TWI856180B - Washing Machine - Google Patents
Washing Machine Download PDFInfo
- Publication number
- TWI856180B TWI856180B TW109131910A TW109131910A TWI856180B TW I856180 B TWI856180 B TW I856180B TW 109131910 A TW109131910 A TW 109131910A TW 109131910 A TW109131910 A TW 109131910A TW I856180 B TWI856180 B TW I856180B
- Authority
- TW
- Taiwan
- Prior art keywords
- motor
- control
- water flow
- current
- washing machine
- Prior art date
Links
- 238000005406 washing Methods 0.000 title claims abstract description 156
- 239000004744 fabric Substances 0.000 claims abstract description 113
- 238000001514 detection method Methods 0.000 claims abstract description 87
- 230000001133 acceleration Effects 0.000 claims abstract description 27
- 230000007246 mechanism Effects 0.000 claims abstract description 22
- 238000003756 stirring Methods 0.000 claims abstract description 19
- 230000005540 biological transmission Effects 0.000 claims abstract description 15
- 238000004804 winding Methods 0.000 claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 115
- 238000012937 correction Methods 0.000 claims description 48
- 230000008859 change Effects 0.000 claims description 21
- 230000004044 response Effects 0.000 claims description 7
- 238000000034 method Methods 0.000 description 44
- 238000012545 processing Methods 0.000 description 35
- 230000001186 cumulative effect Effects 0.000 description 34
- 230000008569 process Effects 0.000 description 29
- 238000010586 diagram Methods 0.000 description 25
- 230000009467 reduction Effects 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 8
- 238000012935 Averaging Methods 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 230000003111 delayed effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Abstract
本揭示中的洗衣機具備:攪拌翼,旋轉自如地配設於洗滌兼脫水槽;電動機,具有永久磁鐵與繞組;電源電路,對電動機供給電流;及電流偵測部,偵測電動機的電流。又,具備:傳達機構,將電動機的轉矩傳達至攪拌翼;旋轉數控制部,將電動機控制成預定旋轉數;及控制部,依序左右交互地對電動機執行預定次數的加速控制、恆速控制、或中止控制。此外,控制部設置有布量偵測部,前述布量偵測部是從恆速控制的期間中的電流平均值、或中止控制的期間中的旋轉角度,來偵測洗滌物的量。The washing machine disclosed in the present invention is equipped with: a stirring blade rotatably arranged in a washing and dewatering tank; a motor having a permanent magnet and a winding; a power supply circuit for supplying current to the motor; and a current detection unit for detecting the current of the motor. In addition, it is equipped with: a transmission mechanism for transmitting the torque of the motor to the stirring blade; a rotation number control unit for controlling the motor to a predetermined rotation number; and a control unit for performing a predetermined number of acceleration control, constant speed control, or stop control on the motor in sequence and alternately from left to right. In addition, the control unit is provided with a cloth amount detection unit, which detects the amount of laundry from the average current value during the constant speed control period or the rotation angle during the stop control period.
Description
本揭示是有關於一種洗衣機。 This disclosure relates to a washing machine.
以往,這種洗衣機是如日本專利特開2014-54498號公報所示,如以下所述地進行布量判定。布量判定是指測量放入洗衣機的布量,且提出了一種已經有將水位或旋轉數因應於布量的洗衣方法。為了提升進行布量判定時的精確度,會從將洗滌槽的旋轉的加速時與減速時的加速度設為一定比例時的電流值來進行布量判定。 In the past, such a washing machine performed cloth amount determination as described below, as shown in Japanese Patent Publication No. 2014-54498. Cloth amount determination refers to measuring the amount of cloth put into the washing machine, and a washing method has been proposed that corresponds the water level or the number of rotations to the amount of cloth. In order to improve the accuracy of cloth amount determination, the cloth amount determination is performed based on the current value when the acceleration of the washing tub during acceleration and deceleration is set to a certain ratio.
又,以往,這種洗衣機是如日本專利特開2006-68275號公報所示,如以下所述地進行水流修正控制。提出了一種藉由攪拌開始初期的一定週期間的電流,來預測來自洗滌槽內的洗滌水的飛散,當電流較大時預測會飛散,而事先變更成弱水流來防止飛散的方法。 In the past, this type of washing machine performed water flow correction control as described below, as shown in Japanese Patent Publication No. 2006-68275. A method was proposed in which the current during a certain period at the beginning of agitation is used to predict the scattering of washing water from the washing tank. When the current is large, it is predicted that the washing water will scatter, and the water flow is changed to a weaker one in advance to prevent the scattering.
然而,像這樣的以往的洗衣機有以下課題:由於是使洗滌槽旋轉,因此在布偏向的情況下較容易受到不平衡的影響,若欲消除該不平衡,則需花費時間。又,有以下課題:由於是將位置感測器使用於旋轉數偵測,因此會變得昂貴,並且會受到構造上的限制。 However, such conventional washing machines have the following problems: Since the washing tub is rotated, it is more susceptible to imbalance when the cloth is biased, and it takes time to eliminate the imbalance. Another problem is that since the position sensor is used for rotation number detection, it becomes expensive and is limited by the structure.
本揭示是提供一種即使沒有位置感測器,仍然可以容易地以較佳的精確度來偵測布量的洗衣機。 The present disclosure provides a washing machine that can easily detect the amount of cloth with better accuracy even without a position sensor.
本揭示中的洗衣機具備:攪拌翼,旋轉自如地配設於洗滌兼脫水槽;電動機,具有永久磁鐵與繞組;電源電路,對電動機供給電流;及電流偵 測部,偵測電動機的電流。又,具備:傳達機構,將電動機的轉矩傳達至攪拌翼;旋轉數控制部,將電動機控制成預定旋轉數;及控制部,依序左右交互地對電動機執行預定次數的加速控制、恆速控制、或中止控制。此外,控制部設置有布量偵測部,前述布量偵測部是從恆速控制的期間中的電流平均值、或中止控制的期間中的旋轉角度,來偵測洗滌物的量。 The washing machine disclosed in the present invention is equipped with: a stirring blade, which is rotatably arranged in a washing and dehydrating tank; a motor, which has a permanent magnet and a winding; a power supply circuit, which supplies current to the motor; and a current detection unit, which detects the current of the motor. In addition, it is equipped with: a transmission mechanism, which transmits the torque of the motor to the stirring blade; a rotation number control unit, which controls the motor to a predetermined rotation number; and a control unit, which performs a predetermined number of acceleration control, constant speed control, or stop control on the motor in sequence and alternately from left to right. In addition, the control unit is provided with a cloth amount detection unit, which detects the amount of laundry from the average current value during the constant speed control period or the rotation angle during the stop control period.
本揭示中的洗衣機即使沒有位置感測器,仍然可以容易地以較佳的精確度來偵測布量。 Even without a position sensor, the washing machine disclosed in the present invention can still easily detect the amount of cloth with good accuracy.
此外,以往的洗衣機有以下課題:由於在洗滌物較大的情況下電流會變大,而使水流減弱,因此若洗滌物較大則需花費洗淨時間,而不能滿足洗淨性能。又,有以下課題:由於是將位置感測器使用於防止洗滌水的飛散用之水流的修正,因此會變得昂貴,並且會受到構造上的限制。 In addition, conventional washing machines have the following problems: When the laundry is large, the current will increase, which will weaken the water flow. Therefore, if the laundry is large, it will take longer to wash, and the washing performance cannot be satisfied. In addition, there is the following problem: since the position sensor is used to correct the water flow to prevent the splashing of washing water, it will become expensive and will be limited by the structure.
本揭示是提供一種即使沒有位置感測器,仍然可以在不水濺的程度下以通常水流來控制,藉此來確保洗淨性能的洗衣機。 The present disclosure provides a washing machine that can be controlled with normal water flow without splashing even without a position sensor, thereby ensuring the washing performance.
本揭示中的洗衣機具備:攪拌翼,旋轉自如地配設於洗滌兼脫水槽;電動機,具有永久磁鐵與繞組;電源電路,對電動機供給電流;及電流偵測部,偵測電動機的電流。又,具備:傳達機構,將電動機的轉矩傳達至攪拌翼;旋轉數控制部,將電動機控制成預定旋轉數;及控制部,依序左右交互地對電動機執行預定次數的加速控制、恆速控制、或中止控制。此外,控制部是因應於中止控制期間中的旋轉角度,來修正洗滌的水流。 The washing machine disclosed in the present invention is equipped with: a stirring blade, which is rotatably arranged in a washing and dehydrating tank; a motor, which has a permanent magnet and a winding; a power supply circuit, which supplies current to the motor; and a current detection unit, which detects the current of the motor. In addition, it is equipped with: a transmission mechanism, which transmits the torque of the motor to the stirring blade; a rotation number control unit, which controls the motor to a predetermined rotation number; and a control unit, which performs a predetermined number of acceleration control, constant speed control, or stop control on the motor in sequence and alternately from left to right. In addition, the control unit corrects the washing water flow according to the rotation angle during the stop control period.
本揭示中的洗衣機不用取決於洗滌物的量,就可以預測洗滌水的飛散。又,即使沒有位置感測器,仍然可以在不水濺的程度下以通常水流來控制,藉此來確保洗淨性能,在水濺的情況下是使水流減弱,而將水濺防範於未然。 The washing machine disclosed in the present invention can predict the splashing of washing water without depending on the amount of laundry. Moreover, even without a position sensor, it can still be controlled with normal water flow to ensure the washing performance at a level without splashing. In the case of splashing, the water flow is weakened to prevent splashing before it occurs.
1:脈動器(攪拌翼) 1: Pulsator (stirring blade)
2:洗滌兼脫水槽 2: Washing and dewatering sink
3:儲水槽 3: Water storage tank
4:馬達(電動機) 4: Motor (electric motor)
4a,4b,4c:繞組 4a,4b,4c: Winding
4d:永久磁鐵(轉子) 4d: Permanent magnet (rotor)
5:皮帶(傳達機構) 5: Belt (transmission mechanism)
6:減速機構兼離合器(傳達機構) 6: Speed reduction mechanism and clutch (transmission mechanism)
7:齒輪馬達 7: Gear motor
8:制動皮帶 8: Brake belt
9:洗衣機外框 9: Washing machine frame
10:面板部 10: Panel section
11:蓋 11: Cover
12:顯示部 12: Display unit
13:控制裝置 13: Control device
14:供水閥 14: Water supply valve
15:排水閥 15: Drain valve
16:整流電路 16: Rectifier circuit
17:換流電路(電源電路) 17: Commutation circuit (power circuit)
18:電流檢測部(電流偵測部) 18: Current detection unit (current detection unit)
19:PWM控制部 19: PWM control unit
20:控制部 20: Control Department
21:速度相位推定部 21: Speed phase estimation unit
22:三相二相轉換器 22: Three-phase to two-phase converter
23:Iδ誤差放大器 23:Iδ error amplifier
24:Iγ誤差放大器 24:Iγ error amplifier
25:二相三相轉換器 25: Two-phase and three-phase converter
26:速度誤差放大器 26: Speed error amplifier
27:弱磁場設定部 27: Weak magnetic field setting unit
28:γ軸感應電壓計算器 28:γ-axis induced voltage calculator
29:γ軸感應電壓誤差放大器 29:γ-axis induced voltage error amplifier
31:皮帶輪(傳達機構) 31: Pulley (transmission mechanism)
32:動葉輪皮帶輪(傳達機構) 32: Impeller pulley (transmission mechanism)
d,q,γ,δ:軸 d,q,γ,δ:axis
Iu,Iv,Iw:相電流 Iu, Iv, Iw: phase current
Iγ:γ軸電流 Iγ:γ axis current
Iγs:γ軸電流指令 Iγs:γ-axis current command
Iδ:δ軸電流 Iδ:δ axis current
Iδs:δ軸電流指令 Iδs:δ-axis current command
Kθ:比例增益 Kθ: proportional gain
Kω:積分增益 Kω: integral gain
L:電感值 L: Inductance value
Ra:電阻值 Ra: resistance value
U,V,W:相 U,V,W: phase
Va:輸入電壓 Va: Input voltage
Vdc:直流電壓 Vdc: Direct current voltage
Ve:感應電壓向量 Ve: Induced voltage vector
Veγ:γ軸感應電壓 Veγ:γ-axis induced voltage
Veγs:γ軸感應電壓指令 Veγs:γ-axis induced voltage command
Vu,Vv,Vw:輸出電壓 Vu, Vv, Vw: output voltage
Vus,Vvs,Vws:三相電壓、三相馬達驅動控制電壓指令、施加電壓 Vus, Vvs, Vws: three-phase voltage, three-phase motor drive control voltage command, applied voltage
Vγs:指令γ軸電壓 Vγs: Command γ-axis voltage
Vδs:指令δ軸電壓 Vδs: Command δ axis voltage
θ:相位、電角度、推定相位、馬達旋轉角度、旋轉角 θ: phase, electrical angle, estimated phase, motor rotation angle, rotation angle
θc:相位 θc: phase
ω:速度、電角度速度、推定速度、馬達旋轉數 ω: speed, electrical angle speed, estimated speed, motor rotation speed
ωs:速度指令、馬達指令旋轉速、馬達指定旋轉速 ωs: speed command, motor command rotation speed, motor specified rotation speed
△Iγ:相對於γ軸電流的指令值的誤差 △Iγ: Error relative to the command value of the γ-axis current
△Iδ:相對於δ軸電流的指令值的誤差 △Iδ: Error relative to the command value of the δ-axis current
△Veγ:γ軸感應電壓誤差 △Veγ:γ-axis induced voltage error
△θ:誤差、推定位相誤差 △θ: Error, estimated phase error
△ω:相對於速度指令的誤差 △ω: Error relative to speed command
α:馬達加速度 α : Motor acceleration
S100~S112,S200~S205,S300~S311,S307a,S400~S411,S500~S503,S600~S608,S700~S706,S800~S814,S1100~S1112,S1200~S1205,S1300~S1305,S1400~S1411,S1500~S1508,S1600~S1606,S1700~S1712:步驟 S100~S112,S200~S205,S300~S311,S307a,S400~S411,S500~S503,S600~S608,S700~S706,S800~S814,S1100~S1112,S1200~S1205,S1300~S1305,S1400~S1411,S1500~S1508,S1600~S1606,S1700~S1712: Steps
圖1是第1實施形態中的洗衣機的主要部位剖面圖。 Figure 1 is a cross-sectional view of the main parts of the washing machine in the first embodiment.
