個之其他網狀節點的封包之影響的一網狀架構例子之中。 在所述例子中…網狀_點储演—STA以及—Ap的角 色,如上所述,此即表不,一網狀節點A乃會利用所述網 狀節點B已事先發送信號至網狀節點a之所述波束指示符 的數值,而在傳送至另-個網狀節點B時使用所述波束指It should be noted that if the age limit of the beam indicator information has expired (in this example, five seconds), then one STA 33 M289566 • (STA1, or STA2) will The beam indicator block (1006) is set to b (the preset value). "/The main 1 case is such that the smart antenna can be utilized at the AP without any significant inconvenience, and the addition of the beam indicator field in the PLCP header will not result in Excessive redundancy, because the number of possible beams is usually limited to eight, or more (for example, three or four bits for the beam indicator field) For backward compatibility purposes, an interception of the PLCP header can be assigned a new value 'for the Lu packets of the STAs transmitted from the application, so the AP can decide Whether an incoming packet has been transmitted from a STA implementing the present case, for example, in the "service" field of the PLCP header, one of the currently reserved bits can be used. To indicate whether the STA has implemented the case (and, therefore, whether there will be a beam indicator block bit after the PLCP), if the answer is no, then the AP will know that it should not be expected Beam finger after the PLCP header Fu stopped position, but may simply use the omni-directional patterns · _ decoding the remaining portion of the packet. The present invention can also be applied to an example of a mesh architecture in which a mesh node is susceptible to packets from more than one other mesh node. In the example... the role of the mesh_point storage-STA and the -Ap, as described above, this means that a mesh node A will use the mesh node B to send a signal to the mesh in advance. The value of the beam indicator of node a, and the beam finger is used when transmitting to another mesh node B

示符攔位,相反地,·節點B則是會湘所述網狀節點A 34 M289566 已事先發送信號至網狀節點B之所述波束指示符的數值, 而在傳送至網狀節點A時使用所述波束指示符攔位。 作為在所述plcp標頭之後具有一波束指示符欄位 的替代,所述STA係可以將其位址增加在所述pLCP標頭 之後,不過,此並非為一有致率的解決方法,因為所述STA 位址,相較於所述波束指示符的三、或四個位元,乃有48 個位元長。另外一種替代方案是,以所述AP根據關聯性及 /或之後較高層的信號發送而指派之到達所述STA的一任意 _ STA索引來取代所述波束指示符欄位,依據相關聯之STAs 鲁 的最大數量,所述STA索引係可以相對而言較短(其最大 值少於十個位元),而所述AP則是會進行查詢,並將所述 當前的最佳波束用於所述前導中所具體载明的所述STA索 引,在此,所述AP並不需要在每一個AP至STA的封包中 都接著將一波束指示符發送至所述STA,但將會有更多個 額外位元落在所述PLCP前導之後。 資訊 _ -效能資訊欄位1600,正如在一信標巾貞,-關聯請· 求幀,一關聯回應幀,以及一探針回應幀中所使用的一樣, 係具有如第16圖所示的一些保留位元。所述效能資訊攔位 WOO係會包括一擴展服務集合(extended service set,ESS ) 次攔位1602,一 IBSS次欄位1604,一無競爭(CF)可輪 詢(pollable)次欄位1606,一 CF輪詢請求次欄位1608, 一隱私次欄位1610,以及一些保留的位元1612。在802.11 35 .M289566 標準之中,所述次欄位1602 - 1610的每一個係為一個位元 長’並且’係具有11個保留位元1612。 本案係藉由將所述保留位元的其中之一作為一指示 天線效能資訊是否將會進行傳送的旗標,而將所述保留位 元1612的其中之一利用於傳送天線效能資訊,此外,若 疋所述天線效能資訊旗標係加以設定時,則—個天線之效 能的詳細内容則會是依附於所述封包之末端的—額外迅的 部分。 、 所述天線效能資訊IE係可以被包含成為—關聯請求鲁 幀、一關聯回應幀、一探針請求幀、以及一探針回應幀的 部分,而一個包含此新IE之關聯請求幀2〇〇的一部份的實 例則是顯示於第17圖之中,所述幀17〇〇係包括一效能資 A攔位 1702,一傾聽間距攔位(Hsten intervai fWd) 、, - ssidiE 1706’ 一支援速率IE17〇8,以及一天線效能正 1710,或者,二者擇一地,所述天線效能m 171〇係可以增 加到任何的管理幀’例如,一重新關聯請求,—重新關耳; 回應或疋-信標’之上、增加到任何控制鴨之上、或是# 增加至資料封包之上。而在一較佳實施例之中,所述天線 效能IE 1710則是以一管理ψ貞的形式來進行發送,再者,若 是所述天線效能m 171〇被增加至所述探針請求巾貞以及所 述採針回應巾貞之上時,則—STA就可以在起始—關聯於一 AP的私序之前先行使用此資訊。 、所述天線效能IE 1710的詳細内容係顯示於第8圖之 中’並且’其係包括,但不限於,一天線技術搁位18〇2, 36 M289566 一些支援波束欄位1804,一用以指示在所述pLCp標頭之 後、傳送天線資料之支援的攔位1806,一傳遞技術攔位 1808,一用以指示天線測量信號發送之支援的攔位181〇, 以及一用以指示多個輸入之支援的欄位1812,此外,額外 的天線效能資訊係亦可以被包括在所述IE171〇之中。、 在一實施例中,待交換資訊的最大量乃會包括所述天 線技術襴位1802,而剩下的所述攔位則為可選擇的,再者, 一旦所述天線技術形式係為已知的時候,其亦有可能擷取 _所述剩下的欄位(亦即,攔位18〇4 — 1812)。 处—在一側(AP或是STA)接收了來自傳送側的天線效 能貧訊之後,所述接收侧乃會調整用於傳送及/或接收的局 部設定,例如,所使用的天線數量,分集的方法We灿 method),用於傳送/接收的智慧天線技術,以及額外的天 測量。 、 ^ 若是發生所述接收側無法支援所述傳送侧的天線 癱能的時候,朗述傳送側將會無法使用特殊的天線特徵^ 某些天線技術僅有在所述傳送側以及所述接收側兩者 夠利用所述技術的時候才能正確地進行操作,其中的〜^ 即為MM0技術,其僅在兩側都獲得支援的時候才能運作固 第19圖係顯示一種用於交換天線效能資訊的方 1_。而為了達到討論所述方法測的目的,係加田 戶^述名詞“傳送STA,,以及“接收STA,,,不過,要注j =所述傳送STA以及所述接收STA兩者都可以是 或疋STA,因此,天線效能資訊的交換,無論是以哪個 M289566The indicator is blocked. Conversely, the node B is the value of the beam indicator that the mesh node A 34 M289566 has previously sent a signal to the mesh node B, and is transmitted to the mesh node A. The beam indicator is used to block. As an alternative to having a beam indicator field after the plcp header, the STA may add its address after the pLCP header, however, this is not a probable solution because The STA address is 48 bits long compared to three or four bits of the beam indicator. Another alternative is to replace the beam indicator field with an arbitrary _ STA index assigned by the AP to the STA