TWM247331U - Novel planar type magnetic-levitated alignment apparatus - Google Patents

Novel planar type magnetic-levitated alignment apparatus Download PDF

Info

Publication number
TWM247331U
TWM247331U TW92222415U TW92222415U TWM247331U TW M247331 U TWM247331 U TW M247331U TW 92222415 U TW92222415 U TW 92222415U TW 92222415 U TW92222415 U TW 92222415U TW M247331 U TWM247331 U TW M247331U
Authority
TW
Taiwan
Prior art keywords
cantilever
coil
positioning device
magnet
magnetic levitation
Prior art date
Application number
TW92222415U
Other languages
Chinese (zh)
Inventor
Li-Cheng Fu
Mei-Yung Chen
Tzuo-Bo Lin
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW92222415U priority Critical patent/TWM247331U/en
Publication of TWM247331U publication Critical patent/TWM247331U/en

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

M247331 四、創作說明(1) 【新型所屬之技術領域】 本創作係有關於一種承載台定位裝置,特別是與一 種新型平面式磁浮定位裝置有關。 【先前技術】 近年來,資訊電子業急速蓬勃發展,其中精密機械、 伺服定位技術在此環節上扮演極具重要之角色。傳統的精 密定位機構,大都以直流或交流伺服馬達配合導螺桿造成 極大的轉數比來完成精密定位的任務。在此同時,現已發 展出多種精密定位技術,例如利用壓電致動器 (piezoelectric actuator )在10雜i:米的運動行程中可以 達到1 0奈米的高解析度,且壓電致動器亦可達到快速反應 的要求。然而,壓電致動器在使用上最大的限制的就是它 允許的運動行程有限,在需要較大運動行程的應用場合上 就不再適合。欲達到長行程的需求,傳統上多為利用伺服 馬達搭配導螺桿或是直接使用線性馬達。然而,導螺桿因 為受到背隙現象(b a c k 1 a s h )以及軸承間的摩擦力的影 響,明顯地使整體的定位精度降低。而線性馬達亦受到漣 漪效應(ripple effects)及邊際效應(end-effects) 的影響,降低了定位的精度。一般克服上述摩擦力的方法 中,除了在系統硬體上加強加工精度外,並配合極精密的 潤滑油來減少摩擦力,且在控制法則上以各種方法來估計 摩擦力大小,並施以一反向力以抵抗磨擦力的影響。按, 於毫微米級半導體製程中,已達至相當之技術水準,顯見M247331 IV. Creation Instructions (1) [Technical Field to which the New Type belongs] This creation relates to a positioning device for a bearing platform, and particularly relates to a new type of planar magnetic levitation positioning device. [Previous technology] In recent years, the information and electronics industry has developed rapidly. Among them, precision machinery and servo positioning technology play a very important role in this link. Most of the traditional precision positioning mechanisms use DC or AC servo motors in combination with lead screws to create a large number of revolutions to complete the precise positioning task. At the same time, a variety of precision positioning technologies have been developed, such as the use of piezoelectric actuators (piezoelectric actuators) to achieve a high resolution of 10 nanometers in a 10-i: m motion stroke, and piezoelectric actuation The device can also meet the requirements of fast response. However, the biggest limitation on the use of a piezoelectric actuator is that it allows a limited movement stroke, which is no longer suitable for applications that require a large movement stroke. To meet the requirements of long strokes, traditionally, a servo motor is used with a lead screw or a linear motor is directly used. However, the lead screw is affected by the backlash phenomenon (b a c k 1 a s h) and the friction between the bearings, which significantly reduces the overall positioning accuracy. The linear motor is also affected by ripple effects and end-effects, which reduces the accuracy of positioning. Generally, in the method of overcoming the above frictional force, in addition to enhancing the processing precision on the system hardware, and using extremely precise lubricants to reduce the frictional force, the control law is used to estimate the magnitude of the frictional force by various methods and apply a Reverse force to resist the effects of friction. According to the fact, in the nanometer semiconductor process, it has reached a considerable level of technology, it is obvious

