TWI852695B - 抗體-藥物結合物之用途 - Google Patents

抗體-藥物結合物之用途 Download PDF

Info

Publication number
TWI852695B
TWI852695B TW112127350A TW112127350A TWI852695B TW I852695 B TWI852695 B TW I852695B TW 112127350 A TW112127350 A TW 112127350A TW 112127350 A TW112127350 A TW 112127350A TW I852695 B TWI852695 B TW I852695B
Authority
TW
Taiwan
Prior art keywords
amino acid
antibody
sequence
acid sequence
identification number
Prior art date
Application number
TW112127350A
Other languages
English (en)
Other versions
TW202344273A (zh
Inventor
我妻利紀
高橋秀
長谷川淳
岡嶌大祐
濱田洋文
山口美樹
Original Assignee
日商第一三共股份有限公司
北海道公立大學法人札幌醫科大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商第一三共股份有限公司, 北海道公立大學法人札幌醫科大學 filed Critical 日商第一三共股份有限公司
Publication of TW202344273A publication Critical patent/TW202344273A/zh
Application granted granted Critical
Publication of TWI852695B publication Critical patent/TWI852695B/zh

Links

Abstract

抗腫瘤效果及安全性面優異、具有優異治療效果的抗腫瘤藥之提供。 提供一種抗TROP2抗體,其包含:於其重鏈可變區之序列識別號23之胺基酸序列所構成的CDRH1、序列識別號24之胺基酸序列所構成的CDRH2及序列識別號25之胺基酸序列所構成的CDRH3;及於其輕鏈可變區之序列識別號26之胺基酸序列所構成的CDRL1、序列識別號27之胺基酸序列所構成的CDRL2及序列識別號28之胺基酸序列所構成的CDRL3。

Description

抗體-藥物結合物之用途
本發明係關於使抗TROP2抗體與抗腫瘤性藥物藉由連接物(linker)結構部分而結合之有用於作為抗腫瘤藥的抗體-藥物結合物。
使與於癌細胞表面表現且可於細胞中內在化的抗原結合的抗體與具有細胞毒性的藥物結合的抗體-藥物結合物(Antibody-Drug Conjugate;ADC),因可選擇性地將藥物送達至癌細胞,可期待藥物蓄積於癌細胞內、使癌細胞消滅(參照非專利文獻1~3)。作為ADC,例如有使抗CD33抗體與卡奇黴素(calicheamicin)結合的Mylotarg(註冊商標;gemtuzumab ozogamicin)被認可作為急性骨髓性白血病之治療藥。又,抗CD30抗體與奧利司他汀E(auristatin E)結合的Adcetris(註冊商標;brentuximab vedotin)最近已被認可作為何杰金氏淋巴瘤(Hodgkin’s lymphoma)與未分化大細胞淋巴瘤之治療藥(參照非專利文獻4)。迄今被認可的ADC所含有的藥物係以DNA或微管蛋白(tubulin)作為標的。
就抗腫瘤性之低分子化合物而言,已知有抑制拓樸異構酶I(topoisomerase I)而表現抗腫瘤作用的化合物的喜樹鹼(camptothecin)衍生物。其中下式
所示的抗腫瘤性化合物(依喜替康(exatecan),化學名:(1S,9S)-1-胺基-9-乙基-5-氟-2,3-二氫-9-羥基-4-甲基-1H,12H-苯并[de]哌喃并[3',4':6,7]吲并[1,2-b]喹啉-10,13(9H,15H)-二酮)係水溶性之喜樹鹼衍生物(專利文獻1、2)。此化合物係與現在臨床上使用的愛萊諾迪肯(irinotecan)相異,抗腫瘤效果的表現不需要酵素所致之活性化。又,愛萊諾迪肯之藥效本體的SN-38,較相同於臨床上使用的拓樸替康(topotecan)有更強的拓樸異構酶I抑制活性,活體外對各種癌細胞具有更強的殺細胞活性。尤其藉由P-糖蛋白之表現,亦對於對SN-38等顯示耐性的癌細胞有效果。又,小鼠之人類腫瘤皮下移植模式中亦呈現強的抗腫瘤效果,雖然已進行臨床試驗,但迄今尚未上市(參照非專利文獻5~10)。依喜替康作為ADC是否有效地作用係不清楚。
DE-310係於生物分解性之羧基甲基葡聚糖多元醇聚合物上與依喜替康介隔GGFG胜肽間隔物而結合的複合體(專利文獻3)。將依喜替康藉由高分子前藥化,使保持高血中滯留性,進一步利用腫瘤新生血管之通透性的亢進及腫瘤組織滯留性,被動地提高對腫瘤部位的指向性。DE-310係藉由酵素所致的胜肽間隔物之切斷,活性本體的依喜替康、及甘胺酸與胺基結合的依喜替康為持續地游離,其結果為藥物動態被改善。於非臨床試驗中的各種腫瘤之評價模式,儘管DE-310係其中所含的依喜替康之總量較依喜替康單劑投予時更為減少,但較單劑投予時顯示更高的有效性。與DE-310有關之臨床試驗被實施而有效例亦被確認,已有確認活性本體較正常組織更集積於腫瘤的報告,另一方面,亦有DE-310及活性本體對人類中的腫瘤之集積與對正常組織之集積有很大差異,於人類未見被動標的的報告(參照非專利文獻11~14)。結果為DE-310亦未上市,依喜替康是否有效地發揮作為此種指向標的之藥物的作用則尚不清楚。
作為DE-310之關連化合物,將-NH-(CH 2) 4-C(=O)-所示的結構部分插入-GGFG-間隔物與依喜替康之間,將-GGFG-NH-(CH 2) 4-C(=O)-作為間隔物結構的複合體雖亦已知(專利文獻4),但相同複合體之抗腫瘤效果則完全未知。
人類TROP2(TACSTD2:腫瘤相關鈣訊號傳導蛋白2 (tumor-associated calcium signal transducer 2),GA733-1,EGP-1,M1S1;以下標記為hTROP2)係由323個胺基酸殘基所構成的1次跨膜型之1型細胞膜蛋白質。自以前,人類滋養層細胞(trophoblasts)與癌細胞共通的與免疫抵抗性有關的細胞膜蛋白質之存在(非專利文獻15)雖已被暗示,但由抗人類絨毛癌細胞株之細胞膜蛋白質的單株抗體(162-25.3,162-46.2)辨識的抗原分子被特定,且作為人類滋養層細胞表現的分子之一者,被命名為TROP2(非專利文獻16)。之後,相同分子被其他研究者發現,亦稱為藉由將胃癌細胞株免疫而獲得的小鼠單株抗體GA733所辨識的腫瘤抗原GA733-1(非專利文獻17)、藉由非小細胞肺癌細胞免疫而獲得的小鼠單株抗體RS7-3G11所辨識的上皮糖蛋白質(EGP-1;非專利文獻18),但於1995年TROP2基因被選殖,確認此等為相同分子(非專利文獻19)。hTROP2之DNA序列及胺基酸序列已被公開於公眾資料庫,例如,可參考NM_002353、NP_002344(NCBI)等之登錄號。 hTROP2基因係與具有約50%之同源性的人類Trop-1(EpCAM,EGP-2,TACSTD1)一起構成TACSTD基因家族(非專利文獻21)。hTROP2蛋白質係包含N末端26胺基酸殘基所構成的訊息序列、248胺基酸殘基所構成的細胞外區域、23胺基酸殘基所構成的跨膜區域(transmembrane domain)、26胺基酸殘基所構成的細胞內區域。細胞外區域上有4個N結合型糖鏈附加部位,已知表觀分子量係較理論計算値35仟道爾頓增加10仟道爾頓左右(非專利文獻19)。 迄今hTROP2之生理學上的配位體尚未被鑑定,分子機能並不清楚,但於腫瘤細胞傳達鈣訊號已被呈現(非專利文獻20),又藉由為Ca 2+依賴性激酶的蛋白質激酶C而細胞內絲胺酸303殘基被磷酸化(非專利文獻18),由於細胞內區域具有PIP 2結合序列,暗示有腫瘤細胞中的訊息傳達機能(非專利文獻22)。 藉由使用臨床檢體的免疫組織化學解析,hTROP2係於各種上皮細胞癌種類過度表現,且於正常組織僅於一些組織之上皮細胞中表現,其表現量與腫瘤組織相比較亦呈現低值(非專利文獻23~27)。又hTrop2之表現於大腸癌(非專利文獻23)、胃癌(非專利文獻24)、胰臓癌(非專利文獻25)、口腔癌(非專利文獻26)、神經膠瘤(非專利文獻27)亦被報告與預後不良有關。 再者由使用大腸癌細胞的模式,亦已報告hTROP2之表現與腫瘤細胞之錨定非依賴性細胞增殖及免疫不全小鼠中的腫瘤形成有關(非專利文獻28)。
由暗示與此等癌症之關連性的情報,迄今已建立複數個抗hTROP2抗體,且其抗腫瘤效果已被檢討。其中除了未結合化的抗體單獨呈現於裸鼠異種移植模式中的抗腫瘤活性(專利文獻5~8)之外,作為抗體與抗細胞藥劑之ADC而呈現抗腫瘤活性者(專利文獻9~12)等已被揭示。然而,彼等之活性強度或適用範圍尚未充分,hTROP2作為治療標的存有未滿足的醫療需求(unmet medical needs)。 [先前技術文獻] [專利文獻]
專利文獻1 特開平5-59061號公報 專利文獻2 特開平8-337584號公報 專利文獻3 國際公開第1997/46260號 專利文獻4 國際公開第2000/25825號 專利文獻5 國際公開第2008/144891號 專利文獻6 國際公開第2011/145744號 專利文獻7 國際公開第2011/155579號 專利文獻8 國際公開第2013/077458號 專利文獻9 國際公開第2003/074566號 專利文獻10 國際公開第2011/068845號 專利文獻11 國際公開第2013/068946號 專利文獻12 美國專利第7999083號說明書 [非專利文獻]
非專利文獻1 Ducry, L., et al., Bioconjugate Chem. (2010) 21, 5-13. 非專利文獻2 Alley, S. C., et al., Current Opinion in Chemical Biology (2010) 14, 529-537. 非專利文獻3 Damle N.K., Expert Opin. Biol. Ther. (2004) 4, 1445-1452. 非專利文獻4 Senter P. D., et al., Nature Biotechnology (2012) 30, 631-637. 非專利文獻5 Kumazawa, E., Tohgo, A., Exp. Opin. Invest. Drugs (1998) 7, 625-632. 非專利文獻6 Mitsui, I., et al., Jpn J. Cancer Res. (1995) 86, 776-786. 非專利文獻7 Takiguchi, S., et al., Jpn J. Cancer Res. (1997) 88, 760-769. 非專利文獻8 Joto, N. et al., Int J Cancer (1997) 72, 680-686. 非專利文獻9 Kumazawa, E. et al., Cancer Chemother. Pharmacol. (1998) 42, 210-220. 非專利文獻10 De Jager, R., et al., Ann N Y Acad Sci (2000) 922, 260-273. 非專利文獻11 Inoue, K. et al., Polymer Drugs in the Clinical Stage, Edited by Maeda et al. (2003) 145-153. 非專利文獻12 Kumazawa, E. et al., Cancer Sci (2004) 95, 168-175. 非專利文獻13 Soepenberg, O. et al., Clinical Cancer Research, (2005) 11, 703-711. 非專利文獻14 Wente M. N. et al., Investigational New Drugs (2005) 23, 339-347. 非專利文獻15 Faulk WP, et al., Proc. Natl. Acad. Sci.75(4), 1947-1951 (1978). 非專利文獻16 Lipinski M, et al., Proc. Natl. Acad. Sci. 78(8), 5147-5150 (1981). 非專利文獻17 Linnenbach A J, et al., Proc. Natl. Acad. Sci. 86(1), 27-31 (1989). 非專利文獻18 Basu A, et al., Int. J. Cancer, 62(4), 472-479 (1995). 非專利文獻19 Fornaro M, et al., Int. J. Cancer, 62(5), 610-618 (1995). 非專利文獻20 Ripani E, et al., Int. J. Cancer, 76(5), 671-676 (1998). 非專利文獻21 Calabrese G, et al., Cell Genet., 92(1-2), 164-165 (2001). 非專利文獻22 El Sewedy T, et al., Int. J. Cancer, 75(2), 324-330 (1998). 非專利文獻23 Ohmachi T, et al., Clin. Cancer Res., 12(10), 3057-3063 (2006). 非專利文獻24 Muhlmann G, et al., J. Clin. Pathol., 62(2), 152-158 (2009). 非專利文獻25 Fong D, et al., Br. J. Cancer, 99(8), 1290-1295 (2008). 非專利文獻26 Fong D, et al., Mod. Pathol., 21(2), 186-191 (2008). 非專利文獻27 Ning S, et al., Neurol. Sci., 34(10), 1745-1750 (2013). 非專利文獻28 Wang J, et al., Mol. Cancer Ther., 7(2), 280-285 (2008).
[發明概要] [解決課題之手段]
於抗體所致的腫瘤治療,亦有觀察到即使抗體辨識抗原而與腫瘤細胞結合,抗腫瘤效果亦不充分的情形,有需要更高效果的抗腫瘤抗體的情形。又,於抗腫瘤性之低分子化合物,即使抗腫瘤效果優異,大多具有副作用或毒性面等之安全性上之問題,更提高安全性而獲得更優異的治療效果係成為課題。即,本發明之課題係提供抗腫瘤效果及安全性面向為優異之獲得具有優異治療效果的抗腫瘤藥。 [用以解決課題之手段]
本發明者們認為達成下列效果為可能的,抗TROP2抗體係可以腫瘤細胞為標的的抗體,即因係具有可辨識腫瘤細胞的特性、可與腫瘤細胞結合的特性、或可於腫瘤細胞中內在化的特性等的抗體,藉由將抗腫瘤性化合物依喜替康介隔連接物結構部分而變換為與相同抗體結合的抗體-藥物結合物,可獲得利用相同抗體的細胞毒性,又使抗腫瘤性化合物藉由腫瘤細胞而確實地移動而可使該化合物之抗腫瘤效果於腫瘤細胞特異性地發揮,因此抗腫瘤效果之確實發揮的同時,抗腫瘤性化合物之投予量亦可較該化合物之單體投予時更為減少,進一步藉由此等而使抗腫瘤性化合物對正常細胞的影響緩和,即藉由此等而可達成較高安全性。 因此,本發明者們創造特定結構之連接物,成功獲得介隔此連接物而使抗TROP2抗體與依喜替康結合的抗體-藥物結合物,發現該結合物發揮優異的抗腫瘤效果,遂而完成本發明。
即,本發明係關於: [1]一種抗體-藥物結合物,其特徵為其係下式 所示的抗腫瘤性化合物與抗TROP2抗體,介隔下式: -L 1-L 2-L P-NH-(CH 2)n 1-L a-(CH 2)n 2-C(=O)-所示的結構之連接物,藉由使存在於抗TROP2抗體之鉸鏈區(hinge region)的雙硫鍵部分形成的硫醚鍵而結合。
其中,抗TROP2抗體係於L 1之末端結合,抗腫瘤性化合物係將第1位之胺基之氮原子作為結合部位,與-(CH 2)n 2-C(=O)-部分之羰基結合。 式中,n 1表示0至6之整數, n 2表示0至5之整數, L 1表示-(琥珀醯亞胺-3-基-N)-(CH 2)n 3-C(=O)-, 其中,n 3表示2至8之整數, L 2表示-NH-(CH 2CH 2-O)n 4-CH 2CH 2-C(=O)-或單鍵, 其中,n 4表示1至6之整數, L P表示2至7個之胺基酸所構成的胜肽殘基, L a表示-O-或單鍵, -(琥珀醯亞胺-3-基-N)-係下式所示的結構: , 其第3位與抗TROP2抗體結合,第1位之氮原子上與含此的連接物結構內之亞甲基鍵結。
再者,本發明係關於以下各者。 [2]如[1]記載之抗體-藥物結合物,其中L P之胜肽殘基係選自包含苯丙胺酸、甘胺酸、纈胺酸、離胺酸、瓜胺酸、絲胺酸、麩胺酸、天冬胺酸之胺基酸的胜肽殘基。 [3]如[1]或[2]記載之抗體-藥物結合物,其中L P係選自以下之群組的胜肽殘基: -GGF-、 -DGGF-、 -(D-)D-GGF-、 -EGGF-、 -GGFG-、 -SGGF-、 -KGGF-、 -DGGFG-、 -GGFGG-、 -DDGGFG-、 -KDGGFG-、及 -GGFGGGF-; 其中『(D-)D』係表示D-天冬胺酸。 [4]如[1]或[2]記載之抗體-藥物結合物,其中L P係由4個胺基酸所構成的胜肽殘基。 [5]如[1]至[4]中任一項記載之抗體-藥物結合物,其中L P係四胜肽殘基之-GGFG-。
[6]如[1]至[5]中任一項記載之抗體-藥物結合物,其中n 3係2至5之整數,L 2係單鍵。 [7]如[1]至[5]中任一項記載之抗體-藥物結合物,其中n 3係2至5之整數,L 2係-NH-(CH 2CH 2-O)n 4-CH 2CH 2-C(=O)-,n 4係2或4。 [8]如[1]至[7]中任一項記載之抗體-藥物結合物,其中-NH-(CH 2)n 1-L a-(CH 2)n 2-C(=O)-係具有4至7原子之鏈長的部分結構。 [9]如[1]至[7]中任一項記載之抗體-藥物結合物,其中-NH-(CH 2)n 1-L a-(CH 2)n 2-C(=O)-係具有5或6原子之鏈長的部分結構。 [10]如[1]至[9]中任一項記載之抗體-藥物結合物,其中-NH-(CH 2)n 1-L a-(CH 2)n 2-C(=O)-係 -NH-CH 2CH 2-C(=O)-、 -NH-CH 2CH 2CH 2-C(=O)-、 -NH-CH 2CH 2CH 2CH 2-C(=O)-、 -NH-CH 2CH 2CH 2CH 2CH 2-C(=O)-、 -NH-CH 2-O-CH 2-C(=O)-、或 -NH-CH 2CH 2-O-CH 2-C(=O)-。 [11]如[1]至[9]中任一項記載之抗體-藥物結合物,其中-NH-(CH 2)n 1-L a-(CH 2)n 2-C(=O)-係 -NH-CH 2CH 2CH 2-C(=O)-、 -NH-CH 2-O-CH 2-C(=O)-、或 -NH-CH 2CH 2-O-CH 2-C(=O)-。
[12]如[1]至[9]中任一項記載之抗體-藥物結合物,其中使-L 1-L 2-L P-NH-(CH 2)n 1-L a-(CH 2)n 2-C(=O)-與藥物結合的藥物-連接物結構部分係選自下列群組的1種之藥物-連接物結構: -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)。
其中,-(琥珀醯亞胺-3-基-N)-係下式所示的結構: , 以其第3位與抗TROP2抗體結合,於第1位之氮原子上與含其之連接物結構內的亞甲基結合。 -(NH-DX)係表示下式: 所示的第1位之胺基之氮原子成為結合部位的基。 -GGFG-表示-Gly-Gly-Phe-Gly-之四胜肽殘基。
[13]如[1]至[9]中任一項記載之抗體-藥物結合物,其中使-L 1-L 2-L P-NH-(CH 2)n 1-L a-(CH 2)n 2-C(=O)-與藥物結合的藥物-連接物結構部分係選自下列群組的1種之藥物-連接物結構: -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)。
其中,-(琥珀醯亞胺-3-基-N)-、-(NH-DX)、及-GGFG-係如上述。
[14]一種抗體-藥物結合物,其特徵為使下式所示的抗腫瘤性化合物 與抗TROP2抗體,介隔下式: -L 1-L 2-L P-NH-(CH 2)n 1-L a-(CH 2)n 2-C(=O)-所示的結構之連接物,介隔於抗TROP2抗體之鉸鏈區存在的雙硫鍵部分所形成的硫醚鍵而結合。 其中,抗TROP2抗體係於L 1之末端結合,抗腫瘤性化合物係與-(CH 2)n 2-C(=O)-部分之羰基結合。 式中,n 1表示0至6之整數, n 2表示0至5之整數, L 1表示-(琥珀醯亞胺-3-基-N)-(CH 2)n 3-C(=O)-, 其中,n 3表示2至8之整數, L 2表示-NH-(CH 2CH 2-O)n 4-CH 2CH 2-C(=O)-或單鍵, 其中,n 4表示1至6之整數, L P表示-GGFG-之四胜肽殘基, L a表示-O-或單鍵, -(琥珀醯亞胺-3-基-N)-係下式所示的結構: , 其第3位與抗TROP2抗體結合,第1位之氮原子上與含其的連接物結構內之亞甲基結合。
[15]如[14]記載之抗體-藥物結合物,其中n 1係3,n 2係0,n 3係2,L 2係-NH-(CH 2CH 2-O)n 4-CH 2CH 2-C(=O)-,n 4係2,L a係單鍵,或 n 1為1,n 2為1,n 3為5,L 2為單鍵,L a為-O-, 或 n 1為2,n 2為1,n 3為5,L 2為單鍵,L a為-O-。 [16]如[14]或[15]記載之抗體-藥物結合物,其中n 3為2或5,且L 2為單鍵。 [17]如[14]或[15]記載之抗體-藥物結合物,其中n 3為2或5,且L 2為-NH-(CH 2CH 2-O)n 4-CH 2CH 2-C(=O)-,n 4係2或4。 [18]如[14]至[17]中任一項記載之抗體-藥物結合物,其中-NH-(CH 2)n 1-L a-(CH 2)n 2-C(=O)-係-NH-CH 2CH 2CH 2-C(=O)-、-NH-CH 2-O-CH 2-C(=O)-、或-NH-CH 2CH 2-O-CH 2-C(=O)-。
[19]如[14]至[18]中任一項記載之抗體-藥物結合物,其中使-L 1-L 2-L P-NH-(CH 2)n 1-L a-(CH 2)n 2-C(=O)-與藥物結合的藥物-連接物結構部分係選自下列群組的1種之藥物-連接物結構: -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX);
其中,-(琥珀醯亞胺-3-基-N)-係下式所示的結構: , 其第3位與抗TROP2抗體結合,第1位之氮原子上與含其的連接物結構內之亞甲基結合。 -(NH-DX)係表示下式: 所示的第1位之胺基之氮原子成為結合部位的基。 -GGFG-表示-Gly-Gly-Phe-Gly-之四胜肽殘基。
[20]如[14]至[18]中任一項記載之抗體-藥物結合物,其中使-L 1-L 2-L P-NH-(CH 2)n 1-L a-(CH 2)n 2-C(=O)-與藥物結合的藥物-連接物結構部分係選自下列群組的1種之藥物-連接物結構: -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)。 其中,-(琥珀醯亞胺-3-基-N)-、-(NH-DX)及-GGFG-係如上述。
[21]如[1]至[20]中任一項記載之抗體-藥物結合物,其中經選擇的1種之藥物-連接物結構的每1抗體的平均結合數係1至10個之範圍。 [22]如[1]至[20]中任一項記載之抗體-藥物結合物,其中經選擇的1種之藥物-連接物結構的每1抗體的平均結合數係2至8個之範圍。 [23]如[1]至[20]中任一項記載之抗體-藥物結合物,其中經選擇的1種之藥物-連接物結構的每1抗體的平均結合數係3至8個之範圍。
[24]一種醫藥,其含有如[1]至[23]中任一項記載之抗體-藥物結合物、其鹽、或彼等之水合物。 [25]一種抗腫瘤藥及/或抗癌藥,其含有如[1]至[23]中任一項記載之抗體-藥物結合物、其鹽、或彼等之水合物。 [26]如[25]記載之抗腫瘤藥及/或抗癌藥,其適用於肺癌、腎癌、尿道上皮癌、大腸癌、前列腺癌、多形性神經膠質母細胞瘤(glioblastoma multiforme)、卵巢癌、胰癌、乳癌、黑色素瘤、肝癌、膀胱癌、胃癌、子宮頸癌、頭頸部癌、或食道癌。 [27]一種醫藥組成物,其含有作為活性成分之如[1]至[23]中任一項記載之抗體-藥物結合物、其鹽、或彼等之水合物、及藥學上可容許的製劑成分。 [28]如[27]記載之醫藥組成物,其係適用於肺癌、腎癌、尿道上皮癌、大腸癌、前列腺癌、多形性神經膠質母細胞瘤、卵巢癌、胰癌、乳癌、黑色素瘤、肝癌、膀胱癌、胃癌、子宮頸癌、頭頸部癌、或食道癌。 [29]一種腫瘤及/或癌之治療方法,其特徵為投予如[1]至[23]中任一項記載之抗體-藥物結合物、其鹽、或彼等之水合物。