圖2是第1實施形態中的洗衣機的馬達的驅動系統的方塊圖。 FIG. 2 is a block diagram of the motor drive system of the washing machine in the first embodiment.
圖3是第1實施形態中的洗衣機的馬達的等效電路圖。 FIG3 is an equivalent circuit diagram of the motor of the washing machine in the first embodiment.
圖4是第1實施形態中的洗衣機的馬達之相位推定時的控制方塊圖。 FIG4 is a control block diagram for estimating the motor phase of the washing machine in the first embodiment.
圖5是第1實施形態中的洗衣機的馬達之速度相位推定部的詳細方塊圖。 FIG5 is a detailed block diagram of the motor speed phase estimation unit of the washing machine in the first embodiment.
圖6A是第1實施形態中的洗衣機的馬達之相位推定時的推定座標為延遲狀態的向量圖。 FIG. 6A is a vector diagram showing the estimated coordinates in a delayed state when estimating the phase of the motor of the washing machine in the first embodiment.
圖6B是第1實施形態中的洗衣機的馬達之相位推定時的推定座標為超前狀態的向量圖。 FIG. 6B is a vector diagram showing the estimated coordinates in the leading state when estimating the phase of the motor of the washing machine in the first embodiment.
圖7是第1實施形態中的洗衣機的布量偵測控制的流程圖。 FIG7 is a flow chart of cloth amount detection control of the washing machine in the first embodiment.
圖8是第1實施形態中的洗衣機的布量偵測加速控制的流程圖。 FIG8 is a flow chart of the cloth amount detection acceleration control of the washing machine in the first embodiment.
圖9是第1實施形態中的洗衣機的布量偵測恆速控制的流程圖。 FIG9 is a flow chart of cloth amount detection constant speed control of the washing machine in the first embodiment.
圖10是第1實施形態中的洗衣機的布量偵測減速控制的流程圖。 FIG10 is a flow chart of the cloth amount detection deceleration control of the washing machine in the first embodiment.
圖11是第1實施形態中的洗衣機的布量偵測判定輸出的流程圖。 FIG11 is a flow chart of the cloth amount detection and determination output of the washing machine in the first embodiment.
圖12A是第1實施形態中的洗衣機的布量偵測判定輸出的平均Iq與布量判定值的關係圖。 FIG. 12A is a relationship diagram between the average Iq of the cloth amount detection output and the cloth amount determination value of the washing machine in the first embodiment.
圖12B是第1實施形態中的洗衣機的布量偵測判定輸出的累積運算旋轉角與布量判定值的關係圖。 FIG. 12B is a relationship diagram between the cumulative calculation rotation angle and the cloth amount determination value of the cloth amount detection and determination output of the washing machine in the first embodiment.
圖13是第1實施形態中的洗衣機的布量偵測下的偵測Iq、旋轉角度的時序圖。 FIG. 13 is a timing diagram of the detection Iq and the rotation angle under the cloth amount detection of the washing machine in the first embodiment.
圖14是第1實施形態中的洗衣機的馬達速度控制處理的流程圖。 FIG. 14 is a flow chart of the motor speed control process of the washing machine in the first embodiment.
圖15是第1實施形態中的洗衣機的馬達中止控制處理的流程圖。 FIG. 15 is a flowchart of the motor stop control process of the washing machine in the first embodiment.
圖16是第1實施形態中的洗衣機的馬達電流控制處理的流程圖。 FIG. 16 is a flow chart of the motor current control process of the washing machine in the first embodiment.
圖17是第2實施形態中的洗衣機的布量偵測恆速控制的流程圖。 FIG. 17 is a flow chart of cloth amount detection constant speed control of the washing machine in the second embodiment.
圖18是第2實施形態中的洗衣機的布量偵測下的偵測Iq的時序圖。 FIG. 18 is a timing diagram of the detection Iq under cloth amount detection of the washing machine in the second embodiment.
圖19是第3實施形態中的洗衣機的水流修正控制的流程圖。 FIG. 19 is a flow chart of the water flow correction control of the washing machine in the third embodiment.
圖20是第3實施形態中的洗衣機的水流修正的加速控制的流程圖。 FIG. 20 is a flow chart of the acceleration control of the water flow correction of the washing machine in the third embodiment.
圖21是第3實施形態中的洗衣機的水流修正的恆速控制的流程圖。 FIG. 21 is a flow chart of the constant speed control of the water flow correction of the washing machine in the third embodiment.
圖22是第3實施形態中的洗衣機的水流修正的減速控制的流程圖。 FIG. 22 is a flow chart of the deceleration control of the water flow correction of the washing machine in the third embodiment.
圖23是第3實施形態中的洗衣機的水流修正控制的判定輸出的累積運算旋轉角與水流修正控制下的判定水流的關係圖。 FIG. 23 is a relationship diagram between the cumulative calculation rotation angle of the judgment output of the water flow correction control of the washing machine in the third embodiment and the judgment water flow under the water flow correction control.
圖24是偵測第3實施形態中的洗衣機的水流修正控制的旋轉角度的時序圖。 FIG. 24 is a timing diagram for detecting the rotation angle of the water flow correction control of the washing machine in the third embodiment.
圖25是第3實施形態中的洗衣機的馬達速度控制處理的流程圖。 FIG. 25 is a flow chart of the motor speed control process of the washing machine in the third embodiment.
圖26是第3實施形態中的洗衣機的馬達中止控制處理的流程圖。 FIG. 26 is a flowchart of the motor stop control process of the washing machine in the third embodiment.
圖27是第3實施形態中的洗衣機的馬達電流控制處理的流程圖。 FIG. 27 is a flow chart of the motor current control process of the washing machine in the third embodiment.
以下,針對本揭示的實施形態,一邊參照圖式一邊進行說明。又,本揭示並不因此實施形態而被限定。 The following is an explanation of the implementation form of the present disclosure with reference to the drawings. In addition, the present disclosure is not limited to this implementation form.
(第1實施形態) (First implementation form)
圖1是第1實施形態中的洗衣機的主要部位剖面圖。 Figure 1 is a cross-sectional view of the main parts of the washing machine in the first embodiment.
將衣物攪拌用的脈動器(pulsator)1左右旋轉自如地配置在底部的洗滌兼脫水槽2是脫水旋轉自如地構成在儲水槽3的內部。在儲水槽3的外底部固定馬達4,馬達4的旋轉是透過馬達皮帶輪31、皮帶5、動葉輪皮帶輪32、及減速機構兼離合器6,來使脈動器1或洗滌兼脫水槽2旋轉驅動、或使其制動。 The pulsator 1 for stirring clothes is arranged at the bottom so that it can rotate freely left and right, and the washing and dehydrating tank 2 is configured to rotate freely inside the water storage tank 3 for dehydration. The motor 4 is fixed to the outer bottom of the water storage tank 3, and the rotation of the motor 4 is driven or braked by the motor pulley 31, the belt 5, the impeller pulley 32, and the speed reduction mechanism and clutch 6 to rotate the pulsator 1 or the washing and dehydrating tank 2.
在馬達皮帶輪31與動葉輪皮帶輪32間有減速比(例如,1/4),且有以下關係:當安裝在馬達4的馬達軸(未圖示)的馬達皮帶輪31旋轉4圈時,安裝在減速機構兼離合器6的動葉輪軸(未圖示)的動葉輪皮帶輪32(或洗滌兼脫水槽2)會旋轉1圈。 There is a speed reduction ratio (e.g., 1/4) between the motor pulley 31 and the impeller pulley 32, and the following relationship exists: when the motor pulley 31 mounted on the motor shaft (not shown) of the motor 4 rotates 4 times, the impeller pulley 32 (or the washing and dewatering tank 2) mounted on the impeller shaft (not shown) of the speed reduction mechanism and clutch 6 will rotate 1 time.
同樣地,位於動葉輪皮帶輪32與脈動器1之間的減速機構兼離合器6具有減速比(例如,1/6),且有以下關係:當安裝在動葉輪軸的動葉輪皮帶輪32旋轉6圈時,安裝在脈動器軸(未圖示)的脈動器1會旋轉1圈。 Similarly, the speed reduction mechanism and clutch 6 located between the impeller pulley 32 and the pulsator 1 has a speed reduction ratio (for example, 1/6), and has the following relationship: when the impeller pulley 32 mounted on the impeller shaft rotates 6 times, the pulsator 1 mounted on the pulsator shaft (not shown) rotates 1 time.
制動除了控制成將逆向轉矩施加於馬達4的方法之外,還有以下方法:使齒輪馬達(geared motor)7作動,使制動皮帶8接觸旋轉部,藉此機械性地來制動洗滌兼脫水槽2。在配置於洗衣機外框9的上方的面板部10的頂面,以開閉自如的方式設置蓋11,在面板的前方內側,配置控制整個洗衣機行程,並且具有顯示部12的控制裝置13。 In addition to the method of controlling the brake to apply reverse torque to the motor 4, there is also the following method: the geared motor 7 is activated to make the brake belt 8 contact the rotating part, thereby mechanically braking the washing and dewatering tank 2. On the top surface of the panel part 10 arranged above the outer frame 9 of the washing machine, a cover 11 is set in a freely openable and closable manner, and on the front inner side of the panel, a control device 13 that controls the entire washing machine stroke and has a display part 12 is arranged.
控制裝置13具有由微算機(microcomputer)所形成的控制部20,前述微算機是控制馬達4、供水閥14、排水閥15等的動作,來逐次控制洗衣、洗清、脫水等的一系列的行程。控制部20是依據來自供使用者操作所期望的洗滌行程設定或運轉開始、暫時停止等之輸入設定部的資訊,藉由LED或LCD等之發光元件所形成的顯示部12,顯示行程進度的顯示或各種資訊來通知使用者。當藉由輸入設定部而設定運轉開始後,會因應於來自水位偵測部等的資料,控制齒輪馬達7、供水閥14、排水閥15的動作來進行洗滌運轉。 The control device 13 has a control unit 20 formed by a microcomputer. The aforementioned microcomputer controls the actions of the motor 4, the water supply valve 14, the drain valve 15, etc. to sequentially control a series of processes such as washing, cleaning, and dehydration. The control unit 20 is based on the information from the input setting unit for the user to operate the desired washing process setting or operation start, temporary stop, etc., and displays the process progress display or various information to notify the user through the display unit 12 formed by the light-emitting element such as LED or LCD. When the operation is set to start through the input setting unit, the gear motor 7, the water supply valve 14, and the drain valve 15 will be controlled in response to the data from the water level detection unit to perform the washing operation.
圖2是第1實施形態中的洗衣機的馬達的驅動系統的方塊圖。 FIG2 is a block diagram of the motor drive system of the washing machine in the first embodiment.
交流電源是將交流電力施加於整流電路16,整流電路16是由倍壓整流電路所構成,且將倍壓直流電壓施加於換流電路17。換流電路17是由三相全橋換流電路所構成,且由智慧型功率模組(以下稱為IPM)所構成,前述三相全橋換流電路是由6個電源切換半導體與反平行二極體所形成,前述智慧型功率模 組通常是內置了絕緣柵雙極電晶體(IGBT)與反平行二極體及其驅動電路與保護電路。將馬達4連接於換流電路17的輸出端子來驅動。 The AC power source applies AC power to the rectifier circuit 16, which is composed of a voltage doubler rectifier circuit, and applies the voltage doubler DC voltage to the commutation circuit 17. The commutation circuit 17 is composed of a three-phase full-bridge commutation circuit and an intelligent power module (hereinafter referred to as IPM). The three-phase full-bridge commutation circuit is formed by 6 power switching semiconductors and anti-parallel diodes. The intelligent power module is usually built-in with an insulated gate bipolar transistor (IGBT) and an anti-parallel diode and its driving circuit and protection circuit. The motor 4 is connected to the output terminal of the commutation circuit 17 for driving.
電流檢測部(電流偵測部)18是將分路電阻連接於換流電路17的負電壓端子與整流電路16的負電壓端子之間,依據由此分路電阻的兩端電壓而算出的換流電路17的輸入電流,來檢測出馬達4的相電流Iu、Iv、Iw。由於施加於換流電路17的直流電壓除了來自交流電源的輸入以外,還會藉由因馬達旋轉而產生的再生能量而有重疊的情形,因此總是在偵測。 The current detection unit (current detection unit) 18 connects a shunt resistor between the negative voltage terminal of the commutation circuit 17 and the negative voltage terminal of the rectifier circuit 16, and detects the phase currents Iu, Iv, and Iw of the motor 4 based on the input current of the commutation circuit 17 calculated from the voltage at both ends of the shunt resistor. Since the DC voltage applied to the commutation circuit 17 is not only input from the AC power source, but also overlapped by the regenerative energy generated by the rotation of the motor, it is always detected.
PWM控制部19是因應於來自控制部20的三相馬達驅動控制電壓指令Vus、Vvs、Vws來控制換流電路17的IGBT所切換的PWM訊號,且藉由換流電路的輸出電壓Vu、Vv、Vw來驅動馬達4。 The PWM control unit 19 controls the PWM signal switched by the IGBT of the commutation circuit 17 in response to the three-phase motor drive control voltage instructions Vus, Vvs, and Vws from the control unit 20, and drives the motor 4 by the output voltages Vu, Vv, and Vw of the commutation circuit.
圖3是第1實施形態中的洗衣機的馬達的等效電路圖。 FIG3 is an equivalent circuit diagram of the motor of the washing machine in the first embodiment.