M247331 四、創作說明(2) 逐步走向0 , 0 9 // m之製程時,其表面檢測技名 輕重之角色,故儘管檢測平台之定位使用上 之方法,但亦會有些許摩擦而產生靜電或使 降,造成檢測結果不正確。 欲克服上述系統的問題,明顯地使用非 較好的解決方案。氣動力懸浮系統、靜電力 磁浮系統都是常見的使用非接觸力的例子。 不適用在一些特殊使用環境,如無塵室、真 所以為了能發展一個具有高精密度定位性能 應用在多樣的使用環境中,一種使用磁浮原 構的系統即被發展出來。 關於目前現有較為成熟的雙軸磁浮技術 省理工學院的Dr, Trumper在1996年提出的? 浮定位平台,該系統利用線性感應馬達為其 以同時提供磁浮系統所需的鉛直的懸浮力以 力;然而,該系統所需加工的程序繁雜且難 泛的推廣到相關的工業實屬不易。另,如D r 學生K i m在德州大學發展的新型六自由度的糕 仍在發展階段,此系統是利用線圈及永久磁 用來達到六自由度的運動,雖預期可達到高 求,但由於其硬體機構的設計,先天上就有 限制,將不適用於大行程的應用。又,一組 K w a n g和Υ ο ο η提出的架構,係利用切換二維合 和調整電流大小使得平台得以在平面上移動 疗將扮演舉足 述減少摩擦力 位移精準度下 接觸力是一個 懸浮系統以及 然而前兩項並 空環境…等, 的系統,且能 理為其基本架 ,首推美國麻 ▽自由度的磁 基本架構,可 及側向的推進 度較高,要廣 .Trumper 的 ί致動器目前 鐵間的磁力作 精密度的要 運動行程上的 由韓國人 電磁鐵陣列 ,然而此系統 M247331 四、創作說明(3) 在行程上尚未突破線圈與線圈之間的邊界的問題,也就是 說尚未達到大運動行程的需求。 有鑑於習知磁浮定位之缺憾,本創作人有感其未至臻 完善,遂竭盡心智,悉心研究克服,憑從事該項產業多年 之經驗累積,進而研發出一種新型平面式磁浮定位裝置, 藉由簡單的設計,達到具有長運動行程以及高精度定位性 能之六自由度運動之功效者。 【新型内容】 爰是,本創作之主要目的即在於提供一種新型平面式 磁浮定位裝置,具有長運動行程以及高精度定位性能之六 自由度運動之功效者。 為達上述目的,根據本創作之一種新型平面式磁浮定 位裝置,至少包含:一承載台,於其邊緣設有三懸臂,並 於各懸臂之末端分別設有一永久磁鐵;三組推進機構,係 分別對應設於各懸臂末端永久磁鐵之外側,並分別於其上 設有推進線圈;三組懸浮機構,係分別對應設於各懸臂之 下方,並分別於其上設有懸浮線圈以及永久磁鐵。 藉由懸浮線圈輸入控制電流時產生的懸浮力以及推進 線圈輸入控制電流時產生的推進力,可控制承載台做六自 由度的位移,達到具有長運動行程以及高精度定位性能之 六自由度運動之功效者。 【實施方式】M247331 IV. Creation instructions (2) During the process of 0, 0 9 // m, the surface detection technology plays an important role. Therefore, although the method of positioning the detection platform is used, there will be some friction and static electricity will be generated. Or make it fall, resulting in incorrect test results. To overcome the problems of the above-mentioned systems, it is obvious to use non-better solutions. Aerodynamic suspension systems, electrostatic forces, and magnetic levitation systems are common examples of non-contact forces. It is not suitable for some special use environments, such as clean rooms, so in order to develop a high-precision positioning performance. Applied in a variety of use environments, a system using the magnetic levitation mechanism has been developed. About the currently mature two-axis magnetic levitation technology proposed by Dr. Trumper of the Provincial Institute of Technology in 1996? For the floating positioning platform, the system uses a linear induction motor to provide the vertical levitation force required by the magnetic levitation system at the same time; however, the processing procedures required by the system are complicated and difficult to generalize to related industries. In addition, the new six-degree-of-freedom cake developed by Dr student Kim at the University of Texas is still in the development stage. This system uses coils and permanent magnets to achieve six-degree-of-freedom movement. Although it is expected to achieve high demand, The design of its hardware mechanism is inherently limited and will not be suitable for large stroke applications. In addition, a group of K wang and ο ο η proposed a framework that uses the switching two-dimensional combination and adjusts the current to make the platform move on the plane. The treatment will play a role in reducing friction and displacement. The contact force is a suspension under the precision of displacement. System, but the first two are empty environments ... and so on, and can be regarded as its basic framework. It is the first to introduce the magnetic basic architecture of the United States hemp ▽ degree of freedom. The degree of lateral advancement is higher and wider. Trumper's ί The current magnetic force of the actuator is used for the precision of the movement by the Korean electromagnet array. However, this system M247331 4. Creation instructions (3) The boundary between the coil and the coil has not been broken in the stroke. , Which means that the demand for large sports trips has not been reached. In view of the shortcomings of the known maglev positioning, the creator felt that it was not perfect, so he tried his best to study and overcome it. Based on the experience accumulated in the industry for many years, he developed a new type of flat maglev positioning device. With a simple design, it can achieve the effect of six-degree-of-freedom movement with long motion stroke and high-precision positioning performance. [New content] The main purpose of this creation is to provide a new type of planar magnetic levitation positioning device with long movement stroke and high-precision positioning performance of six degrees of freedom. In order to achieve the above purpose, a new type of planar magnetic levitation positioning device according to the present invention includes at least: a load-bearing platform with three cantilever arms at its edges, and a permanent magnet at the end of each cantilever; three sets of propulsion mechanisms, respectively Corresponding to the outer side of the permanent magnet at the end of each cantilever, there are propulsion coils respectively; three sets of levitation mechanisms are respectively arranged below each cantilever, and there are levitation coils and permanent magnets respectively on it. With the levitation force generated when the control coil is input with the control current and the propulsion force generated when the control coil is input with the control current, the platform can be controlled to perform a six-degree-of-freedom displacement to achieve a six-degree-of-freedom motion with a long motion stroke and high-precision positioning performance. Of the effect. [Embodiment]