[30]一種抗體-藥物結合物之製造方法,其特徵為使下式所示的化合物:(順丁烯二醯亞胺-N-基)-(CH 2)n 3-C(=O)-L 2-L P-NH-(CH 2)n 1-L a-(CH 2)n 2-C(=O)-(NH-DX)與抗TROP2抗體或其反應性衍生物反應,藉由於該抗體之鉸鏈區存在的雙硫鍵部分使硫醚鍵形成的方法使藥物-連接物部分與該抗體結合。
式中,n 3表示整數之2至8, L 2表示-NH-(CH 2CH 2-O)n 4-CH 2CH 2-C(=O)-或單鍵, 其中,n 4表示1至6之整數, L P表示由選自苯丙胺酸、甘胺酸、纈胺酸、離胺酸、瓜胺酸、絲胺酸、麩胺酸、天冬胺酸的2至7個之胺基酸所構成的胜肽殘基, n 1表示0至6之整數, n 2表示0至5之整數, L a表示-O-或單鍵, (順丁烯二醯亞胺-N-基)-係下式 所示的氮原子成為結合部位的基。 -(NH-DX)係下式 所示的第1位之胺基之氮原子成為結合部位的基。
[31]如[30]記載之製造方法,其中使藥物-連接物部分與抗TROP2抗體結合的方法係將該抗體作還原處理而變換為反應性衍生物的方法。
[32]如[30]或[31]記載之製造方法,其中經選擇的1種之藥物-連接物結構的每1抗體的平均結合數係1至10個之範圍。 [33]如[30]或[31]記載之製造方法,其中經選擇的1種之藥物-連接物結構的每1抗體的平均結合數係2至8個之範圍。 [34]如[30]或[31]記載之製造方法,其中經選擇的1種之藥物-連接物結構的每1抗體的平均結合數係3至8個之範圍。 [35]一種抗體-藥物結合物,其係藉由如[30]至[34]中任一項之製造方法而獲得。
[36]一種抗體-藥物結合物,其特徵為其係將抗TROP2抗體於還原條件下處理後,使與選自以下之群組的化合物反應,於該抗體之鉸鏈區之雙硫鍵部分使硫醚鍵形成而獲得: (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)、及 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)。
其中,(順丁烯二醯亞胺-N-基)-係下式 所示的氮原子成為結合部位的基。 -(NH-DX)係下式 所示的第1位之胺基之氮原子成為結合部位的基。 -GGFG-表示-Gly-Gly-Phe-Gly-之四胜肽殘基。
[37]一種抗體-藥物結合物,其特徵為將抗TROP2抗體於還原條件下處理後,使與選自以下之群組的化合物反應,且於該抗體之鉸鏈區之雙硫鍵部分使硫醚鍵形成而獲得: (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、及 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)。 其中,(順丁烯二醯亞胺-N-基)-、-(NH-DX)、及-GGFG-係如上述。
[38]如[36]或[37]記載之抗體-藥物結合物,其中經選擇的1種之藥物-連接物結構的每1抗體的平均結合數係1至10個之範圍。 [39]如[36]或[37]記載之抗體-藥物結合物,其中經選擇的1種之藥物-連接物結構的每1抗體的平均結合數係2至8個之範圍。 [40]如[36]或[37]記載之抗體-藥物結合物,其中經選擇的1種之藥物-連接物結構的每1抗體的平均結合數係3至8個之範圍。 [發明之效果]
藉由介隔特定結構之連接物使抗腫瘤性化合物依喜替康結合的抗TROP2抗體-藥物結合物,可達成優異的抗腫瘤效果及安全性。
[實施發明之形態]
以下,一邊參照圖式一邊說明用以實施本發明之較佳形態。又,以下說明的實施形態係呈示本發明之代表性的實施形態之一例,並非藉由此等而狹窄解釋本發明之範圍。
本發明之抗TROP2抗體-藥物結合物係於抗TROP2抗體介隔連接物結構部分而與抗腫瘤性化合物結合的抗腫瘤性藥物,詳細說明如下。
[抗體] 本發明之抗TROP2抗體-藥物結合物所使用的抗TROP2抗體可來自任一物種,但較佳可例示人類、大鼠、小鼠、及兔。來自人類以外之物種的情形,使用周知之技術而嵌合化或人類化為較佳。本發明之抗體可為多株抗體,亦可為單株抗體,但單株抗體為較佳。 抗TROP2抗體係可以腫瘤細胞為標的的抗體,即,具備可辨識腫瘤細胞的特性、可與腫瘤細胞結合的特性、而且併入腫瘤細胞內而內在化的特性等,可將具有抗腫瘤活性的化合物,使介隔連接物而結合作成抗體-藥物結合物。 抗體之對腫瘤細胞的結合性係可使用流動式細胞測量術(flow cytometry)而確認。就至腫瘤細胞內之抗體之併入的確認方法而言,可列舉(1)使用與治療抗體結合的二次抗體(螢光標識)而將併入細胞內的抗體藉由螢光顯微鏡加以可視化的試驗法(Cell Death and Differentiation (2008) 15, 751-761)、(2)使用與治療抗體結合的二次抗體(螢光標識)而測量併入細胞內的螢光量的試驗法(Molecular Biology of the Cell Vol. 15, 5268-5282, December 2004)、或(3)使用與治療抗體結合的免疫毒素,一旦被併入細胞內則毒素被釋放而細胞增殖被抑制的Mab-ZAP試驗法(Bio Techniques 28:162-165, January 2000)等。又,就免疫毒素而言,亦可使用白喉毒素之觸媒區與Protein G之重組複合蛋白質。 抗體-藥物結合物由於使與發揮抗腫瘤效果的化合物結合的緣故,抗體本身具有抗腫瘤效果雖較佳,但非必須。由在腫瘤細胞使抗腫瘤性化合物之細胞毒性特異性・選擇性地發揮的目的觀之,抗體具有內在化而轉移至腫瘤細胞內的性質者係重要且較佳。
抗TROP2抗體係可使用於此領域通常實施的方法,將作為抗原的多肽對動物免疫,採集活體內產生的抗體,經由純化而獲得。抗原之來源並未限於人類,亦可將來自小鼠、大鼠等之人類以外之動物的抗原對動物免疫。於此情形,藉由試驗與取得的異種抗原結合的抗體與人類抗原之交叉性,可選出可適用於人類疾病的抗體。 又,依據周知之方法(例如,Kohler and Milstein, Nature(1975)256, p.495-497;Kennet, R.ed., Monoclonal Antibodies, p.365-367, Plenum Press, N.Y.(1980)),藉由使產生抗抗原的抗體的抗體產生細胞與骨髓瘤細胞融合,而建立融合瘤,亦可獲得單株抗體。 又,抗原可藉由基因操作使編碼抗原蛋白質的基因於宿主細胞中產生而獲得。具體而言,製作可表現抗原基因的載體,將其導入宿主細胞而使該基因表現,可純化表現的抗原。藉由使用將藉由上述之基因操作而表現抗原的細胞、或表現抗原的細胞株對動物免疫的方法,亦可取得抗體。 抗TROP2抗體係可藉由周知之手段而取得。
本發明可使用的抗TROP2抗體並未特別限制,但例如,可較佳使用本案序列表所示的胺基酸序列所特定者。就本發明所使用的TROP2抗體而言,具有以下特性者為所欲的。 (1)一種抗體,其特徵為具有以下特性; (a)特異性結合TROP2; (b)藉由與TROP2結合而具有於TROP2表現細胞中內在化的活性。 (2)如上述(1)記載之抗體,其中TROP2為人類TROP2。 (3)如上述(1)或(2)記載之抗體,其具有序列識別號23記載之胺基酸序列所構成的CDRH1、序列識別號24記載之胺基酸序列所構成的CDRH2、及序列識別號25記載之胺基酸序列所構成的CDRH3作為重鏈中的互補決定區,以及具有序列識別號26記載之胺基酸序列所構成的CDRL1、序列識別號27記載之胺基酸序列所構成的CDRL2、及序列識別號28記載之胺基酸序列所構成的CDRL3作為輕鏈中的互補決定區。 (4)如上述(1)至(3)中任一項記載之抗體,其中恆定區係來自人類的恆定區。 (5)如上述(1)至(4)中任一項記載之抗體,其係經人類化。 (6)如上述(5)記載之抗體,其具有(a)於序列識別號12之胺基酸編號20至140記載之胺基酸序列、(b)於序列識別號14之胺基酸編號20至140記載之胺基酸序列、(c)於序列識別號16之胺基酸編號20至140記載之胺基酸序列、(d)對(a)至(c)之序列至少具有95%以上之同源性的胺基酸序列、及(e)選自包含於(a)至(c)之序列有1或數個之胺基酸被刪除、取代或添加的胺基酸序列之群組之胺基酸序列所構成的重鏈之可變區,以及(f)於序列識別號18之胺基酸編號21至129記載之胺基酸序列、(g)於序列識別號20之胺基酸編號21至129記載之胺基酸序列、(h)於序列識別號22之胺基酸編號21至129記載之胺基酸序列、(i)對(f)至(h)之序列至少具有95%以上之同源性的胺基酸序列、及(j)選自包含於(f)至(h)之序列有1或數個之胺基酸被刪除、取代或添加的胺基酸序列之群組的胺基酸序列所構成的輕鏈之可變區。 (7)如上述(6)記載之抗體,其具有選自包含下列群組的重鏈之可變區及輕鏈之可變區: 於序列識別號12之胺基酸編號20至140記載之胺基酸序列所構成的重鏈之可變區及於序列識別號18之胺基酸編號21至129記載之胺基酸序列所構成的輕鏈之可變區、於序列識別號12之胺基酸編號20至140記載之胺基酸序列所構成的重鏈之可變區及於序列識別號20之胺基酸編號21至129記載之胺基酸序列所構成的輕鏈之可變區、於序列識別號12之胺基酸編號20至140記載之胺基酸序列所構成的重鏈之可變區及於序列識別號22之胺基酸編號21至129記載之胺基酸序列所構成的輕鏈之可變區、於序列識別號14之胺基酸編號20至140記載之胺基酸序列所構成的重鏈之可變區及於序列識別號18之胺基酸編號21至129記載之胺基酸序列所構成的輕鏈之可變區、於序列識別號14之胺基酸編號20至140記載之胺基酸序列所構成的重鏈之可變區及於序列識別號20之胺基酸編號21至129記載之胺基酸序列所構成的輕鏈之可變區、於序列識別號14之胺基酸編號20至140記載之胺基酸序列所構成的重鏈之可變區及於序列識別號22之胺基酸編號21至129記載之胺基酸序列所構成的輕鏈之可變區、於序列識別號16之胺基酸編號20至140記載之胺基酸序列所構成的重鏈之可變區及於序列識別號18之胺基酸編號21至129記載之胺基酸序列所構成的輕鏈之可變區、於序列識別號16之胺基酸編號20至140記載之胺基酸序列所構成的重鏈之可變區及於序列識別號20之胺基酸編號21至129記載之胺基酸序列所構成的輕鏈之可變區、以及於序列識別號16之胺基酸編號20至140記載之胺基酸序列所構成的重鏈之可變區及於序列識別號22之胺基酸編號21至129記載之胺基酸序列所構成的輕鏈之可變區。 (8)如上述(7)記載之抗體,其具有選自包含下列群組的重鏈之可變區及輕鏈之可變區: 於序列識別號12之胺基酸編號20至140記載之胺基酸序列所構成的重鏈之可變區及於序列識別號18之胺基酸編號21至129記載之胺基酸序列所構成的輕鏈之可變區、於序列識別號14之胺基酸編號20至140記載之胺基酸序列所構成的重鏈之可變區及於序列識別號18之胺基酸編號21至129記載之胺基酸序列所構成的輕鏈之可變區、於序列識別號14之胺基酸編號20至140記載之胺基酸序列所構成的重鏈之可變區及於序列識別號20之胺基酸編號21至129記載之胺基酸序列所構成的輕鏈之可變區、以及於序列識別號16之胺基酸編號20至140記載之胺基酸序列所構成的重鏈之可變區及於序列識別號22之胺基酸編號21至129記載之胺基酸序列所構成的輕鏈之可變區。 (9)如上述(6)或(7)記載之抗體,其包括選自包含下列群組的重鏈及輕鏈: 於序列識別號12之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號18之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈、於序列識別號12之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號20之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈、於序列識別號12之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號22之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈、於序列識別號14之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號18之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈、於序列識別號14之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號20之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈、於序列識別號14之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號22之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈、於序列識別號16之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號18之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈、於序列識別號16之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號20之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈、以及於序列識別號16之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號22之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈。 (10)如上述(6)或(7)記載之抗體,其包括選自包含下列群組的重鏈及輕鏈: 序列識別號12記載之胺基酸序列所構成的重鏈及序列識別號18記載之胺基酸序列所構成的輕鏈、序列識別號12記載之胺基酸序列所構成的重鏈及序列識別號20記載之胺基酸序列所構成的輕鏈、序列識別號12記載之胺基酸序列所構成的重鏈及序列識別號22記載之胺基酸序列所構成的輕鏈、序列識別號14記載之胺基酸序列所構成的重鏈及序列識別號18記載之胺基酸序列所構成的輕鏈、序列識別號14記載之胺基酸序列所構成的重鏈及序列識別號20記載之胺基酸序列所構成的輕鏈、序列識別號14記載之胺基酸序列所構成的重鏈及序列識別號22記載之胺基酸序列所構成的輕鏈、序列識別號16記載之胺基酸序列所構成的重鏈及序列識別號18記載之胺基酸序列所構成的輕鏈、序列識別號16記載之胺基酸序列所構成的重鏈及序列識別號20記載之胺基酸序列所構成的輕鏈、以及序列識別號16記載之胺基酸序列所構成的重鏈及序列識別號22記載之胺基酸序列所構成的輕鏈。 (11)如上述(8)記載之抗體,其包括選自包含下列群組的重鏈及輕鏈: 於序列識別號12之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號18之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈、於序列識別號14之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號18之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈、於序列識別號14之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號20之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈、以及於序列識別號16之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號22之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈。 (12)如上述(1)至(11)中任一項記載之抗體,其重鏈羧基末端之離胺酸殘基被刪除。 (13)一種抗體,其係藉由下列抗體之製造方法而獲得的抗體,該方法包含培養宿主細胞的步驟,該宿主細胞係藉由含有編碼如上述(1)至(12)中任一項記載之抗體的多核苷酸的表現載體而轉形;及自該步驟獲得的培養物採集目的抗體的步驟。
以下,說明於本發明所使用的抗TROP2抗體。 於本說明書,「癌」與「腫瘤」係以相同意義被使用。 於本說明書,所謂「基因」一詞不僅包含DNA,亦包含其mRNA、cDNA、及其cRNA。 於本說明書,所謂「多核苷酸」一詞係與核酸相同的意義使用,亦包含DNA、RNA、探針、寡核苷酸、及引子。 於本說明書,「多肽」與「蛋白質」並未區別地使用。 於本說明書,「細胞」亦包含動物個體內之細胞、培養細胞。 於本說明書,「TROP2」係以與TROP2蛋白質相同意義使用。 本說明書中的「CDR」係意指互補決定區(CDR:Complemetarity deterring region)。已知抗體分子之重鏈及輕鏈各自有3處所之CDR。CDR亦稱為高度變異區(hypervariable domain),係於抗體之重鏈及輕鏈之可變區內,一次結構之變異性為特高的部位,於重鏈及輕鏈之多肽鏈之一次結構上,分別於分離的3處所。於本說明書中,於抗體之CDR,將重鏈之CDR自重鏈胺基酸序列之胺基末端側標記為CDRH1、CDRH2、CDRH3,將輕鏈之CDR自輕鏈胺基酸序列之胺基末端側標記為CDRL1、CDRL2、CDRL3。此等之部位係於立體結構上相互接近,而決定對結合的抗原的特異性。 於本發明,「嚴格條件下雜交」係指於市售之雜交溶液ExpressHyb Hybridization Solution(Clontech公司製)中,藉由於68℃雜交,或使用固定有DNA的濾紙,於0.7-1.0M之NaCl存在下、於68℃進行雜交後,使用0.1-2倍濃度之SSC溶液(1倍濃度SSC係包含150mM NaCl、15mM檸檬酸鈉),於68℃洗淨,而可鑑定的條件或與其相同的條件下雜交。
1.TROP2 TROP2係於人類滋養層細胞(trophoblasts)表現的TACSTD家族之一者,與人類滋養層細胞及癌細胞共通的免疫抵抗性有關的1次跨膜型之1型細胞膜蛋白質。 本發明所使用的TROP2蛋白質係可自人類、非人類哺乳動物(大鼠、小鼠等)之TROP2表現細胞直接純化而使用、或者將該細胞之細胞膜劃分(fraction)調製而使用,又,可藉由將TROP2於活體外合成、或藉由基因操作使於宿主細胞中產生而獲得。基因操作具體而言,將TROP2 cDNA重組至可表現的載體後,於含有轉錄及轉譯所必要的酵素、基質及能量物質的溶液中合成、或藉由使其他原核生物、或真核生物之宿主細胞轉形後,藉由使TROP2表現,可獲得該蛋白質。又,將前述基因操作所致的TROP2表現細胞、或表現TROP2的細胞株作為TROP2蛋白質而使用亦為可能的。 TROP2之DNA序列及胺基酸序列已於公開資料庫上公開,例如,藉由NM_002353、NP_002344(NCBI)等之存取編號可參照。 又,於上述TROP2之胺基酸序列,有1或數個之胺基酸被取代、刪除及/或添加的胺基酸序列而成,具有與該蛋白質同等之生物活性的蛋白質亦包含於TROP2。 人類TROP2蛋白質係包含N末端26個胺基酸殘基所構成的訊息序列、248個胺基酸殘基所構成的細胞外區域、23個胺基酸殘基所構成的跨膜區域、26個胺基酸殘基所構成的細胞內區域。
2.抗TROP2抗體之製造 本發明之抗TROP2的抗體係可藉由使用此領域通常實施的方法,將選自TROP2或TROP2之胺基酸序列的任意多肽對動物免疫,採集活體內產生的抗體、純化而獲得。成為抗原的TROP2之生物種並未限定於人類,亦可將來自小鼠、大鼠等之人類以外的動物的TROP2對動物免疫。於此情形,藉由試驗與取得的異種TROP2結合的抗體及人類TROP2之交叉性,可選出可適用於人類之疾病的抗體。 又,依據周知之方法(例如,Kohler and Milstein,Nature(1975)256,p.495-497;Kennet,R.ed.,Monoclonal Antibodies,p.365-367,Plenum Press,N.Y.(1980)),藉由使產生抗TROP2抗體的抗體產生細胞與骨髓瘤細胞融合而建立融合瘤,亦可獲得單株抗體。 又,成為抗原的TROP2係可藉由基因操作使TROP2基因於宿主細胞中表現而獲得。 具體而言,製作可表現TROP2基因的載體,將其導入宿主細胞而使該基因表現,即可純化表現的TROP2。 又,上述之基因操作所致的TROP2表現細胞、或將表現TROP2的細胞株作為TROP2蛋白質使用亦為可能的。以下,具體地說明抗TROP2抗體之取得方法。
(1)抗原之調製 就用以製作抗TROP2抗體之抗原而言,可列舉TROP2或其至少6個連續的部分胺基酸序列所構成的多肽、或於彼等有附加任意之胺基酸序列或載體的衍生物等。 TROP2係可使用人類之腫瘤組織或自腫瘤細胞直接純化使用,又,藉由將TROP2於活體外合成、或藉由基因操作使於宿主細胞中產生可獲得。 基因操作具體而言,將TROP2之cDNA重組至可表現的載體後,於含有轉錄及轉譯所必要的酵素、基質及能量物質的溶液中合成、或藉由將其他原核生物或真核生物之宿主細胞轉形而使TROP2表現,可獲得抗原。 又,藉由使連結膜蛋白質TROP2之細胞外區域與抗體之恆定區的融合蛋白質於適當宿主・載體系統中表現,亦可獲得作為分泌蛋白質之抗原。 TROP2之cDNA,例如,可列舉將表現TROP2之cDNA的cDNA庫作為模板,藉由使用特異性增幅TROP2 cDNA的引子而進行聚合酶連鎖反應(以下稱為「PCR」;參照Saiki,R. K.,et al.,Science(1988)239,p.487-489)之所謂的PCR法而取得。 就多肽之活體外合成而言,例如,可列舉Roche Diagnostics公司製之快速轉譯系統(Rapid Translation System)(RTS),但未限定於此。 就原核細胞之宿主而言,例如,可列舉大腸桿菌(Escherichia coli)或枯草桿菌(Bacillus subtilis)等。使目的基因於此等之宿主細胞內轉形,於含有來自可適合作為宿主種之複製單元(replicon),即複製起點、及調節序列的質體載體中使宿主細胞轉形。又,就載體而言,於轉形細胞具有可賦予表型(表現型)之選擇性的序列者為較佳。 真核細胞之宿主細胞包含脊椎動物、昆蟲、酵母等之細胞,就脊椎動物細胞而言,例如,可使用猴之細胞的COS細胞(Gluzman,Y.Cell(1981)23,p.175-182、ATCC CRL-1650;ATCC:American Type Culture Collection)、小鼠纖維母細胞NIH3T3(ATCC No.CRL-1658)或中國倉鼠卵巢細胞(CHO細胞、ATCC CCL-61)之二氫葉酸還原酵素缺損株(Urlaub,G. and Chasin,L.A.Proc.Natl.Acad.Sci.USA(1980)77,p.4126-4220)等,但未限定於此等。 如上述獲得的轉形體可依據此領域通常實施的方法加以培養,藉由該培養,於細胞內或細胞外產生目的多肽。 該培養所使用的培養基,本項技術領域者可因應採用的宿主細胞而適當選擇各種者,若為大腸桿菌,例如,因應必要可於LB培養基添加安比西林(ampicillin)等之抗生素或IPMG而使用。 藉由上述培養,轉形體之細胞內或細胞外所產生的重組蛋白質可藉由利用該蛋白質之物理性質或化學性質等的各種周知分離操作法而分離・純化。 就該方法而言,具體而言,例如,可例示通常之蛋白質沉澱劑的處理、超過濾、分子篩層析(凝膠過濾)、吸附層析、離子交換層析、親和性層析等之各種液體層析、透析法、此等之組合等。 又,藉由於經表現的重組蛋白質連接6個殘基所構成的組胺酸標籤,可以鎳親和性管柱有效率地純化。或者,藉由於經表現的重組蛋白質連接IgG之Fc區域,可以蛋白質A管柱有效率地純化。 藉由組合上述方法,可輕易以高產率、高純度為目的大量製造多肽。 將上述所述轉形體本身作為抗原使用亦為可能的。又,將表現TROP2的細胞株作為抗原使用亦為可能的。就如此細胞株而言,可列舉人類化肺癌株NCI-H322、PC14、NCIH-H2122、或LCAM1、人類前列腺癌株PC3、人類胰臓癌株BxPC-3、Capan-1、或PK-1、人類卵巢癌株SKOV3以及人類大腸癌株COLO205,但只要表現TROP2即可,並未限定於此等之細胞株。
(2)抗TROP2單株抗體之製造 就與TROP2特異性結合的抗體之例而言,可列舉與TROP2特異性結合的單株抗體,其取得方法如以下記載。 於單株抗體之製造,一般而言如下述的作業步驟係必要的。 即, (a)作為抗原使用的活體高分子之純化、或抗原表現細胞之調製、 (b)藉由將抗原注射動物,免疫後採取血液,檢定其抗體力價而決定脾臓摘出之時期後,調製抗體產生細胞的步驟、 (c)骨髓瘤細胞(以下稱為「骨髓瘤」)之調製、 (d)抗體產生細胞與骨髓瘤之細胞融合、 (e)產生作為目的的抗體的融合瘤群之挑選、 (f)對單一細胞選殖株的分割(選殖)、 (g)依據情形,用以大量製造單株抗體的融合瘤之培養、或移植融合瘤的動物之飼育、 (h)如此製造的單株抗體之生理活性、及其結合特異性之檢討、或作為標識試藥之特性之檢定等。 以下,單株抗體之製作法依上述步驟詳述,但該抗體之製作法並未限制於此,例如,亦可使用脾細胞以外之抗體產生細胞及骨髓瘤。