在此為了使說明較簡單,是設成機械角度1旋轉成為電角度1旋轉的2極構成。在極數變化為4極、8極、…的情況下,機械角度1旋轉會變成電角度2旋轉、4旋轉、…的關係。馬達4是三相同步馬達,且是藉由具有U、V、W之三相的繞組4a、4b、4c、與繞著旋轉軸中心而旋轉的轉子即永久磁鐵4d的等效電路所構成。將在此等效電路中設永久磁鐵的N極側為正方向而貫穿的軸定義為d軸(direct-axis),並且將與其正交的軸定義為q軸(quadrature-axis)。若如此定義,則主要支配馬達轉矩的會變成是q軸方向的磁場。又,相位(電角度)是成為貫穿U相繞組的軸與d軸的旋轉角θ。以下,所記載的相位全部都是電角度。另外,將為了在d軸方向上產生磁場而施加了電壓時之繞組的電感設為Ld,同樣地將針對q軸方向的電感設為Lq。 In order to simplify the explanation, a two-pole structure is used in which one rotation of the mechanical angle becomes one rotation of the electrical angle. When the number of poles is changed to four poles, eight poles, etc., one rotation of the mechanical angle becomes two rotations, four rotations, etc. of the electrical angle. The motor 4 is a three-phase synchronous motor, and is composed of an equivalent circuit of windings 4a, 4b, 4c having three phases of U, V, and W, and a rotor, i.e., a permanent magnet 4d, that rotates around the center of the rotation axis. In this equivalent circuit, the axis that passes through the permanent magnet with the N-pole side as the positive direction is defined as the d-axis (direct-axis), and the axis orthogonal thereto is defined as the q-axis (quadrature-axis). If defined in this way, the magnetic field in the q-axis direction will be the main factor controlling the motor torque. In addition, the phase (electrical angle) is the rotation angle θ between the axis passing through the U-phase winding and the d-axis. All the phases described below are electrical angles. In addition, the inductance of the winding when a voltage is applied to generate a magnetic field in the d-axis direction is set to Ld, and the inductance in the q-axis direction is similarly set to Lq.
嵌入磁鐵式三相同步馬達為Ld<Lq的關係。又,由於之後說明的控制部20在最初無法正確地檢測出旋轉子的位置,因此如圖3所示,設想為相位θc,而和現實的相位θ產生誤差△θ。亦即,使微電腦設想相位θc而進行控制的軸, 相對於實際的馬達的d軸、q軸而成為γ軸(推定d軸)、δ軸(推定q軸)。之後,將對應於微電腦內的轉矩的電流成分設為δ軸電流Iδ,將對應於微電腦內的磁通的電流成分設為γ軸電流Iγ,將對應於微電腦內的轉矩的電壓成分設為指令δ軸電壓Vδs,將對應於微電腦內的磁通的電壓成分設為指令γ軸電壓Vγs。 The relationship of embedded magnet type three-phase synchronous motor is Ld<Lq. In addition, since the control unit 20 described later cannot correctly detect the position of the rotor at the beginning, as shown in Figure 3, it assumes a phase θc, and an error △θ occurs with the actual phase θ. That is, the axis controlled by the microcomputer assuming a phase θc becomes the γ axis (estimated d axis) and the δ axis (estimated q axis) relative to the actual motor d axis and q axis. After that, the current component corresponding to the torque in the microcomputer is set as the δ-axis current Iδ, the current component corresponding to the magnetic flux in the microcomputer is set as the γ-axis current Iγ, the voltage component corresponding to the torque in the microcomputer is set as the command δ-axis voltage Vδs, and the voltage component corresponding to the magnetic flux in the microcomputer is set as the command γ-axis voltage Vγs.
圖4是第1實施形態中的洗衣機的馬達之相位推定時的控制方塊圖。 FIG4 is a control block diagram for estimating the motor phase of the washing machine in the first embodiment.
控制部20是由微算機(微電腦)、內置於微電腦的換流控制計時器(計時器)、A/D轉換、記憶電路、速度相位推定部21、三相二相轉換器22、Iδ誤差放大器23、Iγ誤差放大器24、二相三相轉換器25、速度誤差放大器26、弱磁場設定部27等所構成,並且如以下所述地進行換流控制。 The control unit 20 is composed of a microcomputer (microcomputer), a commutation control timer (timer) built into the microcomputer, A/D conversion, a memory circuit, a speed phase estimation unit 21, a three-phase two-phase converter 22, an Iδ error amplifier 23, an Iγ error amplifier 24, a two-phase three-phase converter 25, a speed error amplifier 26, a weak magnetic field setting unit 27, etc., and performs commutation control as described below.
速度相位推定部21的詳細內容是在之後記載。速度相位推定部21是輸入δ軸電流Iδ、γ軸電流Iγ、指令γ軸電壓Vγs,並且輸出速度(電角度速度)ω與推定相位θ。以下,所記載的速度全部都是電角度速度。 The details of the speed phase estimation unit 21 are described later. The speed phase estimation unit 21 inputs the δ-axis current Iδ, the γ-axis current Iγ, and the command γ-axis voltage Vγs, and outputs the speed (electrical angle speed) ω and the estimated phase θ. All the speeds described below are electrical angle speeds.
三相二相轉換器22是從電角度θ與相電流Iu、Iv、Iw、以及由靜止座標系統轉換成旋轉座標系統時所必要的正弦波資料(sin、cos資料),以數式1的方式來運算出γ軸電流Iγ與δ軸電流Iδ。 The three-phase to two-phase converter 22 calculates the γ-axis current Iγ and the δ-axis current Iδ using equation 1 from the electrical angle θ and the phase currents Iu, Iv, Iw, as well as the sine wave data (sin, cos data) required to convert from a stationary coordinate system to a rotating coordinate system.
Iδ誤差放大器23是從速度誤差放大器26所求出的δ軸電流指令Iδs與三相二相轉換器22所求出的δ軸電流Iδ來輸入相對於δ軸電流的指令值Iδs的誤差△Iδ,並且輸出指令δ軸電壓Vδs來作為比例成分與積分成分的和。 The Iδ error amplifier 23 inputs the error △Iδ relative to the command value Iδs of the δ-axis current from the δ-axis current command Iδs obtained by the speed error amplifier 26 and the δ-axis current Iδ obtained by the three-phase two-phase converter 22, and outputs the command δ-axis voltage Vδs as the sum of the proportional component and the integral component.
同樣地,Iγ誤差放大器24是從弱磁場設定部27所求出的γ軸電流指 令Iγs與三相二相轉換器22所求出的γ軸電流Iγ來輸入相對於γ軸電流的指令值Iγ的誤差△Iγ,並且輸出指令γ軸電壓Vγs來作為比例成分與積分成分的和。 Similarly, the Iγ error amplifier 24 inputs the error △Iγ relative to the command value Iγ of the γ-axis current from the γ-axis current command Iγs obtained by the weak magnetic field setting unit 27 and the γ-axis current Iγ obtained by the three-phase two-phase converter 22, and outputs the command γ-axis voltage Vγs as the sum of the proportional component and the integral component.
軸於是分解成δ軸電流Iδ與γ軸電流Iγ來分別獨立地控制,因此稱為向量控制。 The axis is then decomposed into the δ-axis current Iδ and the γ-axis current Iγ, which are controlled independently, so it is called vector control.
二相三相轉換器25是從相位θ、指令δ軸電壓Vδs、指令γ軸電壓Vγs、以及由旋轉座標系統逆轉換成靜止座標系統時所必要的正弦波資料(sin、cos資料),以數式2的方式來運算出正弦波狀的指令即三相電壓Vus、Vvs、Vws。 The two-phase to three-phase converter 25 calculates the sinusoidal instructions, i.e., the three-phase voltages Vus, Vvs, and Vws, from the phase θ, the command δ-axis voltage Vδs, the command γ-axis voltage Vγs, and the sine wave data (sin, cos data) required for the reverse conversion from the rotational coordinate system to the static coordinate system using Formula 2.
速度誤差放大器26是從速度指令ωs與速度相位推定部21所運算的速度ω來輸入相對於速度指令ωs的誤差△ω,並且輸出比例成分與積分成分的和之δ軸電流指令Iδs。 The speed error amplifier 26 inputs the error Δω relative to the speed command ωs from the speed command ωs and the speed ω calculated by the speed phase estimation unit 21, and outputs the δ-axis current command Iδs which is the sum of the proportional component and the integral component.
弱磁場設定部27是從速度相位推定部21所運算的速度ω與輸入於換流電路的直流電壓Vdc來運算出負的方向的γ軸電流指令Iγs,而進行弱磁通控制。 The weak magnetic field setting unit 27 calculates the negative direction γ-axis current command Iγs from the speed ω calculated by the speed phase estimation unit 21 and the DC voltage Vdc input to the commutation circuit, and performs weak magnetic flux control.
圖5是第1實施形態中的洗衣機的馬達之速度相位推定部的詳細方塊圖。 FIG5 is a detailed block diagram of the motor speed phase estimation unit of the washing machine in the first embodiment.
使用成為馬達4的參數之繞組4a、4b、4c的電阻值Ra與電感值L來算出推定相位θ。 The estimated phase θ is calculated using the resistance value Ra and inductance value L of the windings 4a, 4b, and 4c, which are parameters of the motor 4.
速度相位推定部21是由γ軸感應電壓計算器28、γ軸感應電壓誤差放大器29所形成。 The speed phase estimation unit 21 is formed by a γ-axis induced voltage calculator 28 and a γ-axis induced voltage error amplifier 29.
γ軸感應電壓計算器28是從電感值L、電阻值Ra、δ軸電流Iδ、γ軸電流Iγ、指令γ軸電壓Vγs、及推定速度ω,以數式3的方式來運算出γ軸感應電壓Veγ。 The γ-axis induced voltage calculator 28 calculates the γ-axis induced voltage Veγ using equation 3 from the inductance value L, the resistance value Ra, the δ-axis current Iδ, the γ-axis current Iγ, the commanded γ-axis voltage Vγs, and the estimated speed ω.
[數式3]V eγ =V γs -(Ra×lγ-ω×L×lδ) [Formula 3] V eγ = V γs -(R a ×l γ -ω×L×l δ )
設為γ軸感應電壓指令Veγs=0,將相對於γ軸感應電壓指令Veγs的誤差△Veγ輸入至γ軸感應電壓誤差放大器29。 Assume that the γ-axis induced voltage command Veγs=0, and input the error △Veγ relative to the γ-axis induced voltage command Veγs into the γ-axis induced voltage error amplifier 29.
γ軸感應電壓誤差放大器29是輸出從積分增益Kω運算的推定速度ω,在從比例增益Kθ運算的值加上推定速度ω,並且藉由積分器來進行時間積分而輸出推定相位θ。 The γ-axis inductive voltage error amplifier 29 outputs the estimated speed ω calculated from the integral gain Kω, adds the estimated speed ω to the value calculated from the proportional gain Kθ, and performs time integration through an integrator to output the estimated phase θ.
但是,γ軸感應電壓計算器28並不限定於非得使用數式3,亦可藉由加上時間微分項的數式4來運算。 However, the γ-axis induced voltage calculator 28 is not limited to using Formula 3, and can also be calculated by using Formula 4 with a time differential term.
[數式4]V eγ =V γs -(Ra×lγ+L×(dlγ/dt)-ω×L×lδ) [Formula 4] V eγ = V γs -(R a ×l γ +L×(dl γ /dt)-ω×L×l δ )
另外,上述各數式中的電感L方面,雖然只要是成為Ld=Lq的特性的馬達4,就可以使用成為相同的L值,但即使是成為Ld≠Lq的馬達4,也可以運算為一定的L值(=Lq)。 In addition, regarding the inductance L in the above formulas, although the same L value can be used as long as the motor 4 has the characteristic of Ld=Lq, even if the motor 4 has the characteristic of Ld≠Lq, it can be calculated to a certain L value (=Lq).
圖6A是第1實施形態中的洗衣機的馬達之相位推定時的推定座標為延遲狀態(相對於馬達4的dq座標,γδ座標(推定dq座標)稍微延遲)的向量圖,圖6B是第1實施形態中的洗衣機的馬達之相位推定時的推定座標為超前狀態(相對於馬達4的dq座標,γδ座標(推定dq座標)稍微超前)的向量圖。 FIG. 6A is a vector diagram showing that the estimated coordinates of the motor phase of the washing machine in the first embodiment are in a delayed state (the γδ coordinates (estimated dq coordinates) are slightly delayed relative to the dq coordinates of the motor 4), and FIG. 6B is a vector diagram showing that the estimated coordinates of the motor phase of the washing machine in the first embodiment are in an advanced state (the γδ coordinates (estimated dq coordinates) are slightly advanced relative to the dq coordinates of the motor 4).
在向量圖中,γ軸感應電壓誤差△Veγ是成為從馬達4的輸入電壓Va減去流動於Ra及ωL的電流的下降(drop)後之推定的感應電壓向量Ve(=ω×Ψa)的γ軸成分。由於感應電壓向量Ve是一直在q軸上,因此當推定相位誤差△θ(將 γδ座標繞著逆時針方向針對dq座標而來的狀態設為正)為0時,q軸是和δ一致。在圖6A中推定相位誤差△θ是成為負(△θ<0),在圖6B中推定相位誤差△θ是成為正(△θ>0)。 In the vector diagram, the γ-axis induced voltage error △Veγ is the γ-axis component of the estimated induced voltage vector Ve (=ω×Ψa) after subtracting the drop of the current flowing through Ra and ωL from the input voltage Va of motor 4. Since the induced voltage vector Ve is always on the q-axis, when the estimated phase error △θ (the state of the γδ coordinates in the counterclockwise direction relative to the dq coordinates is set to positive) is 0, the q-axis is consistent with δ. In Figure 6A, the estimated phase error △θ becomes negative (△θ<0), and in Figure 6B, the estimated phase error △θ becomes positive (△θ>0).