according to the association and/or subsequent higher layer signaling, according to the associated STAs The maximum number of ru, the STA index can be relatively short (the maximum value is less than ten bits), and the AP will query and use the current best beam for the The STA index specifically mentioned in the preamble, where the AP does not need to send a beam indicator to the STA in each AP to STA packet, but there will be more An extra bit falls after the PLCP preamble. Information _ - The performance information field 1600, as in a beacon frame, - associated request frame, an associated response frame, and a probe response frame, as shown in Figure 16. Some reserved bits. The performance information interception WOO system includes an extended service set (ESS) secondary block 1602, an IBSS secondary field 1604, and a non-contention (CF) pollable secondary field 1606. A CF poll request subfield 1608, a privacy subfield 1610, and some reserved bits 1612. In the 802.11 35.M289566 standard, each of the sub-fields 1602 - 1610 is one bit long ' and ' has 11 reserved bits 1612. In the present case, one of the reserved bits 1612 is utilized for transmitting antenna performance information by using one of the reserved bits as a flag indicating whether antenna performance information is to be transmitted. If the antenna performance information flag is set, then the details of the performance of the antenna will be the extra fast part attached to the end of the packet. The antenna performance information IE may be included as part of an association request lue frame, an associated response frame, a probe request frame, and a probe response frame, and an associated request frame containing the new IE. An example of a portion of the frame is shown in FIG. 17, and the frame 17 includes a performance A block 1702, a listening interval block (Hsten intervai fWd), and - ssidiE 1706' Support rate IE17〇8, and an antenna performance positive 1710, or alternatively, the antenna performance m 171 can be added to any management frame 'eg, a re-association request, re-close the ear; response Or 疋-beacon' above, add to any control duck, or # increase to the data packet. In a preferred embodiment, the antenna performance IE 1710 is transmitted in the form of a management port, and if the antenna performance m 171 is added to the probe request frame, And when the needle is responded to the frame, then the STA can use this information before starting - associated with the private sequence of an AP. The details of the antenna performance IE 1710 are shown in FIG. 8 'and' includes, but is not limited to, an antenna technology shelf 18〇2, 36 M289566 some support beam fields 1804, one for A guard 1806 indicating the support of the transmit antenna data after the pLCp header, a transfer technology block 1808, a stop 181 for indicating support of the antenna measurement signal transmission, and a command to indicate multiple inputs The supported field 1812, in addition, additional antenna performance information may also be included in the IE171. In an embodiment, the maximum amount of information to be exchanged may include the antenna technology unit 1802, and the remaining blocks are selectable, and once the antenna technology form is When it is known, it is also possible to capture the remaining fields (ie, the barriers 18〇4-1812). - After one side (AP or STA) receives the antenna performance from the transmitting side, the receiving side adjusts the local settings for transmission and/or reception, for example, the number of antennas used, diversity The method We Can method), the smart antenna technology used for transmission/reception, as well as additional day measurements. ^ If the receiving side cannot support the antenna function of the transmitting side, the transmitting side will not be able to use the special antenna feature. ^ Some antenna technologies are only on the transmitting side and the receiving side. The two can use the technology to operate correctly. The ^^ is the MM0 technology, which can only be operated when both sides are supported. The 19th system shows a kind of information for exchanging antenna performance. Party 1_. In order to achieve the purpose of the method of the discussion, it is said that the words "transfer STA," and "receive STA,", however, note that j = both the transmitting STA and the receiving STA may be or疋STA, therefore, the exchange of antenna performance information, no matter which M289566