(a)抗原之純化 就抗原而言,可使用如前述方法所調製的TROP2或其一部分。 又,藉由TROP2表現重組體細胞所調製的膜劃分、或TROP2表現重組體細胞本身,再者,亦可將使用本項技術領域者周知之方法而化學合成的本發明之蛋白質之部分胜肽作為抗原使用。 再者,亦可將TROP2表現細胞株作為抗原使用。
(b)抗體產生細胞之調製 將步驟(a)所獲得的抗原與弗氏完全或不完全佐劑、或鉀礬(potash alum)之類的輔助劑混合,作為免疫原對實驗動物免疫。除此之外,亦有將抗原表現細胞作為免疫原對實驗動物免疫的方法。實驗動物係可無阻地使用周知融合瘤製作法所使用的動物。具體而言,例如可使用小鼠、大鼠、山羊、綿羊、牛、馬等。惟,由與摘出的抗體產生細胞融合的骨髓瘤細胞之取得容易性等之觀點,將小鼠或大鼠作為被免疫動物者為較佳。 又,實際上使用的小鼠及大鼠之品系並未別限制,於小鼠之情形,例如,各品系A、AKR、BALB/c、BDP、BA、CE、C3H、57BL、C57BL、C57L、DBA、FL、HTH、HT1、LP、NZB、NZW、RF、R III、SJL、SWR、WB、129等,又大鼠的情形,例如,可使用Wistar、Low、Lewis、Sprague、Dawley、ACI、BN、Fischer等。 此等之小鼠及大鼠係可例如獲自日本CLEA股份有限公司、日本Charles River股份有限公司等之實驗動物飼育販售業者。 就被免疫動物而言,若考慮與後述之骨髓瘤細胞之融合親和性,小鼠係BALB/c品系為特佳,大鼠係Wistar及Low品系為特佳。 又,考慮抗原之人類與小鼠之同源性,使用去除自體抗體的使生物機制降低的小鼠,亦即,使用自體免疫疾病小鼠為較佳。 又,此等小鼠或大鼠之免疫時之週齡係較佳為5至12週齡,更佳為6至8週齡。 藉由TROP2或其重組體而免疫動物時,例如,可使用Weir,D.M.,Handbook of Experimental Immunology Vol.I.II.III.,Blackwell Scientific Publications,Oxford(1987);Kabat,E.A.and Mayer,M.M.,Experimental Immunochemistry,Charles C Thomas Publisher Springfield,Illinois(1964)等詳細記載的周知之方法。 此等之免疫法中,若具體呈示本發明之較佳方法,例如,如以下所示。 即,首先,將為抗原的膜蛋白質劃分、或使表現抗原的細胞投予至動物之皮內或腹腔內。惟,為了提高免疫效率,兩者之併用為較佳,前半進行皮內投予,僅後半或最終次進行腹腔內投予時,可特別地提高免疫效率。 抗原之投予時程係依被免疫動物之種類、個體差異等而異,但一般而言,抗原投予次數3~6次、投予間隔2~6週為較佳,投予次數3~4次、投予間隔2~4週為更佳。 又,抗原之投予量係依動物之種類、個體差異等而異,但一般而言,設為0.05~5mg,較佳為0.1~0.5mg左右。 追加免疫係如以上之抗原投予1~6週後,較佳為1~4週後,更佳為1~3週後進行。免疫原為細胞的情形,使用1×10 6至1×10 7個之細胞。 又,進行追加免疫之際的抗原投予量,依動物種類、大小等而異,但一般而言,例如,小鼠的情形設為0.05~5mg,較佳為0.1~0.5mg,更佳為0.1~0.2mg左右。免疫原為細胞的情形,使用1×10 6至1×10 7個之細胞。 上述追加免疫後1~10日後,較佳為2~5日後,更佳為2~3日後,自被免疫動物無菌地取出含抗體產生細胞的脾臓細胞或淋巴球。此時,測量抗體力價,若將抗體力價變的充分高的動物作為抗體產生細胞之供給源使用,則可提高以後操作之效率。 就於此所使用的抗體力價之測定法而言,例如,可列舉RIA法或ELISA法,但未限定於此等方法。本發明中的抗體力價之測定,例如,若依據ELISA法,可以藉由如以下記載的順序進行。 首先,使純化或部分純化的抗原吸附於ELISA用96孔盤等之固相表面,又將抗原未吸附的固相表面以與抗原無關係的蛋白質覆蓋,例如,藉由牛血清白蛋白(BSA)覆蓋,將該表面洗淨後,使與連續稀釋的試料(例如,小鼠血清)作為一級抗體接觸,使上述抗原與試料中之抗體結合。 再者作為二級抗體,添加經酵素標識的抗小鼠抗體的抗體使其與小鼠抗體結合,洗淨後添加該酵素之基質,測定基於基質分解而顯色的吸光度變化等,藉此算出抗體力價。 由被免疫動物之脾臓細胞或淋巴球之抗體產生細胞的分離,可依據周知方法(例如,Kohler et al.,Nature(1975)256,p.495;Kohler et al.,Eur.J.Immunol.(1977)6,p.511;Milstein et al.,Nature(1977),266,p.550;Walsh,Nature,(1977)266,p.495)而進行。例如,脾臓細胞之情形,可採用將脾臓細切而將細胞以不鏽鋼篩網過濾後,使游離於伊格爾氏最低必須培養基(Eagle’s minimal essential medium, MEM)等而將抗體產生細胞加以分離的一般方法。
(c)骨髓瘤細胞(以下,稱為「骨髓瘤」)之調製 用於細胞融合的骨髓瘤細胞並未特別限定,可適當選擇周知之細胞株來使用。惟,考慮自融合細胞選擇融合瘤之際的便利性,較佳使用其選擇手續已確立的HGPRT(次黃嘌呤鳥糞嘌呤磷酸核糖基轉換酵素,Hypoxanthine-guanine phosphoribosyl transferase)缺損株。 即,來自小鼠之X63-Ag8(X63)、NS1-ANS/1(NS1)、P3X63-Ag8.U1(P3U1)、X63-Ag8.653(X63.653)、SP2/0-Ag14(SP2/0)、MPC11-45.6TG1.7(45.6TG)、FO、S149/5XXO、BU.1等、來自大鼠之210.RSY3.Ag.1.2.3(Y3)等、來自人類之U266AR(SKO-007)、GM1500・GTG-A12(GM1500)、UC729-6、LICR-LOW-HMy2(HMy2)、8226AR/NIP4-1(NP41)等。此等之HGPRT缺損株係例如,可獲自ATCC等。 此等之細胞株係以適當培養基,例如8-氮鳥嘌呤培養基(於RPMI-1640培養基中添加麩醯胺酸、2-巰基乙醇、健他黴素(gentamycin)、及胎牛血清(以下稱為「FBS」)的培養基中添加8-氮鳥嘌呤的培養基)、伊斯科夫氏修飾杜爾貝科氏培養基(Iscove’s Modified Dulbecco’s Medium;IMDM)、或杜爾貝科氏修飾弋果氏培養基(Dulbecco’s Modified Eagle Medium;DMEM)繼代培養,但細胞融合之3至4日前以正常培養基(例如,含10% FCS的ASF104培養基(味之素股份有限公司製))繼代培養,融合當日確保2×10 7以上之細胞數目。
(d)細胞融合 抗體產生細胞與骨髓瘤細胞之融合係依據周知之方法(Weir,D.M., Handbookof Experimental Immunology Vol.I.II.III.,Blackwell Scientific Publications, Oxford (1987); Kabat, E.A.and Mayer,M.M., Experimental Immunochemistry,Charles C Thomas Publisher Springfield, Illinois(1964)等),於使細胞生存率未極度降低的程度的條件下可適當實施。 就如此方法而言,例如,可使用於聚乙二醇等之高濃度聚合物溶液中將抗體產生細胞與骨髓瘤細胞混合的化學方法、利用電刺激的物理方法等。其中,若呈示上述化學方法之具體例係如以下。 即,使用聚乙二醇作為高濃度聚合物溶液的情形,於分子量1500~6000,較佳為2000~4000之聚乙二醇溶液中,於30~40℃,較佳為於35~38℃之溫度下,將抗體產生細胞與骨髓瘤細胞混合1~10分鐘,較佳為5~8分鐘。
(e)融合瘤群之選擇 藉由上述細胞融合獲得的融合瘤之選擇方法並未特別限制,但通常使用HAT(次黃嘌呤・胺基喋呤・胸腺嘧啶)選擇法(Kohler et al.,Nature (1975) 256, p.495; Milstein et al., Nature (1977)266, p.550)。 此方法係於使用於胺基喋呤中無法生存的HGPRT缺損株之骨髓瘤細胞而獲得融合瘤的情形為有效的。即,藉由將未融合細胞及融合瘤以HAT培養基培養,可選擇性僅使具有對胺基喋呤有耐性的融合瘤殘存,且可使增殖。
(f)分割為單一細胞菌落(選殖) 就融合瘤之選殖法而言,例如,可使用甲基纖維素法、軟瓊脂糖法、臨界稀釋法等之周知方法(例如,參照Barbara, B.M. and Stanley,M.S.:Selected Methods in Cellular Immunology, W.H.Freeman and Company,San Francisco (1980))。此等之方法中,尤其是甲基纖維素法等之三維培養法為較佳。例如,將藉由細胞融合所形成的融合瘤群懸浮於ClonaCell-HY Selection Medium D(StemCell Technologies公司製 #03804)等之甲基纖維素培養基而培養,藉由回收形成的融合瘤菌落,單株融合瘤之取得為可能的。培養經回收的各融合瘤菌落,將於獲得的融合瘤培養上清液中安定而被認可抗體力價者,選擇作為TROP2單株抗體產生融合瘤株。
就如此樹立的融合瘤株之例而言,可列舉TROP2融合瘤TINA1。又,於本說明書中,將TROP2融合瘤TINA1所產生的抗體記載為「TINA1抗體」或僅記載為「TINA1」。 TINA1抗體之重鏈可變區係具有序列表之序列識別號2所示的胺基酸序列。又,TINA1抗體之輕鏈可變區係具有序列表之序列識別號4所示的胺基酸序列。
(g)融合瘤之培養所致的單株抗體之調製 如此選擇的融合瘤,藉由將其培養,可有效率地獲得單株抗體,但培養之前,篩選產生目的單株抗體的融合瘤係所欲的。 此篩選係可採用本身已知之方法。 本發明中的抗體力價的測定可藉由例如,上述(b)之項目中說明的ELISA法而進行。 藉由以上之方法所獲得的融合瘤係可於液體氮中或-80℃以下之冷凍庫中以凍結狀態下保存。 完成選殖的融合瘤係將培養基由HT培養基換成正常培養基而被培養。 大量培養係以使用大型培養瓶的旋轉培養、或旋轉器(spinner)培養來進行。自此大量培養中的上清液,藉由使用膠體過濾等之本項技術領域者所周知之方法而純化,可獲得與本發明之蛋白質特異性結合的單株抗體。 又,藉由於同品系之小鼠(例如,上述之BALB/c)、或Nu/Nu小鼠之腹腔內注射融合瘤,使該融合瘤增殖,可獲得含大量本發明之單株抗體的腹水。 投予腹腔內的情形,於事前(3~7日前),投予2,6,10,14-四甲基十五烷(2,6,10,14-tetramethylpentadecane;姥鮫烷(pristane))等之礦物油時,可獲得較多量之腹水。 例如,於與融合瘤同品系的小鼠腹腔內預先注射免疫抑制劑,使T細胞不活化後,於20日後,使10 6~10 7個之融合瘤・選殖細胞於不含血清的培養基中游離(0.5ml)而投予至腹腔內,通常於腹部膨滿、腹水累積處,自小鼠採取腹水。藉由此方法,與培養液相比,獲得約100倍以上之濃度之單株抗體。 藉由上述方法所獲得的單株抗體,可以例如,Weir,D.M.:Handbook of Experimental Immunology,Vol.I,II,III,Blackwell Scientific Publications,Oxford(1978)記載的方法加以純化。 因而獲得的單株抗體係對TROP2具有高抗原特異性。
(h)單株抗體之檢定 因此獲得的單株抗體之同型及亞型之決定係可如以下方式進行。 首先,可列舉歐氏雙向擴散(Ouchterlony)法、ELISA法、或RIA法作為鑑定法。 Ouchterlony法係為簡便,但單株抗體濃度低的情形,有必要濃縮操作。 另一方面,使用ELISA法或RIA法的情形,使培養上清液直接與抗原吸附固相反應,進一步藉由使用對應各種免疫球蛋白同型、亞型的抗體作為第二次抗體,可鑑定單株抗體之同型、亞型。 又,就更簡便的方法而言,亦可利用市售之鑑定用之套組(例如,Mouse typer kit:Bio-Rad公司製)等。 再者,蛋白質之定量係可由Folin Lowry法及280nm中的吸光度(1.4(OD280)=免疫球蛋白1mg/ml)算出的方法而進行。 再者,再次實施(2)之(a)至(h)的步驟而另外獨立取得單株抗體的情形,亦可能取得具有與TINA1抗體相同細胞傷害活性的抗體。就如此抗體之一例,可列舉結合於與TINA1抗體相同之抗原決定位的抗體。新製作的單株抗體若與TINA1抗體之結合的部分胜肽或部分立體結構結合,可判定為該單株抗體結合於與TINA1抗體相同之抗原決定位。又,藉由確認相對於TINA1抗體之對TROP2的結合,該單株抗體係競爭(即,該單株抗體係妨礙TINA1抗體與TROP2之結合),即使未決定具體的抗原決定位之序列或結構,亦可判定該單株抗體結合於與抗TROP2抗體相同之抗原決定位。抗原決定位被確認為相同的情形,該單株抗體被強烈地期待具有與TINA1抗體同等之抗原結合能力或生物活性。
(3)其他抗體 本發明之抗體,除了抗上述TROP2的單株抗體之外,亦包含以使對人類的異種抗原性降低等為目的而人為地改變的基因重組型抗體,例如,嵌合(Chimeric)抗體、人類化(Humanized)抗體、人類抗體等。此等之抗體可使用已知方法而製造。 就嵌合抗體而言,係抗體之可變區與恆定區彼此為異種的抗體,例如,將來自小鼠或大鼠的抗體之可變區與來自人類的恆定區接合的嵌合抗體(參照Proc.Natl.Acad.Sci.U.S.A.,81,6851-6855,(1984))。 就人類化抗體而言,僅將互補決定區(CDR)併入來自人類的抗體之抗體(參照Nature(1986)321,p.522-525)、藉由CDR移植法而除了CDR之序列外將一部分之框架區胺基酸殘基亦移植於人類抗體之抗體(國際公開第90/07861號)。 惟,就來自TINA1抗體之人類化抗體而言,只要保持TINA1抗體之6種全部的CDR序列即可,並未限定於特定之人類化抗體。又,TINA1抗體之重鏈可變區係保有序列表之序列識別號23所示的胺基酸序列所構成的CDRH1(TAGMQ)、序列識別號24所示的胺基酸序列所構成的CDRH2(WINTHSGVPKYAEDFKG)、及序列識別號25所示的胺基酸序列所構成的CDRH3(SGFGSSYWYFDV)。又,TINA1抗體之輕鏈可變區係保有序列表之序列識別號26所示的胺基酸序列所構成的CDRL1(KASQDVSTAVA)、序列識別號27所示的胺基酸序列所構成的CDRL2(SASYRYT)、及序列識別號28所示的胺基酸序列所構成的CDRL3(QQHYITPLT)。
就小鼠抗體TINA1之人類化抗體之實例而言,可列舉下列重鏈及輕鏈之任意組合:包含(1)序列表之序列識別號12、14、或16之第20至140個之胺基酸殘基所構成的胺基酸序列;(2)相對於上述(1)之胺基酸序列具有至少95%以上之同源性的胺基酸序列;及(3)於上述(1)之胺基酸序列中有1或數個之胺基酸經刪除、取代或添加的胺基酸序列之任一者所構成的重鏈可變區的重鏈;以及包含(4)由序列識別號18、20、或22之第21至129個之胺基酸殘基所構成的胺基酸序列;(5)相對於上述(4)之胺基酸序列具有至少95%以上之同源性的胺基酸序列;及(6)於上述(4)之胺基酸序列有1或數個之胺基酸經刪除、取代或添加的胺基酸序列之任一者所構成的輕鏈可變區的輕鏈。 又,本說明書中的「數個」係意指1至10個、1至9個、1至8個、1至7個、1至6個、1至5個、1至4個、1至3個、或1或2個。
又,就本說明書中的胺基酸之取代而言,保存的胺基酸取代為較佳。保存的胺基酸取代係指與胺基酸側鏈有關連的胺基酸基團內產生的取代。較佳胺基酸基團係如以下:酸性基團=天冬胺酸、麩胺酸;鹼性基團=離胺酸、精胺酸、組胺酸;非極性基團=丙胺酸、纈胺酸、白胺酸、異白胺酸、脯胺酸、苯丙胺酸、甲硫胺酸、色胺酸;非帶電極性家族=甘胺酸、天冬醯胺酸、麩醯胺酸、半胱胺酸、絲胺酸、蘇胺酸、酪胺酸。其他適合的胺基酸基團係如下:脂肪族羥基團=絲胺酸及蘇胺酸;含醯胺基的基團=天冬醯胺酸及麩醯胺酸;脂肪族基團=丙胺酸、纈胺酸、白胺酸及異白胺酸;以及芳香族基團=苯丙胺酸、色胺酸及酪胺酸。該胺基酸取代係於不使具有原本胺基酸序列的物質之特性降低的範圍內進行者為較佳。
就上述之重鏈及輕鏈之較佳組合之抗體而言,可列舉包含具有於序列識別號12之胺基酸編號20至140記載之胺基酸序列所構成的可變區的重鏈及具有於序列識別號18之胺基酸編號21至129記載之胺基酸序列所構成的可變區的輕鏈的抗體、包含具有於序列識別號12之胺基酸編號20至140記載之胺基酸序列所構成的可變區的重鏈及具有於序列識別號20之胺基酸編號21至129記載之胺基酸序列所構成的可變區的輕鏈的抗體、包含具有於序列識別號12之胺基酸編號20至140記載之胺基酸序列所構成的可變區的重鏈及具有於序列識別號22之胺基酸編號21至129記載之胺基酸序列所構成的可變區的輕鏈的抗體、包含具有於序列識別號14之胺基酸編號20至140記載之胺基酸序列所構成的可變區的重鏈及具有於序列識別號18之胺基酸編號21至129記載之胺基酸序列所構成的可變區的輕鏈的抗體、包含具有於序列識別號14之胺基酸編號20至140記載之胺基酸序列所構成的可變區的重鏈及具有於序列識別號20之胺基酸編號21至129記載之胺基酸序列所構成的可變區的輕鏈的抗體、包含具有於序列識別號14之胺基酸編號20至140記載之胺基酸序列所構成的可變區的重鏈及具有於序列識別號22之胺基酸編號21至129記載之胺基酸序列所構成的可變區的輕鏈的抗體、包含具有於序列識別號16之胺基酸編號20至140記載之胺基酸序列所構成的可變區的重鏈及具有於序列識別號18之胺基酸編號21至129記載之胺基酸序列所構成的可變區的輕鏈的抗體、包含具有於序列識別號16之胺基酸編號20至140記載之胺基酸序列所構成的可變區的重鏈及具有於序列識別號20之胺基酸編號21至129記載之胺基酸序列所構成的可變區的輕鏈的抗體、以及包含具有於序列識別號16之胺基酸編號20至140記載之胺基酸序列所構成的可變區的重鏈及具有於序列識別號22之胺基酸編號21至129記載之胺基酸序列所構成的可變區的輕鏈的抗體。
就更佳的組合之抗體而言,可列舉包含於序列識別號12之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號18之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈的抗體、包含於序列識別號12之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號20之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈的抗體、包含於序列識別號12之胺基酸編號20至470記載目之胺基酸序列所構成的重鏈及於序列識別號22之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈的抗體、包含於序列識別號14之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號18之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈的抗體、包含於序列識別號14之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號20之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈的抗體、包含於序列識別號14之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號22之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈的抗體、包含於序列識別號16之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號18之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈的抗體、包含於序列識別號16之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號20之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈的抗體、以及包含於序列識別號16之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號22之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈的抗體。
就優異的較佳組合而言,可列舉包含具有於序列識別號12之胺基酸編號20至140記載之胺基酸序列所構成的可變區的重鏈及具有於序列識別號18之胺基酸編號21至129記載之胺基酸序列所構成的可變區的輕鏈的抗體、包含具有於序列識別號14之胺基酸編號20至140記載之胺基酸序列所構成的可變區的重鏈及具有於序列識別號18之胺基酸編號21至129記載之胺基酸序列所構成的可變區的輕鏈的抗體、包含具有於序列識別號14之胺基酸編號20至140記載之胺基酸序列所構成的可變區的重鏈及具有於序列識別號20之胺基酸編號21至129記載之胺基酸序列所構成的可變區的輕鏈的抗體、以及包含具有於序列識別號16之胺基酸編號20至140記載之胺基酸序列所構成的可變區的重鏈及具有於序列識別號22之胺基酸編號21至129記載之胺基酸序列所構成的可變區的輕鏈的抗體。
又,就其他適合的組合而言,可列舉包含序列識別號12記載之胺基酸序列所構成的重鏈及序列識別號18記載之胺基酸序列所構成的輕鏈的抗體、包含序列識別號12記載之胺基酸序列所構成的重鏈及序列識別號20記載之胺基酸序列所構成的輕鏈的抗體、包含序列識別號12記載之胺基酸序列所構成的重鏈及序列識別號22記載之胺基酸序列所構成的輕鏈的抗體、包含序列識別號14記載之胺基酸序列所構成的重鏈及序列識別號18記載之胺基酸序列所構成的輕鏈的抗體、包含序列識別號14記載之胺基酸序列所構成的重鏈及序列識別號20記載之胺基酸序列所構成的輕鏈的抗體、包含序列識別號14記載之胺基酸序列所構成的重鏈及序列識別號22記載之胺基酸序列所構成的輕鏈的抗體、包含序列識別號16記載之胺基酸序列所構成的重鏈及序列識別號18記載之胺基酸序列所構成的輕鏈的抗體、包含序列識別號16記載之胺基酸序列所構成的重鏈及序列識別號20記載之胺基酸序列所構成的輕鏈的抗體、以包含及序列識別號16記載之胺基酸序列所構成的重鏈及序列識別號22記載之胺基酸序列所構成的輕鏈的抗體。
就優異的較佳組合而言,可列舉包含於序列識別號12之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號18之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈的抗體、包含於序列識別號14之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號18之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈的抗體、包含於序列識別號14之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號20之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈的抗體、以及包含於序列識別號16之胺基酸編號20至470記載之胺基酸序列所構成的重鏈及於序列識別號22之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈的抗體。
就更優異的較佳組合而言,可列舉包含於序列識別號12之胺基酸編號20至469記載之胺基酸序列所構成的重鏈及於序列識別號18之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈的抗體、包含於序列識別號14之胺基酸編號20至469記載之胺基酸序列所構成的重鏈及於序列識別號18之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈的抗體、包含於序列識別號14之胺基酸編號20至469記載之胺基酸序列所構成的重鏈及於序列識別號20之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈的抗體、以及包含於序列識別號16之胺基酸編號20至469記載之胺基酸序列所構成的重鏈及於序列識別號22之胺基酸編號21至234記載之胺基酸序列所構成的輕鏈的抗體。
藉由組合呈現與上述之重鏈胺基酸序列及輕鏈胺基酸序列有高同源性的序列,選擇具有與上述各抗體同等生物活性的抗體係可能的。如此同源性,一般而言為80%以上之同源性,較佳為90%以上之同源性,更佳為95%以上之同源性,最佳為99%以上之同源性。又,藉由組合於重鏈或輕鏈之胺基酸序列中有1至數個之胺基酸殘基被取代、刪除或添加的胺基酸序列,亦可選擇具有與上述各抗體同等生物活性的抗體。