藉由γ軸感應電壓誤差放大器29,在圖6A的情況下增加推定速度ω,使θ更超前,在圖6B的情況下減少推定速度ω,使θ延遲,藉此進行反饋控制,以使γ軸感應電壓誤差△Veγ及推定相位誤差△θ成為0。如此,由於相位推定是將有感應電壓Ve的馬達旋轉狀態設為前提,因此在感應電壓較低的起動時或停止時的低速區,會處於相位推定不穩定的系行為,低速區是使用不進行相位推定的開迴路控制。 By using the γ-axis induced voltage error amplifier 29, the estimated speed ω is increased in the case of FIG. 6A to make θ more advanced, and the estimated speed ω is reduced in the case of FIG. 6B to make θ delayed, thereby performing feedback control to make the γ-axis induced voltage error △Veγ and the estimated phase error △θ become 0. In this way, since the phase estimation is based on the motor rotation state with the induced voltage Ve, the phase estimation will be unstable in the low speed zone when the induced voltage is low or when the vehicle stops, and the open loop control without phase estimation is used in the low speed zone.
在上述構成中,使用圖7~圖16、表1~表3,針對第1實施形態中的洗衣機的布量偵測控制來記載。 In the above configuration, using Figures 7 to 16 and Tables 1 to 3, the cloth amount detection control of the washing machine in the first embodiment is described.
圖7是第1實施形態中的洗衣機的布量偵測控制的流程圖。 FIG7 is a flow chart of cloth amount detection control of the washing machine in the first embodiment.
從步驟S100開始布量偵測控制。在步驟S101中將反轉次數n清除成0。在步驟S102中將馬達指令旋轉數ωs清除成0。在步驟S103中進入至布量偵測加速控制處理常式(詳細內容是在之後記載)。在步驟S104中進入至布量偵測恆速控制處理常式(詳細內容是在之後記載)。在步驟S105中進入至布量偵測減速控制處理常式(詳細內容是在之後記載)。 The cloth amount detection control starts from step S100. In step S101, the number of reversals n is cleared to 0. In step S102, the motor command rotation number ωs is cleared to 0. In step S103, the cloth amount detection acceleration control processing routine is entered (details are recorded later). In step S104, the cloth amount detection constant speed control processing routine is entered (details are recorded later). In step S105, the cloth amount detection deceleration control processing routine is entered (details are recorded later).
在步驟S106中對反轉次數n作+1加法運算。在步驟S107中確認反轉次數n是否比設定判定次數ns(例如,4次)更大,若為更大(是)則進入至步驟S108,若為同等或更小(否)則進入至步驟S109。在步驟S108中進入至布量偵測判定輸出處理常式(詳細內容是在之後記載)。在步驟S109中旋轉方向若為CW(順時針)則變更成CCW(逆時針),若為CCW則變更成CW。步驟S110是從其他處理常式的「A」來進入。在步驟S111中輸入最大(例如,10kg)來作為布量判定值。在步驟S112中結束布量偵測控制。 In step S106, the number of reversal n is added +1. In step S107, it is confirmed whether the number of reversal n is greater than the set judgment number ns (for example, 4 times). If it is greater (yes), it proceeds to step S108, and if it is the same or smaller (no), it proceeds to step S109. In step S108, it enters the cloth amount detection judgment output processing routine (the details are described later). In step S109, if the rotation direction is CW (clockwise), it is changed to CCW (counterclockwise), and if it is CCW, it is changed to CW. Step S110 is entered from "A" of other processing routines. In step S111, the maximum (for example, 10kg) is input as the cloth amount judgment value. In step S112, the cloth quantity detection control is terminated.
圖8是第1實施形態中的洗衣機的布量偵測加速控制的流程圖。 FIG8 is a flow chart of the cloth amount detection acceleration control of the washing machine in the first embodiment.
從步驟S200開始布量偵測加速控制。在步驟S201中呼叫出馬達加速度α(例如,3000(r/min)/s)。在步驟S202中因應於馬達加速度α來對馬達指定旋轉數ωs進行加法運算。在步驟S203中進入至馬達速度控制處理常式(詳細內容是在之後記載)。在步驟S204中確認馬達指定旋轉數ωs是否為馬達指令最大旋轉數ωmax(例如,2160r/min)以上,若為以上(是)則進入至步驟S205,若為小於(否)則進入至步驟S201。在步驟S205中結束布量偵測加速控制。 The cloth amount detection acceleration control starts from step S200. In step S201, the motor acceleration α (for example, 3000 (r/min)/s) is called. In step S202, the motor specified rotation number ωs is added according to the motor acceleration α. In step S203, the motor speed control processing routine is entered (the details are described later). In step S204, it is confirmed whether the motor specified rotation number ωs is greater than the motor command maximum rotation number ωmax (for example, 2160r/min). If it is greater (yes), it enters step S205. If it is less than (no), it enters step S201. In step S205, the cloth amount detection acceleration control ends.
圖9是第1實施形態中的洗衣機的布量偵測恆速控制的流程圖。 FIG9 is a flow chart of cloth amount detection constant speed control of the washing machine in the first embodiment.
從步驟S300開始布量偵測恆速控制。在步驟S301中將ON時限計時器T_ontm清除成0。 The cloth quantity detection constant speed control starts from step S300. In step S301, the ON time limit timer T_ontm is cleared to 0.
在步驟S302中確認反轉次數n是否為0,若為0(是)則進入至步驟S303,若非0(否)則進入至步驟S305。在步驟S303中將累積運算IqIq_integral清除成0。在步驟S304中將累積運算次數integral_n清除成0。在步驟S305中進入至馬達速度控制處理常式(詳細內容是在之後記載)。在步驟S306中在ON時限計時器T_ontm上加上馬達速度控制處理時間(例如,1ms)。 In step S302, check whether the number of reversal times n is 0. If it is 0 (yes), proceed to step S303. If it is not 0 (no), proceed to step S305. In step S303, clear the cumulative operation IqIq_integral to 0. In step S304, clear the cumulative operation times integral_n to 0. In step S305, enter the motor speed control processing routine (details are described later). In step S306, add the motor speed control processing time (for example, 1ms) to the ON time limit timer T_ontm.
在步驟S307中確認ON時限計時器T_ontm是否比累積運算延遲時間T_delay(例如,0.3s)更小,若為更小(是)則進入至步驟S310,若為同等或更大(否)則進入至步驟S308。在步驟S308中在累積運算IqIq_integral上加上Iq。在步驟S309中在累積運算次數integral_n上加上1。在步驟S310中確認ON時限計時器T_ontm是否比ON時限T_on更大,若為更大(是)則進入至步驟S311,若為同等或更小(否)則進入至步驟S305。在步驟S311中結束布量偵測恆速控制。 In step S307, it is confirmed whether the ON time limit timer T_ontm is smaller than the cumulative operation delay time T_delay (for example, 0.3s). If it is smaller (yes), it proceeds to step S310. If it is equal to or larger (no), it proceeds to step S308. In step S308, Iq is added to the cumulative operation IqIq_integral. In step S309, 1 is added to the cumulative operation number integral_n. In step S310, it is confirmed whether the ON time limit timer T_ontm is larger than the ON time limit T_on. If it is larger (yes), it proceeds to step S311. If it is equal to or smaller (no), it proceeds to step S305. In step S311, the cloth quantity detection constant speed control is terminated.
圖10是第1實施形態中的洗衣機的布量偵測減速控制的流程圖。 FIG10 is a flow chart of the cloth amount detection deceleration control of the washing machine in the first embodiment.
從步驟S400開始布量偵測減速控制。在步驟S401中確認反轉次數n是否為0,若為0(是)則進入至步驟S402,若非0(否)則進入至步驟S404。 The cloth quantity detection deceleration control starts from step S400. In step S401, it is confirmed whether the number of reversal times n is 0. If it is 0 (yes), it proceeds to step S402. If it is not 0 (no), it proceeds to step S404.
在步驟S402中將OFF時限計時器T_offtm清除成0。在步驟S403中將累積運算旋轉角θ_integral清除成0。在步驟S404中進入至馬達速度中止控制處理常式(詳細內容是在之後記載)。在步驟S405中確認馬達旋轉角度θ是否比角度閾值θ_limit(之後,角度是設為馬達電角度)更小,若為更小(是)則進入至步驟S406,若為同等或更大(否)則進入至步驟S407。在步驟S406中在OFF時限計時器T_offtm上加上馬達中止控制處理時間(例如,1ms)。在步驟S407中進入至「A」(參照圖7)。 In step S402, the OFF time limit timer T_offtm is cleared to 0. In step S403, the accumulated rotation angle θ_integral is cleared to 0. In step S404, the routine for motor speed stop control is entered (details are described later). In step S405, it is confirmed whether the motor rotation angle θ is smaller than the angle threshold θ_limit (later, the angle is set to the motor electrical angle). If it is smaller (yes), it enters step S406. If it is equal to or larger (no), it enters step S407. In step S406, the motor stop control processing time (for example, 1ms) is added to the OFF time limit timer T_offtm. In step S407, it enters "A" (refer to Figure 7).
在步驟S408中確認馬達旋轉數ω是否比最低偵測旋轉數ω_min(例如,100r/min)更小,若為更小(是)則進入至步驟S410,若為同等或更大(否)則進入至步驟S409。在步驟S409中在累積運算旋轉角θ_integral上加上馬達旋轉角度θ。在步驟S410中確認OFF時限計時器T_offtm是否比OFF時限T_off更大,若為更大(是)則進入至步驟S411,若為同等或更小(否)則進入至步驟S404。在步驟S411中結束布量偵測減速控制。 In step S408, check whether the motor rotation number ω is smaller than the minimum detection rotation number ω_min (for example, 100r/min). If it is smaller (yes), proceed to step S410. If it is equal to or larger (no), proceed to step S409. In step S409, add the motor rotation angle θ to the cumulative calculation rotation angle θ_integral. In step S410, check whether the OFF time limit timer T_offtm is larger than the OFF time limit T_off. If it is larger (yes), proceed to step S411. If it is equal to or smaller (no), proceed to step S404. In step S411, end the cloth amount detection deceleration control.
圖11是第1實施形態中的洗衣機的布量偵測判定輸出的流程圖。 FIG11 is a flow chart of the cloth amount detection and determination output of the washing machine in the first embodiment.
從步驟S500開始布量偵測判定輸出。在步驟S501中以數式5的方式來運算出平均Iq。 The cloth quantity detection and determination output starts from step S500. In step S501, the average Iq is calculated using formula 5.
在步驟S502中進行判定值輸出。針對判定方法,詳細地記載於圖12A、圖12B、表1~表3。在步驟S503中結束布量偵測判定輸出。 In step S502, the judgment value is output. The judgment method is described in detail in Figure 12A, Figure 12B, Table 1 to Table 3. In step S503, the cloth quantity detection judgment output is completed.
圖12A是第1實施形態中的洗衣機的布量偵測判定輸出的平均Iq與布量判定值的關係圖,圖12B是第1實施形態中的洗衣機的布量偵測判定輸出的累積運算旋轉角與布量判定值的關係圖。圖12A、圖12B中的點是各布量(例如, 2kg、4kg、6kg、8kg、10kg)下的評價值(分別為平均Iq、累積運算旋轉角),虛線是連結了此點的近似線。如箭頭的線所示,從評價值來決定於各布量判定值(例如,0~3kg、3~5kg、5~7kg、7~9kg、9kg~)判定的閾值。在各布量下進行複數次,設定成也考慮了評價值的偏差的閾值。 FIG. 12A is a relationship diagram between the average Iq of the cloth amount detection and judgment output of the washing machine in the first embodiment and the cloth amount judgment value, and FIG. 12B is a relationship diagram between the cumulative operation rotation angle of the cloth amount detection and judgment output of the washing machine in the first embodiment and the cloth amount judgment value. The points in FIG. 12A and FIG. 12B are evaluation values (average Iq and cumulative operation rotation angle, respectively) at each cloth amount (for example, 2kg, 4kg, 6kg, 8kg, 10kg), and the dotted line is an approximate line connecting these points. As shown by the arrow line, the threshold for judging each cloth amount judgment value (for example, 0~3kg, 3~5kg, 5~7kg, 7~9kg, 9kg~) is determined from the evaluation value. This is performed multiple times at each cloth amount, and the threshold is set to take into account the deviation of the evaluation value.
表1是從第1實施形態中的洗衣機的布量偵測判定輸出的平均Iq來判定的布量判定值,表2是從第1實施形態中的洗衣機的布量偵測判定輸出的累積運算旋轉角來判定的布量判定值,表3是從第1實施形態中的洗衣機的布量偵測判定輸出的平均Iq與累積運算角來判定的布量判定值。 Table 1 shows the cloth amount determination value determined from the average Iq of the cloth amount detection and determination output of the washing machine in the first embodiment, Table 2 shows the cloth amount determination value determined from the cumulative calculation rotation angle of the cloth amount detection and determination output of the washing machine in the first embodiment, and Table 3 shows the cloth amount determination value determined from the average Iq of the cloth amount detection and determination output of the washing machine in the first embodiment and the cumulative calculation angle.
如圖12A所示,由於平均Iq與布量判定值是接近於成比例的關係, 因此到較多的布量都可以以平均Iq減去閾值。據此,可以從平均Iq來設定例如表1的布量判定值。 As shown in Figure 12A, since the average Iq and the cloth amount determination value are nearly proportional, the average Iq can be used to subtract the threshold value for larger cloth amounts. Based on this, the cloth amount determination value such as that in Table 1 can be set from the average Iq.
另一方面,如圖12B所示,由於累積運算旋轉角與布量判定值是接近於成反比例的關係,因此雖然在較多的布量下累積運算旋轉角的變化較小而使閾值變得較密,但是在較少的布量下累積運算旋轉角的變化較大而較容易減去閾值。因此,會有擅長於較低的布量下的判定之傾向。據此,可以從累積運算旋轉角來設定例如表2的布量判定值。 On the other hand, as shown in FIG12B, since the cumulative calculation rotation angle and the cloth amount judgment value are close to an inversely proportional relationship, although the cumulative calculation rotation angle changes less under a larger amount of cloth and makes the threshold value denser, the cumulative calculation rotation angle changes more under a smaller amount of cloth and is easier to reduce the threshold value. Therefore, there is a tendency to be good at judgment under a lower amount of cloth. Based on this, the cloth amount judgment value such as Table 2 can be set from the cumulative calculation rotation angle.