方向,乃可以發生在一 AP以及一 之間。 STA之間、或是兩個STAs 於所述方法1900的- 始,所述傳送STa係會將其 天線效能資訊發送至在-天線效能正之中的所述接收sm (步驟1902),輯述接收STA會接收所塊天線效能压(步 驟1904),並乃會決定其是否可以支援所迷所請求的天線效 能,若是所賴收STA可以支賴述傳壤STA的所述天線 =能時(步驟1906),則所述接收STA就會調整其設定來 鲁掌控所述傳送STA的天線效能(步驟19〇8),並且,所述 接收STA乃會將有關其天線效能的一確認發送至所述傳送 STA (步驟 191〇)。 在所述方法1900的一替代實施例之中,所述確認乃 會在所述接收STA調整其設定之前先行被發送至所述傳送 STA (亦即,步驟1908以及1910彼此轉換),而在此資訊 乃疋所述接收STA之天線效能的一確認的同時,其並非必 八二疋 ACK信號’若是所述接收STA具有一些,但不是所 鲁有都是,所述傳送STA的所述效能時,則就會發生效能之 間協商’以達成一待使用效能的共同集合(common set)。 在一較佳實施例之中,所述所使用的效能將會是屬於兩個 STAs的較小效能集合。 所述傳送STA利用所述已溝通的天線效能而開始進 行傳送(步驟1912),然後,所述方法終止(步驟1914)。 若是所述接收STA並不支援所述傳送STA的天線效能時 (步驟1906),則所述接收STA就會將其並不具有所述所 38 M289566 請求之天線效能的情形通知所述傳送STA (步驟1916),所 以,所述傳送STA就會在不使用所述所請求之天線效能的 情形下開始進行傳送(步驟1918),然後,所述方法終止(步 驟 1914) 〇 第20圖係為一種用於在一傳送STA 2002以及一接收 STA 2004之間交換天線效能資訊的替代方法2000的流程 圖。所述傳送STA 2002係會將其天線效能資訊發送至所述 接收STA 2004 (步驟2010),所述接收STA 2004會將其天 籲線效能資訊發送至所述傳送STA 2002 (步驟2012),在此, 要注意的是,步驟2010以及2012係可以以相反的順序執 行,亦即,步驟2010以及2012的順序並非關鍵,只要所 述天線效能資訊在所述傳送STA 2002以及所述接收STA 2004之間可以進行交換即可,可選擇地是,所述傳送STA 2002以及所述接收STA 2004係可以協商天線效能,以發現 一共同天線效能集合、或者可以交換測量資訊(步驟 2014),而此可選擇的步驟則是可以被使用來精鍊所使用之 天線特徵集合。 在所述天線資訊的交換(步驟2010,2012)以及任 何額外的資訊交換(步驟2014)之後,所述傳送STA 2002 以及所述接收STA 2004兩者都會以受到局部支援的所述天 線效能作為基礎而局部地決定要使用哪一個天線特徵(步 驟 2016,2018)。 39 M289566 在天線妹能資訊的傳輸已經就WLAN方面而進行敘 述的同時,此穆概念的原則也同樣地可以應用於任何形式 的無線通信系统。 U充實施 第21圖係為一種加以建構以實施本案之各種觀點的 系統的方塊圖。所述系統2100係包括一 AP2102以及一 STA 2'1〇4,其中,所述AP2012包括一天線效能決定裝置2110, 其係會藉由檢驗儲存在一連接於所述天線效能決定裝置 /、11〇的天線效能資訊裝置2112之中的天線效能資訊而決定 2述AP 2012的所述天線效能,並且,所述AP 2102的所 所=線乃會藉由連接至所述天線效能決定裝置2110的 述:送二收弱2114以及-連接至所述傳送器/接收器 ^14的天線2116而發送出去,再者波束切換裝置2118 係會連接至所述傳送H/接收器2114,姐且’會被以切換所 π & it 2116的所述波束。 述所述STA2刚係會藉由〆天線2120以及一連接至所 天缘2120的傳送器/接收器2122而接收所述AP 2102的 ,述天 ,, 能決定装置2124係會被連接 & Hi天線效能資訊。一天線效肖 — 所A六 0 奸且,係會藉由存取連接至所 /祕述傳送器/接收器2122,戒 . 參戶斤 m λα—夭後妹能貢訊裝置2126而 ^緣效能決定裝置2124的天綵 述天綵 所述STA2104之所述 &所述AP 2102之所述天線效肥與所 進% 比較。Μ述天線妹能決定裝置2124係 天線效肿貝況之間的比車乂 其中,所述STA設 g連接至—STA設定减㈣ M289566 定調整裝置乃會為了利用所述智慧天線效能而調整所述 STA2104 的所述設定。 + 要注意的是,在所述ΑΡ2102以及所述 〇之 間之天線效能的協商係可以#由所述分別的天線效能決定 裝置2110,2124而發生。此外,在所述系統2100已經利用 一 ΑΡ 2102而加以敘述的同時,在所述系統2100之中的所 述ΑΡ 2102也是可以由另外的STA所取代。 實施例 一種用於在建立一 STA以及一 ΑΡ之間之關聯時實施 一智慧天線的方法係包括下列步驟:(a)所述AP在一天線 波束上傳送一信標幀;(b)於所述STA處接收所述信標幢; (c)於所述STA處測量所述信標幀的一信號品質;(d)切 換至一不同的天線波束’(e )重複步驟(a ) - ( d ) ’直到所 述信標幀已經在所有的天線波束上完成傳送為止;以及(Ο 使所述STA與在其天線波束的其中之一上利用最高信號品 質而傳送所述信標幀的AP產生關聯。 一種於建立一 STA以及一 AP之間之關聯時實施一智 慧天線的方法係包括下列步驟:(a)自所述STA發送一探 針請求幀到達所述AP,其中,所述探針請求幀乃會包括一 有關所述STA是否要掃瞄來自所述AP之多個波束的指 示;(b)將來自所述AP的一探針回應幀於一天線波束上傳 送至所述STA;(C)於所述STA處接收所述探針回應幀彳d) 於所述STA處測量所述探針回應幀的一信號品質;(e)切 換至一不同的天線波束;(f)重複步驟(b) _ (e),直到所 41 M289566 述探針回應幀已經在所有的天線波束上完成傳送為止;以 及(g)使所述STA與在其天線波束的其中之,上利用最高 信號品質而傳送所述探針回應幀的AP產生關聯。 在根據前述兩段其中之一的方法之中,所述方法係會 在傳送所述信標幀之前,以及在切換天線波束之後等待一 間距’以及所述間距係會大於一短的巾貞間間隔龙乂於刀 散式幀間間隔。 一種用於在建立一 STA以及一 AP之間之關聯時貫施 鲁一智慧天線的系統係包括一自所述AP發送裘所述STA的 信標幀。 一種用於在建立一 STA以及一 AP之間之關聯時實施 一智慧天線的系統係包括:一自所述STA發送炱所述AP 的探針請求幀,其中,所述探針請求幀乃會包栝/有關所 述STA是否要掃瞄來自所述Ap之多個天線波束的指示; 以及一自所述AP發送至所述STA的探針回應幀。 在前述實施例的其中任一之中,所述信標幀或是所述 捺針回應幀乃會包括一辨識天線波束之總數的攔位、及/或 一辨識當前天線波束的攔位。 一種用於支援一智慧天線在一包括一 AP以及〆STA 的WLAN中之使用的方法係包括下列步驟:所述AP選擇 —天線波束,以用於與所述STA進行溝通;自所述ΛΡ將 所述所選擇之波束資訊發送至所述STA;以及自所述STA 將一封包傳送至所述AP,且所述封包之中乃會包括所述所 42 M289566 選擇的波束資訊,藉此,所述AP係可以使用所述所選擇的 波束來接收所述封包的至少一部份。 在根據别述段落的方法之中,所述選擇步驟係包括, 利用-取大信號位準而選擇一天線波束、或是利用一最大 信號對干擾比而選擇一天線波束。 在根據前述二段落其中之一的方法之中,所述發送步 驟係包括,發送下列的其中之一或多個··—波束指示符; 一用於所述波束指示符的年齡限制,其中,所述所選擇之 馨波束將僅犯在所述年齡限制尚未屆期時使用;所述Ap的媒鲁 體存取控制(medium access control,MAC)位址;以及所 述STA的MAC位址。 在根據前述三段落其中之一的方法之中,所述發送步 驟係會包括,於一分開的資訊中發送將所述所選擇的波^ 資訊。 在根據前述四段落其中之一的方法之中,所述發送步 驟係包括,將所述所選擇的波束資訊發送為—既存^ 乂 ⑩的一部分。 、/式· 在根據前述五段落其中之一的方法之中,所述發、关+ 驟更進〆步包括,發送一波束指示符資訊旗標,以丄=步〔Direction can occur between an AP and one. Between the STAs, or two STAs, at the beginning of the method 1900, the transmitting STa system transmits its antenna performance information to the receiving sm in the mid-antenna performance (step 1902), and the series receiving The STA will receive the block antenna performance pressure (step 1904), and will determine whether it can support the requested antenna performance, and if the received STA can support the antenna of the paging STA = can (step 1906), the receiving STA adjusts its settings to control the antenna performance of the transmitting STA (step 19〇8), and the receiving STA sends an acknowledgement regarding its antenna performance to the The STA is transmitted (step 191〇). In an alternate embodiment of the method 1900, the acknowledgment is sent to the transmitting STA prior to the receiving STA adjusting its settings (ie, steps 1908 and 1910 are converted to each other), and here The information is an acknowledgment of the antenna performance of the receiving STA, which is not necessarily an ACK signal. 'If the receiving STA has some, but not all, the performance of the transmitting STA , then there will be a negotiation between performances to achieve a common set of performance to be used. In a preferred embodiment, the performance used will be a smaller set of performance belonging to two STAs. The transmitting STA begins transmitting using the communicated antenna capabilities (step 1912), and then the method terminates (step 1914). If the receiving STA does not support the antenna performance of the transmitting STA (step 1906), the receiving STA notifies the transmitting STA that it does not have the antenna performance of the 38 M289566 request ( Step 1916), so the transmitting STA will start transmitting without using the requested antenna performance (step 1918), and then the method terminates (step 1914). Figure 20 is a A flowchart of an alternative method 2000 for exchanging antenna performance information between a transmitting STA 2002 and a receiving STA 2004. The transmitting STA 2002 sends its antenna performance information to the receiving STA 2004 (step 2010), and the receiving STA 2004 sends its Skyline performance information to the transmitting STA 2002 (step 2012), Therefore, it should be noted that steps 2010 and 2012 can be performed in the reverse order, that is, the order of steps 2010 and 2012 is not critical as long as the antenna performance information is in the transmitting STA 2002 and the receiving STA 2004. Alternatively, the exchange STA 2002 and the receiving STA 2004 may negotiate antenna performance to discover a common antenna performance set, or may exchange measurement information (step 2014), and this may The step of selecting can be used to refine the set of antenna features used. After the exchange of the antenna information (steps 2010, 2012) and any additional information exchange (step 2014), both the transmitting STA 2002 and the receiving STA 2004 are based on the antenna performance that is locally supported. It is locally determined which antenna feature to use (steps 2016, 2018). 