二種類之胺基酸序列間之同源性係可藉由使用Blast algorithm第2.2.2版(Altschul,Stephen F.,Thomas L.Madden,Alejandro A.Schaeffer,Jinghui Zhang,Zheng Zhang,Webb Miller,and David J.Lipman(1997),「Gapped BLAST and PSI-BLAST:a new generation of protein database search programs」,Nucleic Acids Res.25:3389-3402)之系統內定參數(default parameter)而決定。Blast algorithm亦可藉由例如,訪問網際網路www.ncbi.nlm.nih.gov/blast而使用。
又,於序列表之序列識別號12、14、或16所示的重鏈胺基酸序列中,第1至19號之胺基酸殘基所構成的胺基酸序列係訊息序列,第20至140號之胺基酸殘基所構成的胺基酸序列係可變區,第141至470號之胺基酸殘基所構成的胺基酸序列係恆定區。各自將序列識別號12之序列記載於第3圖、序列識別號14之序列記載於第4圖、序列識別號16之序列記載於第5圖。 又,於序列表之序列識別號18、20、或22所示的輕鏈胺基酸序列中,第1至20號之胺基酸殘基所構成的胺基酸序列係訊息序列,第21至129號之胺基酸殘基所構成的胺基酸序列係可變區,第130至234號之胺基酸殘基所構成的胺基酸序列係恆定區。各自將序列識別號18之序列記載於第6圖、序列識別號20之序列記載於第7圖、序列識別號22之序列記載於第8圖。
就本發明之抗體而言,又可列舉與TROP2結合的人類抗體。抗TROP2人類抗體係意指僅具有來自人類染色體之抗體之基因序列的人類抗體。抗TROP2人類抗體係藉由使用具有含人類抗體之重鏈及輕鏈之基因的人類染色體片段的人類抗體產生小鼠的方法(參照Tomizuka,K.et al.,Nature Genetics(1997)16,p.133-143;Kuroiwa,Y.et.al.,Nucl. Acids Res. (1998)26,p.3447-3448;Yoshida,H.et.al.,Animal Cell Technology:Basic and Applied Aspects vol.10,p.69-73(Kitagawa,Y.,Matsuda,T.and Iijima,S.eds.),Kluwer Academic Publishers,1999.;Tomizuka,K.et.al.,Proc.Natl.Acad.Sci.USA(2000)97,p.722-727等)而取得。
如此人類抗體產生小鼠,具體而言,內在性免疫球蛋白重鏈及輕鏈之基因座被破壞,用以代之者為以通過酵母人工染色體(Yeast artificial chromosome,YAC)載體等而導入人類免疫球蛋白重鏈及輕鏈之基因座的基因重組動物,可藉由基因剔除動物及基因轉殖動物之製作及此等動物彼此交配而作出。 又,藉由基因重組技術,各自編碼如此人類抗體之重鏈及輕鏈的cDNA,較佳為藉由含該cDNA的載體將真核細胞轉形,經培養產生基因重組人類單株抗體的轉形細胞,亦可自培養上清液中獲得此抗體。 其中,作為宿主,例如,可使用真核細胞,較佳為CHO細胞、淋巴球或骨髓瘤等之哺乳動物細胞。
又,亦已知取得自人類抗體庫選出的來自噬菌體顯示的人類抗體的方法(參照Wormstone,I.M.et.al,Investigative Ophthalmology & Visual Science.(2002)43(7),p.2301-2308;Carmen,S.et.al.,Briefings in Functional Genomics and Proteomics(2002),1(2),p.189-203;Siriwardena,D.et.al.,Ophthalmology(2002)109(3),p.427-431等)。 例如,可使用將人類抗體之可變區作為單鏈抗體(scFv)而使於噬菌體表面表現,而選擇與抗原結合的噬菌體的噬菌體顯示法(Nature Biotechnology(2005),23,(9),p.1105-1116)。 藉由解析與抗原結合而選擇的噬菌體之基因,可決定編碼與抗原結合的人類抗體之可變區的DNA序列。 若與抗原結合的scFv之DNA序列係清楚的,則可藉由製作具有該序列的表現載體,導入於適當宿主並使表現,而取得人類抗體(國際公開第92/01047號、國際公開第92/20791號、國際公開第93/06213號、國際公開第93/11236號、國際公開第93/19172號、國際公開第95/01438號、國際公開第95/15388號;Annu.Rev.Immunol(1994)12,p.433-455;Nature Biotechnology (2005)23(9),p.1105-1116)。 新製作的人類抗體若與TINA1抗體之結合的部分胜肽或部分立體結構結合,則可判定該人類抗體結合於與TINA1抗體相同之抗原決定位。又,藉由確認相對於TINA1抗體之對TROP2的結合,該人類抗體為競爭(即,該人類抗體會妨礙TINA1抗體與TROP2之結合),即使具體的抗原決定位之序列或結構未被決定,可判定該人類抗體結合於與TINA1抗體相同之抗原決定位。確認抗原決定位係相同的情形,該人類抗體被強烈地期待具有與TINA1抗體同等之生物活性。 藉由以上方法所獲得的嵌合抗體、人類化抗體、或人類抗體係可藉由周知方法等而評價對抗原的結合性,而選出適合的抗體。
就比較抗體性質之際之其他指標之一例而言,可列舉抗體之安定性。示差掃描熱析儀(DSC)係可快速又正確地測量成為蛋白質之相對的結構安定性之良好指標的熱變性中點(Tm)的裝置。使用DSC而測量Tm値,藉由比較其値,可比較熱安定性之不同。已知抗體之保存安定性呈現與抗體之熱安定性有某程度之相關(Lori Burton,et.al.,Pharmaceutical Development and Technology(2007)12,p.265-273),將熱安定性作為指標,可選擇適合的抗體。就用以選擇抗體的其他指標而言,可列舉適當宿主細胞中的產量為高的、及水溶液中之凝集性為低的。例如,產量之最高抗體不僅呈現最高熱安定性,基於以上所述指標而綜合地判斷,有必要選出最適合對人類投予之抗體。
本發明之抗體亦包含抗體之修飾體。該修飾體係意指對本發明之抗體施予化學或生物學的修飾者。化學的修飾體係包含包含對胺基酸骨架之化學部分之鍵結、N-鍵結或O-鍵結碳水化物鏈之化學修飾體等。生物學的修飾體包含經轉譯後修飾(例如,對N-鍵結或O-鍵結之糖鏈附加、N末端或C末端之加工、脱醯胺化、天冬胺酸之異構物化、甲硫胺酸之氧化)者、藉由使用原核生物宿主細胞而使表現,而於N末端附加甲硫胺酸殘基者。又,為了可進行本發明之抗體或抗原之檢測或單離而被標識者,例如,酵素標識體、螢光標識體、親和性標識體亦包含於該修飾物之意義。如此本發明之抗體之修飾物係有用於抗體之安定性及血中滯留性之改善、抗原性之減輕、抗體或抗原之檢出或單離等。
又,藉由調節與本發明之抗體結合的糖鏈修飾(糖苷基(glycosyl)化、脱岩藻糖(fucose)化等),可增強抗體依賴性細胞傷害活性。就抗體之糖鏈修飾之調節技術而言,已知國際公開第1999/54342號、國際公開第2000/61739號、國際公開第2002/31140號等,但未限定於此等。本發明之抗體亦包含於該糖鏈修飾被調節的抗體。 一旦單離抗體基因後,導入適當宿主而製作抗體的情形,可使用適當宿主與表現載體之組合。就抗體基因之具體例而言,可列舉將編碼本說明書記載的抗體之重鏈序列的基因、及編碼輕鏈序列的基因加以組合者。將宿主細胞轉形之際,重鏈序列基因與輕鏈序列基因係可能被插入相同表現載體者,又亦可能被插入不同表現載體。 將真核細胞作為宿主使用的情形,可使用動物細胞、植物細胞、或真核微生物。尤其就動物細胞而言,可列舉哺乳類細胞,例如,為猴細胞的COS細胞(Gluzman,Y.Cell(1981)23,p.175-182、ATCC CRL-1650)、小鼠纖維母細胞NIH3T3(ATCC No.CRL-1658)或中國倉鼠卵巢細胞(CHO細胞,ATCC CCL-61)之二氫葉酸還原酵素缺損株(Urlaub,G.and Chasin,L.A.Proc.Natl.Acad.Sci.U.S.A.(1980)77, p.4126-4220)。 使用原核細胞的情形,例如,可列舉大腸桿菌、枯草桿菌。 由轉形而於此等之細胞中導入抗體基因,藉由將經轉形的細胞於活體外培養,可獲得抗體。於該培養,依抗體之序列而有產量不同的情形,自具有同等結合活性的抗體之中,以產量作為指標而可選出容易作為醫藥生產者。據此,本發明之抗體亦包含藉由下列抗體之製造方法所獲得的抗體,該方法之特徵為包含:培養上述經轉形的宿主細胞的步驟、及自該步驟所獲得的培養物採取目的抗體或該抗體之機能性片段的步驟。
又,已知哺乳類培養細胞所生產的抗體之重鏈之羧基末端的離胺酸殘基為缺失(Journal of Chromatography A,705:129-134(1995)),又,已知相同重鏈羧基末端之甘胺酸、離胺酸之2個胺基酸殘基為缺失,位於新的羧基末端的脯胺酸殘基經醯胺化(Analytical Biochemistry,360:75-83(2007))。然而,此等重鏈序列之缺失及修飾對於抗體之抗原結合能力及效應子機能(補體之活性化或抗體依賴性細胞毒性作用等)並無影響。據此,本發明之抗體亦包含受該修飾的抗體及該抗體之機能性片段,亦包含於重鏈羧基末端有1或2個之胺基酸被刪除的缺失體、及經醯胺化的該欠缺體(例如,羧基末端部位之脯胺酸殘基經醯胺化的重鏈)等。惟,只要保有抗原結合能力及效應子機能,本發明之抗體之重鏈之羧基末端的欠缺體並未限於上述之種類。構成本發明之抗體的2股重鏈可為選自包含完全長度及上述之缺失體之群組的重鏈之任一種,亦可組合任二種。各欠缺體之量比可受產生本發明之抗體的哺乳類培養細胞之種類及培養條件的影響,但就本發明之抗體之主成分而言,可列舉於2股重鏈之雙方,羧基末端之一個之胺基酸殘基有缺失的情形。
就本發明之抗體之同型而言,例如,可列舉IgG(IgG1、IgG2、IgG3、IgG4)等,但較佳可列舉IgG1或IgG2。
就抗體之生物活性而言,一般可列舉抗原結合活性、藉由與抗原結合而表現該抗原的細胞中內在化的活性、中和抗原之活性的活性、增強抗原活性的活性、抗體依賴性細胞傷害(ADCC)活性、補體依賴性細胞傷害(CDC)活性及抗體依賴性細胞媒介吞噬作用(ADCP),但本發明之抗體所具有的機能為對TROP2的結合活性,較佳為藉由與TROP2結合而於TROP2表現細胞中內在化的活性。再者,本發明之抗體除了細胞內在化活性之外,亦可兼具ADCC活性、CDC活性及/或ADCP活性。
獲得的抗體可純化至均一。抗體之分離、純化只要使用通常之蛋白質所使用的分離、純化方法即可。例如,適宜選擇管柱層析、過濾器過濾、超過濾、鹽析、透析、調製用聚丙烯醯胺膠體電泳、等電點電泳等並加以組合,即可將抗體分離、純化(Strategies for Protein Purification and Characterization:A Laboratory Course Manual,Daniel R.Marshak et al.eds.,Cold Spring Harbor Laboratory Press(1996);Antibodies:A Laboratory Manual.Ed Harlow and David Lane,Cold Spring Harbor Laboratory(1988)),但未限定於此等。 就層析而言,可列舉親和性層析、離子交換層析、疏水性層析、膠體過濾層析、逆相層析、吸附層析等。 此等之層析係可使用HPLC或FPLC等之液相層析來進行。 就用於親和性層析所使用的管柱而言,可列舉蛋白質A管柱、Protein G管柱。例如,就使用蛋白質A管柱的管柱而言,可列舉Hyper D,POROS,Sepharose F.F.(Pharmacia)等。 又使用將抗原固定化的載體,利用對抗原之結合性而純化抗體亦為可能的。
[抗腫瘤性化合物] 茲述與本發明之抗TROP2抗體-藥物結合物結合的抗腫瘤性化合物。就本發明所使用的抗腫瘤性化合物而言,為具有抗腫瘤效果的化合物,只要可與連接物結構結合的取代基、具有部分結構者即可,並未特別限制。抗腫瘤性化合物係連接物之一部份或全部於腫瘤細胞內被切斷而抗腫瘤性化合物部分游離而表現抗腫瘤效果。若連接物與藥物結合部分被切斷,則抗腫瘤性化合物以未修飾的結構游離,而其本來之抗腫瘤效果被發揮。 就本發明所使用的抗腫瘤性化合物而言,較佳可使用為喜樹鹼衍生物的依喜替康((1S,9S)-1-胺基-9-乙基-5-氟-2,3-二氫-9-羥基-4-甲基-1H,12H-苯并[de]哌喃并[3',4':6,7]吲并[1,2-b]喹啉-10,13(9H,15H)-二酮;下式:)
此依喜替康雖係具有優異的抗腫瘤活性,但迄今尚未作為抗腫瘤藥被市售。相同化合物可以周知方法容易地取得,可適合使用作為第1位之胺基對連接物結構之結合部位。又,依喜替康亦有以連接物之一部份結合的狀態下於腫瘤細胞內游離的情形,但即使為如此結構亦為發揮優異抗腫瘤效果的優異化合物。 依喜替康因具有喜樹鹼結構的緣故,於酸性水性媒體中(例如,pH3左右)平衡偏向有內酯環形成的結構(閉環體),另一方面,於鹼性水性媒體中(例如,pH10左右)平衡偏向內酯環為開環的結構(開環體)為已知。導入對應如此閉環結構及開環結構的依喜替康殘基的藥物結合物亦被期待有同等之抗腫瘤效果,不用說,任一者之狀態亦被包含於本發明之範圍。
就其他之抗腫瘤性化合物而言,例如,可列舉阿黴素(Doxorubicin)、柔紅黴素(Daunorubicin)、絲裂黴素C(Mitomycin C)、博來黴素(Bleomycin)、環胞苷(Cyclocytidine)、長春新鹼(Vincristine)、長春鹼(Vinblastine)、甲氨蝶呤(Methotrexate)、白金系抗腫瘤劑(順鉑(Cisplatin)或其衍生物)、塔克素(Taxol)或其衍生物、其他之喜樹鹼或其衍生物(特開平6-87746號公報記載的抗腫瘤劑)等。
於抗體-藥物結合物,對抗體1分子之藥物之結合數係影響其有效性、安全性的重要因子。抗體-藥物結合物之製造係藥物之結合數成為常數的方式,規定使反應的原料・試藥之使用量等之反應條件而實施,但低分子化合物之化學反應與抗體-藥物結合物不同,抗體-藥物結合物通常為呈相異數目的藥物結合之混合物而獲得。對抗體1分子之藥物結合數係標記平均値,即,被特定為平均藥物結合數。除非另有指定,本發明原則上,亦即,除了表示具有不同藥物結合數的抗體-藥物結合物混合物中所含之具有特定藥物結合數的抗體-藥物結合物的情形以外,藥物之結合數係意指平均値。依喜替康對抗體分子之結合數係可控制,就每1抗體之藥物平均結合數而言,可使1至10個左右的依喜替康結合,但較佳為2至8個,更佳為3至8個。又,若為本項技術領域者,由本案實施例之記載,可設計使於抗體結合必要數目的藥物的反應,可取得控制依喜替康之結合數的抗體-藥物結合物。
[連接物結構] 茲描述於本發明之抗TROP2抗體-藥物結合物中,抗腫瘤性化合物與抗TROP2抗體結合的連接物結構。該連接物係具有下式之結構: -L 1-L 2-L P-NH-(CH 2)n 1-L a-(CH 2)n 2-C(=O)- 抗體係以L 1之末端(與L 2結合的相反側的末端)結合,抗腫瘤性化合物係於-L a-(CH 2)n 2-C(=O)-部分之羰基加以結合。 n 1表示0至6之整數,但較佳為1至5之整數,更佳為1至3。
1.L 1L 1係-(琥珀醯亞胺-3-基-N)-(CH 2)n 3-C(=O)-之結構所示者。 其中,n 3係2至8之整數,『-(琥珀醯亞胺-3-基-N)-』係具有下式所示的結構。
此部分結構中的第3位係對抗TROP2抗體之結合部位。於此第3位之與該抗體之結合,其特徵為形成硫醚而鍵結。此結構部分之第1位之氮原子係與此結構所含的連接物內存在的亞甲基之碳原子結合。即,-(琥珀醯亞胺-3-基-N)-(CH 2)n 3-C(=O)-L 2-係下式所示的結構(其中,「抗體-S-」係來自抗體)。
式中,n 3係2至8之整數,但較佳為2至5。
就L 1之具體例而言,可列舉 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2-C(=O)-、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2-C(=O)-、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-等。
2.L 2L 2係-NH-(CH 2CH 2-O)n 4-CH 2CH 2-C(=O)-所示的結構,但L 2可不存在,此情形L 2成為單鍵。又,n 4係1至6之整數,較佳為2至4。L 2係以末端之胺基與L 1結合,以相反的末端之羰基與L P結合。
就L 2之具體例而言,可列舉: -NH-CH 2CH 2-O-CH 2CH 2-C(=O)-、 -NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-、 -NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-、 -NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-、 -NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-、 -NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-等。
3.L PL P係以2至7個之胺基酸所構成的胜肽殘基。即,2至7個之胺基酸藉由胜肽鍵結的寡胜肽之殘基而構成。L P係於N末端與L 2結合,於C末端與連接物之-NH-(CH 2)n 1-L a-(CH 2)n 2-C(=O)-部分之胺基結合。
構成L P的胺基酸並未特別限定,例如,L-或D-胺基酸,較佳為L-胺基酸。又,α-胺基酸之外,可為β-丙胺酸、ε-胺基己酸、γ-胺基丁酸等之結構之胺基酸,又例如,可為經N-甲基化的胺基酸等之非天然型之胺基酸。 L P之胺基酸序列並未特別限定,但就構成的胺基酸而言,可列舉苯丙胺酸(Phe;F)、酪胺酸(Tyr;Y)、白胺酸(Leu;L)、甘胺酸(Gly;G)、丙胺酸(Ala;A)、纈胺酸(Val;V)、離胺酸(Lys;K)、瓜胺酸(Cit)、絲胺酸(Ser;S)、麩胺酸(Glu;E)、天冬胺酸(Asp;D)等。 此等中較佳為苯丙胺酸、甘胺酸、纈胺酸、離胺酸、瓜胺酸、絲胺酸、麩胺酸、天冬胺酸。依胺基酸之種類,可控制藥物游離之樣式。胺基酸之數目可為2至7個。
就L P之具體例而言,可列舉: -GGF-、 -DGGF-、 -(D-)D-GGF-、 -EGGF-、 -GGFG-、 -SGGF-、 -KGGF-、 -DGGFG-、 -GGFGG-、 -DDGGFG-、 -KDGGFG-、 -GGFGGGF-。 上述之『(D-)D』係意指D-天冬胺酸。就本發明之抗體-藥物結合物之特佳L P而言,可列舉-GGFG-之四胜肽殘基。
4.L a-(CH 2)n 2-C(=O)- L a-(CH 2)n 2-C(=O)-中的L a係-O-之結構、或為單鍵。n 2係0至5之整數,但較佳為0至3,更佳為0或1。 就L a-(CH 2)n 2-C(=O)-而言,可列舉以下之結構者。 -O-CH 2-C(=O)-、 -O-CH 2CH 2-C(=O)-、 -O-CH 2CH 2CH 2-C(=O)-、 -O-CH 2CH 2CH 2CH 2-C(=O)-、 -O-CH 2CH 2CH 2CH 2CH 2-C(=O)-、 -CH 2-C(=O)-、 -CH 2CH 2-C(=O)-、 -CH 2CH 2CH 2-C(=O)-、 -CH 2CH 2CH 2CH 2-C(=O)-、 -CH 2CH 2CH 2CH 2CH 2-C(=O)-。 此等中,-O-CH 2-C(=O)-、-O-CH 2CH 2-C(=O)-的情形,L a係單鍵且n 2為0的情形較佳。
就連接物之-NH-(CH 2)n 1-L a-(CH 2)n 2-C(=O)-所示的結構之具體例而言,可列舉: -NH-CH 2-C(=O)-、 -NH-CH 2CH 2-C(=O)-、 -NH-CH 2-O-CH 2-C(=O)-、 -NH-CH 2CH 2-O-C(=O)-、 -NH-CH 2CH 2-O-CH 2-C(=O)-、 -NH-CH 2CH 2CH 2-C(=O)-、 -NH-CH 2CH 2CH 2CH 2-C(=O)-、 -NH-CH 2CH 2CH 2CH 2CH 2-C(=O)-等。
更佳為-NH-CH 2CH 2CH 2-C(=O)-、-NH-CH 2-O-CH 2-C(=O)-、-NH-CH 2CH 2-O-C(=O)-。
連接物之-NH-(CH 2)n 1-L a-(CH 2)n 2-C(=O)-係鏈長為4至7個原子之鏈長者為較佳,但更佳為具有5或6個原子之鏈長。
一般認為本發明之抗TROP2抗體-藥物結合物係移動至腫瘤細胞內後,連接物部分被切斷,NH 2-(CH 2)n 1-L a-(CH 2)n 2-C(=O)-(NH-DX)所示的結構之藥物衍生物會游離而表現抗腫瘤作用。就自本發明之抗體-藥物結合物游離而表現抗腫瘤效果的抗腫瘤性衍生物而言,可列舉具有先前舉例的連接物之-NH-(CH 2)n 1-L a-(CH 2)n 2-C(=O)-所示的結構之末端成為胺基的結構部分的抗腫瘤性衍生物,但特佳者如下列所示。 NH 2-CH 2CH 2-C(=O)-(NH-DX)、 NH 2-CH 2CH 2CH 2-C(=O)-(NH-DX)、 NH 2-CH 2-O-CH 2-C(=O)-(NH-DX)、 NH 2-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)。 又,NH 2-CH 2-O-CH 2-C(=O)-(NH-DX)之情形,因於相同分子內具有的胺縮醛結構為不安定,進一步自體分解而有HO-CH 2-C(=O)-(NH-DX)游離者被確認。此等化合物亦可較佳使用作為本發明之抗體-藥物結合物之製造中間體。
於藥物作為依喜替康的本發明之抗體-藥物結合物,使下述結構之藥物-連接物結構部分[-L 1-L 2-L P-NH-(CH 2)n 1-L a-(CH 2)n 2-C(=O)-(NH-DX)]與抗體結合者為較佳。此等之藥物-連接物結構部分係就每1抗體之平均結合數而言,只要使1至10個結合者即可,但較佳為2至8,更佳為3至8。 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)。 此等中更佳為下列各者。 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)。 又較佳為下列各者。 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)。
於本發明之抗體-藥物結合物中,結合抗TROP2抗體與藥物的連接物結構係以結合迄今所述的連接物各部分中所示的較佳結構者,而可構築較佳連接物。就如此連結物結構而言,可較佳使用以下結構者。又結構之左端係與抗體之結合部位,右端為與藥物之結合部位。 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2CH 2CH 2-C(=O)-、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-。 此等中更佳為下列各者。 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-。 再者,較佳可列舉下列各者。 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-、 -(琥珀醯亞胺-3-基-N)-CH 2CH 2-C(=O)-NH-CH 2CH 2O-CH 2CH 2O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-。
[製造方法] 其次,說明本發明之抗體-藥物結合物或其製造中間體之代表性製造方法。又,於以下,為了表示化合物,使用各反應式中所示的化合物之編號。即,稱為『式(1)之化合物』、『化合物(1)』等。又除此以外之編號之化合物亦同樣記載。
1.製造方法1 式(1)所示之藉由硫醚而抗體與藥物-連接物結構結合的抗體-藥物結合物係例如,可藉由下述之方法而製造。
[式中,AB表示具有氫硫基的抗體,L 1,係於L 1所示的連接物結構,連接物末端為順丁烯二醯亞胺基(下式)的結構:
(其中,氮原子成為結合部位),具體而言,於L 1中之-(琥珀醯亞胺-3-基-N)-(CH 2)n 3-C(=O)-,-(琥珀醯亞胺-3-基-N)-部分係表示成為順丁烯二醯亞胺基的基。又,-(NH-DX)係下式所示的結構:
表示依喜替康之第1位胺基之氫原子1個被去除而生成的基]。
又,於上述之反應式,式(1)之化合物係可被解釋為自藥物至連接物末端之結構部分1個對1個抗體結合的結構,但此係用於方便說明的記載,實際上多為該結構部分對抗體分子1個係結合複數個的情形。此狀況於以下之製造方法之說明亦為相同。