M247331 四、創作說明(4) 為使 貴審查委員瞭解本創作之目的、特徵及功效, 茲藉由下述具體之實施例,並配合所附之圖式,對本創作 做一詳細說明,說明如后: 請參閱第一圖,係為物體在空間中產生的磁場向量示 意圖,再請參閱第二圖,係為圓柱型電磁鐵在空間中產生 的磁場向量示意圖,如圖所示: 根據拜歐撒瓦定律(B i 〇 t - S a v a r t L a w )我們得到通 以電流的導體在空間中產生的磁場向量如下式所示: Η 1 r J(rf)xTr 4π r-r 式中r 為線圈 之位置 鐵及長 產生的 其中~ 圈之内 為觀測點位置向量、广為表面電流位置向量、 上流通之電流密度、Tv 為觀測點與表面電流相對 向量。而我們將上述的公式分別推廣到圓柱型電磁 方形電磁鐵,對於圓柱型電磁鐵而言,其在空間中 磁場向量如下式所示:M247331 IV. Creation Instructions (4) In order for your reviewers to understand the purpose, characteristics and effects of this creation, we will use the following specific examples and the accompanying drawings to make a detailed description of this creation. After: Please refer to the first figure, which is a schematic diagram of the magnetic field vector generated by an object in space, and then refer to the second diagram, which is a schematic diagram of the magnetic field vector generated by a cylindrical electromagnet in space, as shown in the figure: Savar's law (B i 〇t-S avart L aw) we get the magnetic field vector generated in space by a conducting current as follows: Η 1 r J (rf) xTr 4π rr where r is the position of the coil Within the circle generated by iron and length are the position vector of the observation point, the surface current position vector, the current density flowing on it, and Tv is the relative vector of the observation point and the surface current. And we generalize the above formulas to cylindrical electromagnetic square electromagnets respectively. For cylindrical electromagnets, the magnetic field vector in space is as follows:

4π 為線圈南度 ΝΙ r e^xe4π is the south of the coil ΝΙ r e ^ xe

PP -rWdifdzPP -rWdifdz

P — P N為線圈繞線匝數、;r2及1^分別代表線 外徑長度、為輸入線圈之電流量,我們不難發 為一空間中的位置函數式與電流大小的乘積,及我P — P N is the number of winding turns of the coil; r2 and 1 ^ respectively represent the outer diameter of the wire and the amount of current of the input coil. It is not difficult for us to produce the product of the position function in a space and the magnitude of the current, and I

第8頁 M247331 g、創作說明(5) 們可改寫為:Page 8 M247331 g, Creation Instructions (5) They can be rewritten as:

Hcyl = Kyl (x, z)Icyl 同理我們亦可得到長方體電磁鐵產生的磁場為 rec rec ^¥rec 請參閱第三圖,係為永久磁鐵在磁場空間中 態示意圖,由洛倫茲力(L〇r e n t z f 〇 r c e )的概 可推導一永久磁鐵在磁場中受力的狀態: 狀 的 力 受 aj 我 念 F — {m · 其中,士磁鐵的磁偶極向量。 由算式(3) 及算式(4)兩式我們不難發現磁鐵在 生的磁場中的磁力可以表不為· 產 鐵 磁 F = g(x,y,(6) 其中g(x,少,z) 為磁鐵在電磁鐵中相對位置的一函式。為了 有效率得到此少,Z) 的關係式,我們避免採取複雜的理 論推導或是大運算量的有限元素法(F E Μ )求得磁鐵在線圈 中之的受力大小,而是利用高精度之機械裝置去量得磁鐵 在線圈中之的受力大小後,再除去電流值後就可得到 γ, ζ) 的分布曲線。Hcyl = Kyl (x, z) Icyl Similarly, we can also obtain the magnetic field generated by the cuboid electromagnet as rec rec ^ ¥ rec Please refer to the third figure, which is a schematic diagram of the state of the permanent magnet in the magnetic field space. L〇rentzf 〇rce) can be derived from the state of a permanent magnet in a magnetic field: the state of the force by aj I read F — {m · Among them, the magnetic dipole vector of the magnet. From equations (3) and (4), it is not difficult to find that the magnetic force of the magnet in the generated magnetic field can be expressed as: Ferromagnetism F = g (x, y, (6) where g (x, less, z) is a function of the relative position of the magnet in the electromagnet. In order to obtain this relationship efficiently, we avoid using complex theoretical derivation or a large amount of finite element method (FE Μ) to obtain it. The magnitude of the force of the magnet in the coil is obtained by measuring the magnitude of the force of the magnet in the coil using a high-precision mechanical device, and then removing the current value to obtain the distribution curve of γ, ζ).

第9頁Page 9

M247331 四、創作說明(6) 請參閱第四(a )圖及第四(b )圖,係分別為長方形磁鐵 外觀不意圖以及長方體電磁鐵内受力分布曲線圖7如圖所 示: 以長方形磁鐵與長方體電磁鐵為例,分別在線圈内部 設定1 0 0個量測點,並將磁鐵放置在這些量測點上測得在 不同電流量下磁鐵在各量測點受力之大小,再將這些量測 得到的資料值用多項式回歸曲線的方式去擬合得:M247331 IV. Creation Instructions (6) Please refer to Figures 4 (a) and 4 (b), which are the appearance of the rectangular magnet and the distribution curve of the force in the cuboid electromagnet, respectively. As an example, a magnet and a rectangular parallelepiped electromagnet are set with 100 measurement points inside the coil, and the magnet is placed on these measurement points to measure the magnitude of the force of the magnet at each measurement point under different current levels, and then The measured data values are fitted by a polynomial regression curve:

Frecfy = + ^ + + + + ^ + ^)1 rec (7) 其中,a6 =-1·954χ109,a5 = 4.39xl08,a4 =- 3. 3 8 5 x 1 07,a3=1.16x 106,a2 19338 5 8^214. 8,a〇 二- 0.385 。故我們可以得到長方體電磁鐵與方形磁鐵間的"?(·^少,幻關 係式。 請參閱第五(a )圖及第五(b )圖,係分別為圓形磁鐵外 觀示意圖以及圓柱體電磁鐵内受力分布曲線圖,如圖所示 同樣地,利用上述相同的方式,得到圓柱形電磁鐵與 圓形磁鐵間的關係式為:Frecfy = + ^ + + + + ^ + ^) 1 rec (7) where a6 = -1 · 954χ109, a5 = 4.39xl08, a4 =-3. 3 8 5 x 1 07, a3 = 1.16x 106, a2 19338 5 ^ 214.8, a 02-0.385. So we can get the " between the cuboid electromagnet and the square magnet? (· ^ 少, magic relationship. Please refer to Figures 5 (a) and 5 (b), which are schematic diagrams of the appearance of a circular magnet and the force distribution curve of a cylindrical electromagnet, respectively, as shown in the figure.) In the same manner as above, the relationship between the cylindrical electromagnet and the circular magnet is obtained as:

Fcyl,z = + b3z3 + hl2% + blZ + b〇)J cyl 其中,b4= - 5. 6 2 x 1 06, b3 = - 4. 8 9 x 1 05, b. (8) 16659, b 219.34, b〇= 0.0 6 6 1 9 再請茶閱弟六圖’係為本創作之結構不意圖,如圖所 示Fcyl, z = + b3z3 + hl2% + blZ + b〇) J cyl where b4 =-5. 6 2 x 1 06, b3 =-4. 8 9 x 1 05, b. (8) 16659, b 219.34 , B〇 = 0.0 6 6 1 9 Please ask Cha to read the six pictures of the younger brother's structure of this creation is not intended, as shown in the figure

第10頁 M247331 四、創作說明(7) 本創作之新型平面式磁浮定位裝置1 ,至少包含:一 承載台1 0 ,於其邊緣設有三懸臂1 0 1 、1 0 2 、1 0 3 ,並於各懸臂之末端分別設有一永久磁鐵1 0 4、1 0 5 、1 0 6 ;三組推進機構1 1 、1 2 、1 3 ,係分別對 應設於各懸臂末端永久磁鐵之外側,並分別於其上設有推 進線圈1 1 1 、1 2 1 、1 3 1 ,以提供其相對應之推進 線圈輸入控制電流時產生推進力;三組懸浮機構1 4 、1 5 、1 6 ,係分別對應設於各懸臂之下方,並分別於其上 設有懸浮線圈1 4 1 、1 5 1 、1 6 1以及永久磁鐵1 4 2 、1 5 2 、1 6 2 ,以提供其相對應之懸浮線圈輸入控 制電流時產生懸浮力。其中,該承載台1 0與三懸臂1 0 1 、1 0 2 、1 0 3之材質可為鋁合金,且三懸臂外形可 為強化的门型懸臂樑結構;另,該三懸臂1 0 1 、1 0 2 、 1 0 3中之一懸臂可為彎折狀。 請參閱第七(a )圖及第七(b)圖,係分別為本創作之承 載台受力俯視圖以及前視圖,如圖所示: 利用牛頓力學第二定律,我們可將第七(a)圖及第七 (b)圖的六個磁力整理成下列運動平台之受力與力矩方程 式為:Page 10 M247331 IV. Creation Instructions (7) The new-type planar magnetic levitation positioning device 1 of this creation includes at least: a bearing platform 10 with three cantilever arms 1 0 1, 1 2, 1 0 3 at its edges, and A permanent magnet 104, 105, 106 is provided at the end of each cantilever; three sets of propulsion mechanisms 1 1, 1 2, 1 3 are respectively corresponding to the outer side of the permanent magnet at the end of each cantilever, and respectively A propulsion coil 1 1 1, 1 2 1, 1 3 1 is provided on the propulsion coil to provide a corresponding propulsion force when a control current is input to the corresponding propulsion coil; three sets of suspension mechanisms 1 4, 1 5, and 16 are respectively Correspondingly located below each cantilever, and respectively provided with levitating coils 1 4 1, 1 5 1, 16 1 and permanent magnets 1 2 2, 15 2, 16 2 to provide corresponding suspensions. Levitation force is generated when the coil inputs the control current. Wherein, the material of the bearing platform 10 and the three cantilever 10, 1, 102, and 103 can be aluminum alloy, and the shape of the three cantilever can be a reinforced gate cantilever structure; in addition, the three cantilever 1 0 1 One of the cantilever, 10 2, and 10 3 can be bent. Please refer to Figure 7 (a) and Figure 7 (b), which are the top view and the front view of the bearing platform of this creation respectively, as shown in the figure: Using Newton's second law of mechanics, we can use the seventh (a The six magnetic forces shown in Figure) and Figure 7 (b) are sorted into the force and moment equations for the following motion platforms:

第11頁 M247331 四、創作說明(8) ^γ^Γ2 + ψ2Γ3=ΜΎ XFz=F4+F5 + F6-Mg=Mz Στζ F^L3 = Izz θ 其中M為運動平台之質量,g為重力加速度 分別為運動平台延著X、Y與Z軸之轉動慣量;回顧算式(7 ) 及算式(8 )我們可將上式以矩陣形式改寫:m=B(X、U-G 其中,Μ Ξ diag[M, M, M, Ixx, Iyy, I Z, φ, 0, 0 ]τ , U 三[Up u2, u3, u4, u5 mg,0,0,0 ]τ o 由上述諸公式得知,藉由推進線圈輸入控制電流時產 生的推進力Fi、F2、 F3,可精準控制承載台1 〇於X — Y 軸方向之移動,並藉由懸浮線圈輸入控制電流時產生的懸 浮力F 4、F 5、 F 6,可精準控制承載台1 0於Z軸方向之 移動,達到具有長運動行程以及高精度定位性能之六自由 度運動之功效者。Page 11 M247331 IV. Creation Instructions (8) ^ γ ^ Γ2 + ψ2Γ3 = ΜΎ XFz = F4 + F5 + F6-Mg = Mz Στζ F ^ L3 = Izz θ where M is the mass of the moving platform and g is the acceleration of gravity respectively The inertia of the motion platform extending along the X, Y, and Z axes; reviewing equations (7) and (8), we can rewrite the above equations in a matrix form: m = B (X, UG where M 其中 diag [M, M, M, Ixx, Iyy, IZ, φ, 0, 0] τ, U three [Up u2, u3, u4, u5 mg, 0, 0, 0] τ o is known from the above formulas, by the advance coil The propulsion forces Fi, F2 and F3 generated when the control current is input can accurately control the movement of the bearing platform 10 in the X-Y axis direction, and the levitation forces F 4, F 5, F when the control current is input through the levitation coil. 6. It can accurately control the movement of the bearing platform 10 in the Z-axis direction to achieve the effect of six-degree-of-freedom movement with long motion stroke and high-precision positioning performance.

(9) Ιχχ、lyy 與 I(9) Ιχχ, lyy, and I

X u丨 10) [X, Y,=[0,0,X u 丨 10) (X, Y, = (0,0,

第12頁 M247331 四、創作說明(9) 綜前所述,由本創作一種新型平面式磁浮定位裝置之 設計確實可行,且改善了習用技術之各種缺失,實為創新 並符合產業需求之高度創作,而且具有新穎性以及進步 性,完全符合新型專利之法定要件,爰依法提出新型專利 申請。 以上所述僅為本創作之較佳實施例而已,並非用以限 定本創作之申請專利範圍;凡其他未脫離本創作所揭示之 精神下所完成之等效改變或修飾,均應包含在下述之申請 專利範圍内。Page 12 M247331 IV. Creation Instructions (9) In summary, the design of a new type of flat magnetic levitation positioning device created by this is indeed feasible, and it improves the various shortcomings of conventional technology. It is a highly creative creation that meets the needs of the industry. Moreover, it is novel and progressive, and fully complies with the statutory requirements of new patents. The above is only a preferred embodiment of this creation, and is not intended to limit the scope of the patent application for this creation; all other equivalent changes or modifications made without departing from the spirit disclosed by this creation shall be included in the following Within the scope of patent application.