39 M289566 While the transmission of the antenna information has been described in terms of WLAN, the principle of this concept can be applied to any form of wireless communication system as well. U Charger Implementation Fig. 21 is a block diagram of a system constructed to implement various aspects of the present invention. The system 2100 includes an AP 2102 and an STA 2'1〇4, wherein the AP2012 includes an antenna performance determining device 2110, which is stored in a connection to the antenna performance determining device/11 by verification. The antenna performance information of the AP 2012 is determined by the antenna performance information in the antenna performance information device 2112, and the determined line of the AP 2102 is connected to the antenna performance determining device 2110. Said: send 2 weak 2114 and - connected to the antenna 2116 of the transmitter / receiver ^ 14 and send out, and then the beam switching device 2118 will be connected to the transmission H / receiver 2114, sister and will The beam of π & it 2116 is switched. The STA2 will receive the AP 2102 by the 〆 antenna 2120 and a transmitter/receiver 2122 connected to the rim 2120, and it can be determined that the device 2124 will be connected & Hi Antenna performance information. An antenna effect - the A 6 is a scam, and the connection is connected to the secret transmitter/receiver 2122 by the access, or the 斤m λ 夭 夭 妹 妹 能 能 能 能 能 能 2 The antenna effect of the performance determining device 2124 is described in the STA2104. The antenna effect of the AP 2102 is compared with the % entered. The antenna sister can determine the ratio between the antennas of the device 2124 and the antenna. The STA is set to connect to the -STA setting minus (4). The M289566 adjustment device will adjust the performance of the smart antenna. Said setting of STA2104. + It is noted that the negotiation of antenna performance between the ΑΡ 2102 and the 可以 can occur by the respective antenna performance determining devices 2110, 2124. Moreover, while the system 2100 has been described using a ΑΡ 2102, the ΑΡ 2102 in the system 2100 can also be replaced by another STA. Embodiments A method for implementing a smart antenna when establishing an association between a STA and a UI includes the steps of: (a) the AP transmitting a beacon frame on an antenna beam; (b) Receiving the beacon block at the STA; (c) measuring a signal quality of the beacon frame at the STA; (d) switching to a different antenna beam '(e) repeating step (a) - ( d) 'until the beacon frame has completed transmission on all antenna beams; and (or causing the STA to transmit the beacon frame with the highest signal quality on one of its antenna beams) Generating an association. A method for implementing a smart antenna when establishing an association between a STA and an AP includes the following steps: (a) transmitting a probe request frame from the STA to the AP, wherein the probe The request frame may include an indication of whether the STA is to scan multiple beams from the AP; (b) transmitting a probe response frame from the AP to the STA on an antenna beam (C) receiving the probe response frame at the STA, 彳d) Measuring a signal quality of the probe response frame at the STA; (e) switching to a different antenna beam; (f) repeating step (b) _ (e) until the 41 M289566 probe response frame is already at all And (g) causing the STA to associate with an AP transmitting the probe response frame with the highest signal quality on its antenna beam. In the method according to one of the preceding two paragraphs, the method is to wait for a spacing before transmitting the beacon frame and after switching the antenna beam and the spacing is greater than a short period of time The interval between the dragons and the knives is separated by a frame. A system for implementing a smart antenna when establishing an association between a STA and an AP includes a beacon frame transmitted from the AP to the STA. A system for implementing a smart antenna when establishing an association between a STA and an AP includes: a probe request frame sent from the STA to the AP, wherein the probe request frame is a packet/indication of whether the STA is to scan multiple antenna beams from the Ap; and a probe response frame sent from the AP to the STA. In any of the preceding embodiments, the beacon frame or the pin response frame may include an intercept that identifies the total number of antenna beams, and/or an intercept that identifies the current antenna beam. A method for supporting the use of a smart antenna in a WLAN comprising an AP and a 〆 STA comprises the steps of: said AP selecting - an antenna beam for communicating with said STA; Sending the selected beam information to the STA; and transmitting a packet from the STA to the AP, and the packet includes the beam information selected by the 42 M289566, thereby The AP system can use the selected beam to receive at least a portion of the packet. In the method according to the other paragraphs, the selecting step includes selecting an antenna beam by using a large signal level, or selecting an antenna beam by using a maximum signal to interference ratio. In the method according to any one of the preceding paragraphs, the transmitting step comprises: transmitting one or more of the following: a beam indicator; an age limit for the beam indicator, wherein The selected sinus beam will only be used when the age limit has not expired; the medium access control (MAC) address of the Ap; and the MAC address of the STA. In the method according to any one of the preceding three paragraphs, the transmitting step may include transmitting the selected wave information in a separate message. In the method according to one of the preceding four paragraphs, the transmitting step comprises transmitting the selected beam information as part of the existing memory. In the method according to one of the preceding five paragraphs, the step of transmitting, closing, and stepping further comprises: transmitting a beam indicator information flag to 丄=step [