藉由使經由後述方法可取得的化合物(2)與具有氫硫基的抗體(3a)反應,可製造抗體-藥物結合物(1)。 具有氫硫基的抗體(3a)係可以本項技術領域者周知之方法而獲得(Hermanson, G.T, Bioconjugate Techniques, pp.56-136, pp.456-493, Academic Press(1996))。例如,使Traut’s試藥對抗體之胺基作用;使N-琥珀醯亞胺基S-乙醯基硫烷酸酯類對抗體之胺基作用後,使羥基胺作用;使N-琥珀醯亞胺基3-(吡啶二硫基)丙酸酯作用後,使還原劑作用;使二硫蘇糖醇、2-巰基乙醇、參(2-羧基乙基)膦鹽酸鹽(TCEP)等之還原劑對抗體作用而將抗體內鉸鏈區之雙硫鍵還原而使氫硫基生成等之方法,但未限定於此等。 具體而言,TCEP作為還原劑,對抗體內鉸鏈區雙硫鍵每1個使用0.3至3莫耳當量,於含螯合劑的緩衝液中,使與抗體反應,而可獲得抗體內鉸鏈區雙硫鍵被部分或完全還原的抗體。就螯合劑而言,例如,可列舉乙二胺四乙酸(EDTA)或二乙三胺5乙酸(DTPA)等。此等以1mM至20mM之濃度使用為宜。就緩衝液而言,可使用磷酸鈉或硼酸鈉、乙酸鈉溶液等。具體而言,抗體係於4℃至37℃使與TCEP反應1至4小時,而可獲得具有部分或完全被還原的氫硫基的抗體(3a)。 其中藉由實施使氫硫基附加於藥物-連接物部分的反應,可藉由硫醚鍵而使藥物-連接物部分結合。 具有氫硫基的抗體(3a)每1個,使用2至20莫耳當量之化合物(2),可製造抗體每1個有2個至8個之藥物結合的抗體-藥物結合物(1)。具體而言,於含有具氫硫基的抗體(3a)的緩衝液中,添加使化合物(2)溶解的溶液而使反應為宜。其中,就緩衝液而言,使用乙酸鈉溶液、磷酸鈉或硼酸鈉等為宜。反應時之pH係5至9,更佳為於pH7左右使反應為宜。就使化合物(2)溶解的溶媒而言,可使用二甲基亞碸(DMSO)、二甲基甲醯胺(DMF)、二甲基乙醯胺(DMA)、N-甲基-2-吡啶酮(NMP)等之有機溶媒。 將使化合物(2)溶解的有機溶媒溶液以1至20%v/v添加於含有具氫硫基的抗體(3a)的緩衝液中而使反應為宜。反應溫度係0至37℃,較佳為10至25℃,反應時間係0.5至2小時。反應係未反應之化合物(2)之反應性藉由含有硫醇的試藥而使失活,可結束反應。含有硫醇之試藥係例如,半胱胺酸或N-乙醯基-L-半胱胺酸(NAC)。更具體而言,相對於使用的化合物(2),添加1至2莫耳量之NAC,並藉由於室溫培育10至30分鐘,可結束反應。 製造的抗體-藥物結合物(1)係藉由如以下之共通操作而進行濃縮、緩衝液交換、純化、抗體濃度及抗體每一分子之藥物平均結合數之測定,可進行抗體-藥物結合物(1)之鑑定。
共通操作A:抗體或抗體-藥物結合物水溶液之濃縮 於Amicon Ultra(50,000 MWCO,Millipore Corporation)之容器內置入抗體或抗體-藥物結合物溶液,以使用離心機(Allegra X-15R,Beckman Coulter,nc.)的離心操作(於2000G至3800G離心5至20分鐘),將抗體或抗體-藥物結合物溶液濃縮。 共通操作B:抗體之濃度測定 使用UV測定器(Nanodrop 1000,Thermo Fisher Scientific Inc.),依據製造商規定之方法,進行抗體濃度之測定。此時,各抗體使用相異的280nm吸光係數(1.3mLmg -1cm -1至1.8mLmg -1cm -1)。 共通操作C-1:抗體之緩衝液交換 將使用Sephadex G-25擔體的NAP-25管柱(Cat.No.17-0852-02,GE Healthcare Japan Corporation),依據製造商規定之方法,以含氯化鈉(137mM)及乙二胺四乙酸(EDTA,5mM)的磷酸緩衝液(10mM,pH6.0;本說明書中稱為PBS6.0/EDTA)使平衡化。對此NAP-25管柱每一根,放置抗體水溶液2.5mL後,分取以PBS6.0/EDTA3.5mL溶出的劃分(3.5mL)。此劃分藉由共通操作A而濃縮,使用共通操作B而進行抗體濃度之測定後,使用PBS6.0/EDTA而調整抗體濃度為10mg/mL。 共通操作C-2:抗體之緩衝液交換 將使用Sephadex G-25擔體的NAP-25管柱(Cat.No.17-0852-02,GE Healthcare Japan Corporation)依據製造商之規定,以含氯化鈉(50mM)及EDTA(2mM)的磷酸緩衝液(50mM,pH6.5;本說明書中稱為PBS6.5/EDTA)使平衡化。對此NAP-25管柱每一根,放置抗體水溶液2.5mL後,分取以PBS6.5/EDTA3.5mL溶出的劃分(3.5mL)。此劃分藉由共通操作A而濃縮,使用共通操作B而進行抗體濃度之測定後,使用PBS6.5/EDTA將抗體濃度調整為20mg/mL。 共通操作D:抗體-藥物結合物之純化 以市售之磷酸緩衝液(PBS7.4,Cat.No.10010-023,Invitrogen)、含氯化鈉(137mM)的磷酸鈉緩衝液(10mM,pH6.0;本說明書中稱為PBS6.0)或含山梨糖醇(5%)的乙酸緩衝液(10mM,pH5.5;本說明書中稱為ABS)之任一種緩衝液使NAP-25管柱平衡化。於此NAP-25管柱中置入抗體-藥物結合物反應水溶液(約1.5mL),以製造商規定量之緩衝液使溶出,分取抗體劃分。將此分取劃分再次置入NAP-25管柱,以緩衝液使溶出的膠體過濾純化操作重複進行共計2至3次,獲得去除未結合之藥物連接物、低分子化合物(參(2-羧基乙基)膦鹽酸鹽(TCEP)、N-乙醯基-L-半胱胺酸(NAC)、二甲基亞碸)的抗體-藥物結合物。 共通操作E:抗體-藥物結合物中的抗體濃度及抗體每一分子之藥物平均結合數之測定(1) 抗體-藥物結合物中的結合藥物濃度係可藉由測定抗體-藥物結合物水溶液之280nm及370nm之二波長中的UV吸光度後,進行下述之計算而算出。 因某波長中的全吸光度係相等於系統內存在的全部吸收化學物種之吸光度之和(吸光度之加成性),故於抗體與藥物之結合前後,假設抗體及藥物之莫耳吸光係數未變化時,抗體-藥物結合物中的抗體濃度及藥物濃度係如下述之關係式所示。 A 280=A D,280+A A,280=ε D,280C DA,280C A式(I) A 370=A D,370+A A,370=ε D,370C DA,370C A式(II) 其中,A 280表示280nm中的抗體-藥物結合物水溶液之吸光度,A 370表示370nm中的抗體-藥物結合物水溶液之吸光度,A A,280表示280nm中的抗體之吸光度,A A,370表示370nm中的抗體之吸光度,A D,280表示280nm中的結合物前驅物之吸光度,A D,370表示370nm中的結合物前驅物之吸光度,ε A,280表示280nm中的抗體之莫耳吸光係數,ε A,370表示370nm中的抗體之莫耳吸光係數,ε D,280表示280nm中的結合物前驅物之莫耳吸光係數,ε D,370表示370nm中的結合物前驅物之莫耳吸光係數,C A表示抗體-藥物結合物中的抗體濃度,C D表示抗體-藥物結合物中的藥物濃度。 其中,ε A,280、ε A,370、ε D,280、ε D,370係被用於事先準備的値(計算推定値或由化合物之UV測定所獲得的實測値)。例如,ε A,280係自抗體之胺基酸序列,藉由已知之計算方法(Protein Science, 1995, vol.4, 2411-2423)可加以推定。ε A,370係通常為零。ε D,280及ε D,370係可藉由測定使用的結合物前驅物溶解於某莫耳濃度的溶液之吸光度,藉由朗伯-比爾定律(Lambert-Beer law)(吸光度=莫耳濃度×莫耳吸光係數×胞光徑長)而獲得。測定抗體-藥物結合物水溶液之A 280及A 370,藉由將此等之値代入式(I)及(II)而解出連立方程式,可求得C A及C D。再者,藉由以C A除C D,可求得每1抗體之藥物平均結合數。
共通操作F:抗體-藥物結合物中的抗體每一分子之藥物平均結合數之測定(2) 抗體-藥物結合物中的抗體每一分子之藥物平均結合數係除了前述之共通操作E之外,亦可藉由使用以下之方法的高速液體層析(HPLC)分析而求得。 [F-1.HPLC分析用樣品之調製(抗體-藥物結合物之還原)] 將抗體-藥物結合物溶液(約1mg/mL、60μL)與二硫蘇糖醇(DTT)水溶液(100mM、15μL)混合。將混合物於37℃培育30分鐘,將切斷抗體-藥物結合物之L鏈及H鏈間的雙硫鍵的樣品用於HPLC分析。 [F-2.HPLC分析] HPLC分析以下述之測定條件進行。 HPLC系統:Agilent 1290 HPLC系統(Agilent Technologies) 檢測器:紫外吸光度計(測定波長:280nm) 管柱:PLRP-S(2.1×50mm、8μm、1000Å;Agilent Technologies、P/N PL1912-1802) 管柱溫度:80℃ 移動相A:0.04%三氟乙酸(TFA)水溶液 移動相B:含0.04%TFA的乙腈溶液 梯度程式:29%-36%(0分鐘-12.5分鐘)、36%-42%(12.5-15分鐘)、42%-29%(15分鐘-15.1分鐘)、29%-29%(15.1分鐘-25分鐘) 樣品注入量:15μL [F-3.資料解析] 〔F-3-1〕相對於未結合藥物之抗體之L鏈(L 0)及H鏈(H 0),藥物結合的L鏈(藥物為一個結合的L鏈:L 1)及H鏈(藥物為一個結合的H鏈:H 1、藥物為二個結合的H鏈:H 2、藥物為三個結合的H鏈:H 3)係與結合的藥物數成比例地疏水性增加而保持時間變大,故以L 0、L 1、H 0、H 1、H 2、H 3之順序被溶出。藉由L 0及H 0之保持時間比較,檢出波峰可被分配於L 0、L 1、H 0、H 1、H 2、H 3之任一者。 〔F-3-2〕因於藥物連接物有UV吸收,因應藥物連接物之結合數,使用L鏈、H鏈及藥物連接物之莫耳吸光係數而依據下式進行波峰面積値之補正。
其中,各抗體中的L鏈及H鏈之莫耳吸光係數(280nm)係可藉由已知之計算方法(Protein Science, 1995, vol.4, 2411-2423),使用自各抗體之L鏈及H鏈之胺基酸序列所推定的値。hTINA之情形,依據其胺基酸序列,作為L鏈之莫耳吸光係數,使用34690作為推定値,作為H鏈之莫耳吸光係數,使用95000作為推定値。又,藥物連接物之莫耳吸光係數(280nm)係使用使各藥物連接物以巰基乙醇或N-乙醯基半胱胺酸反應,將順丁烯二醯亞胺基變換為琥珀醯亞胺硫醚的化合物之實測之莫耳吸光係數(280nm)。 〔F-3-3〕依據下式計算相對於波峰面積補正値合計之各鏈波峰面積比(%)。
〔F-3-4〕依據下式計算抗體-藥物結合物中的抗體每一分子之藥物平均結合數。 藥物平均結合數=(L 0波峰面積比×0+L 0波峰面積比×1+H 0波峰面積比×0+H 1波峰面積比×1+H 2波峰面積比×2+H 3波峰面積比×3)/100×2
製造方法1中的式(2)所示的化合物係下式所示的化合物: (順丁烯二醯亞胺-N-基)-(CH 2)n 3-C(=O)-L 2-L P-NH-(CH 2)n 1-L a-(CH 2)n 2-C(=O)-(NH-DX)。 式中, n 3表示整數之2至8, L 2表示-NH-(CH 2CH 2-O)n 4-CH 2CH 2-C(=O)-或單鍵, 其中,n 4表示1至6之整數, L P表示選自苯丙胺酸、甘胺酸、纈胺酸、離胺酸、瓜胺酸、絲胺酸、麩胺酸、天冬胺酸之2至7個之胺基酸所構成的胜肽殘基, n 1表示0至6之整數, n 2表示0至5之整數, L a表示-O-或單鍵, (順丁烯二醯亞胺-N-基)-係下式所示的順丁烯二醯亞胺基(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl基),氮原子係成為結合部位的基,
-(NH-DX)係下式
所示的第1位之胺基之氮原子成為結合部位的基。
L 2係單鍵,或為-NH-(CH 2CH 2-O)n 4-CH 2CH 2-C(=O)-的情形,n 4為整數之2至4者作為製造中間體較佳。 就L P之胜肽殘基而言,選自包含苯丙胺酸、甘胺酸、纈胺酸、離胺酸、瓜胺酸、絲胺酸、麩胺酸、天冬胺酸之胺基酸的胜肽殘基的化合物作為製造中間體為較佳。如此胜肽殘基中,L P係4個之胺基酸所構成的胜肽殘基的化合物作為製造中間體為較佳。更具體而言,L P係-GGFG-之四胜肽殘基的化合物作為製造中間體為較佳。
又,就-NH-(CH 2)n 1-L a-(CH 2)n 2-而言,-NH-CH 2CH 2-、-NH-CH 2CH 2CH 2-、-NH-CH 2CH 2CH 2CH 2-、-NH-CH 2CH 2CH 2CH 2CH 2-、-NH-CH 2-O-CH 2-、或-NH-CH 2CH 2-O-CH 2-的化合物作為製造中間體為較佳,更佳為-NH-CH 2CH 2CH 2-、-NH-CH 2-O-CH 2-、或-NH-CH 2CH 2-O-CH 2的化合物。
再者,式(2)所示的化合物係n 3為整數之2至5,L 2為單鍵,-NH-(CH 2)n 1-L a-(CH 2)n 2-係-NH-CH 2CH 2-、-NH-CH 2CH 2CH 2-、-NH-CH 2CH 2CH 2CH 2-、-NH-CH 2CH 2CH 2CH 2CH 2-、-NH-CH 2-O-CH 2-、或-NH-CH 2CH 2-O-CH 2-的化合物作為製造中間體為較佳。更佳為-NH-(CH 2)n 1-L a-(CH 2)n 2-為-NH-CH 2CH 2-、-NH-CH 2CH 2CH 2-、-NH-CH 2-O-CH 2-、或-NH-CH 2CH 2-O-CH 2-的化合物。再者,n 3為整數之2或5的化合物為較佳。
又,式(2)所示的化合物係n 3為整數之2至5,L 2為-NH-(CH 2CH 2-O)n 4-CH 2CH 2-C(=O)-,n 4為整數之2至4,-NH-(CH 2)n 1-L a-(CH 2)n 2-係-NH-CH 2CH 2-、-NH-CH 2CH 2CH 2-、-NH-CH 2CH 2CH 2CH 2-、-NH-CH 2CH 2CH 2CH 2CH 2-、-NH-CH 2-O-CH 2-、或-NH-CH 2CH 2-O-CH 2-的化合物作為製造中間體為較佳。更佳為n 4係整數之2或4之化合物。再者,-NH-(CH 2)n 1-L a-(CH 2)n 2-係-NH-CH 2CH 2CH 2-、-NH-CH 2-O-CH 2-、或-NH-CH 2CH 2-O-CH 2-的化合物為較佳。
就作為如此本發明化合物之製造上有用的中間體之較佳者可示例以下各者。 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)。
藉由使選自上述之製造中間體化合物之群組的藥物-連接物化合物,與抗TROP2抗體或其反應性衍生物反應,使於抗TROP2抗體之鉸鏈區存在的雙硫鍵部分形成硫醚鍵,而可製造本發明之抗TROP2抗體-藥物結合物。此情形,使用抗TROP2抗體之反應性衍生物為較佳,尤其將抗TROP2抗體還原處理而獲得的反應性衍生物為較佳。
以下各者為作為製造中間體之更佳化合物。 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)。
又,上述之中間體化合物群組中係下式所示的化合物為更佳化合物: (順丁烯二醯亞胺-N-基)-CH 2CH 2-C(=O)-NH-CH 2CH 2-O-CH 2CH 2-O-CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2CH 2-C(=O)-(NH-DX)、 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX)、或 (順丁烯二醯亞胺-N-基)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2CH 2-O-CH 2-C(=O)-(NH-DX)。
又,為了確保結合物之量,將於同樣條件所製作獲得的平均藥物數為相同程度之複數個結合物(例如,±1左右)混合而可作成新的批次。此情形,平均藥物數係收在混合前之平均藥物數之間。
2.製造方法2 先前之製造方法所使用的中間體的式(2)所示的化合物及彼等之藥理上可容許的鹽,例如,可藉由下述之方法而製造。
[式中,L 1,表示末端順丁烯二醯亞胺基,P 1、P 2及P 3表示保護基]。
將羧酸(5)誘導為活性酯、混合酸酐、或酸鹵化物等,於鹼存在下,藉由使與NH 2-DX(4)或其藥理上可容許的鹽反應,可製造化合物(6)。NH 2-DX(4)係表示依喜替康(化學名:(1S,9S)-1-胺基-9-乙基-5-氟-2,3-二氫-9-羥基-4-甲基-1H,12H-苯并[de]哌喃并[3',4':6,7]吲并[1,2-b]喹啉-10,13(9H,15H)-二酮)。 此反應係可適用胜肽合成通常使用的反應試藥或條件。活性酯係有各種者,例如,p-硝基酚等之酚類、N-羥基苯并三唑或N-羥基琥珀醯亞胺等與羧酸(5),使用N,N’-二環己基碳二亞胺或1-乙基-3-(3-二甲基胺基丙基)碳二亞胺・鹽酸鹽等之縮合劑而使反應即可製造。又,活性酯亦可藉由下列製造:羧酸(5)與五氟苯基三氟乙酸酯等之反應;羧酸(5)與1-苯并三唑基氧基三吡咯啶鏻六氟亞磷酸酯之反應;羧酸(5)與氰基磷酸二乙酯之反應(鹽溶法);羧酸(5)與三苯基膦及2,2’-二吡啶基二硫醚之反應(向山法);羧酸(5)與4-(4,6-二甲氧基-1,3,5-三-2-基)-4-甲基氯化嗎福啉(DMTMM)等之三衍生物之反應等。又,藉由羧酸(5)於鹼存在下,經由以氯化亞硫醯、草醯氯等之酸鹵化物處理而可加以製造的酸鹵化物法等,亦可進行反應。 將如上述獲得的羧酸(5)之活性酯、混合酸酐、或酸鹵化物,於化合物(4)與適當鹼存在下,藉由使於惰性溶媒中於-78℃~150℃之反應溫度下反應,可製造化合物(6)。又,「惰性溶媒」係意指於其溶媒被採用的反應中不阻礙為實施目的的反應的溶媒。
就上述之各步驟所使用的具體的鹼而言,例如,可列舉碳酸鈉、碳酸鉀、乙醇鈉、丁醇鉀、氫氧化鈉、氫氧化鉀、氫化鈉、氫化鉀等之鹼金屬或鹼土類金屬之碳酸鹽、烷氧化物、氫氧化物、或氫化物;n-丁基鋰等之烷基鋰、或鋰二異丙基醯胺之類的二烷基胺基鋰所代表的有機金屬鹼;鋰雙(三甲基矽烷基)醯胺等之雙矽烷基胺之有機金屬鹼;又可列舉吡啶、2,6-二甲吡啶、柯林鹼(collidine)、4-二甲基胺基吡啶、三乙基胺、N-甲基嗎福啉、二異丙基乙基胺、二氮雜環[5.4.0]十一-7-烯(DBU)等之三級胺或含氮雜環化合物等之有機鹼等。
就本反應所使用的惰性溶媒而言,可列舉二氯甲烷、氯仿、四氯化碳等之鹵化烴系溶媒;四氫呋喃、1,2-二甲氧基乙烷、二烷等之醚系溶媒;苯、甲苯等之芳香族烴系溶媒;N,N-二甲基甲醯胺、N,N-二甲基乙醯胺、N-甲基吡咯啶-2-酮等之醯胺系溶媒,除了此等之外,依情形亦可使用二甲基亞碸、環丁碸等之亞碸系溶媒;丙酮、甲基乙基酮等之酮系溶媒;甲醇、乙醇等之醇系之溶媒等。再者,亦可混合彼等而使用。
就化合物(6)之末端胺基之保護基P 1而言,可使用三級丁基氧基羰基、9-茀基甲基氧基羰基、苄基氧基羰基等之胜肽合成通常使用的胺基之保護基。就其他胺基之保護基而言,可列舉乙醯基等之烷醯基;甲氧基羰基、乙氧基羰基等之烷氧基羰基;對甲氧基苄基氧基羰基、對(或鄰)硝基苄基氧基羰基等之芳基甲氧基羰基;苄基、三苯基甲基等之芳基甲基;苄醯基等之芳醯基;2,4-二硝基苯磺醯基、鄰硝基苯磺醯基等之芳基磺醯基。保護基P 1可因應保護胺基的化合物之性質等而選擇為宜。 藉由使獲得的化合物(6)之末端胺基之保護基P 1脱保護,可製造化合物(7)。此脱保護係因應其保護基而選擇試藥、條件即可。 將N末端以P 2保護的胜肽羧酸(8)誘導為活性酯、混合酸酐等,藉由使與獲得的化合物(7)反應,可製造化合物(9)。形成胜肽羧酸(8)與化合物(7)之胜肽鍵的反應條件、試藥、鹼、及惰性溶媒,可適當選自化合物(6)之合成中所述者而使用即可。保護基P 2適當選自化合物(6)之保護基所述者而使用即可,可因應保護胺基的化合物之性質等加以選擇。又,如胜肽合成上通常使用者,重複將構成胜肽羧酸(8)的胺基酸或胜肽依序反應及脱保護而伸長,亦可製造化合物(9)。 藉由使獲得的化合物(9)之胺基之保護基P 2脱保護,可製造化合物(10)。此脱保護可因應其保護基而選擇試藥或條件。 將羧酸(11)誘導為活性酯、混合酸酐、或酸鹵化物等,藉由使獲得的化合物(10)反應,可製造化合物(2)。形成羧酸(11)與化合物(10)之胜肽鍵的反應條件或試藥、鹼、及不活性溶媒係可由化合物(6)之合成所述者加以適宜選擇而使用。
化合物(9)亦可以例如,下述之方法加以製造。 將N末端以P 2保護的胜肽羧酸(8)誘導為活性酯、混合酸酐等,於鹼存在下,藉由使與羧基以P 3保護的胺化合物(12)反應,可製造化合物(13)。形成胜肽羧酸(8)及化合物(12)之胜肽鍵的反應條件、試藥、鹼、及惰性溶媒係可由化合物(6)之合成所述者加以適宜選擇而使用。 化合物(13)之胺基之保護基P 2可以通常使用的保護基加以保護。 具體而言,就羥基之保護基而言,可列舉甲氧基甲基等之烷氧基甲基;苄基、4-甲氧基苄基、三苯基甲基等之芳基甲基;乙醯基等之烷醯基;苄醯基等之芳醯基;三級丁基二苯基矽烷基等之矽烷基等。羧基可作為與甲基、乙基、三級丁基等之烷基、烯丙基、或苄基等之芳基甲基之酯等而加以保護。胺基可列舉三級丁基氧基羰基、甲氧基羰基、乙氧基羰基等之烷基氧基羰基;烯丙基氧基羰基、或9-茀基甲基氧基羰基、苄基氧基羰基、對甲氧基苄基氧基羰基、對(或鄰)硝基苄基氧基羰基等之芳基甲氧基羰基;除此之外,可列舉乙醯基等之烷醯基;苄基、三苯基甲基等之芳基甲基;苄醯基等之芳醯基;2,4-二硝基苯磺醯基、鄰硝基苯磺醯基等之芳基磺醯基等。 就羧基之保護基P 3而言,可使用於有機合成化學中,通常使用作為於胜肽合成之羧基保護基的保護基,具體而言,為甲基、乙基、三級丁基等之烷基酯、烯丙基酯、苄基酯等,自上述之保護基加以適宜選擇而使用即可。於此情形,胺基之保護基與羧基之保護基以相異方法或條件可去除者為較佳。例如,可列舉P 2為三級丁基氧基羰基,P 3為苄基的組合等作為代表例。彼等之保護基係可因應保護胺基及羧基的化合物之性質等而自上述者加以選擇即可,將彼等之保護基切斷之際,可選擇因應其保護基的試藥或條件。 藉由使獲得的化合物(13)之羧基之保護基P 3脱保護,可製造化合物(14)。此脱保護係選擇因應其保護基的試藥或條件即可。 藉由將獲得的化合物(14)誘導為活性酯、混合酸酐、或酸鹵化物等,於鹼存在下,使與化合物(4)反應,可製造化合物(9)。此反應依據胜肽合成通常使用的反應試藥或條件即可,反應條件、試藥、鹼、及惰性溶媒係由化合物(6)之合成所述者加以適宜選擇而使用即可。
化合物(2)亦可以例如,下述之方法而製造。 藉由使化合物(13)之胺基之保護基P 2脱保護,可製造化合物(15)。此脱保護係可選擇因應其保護基的試藥或條件。 將羧酸衍生物(11)誘導為活性酯、混合酸酐、或酸鹵化物等,於鹼存在下,藉由使與獲得的化合物(15)反應,可製造化合物(16)。形成胜肽羧酸(11)與化合物(15)之醯胺鍵的反應條件、試藥、鹼、及惰性溶媒係可由化合物(6)之合成所述者加以適宜選擇而使用。 藉由使獲得的化合物(16)之羧基之保護基脱保護,可製造化合物(17)。此脱保護係可與化合物(14)之製造中的羧基之脱保護同樣地進行。 藉由將化合物(17)誘導為活性酯、混合酸酐、或酸鹵化物等,於鹼存在下,使與化合物(4)反應,可製造化合物(2)。此反應係可適用胜肽合成所通常使用的反應試藥、條件,反應條件、試藥、鹼、及惰性溶媒係自化合物(6)之合成所述者加以適宜選擇而使用。
3.製造方法3 中間體之式(2)所示的化合物係亦可依據下述之方法而製造。
[式中,L 1’係末端被變換為順丁烯二醯亞胺基的結構之L 1,P 4表示保護基]。
藉由將化合物(11)誘導為活性酯、混合酸酐等,於鹼存在下,使與C末端經P 4保護的胜肽羧酸(18)反應,可製造化合物(19)。形成胜肽羧酸(18)與化合物(11)之胜肽鍵的反應條件、試藥、鹼、及惰性溶媒係可由化合物(6)之合成所述者加以適宜選擇而使用。化合物(18)之羧基之保護基P 4係可由先前所述保護基加以適宜選擇而使用。 藉由使獲得的化合物(19)之羧基之保護基加以脱保護,可製造化合物(20)。此脱保護係可以與化合物(14)之製造中的羧基之脱保護同樣地進行。 藉由將獲得的化合物(20)誘導為活性酯、或混合酸酐等,使與化合物(7)反應,可製造化合物(2)。此反應係可適用胜肽合成所通常使用的反應試藥、條件,反應條件、試藥、鹼、及惰性溶媒係可由化合物(6)之合成所述者加以適宜選擇而使用。
4.製造方法4 以下,詳述製造方法2記載之製造中間體(10)中,n 1=1、L a=O之化合物(10b)之製造方法。式(10b)所示的化合物、其鹽或彼等之溶媒合物係可以例如,下述之方法加以製造。
[式中,L P表示與前述相同者,L表示醯基,為乙醯基等之烷醯基或苄醯基等之芳醯基,或氫原子等;X及Y表示包含1至3個之胺基酸的寡胜肽,P 5及P 7表示胺基之保護基,P 6表示羧基之保護基]。