此外,表3是活用這些特徵,較多的布量是以平均Iq來判定,而較少的布量是以累積運算旋轉角來判定。亦即,若平均Iq小於0.5A,則根據累積運算旋轉角是否為112rev以上、或小於112rev,將布量判定值判定為0~3kg、或3~5kg。又,若平均Iq為0.5A以上,則根據是否為小於0.9A、0.9A以上、或1.4A以上,將布量判定值判定為5~7kg、7~9kg、或9kg~。 In addition, Table 3 makes use of these characteristics. The larger amount of cloth is determined by the average Iq, while the smaller amount of cloth is determined by the cumulative calculation rotation angle. That is, if the average Iq is less than 0.5A, the cloth amount determination value is determined to be 0~3kg or 3~5kg according to whether the cumulative calculation rotation angle is greater than 112rev or less than 112rev. If the average Iq is greater than 0.5A, the cloth amount determination value is determined to be 5~7kg, 7~9kg, or 9kg~ according to whether it is less than 0.9A, greater than 0.9A, or greater than 1.4A.
如表1與表2所示地來進行布量偵測判定輸出的情況下,可以僅以一個評價值來簡單地進行布量偵測。另一方面,如表3所示地來進行布量偵測判定輸出的情況下,可以進行活用了各個評價值的特徵之精確度較佳的布量偵測。 When the cloth amount detection and judgment output are performed as shown in Table 1 and Table 2, the cloth amount detection can be simply performed with only one evaluation value. On the other hand, when the cloth amount detection and judgment output are performed as shown in Table 3, the cloth amount detection with better accuracy can be performed by making use of the characteristics of each evaluation value.
圖13是第1實施形態中的洗衣機的布量偵測下的偵測Iq、旋轉角度的時序圖。 FIG. 13 is a timing diagram of the detection Iq and the rotation angle under the cloth amount detection of the washing machine in the first embodiment.
圖13之(a)是顯示指定旋轉數(點線)、實際的旋轉數(實線)的每個時間的變化,圖13之(b)是顯示Iq(實線)的每個時間的變化。有由加速控制期間與恆速控制期間所形成的ON時限與由減速控制期間所形成的OFF期間。 Figure 13 (a) shows the change of the specified number of revolutions (dotted line) and the actual number of revolutions (solid line) over time, and Figure 13 (b) shows the change of Iq (solid line) over time. There is an ON period formed by the acceleration control period and the constant speed control period, and an OFF period formed by the deceleration control period.
在圖13之(b)的恆速控制中,從經過累積運算延遲時間到恆速控制結束為止的期間,是以Iq來累積運算(斜線部分)。由此累積運算Iq來算出使用於布量偵測的判定的平均Iq。在此,由於Iq會受到旋轉數變化的影響,而較容易變動,因此藉由在累積運算延遲時間後測定Iq來抑制變動,也抑制平均Iq的偏差。 In the constant speed control of Figure 13 (b), the period from the cumulative operation delay time to the end of the constant speed control is the cumulative operation of Iq (the shaded part). The average Iq used for cloth quantity detection is calculated by the cumulative operation of Iq. Here, since Iq is easily affected by the change in the number of revolutions, the change is suppressed by measuring Iq after the cumulative operation delay time, and the deviation of the average Iq is also suppressed.
又,在圖13之(a)的減速控制中,進行將到最低偵測旋轉數為止的旋轉角度合計的累積運算(斜線部分)。由於將較難偵測旋轉數的低旋轉下的旋轉角度去除,因此旋轉角度的累積運算是限定到最低偵測旋轉數為止,來改善累積運算旋轉角的精確度。 In the deceleration control of Figure 13 (a), the cumulative operation of the total rotation angle up to the minimum detected rotation number is performed (the shaded part). Since the rotation angle at low rotations where it is difficult to detect the rotation number is removed, the cumulative operation of the rotation angle is limited to the minimum detected rotation number to improve the accuracy of the cumulative operation of the rotation angle.
在此圖中雖然是僅以一次一個方向的攪拌來判定,但是藉由一邊改變旋轉方向,一邊以Iq、旋轉角度來進行偶數次(例如,4次)分的累積運算,可抑制旋轉方向所造成的影響,來改善平均Iq或累積運算旋轉角的精確度。 Although the figure only uses stirring in one direction at a time for determination, by changing the rotation direction and performing an even number of (for example, 4) accumulation operations on Iq and rotation angle, the influence of the rotation direction can be suppressed to improve the accuracy of the average Iq or the accumulated rotation angle.
圖14是第1實施形態中的洗衣機的馬達速度控制處理的流程圖。 FIG. 14 is a flow chart of the motor speed control process of the washing machine in the first embodiment.
從步驟S600開始馬達速度控制處理。在步驟S601中確認馬達旋轉數ω是否比馬達指令旋轉數ωs更大,若為更大(是)則進入至步驟S602,若為同等或更小(否)則進入至步驟S603。在步驟S602中減少指令δ軸電流Iδs。在步驟S603中增加指令δ軸電流Iδs。在步驟S601~S603中藉由速度誤差放大器26來設定指令δ軸電流Iδs時,由於變動要素較大而且控制不穩定,因此通常會進行已加上平均化等之積分要素的比例積分控制。 The motor speed control process starts from step S600. In step S601, it is confirmed whether the motor rotation number ω is greater than the motor command rotation number ωs. If it is greater (yes), it proceeds to step S602. If it is equal or smaller (no), it proceeds to step S603. In step S602, the command δ axis current Iδs is reduced. In step S603, the command δ axis current Iδs is increased. In steps S601~S603, when the command δ axis current Iδs is set by the speed error amplifier 26, since the variable element is large and the control is unstable, proportional integral control with integral elements such as averaging is usually performed.
在步驟S604中將電流控制計時器Te_tm清除成0。在步驟S605中進入至電流控制處理常式(詳細內容是在之後記載)。在步驟S606中在電流控制計時器Te_tm上加上電流控制處理時間(例如,0.1ms)。在步驟S607中確認電流控制計時器Te_tm是否比電流控制週期Te_cycle更大,若為更大(是)則進入至步驟S608,若為同等或更小(否)則進入至步驟S605。在步驟S608中結束馬達速度控制處理。 In step S604, the current control timer Te_tm is cleared to 0. In step S605, the current control processing routine is entered (details are described later). In step S606, the current control processing time (for example, 0.1ms) is added to the current control timer Te_tm. In step S607, it is confirmed whether the current control timer Te_tm is larger than the current control cycle Te_cycle. If it is larger (yes), it enters step S608. If it is the same or smaller (no), it enters step S605. In step S608, the motor speed control processing ends.
圖15是第1實施形態中的洗衣機的馬達中止控制處理的流程圖。從步驟S700開始馬達中止控制處理。在步驟S701中將0或固定值代入至指令δ軸電流Iδs。有以下方法:指令δ軸電流Iδs使用0,以免產生轉矩的方法、指令δ軸電流Iδs使用負固定值,在再生電壓不成為問題的程度下,產生制動轉矩來縮短制動 時間的方法、及指令δ軸電流Iδs使用微小的正固定值,藉由可因作用於使旋轉減速的方向上的摩擦力等而確實地停止的微小的驅動轉矩,增加累積運算旋轉角的差,使布量偵測時的判別較容易的方法。因應於布量或洗衣機的構成,來選擇容易使用的方法。 FIG. 15 is a flowchart of the motor stop control process of the washing machine in the first embodiment. The motor stop control process starts from step S700. In step S701, 0 or a fixed value is substituted into the command δ axis current Iδs. There are the following methods: a method of using 0 as the command δ axis current Iδs to avoid generating torque, a method of using a negative fixed value as the command δ axis current Iδs to generate a braking torque to shorten the braking time to the extent that the regenerative voltage does not become a problem, and a method of using a small positive fixed value as the command δ axis current Iδs to increase the difference in the accumulated calculated rotation angle by a small driving torque that can be stopped reliably due to the friction force acting in the direction of decelerating the rotation, so as to make it easier to judge when detecting the amount of cloth. Choose a method that is easy to use according to the amount of cloth or the structure of the washing machine.
之後是進行和圖14所示的馬達速度控制處理的步驟S604~S608相同的處理。在步驟S702中將電流控制計時器Te_tm清除成0。在步驟S703中進入至電流控制處理常式(詳細內容是在之後記載)。在步驟S704中在電流控制計時器Te_tm上加上電流控制處理時間(例如,0.1ms)。在步驟S705中確認電流控制計時器Te_tm是否比電流控制週期Te_cycle更大,若為更大(是)則進入至步驟S706,若為同等或更小(否)則進入至步驟S703。在步驟S706中結束馬達中止控制處理。 Then, the same processing as steps S604 to S608 of the motor speed control processing shown in Figure 14 is performed. In step S702, the current control timer Te_tm is cleared to 0. In step S703, the current control processing routine is entered (details are described later). In step S704, the current control processing time (for example, 0.1ms) is added to the current control timer Te_tm. In step S705, it is confirmed whether the current control timer Te_tm is larger than the current control cycle Te_cycle. If it is larger (yes), it enters step S706. If it is the same or smaller (no), it enters step S703. In step S706, the motor stop control processing is terminated.
圖16是第1實施形態中的洗衣機的馬達電流控制處理的流程圖。 FIG. 16 is a flow chart of the motor current control process of the washing machine in the first embodiment.
從步驟S800開始馬達電流控制處理,在步驟S801中藉由電流檢測部18來偵測相電流Iu、Iv、Iw。在步驟S802中確認相電流Iu、Iv、Iw的任1個是否比相電流閾值I_limit更小,若為更小(是)則進入至步驟S803,若為同等或更大(否)則進入至步驟S804。 The motor current control process starts from step S800. In step S801, the current detection unit 18 detects the phase currents Iu, Iv, and Iw. In step S802, it is confirmed whether any one of the phase currents Iu, Iv, and Iw is smaller than the phase current threshold I_limit. If it is smaller (yes), it proceeds to step S803. If it is the same or larger (no), it proceeds to step S804.
在步驟S803中藉由三相二相轉換器22以數式1的方式來運算出δ軸電流Iδ。在步驟S804中進入至「A」(參照圖7)。在步驟S805中確認δ軸電流Iδ是否比指令δ軸電流Iδs更大,若為更大(是)則進入至步驟S806,若為同等或更小(否)則進入至步驟S807。在步驟S806中減少指令δ軸電壓Vδs。在步驟S807中增加指令δ軸電壓Vδs。 In step S803, the δ-axis current Iδ is calculated by the three-phase two-phase converter 22 in the manner of equation 1. In step S804, the process proceeds to "A" (see Figure 7). In step S805, it is confirmed whether the δ-axis current Iδ is larger than the command δ-axis current Iδs. If it is larger (yes), the process proceeds to step S806. If it is the same or smaller (no), the process proceeds to step S807. In step S806, the command δ-axis voltage Vδs is reduced. In step S807, the command δ-axis voltage Vδs is increased.
在步驟S805~S807中藉由Iδ誤差放大器23來設定指令δ軸電壓Vδs時,由於變動要素較大而且控制不穩定,因此通常會進行已加上平均化等之積分要素的比例積分控制。 When the command δ-axis voltage Vδs is set by the Iδ error amplifier 23 in steps S805-S807, since the variable factor is large and the control is unstable, proportional integral control with integral factors such as averaging is usually performed.
之後,和δ軸同樣地,γ軸也是在步驟S808~S811中運算出電壓。在 步驟S808中藉由三相二相轉換器22以數式1的方式來運算出γ軸電流Iγ。在步驟S809中確認γ軸電流Iγ是否比指令γ軸電流Iγs更大,若為更大(是)則進入至步驟S810,若為同等或更小(否)則進入至步驟S811。在步驟S810中減少指令γ軸電壓Vγs。在步驟S811中增加指令γ軸電壓Vγs。在步驟S809~S811中藉由Iγ誤差放大器24來設定指令γ軸電壓Vγs時,由於變動要素較大而且控制不穩定,因此通常會進行已加上平均化等之積分要素的比例積分控制。 Afterwards, similar to the δ axis, the voltage of the γ axis is calculated in steps S808~S811. In step S808, the γ axis current Iγ is calculated by the three-phase two-phase converter 22 in the manner of formula 1. In step S809, it is confirmed whether the γ axis current Iγ is larger than the commanded γ axis current Iγs. If it is larger (yes), it proceeds to step S810. If it is the same or smaller (no), it proceeds to step S811. In step S810, the commanded γ axis voltage Vγs is reduced. In step S811, the commanded γ axis voltage Vγs is increased. When the command γ-axis voltage Vγs is set by the Iγ error amplifier 24 in steps S809-S811, since the variable factor is large and the control is unstable, proportional integral control with integral factors such as averaging is usually performed.
在步驟S812中藉由二相三相轉換器25以數式2的方式來運算出施加電壓Vus、Vvs、Vws。在步驟S813中透過PWM控制部19、換流電路17,對馬達4進行電壓施加。在步驟S814中結束馬達電流控制處理。 In step S812, the applied voltages Vus, Vvs, and Vws are calculated by the two-phase or three-phase converter 25 in the manner of equation 2. In step S813, the voltage is applied to the motor 4 through the PWM control unit 19 and the commutation circuit 17. In step S814, the motor current control process is terminated.
(第2實施形態) (Second implementation form)
雖然是和第1實施形態同樣的構成,但是針對控制內容不同的第2實施形態中的洗衣機的布量偵測控制,使用圖17、圖18來說明。變更第1實施形態的布量偵測恆速控制內的Iq累積運算條件(圖9所示的步驟S307)。 Although the structure is the same as the first embodiment, the cloth amount detection control of the washing machine in the second embodiment with different control content is explained using Figures 17 and 18. The Iq accumulation operation condition in the cloth amount detection constant speed control of the first embodiment is changed (step S307 shown in Figure 9).
圖17是第2實施形態中的洗衣機的布量偵測恆速控制的流程圖。將圖9的步驟S307變更成步驟S307a。 FIG17 is a flowchart of the cloth amount detection constant speed control of the washing machine in the second embodiment. Step S307 of FIG9 is changed to step S307a.