幀之中指禾所選擇之波束資訊的存在。 V 在根據前述六段落其中之一的方法之中 所述發送步 驟係包栝’在龟送所述所選擇之波束資訊之前,先將所述 AP的所述天線切換至所述所選擇的波束。 ; 43 M289566 在根據前述七段落其 驟更進一歩包括,在於所诚 、、法之中’所述發送步 擇之波束,錢,將觀束上發送所述所選 性型態。 的所核線切換至-全方向 在根據前述八段落其中之一的方法 所述所選擇波束資訊的成功接收而將來自所述似 涊發送至所述AP的步驟。 萑 在根據前述九段落其中之一的方法之中,更 步驟:於所述AP錢由—全方向性波束接收㈣封包的! 第-部份,其中,所述封包_述第1份乃會包括㈣ 所補波束貝訊,將所述AP的所述天線切換至如所述所 ,波束資訊中所載明的所述所選擇波束;以及於所述Ap卢 藉由所述所選擇波束接收所述封包的一第二部分。 处 在根據前述十段落其中之一的方法之中,所述切換步 驟係包括,對所述封包的所述第一部份進行解碼,以決 所述所選擇波束。 ^ 一種用於支援一智慧天線在一包括一 Ap以及一 8丁八 的WLAN中之使用的系統係包括:自所述Ap發送至所述 STA的-第-封包’其中,所述第一封包乃會包括所述 的一媒體存取控制(mac)位址,以及所述STA的一 位址,其中,所述所選擇波束指示符乃會辨識所述AP所選 擇的一天線波束,以用於與所述STA進行溝通;以及自所 述STA發送至所述AP的一第二部分,且所述第二部分係 M289566 皮束指示符,藉此,所述AP會藉由所述所 、擇波:而接收所述第二封包的至少一部份。摘 AP作為-封_所述The middle of the frame refers to the presence of the selected beam information. V. In the method according to one of the preceding six paragraphs, the transmitting step is to switch the antenna of the AP to the selected beam before the turtle sends the selected beam information . 43 M289566 In addition to the above-mentioned seven paragraphs, the method further comprises the step of transmitting the selected beam, the money, and transmitting the selected pattern on the bundle. The core line is switched to - omnidirectional. The step of transmitting the sequence information to the AP is based on the successful reception of the selected beam information according to the method of one of the aforementioned eight paragraphs.萑 In the method according to one of the aforementioned nine paragraphs, the further step is: the AP money is received by the omnidirectional beam (four) packet! a first part, wherein the first packet of the packet includes (4) a compensated beam, and the antenna of the AP is switched to the location as stated in the beam information Selecting a beam; and receiving, by the Ap, a second portion of the packet by the selected beam. In a method according to any one of the preceding ten paragraphs, the switching step comprises decoding the first portion of the packet to determine the selected beam. ^ A system for supporting the use of a smart antenna in a WLAN comprising an Ap and an 8 D8 includes: a - packet from the Ap to the STA, wherein the first packet And including a media access control (mac) address, and an address of the STA, wherein the selected beam indicator identifies an antenna beam selected by the AP for use with Communulating with the STA; and transmitting from the STA to a second part of the AP, and the second part is a M289566 beam bundle indicator, whereby the AP will use the selected wave And receiving at least a portion of the second packet. Extract AP as - seal_