式(21)所示的化合物係藉由特開2002-60351號公報記載的手法或文獻(J. Org. Chem., 51卷,3196頁,1986年)記載之方法、或應用其方法,因應必要進行保護基之去除或官能基變換,而可加以製造。此外,藉由將末端胺基為經保護的胺基酸或胺基為經保護的寡胜肽之酸醯胺以醛或酮處理,可加以獲得。 將化合物(21),於惰性溶媒中、酸或鹼存在下,於冷卻下至室溫之溫度條件下,藉由使與具有羥基的化合物(22)反應,可製造化合物(23)。 就其中可使用的酸而言,例如,可列舉氫氟酸、鹽酸、硫酸、硝酸、磷酸、硼酸等之無機酸;乙酸、檸檬酸、對甲苯磺酸、甲烷磺酸等之有機酸;四氟硼酸鹽、氯化鋅、氯化錫、氯化鋁、氯化鐵等之路易士酸等。此等中,磺酸類,尤其對甲苯磺酸為較佳。又就鹼而言,可自已述鹼中加以適宜選擇而使用,尤其三級丁醇鉀等之鹼金屬烷氧化物;氫氧化鈉、氫氧化鉀等之鹼金屬氫氧化物;氫化鈉、氫化鉀等之鹼金屬氫化物;二異丙基醯胺鋰等之二烷基胺基鋰所代表的有機金屬鹼;雙(三甲基矽烷基)醯胺鋰等之雙矽烷基胺之有機金屬鹼等為較佳。就反應所使用的溶媒而言,可使用四氫呋喃、1,4-二烷等之醚系溶媒;苯、甲苯等之芳香族烴系溶媒等。上述之溶媒可為與水之混合物。又,就P 5所例示的胺基之保護基而言,通常,只要胺基之保護所使用的基即可,並未特別限制。作為代表性者,可列舉製造方法2所記載的胺基之保護基,但於本反應中,P 5所例示的胺基之保護基有被切斷的情形。於此情形,因應必要可與適當胺基之保護試藥適宜反應而再度導入保護基。 化合物(24)係可藉由去除化合物(23)之保護基P 6而加以製造。其中,就P 6所例示的羧基之保護基而言,可自製造方法2中已記載的代表性者中加以適宜選擇。於化合物(23),胺基之保護基P 5與羧基之保護基P 6係以不同方法或條件下可去除的保護基為所欲的。例如,可列舉P 5為9-茀基甲基氧基羰基,P 6為苄基的組合等作為代表性者。彼等之保護基係可因應保護胺基及羧基的化合物之性質等而加以選擇,彼等之保護基之去除之際,亦可選擇因應其保護基的試藥、條件。 將羧酸(24)誘導為活性酯、混合酸酐、或酸鹵化物等,於鹼存在下,藉由使與化合物(4)或其藥理上可容許的鹽反應而製造化合物(25),去除獲得的化合物(25)之保護基P 5,可製造化合物(26)。化合物(4)與羧酸(24)之反應及去除保護基P 6的反應可使用與製造方法2所述試藥、反應條件相同者。 藉由使化合物(26)與末端胺基經保護的胺基酸或胺基經保護的寡胜肽(27)反應而製造化合物(9b),藉由去除獲得的化合物(9b)之保護基P 7,可製造化合物(10b)。就P 7所示的胺基之保護基而言,通常,只要為胺基之保護所使用的基即可,並未特別限制,作為代表性者可列舉製造方法2所記載的胺基之保護基,其去除之際,可因應保護基而選擇試藥、條件。化合物(26)與化合物(27)之反應,可適用胜肽合成上通常使用的反應試藥、條件。上述之方法所製造的化合物(10b),可依據上述之製造方法而導向本發明化合物(1)。
本發明之抗TROP2抗體-藥物結合物係藉由放置於大氣中、或再結晶等而純化,有吸收水分、附著吸附水、成為水合物的情形,如此含水的化合物及鹽亦包含於本發明。 又,本發明中亦包含經各種放射性或非放射性同位素標誌的化合物。構成本發明之抗體-藥物結合物的原子之1個以上亦可含有原子同位素之非天然比率。就原子同位素而言,例如,可列舉氘( 2H)、氚( 3H)、碘-125( 125I)或碳-14( 14C)等。又,本發明化合物係例如,可以氚( 3H)、碘-125( 125I)或碳-14( 14C)等之放射性同位素作放射性標識。經放射性標識的化合物係有用於作為治療或預防劑、研究試藥,例如,分析試藥、及診斷劑,例如,活體影像診斷劑。本發明之抗體-藥物結合物之全部之同位素變異種不論是否有放射性,皆包含於本發明之範圍。
[醫藥] 本發明之抗TROP2抗體-藥物結合物因顯示對癌細胞的細胞傷害活性,故可作為醫藥,尤其作為抗癌的治療劑及/或預防劑使用。 即,本發明之抗TROP2抗體-藥物結合物係可選擇作為癌治療之主要治療法的化學療法用之藥劑而使用,就其結果而言,可使癌細胞之成長遲緩、抑制增殖、進而破壞癌細胞。藉由此等,於癌患者,可達成解除癌所致的症狀、QOL之改善,而達成保持癌患者之生命的治療效果。即使未達到癌細胞之破壞的情形,亦可藉由癌細胞之增殖之抑制或控制,而於癌患者達成更高QOL的同時,可達成更長期之生存。 本發明之抗TROP2抗體-藥物結合物係除了以藥物單獨的使用之外,於輔助療法亦可作為與其他療法組合的藥劑而使用,可與外科手術、放射線療法、荷爾蒙療法等組合。再者,亦可作為新輔助療法(neoadjuvant therapy)中的藥物療法之藥劑使用。 如以上的治療性使用之外,藉由抗體之對抗原的結合性,而與微細轉移癌細胞結合,使癌細胞之增殖被抑制,進一步亦可期待有破壞的效果。即,尤其於原發性之癌細胞,TROP2之表現被確認時,藉由投予本發明之抗TROP2抗體-藥物結合物,可期待癌轉移之抑制、預防效果。例如,轉移過程中抑制、破壞體液中的癌細胞的效果、任一者之組織著床後立即對微細癌細胞的抑制、破壞等之效果可被期待。又,尤其可期待於外科的癌去除後之癌轉移的抑制、預防效果,據此可期待癌的轉移抑制效果。 本發明之抗TROP2抗體-藥物結合物對於患者除了作為全身療法而全身性投予之外,可於癌組織局部投予而期待治療效果。
就本發明之抗TROP2抗體-藥物結合物所適用的癌之種類而言,可列舉肺癌、腎癌、尿道上皮癌、大腸癌、前列腺癌、多形性神經膠質母細胞瘤、卵巢癌、胰癌、乳癌、黑色素瘤、肝癌、膀胱癌、胃癌、子宮頸癌、頭頸部癌、食道癌等,但只要於成為治療對象的癌細胞中表現抗體-藥物結合物中之抗體可辨識的蛋白質的癌細胞即可,並未限定於此等。
本發明之抗TROP2抗體-藥物結合物係可適合對哺乳動物投予,但更佳為人類。
就本發明之抗TROP2抗體-藥物結合物所含的醫藥組成物中使用的物質而言,在投予量或投予濃度方面,可由此領域通常使用的製劑添加物等,適宜選擇而適用。
本發明之抗TROP2抗體-藥物結合物係可作為含有1種以上之藥學上適合性之成分的藥學組成物被投予。例如,上述藥學組成物,代表性地含有1種以上之藥學載劑(例如,經滅菌液體)。其中,液體含有例如,水及油(石油、動物起源、植物起源或合成起源之油)。油,例如,可為花生油、大豆油、礦物油、芝麻油等。於上述藥學組成物為經靜脈內投予的情形,水係更為代表性的載劑。食鹽水溶液、以及右旋糖水溶液及甘油水溶液亦可作為液體載劑,尤其用於注射用溶液。適當的藥學賦形劑係為本項技術領域所周知。若需要時,上述組成物亦可含有微量之潤濕劑或乳化劑、或pH緩衝劑。適當的藥學載劑之例係記載於E.W.Martin之「Remington’s Pharmaceutical Sciences」。其處方係對應於投予之態樣。
各種送達系統為周知,可用於投予本發明之抗TROP2抗體-藥物結合物。就導入方法而言,可列舉皮內、肌肉內、腹腔內、靜脈內、及皮下之路徑,但並未限定於此等。投予可為例如,可經由注入或團式注射(bolus injection)。於特定之較佳實施形態,上述配位體藥物結合體之投予係經由注入。非經口的投予係較佳投予路徑。
於代表的實施形態,上述藥學組成物係呈適合對人類靜脈內投予的藥學組成物,依據常用順序而被調處。代表性地,靜脈內投予用之組成物係滅菌之等張性之水性緩衝液中的溶液。必要的情形,上述醫藥亦可含有可溶化劑及用以緩和注射部位之疼痛的局部麻醉劑(例如,利卡多因(lignocaine))。一般而言,上述成分係以下列任一者被供給,例如,密封於顯示活性劑的量的安瓿或小袋等而經密封的容器中之呈乾燥冷凍乾燥粉末或無水之濃縮物,各別、或於單位劑型中一起混合。藉由注入上述醫藥而被投予的形態的情形,其可例如,以含有滅菌之製藥等級的水或食鹽水的注入瓶被投藥。上述醫藥係藉由注射而被投予的情形,注射用滅菌水或食鹽水之安瓿係,例如,可以上述成分於投予前被混合的方式被提供。
本發明之醫藥組成物係可為僅含有本案之抗TROP2抗體-藥物結合物的醫藥組成物,亦可為含有抗TROP2抗體-藥物結合物及至少一種其他之癌治療劑的醫藥組成物。本發明之抗TROP2抗體-藥物結合物亦可與其他癌治療劑一起投予,據此可使抗癌效果增強。以如此目的被使用的其他抗癌劑係可與抗體-藥物結合物同時、各別、或連續地被投予至個體,亦可變換各自之投予間隔而投予。就如此癌治療劑而言,可列舉白蛋白結合行紫杉醇(abraxane)、太平洋紫杉醇(paclitaxel)、順鉑(cisplatin)、吉西他濱(gemcitabine)、愛萊諾迪肯(irinotecan)(CPT-11)、太平洋紫杉醇(paclitaxel)、培美曲塞(pemetrexed)、蕾莎瓦(sorafenib)、長春鹼(vinblastine)或國際公開第2003/038043號記載之藥劑,再者LH-RH類似物(亮丙瑞林(leuprorelin)、戈舍瑞林(goserelin)等)、磷酸雌二醇氮芥(estramustine phosphate)、雌激素(estrogen)拮抗藥(他莫昔芬(tamoxifen)、雷洛昔芬(raloxifene)等)、芳香環轉化酵素(aromatase)阻礙劑(阿那曲唑(anastrozole)、利妥唑(letrozole)、依西美坦(exemestane)等)等,但只要具有抗腫瘤活性的藥劑即可,並未限定於此等。
如此醫藥組成物係可被製劑化為具有選擇的組成及必要純度的製劑、冷凍乾燥製劑或液狀製劑。製劑化為冷凍乾燥製劑之際,可為含有此領域所使用的適當製劑添加物的製劑。又於液劑亦同樣地,可製劑化為含有此領域所使用的各種製劑添加物的液狀製劑。
醫藥組成物之組成及濃度可依投予方法而變化,但本發明之醫藥組成物所含的抗TROP2抗體-藥物結合物,於抗體-藥物結合物之對抗原的親和性,即對抗原的解離常數(Kd値)之點,係親和性越高(Kd値越低),即使以少量之投予量亦可使藥效發揮。據此,於抗體-藥物結合物之投予量之決定時,基於抗體-藥物結合物與抗原之親和性的狀況,亦可設定投予量。本發明之抗體-藥物結合物對人類投予之際,例如,可將約0.001~100mg/kg以1次或以1~180日1次之間隔作複數次投予。 [實施例]
藉由以下所示實施例而具體說明本發明,但本發明並未限定於此等例。又,此等在任何的意義上皆未被限定解釋。又,於本說明書,未特別記載之試藥、溶媒及起始材料係可自市售之供給源容易地取得。
[實施例1:小鼠之免疫與融合瘤之取得] 1-1)小鼠免疫用的細胞之準備 將5×10 6個之NCI-H322細胞(人類非小細胞肺癌細胞株、ATCC CRL-5806;ATCC:American Type Culture Collection)以RPMI-1640(Roswell Park Memorial Institute-1640)培養基(10ml)培養5日後回收,以PBS(磷酸緩衝生理食鹽水)洗淨2次,並再懸浮於PBS(500μl)中。
1-2)對小鼠之免疫 對BALB/c小鼠(6週齡),第1次免疫係將NCI-H322細胞(1×10 7個)對腹腔內免疫。第2~5次係以1週間隔將1×10 6個之NCI-H322細胞對腹腔內免疫。第6次之最終免疫係將NCI-H322細胞,以1×10 6細胞/200μl PBS,分別對尾靜脈及腹腔內免疫。脾臓細胞係最終免疫後3日後摘出。
1-3)經免疫小鼠之脾臓細胞之準備 摘出已經免疫的小鼠脾臓,研磨而懸浮於RPMI 1640 10%FBS(胎牛血清)(+)培養基。將細胞懸浮液通過細胞過濾器(cell strainer)(100μm、BD Falcon公司)後,以1500rpm於室溫離心5分鐘而廢棄上清液。添加Tris-NH 4Cl溶液(20mM Tris-HCl pH7.5、0.83%NH 4Cl;10mL),並於室溫處理5分鐘。於細胞懸浮液中添加RPMI 1640FBS(+)培養基(10ml),通過細胞過濾器後,以1500rpm於室溫離心5分鐘。丟棄上清液,脾臓細胞以RPMI 1640 FBS(-)培養基(10ml)再懸浮。
1-4)骨髓瘤細胞之準備 回收P3U1細胞(小鼠骨髓瘤細胞株),以1500rpm於室溫離心5分鐘。於P3U1細胞中添加EDTA(0.02%)溶液(10ml),並於37℃處理5分鐘。P3U1細胞懸浮液以1500rpm於室溫離心5分鐘。丟棄上清液,以RPMI 1640 FBS(-)培養基(10ml)再懸浮。
1-5)細胞融合 將脾臓細胞及骨髓瘤細胞混合成5:1,離心分離(1200rpm、5分鐘)。徹底鬆動獲得的沉澱劃分之細胞群後,一邊攪拌一邊歷經約1分鐘緩緩添加聚乙二醇-4000(PEG-4000;1mL)。之後每分鐘於該細胞液中添加數次RPMI培養基(1mL)後,添加RPMI培養基使總量成為50mL。將該細胞懸浮液離心分離(900rpm、5分鐘),將獲得的沉澱劃分的細胞緩緩鬆動後,於HAT培養基(添加10%胎牛血清及HAT Media Supplement的 MI1640培養基;100mL)中緩緩地懸浮。將該懸浮液以200μL/孔各分注於96孔培養用平盤,於37℃、5%CO 2之培養箱中,培養至成為50%融合。
1-6)以變異型腺病毒FZ33之融合瘤之篩選 將NCI-H322細胞以5×10 3細胞/孔接種於96孔盤中,並於37℃培養48小時。細胞以150μl/孔之PBS洗淨2次,對各孔添加各融合瘤培養上清液(50μl)並於4℃使反應1小時。以150μl/孔之PBS洗淨2次,將腺病毒Ax3CAZ3-FZ33(以與抗體結合的方式使Z33纖維經改變的β-半乳糖苷酶(β-galactosidase)表現腺病毒(參照美國專利申請公開第2012/0237518號說明書))以RPMI1640(-)培養基稀釋成3×10 6vp/100μl(1×10 3vp/細胞)之濃度,以100μl/孔添加此稀釋溶液。於4℃使反應1小時後,以150μl/孔之PBS洗淨2次。以100μl/孔添加RPMI1640 FBS(+)培養基,並於37℃培養24小時。以使用Galacto-Light Plus Reporter Gene Assay System(Applied Biosystems公司)的β-Gal報導基因分析所處理的NCI-H322細胞,以200μl/孔之PBS洗淨,以50μl/孔添加Lysis Solution並於室溫靜置10分鐘。此細胞溶解液(10μL)以Galacton-Plus Galacto Reaction Buffer Diluent稀釋100倍,添加於White microwell SH 96 well plate(Nunc公司)並於室溫使反應1小時。以150μl/孔添加Accelerator II,並使用Multilabel Counter Wallac 1420ARVOsx(Perkin Elmer公司)而測量化學發光5秒,每1秒之平均値作為RLU(發光量),表示對NCI-H322細胞之病毒感染量。於如此進行的融合瘤群之篩選,測定値(RLU)係群全體(最小値1383RLU、平均値10914RLU、最大値78746RLU)之中,選出5000RLU以上的選殖株。首先,就1次篩選而言,一次細胞融合所獲得的960孔之融合瘤孔中選出81孔之陽性孔。再者,就確認篩選而言,藉由與1次篩選相同之手法,進行雙套(duplicate)分析,將兩者之測定値為5000RLU以上之孔作為陽性,由1次篩選所獲得的81孔選出52孔之陽性孔。經選出的選殖株進行2~4次之次選殖,建立單株融合瘤細胞株44株。
[實施例2:自融合瘤之抗體純化] 事先將姥鮫烷(Pristane;2,6,10,14-四甲基十五烷;0.5ml)腹腔內投予並飼育2週的8~10週齡小鼠或裸鼠中,將實施例1所獲得的單株抗體產生融合瘤注射至腹腔內。再者,經10~21日使融合瘤腹水癌化後,採取腹水。將獲得的腹水離心分離而去除固體成分後,以40~50%硫酸銨鹽析,進行辛酸沉澱法、DEAE-Sepharose管柱、Protein G-管柱所致的純化,收集IgG或IgM劃分,作為純化單株抗體。
[實施例3:融合瘤產生的抗體之結合的抗原的鑑定] 針對實施例2所調製的融合瘤之產生的抗體之一的TINA1,進行抗原之鑑定。
3-1)使用經生物素標示的細胞表面蛋白質之TINA1抗體的免疫沈降 回收5×10 6個之NCI-H322細胞,並以PBS洗淨3次。以0.1mg/ml之濃度將EZ-Link Sulfo-NHS-Biotin(PIERCE公司)懸浮於PBS。NCI-H322細胞於Biotin/PBS溶液中、室溫下旋轉30分鐘後,以100mM甘胺酸/PBS溶液(25ml)洗淨2次,之後,以PBS(25ml)洗淨3次。將洗淨後之細胞再懸浮於溶解緩衝液(150mM NaCl、50mM Tris-HCl pH7.6、1%NP-40 + 蛋白酶抑制劑、完全無EDTA(Roche公司)1粒/50ml;2ml)中,於4℃處理30分鐘。將Protein G Sepharose(Protein G Sepharose 4 Fast Flow(GE Healthcare公司))之緩衝液置換為溶解緩衝液而獲得的Protein G Sepharose/溶解緩衝液(50%漿液;30μl)添加至細胞溶解液中,於4℃旋轉1小時後,於4℃離心5分鐘,並回收上清液。於此上清液中添加TINA1抗體(3μg),並於4℃旋轉1小時後,添加Protein G Sepharose/溶解緩衝液(50%漿液;60μl),並於4℃旋轉2小時。以溶解緩衝液(1ml)將Protein G Sepharose洗淨6次後,再懸浮於1×SDS樣品緩衝液/5% 2-ME(2-巰基乙醇)緩衝液(62.5mM Tris-HCl(25℃、pH6.8)、2%(w/v)SDS、10%甘油及0.01%(w/v)酚紅)。於100℃處理懸浮液5分鐘後,回收溶液,作為SDS-PAGE(聚丙烯醯胺膠體電泳)用之樣品。
3-2)SDS-PAGE及西方墨漬法 將3-1)調製的SDS-PAGE樣品,使用Ready Gels J 5-20%(BioRad公司),以20mA泳動後,以0.1mA/cm 2自膠體向膜印漬。膜以PBS-T(PBS(-)-0.05% Tween20)洗淨5分鐘後,進行1小時阻斷。膜以PBS-T作5分鐘洗淨3次後,使與辣根氫氧化酶標示之鏈酶親和素結合物(Streptavidin-horseradish peroxidase conjugate)(Amersham公司;以PBS-T稀釋2000倍來使用)反應1小時。膜以PBS-T,10分鐘洗淨4次後,使用ECL西方氏墨漬偵測試劑(Amersham公司)及Hyperfilm ECL(Amersham公司)而檢測目的的帶(band)。依據實施例3-1)之順序,將經生物素標示的NCI-H322細胞,已經質量分析而確認抗原為TROP2的KCI7A3抗體及TINA1抗體以免疫沈降而獲得的免疫沈降物,分別於未添加DTT或添加DTT下藉由SDS-PAGE及西方墨漬法而解析。使用KCI7A3抗體及TINA1抗體任一者的情形,未添加DTT者檢測出分子量46kDa之帶,添加DTT的樣品檢測出分子量37kDa之帶。
3-3)FACS解析 因由帶的樣式可預測TINA1抗體之抗原為TROP2,未進行質量分析下,進行cDNA之基因導入所致的強制表現解析。FACS解析之結果,於人類TROP2表現CHOK1細胞,因TINA1抗體顯示強陽性反應,顯示TINA1抗體之抗原為TROP2。又,使用肺癌細胞株PC14、肺癌細胞株NCI-H322、肺癌細胞株NCI-H2122、肺癌細胞株LCAM1、肺癌細胞株LC2/ad、胰癌細胞株MIAPaCa2、胰癌細胞株PK-1、前列腺癌細胞株PC3、大腸癌細胞株HCT116、黑色素瘤細胞株A375、卵巢癌細胞株SKOV3、造血系統腫瘤細胞株RPMI8226、造血系統腫瘤細胞株K562、PBMC(人類末梢血液單核細胞)及人類血小板而進行相同的FACS解析。調査的肺癌細胞株係任一者皆為TROP2陽性,肺癌以外之細胞株中PC3、PK1、SKOV3為陽性。另一方面,正常血液細胞係任一者皆為陰性。
[實施例4:抗體內在化活性之測定] 4-1)抗體內在化活性評價系統 以抗體之內在化及免疫毒素活性之測定為目的而製作重組複合蛋白質DT3C。此DT3C係兼具白喉毒素(DT)之觸媒區與Protein G之抗體結合區3個的蛋白質。DT3C係與抗體之Fc部分特異性結合而安定、併入細胞內時藉由抑制蛋白質合成而誘導細胞死亡。使用此系統時,可同時觀察抗體之內在化與免疫毒素所致的殺細胞效果(Yamaguchi, M., Hamada, H., et al., Biochemical and Biophysical Research Communications 454 (2014) 600-603)。
4-2)DT3C所致的內在化以及免疫毒素活性之評價 於96孔盤中添加4μg/mL之DT3C(25μL),再添加實施例1或依據其之方法所取得的11種融合瘤之培養上清液(25μL),並於室溫培育30分鐘。又,預先確認產生TINA1抗體之融合瘤以外之融合瘤所產生的抗體之辨識抗原係CD9、CD46、CD55、CD59、CD71、CD73、CD147、CD276、EpCAM、或EGFR。接種2×10 4個/mL(20% Low IgG FBS加RPMI1640培養基)之NCI-H322細胞(50μL),於室溫培育30分鐘後,於37℃ CO 2培育箱培養3日。培養後去除上清液,添加10%WST-10%FBS-RPMI1640(100μL),並於37℃ CO 2培養箱內培育1小時,活細胞數以微量盤讀取機(OD 450~OD 640、infinite200、Tecan股份有限公司)測定。評價的融合瘤細胞之培養上清液中,認為抗CD59、CD71、EGFR、EpCAM、及TROP2的抗體為強內在化以及免疫毒素活性(第10圖)。
4-3)抗CD59、CD71、EGFR、EpCAM、及TROP2的抗體之內在化以及免疫毒素活性之相異 於96孔盤中添加DT3C(0、0.004、0.04、0.4、4、40μg/mL)稀釋溶液(25μL),並添加各抗體(40μg/mL;25μL),於室溫培育30分鐘。再者,接種2×10 4個/mL(添加20%LowIgGFBS之RPMI1640培養基)之NCI-H322細胞(50μL),於室溫培育30分鐘後,於37℃ CO 2培養箱中培養3日。培養後去除上清液,添加加有10%WST-1之10%FBS-RPMI1640(100μL),於37℃ CO 2培養箱內培育1小時,活細胞數以平盤讀取機(OD 450~OD 640)測定。評價的抗體之中,抗TROP2的抗體TINA1之內在化以及免疫毒素活性最強(第11圖)。
4-4)抗TROP2抗體之各株中的內在化以及免疫毒素活性之相異 針對實施例1或依據其所取得的TINA1(免疫原:肺癌株NCI-H322)、KCL7A3、及KCL2D6(免疫原:胰臓癌株KCL-MOH1)、Pr1E11及Pr8H10(免疫原:前列腺癌株Pc-1)、NY16及NY17(免疫原:胰臓癌株PK-1)以及市售之77220(R&D System)之各抗TROP2抗體之內在化以及免疫毒素活性,與實施例4-3)同樣地評價。其結果,8種抗TROP2抗體之中,TINA1抗體具有最強活性(第12圖)。
[實施例5:編碼TINA1抗體基因之可變區的cDNA之核苷酸序列之決定及嵌合TINA1(以下cTINA1)抗體之製作] 5-1)編碼TINA1抗體基因之可變區的cDNA之核苷酸序列之決定 5-1-1)由產生TINA1抗體的融合瘤之mRNA之調製 為了增幅含TINA1抗體之可變區的cDNA,由產生TINA1抗體之融合瘤,使用mRNA單離套組(Roche applied science公司)而調製mRNA。
5-1-2)cDNA(5’-RACE-Ready cDNA)之合成 cDNA(5’-RACE-Ready cDNA)之合成係使用實施例5-1-1)所調製的mRNA(100ng)及SMARTer RACE cDNA增幅套組(CLONTECH公司)來實施。
5-1-3)藉由5’-RACE PCR之含TINA1抗體之重鏈可變區的cDNA之增幅及序列之決定 作為重鏈基因之可變區之cDNA以PCR增幅用之引子,使用UPM(Universal Primer A Mix:附屬於SMARTer RACE cDNA增幅套組)、及具有5’-AGAGTTCCAGGTCAAGGTCACTGGCTCAGG-3’(序列識別號33:引子mG2aVR2)之序列的寡核苷酸。UPM係使用附屬於SMARTer RACE cDNA增幅套組(CLONTECH公司)者,mG2aVR2係由資料庫之小鼠重鏈(IgG2a)之恆定區之序列而設計。 藉由此引子之組合、及以實施例5-1-2)合成的cDNA(5’-RACE-Ready cDNA)作為模板的5’-RACE PCR,將含TINA1抗體之重鏈之可變區的cDNA增幅。PCR係使用KOD-plus(TOYOBO公司)作為聚合酶,依據SMARTer RACE cDNA增幅套組(CLONTECH公司)之手冊,以遞減PCR(touchdown PCR)程式來實施。 將含以5’-RACE PCR增幅的重鏈之可變區的cDNA,使用MinElute PCR純化套組(QIAGEN公司)純化後,使用Zero Blunt TOPO PCR Cloning Kit(Invitrogen公司)作選殖,實施含經選殖的重鏈之可變區的cDNA之核苷酸序列的定序解析。作為定序引子,使用自資料庫的小鼠重鏈之恆定區的序列所設計的上述引子 mG2aVR2、及NUP(Nested Universal Primer A:附屬於SMARTer RACE cDNA增幅套組)。 定序解析係使用基因序列解析裝置(「ABI PRISM 3700 DNA Analyzer」或「Applied Biosystems 3730xl Analyzer」、Applied Biosystems公司)來實施,定序反應係使用Gene Amp 9700(Applied Biosystems公司)。 將編碼經決定的TINA1抗體之重鏈之可變區的cDNA的核苷酸序列示於序列表之序列識別號1,胺基酸序列示於序列識別號2。