第13頁 M247331 圖式簡單說明 第一圖係為物體在空間中產生的磁場向量示意圖。 第二圖係為圓柱型電磁鐵在空間中產生的磁場向量示意 圖。 第三圖係為永久磁鐵在磁場空間中受力的狀態示意圖。 第四(a)圖係為長方形磁鐵外觀示意圖。 第四(b)圖係為長方體電磁鐵内受力分布曲線圖。 第五(a )圖係為圓形磁鐵外觀示意圖。 第五(b )圖係為圓柱體電磁鐵内受力分布曲線圖。 第六圖係為本創作之結構示意圖。 第七(a )圖係為本創作之承載台受力俯視圖。 第七(b )圖係為本創作之承載台受力前視圖。 言" .......... 日: 對·......... 號· 1 3 5 · · · · 2 1_ 圖· 000123445 1L 1L 1L 1L 1L· -_- I II 1:1 《明】 磁浮定位裝置 懸臂 懸臂 永久磁鐵 推進機構 推進機構 推進機構 懸浮機構 永久磁鐵 懸浮線圈 懸浮機構 0 · 0 2 0 4 0 6 11 2 1 4 2 承載 懸臂 永久 永久 推進 推進 推進 懸浮 懸浮 永久 懸浮 台 磁鐵 磁鐵 線圈 線圈 線圈 線圈 機構 磁鐵 線圈Page 13 M247331 Brief description of the diagram The first diagram is a schematic diagram of the magnetic field vector generated by an object in space. The second diagram is a schematic diagram of a magnetic field vector generated by a cylindrical electromagnet in space. The third figure is a schematic diagram of the state of the permanent magnet in the magnetic field space. The fourth (a) picture is a schematic diagram of the appearance of a rectangular magnet. The fourth (b) diagram is a force distribution curve diagram of a rectangular parallelepiped electromagnet. The fifth (a) diagram is a schematic diagram of the appearance of a circular magnet. The fifth (b) diagram is a force distribution curve diagram of a cylindrical electromagnet. The sixth picture is the structure diagram of this creation. The seventh (a) picture is the top view of the bearing platform of this creation. The seventh (b) picture is a front view of the bearing platform of this creation. Language " .......... Day: Right ............ No. 1 3 5 · · · · 2 1_ Figure · 000123445 1L 1L 1L 1L 1L · -_- I II 1: 1 "Ming" Magnetic suspension positioning device cantilever cantilever permanent magnet propulsion mechanism propulsion mechanism propulsion mechanism suspension mechanism permanent magnet suspension coil suspension mechanism 0 · 0 2 0 4 0 6 11 2 1 4 2 Permanent suspension table magnet magnet coil coil coil coil mechanism magnet coil

Μ 第14頁 M247331Μ Page 14 M247331

第15頁Page 15

Claims (1)