在根據如述二,# A 既存巾貞形式的部分。的糸統之中,所述第—封包係為一 根據刖述二段落的系統之中,所述第—封包更進一 V o 於所述所選擇波束指示符的年齡限制,其中,In accordance with the second paragraph, #A is the part of the form of the scarf. In the system, the first packet is a system according to the second paragraph, wherein the first packet further increases the age limit of the selected beam indicator, wherein

Φ所述所選擇波束將僅能在所述年齡限制尚未屆期時使用。 在根據前述四段落的系統之中,所述第一封包更進一 步包括一波束指示符資訊旗標,以在所述封包之中指示所 選擇之波束指示符的存在。 在根據前述五段落的系統之中,所述第二封包的一第 一部份係會於所述AP處藉由一全方向性波束而加以接Φ The selected beam will only be used when the age limit has not expired. In the system according to the preceding four paragraphs, the first packet further includes a beam indicator information flag to indicate the presence of the selected beam indicator among the packets. In the system according to the above fifth paragraph, a first part of the second packet is connected to the AP by an omnidirectional beam

收,其中,所述第二封包的所述第一部份乃會包括所述所 選擇波束指示符;所述AP會將其天線切換至如所述所選擇 鲁波束指示符中所載明的所述所選擇波束;以及所述第二封 包的一第二部分係會於所述AP處藉由所述所選擇波束而 加以接收。 一種用於在一無線通訊系統中之一傳送STA以及一 接收STA之間交換智慧天線效能資訊的系統係包括,一天 線效能資訊單元,以在所述傳送STA以及所述接收STA之 間的資料傳送之前,於所述兩個STAs之間進行交換,且所 45 M289566 述天線效能實訊元件係包括有關所述兩個STAs之所述效能 的資訊。 在根據前述段落的系統之中,所述無線通訊系統係為 一 WLAN,所述傳送STA係為在所述WLAN之中的一 AP、 或是一 STA,以及所述接收STA係為在所述WLAN之中的 一 STA、或是〆Ap。 在根據前述二段落其中之一的系統之中,所述天線效 能資訊元件係包括一天線技術攔位以及至少一選自下列群 籲組的欄位··支援波束之數量,一有關在物理層會聚協定標 _ 頭之後之傳送天線資訊的支援的指示符,一有關分集技術 的指示符,一有關天線測量信號發送支援的指示符,以及 一有關多輸入支援的指示符。 在根據前述二段落其中之一的系統之中,每一個攔位 皆是藉由所述接收STA而衍生自所述天線技術攔位。 在根據前述三段落其中之一的系統之中,所述天線效 月匕資δίΐ元件係加以發送為一管理巾貞,一控制巾貞,或是一資 •料幀的部分。 · 在根據前述四段落其中之一的系統之中,所述天線效 能資訊元件係會在所述傳送STA以及所述接收STA產生關 聯之後的任何時間、或是在所述傳送STA以及所述接收STA 之間的資料傳輸之後的任何時間點,於所述傳送以 及所述接收STA之間進行交換。 一種用於在一無線通訊系統中的一傳送STA以及一 接收STA之間交換智慧天線效能資訊的方法係包括下列步 46 M289566 驟,自所述傳送STA發送天線效能資訊1所述接收、、 決定所述接收STA是否能夠支援所述傳适STA的所述天線 效能;若是所述接收STA可以支援所述傳送STA的所述天 線效能時,調整於所述接收STA處的設定,以及若疋所述 接收STA可以支援所述傳送STA的所述天線效能時,利用 所述天線效能而將資料自所述傳送STA傳送至所述接收 STA 〇 在根據前述段落的方法之中,更包括,利用有關所述 鲁接收STA之天線效能的一確認來回覆戶斤述傳送STA的步鲁 驟。 在根據前述二段落其中之一的方法之中,所述回覆步 驟乃是在所述調整步驟之前、或是所述調整步驟之後執行。 在根據前述三段落其中之一的方法之中,所述回覆步 $係包括通知所述傳送STA有關所述接收STA並不具有所 迷戶斤請求的天線效能的情形。 • 在根據前述四段落其中之一的方法之中,所述傳送步 &糸包括,在不使用所述天線效能的情形下,自所述傳送修 Τα傳送資料至所述接收STA。 扑 在根據如述五段落其中之一的方法之中,所述發送步 驟係包括將所述天線效能資訊發送城為_管理幀的部分。 在根據刚述六段落其中之一的方法之中,所述調整步 用係包括,調整選自下列群組至少其中之一的設定:所使 的天線數置’分集方法,所使用之智慧天線技術,以及 辦外的天線測量。 47 M289566 種用於在—無線通訊系統中的一第一STA以及一Receiving, wherein the first portion of the second packet includes the selected beam indicator; the AP switches its antenna to as indicated in the selected lu beam indicator The selected beam; and a second portion of the second packet is received at the AP by the selected beam. A system for exchanging smart antenna performance information between a transmitting STA and a receiving STA in a wireless communication system includes an antenna performance information unit for data between the transmitting STA and the receiving STA Before the transmission, the two STAs are exchanged, and the antenna performance component of the 45 M289566 includes information about the performance of the two STAs. In the system according to the preceding paragraph, the wireless communication system is a WLAN, the transmitting STA is an AP in the WLAN, or a STA, and the receiving STA is in the One STA in the WLAN, or 〆Ap. In the system according to any one of the preceding paragraphs, the antenna performance information element comprises an antenna technology interceptor and at least one field selected from the group consisting of: a number of support beams, one related to the physical layer A pointer to support for transmitting antenna information after the header of the convergence protocol, an indicator of the diversity technique, an indicator for antenna measurement signal transmission support, and an indicator for multi-input support. In the system according to one of the preceding two paragraphs, each of the intercepts is derived from the antenna technology intercept by the receiving STA. In the system according to one of the preceding three paragraphs, the antenna effect element is transmitted as a management frame, a control frame, or a portion of a frame of material. In the system according to any one of the preceding four paragraphs, the antenna performance information element is any time after the transmitting STA and the receiving STA generate an association, or at the transmitting STA and the receiving Any point after the data transmission between the STAs is exchanged between the transmission and the receiving STA. A method for exchanging smart antenna performance information between a transmitting STA and a receiving STA in a wireless communication system includes the following step 46 M289566, receiving, determining, and transmitting antenna performance information 1 from the transmitting STA Whether the receiving STA can support the antenna performance of the transmitting STA; if the receiving STA can support the antenna performance of the transmitting STA, adjusting the setting at the receiving STA, and When the receiving STA can support the antenna performance of the transmitting STA, the data is transmitted from the transmitting STA to the receiving STA by using the antenna performance. In the method according to the foregoing paragraph, the method further includes The confirmation of the antenna performance of the Lu receiving STA is repeated to the step of transmitting the STA. In the method according to one of the preceding two paragraphs, the replying step is performed before the adjusting step or after the adjusting step. In the method according to one of the preceding three paragraphs, the replying step $c) includes notifying the transmitting STA that the receiving STA does not have the antenna performance of the user request. • In the method according to one of the preceding four paragraphs, the transmitting step & 糸 comprises transmitting data from the transmitting repair α to the receiving STA without using the antenna performance. In the method according to any one of the fifth paragraphs, the transmitting step comprises transmitting the antenna performance information as part of a management frame. In the method according to one of the six paragraphs, the adjusting step includes: adjusting a setting selected from at least one of the following groups: the number of antennas to be set to the 'diversity method, the smart antenna used Technology, as well as antenna measurements outside the office. 47 M289566 is used in a wireless communication system, a first STA and one