5-1-4)5’-RACE PCR所致之含TINA1抗體之輕鏈可變區的cDNA之增幅及序列之決定 作為TINA1抗體之輕鏈基因之可變區的cDNA以PCR增幅用之引子,使用UPM(Universal Primer A Mix:附屬於SMARTer RACE cDNA增幅套組)及具有5’-AGTCCAACTGTTCAGGACGCCATTTTGTCG-3’(序列識別號34:引子 mKVR2)之序列的寡核苷酸。UPM係使用附屬於SMARTer RACE cDNA增幅套組(CLONTECH公司)者,mKVR2係由資料庫之小鼠輕鏈之恆定區的序列所設計。 藉由此引子之組合、及以實施例5-1-2)所合成的cDNA(5’-RACE-Ready cDNA)作為模板的5’-RACE PCR,將含TINA1抗體之輕鏈之可變區的cDNA增幅。PCR係使用KOD-plus-(TOYOBO公司)作為聚合酶,依據SMARTer RACE cDNA增幅套組(CLONTECH公司)之手冊,以遞減PCR程式來實施。 將含以5’-RACE PCR增幅的輕鏈之可變區的cDNA,使用MinElute PCR增幅套組(QIAGEN公司)純化後,使用Zero Blunt TOPO PCR Cloning Kit(Invitrogen公司)選殖,實施含經選殖的輕鏈之可變區的cDNA之核苷酸序列之定序解析。 作為定序引子,使用由資料庫之小鼠輕鏈之恆定區的序列所設計的上述引子mKVR2及NUP。 定序解析及定序反應係使用上述裝置。 將編碼經決定的TINA1抗體之輕鏈之可變區的cDNA的核苷酸序列示於序列表之序列識別號3,胺基酸序列示於序列識別號4。
5-2)cTINA1抗體之製作 5-2-1)嵌合及人類化抗體輕鏈表現載體pCMA-LK之構築 將質體pcDNA3.3-TOPO/LacZ(Invitrogen公司)以限制酶XbaI及PmeI消化所獲得的約5.4kb之片段、及含有編碼序列識別號5所示人類κ鏈分泌訊號及人類κ鏈恆定區的DNA序列的DNA片段,使用In-Fusion Advantage PCR選殖套組(CLONTECH公司)而結合,製作pcDNA3.3/LK。 pcDNA3.3/LK作為模板,以下述引子組進行PCR,將獲得的約3.8kb之片段磷酸化後藉由自我連結而構築於CMV啟動子之下游具有訊息序列、選殖位、及人類κ鏈恆定區之嵌合及人類化抗體輕鏈表現載體pCMA-LK。 引子組 5’-tataccgtcgacctctagctagagcttggc-3’(序列識別號35:引子 3.3-F1) 5’-gctatggcagggcctgccgccccgacgttg-3’(序列識別號36:引子 3.3-R1)
5-2-2)嵌合及人類化抗體IgG1型重鏈表現載體pCMA-G1之構築 使用In-Fusion Advantage PCR選殖套組(CLONTECH公司)將pCMA-LK以XbaI及PmeI消化而去除κ鏈分泌訊號及人類κ鏈恆定區的DNA片段、及含有序列識別號6所示的編碼人類重鏈訊息序列及人類IgG1恆定區之胺基酸的DNA序列的DNA片段結合,構築於CMV啟動子之下游具有訊息序列、選殖位、人類IgG1重鏈恆定區的嵌合及人類化抗體IgG1型重鏈表現載體pCMA-G1。
5-2-3)cTINA1抗體重鏈表現載體之構築 將實施例5-1-3)所獲得的含TINA1抗體之重鏈之可變區的cDNA作為模板,以KOD-Plus-(TOYOBO公司)及下述引子組增幅含有編碼重鏈之可變區的cDNA的DNA片段,使用In-Fusion HD PCR選殖套組(CLONTECH公司),藉由插入於將嵌合及人類化IgG1型重鏈表現載體pCMA-G1以限制酶BlpI切斷處,構築cTINA1抗體重鏈表現載體。將獲得的表現載體命名「pCMA-G1/cTINA1」。將cTINA1抗體重鏈之核苷酸序列示於序列識別號7,胺基酸序列示於序列識別號8。序列識別號7之核苷酸序列及序列識別號8之胺基酸序列亦記載於第1圖。 cTINA1抗體重鏈用引子組 5’-CCAGATGGGTGCTGAGCCAGATCCAGTTGGTGCAGTCTGGACCTGAG-3’(序列識別號37:引子TINA1H-F) 5’-CTTGGTGGAGGCTGAGCTGACGGTGACCGCGGTCCCTGCGCCCCAGAC-3’(序列識別號38:引子TINA1H-R)
5-2-4)cTINA1抗體輕鏈表現載體之構築 將實施例5-1-4)所獲得的含TINA1抗體之輕鏈之可變區的cDNA作為模板,以KOD-Plus-(TOYOBO公司)及下述之引子組,增幅含編碼輕鏈之可變區的cDNA的DAN片段,使用In-Fusion HD PCR選殖套組(CLONTECH公司),經由插入於將嵌合及人類化抗體輕鏈表現汎用載體pCMA-LK以限制酶BsiWI切斷處,構築cTINA1抗體之輕鏈表現載體。將獲得的表現載體命名為「pCMA-LK/cTINA1」。cTINA1抗體之輕鏈之核苷酸序列示於序列表之序列識別號9,胺基酸序列示於序列識別號10。序列識別號9之核苷酸序列及序列識別號10之胺基酸序列亦記載於第2圖。 cTINA1抗體輕鏈用引子組 5’-ATCTCCGGCGCGTACGGCGACATTGTGATGACCCAGTCTCACAAATTC-3’(序列識別號39:引子TINA1L-F) 5’-GGAGGGGGCGGCCACAGCCCGTTTCAGCTCCAGCTTGGTCCCAGC-3’(序列識別號40:引子TINA1L-R)
5-2-5)cTINA1抗體之小規模生產 FreeStyle 293F細胞(Invitrogen公司)係依據手冊,而實施繼代、培養。 將對數增殖期之1×10 7個之FreeStyle 293F細胞(Invitrogen公司),以FreeStyle293表現媒體(Invitrogen公司)稀釋成9.6mL後,接種於30mL Square Storage Bottle(Nalgene公司),於37℃、8%CO 2培養箱內,以90rpm震盪培養一小時。將聚伸乙亞胺(Polyscience #24765;30μg)溶解於Opti-Pro SFM(Invitrogen公司;200μL),接著,將使用PureLink HiPure質體套組(Invitrogen公司)而調製的輕鏈表現載體(6μg)及重鏈表現載體(4μg)添加於Opti-Pro SFM(Invitrogen公司;200μL)。於聚伸乙亞胺/Opti-Pro SFM混合液(200μL)中,添加表現載體/Opti-Pro SFM混合液(200μL)並緩緩攪拌,再放置5分鐘後,添加於FreeStyle 293F細胞。於37℃、8%CO 2培養箱,以90rpm震盪培養7日而獲得的培養上清液,以Minisart-Plus過濾器(Sartorius公司)過濾而作為評價用之樣品。 將由pCMA-G1/cTINA1與pCMA-LK/cTINA1之組合而取得的人類嵌合TINA1抗體命名為「cTINA1抗體」。
[實施例6:小鼠抗TROP2單株抗體之人類化抗體之設計] 6-1)TINA1之人類化變型之設計 6-1-1)TINA1之可變區之分子模擬(molecular modeling) TINA1之可變區之分子模擬係藉由作為同源性模擬(homology modeling)之周知方法(Methods in Enzymology,203,121-153(1991))而實行。將於蛋白質資料庫(Protein Data Bank)(Nuc. Acid Res.35,D301-D303(2007))註冊的人類免疫球蛋白之可變區之1次序列(由X射線結晶結構衍生的三維結構係可能取得的),與事先決定的TINA1之可變區作比較。結果,1ZEA係相對於TINA1之重鏈之可變區,於同樣地框架區中有缺損的抗體之中,以具有最高序列同源性而被選擇。又,3IU4係相對於TINA1之輕鏈之可變區,以具有最高序列同源性被選擇。框架區之三維結構係可藉由組合對應TINA1之重鏈及輕鏈的1ZEA及3IU4之座標而獲得「框架模型(framework model)」而被製作。其次,於各自之CDR之代表的構形被併入框架模式。 最後,於能量的觀點,為了獲得有TINA1之可變區的可能性的分子模式,進行用以除去不利原子間接觸的能量計算。上述順序使用市售之蛋白質立體結構解析程式Discovery Studio(Accelrys,Inc.)來進行。
6-1-2)抗人類化TINA1的胺基酸序列之設計 人類化TINA1抗體之構築藉由作為CDR接枝(Proc.Natl.Acad.Sci.USA 86,10029-10033(1989))之周知方法而進行。受體抗體(acceptor antiboby)係基於框架區內之胺基酸同源性而被選擇。將TINA1之框架區之序列與抗體之胺基酸序列之Kabat資料庫(Nuc.Acid Res.29,205-206(2001))全部的人類框架作比較,結果,HuPR1A3抗體起因於框架區之74%之序列同源性,被選擇作為受體(acceptor)。使於HuPR1A3之框架區之胺基酸殘基,與TINA1之胺基酸殘基並列,鑑定相異胺基酸被使用的位置。此等之殘基的位置係基於使用以上所構築的TINA1之三維模型而被分析,而且接受者上應被接枝的供體殘基係藉由Queen等人(Proc.Natl.Acad.Sci.USA 86,10029-10033(1989))所給予的基準而被選擇。藉由將被選擇的幾個供體殘基移入受體抗體,如以下實施例記載的方式構築人類化TINA1序列。
6-2)TINA1重鏈之人類化 6-2-1)hTINA1-H1型重鏈: 將伴隨序列表之序列識別號8所示的TINA1重鏈之胺基酸編號21(異白胺酸)取代為纈胺酸、胺基酸編號28(脯胺酸)取代為丙胺酸、胺基酸編號30(白胺酸)取代為纈胺酸、胺基酸編號35(麩胺酸)取代為丙胺酸、胺基酸編號36(蘇胺酸)取代為絲胺酸、胺基酸編號38(精胺酸)取代為離胺酸、胺基酸編號39(異白胺酸)取代為纈胺酸、胺基酸編號57(麩醯胺酸)取代為精胺酸、胺基酸編號58(離胺酸)取代為麩醯胺酸、胺基酸編號59(甲硫胺酸)取代為丙胺酸、胺基酸編號62(離胺酸)取代為麩醯胺酸、胺基酸編號65(離胺酸)取代為麩胺酸、胺基酸編號67(異白胺酸)取代為甲硫胺酸、胺基酸編號87(苯丙胺酸)取代為纈胺酸、胺基酸編號88(丙胺酸)取代為蘇胺酸、胺基酸編號89(苯丙胺酸)取代為異白胺酸、胺基酸編號91(白胺酸)取代為丙胺酸、胺基酸編號92(麩胺酸)取代為天冬胺酸、胺基酸編號95(丙胺酸)取代為蘇胺酸、胺基酸編號102(異白胺酸)取代為白胺酸、胺基酸編號104(天冬醯胺酸)取代為絲胺酸、胺基酸編號107(天冬醯胺酸)取代為絲胺酸、胺基酸編號111(蘇胺酸)取代為丙胺酸、胺基酸編號112(蘇胺酸)取代為纈胺酸、胺基酸編號114(苯丙胺酸)取代為酪胺酸、胺基酸編號132(丙胺酸)取代為麩醯胺酸、胺基酸編號135(丙胺酸)取代為白胺酸的經設計的人類化TINA1重鏈,命名為「hTINA1-H1型重鏈」。 hTINA1-H1型重鏈之胺基酸序列係記載於序列表之序列識別號12。由序列識別號12之胺基酸序列之第1至19號之胺基殘基所構成的序列、第20至140號之胺基酸殘基所構成的序列、第141至470號之胺基酸殘基所構成的序列係各自相當於訊息序列、重鏈可變區、重鏈恆定區。編碼序列識別號12之胺基酸序列的核苷酸序列係記載於序列表之序列識別號11。序列識別號11之核苷酸序列之第1至57號之核苷酸所構成的序列、第58至420號之核苷酸所構成的序列、第421至1410號之核苷酸所構成的序列係各自為編碼訊息序列、重鏈可變區序列、重鏈恆定區序列。序列識別號11之核苷酸序列及序列識別號12之胺基酸序列亦記載於第3圖。
6-2-2)hTINA1-H2型重鏈: 將伴隨序列表之序列識別號8所示的TINA1重鏈之胺基酸編號21(異白胺酸)取代為纈胺酸、胺基酸編號28(脯胺酸)取代為丙胺酸、胺基酸編號30(白胺酸)取代為纈胺酸、胺基酸編號35(麩胺酸)取代為丙胺酸、胺基酸編號36(蘇胺酸)取代為絲胺酸、胺基酸編號38(精胺酸)取代為離胺酸、胺基酸編號39(異白胺酸)取代為纈胺酸、胺基酸編號57(麩醯胺酸)取代為精胺酸、胺基酸編號58(離胺酸)取代為麩醯胺酸、胺基酸編號59(甲硫胺酸)取代為丙胺酸、胺基酸編號62(離胺酸)取代為麩醯胺酸、胺基酸編號65(離胺酸)取代為麩胺酸、胺基酸編號67(異白胺酸)取代為甲硫胺酸、胺基酸編號87(苯丙胺酸)取代為纈胺酸、胺基酸編號88(丙胺酸)取代為蘇胺酸、胺基酸編號89(苯丙胺酸)取代為異白胺酸、胺基酸編號92(麩胺酸)取代為天冬胺酸、胺基酸編號95(丙胺酸)取代為蘇胺酸、胺基酸編號102(異白胺酸)取代為白胺酸、胺基酸編號104(天冬醯胺酸)取代為絲胺酸、胺基酸編號107(天冬醯胺酸)取代為絲胺酸、胺基酸編號111(蘇胺酸)取代為丙胺酸、胺基酸編號112(蘇胺酸)取代為纈胺酸、胺基酸編號114(苯丙胺酸)取代為酪胺酸、胺基酸編號132(丙胺酸)取代為麩醯胺酸、胺基酸編號135(丙胺酸)取代為白胺酸所設計的人類化TINA1重鏈,命名為「hTINA1-H2型重鏈」。 hTINA1-H2型重鏈之胺基酸序列係記載於序列表之序列識別號14。序列識別號14之胺基酸序列之第1至19號之胺基殘基所構成的序列、第20至140號之胺基酸殘基所構成的序列、第141至470號之胺基酸殘基所構成的序列係各自相當於訊息序列、重鏈可變區、重鏈恆定區。編碼序列識別號14之胺基酸序列的核苷酸序列係記載於序列表之序列識別號13。序列識別號13之核苷酸序列之第1至57號之核苷酸所構成的序列、第58至420號之核苷酸所構成的序列、第421至1410號之核苷酸所構成的序列係各自編碼訊息序列、重鏈可變區序列、重鏈恆定區序列。序列識別號13之核苷酸序列及序列識別號14之胺基酸序列亦記載於第4圖。
6-2-3)hTINA1-H3型重鏈: 將伴隨序列表之序列識別號8所示的TINA1重鏈之胺基酸編號28(脯胺酸)取代為丙胺酸、胺基酸編號30(白胺酸)取代為纈胺酸、胺基酸編號36(蘇胺酸)取代為絲胺酸、胺基酸編號38(精胺酸)取代為離胺酸、胺基酸編號39(異白胺酸)取代為纈胺酸、胺基酸編號58(離胺酸)取代為麩醯胺酸、胺基酸編號65(離胺酸)取代為麩胺酸、胺基酸編號67(異白胺酸)取代為甲硫胺酸、胺基酸編號87(苯丙胺酸)取代為纈胺酸、胺基酸編號88(丙胺酸)取代為蘇胺酸、胺基酸編號92(麩胺酸)取代為天冬胺酸、胺基酸編號95(丙胺酸)取代為蘇胺酸、胺基酸編號102(異白胺酸)取代為白胺酸、胺基酸編號104(天冬醯胺酸)取代為絲胺酸、胺基酸編號107(天冬醯胺酸)取代為絲胺酸、胺基酸編號111(蘇胺酸)取代為丙胺酸、胺基酸編號112(蘇胺酸)取代為纈胺酸、胺基酸編號114(苯丙胺酸)取代為酪胺酸、胺基酸編號132(丙胺酸)取代為麩醯胺酸、胺基酸編號135(丙胺酸)取代為白胺酸的設計的人類化TINA1重鏈,命名為「hTINA1-H3型重鏈」。 hTINA1-H3型重鏈之胺基酸序列係記載於序列表之序列識別號16。序列識別號16之胺基酸序列之第1至19號之胺基殘基所構成的序列、第20至140號之胺基酸殘基所構成的序列、第141至470號之胺基酸殘基所構成的序列係各自相當於訊息序列、重鏈可變區、重鏈恆定區。編碼序列識別號16之胺基酸序列的核苷酸序列係記載於序列表之序列識別號15。序列識別號15之核苷酸序列之第1至57號之核苷酸所構成的序列、第58至420號之核苷酸所構成的序列、第421至1410號之核苷酸所構成的序列係各自編碼訊息序列、重鏈可變區序列、重鏈恆定區序列。序列識別號15之核苷酸序列及序列識別號16之胺基酸序列亦記載於第5圖。
6-3)TINA1輕鏈之人類化 6-3-1)hTINA1-L1型輕鏈: 將伴隨序列表之序列識別號10所示的TINA1輕鏈之胺基酸編號23(纈胺酸)取代為麩醯胺酸、胺基酸編號28(組胺酸)取代為脯胺酸、胺基酸編號29(離胺酸)取代為絲胺酸、胺基酸編號30(苯丙胺酸)取代為絲胺酸、胺基酸編號31(甲硫胺酸)取代為白胺酸、胺基酸編號33(蘇胺酸)取代為丙胺酸、胺基酸編號40(絲胺酸)取代為蘇胺酸、胺基酸編號62(麩醯胺酸)取代為離胺酸、胺基酸編號63(絲胺酸)取代為丙胺酸、胺基酸編號80(天冬胺酸)取代為絲胺酸、胺基酸編號83(蘇胺酸)取代為絲胺酸、胺基酸編號90(丙胺酸)取代為天冬胺酸、胺基酸編號93(苯丙胺酸)取代為白胺酸、胺基酸編號98(纈胺酸)取代為白胺酸、胺基酸編號100(丙胺酸)取代為脯胺酸、胺基酸編號103(白胺酸)取代為苯丙胺酸、胺基酸編號120(丙胺酸)取代為麩醯胺酸、胺基酸編號126(白胺酸)取代為異白胺酸、胺基酸編號129(丙胺酸)取代為蘇胺酸的設計的人類化TINA1輕鏈,命名為「hTINA1-L1型輕鏈」。 hTINA1-L1型輕鏈之胺基酸序列係記載於序列表之序列識別號18。序列識別號18之胺基酸序列之第1至20號之胺基殘基所構成的序列、第21至129號之胺基酸殘基所構成的序列、第130至234號之胺基酸殘基所構成的序列係各自相當於訊息序列、輕鏈可變區、輕鏈恆定區。編碼序列識別號18之胺基酸序列的核苷酸序列係記載於序列表之序列識別號17。序列識別號17之核苷酸序列之第1至60號之核苷酸所構成的序列、第61至387號之核苷酸所構成的序列、第388至702號之核苷酸所構成的序列係各自編碼訊息序列、輕鏈可變區序列、輕鏈恆定區序列。序列識別號17之核苷酸序列及序列識別號18之胺基酸序列亦記載於第6圖。
6-3-2)hTINA1-L2型輕鏈: 將伴隨序列表之序列識別號10所示的TINA1輕鏈之胺基酸編號28(組胺酸)取代為脯胺酸、胺基酸編號29(離胺酸)取代為絲胺酸、胺基酸編號30(苯丙胺酸)取代為絲胺酸、胺基酸編號31(甲硫胺酸)取代為白胺酸、胺基酸編號33(蘇胺酸)取代為丙胺酸、胺基酸編號40(絲胺酸)取代為蘇胺酸、胺基酸編號62(麩醯胺酸)取代為離胺酸、胺基酸編號63(絲胺酸)取代為丙胺酸、胺基酸編號80(天冬胺酸)取代為絲胺酸、胺基酸編號83(蘇胺酸)取代為絲胺酸、胺基酸編號90(丙胺酸)取代為天冬胺酸、胺基酸編號93(苯丙胺酸)取代為白胺酸、胺基酸編號98(纈胺酸)取代為白胺酸、胺基酸編號100(丙胺酸)取代為脯胺酸、胺基酸編號103(白胺酸)取代為苯丙胺酸、胺基酸編號120(丙胺酸)取代為麩醯胺酸、胺基酸編號126(白胺酸)取代為異白胺酸、胺基酸編號129(丙胺酸)取代為蘇胺酸所設計的人類化TINA1輕鏈,命名為「hTINA1-L2型輕鏈」。 hTINA1-L2型輕鏈之胺基酸序列記載於序列表之序列識別號20。序列識別號20之胺基酸序列之第1至20號之胺基殘基所構成的序列、第21至129號之胺基酸殘基所構成的序列、第130至234號之胺基酸殘基所構成的序列係各自相當於訊息序列、輕鏈可變區、輕鏈恆定區。編碼序列識別號20之胺基酸序列的核苷酸序列記載於序列表之序列識別號19。序列識別號19之核苷酸序列之第1至60號之核苷酸所構成的序列、第61至387號之核苷酸所構成的序列、第388至702號之核苷酸所構成的序列係各自編碼訊息序列、輕鏈可變區序列、輕鏈恆定區序列。序列識別號19之核苷酸序列及序列識別號20之胺基酸序列亦記載於第7圖。
6-3-3)hTINA1-L3型輕鏈: 將伴隨序列表之序列識別號10所示的TINA1輕鏈之胺基酸編號28(組胺酸)取代為脯胺酸、胺基酸編號29(離胺酸)取代為絲胺酸、胺基酸編號30(苯丙胺酸)取代為絲胺酸、胺基酸編號31(甲硫胺酸)取代為白胺酸、胺基酸編號33(蘇胺酸)取代為丙胺酸、胺基酸編號40(絲胺酸)取代為蘇胺酸、胺基酸編號62(麩醯胺酸)取代為離胺酸、胺基酸編號63(絲胺酸)取代為麩醯胺酸、胺基酸編號80(天冬胺酸)取代為絲胺酸、胺基酸編號83(蘇胺酸)取代為絲胺酸、胺基酸編號90(丙胺酸)取代為天冬胺酸、胺基酸編號93(苯丙胺酸)取代為白胺酸、胺基酸編號98(纈胺酸)取代為白胺酸、胺基酸編號100(丙胺酸)取代為脯胺酸、胺基酸編號103(白胺酸)取代為苯丙胺酸、胺基酸編號120(丙胺酸)取代為麩醯胺酸、胺基酸編號126(白胺酸)取代為異白胺酸、胺基酸編號129(丙胺酸)取代為蘇胺酸所設計的人類化TINA1輕鏈,命名為「hTINA1-L3型輕鏈」。 hTINA1-L3型輕鏈之胺基酸序列係記載於序列表之序列識別號22。序列識別號22之胺基酸序列之第1至20號之胺基殘基所構成的序列、第21至129號之胺基酸殘基所構成的序列、第130至234號之胺基酸殘基所構成的序列係各自相當於訊息序列、輕鏈可變區、輕鏈恆定區。編碼序列識別號22之胺基酸序列的核苷酸序列記載於序列表之序列識別號21。序列識別號21之核苷酸序列之第1至60號之核苷酸所構成的序列、第61至387號之核苷酸所構成的序列、第388至702號之核苷酸所構成的序列係各自編碼訊息序列、輕鏈可變區序列、輕鏈恆定區序列。序列識別號21之核苷酸序列及序列識別號22之胺基酸序列亦記載於第8圖。
[實施例7:hTINA1抗體表現載體之構築及抗體之生產] 7-1)hTINA1之重鏈表現載體之構築 7-1-1)hTINA1-H1表現載體之構築 合成包含序列表之序列識別號11所示的hTINA1-H1之核苷酸序列之核苷酸編號36至437所示的編碼hTINA1-H1之可變區的DNA序列的DNA片段(GENEART公司,人工基因合成服務)。將合成的DNA片段作為模板,以KOD-Plus-(TOYOBO公司)及下述之引子組,增幅含編碼hTINA1-H1之可變區的DNA序列的DNA片段,藉由使用In-Fusion HD PCR選殖套組(CLONTECH公司),插入於嵌合及人類化抗體IgG1型重鏈表現載體pCMA-G1以限制酶BlpI切斷處,而構築hTINA1-H1表現載體。將獲得的表現載體命名為「pCMA-G1/hTINA1-H1」。 引子組 5’-agctcccagatgggtgctgagc-3’(序列識別號41:引子 EG-Inf-F) 5’-gggcccttggtggaggctgagc-3’(序列識別號42:引子 EG1-Inf-R)
7-1-2)hTINA1-H2表現載體之構築 合成含序列表之序列識別號13所示的hTINA1-H2之核苷酸序列之核苷酸編號36至437所示的編碼hTINA1-H2之可變區的DNA序列的DNA片段(GENEART公司,人工基因合成服務),以與實施例7-1-1)同樣的方法構築hTINA1-H2表現載體。將獲得的表現載體命名為「pCMA-G1/hTINA1-H2」。
7-1-3)hTINA1-H3表現載體之構築 合成含序列表之序列識別號15所示的hTINA1-H3之核苷酸序列之核苷酸編號36至437所示的編碼hTINA1-H3之可變區的DNA序列的DNA片段(GENEART公司,人工基因合成服務),以與實施例7-1-1)同樣之方法而構築hTINA1-H3表現載體。將獲得的表現載體命名為「pCMA-G1/hTINA1-H3」。
7-2)hTINA1之輕鏈表現載體之構築 7-2-1)hTINA1-L1表現載體之構築 合成含序列表之序列識別號17所示的hTINA1-L1之核苷酸序列之核苷酸編號38至402所示的編碼hTINA1-L1之可變區的DNA序列的DNA片段(GENEART公司,人工基因合成服務)。以合成的DNA片段作為模板,以KOD-Plus-(TOYOBO公司)及下述之引子組,增幅含編碼hTINA1-L1之可變區的DNA序列的DNA片段,藉由使用In-Fusion HD PCR選殖套組(CLONTECH公司),插入於將嵌合及人類化抗體輕鏈表現載體pCMA-LK以限制酶BsiWI切斷處,而構築hTINA1-L1表現載體。將獲得的表現載體命名為「pCMA-LK/hTINA1-L1」。 引子組 5’-ctgtggatctccggcgcgtacggc-3’(序列識別號43:引子 CM-LKF) 5’-ggagggggcggccaccgtacg-3’(序列識別號44:引子KCL-Inf-R)
7-2-2)hTINA1-L2表現載體之構築 合成含序列表之序列識別號19所示的hTINA1-L2之核苷酸序列之核苷酸編號38至402所示的編碼hTINA1-L2之可變區的DNA序列的DNA片段(GENEART公司,人工基因合成服務),以與實施例7-2-1)同樣之方法,構築hTINA1-L2表現載體。將獲得的表現載體命名為「pCMA-LK/hTINA1-L2」。
7-2-3)hTINA1-L3表現載體之構築 合成含序列表之序列識別號21所示的hTINA1-L3之核苷酸序列之核苷酸編號38至402所示的編碼hTINA1-L3之可變區的DNA序列的DNA片段(GENEART公司,人工基因合成服務),藉由以與實施例7-2-1)同樣之方法,構築hTINA1-L3表現載體。將獲得的表現載體命名為「pCMA-LK/hTINA1-L3」。
7-3)hTINA1抗體之生產及純化 7-3-1)hTINA1抗體之小規模生產 以與實施例5-2-5)同樣的方法所生產。 將藉由pCMA-G1/hTINA1-H1與pCMA-LK/hTINA1-L1之組合而取得的hTINA1抗體命名為「hTINA1-H1L1」,將藉由pCMA-G1/hTINA1-H2與pCMA-LK/hTINA1-L1之組合而取得的hTINA1抗體命名為「hTINA1-H2L1」,將藉由pCMA-G1/hTINA1-H2與pCMA-LK/hTINA1-L2之組合而取得的hTINA1抗體命名為「hTINA1-H2L2」,及將藉由pCMA-G1/hTINA1-H3與pCMA-LK/hTINA1-L3之組合而取得的hTINA1抗體命名為「hTINA1-H3L3」。
7-3-2)hTINA1抗體之生產 hTINA1-H1L1、hTINA1-H2L1、hTINA1-H2L2、及hTINA1-H3L3以下列方法生產。 FreeStyle 293F細胞(Invitrogen公司)係依據手冊而實施繼代、培養。將對數增殖期之1.2×10 9個之FreeStyle 293F細胞(Invitrogen公司)接種於3L Fernbach Erlenmeyer Flask(CORNING公司),以FreeStyle293表現媒體(Invitrogen公司)稀釋而調製為1.0×10 6細胞/ml後,於37℃、8%CO 2培養箱內,以90rpm震盪培養一小時。將聚伸乙亞胺(Polyscience #24765;3.6mg)溶解於Opti-Pro SFM(Invitrogen公司;20ml),其次,使用PureLink HiPure質體套組(Invitrogen公司)而將調製的輕鏈表現載體(0.8mg)及重鏈表現載體(0.4mg)添加於Opti-Pro SFM(Invitrogen公司;20ml)。於聚伸乙亞胺/Opti-Pro SFM混合液(20ml)中,添加表現載體/Opti-Pro SFM混合液(20ml)而緩緩攪拌,再放置5分鐘後,添加於FreeStyle 293F細胞。於37℃、8%CO 2培養箱,以90rpm震盪培養7日,將獲得的培養上清液以拋棄式膠囊過濾器(ADVANTEC #CCS-045-E1H)過濾。