在所變更的步驟S307a中,確認馬達旋轉數ω與馬達指令旋轉數ωs的差是否比收斂旋轉數ω_converge(例如,10r/min)更小,且是否已完全地收斂,若為更大或未完全地收斂(否)則進入至步驟S310,若為更小且已完全地收斂(是)則進入至步驟S308。 In the modified step S307a, check whether the difference between the motor rotation number ω and the motor command rotation number ωs is smaller than the convergence rotation number ω_converge (for example, 10r/min) and whether it has completely converged. If it is larger or not completely converged (no), proceed to step S310. If it is smaller and has completely converged (yes), proceed to step S308.
圖18是第2實施形態中的洗衣機的布量偵測下的偵測Iq的時序圖。 FIG. 18 is a timing diagram of the detection Iq under cloth amount detection of the washing machine in the second embodiment.
圖18之(a)是顯示指定旋轉數(點線)、實際的旋轉數(實線)的每個時間的變化,圖18之(b)是顯示Iq(實線)的每個時間的變化。有由加速控制期間與恆速控制期間所形成的ON時限與由減速控制期間所形成的OFF期間。 Figure 18 (a) shows the change of the specified number of revolutions (dotted line) and the actual number of revolutions (solid line) over time, and Figure 18 (b) shows the change of Iq (solid line) over time. There is an ON period formed by the acceleration control period and the constant speed control period, and an OFF period formed by the deceleration control period.
將圖18之(a)的恆速控制的指定旋轉數+收斂旋轉數與指定旋轉數- 收斂旋轉數之間(斜線部分)設為閾值,以現在旋轉數的拐點(inflection point)是否有落在範圍內,來判定是否完全地收斂。雖然現在旋轉數的左側的5個拐點(×)不在閾值內,但是由於從第6個之後的拐點(○)就有在閾值內,因此可測定Iq,並開始累積運算。 The designated rotation number + convergence rotation number and the designated rotation number - convergence rotation number (the shaded area) of the constant speed control in Figure 18 (a) are set as the threshold value, and whether the inflection point of the current rotation number falls within the range is used to determine whether it is completely converged. Although the five inflection points (×) on the left side of the current rotation number are not within the threshold value, since the inflection points (○) after the sixth are within the threshold value, Iq can be measured and the accumulation operation can be started.
由於是落在閾值內,因此旋轉數的變動較少。由於是在此旋轉數的變動較少的期間中測定Iq,因此Iq的變動也較少,也抑制平均Iq的偏差。 Since it falls within the threshold, the change in the number of revolutions is small. Since Iq is measured during this period when the change in the number of revolutions is small, the change in Iq is also small, and the deviation in the average Iq is suppressed.
其他是和實施形態1相同。 The rest is the same as implementation form 1.
(作用等) (Effects, etc.)
如以上所述,第1實施形態中的洗衣機及第2實施形態中的洗衣機具備:攪拌翼,旋轉自如地配設於洗滌兼脫水槽;電動機,具有永久磁鐵與繞組;電源電路,對電動機供給電流;及電流偵測部,偵測電動機的電流。又,具備:傳達機構,將電動機的轉矩傳達至攪拌翼;旋轉數控制部,將電動機控制成預定旋轉數;及控制部,依序左右交互地對電動機執行預定次數的加速控制、恆速控制、或中止控制。此外,控制部設置有布量偵測部,前述布量偵測部是從恆速控制的期間中的電流平均值、或中止控制的期間中的旋轉角度,來偵測洗滌物的量。 As described above, the washing machine in the first embodiment and the washing machine in the second embodiment are equipped with: a stirring blade, which is rotatably arranged in the washing and dewatering tank; a motor, which has a permanent magnet and a winding; a power supply circuit, which supplies current to the motor; and a current detection unit, which detects the current of the motor. In addition, it is equipped with: a transmission mechanism, which transmits the torque of the motor to the stirring blade; a rotation number control unit, which controls the motor to a predetermined rotation number; and a control unit, which performs a predetermined number of acceleration control, constant speed control, or stop control on the motor in sequence and alternately from left to right. In addition, the control unit is provided with a cloth amount detection unit, which detects the amount of laundry from the average current value during the constant speed control period or the rotation angle during the stop control period.
藉由此構成,布量偵測是測定恆速控制的期間中的電流平均值、或中止控制的期間中的旋轉角度,藉此即可以容易地偵測布量。 With this structure, the amount of cloth can be easily detected by measuring the average current value during constant speed control or the rotation angle during stop control.
又,布量偵測部亦可設成從恆速控制的期間中的電流平均值、與中止控制的期間中的旋轉角度之雙方,來偵測洗滌物的量。 Furthermore, the cloth amount detection unit may be configured to detect the amount of laundry from both the average current value during the constant speed control period and the rotation angle during the stop control period.
根據此構成,可以在布量較少時從變化較大的旋轉角度來偵測布量,在布量較多時從和較少時同樣地變化的電流平均值來偵測布量,而能夠以較佳的精確度來偵測布量。 According to this structure, the amount of fabric can be detected from the rotation angle that changes greatly when the amount of fabric is small, and the amount of fabric can be detected from the average current that changes in the same way as when the amount of fabric is small when the amount of fabric is large, thereby being able to detect the amount of fabric with better accuracy.
又,布量偵測部亦可設成在進入至恆速控制的期間後,從經過預 定時間後到恆速控制的期間結束為止的電流平均值,來偵測洗滌物的量。 Furthermore, the cloth amount detection unit may also be configured to detect the amount of laundry by using the average current value from a predetermined time after entering the constant speed control period to the end of the constant speed control period.
藉由此構成,可以抑制每次測定的電流平均值的偏差,而可以容易地以較佳的精確度來偵測布量。 This structure can suppress the deviation of the average current value measured each time, and can easily detect the amount of fabric with better accuracy.
又,布量偵測部亦可設成在恆速控制的期間中,目標旋轉數與現在旋轉數的變動完全地收斂至預定值以下後,從經過預定時間後到恆速控制的期間結束為止的電流平均值,來偵測洗滌物的量。 Furthermore, the cloth amount detection unit can also be configured to detect the amount of laundry by using the average current value from a predetermined time to the end of the constant speed control period after the target rotation speed and the current rotation speed completely converge to below a predetermined value during the constant speed control period.
藉由此構成,由於可以從已將每次測定的電流平均值的偏差之原因即旋轉數的變動抑制的狀態來運算出電流平均值,因此能夠以較佳的精確度來偵測布量。 With this configuration, the average current value can be calculated from a state where the cause of the deviation of the average current value measured each time, that is, the change in the number of rotations, has been suppressed, so the amount of fabric can be detected with better accuracy.
又,布量偵測部亦可設成從在中止控制的期間中將轉矩設為0或恆定時的旋轉角度,來偵測洗滌物的量。 Furthermore, the cloth amount detection unit may also be configured to detect the amount of laundry from the rotation angle when the torque is set to 0 or constant during the suspension control period.
藉由此構成,由於在中止控制的期間中會持續賦與恆定轉矩,因此可以抑制轉矩變動所造成的旋轉角度的偏差,而可以容易地以較佳的精確度來偵測布量。又,在不將PWM輸出完全地關閉的情形下使其惰性旋轉,藉此即使沒有感測器也可以偵測旋轉角度。 With this structure, since constant torque is continuously applied during the suspension control period, the deviation of the rotation angle caused by torque variation can be suppressed, and the amount of fabric can be easily detected with better accuracy. In addition, by allowing the PWM output to rotate inertially without completely shutting down the PWM output, the rotation angle can be detected even without a sensor.
又,亦可設成從開始中止控制的期間到現在旋轉數成為預定旋轉數為止的旋轉角度,來偵測洗滌物的量。 In addition, the rotation angle from the start of the suspension control to the current rotation number reaching the predetermined rotation number can also be set to detect the amount of laundry.
藉由此構成,僅在可以正確地偵測旋轉數的高旋轉區域中累積運算旋轉角度,藉此能夠以較佳的精確度來偵測布量。 With this configuration, the rotation angle is accumulated and calculated only in the high rotation area where the rotation number can be detected correctly, thereby being able to detect the amount of fabric with better accuracy.
此外,控制部亦可設成當馬達電流為預定值以上時、或旋轉角度小於預定值時,視洗滌物的量為最大,而結束布量偵測。 In addition, the control unit can also be set to terminate the cloth amount detection when the motor current is above a preset value or the rotation angle is less than a preset value, considering the amount of laundry as the maximum.
藉由此構成,由於即使不進行全部布量偵測程序也可以得知布量較多,因此可以縮短布量偵測程序的時間或節能。 With this configuration, since it is possible to know that the amount of fabric is large even without performing the entire fabric amount detection process, the time of the fabric amount detection process can be shortened or energy can be saved.
(其他實施形態) (Other implementation forms)
如以上所述,作為本揭示的技術的例示,說明了第1及第2實施形態。然而,本揭示中的技術並不限定於此。 As described above, the first and second embodiments are described as examples of the technology disclosed in this disclosure. However, the technology disclosed in this disclosure is not limited to these.
因此,以下例示出其他實施形態。 Therefore, other implementation forms are exemplified below.
第1及第2實施形態是以一種藉由皮帶5來連接馬達皮帶輪31與動葉輪皮帶輪32,且藉由減速機構兼離合器6來結合於脈動器1或洗滌兼脫水槽2之脈動器式的直立式洗衣機為例來說明,但是即使在洗滌兼脫水槽與馬達成為同軸的直接驅動方式的洗衣機中,也可以容易地以較佳的精確度來偵測布量。 The first and second embodiments are described by taking a pulsator-type vertical washing machine as an example, in which a motor pulley 31 and an impeller pulley 32 are connected by a belt 5 and a speed reduction mechanism and clutch 6 are combined with a pulsator 1 or a washing and dewatering tank 2. However, even in a washing machine of a direct drive type in which the washing and dewatering tank and the motor are coaxial, the amount of cloth can be easily detected with good accuracy.
又,雖然第1及第2實施形態是以脈動器式的直立式洗衣機為例來說明,但是即使在攪拌器式的直立式洗衣機中,也可以容易地以較佳的精確度來偵測布量。 Furthermore, although the first and second embodiments are described using a pulsator-type upright washing machine as an example, the amount of cloth can be easily detected with good accuracy even in an agitator-type upright washing machine.
(第3實施形態) (Third implementation form)
以下,針對第3實施形態中的洗衣機的水流修正控制來進行說明。 The following describes the water flow correction control of the washing machine in the third embodiment.
另外,第3實施形態中的洗衣機的構成是和圖1~圖6A、圖6B所示的第1實施形態中的洗衣機同樣,而附上相同的符號並省略說明。 In addition, the structure of the washing machine in the third embodiment is the same as that of the washing machine in the first embodiment shown in Figures 1 to 6A and 6B, and the same symbols are attached and the description is omitted.
在上述構成中,使用圖19~圖27,針對第3實施形態中的洗衣機的水流修正控制來記載。 In the above configuration, the water flow correction control of the washing machine in the third embodiment is described using Figures 19 to 27.
圖19是第3實施形態中的洗衣機的水流修正控制的流程圖。 FIG. 19 is a flow chart of the water flow correction control of the washing machine in the third embodiment.
從步驟S1100開始水流修正控制。在步驟S1101中將反轉次數n清除成0。在步驟S1102中將馬達指令旋轉數ωs清除成0。在步驟S1103中進入至水流修正加速控制處理常式(詳細內容是在之後記載)。在步驟S1104中進入至水流修正恆速控制處理常式(詳細內容是在之後記載)。在步驟S1105中進入至水流修正減速控制處理常式(詳細內容是在之後記載)。在步驟S1106中對反轉次數n作+1加法運算。在步驟S1107中確認反轉次數n是否比設定判定次數ns(例如,22次)更大,若為更大(是)則進入至步驟S1108,若為以下(否)則進入至步驟S1109。在 步驟S1108中進入至水流修正控制判定輸出處理常式(詳細內容是在之後記載)。在步驟S1109中旋轉方向若為CW則變更成CCW,若為CCW則變更成CW。步驟S1110是從其他處理常式的「B」來進入。在步驟S1111中輸入最大(例如,弱水流)來作為水流修正控制判定值。在步驟S1112中結束水流修正控制。 The water flow correction control starts from step S1100. In step S1101, the number of reversals n is cleared to 0. In step S1102, the motor command rotation number ωs is cleared to 0. In step S1103, the water flow correction acceleration control processing routine is entered (details are recorded later). In step S1104, the water flow correction constant speed control processing routine is entered (details are recorded later). In step S1105, the water flow correction deceleration control processing routine is entered (details are recorded later). In step S1106, the number of reversals n is added +1. In step S1107, check whether the number of reversals n is greater than the set judgment number ns (for example, 22 times). If it is greater (yes), enter step S1108, and if it is less than (no), enter step S1109. In step S1108, enter the water flow correction control judgment output processing routine (details are described later). In step S1109, if the rotation direction is CW, it is changed to CCW, and if it is CCW, it is changed to CW. Step S1110 is entered from "B" of other processing routines. In step S1111, input the maximum (for example, weak water flow) as the water flow correction control judgment value. In step S1112, end the water flow correction control.
圖20是第3實施形態中的洗衣機的水流修正加速控制的流程圖。 FIG. 20 is a flow chart of the water flow correction acceleration control of the washing machine in the third embodiment.
從步驟S1200開始水流修正加速控制。在步驟S1201中呼叫出馬達加速度α(例如,3000(r/min)/s)。在步驟S1202中因應於馬達加速度α來對馬達指定旋轉數ωs進行加法運算。在步驟S1203中進入至馬達速度控制處理常式(詳細內容是在之後記載)。在步驟S1204中確認馬達指定旋轉數ωs是否為馬達指令最大旋轉數ωmax(例如,2160r/min)以上,若為以上(是)則進入至步驟S1205,若為小於(否)則進入至步驟S1201。在步驟S1205中結束水流修正加速控制。 Water flow correction acceleration control starts from step S1200. In step S1201, the motor acceleration α (for example, 3000 (r/min)/s) is called. In step S1202, the motor specified rotation number ωs is added according to the motor acceleration α. In step S1203, the motor speed control processing routine is entered (the details are described later). In step S1204, it is confirmed whether the motor specified rotation number ωs is greater than the motor command maximum rotation number ωmax (for example, 2160r/min). If it is greater (yes), it enters step S1205. If it is less than (no), it enters step S1201. In step S1205, the water flow correction acceleration control ends.