M247331 五、申請專利範圍 1 · 一種新型平面式磁浮定位裝置,至少包含: 一承載台,於其邊緣設有三懸臂,並於各懸臂之末端 分別設有一永久磁鐵; 三組推進機構’係分別對應設於各懸臂末端永久磁鐵 之外側,並分別於其上設有推進線圈; 三組懸浮機構,係分別對應設於各懸臂之下方,並分 別於其上設有懸浮線圈以及永久磁鐵。 ^ 2 ·如申請專利範圍第1項所述之新型平面式磁浮定位裝 置,其中,該承載台與三懸臂之材質可為鋁合金。 Φ 3 ·如申請專利範圍第1項所述之新型平面式磁浮定位裝 置,其中,該三懸臂外形可為強化的门型懸臂樑結構 4 ·如申請專利範圍第1項所述之新型平面式磁浮定位裝 置,其中,該三懸臂中之一懸臂可為彎折狀。M247331 5. Scope of patent application1. A new type of flat magnetic levitation positioning device, at least: a load-bearing platform with three cantilevers at its edges, and a permanent magnet at the end of each cantilever; three sets of propulsion mechanisms are respectively corresponding It is set on the outer side of the permanent magnets at the end of each cantilever and is provided with a propulsion coil on each side; three sets of suspension mechanisms are correspondingly arranged below each cantilever, and a suspension coil and a permanent magnet are respectively provided on it. ^ 2 · The new planar magnetic levitation positioning device described in item 1 of the scope of patent application, wherein the material of the bearing platform and the three cantilever can be aluminum alloy. Φ 3 · The new planar magnetic levitation positioning device as described in item 1 of the scope of patent application, wherein the shape of the three cantilever can be a reinforced cantilever beam structure 4 · The new planar type as described in item 1 of the scope of patent application The magnetic levitation positioning device, wherein one of the three cantilevers can be bent. 第16頁Page 16
TW92222415U 2003-12-22 2003-12-22 Novel planar type magnetic-levitated alignment apparatus TWM247331U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92222415U TWM247331U (en) 2003-12-22 2003-12-22 Novel planar type magnetic-levitated alignment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92222415U TWM247331U (en) 2003-12-22 2003-12-22 Novel planar type magnetic-levitated alignment apparatus

Publications (1)

Publication Number Publication Date
TWM247331U true TWM247331U (en) 2004-10-21

Family

ID=34548342

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92222415U TWM247331U (en) 2003-12-22 2003-12-22 Novel planar type magnetic-levitated alignment apparatus

Country Status (1)

Country Link
TW (1) TWM247331U (en)

Similar Documents

Publication Publication Date Title
Schuerle et al. Three-dimensional magnetic manipulation of micro-and nanostructures for applications in life sciences
Kim et al. Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles: A tool for fabrication of microbiorobots
WO2017005457A1 (en) Displacement device
JPH0917848A (en) Magnetic levitation type stage
Zhang et al. Three-dimensional visual servo control of a magnetically propelled microscopic bead
KR101792390B1 (en) Precise spatial mover
Gauthier et al. Control of a particular micro-macro positioning system applied to cell micromanipulation
Lahdo et al. Repulsive magnetic levitation force calculation for a high precision 6-DoF magnetic levitation positioning system
Kim et al. Analysis of high force voice coil motors for magnetic levitation
Kim et al. A six-degree-of-freedom magnetic levitation fine stage for a high-precision and high-acceleration dual-servo stage
US7185590B2 (en) Planar maglev positioning system
US7940150B2 (en) Six-degree-of-freedom precision positioning system
Kang et al. Design of magnetic force field for trajectory control of levitated diamagnetic graphite
TWM247331U (en) Novel planar type magnetic-levitated alignment apparatus
Trakarnchaiyo et al. Design of a Compact Planar Magnetic Levitation System with Wrench–Current Decoupling Enhancement
Yang et al. A novel 2-DOF Lorentz force actuator for the modular magnetic suspension platform
Ahn et al. Development of a novel dual servo magnetic levitation stage
Li et al. Fabrication and wireless micromanipulation of magnetic-biocompatible microrobots using microencapsulation for microrobotics and microfluidics applications
Otsuka et al. Development of a sub-nanometer positioning device: Combining a new linear motor with linear motion ball guide ways
Cao et al. Novel magnetic suspension platform with three types of magnetic bearings for mass transfer
WO2021039836A1 (en) Magnetic levitation device and measuring device using same
Chavez et al. Actuators based on a controlled particle-matrix interaction in magnetic hybrid materials for applications in locomotion and manipulation systems
Sun et al. Noncontact spinning mechanism using rotary permanent magnets
Ghanbari et al. Nonlinear modeling application to micro-/nanorobotics
Cao et al. Design and analysis of a 6-DOF magnetic suspension platform with an improved permanent magnetic array

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model