黛# Q T A 一 之間交換智慧天線效能資訊的方法,係包括下列 步驟·自所述第一 STA發送天線效能資訊至所述第二STA; 、及自所述第一 STA發送天線效能資訊至所述第一 STA。 在根據前述段落的方法之中,更包括下列步驟,在所 述第一 STA以及在所述第二STA處,局部地決定所述天線 效能’以用於所述第一 STA以及所述第二STA之間的未來 傳送以及接收。 ® 在根據前述二段落其中之一的方法之中,所述決定步鲁 驟乃是在所述第一 STA以及所述第二STA之間沒有任何額 外之溝通的情形下執行。 在根據前述三段落其中之一的方法之中,更包括下列 步驟:比較所述第一 STA以及所述第二STA的所述天線效 能,其中,所述決定步驟係包括,使用所述第〆STA以及 所述第二STA兩者都支援的所述天線效能。 在根據前述四段落其中之一的方法之中’更〇括=列 鲁步驟,在所述第- STA以及所述第二STA之間乂換則里資 訊,且所述交換步驟乃是在所述決定步驟之前執行 在根據前述五段落其中之一的方法之中,更包括下列 步驟,在所述第一 STA以及所述第二STA之間協商天線效 能資訊,且所述協商步驟乃是在所述決定步驟之^執行^ -種用於在- WLAN之中實施智慧天線特#支=系統 A厶匕 係包括一 AP以及一 STA。所述AP係包括一第/比犯 繁_ 決定裝置;連接至所述第一天線效能決定裝置的 48 ,M289566 線效能資訊裝置,且所述第一天線效能決定裝置乃加以建 構以藉由檢驗儲存在所述第一天線效能資訊装置之中的資 訊而決定所述AP的所述天線效能;速接至所述第一天線效 能決定裝置的一第一傳送器/接收器;連接至所述傳送器/接 收器的一第一天線;以及連接至所述傳送器/换收裔的一波 束切換裝置,其中,所述波束切換装置乃加以建構以切換 所述第一天線的波束。所述SAT係包括一第 &gt; 天線,連接 至所述第二天線的一第二傳送器/接收器,且所述第二傳送 鲁器/接收器乃加以建構以自所述AP接收天線效能貢訊;連 接至所述第二傳送器/接收器的一第二天線效能決定裝置’ 連接至所述第二天線效能決定裝置的一第二天線效此貝δ孔 裝置,且所述第二天線效能決定裝Ϊ乃加以建構以=接收 自所述第二傳送器/接收器之所述ΑΡ的所述天線政此以及 擷取自所述第二天線效能資訊裝置之所述STA天線 效能進行比較;以及連接至所述第二夭線效能決定裝置的 - STA設定調整裝置,且所述STAS定調整裝置乃加以建 _構以調整所述STA的所述設定,以利用智慧天線效能。 在根據前述段落的系統之中,所述第一天線效此決定 裝置以及所述第二天線效能決定裝置乃加以建構以對所述 AP以及所述STA兩者都可以支援之天線姝能的位準進打協 商。 雖然本案的特徵以及元件已經於特殊結合的較佳實施例中 完成敘述,但是,每一個特徵或元件都&lt;以單獨使用(在 不需要所述較佳實施例的其他特徵以及元件的情形下)、或 49 M289566 者可以使用為與本案其他特徵及元件一起、或不一起的各 式結合,在本案之特殊實施例已經加以顯示以及敘述的同 時,許多的修飾以及變化對熟習此技藝之人而言都可以在 不脫離本案之範圍的情形下完成,上述的敘述乃是作為舉 例之用,並不會對本案有任何特殊的限制。 M289566 圖式簡單說明 弟1圖·其係為一顯示令方a从 型態之WLAN的圖式; ㈠以及方向性天線波束 圖式; 第2圖:其係為—用於辨識天線波束之信標式的 弟3圖:其係為一被動掃瞒的時序圖; ㈣為一種用於在-被動㈣專送,黛# QTA A method for exchanging smart antenna performance information, comprising the steps of: transmitting antenna performance information from the first STA to the second STA; and transmitting antenna performance information from the first STA to the The first STA is described. In the method according to the preceding paragraph, further comprising the step of: locally determining the antenna performance 'at the first STA and the second STA for the first STA and the second Future transmission and reception between STAs. In the method according to one of the preceding two paragraphs, the determining step is performed without any additional communication between the first STA and the second STA. In the method according to any one of the preceding three paragraphs, the method further comprises the steps of: comparing the antenna performance of the first STA and the second STA, wherein the determining step comprises: using the third The antenna performance supported by both the STA and the second STA. In the method according to one of the preceding four paragraphs, the 'more suffix=lelu step, the information between the first STA and the second STA is exchanged, and the exchange step is Executing the determining step before the method according to one of the foregoing five paragraphs, further comprising the step of negotiating antenna performance information between the first STA and the second STA, and the negotiating step is The implementation of the determining step is for implementing a smart antenna in the WLAN. The system A includes an AP and an STA. The AP system includes a first/multiplier decision device; a 48, M289566 line performance information device connected to the first antenna performance determining device, and the first antenna performance determining device is constructed to borrow Determining, by the information stored in the first antenna performance information device, the antenna performance of the AP; and connecting to a first transmitter/receiver of the first antenna performance determining device; a first antenna coupled to the transmitter/receiver; and a beam switching device coupled to the transmitter/receiver, wherein the beam switching device is configured to switch the first day Line beam. The SAT system includes an antenna, connected to a second transmitter/receiver of the second antenna, and the second transmitter/receiver is configured to receive an antenna from the AP a second antenna performance determining device connected to the second transmitter/receiver is connected to a second antenna of the second antenna performance determining device, and The second antenna performance determining device is configured to = the antenna received from the second transmitter/receiver and retrieved from the second antenna performance information device Comparing the STA antenna performance; and the STA setting adjustment device connected to the second cable performance determining device, and the STAS determining device is configured to adjust the setting of the STA to Take advantage of smart antenna performance. In the system according to the preceding paragraph, the first antenna effect determining means and the second antenna performance determining means are constructed to support an antenna capable of both the AP and the STA The position is in consultation. Although the features and elements of the present invention have been described in the preferred embodiments of the specific combination, each of the features or elements are &lt; </ RTI> used separately (in the case where other features and elements of the preferred embodiment are not required) , or 49 M289566 may be used in conjunction with other features and elements of the present invention, or in combination with the specific embodiments of the present invention, as well as many modifications and variations to those skilled in the art. It can be done without departing from the scope of the present invention. The above description is for illustrative purposes and does not impose any particular limitation on the present case. M289566 Schematic description of the brother 1 map, which is a diagram showing the WLAN of the type a slave; (a) and the directional antenna beam pattern; Figure 2: the system is used to identify the antenna beam Figure 3 of the standard: it is a time series diagram of a passive broom; (4) is used for in-passive (four) special delivery,

式的圖=圖:其係為—使用於主動掃μ之探針請求㈣ 使用於絲㈣巾之探針請請求幅 第6圖:其係為一 格式的圖式; 苐7圖·其係為一主動掃瞒的時序圖; 第8圖··其係為一種用於在一主動婦 請求幀之方法的流程圖; 刼針Figure = figure: it is - the probe request for active sweep μ (4) probe for the silk (four) towel, please request the picture 6: it is a format of the format; 苐 7 figure · its system a timing diagram for an active broom; Figure 8 is a flow chart for a method for requesting a frame in an active woman;