圖21是第3實施形態中的洗衣機的水流修正恆速控制的流程圖。 FIG. 21 is a flow chart of the water flow correction constant speed control of the washing machine in the third embodiment.
從步驟S1300開始水流修正恆速控制。在步驟S1301中將ON時限計時器T_ontm清除成0。在步驟S1302中進入至馬達速度控制處理常式(詳細內容是在之後記載)。在步驟S1303中在ON時限計時器T_ontm上加上馬達速度控制處理時間(例如,1ms)。在步驟S1304中確認ON時限計時器T_ontm是否比ON時限T_on更大,若為更大(是)則進入至步驟S1305,若為同等或更小(否)則進入至步驟S1302。在步驟S1305中結束水流修正恆速控制。 Start the water flow correction constant speed control from step S1300. Clear the ON time limit timer T_ontm to 0 in step S1301. Enter the motor speed control processing routine in step S1302 (details are described later). Add the motor speed control processing time (for example, 1ms) to the ON time limit timer T_ontm in step S1303. Check in step S1304 whether the ON time limit timer T_ontm is larger than the ON time limit T_on. If it is larger (yes), enter step S1305. If it is the same or smaller (no), enter step S1302. End the water flow correction constant speed control in step S1305.
在圖22中顯示第3實施形態中的洗衣機的水流修正減速控制的流程圖。 FIG. 22 shows a flow chart of the water flow correction deceleration control of the washing machine in the third embodiment.
從步驟S1400開始水流修正減速控制。在步驟S1401中確認反轉次數n是否為0,若為0(是)則進入至步驟S1402,若非0(否)則進入至步驟S1404。在步驟S1402中將OFF時限計時器T_offtm清除成0。在步驟S1403中將累積運算旋轉角θ_integral清除成0。在步驟S1404中進入至馬達速度中止控制處理常式(詳細內 容是在之後記載)。在步驟S1405中確認角度閾值θ_limit(之後,角度是設為馬達電角度)是否比馬達旋轉角度θ更大,若為更大(是)則進入至步驟S1406,若為同等或更小(否)則進入至步驟S1407。在步驟S1406中在OFF時限計時器T_offtm上加上馬達中止控制處理時間(例如,1ms)。在步驟S1407中進入至「B」(參照圖19)。 The water flow correction deceleration control starts from step S1400. In step S1401, it is confirmed whether the number of reversal times n is 0. If it is 0 (yes), it proceeds to step S1402. If it is not 0 (no), it proceeds to step S1404. In step S1402, the OFF time limit timer T_offtm is cleared to 0. In step S1403, the accumulated rotation angle θ_integral is cleared to 0. In step S1404, it proceeds to the motor speed stop control processing routine (details are described later). In step S1405, check whether the angle threshold θ_limit (later, the angle is set to the motor electrical angle) is greater than the motor rotation angle θ. If it is greater (yes), proceed to step S1406. If it is equal to or smaller (no), proceed to step S1407. In step S1406, add the motor stop control processing time (for example, 1ms) to the OFF time limit timer T_offtm. In step S1407, proceed to "B" (refer to Figure 19).
在步驟S1408中確認馬達旋轉數ω是否比最低偵測旋轉數ω_min(例如,100r/min)更小,若為更小(是)則進入至步驟S1410,若為同等或更大(否)則進入至步驟S1409。在步驟S1409中在累積運算旋轉角θ_integral上加上馬達旋轉角度θ。在步驟S1410中確認OFF時限計時器T_offtm是否比OFF時限T_off更大,若為更大(是)則進入至步驟S1411,若為同等或更小(否)則進入至步驟S1404。在步驟S1411中結束水流修正減速控制。 In step S1408, check whether the motor rotation number ω is smaller than the minimum detection rotation number ω_min (for example, 100r/min). If it is smaller (yes), proceed to step S1410. If it is equal to or larger (no), proceed to step S1409. In step S1409, add the motor rotation angle θ to the cumulative calculation rotation angle θ_integral. In step S1410, check whether the OFF time limit timer T_offtm is larger than the OFF time limit T_off. If it is larger (yes), proceed to step S1411. If it is equal to or smaller (no), proceed to step S1404. In step S1411, end the water flow correction deceleration control.
圖23是第3實施形態中的洗衣機的水流修正控制的判定輸出的累積運算旋轉角與水流修正控制下的判定水流的關係圖。 FIG. 23 is a relationship diagram between the cumulative calculation rotation angle of the judgment output of the water flow correction control of the washing machine in the third embodiment and the judgment water flow under the water flow correction control.
圖23中的點是在一定水位中各水流(例如,弱水流、微弱水流、標準水流)的評價值(分別為累積運算旋轉角),虛線是連結了此點的近似線。如箭頭的線所示,從評價值來決定於各水流判定值(例如,在65L水位中,弱水流、微弱水流、標準水流)判定的閾值。在各水流下進行複數次,設定成也考慮了評價值的偏差的閾值。 The points in Figure 23 are the evaluation values (accumulated rotation angles) of each water flow (e.g., weak water flow, slight water flow, standard water flow) at a certain water level, and the dotted line is an approximate line connecting these points. As shown by the arrow line, the threshold for judging each water flow judgment value (e.g., weak water flow, slight water flow, standard water flow at a water level of 65L) is determined from the evaluation value. This is performed multiple times under each water flow, and the threshold is set to take into account the deviation of the evaluation value.
表4是顯示從第3實施形態中的洗衣機的水流修正控制判定輸出的累積運算旋轉角所判定的水流。 Table 4 shows the water flow determined by the accumulated rotation angle output from the water flow correction control determination of the washing machine in the third embodiment.
如圖23所示,由於累積運算旋轉角與水流修正控制水流判定值是 接近於成反比例的關係,因此在一定的水位中,雖然在標準水流下累積運算旋轉角的變化較小而使閾值變得較密,但是在微弱水流下累積運算旋轉角的變化較大而較容易減去閾值。據此,可以從累積運算旋轉角來設定例如表4的水流修正控制水流判定值。 As shown in Figure 23, since the cumulative operation rotation angle and the water flow correction control water flow judgment value are in an inversely proportional relationship, at a certain water level, although the change of the cumulative operation rotation angle is smaller under standard water flow, making the threshold value denser, the change of the cumulative operation rotation angle is larger under weak water flow and it is easier to reduce the threshold value. Based on this, the water flow correction control water flow judgment value such as Table 4 can be set from the cumulative operation rotation angle.
表5是顯示所判定的水流的時限來作為例子。例如,標準水流為1.4秒開啟/1.0秒關閉,微弱水流為1.0秒開啟/1.2秒關閉,弱水流為0.5秒開啟/1.2秒關閉。 Table 5 shows the time limits of the determined water flow as an example. For example, the standard water flow is 1.4 seconds on/1.0 seconds off, the weak water flow is 1.0 seconds on/1.2 seconds off, and the weak water flow is 0.5 seconds on/1.2 seconds off.
圖24是第3實施形態中的洗衣機的水流修正控制下的偵測旋轉角度的時序圖。 FIG. 24 is a timing diagram of detecting the rotation angle under the water flow correction control of the washing machine in the third embodiment.
此圖是顯示指定旋轉數(點線)、實際的旋轉數(實線)的每個時間的變化。有由加速控制期間與恆速控制期間所形成的ON時限與由減速控制期間所形成的OFF期間。 This graph shows the change in the specified number of revolutions (dotted line) and the actual number of revolutions (solid line) over time. There is an ON period formed by the acceleration control period and the constant speed control period, and an OFF period formed by the deceleration control period.
又,在減速控制中,進行將到最低偵測旋轉數為止的旋轉角度合計的累積運算(斜線部分)。由於將較難偵測旋轉數的低旋轉下的旋轉角度去除,因此旋轉角度的累積運算是限定到最低偵測旋轉數為止,來改善累積運算旋轉角的精確度。 In addition, during deceleration control, the cumulative operation of the total rotation angle up to the minimum detected rotation number is performed (the shaded part). Since the rotation angle at low rotation numbers, which is difficult to detect, is removed, the cumulative operation of the rotation angle is limited to the minimum detected rotation number to improve the accuracy of the cumulative operation of the rotation angle.
在此圖中雖然是僅以一次一個方向的攪拌來判定,但是藉由一邊改變旋轉方向,一邊以旋轉角度來進行偶數次(例如,22次)分的累積運算,可抑制旋轉方向所造成的影響,來改善平均累積運算旋轉角的精確度。 Although the figure only uses stirring in one direction at a time for judgment, by changing the rotation direction and performing the accumulation operation an even number of times (for example, 22 times) based on the rotation angle, the influence of the rotation direction can be suppressed, thereby improving the accuracy of the average accumulation operation rotation angle.
圖25是顯示第3實施形態中的洗衣機的馬達速度控制處理的流程 圖。 FIG. 25 is a flowchart showing the motor speed control process of the washing machine in the third embodiment.
從步驟S1500開始馬達速度控制處理。在步驟S1501中確認馬達旋轉數ω是否比馬達指令旋轉數ωs更大,若為更大(是)則進入至步驟S1502,若為同等或更小(否)則進入至步驟S1503。在步驟S1502中減少指令δ軸電流Iδs。在步驟S1503中增加指令δ軸電流Iδs。在步驟S1501~S1503中藉由速度誤差放大器26來設定指令δ軸電流Iδs時,由於變動要素較大而且控制不穩定,因此通常會進行已加上平均化等之積分要素的比例積分控制。 The motor speed control process starts from step S1500. In step S1501, it is confirmed whether the motor rotation number ω is greater than the motor command rotation number ωs. If it is greater (yes), it proceeds to step S1502. If it is equal or smaller (no), it proceeds to step S1503. In step S1502, the command δ axis current Iδs is reduced. In step S1503, the command δ axis current Iδs is increased. In steps S1501~S1503, when the command δ axis current Iδs is set by the speed error amplifier 26, since the variable element is large and the control is unstable, proportional integral control with integral elements such as averaging is usually performed.
在步驟S1504中將電流控制計時器Te_tm清除成0。在步驟S1505中進入至電流控制處理常式(詳細內容是在之後記載)。在步驟S1506中在電流控制計時器Te_tm上加上電流控制處理時間(例如,0.1ms)。在步驟S1507中確認電流控制計時器Te_tm是否比電流控制週期Te_cycle更大,若為更大(是)則進入至步驟S1508,若為同等或更小(否)則進入至步驟S1505。在步驟S1508中結束馬達速度控制處理。 In step S1504, the current control timer Te_tm is cleared to 0. In step S1505, the current control processing routine is entered (details are described later). In step S1506, the current control processing time (for example, 0.1ms) is added to the current control timer Te_tm. In step S1507, it is confirmed whether the current control timer Te_tm is larger than the current control cycle Te_cycle. If it is larger (yes), it enters step S1508. If it is the same or smaller (no), it enters step S1505. In step S1508, the motor speed control processing ends.
圖26是第3實施形態中的洗衣機的馬達中止控制處理的流程圖。 FIG. 26 is a flowchart of the motor stop control process of the washing machine in the third embodiment.
從步驟S1600開始馬達中止控制處理。在步驟S1601中將0或固定值代入至指令δ軸電流Iδs。有以下方法:指令δ軸電流Iδs使用0,以免產生轉矩的方法、指令δ軸電流Iδs使用負固定值,在再生電壓不成為問題的程度下,產生制動轉矩來縮短制動時間的方法、及指令δ軸電流Iδs使用微小的正固定值,藉由可因作用於使旋轉減速的方向上的摩擦力等而確實地停止的微小的驅動轉矩,增加累積運算旋轉角的差,使水濺偵測時的判別較容易的方法。因應於布量或洗衣機的構成,來選擇容易使用的方法。 The motor stop control process starts from step S1600. In step S1601, 0 or a fixed value is substituted into the command δ axis current Iδs. There are the following methods: a method of using 0 as the command δ axis current Iδs to avoid generating torque, a method of using a negative fixed value as the command δ axis current Iδs to generate a braking torque to shorten the braking time to the extent that the regenerative voltage is not a problem, and a method of using a small positive fixed value as the command δ axis current Iδs to increase the difference in the accumulated rotation angle by a small driving torque that can be stopped reliably due to frictional force acting in the direction of decelerating the rotation, so as to make it easier to judge when detecting water splashes. Select the method that is easy to use according to the amount of cloth or the structure of the washing machine.
之後是進行和馬達速度控制處理的步驟S1504~S1508相同的處理。在步驟S1602中將電流控制計時器Te_tm清除成0。在步驟S1603中進入至電流控制處理常式(詳細內容是在之後記載)。在步驟S1604中在電流控制計時器 Te_tm上加上電流控制處理時間(例如,0.1ms)。在步驟S1605中確認電流控制計時器Te_tm是否比電流控制週期Te_cycle更大,若為更大(是)則進入至步驟S1606,若為同等或更小(否)則進入至步驟S1603。在步驟S1606中結束馬達中止控制處理。 Then, the same processing as steps S1504 to S1508 of the motor speed control processing is performed. In step S1602, the current control timer Te_tm is cleared to 0. In step S1603, the current control processing routine is entered (details are described later). In step S1604, the current control processing time (for example, 0.1ms) is added to the current control timer Te_tm. In step S1605, it is confirmed whether the current control timer Te_tm is larger than the current control cycle Te_cycle. If it is larger (yes), it enters step S1606. If it is the same or smaller (no), it enters step S1603. In step S1606, the motor stop control processing is terminated.
圖27是第3實施形態中的洗衣機的馬達電流控制處理的流程圖。 FIG. 27 is a flow chart of the motor current control process of the washing machine in the third embodiment.