第9圖··其係為顯示在一 ΑΡ以及STAs之間之 封包傳送的圖式; 、' 第10圖:其係為一 STA所發送之一包含波束指示符 資訊之幀格式的圖式; 第11圖.其係為一 AP所發送至之一波束指示符資 訊格式的圖式; 、 第12a圖以及第12b圖:其係為一 AP所發送之包含 波束指示符資訊之幀格式的圖式; 51 M289566 第13a圖以及第13b圖:其係為一 AP所發送之包含 波束指示符資訊之替代幀格式的圖式; 第14圖:其係為一種藉由一 AP以及一 STA而傳送 智慧天線資訊之方法的流程圖; 第15圖:其係為在第14圖中所顯示之所述方法的一 實例的流程圖; 第16圖: :其係為一既存效能資訊攔位的圖式; 第17圖: 其係為一包含一天線效能IE之幀的圖式; 第18圖:其係為在第17圖中所顯示之所述天線效能 IE的圖式; 第19圖 :其係為一種交換天線效能資訊之方法的流 程圖, 第20圖 :其係為交換天線效能資訊的一替代方法的 流程圖;以及 第21圖 :其係為一架構以實施本案之系統的方塊圖 式。 元件符號說明 100 無線區域網路 200 先進天線信標幀 112 、 122 、 910 全方向性波束 306 、 706 間距X 500 、 700 先進天線探針請求幀 600 先進天線探針回應幀 52 M289566 900 、 2100 系統 912 第一方向性波束 914 第二方向性波束 1000 封包 1100 資訊 1200 、 1220 資訊的幀格式 1300 、 1320 替代幀格式 1600 效能資訊欄位 • 1700 天線效能資訊單元中貞 1710 天線效能資訊單元 2116 、 2120 天線 220 、 514 、 1706 服務集合辨識資訊單元 114 、 116 、 118 、 124、126、128 複數個方向性波束 BSSID 基本服務集合辨識 IE 資訊單元 FH/DS 跳頻/分配系統 • iBSS 獨立基本服務集合 DIFS 分散式幀間間隔 ESS 擴展服務集合 PLCP 物理層會聚協定 MAC 媒體存取控制 STA 站台 AP 存取點 DA 目標位址 SA 來源位址 CF 無競爭 A A 先進天線Figure 9 is a diagram showing the packet transmission between a frame and a STAs; 'Fig. 10: It is a diagram of a frame format containing beam indicator information transmitted by a STA; Figure 11 is a diagram of an AP sent to a beam indicator information format; 12a and 12b: it is a frame format of a beam indicator information transmitted by an AP. 51 M289566 Figure 13a and Figure 13b: This is a diagram of an alternate frame format containing beam indicator information sent by an AP; Figure 14: It is transmitted by an AP and a STA Flowchart of a method for intelligent antenna information; Fig. 15 is a flow chart showing an example of the method shown in Fig. 14; Fig. 16:: is a diagram of an existing performance information block Figure 17 is a diagram of a frame containing an antenna performance IE; Figure 18: is a diagram of the antenna performance IE shown in Figure 17; Figure 19: A flow chart of a method for exchanging antenna performance information, Figure 20: A flowchart of an alternative method to exchange performance information of the antenna; and FIG. 21: it is a schema based embodiment of the system block diagram of the case of formula. Component Symbol Description 100 Wireless Local Area Network 200 Advanced Antenna Beacon Frames 112, 122, 910 Omnidirectional Beams 306, 706 Spacing X 500, 700 Advanced Antenna Probe Request Frame 600 Advanced Antenna Probe Response Frame 52 M289566 900 , 2100 System 912 First directional beam 914 Second directional beam 1000 Packet 1100 Information 1200, 1220 Information frame format 1300, 1320 Substitute frame format 1600 Performance information field • 1700 Antenna performance information unit 贞 1710 Antenna performance information unit 2116, 2120 Antennas 220, 514, 1706 Service Set Identification Information Units 114, 116, 118, 124, 126, 128 Multiple Directional Beams BSSID Basic Service Set Identification IE Information Unit FH/DS Frequency Hopping/Distribution System • iBSS Independent Basic Service Set DIFS Decentralized Interframe Interval ESS Extended Service Set PLCP Physical Layer Convergence Protocol MAC Media Access Control STA Station AP Access Point DA Target Address SA Source Address CF No Competition AA Advanced Antenna

5353

Claims (1)

M289566 十、申請專利範圍: 1. 一種用於在一無線區域網路中實施智慧天線特徵之系 統,包括: 一存取點,包括: 一第一天線效能決定裝置; 一第一天線效能資訊裝置,連接至所述第一天線效 能決定裝置,且所述第一天線效能決定裝置是用以 藉由檢驗儲存在所述第一天線效能資訊裝置之中的 藝 資訊而決定所述存取點的所述天線效能; 一第一傳送器/接收器,連接至所述第一天線效能決 定裝置; 一第一天線,連接至所述傳送器/接收器;以及 一波束切換裝置,連接至所述傳送器/接收器,且所 述波束切換裝置是用以切換所述第一天線的波束; 以及 一站台,包括: 鲁 一第二天線; 一第二傳送器/接收器,連接至所述第二天線,且所 述第二傳送器/接收器是用以自所述存取點接收天線 效能資訊; 一第二天線效能決定裝置,連接至所述第二傳送器/ 接收器; 一第二天線效能資訊裝置,連接至所述第二天線效 能決定裝置,且所述第二天線效能決定裝置是用以 54 M289566 對接收自所述第二傳送器/接收器的所述存取點的所 述天線效能以及擷取自所述第二天線效能資訊裝置 的所述站台的所述天線效能進行比較;以及 一站台設定調整裝置,連接至所述第二天線效能決 定裝置,且所述站台設定調整裝置是用以調整所述 站台的所述設定以使用智慧天線效能。 2·如申請專利範圍第1項所述之系統,其中所述第一天線 效能決定裝置以及所述第二天線效能決定裝置是用以對所 鲁述存取點以及所述站台兩者都可以支援的天線效能的位準 進行協商。 55M289566 X. Patent Application Range: 1. A system for implementing smart antenna features in a wireless local area network, comprising: an access point, comprising: a first antenna performance determining device; a first antenna performance And the first antenna performance determining device is configured to determine the art information stored in the first antenna performance information device Said antenna performance of said access point; a first transmitter/receiver connected to said first antenna performance determining means; a first antenna connected to said transmitter/receiver; and a beam a switching device, connected to the transmitter/receiver, and the beam switching device is a beam for switching the first antenna; and a station, comprising: a second antenna; a second transmitter a receiver connected to the second antenna, and the second transmitter/receiver is configured to receive antenna performance information from the access point; a second antenna performance determining device coupled to the Second pass a transmitter/receiver; a second antenna performance information device connected to the second antenna performance determining device, and the second antenna performance determining device is configured to receive the second transmission from the 54 M289566 pair Comparing the antenna performance of the access point of the device/receiver with the antenna performance of the station extracted from the second antenna performance information device; and a station setting adjustment device connected to the station The second antenna performance determining device is configured to adjust the setting of the station to use smart antenna performance. 2. The system of claim 1, wherein the first antenna performance determining device and the second antenna performance determining device are configured to both reference the access point and the station The level of antenna performance that can be supported is negotiated. 55
TW94215425U 2004-09-10 2005-09-07 Implementing a smart antenna in a wireless local area network TWM289566U (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US60877604P 2004-09-10 2004-09-10
US60913204P 2004-09-10 2004-09-10
US60875804P 2004-09-10 2004-09-10
US11/018,794 US7376398B2 (en) 2004-09-10 2004-12-21 Implementing a smart antenna in wireless local area network
US11/025,018 US20060056345A1 (en) 2004-09-10 2004-12-29 Method and system for supporting use of a smart antenna in a wireless local area network

Publications (1)

Publication Number Publication Date
TWM289566U true TWM289566U (en) 2006-04-11

Family

ID=37564840

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94215425U TWM289566U (en) 2004-09-10 2005-09-07 Implementing a smart antenna in a wireless local area network

Country Status (1)

Country Link
TW (1) TWM289566U (en)

Similar Documents

Publication Publication Date Title
TWI416885B (en) Implementing a smart antenna in a wireless local area network
US8504110B2 (en) Method and apparatus for transferring smart antenna capability information
US7376398B2 (en) Implementing a smart antenna in wireless local area network
JP2015228698A (en) Measurement support for smart antenna in radio communication system
US20110069636A1 (en) Method and system for ad-hoc communications over millimeter wave wireless channels in wireless systems
TWI741083B (en) Wireless communication method and wireless communication device
TWM289566U (en) Implementing a smart antenna in a wireless local area network
KR200404025Y1 (en) Implementing a smart antenna in a wireless local area network

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model