從步驟S1700開始馬達電流控制處理,在步驟S1701中藉由電流檢測部18來偵測相電流Iu、Iv、Iw。在步驟S1702中藉由三相二相轉換器22以數式1的方式來運算出δ軸電流Iδ。在步驟S1703中確認δ軸電流Iδ是否比指令δ軸電流Iδs更大,若為更大(是)則進入至步驟S1704,若為同等或更小(否)則進入至步驟S1705。在步驟S1704中減少指令δ軸電壓Vδs。在步驟S1705中增加指令δ軸電壓Vδs。 The motor current control process starts from step S1700. In step S1701, the current detection unit 18 detects the phase currents Iu, Iv, and Iw. In step S1702, the three-phase two-phase converter 22 calculates the δ-axis current Iδ in the manner of formula 1. In step S1703, it is confirmed whether the δ-axis current Iδ is larger than the command δ-axis current Iδs. If it is larger (yes), it proceeds to step S1704. If it is the same or smaller (no), it proceeds to step S1705. In step S1704, the command δ-axis voltage Vδs is reduced. In step S1705, the command δ-axis voltage Vδs is increased.
在步驟S1703~S1705中藉由Iδ誤差放大器23來設定指令δ軸電壓Vδs時,由於變動要素較大而且控制不穩定,因此通常會進行已加上平均化等之積分要素的比例積分控制。 When the command δ-axis voltage Vδs is set by the Iδ error amplifier 23 in steps S1703 to S1705, since the variable factor is large and the control is unstable, proportional integral control with integral factors such as averaging is usually performed.
之後,和δ軸同樣地,γ軸也是在步驟S1706~S1709中運算出電壓。在步驟S1706中藉由三相二相轉換器22以數式1的方式來運算出γ軸電流Iγ。在步驟S1707中確認γ軸電流Iγ是否比指令γ軸電流Iγs更大,若為更大(是)則進入至步驟S1708,若為同等或更小(否)則進入至步驟S1709。在步驟S1708中減少指令γ軸電壓Vγs。在步驟S1709中增加指令γ軸電壓Vγs。在步驟S1707~S1709中藉由Iγ誤差放大器24來設定指令γ軸電壓Vγs時,由於變動要素較大而且控制不穩定,因此通常會進行已加上平均化等之積分要素的比例積分控制。 Afterwards, similarly to the δ-axis, the voltage of the γ-axis is calculated in steps S1706 to S1709. In step S1706, the γ-axis current Iγ is calculated by the three-phase two-phase converter 22 in the manner of formula 1. In step S1707, it is confirmed whether the γ-axis current Iγ is larger than the commanded γ-axis current Iγs. If it is larger (yes), the process proceeds to step S1708. If it is the same or smaller (no), the process proceeds to step S1709. In step S1708, the commanded γ-axis voltage Vγs is reduced. In step S1709, the commanded γ-axis voltage Vγs is increased. When the command γ-axis voltage Vγs is set by the Iγ error amplifier 24 in steps S1707-S1709, since the variable factor is large and the control is unstable, proportional integral control with integral factors such as averaging is usually performed.
在步驟S1710中藉由二相三相轉換器25以數式2的方式來運算出施加電壓Vus、Vvs、Vws。在步驟S1711中透過PWM控制部19、換流電路17,對馬達4進行電壓施加。在步驟S1712中結束馬達電流控制處理。 In step S1710, the applied voltages Vus, Vvs, and Vws are calculated by the two-phase or three-phase converter 25 in the manner of equation 2. In step S1711, the voltage is applied to the motor 4 through the PWM control unit 19 and the commutation circuit 17. In step S1712, the motor current control process is terminated.
(作用等) (Effects, etc.)
如以上所述,本實施形態中的洗衣機具備:攪拌翼,旋轉自如地配設於洗滌兼脫水槽;電動機,具有永久磁鐵與繞組;電源電路,對電動機供給電流;及電流偵測部,偵測電動機的電流。又,具備:傳達機構,將電動機的轉矩傳達至攪拌翼;旋轉數控制部,將電動機控制成預定旋轉數;及控制部,依序左右交互地對電動機執行預定次數的加速控制、恆速控制、或中止控制。此外,控制部是因應於中止控制的期間中的旋轉角度,來進行洗滌中的水流修正控制。 As described above, the washing machine in this embodiment is equipped with: a stirring blade, which is rotatably arranged in the washing and dehydrating tank; a motor, which has a permanent magnet and a winding; a power supply circuit, which supplies current to the motor; and a current detection unit, which detects the current of the motor. In addition, it is equipped with: a transmission mechanism, which transmits the torque of the motor to the stirring blade; a rotation number control unit, which controls the motor to a predetermined rotation number; and a control unit, which performs a predetermined number of acceleration control, constant speed control, or stop control on the motor in sequence and alternately from left to right. In addition, the control unit performs water flow correction control during washing in response to the rotation angle during the stop control period.
藉由此構成,在旋轉角度較大的情況下預測會發生洗滌水的飛散,而以事先調整成不會水濺的水流來控制,藉此可以一面確保洗淨性能,一面將洗滌水的飛散防範於未然。 With this structure, when the rotation angle is large, it is predicted that washing water will splash, and the water flow is adjusted in advance to prevent splashing to control it. This ensures the cleaning performance while preventing washing water from splashing.
又,亦可控制成在水流修正控制中,進入至中止控制期間後,可以因應於現在旋轉數成為預定旋轉數為止的旋轉角度,來進行洗滌的水流變更。 Furthermore, it is also possible to control the water flow correction control so that after entering the stop control period, the water flow for washing can be changed according to the rotation angle until the current rotation number reaches the predetermined rotation number.
藉由此構成,由於並不進行較容易產生旋轉角度之誤差的低速下的偵測,而是可以偵測集中於中高速區域的旋轉角度,因此可以偵測精確度較佳的旋轉角度。 With this structure, the rotation angle can be detected with higher accuracy, instead of detecting at low speeds where errors in the rotation angle are more likely to occur, and the rotation angle concentrated in the medium and high speed areas can be detected.
又,亦可設成在水流修正控制中,可以因應於開始中止控制的期間到經過預定時間後為止的旋轉角度,來變更洗滌中的水流。 Furthermore, it can be set that in the water flow correction control, the water flow during washing can be changed according to the rotation angle from the start of the stop control to the end of the predetermined time.
藉由此構成,可以偵測集中於中高速區域的旋轉角度,藉此容易地偵測精確度較佳的旋轉角度,前述中高速區域是成為較容易產生旋轉角度之誤差的低速之前的中高速區域。 With this structure, the rotation angle concentrated in the middle and high speed area can be detected, thereby easily detecting the rotation angle with better accuracy. The middle and high speed area is the middle and high speed area before the low speed where the rotation angle error is more likely to occur.
又,亦可設成在水流修正控制中,因應於在中止控制的期間中將轉矩設為0或恆定時的旋轉角度,來變更洗滌中的水流。 Furthermore, in the water flow correction control, the water flow during washing can be changed according to the rotation angle when the torque is set to 0 or constant during the suspension control period.
藉由此構成,由於在中止控制期間中會持續賦與恆定轉矩,因此 可以抑制轉矩變動所造成的旋轉角度的偏差,而能夠以較佳的精確度來進行水流修正控制。又,在不將PWM輸出完全地關閉的情形下使其惰性旋轉,藉此即使沒有感測器也可以偵測旋轉角度。 With this structure, since constant torque is continuously applied during the suspension control period, the deviation of the rotation angle caused by torque variation can be suppressed, and the water flow correction control can be performed with better accuracy. In addition, the rotation angle can be detected even without a sensor by allowing the PWM output to rotate inertially without completely shutting down the PWM output.
此外,控制部亦可在水流修正控制中,當旋轉角度為預定值以上時,使水流變更的偵測步驟結束,並且使之後的水流減弱。 In addition, the control unit can also terminate the detection step of the water flow change during the water flow correction control when the rotation angle is greater than a predetermined value, and weaken the subsequent water flow.
藉由此構成,即使未完成水流變更的偵測步驟,仍然可預測會發生洗滌水的飛散,而將水流減弱,藉此可以實現縮短水流變更的偵測步驟的時間或透過縮短時間所達到的節能動作。 With this structure, even if the water flow change detection step is not completed, it is still possible to predict that washing water will be scattered and weaken the water flow, thereby shortening the water flow change detection step time or achieving energy saving by shortening the time.
(其他實施形態) (Other implementation forms)
如以上所述,作為本揭示的技術的例示,說明了第3實施形態。然而,本揭示中的技術並不限定於此。 As described above, the third embodiment is described as an example of the technology disclosed in this disclosure. However, the technology in this disclosure is not limited to this.
於是,以下例示出其他實施形態。 Therefore, other implementation forms are exemplified below.
第3實施形態是以一種藉由皮帶5來連接馬達皮帶輪31與動葉輪皮帶輪32,且藉由減速機構兼離合器6來結合於脈動器1或洗滌兼脫水槽2之脈動器式的直立式洗衣機為例來說明,但是即使在洗滌兼脫水槽與馬達成為同軸的直接驅動方式的洗衣機中,也可以容易地以較佳的精確度來進行水流修正控制。 The third embodiment is explained by taking a pulsator-type vertical washing machine in which a motor pulley 31 and an impeller pulley 32 are connected by a belt 5 and a speed reduction mechanism and clutch 6 are combined with a pulsator 1 or a washing and dewatering tank 2. However, even in a washing machine of a direct drive type in which the washing and dewatering tank and the motor are coaxial, water flow correction control can be easily performed with better accuracy.
又,雖然第3實施形態是以脈動器式的直立式洗衣機為例來說明,但是即使在攪拌器式的直立式洗衣機中,仍然可以在不水濺的程度下以通常水流來控制,藉此來確保洗淨性能,在水濺的情況下是使水流減弱,而將水濺防範於未然。 Furthermore, although the third embodiment is described using a pulsator-type upright washing machine as an example, even in an agitator-type upright washing machine, it is still possible to control the washing performance by using a normal water flow to a level that does not cause splashing, and in the case of splashing, the water flow is weakened to prevent splashing before it occurs.
本揭示即使沒有位置感測器,仍然可以容易地以較佳的精確度來偵測布量。具體而言,本揭示可以適用於脈動器式的直立式洗衣機、攪拌器式的直立式洗衣機。 Even without a position sensor, the present disclosure can still easily detect the amount of cloth with good accuracy. Specifically, the present disclosure can be applied to pulsator-type upright washing machines and agitator-type upright washing machines.
又,本揭示即使沒有位置感測器,仍然可以在不水濺的程度下以 通常水流來控制,藉此來確保洗淨性能,在水濺的情況下是使水流減弱,而將水濺防範於未然。具體而言,可以適用於脈動器式的直立式洗衣機、攪拌器式的直立式洗衣機。 Furthermore, even without a position sensor, the present invention can still control the washing performance with a normal water flow without splashing, and in the case of splashing, the water flow is weakened to prevent splashing. Specifically, it can be applied to pulsator-type vertical washing machines and agitator-type vertical washing machines.
1:脈動器(攪拌翼) 1: Pulsator (stirring blade)
2:洗滌兼脫水槽 2: Washing and dewatering sink
3:儲水槽 3: Water storage tank
4:馬達(電動機) 4: Motor (electric motor)
5:皮帶(傳達機構) 5: Belt (transmission mechanism)
6:減速機構兼離合器(傳達機構) 6: Speed reduction mechanism and clutch (transmission mechanism)
7:齒輪馬達 7: Gear motor
8:制動皮帶 8: Brake belt
9:洗衣機外框 9: Washing machine frame
10:面板部 10: Panel section
11:蓋 11: Cover
12:顯示部 12: Display unit
13:控制裝置 13: Control device
14:供水閥 14: Water supply valve
15:排水閥 15: Drain valve
31:皮帶輪(傳達機構) 31: Pulley (transmission mechanism)
32:動葉輪皮帶輪(傳達機構) 32: Impeller pulley (transmission mechanism)
Claims (14)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019182611 | 2019-10-03 | ||
JP2019-182611 | 2019-10-03 | ||
JP2019-185224 | 2019-10-08 | ||
JP2019185224 | 2019-10-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202117123A TW202117123A (en) | 2021-05-01 |
TWI856180B true TWI856180B (en) | 2024-09-21 |
Family
ID=
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016158740A (en) | 2015-02-27 | 2016-09-05 | パナソニックIpマネジメント株式会社 | Washing machine |
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016158740A (en) | 2015-02-27 | 2016-09-05 | パナソニックIpマネジメント株式会社 | Washing machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8519649B2 (en) | Control device of a synchronous motor | |
US6650083B2 (en) | Speed control apparatus of synchronous reluctance motor and method thereof | |
US20140096327A1 (en) | Laundry treatment machine and method of operating the same | |
EP2884655B1 (en) | Motor driving apparatus and laundry treatment machine including the same | |
US20070257633A1 (en) | Apparatus and method of controlling synchronous reluctance motor | |
US20120068659A1 (en) | Washing machine | |
KR102285399B1 (en) | Inverter control unit and drive system | |
EP2790316A2 (en) | Sensorless control apparatus and method of washing machine | |
EP3333297B1 (en) | Washing machine | |
TWI856180B (en) | Washing Machine | |
JP7336644B2 (en) | washing machine | |
JPWO2021065539A5 (en) | ||
JP2006025587A (en) | Power conversion device for ac motor | |
TWI851807B (en) | Washing Machine | |
JP7454765B2 (en) | washing machine | |
JP2003311077A (en) | Amount of load detection method of washing machine and apparatus therefor | |
JP7522964B2 (en) | washing machine | |
JP7474917B2 (en) | washing machine | |
JP7469964B2 (en) | washing machine | |
KR101400242B1 (en) | Motor drive circuit for washing machine and control method thereof | |
JP6244539B2 (en) | Drum drive | |
WO2022091701A1 (en) | Motor control device, and washing machine or washing and drying machine having said motor control device installed therein | |
JP2018148634A (en) | Permanent magnet synchronous motor drive device | |
KR20090087242A (en) | Motor, washing machine comprising the motor and method of controlling the washing machine | |
KR20150085285A (en) | Washing machine and method to control thereof |