7-3-3)hTINA1抗體之純化 將來自上述7-3-2)所獲得的培養上清液的抗體,以rProteinA親和性層析(4-6℃)及陶瓷氫氧磷灰石(室溫)之2階段步驟純化。rProteinA親和性層析純化後及陶瓷氫氧磷灰石純化後之緩衝液取代步驟係於4-6℃下實施。最初,培養上清液施用於經PBS平衡化的MabSelectSuRe(GE Healthcare Bioscience公司製、HiTrap管柱)。培養上清液全部置入管柱後,以管柱容量2倍以上之PBS將管柱洗淨。其次,以2M精胺酸鹽酸鹽溶液(pH4.0)溶出,收集含有抗體的劃分。其劃分藉由透析(Thermo Scientific公司,Slide-A-Lyzer Dialysis Cassette)取代為PBS後,將以5mM磷酸鈉/50mM MES/pH7.0之緩衝液作5倍稀釋的抗體溶液,施用於經5mM NaPi/50mM MES/30mM NaCl/pH7.0之緩衝液平衡化的陶瓷氫氧磷灰石管柱(日本Bio-Rad、Bio-Scale CHTType‐I Hydroxyapatite Column)。實施氯化鈉所致的直線濃度梯度溶出,收集含抗體之劃分。將其劃分藉由透析(Thermo Scientific公司,Slide-A-Lyzer Dialysis Cassette),進行向HBSor(25mM 組胺酸/5% 山梨糖醇、pH6.0)之液取代。最後,以Centrifugal UF Filter Device VIVASPIN20(分劃分子量UF10K,Sartorius公司,4℃)濃縮,作成IgG濃度調製為20mg/ml以上的純化樣品。
[參考例1:hRS7抗體表現載體之製作及抗體之生產] hRS7抗體係基於國際公開第2003/074566號記載的輕鏈、及重鏈之胺基酸序列而製作。 1-1)hRS7抗體重鏈表現載體之構築 合成含序列表之序列識別號29所示的hRS7抗體重鏈之核苷酸序列之核苷酸編號36至437所示的編碼hRS7抗體重鏈之可變區的DNA序列的DNA片段(GENEART公司,人工基因合成服務),以與實施例7-1-1)同樣之方法,構築hRS7抗體重鏈表現載體。將獲得的表現載體命名為「pCMA-G1/hRS7」。hRS7抗體重鏈之胺基酸序列示於序列表之序列識別號30。
1-2)hRS7抗體輕鏈表現載體之構築 合成含序列表之序列識別號31所示的hRS7抗體輕鏈之核苷酸序列之核苷酸編號38至402所示的編碼hRS7抗體輕鏈之可變區的DNA序列的DNA片段(GENEART公司,人工基因合成服務),藉由與實施例7-2-1)同樣之方法構築hRS7抗體輕鏈表現載體。將獲得的表現載體命名為「pCMA-LK/hRS7」。將hRS7抗體重鏈之胺基酸序列示於序列表之序列識別號32。
1-3)hRS7抗體之生產及純化 1-3-1)hRS7抗體之生產 hRS7抗體係藉由pCMA-G1/hRS7與pCMA-LK/hRS7之組合,以與實施例7-3-2)同樣之方法生產。
1-3-2)hRS7抗體之純化 由上述1-3-1)所獲得的培養上清液,以與實施例7-3-3)同樣之方法純化。
[實施例8:hTINA1抗體及hRS7抗體之抗原結合能力之測定] 8-1)使用小規模生產之抗體(培養上清液)的抗原結合能力之測定 抗體與抗原(Recombinant Human TROP-2 Fc chimera)之解離常數測定係使用Biacore 3000(GE Healthcare Bioscience(股)),對將固定化的抗人類IgG(Fab)抗體以抗體作為配位體而捕捉(capture),以將抗原作為分析物而測定的捕捉法進行。抗人類IgG(Fab)抗體(Human Fab capture kit、GE Healthcare Bioscience(股))係對Sensor chip CM5(BIAcore,Inc.)以胺偶合法使共價結合約2000RU。參考細胞亦同樣地固定化。使用作為電泳緩衝液(running buffer)之HBS-EP+(10mM HEPES pH7.4、0.15M NaCl,3mM EDTA、0.05%Surfactant P20)。於將抗人類IgG(Fab)抗體固定化的晶片上,將含抗體的培養上清液以約80秒鐘添加後,抗原之連續稀釋溶液(1-1000nM)以流速30μl/分鐘於300秒鐘添加,接著,監測600秒鐘之解離相。作為再生溶液,將含20%DMSO的10mM Gly-HCl pH1.5以流速10μl/分鐘於60秒鐘添加。資料之解析係使用分析軟體(BIAevaluation software,version 4.1)之雙價結合模式(bivalent binding model),算出結合速度常數kon、解離速度常數koff及解離常數(KD;KD=koff/kon)。
[表1]
名稱 KD(M)
1 hTINAI−HILI 6.3E−08
2 hTINAI−H2LI 6.9E−08
3 hTINAl−H2L2 7.1E−08
4 hTINAI−H3L3 5.8 E −08
5 cTINAl 5.6 E −08
使用培養上清液作為抗體樣品的結合活性
8-2)使用純化抗體的抗原結合能力之測定 抗體與抗原(Recombinant Human TROP-2 Fc chimera)之解離常數測定係使用Biacore 3000(GE Healthcare Bioscience(股)),而於固定化的抗人類IgG(Fab)抗體將抗體作為配位體而捕捉(capture),以將抗原作為分析物而測定的捕捉法進行。抗人類IgG(Fab)抗體(Human Fab capture kit、GE Healthcare Bioscience(股))係對Sensor chip CM5(BIAcore,Inc.)以胺偶合法使共價結合約2000RU。參考細胞亦同樣地固定化。使用作為電泳緩衝液(running buffer)之HBS-EP+(10mM HEPES pH7.4、0.15M NaCl,3mM EDTA、0.05%Surfactant P20)。於將抗人類IgG(Fab)抗體固定化的晶片上,以約1分鐘添加抗體後,抗原之稀釋系列溶液(1-1000nM)以流速30μl/分鐘於300秒鐘添加,接著監測600秒鐘之解離相。作為再生溶液,以電泳緩衝液稀釋的25mM NaOH,以流速100μl/分鐘,於3秒鐘添加2次。資料之解析係藉由上述方法進行。
[表2]
名稱 KD(M)
1 hTINA1−HIL1 2.7E−08
2 hTINA1−H2L1 3.0E−08
3 hTINA1−H2L2 2.7E−08
4 hTINA1−H3L3 1 5E−08
5 hRS7 3.0E−10
使用純化抗體作為抗體樣品的結合活性測定
[實施例9:hTINA1-H1L1 ADC之製作(1)]
步驟1:(4-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲并[1,2-b]喹啉-1-基]胺基}-4-側氧基丁基)胺甲酸三級丁酯 將4-(三級丁氧基羰基胺基)丁酸(0.237g、1.13mmoL)溶解於二氯甲烷(10mL),添加N-羥基琥珀醯亞胺(0.130g、1.13mmoL)、及1-乙基-3-(3-二甲基胺基丙基)碳二亞胺鹽酸鹽(0.216g、1.13mmoL)而攪拌1小時。滴加於添加依喜替康之甲磺酸鹽(0.500g、0.94mmoL)、及三乙基胺(0.157mL、1.13mmoL)的N,N-二甲基甲醯胺溶液(10mL),於室溫攪拌一日。減壓餾除溶媒,獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇=8:2(v/v)]純化,獲得標題化合物(0.595g、定量的)。 1H-NMR(400MHz,DMSO-d 6)δ:0.87(3H,t,J=7.2Hz),1.31(9H,s),1.58(1H,t,J=7.2Hz),1.66(2H,t,J=7.2Hz),1.89-1.82(2H,m),2.12-2.21(3H,m),2.39(3H,s),2.92(2H,t,J=6.5Hz),3.17(2H,s),5.16(1H,d,J=19.2Hz),5.24(1H,d,J=18.8Hz),5.42(2H,s),5.59-5.55(1H,m),6.53(1H,s),6.78(1H,t,J=6.3Hz),7.30(1H,s),7.79(1H,d,J=11.0Hz),8.40(1H,d,J=8.6Hz). MS(APCI)m/z:621(M+H) +.
步驟2:4-胺基-N-[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲并[1,2-b]喹啉-1-基]丁醯胺三氟乙酸鹽 將上述步驟1獲得的化合物(0.388g、0.61mmoL)溶解於二氯甲烷(9mL)。添加三氟乙酸(9mL)並攪拌4小時。減壓餾除溶媒,獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇:水=7:3:1(v/v/v)之分配有機層]純化,獲得標題化合物(0.343g、定量的)。 1H-NMR(400MHz,DMSO-d 6)δ:0.87(3H,t,J=7.2Hz),1.79-1.92(4H,m),2.10-2.17(2H,m),2.27(2H,t,J=7.0Hz),2.40(3H,s),2.80-2.86(2H,m),3.15-3.20(2H,m),5.15(1H,d,J=18.8Hz),5.26(1H,d,J=18.8Hz),5.42(2H,s),5.54-5.61(1H,m),6.55(1H,s),7.32(1H,s),7.72(3H,brs),7.82(1H,d,J=11.0Hz),8.54(1H,d,J=8.6Hz). MS(APCI)m/z:521(M+H) +.
步驟3:N-(三級丁氧基羰基)甘胺醯基甘胺醯基-L-苯基丙胺醯基-N-(4-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲并[1,2-b]喹啉-1-基]胺基}-4-側氧基丁基)甘胺酸醯胺 將N-(三級丁氧基羰基)甘胺醯基甘胺醯基-L-苯基丙胺醯基甘胺酸(0.081g、0.19mmoL)溶解於二氯甲烷(3mL),並添加N-羥基琥珀醯亞胺(0.021g、0.19moL)及1-乙基-3-(3-二甲基胺基丙基)碳二亞胺鹽酸鹽(0.036g、0.19mmoL)而攪拌3.5小時。將其反應溶液滴加於添加上述步驟2所獲得的化合物(0.080g、0.15mmoL)的N,N-二甲基甲醯胺溶液(1.5mL),於室溫攪拌4小時。減壓餾除溶媒,獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇=8:2(v/v)]純化,獲得標題化合物(0.106g、73%)。 1H-NMR(400MHz,DMSO-d 6)δ:0.87(3H,t,J=7.4Hz),1.36(9H,s),1.71(2H,m),1.86(2H,t,J=7.8Hz),2.15-2.19(4H,m),2.40(3H,s),2.77(1H,dd,J=12.7,8.8Hz),3.02(1H,dd,J=14.1,4.7Hz),3.08-3.11(2H,m),3.16-3.19(2H,m),3.54(2H,d,J=5.9Hz),3.57-3.77(4H,m),4.46-4.48(1H,m),5.16(1H,d,J=19.2Hz),5.25(1H,d,J=18.8Hz),5.42(2H,s),5.55-5.60(1H,m),6.53(1H,s),7.00(1H,t,J=6.3Hz),7.17-7.26(5H,m),7.31(1H,s),7.71(1H,t,J=5.7Hz),7.80(1H,d,J=11.0Hz),7.92(1H,t,J=5.7Hz),8.15(1H,d,J=8.2Hz),8.27(1H,t,J=5.5Hz),8.46(1H,d,J=8.2Hz). MS(APCI)m/z:939(M+H) +.
步驟4:甘胺醯基甘胺醯基-L-苯基丙胺醯基-N-(4-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲并[1,2-b]喹啉-1-基]胺基}-4-側氧基丁基)甘胺酸醯胺三氟乙酸鹽 將上述步驟3所獲得的化合物(1.97g、2.10mmoL)溶解於二氯甲烷(7mL)。添加三氟乙酸(7mL)並攪拌1小時。減壓餾除溶媒,添加甲苯而共沸,獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇:水=7:3:1(v/v/v)之分配有機層]純化,獲得標題化合物(1.97g、99%)。 1H-NMR(400MHz,DMSO-d 6)δ:0.87(3H,t,J=7.4Hz),1.71-1.73(2H,m),1.82-1.90(2H,m),2.12-2.20(4H,m),2.40(3H,s),2.75(1H,dd,J=13.7,9.4Hz),3.03-3.09(3H,m),3.18-3.19(2H,m),3.58-3.60(2H,m),3.64(1H,d,J=5.9Hz),3.69(1H,d,J=5.9Hz),3.72(1H,d,J=5.5Hz),3.87(1H,dd,J=16.8,5.9Hz),4.50-4.56(1H,m),5.16(1H,d,J=19.2Hz),5.25(1H,d,J=18.8Hz),5.42(2H,s),5.55-5.60(1H,m),7.17-7.27(5H,m),7.32(1H,s),7.78-7.81(2H,m),7.95-7.97(3H,m),8.33-8.35(2H,m),8.48-8.51(2H,m). MS(APCI)m/z:839(M+H) +.
步驟5:N-{3-[2-(2-{[3-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)丙醯基]胺基}乙氧基)乙氧基]丙醯基}甘胺醯基甘胺醯基-L-苯基丙胺醯基-N-(4-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲并[1,2-b]喹啉-1-基]胺基}-4-側氧基丁基)甘胺酸醯胺 於上述步驟4所獲得的化合物(100mg,0.119mmoL)之N,N-二甲基甲醯胺(1.20mL)溶液中,添加二異丙基乙基胺(20.8μL,0.119mmoL)、3-(2-(2-(3-丁烯二醯亞胺丙醯胺)乙氧基)乙氧基)丙酸N-琥珀醯亞胺基酯(50.7mg,0.119mmoL),於室溫攪拌1小時。減壓餾除溶媒,獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇=5:1(v/v)]純化,獲得呈淡黃色固體之標題化合物(66.5mg,48%)。 1H-NMR(400MHz,DMSO-d 6)δ:0.85(3H,t,J=7.4Hz),1.65-1.74(2H,m),1.77-1.90(2H,m),2.07-2.19(4H,m),2.30(2H,t,J=7.2Hz),2.33-2.36(2H,m),2.38(3H,s),2.76(1H,dd,J=13.7,9.8Hz),2.96-3.18(9H,m),3.42-3.44(4H,m),3.53-3.76(10H,m),4.43(1H,td,J=8.6,4.7Hz),5.14(1H,d,J=18.8Hz),5.23(1H,d,J=18.8Hz),5.38(1H,d,J=17.2Hz),5.42(1H,d,J=17.2Hz),5.52-5.58(1H,m),6.52(1H,s),6.98(2H,s),7.12-7.17(1H,m),7.18-7.25(4H,m),7.29(1H,s),7.69(1H,t,J=5.5Hz),7.78(1H,d,J=11.3Hz),7.98-8.03(2H,m),8.11(1H,d,J=7.8Hz),8.16(1H,t,J=5.7Hz),8.23(1H,t,J=5.9Hz),8.44(1H,d,J=9.0Hz). MS(APCI)m/z:1149(M+H) +.
步驟6:抗體-藥物結合物(1) 抗體之還原:將於實施例7製作的hTINA1-H1L1,使用製造方法1記載的共通操作B(作為280nm吸光係數,使用1.54)及C,以PBS6.0/EDTA調製為10mg/mL。將本溶液(10.0mL)採取至50mL管中,添加10mM TCEP(東京化成工業股份有限公司)水溶液(0.317mL;相對於抗體一分子,4.6當量)及1M磷酸氫二鉀水溶液(Nacalai Tesque,Inc.;0.500mL)。確認本溶液之pH為7.4±0.1內後,藉由於37℃培育1小時,將抗體內鉸鏈區之雙硫鍵還原。 抗體與藥物連接物之結合:將上述溶液於常溫水浴中培育10分鐘後,添加二甲基亞碸(0.567mL)。其次,添加於上述步驟5獲得的化合物之10mM二甲基亞碸溶液(0.635mL;相對於抗體一分子為9.2當量),使用試管混勻器(Tube Rotator)(MTR-103、AS ONE股份有限公司),於室溫攪拌40分鐘,使藥物連接物與抗體結合。其次,添加100mM NAC(Sigma-Aldrich Co.LLC)水溶液(0.127mL;相對於抗體一分子為18.4當量),再於室溫攪拌20分鐘,使藥物連接物之反應停止。 純化:將上述溶液,進行製造方法1記載的共通操作D所致的純化,獲得含有標題抗體-藥物結合物的溶液35.0mL。 特性評價:使用製造方法1記載的共通操作E(使用ε D,280=4964(實測値) ε D,370=18982(實測値)),獲得下述之特性値。 抗體濃度:2.70mg/mL,抗體產量:94.5mg(95%),以共通操作E測定的抗體每一分子之藥物平均結合數(n):6.6。
[實施例10:hTINA1-H1L1 ADC之製作(2)]
步驟1:抗體-藥物結合物(2) 抗體之還原:將於實施例7製作的hTINA1-H1L1,使用製造方法1記載的共通操作B(作為280nm吸光係數,使用1.54)及C,以PBS6.0/EDTA調製為10mg/mL。將本溶液(2.00mL)採取至4mL管,添加10mM TCEP(東京化成工業股份有限公司)水溶液(0.0690mL;相對於抗體一分子為5.0當量)及1M磷酸氫二鉀水溶液(Nacalai Tesque,Inc.;0.100mL)。確認本溶液之pH為7.4±0.1內後,藉由於37℃培育1小時,將抗體內鉸鏈區之雙硫鍵還原。 抗體與藥物連接物之結合:將上述溶液於15℃水浴中培育10分鐘後,添加實施例9步驟5所獲得的化合物之10mM二甲基亞碸溶液(0.127mL;相對於抗體一分子為9.2當量),於15℃水浴培育1小時,使藥物連接物與抗體結合。其次,添加100mM NAC(Sigma-Aldrich Co.LLC)水溶液(0.0190mL;相對於抗體一分子為13.8當量),使用試管混勻器而於室溫攪拌20分鐘,使藥物連接物之反應停止。 純化:將上述溶液,進行製造方法1記載的共通操作D所致的純化,獲得含有標題抗體-藥物結合物的溶液9.00mL。 特性評價:使用製造方法1記載的共通操作E(使用ε D,280=4964(實測値) ε D,370=18982(實測値)),獲得下述之特性値。 抗體濃度:2.08mg/mL,抗體產量:18.7mg(94%),以共通操作E所測定的抗體每一分子之藥物平均結合數(n):6.1。
[實施例11:hTINA1-H1L1 ADC之製作(3)]
步驟1:抗體-藥物結合物(3) 抗體之還原:將於實施例7製作的hTINA1-H1L1,使用製造方法1記載的共通操作B(作為280nm吸光係數,使用1.54)及C,以PBS6.0/EDTA調製為10mg/mL。將本溶液(5.0mL)採取至15mL容器,攪拌下添加1M磷酸氫二鉀水溶液(Nacalai Tesque,Inc.;0.0813mL)後,於37℃攪拌10分鐘。攪拌下添加10mM TCEP(東京化成工業股份有限公司)水溶液(0.0745mL;相對於抗體一分子為2.3當量)後,確認本溶液之pH為7.0±0.1內,藉由於37℃攪拌1小時,將抗體內鉸鏈區之雙硫鍵還原。 抗體與藥物連接物之結合:上述溶液於15℃水浴中攪拌10分鐘後,一邊緩緩滴加實施例9步驟5所獲得的化合物之10mM二甲基亞碸溶液(0.162mL;相對於抗體一分子為5.0當量),一邊於15℃水浴攪拌1小時,使藥物連接物與抗體結合。其次,添加100mM NAC(Sigma-Aldrich Co.LLC)水溶液(0.0418mL;相對於抗體一分子為12.9當量),於室溫攪拌20分鐘,使藥物連接物之反應停止。 純化:將上述溶液,進行製造方法1記載的共通操作D所致的純化,獲得含有標題抗體-藥物結合物的溶液21.0mL。 特性評價:使用製造方法1記載的共通操作E及F(使用ε D,280=4964(實測値) ε D,370=18982(實測値)),獲得下述之特性値。 抗體濃度:2.19mg/mL,抗體產量:46.0mg(92%),以共通操作E測定的抗體每一分子之藥物平均結合數(n):3.6;以共通操作F測定的抗體每一分子之藥物平均結合數(n):3.6。
[實施例12:hTINA1-H1L1 ADC之製作(4)]
步驟1:抗體-藥物結合物(4) 抗體之還原:將於實施例7製作的hTINA1-H1L1,使用製造方法1記載的共通操作B(作為280nm吸光係數,使用1.54)及C,以PBS6.0/EDTA調製為10.0mg/mL。將本溶液(5.00mL)採取至15mL容器,攪拌下添加1M磷酸氫二鉀水溶液(Nacalai Tesque,Inc.;0.0813mL)後,於37℃攪拌10分鐘。攪拌下添加10mM TCEP(東京化成工業股份有限公司)水溶液(0.162mL;相對於抗體一分子為5.0當量)後,確認本溶液之pH為7.0±0.1內,藉由於37℃攪拌1小時,將抗體內鉸鏈區之雙硫鍵還原。 抗體與藥物連接物之結合:上述溶液於15℃水浴中攪拌10分鐘後,一邊緩緩滴加實施例9步驟5所獲得的化合物之10mM二甲基亞碸溶液(0.389mL;相對於抗體一分子為12.0當量),一邊於15℃水浴攪拌1小時,使藥物連接物與抗體結合。其次,添加100mM NAC(Sigma-Aldrich Co.LLC)水溶液(0.0418mL;相對於抗體一分子為12.9當量),於室溫攪拌20分鐘,並使藥物連接物之反應停止。 純化:將上述溶液,進行製造方法1記載的共通操作D所致的純化,獲得含有標題抗體-藥物結合物的溶液21.0mL。 特性評價:使用製造方法1記載的共通操作E及F(使用ε D,280=4964(實測値) ε D,370=18982(實測値)),獲得下述之特性値。 抗體濃度:2.19mg/mL,抗體產量:46.0mg(92%),以共通操作E所測定的抗體每一分子之藥物平均結合數(n):7.0;以共通操作F所測定的抗體每一分子之藥物平均結合數(n):7.0。
[參考例13:hRS7 ADC之製作(5)]
步驟1:抗體-藥物結合物(5) 抗體之還原:將於參考例1製作的hRS7,使用製造方法1記載的共通操作B(作為280nm吸光係數,使用1.56)及C,以PBS6.0/EDTA調製為10mg/mL。將本溶液(2.0mL)採取至4mL管,添加10mM TCEP(東京化成工業股份有限公司)水溶液(0.0690mL;相對於抗體一分子為5.0當量)及1M磷酸氫二鉀水溶液(Nacalai Tesque,Inc.;0.100mL)。確認本溶液之pH為7.4±0.1內後,藉由於37培育1小時,將抗體內鉸鏈區之雙硫鍵還原。 抗體與藥物連接物之結合:上述溶液於15℃水浴培育10分鐘後,添加實施例9步驟5獲得的化合物之10mM二甲基亞碸溶液(0.127mL;相對於抗體一分子為9.2當量),於15℃水浴培育1小時,使藥物連接物與抗體結合。其次,添加100mM NAC(Sigma-Aldrich Co.LLC)水溶液(0.0190mL;相對於抗體一分子為13.8當量),使用試管混勻器而於室溫攪拌20分鐘,使藥物連接物之反應停止。 純化:將上述溶液,進行製造方法1記載的共通操作D所致的純化,獲得含有標題抗體-藥物結合物的溶液9.00mL。 特性評價:使用製造方法1記載的共通操作E(使用ε D,280=4964(實測値) ε D,370=18982(實測値)),獲得下述之特性値。 抗體濃度:2.04mg/mL,抗體產量:18.4mg(92%),共通操作E所測定的抗體每一分子之藥物平均結合數(n):6.2。
[實施例14:hTINA1-H1L1 ADC之製作(6)]
步驟1:({N-[(9H-茀-9-基甲氧基)羰基]甘胺醯基}胺基)甲基乙酸酯 於由N-9-茀基甲氧基羰基甘胺醯基甘胺酸(4.33g,12.2mmol)、四氫呋喃(120ml)、及甲苯(40.0ml)所構成的混合物中添加吡啶(1.16ml,14.7mmol及四乙酸鉛(6.84g,14.7mmol),並加熱回流5小時。將反應液冷卻至室溫後,藉由矽藻土過濾將不溶物去除,減壓下濃縮。將獲得的殘留物溶解於乙酸乙酯,以水及飽和食鹽水洗淨後,有機層以無水硫酸鎂乾燥。溶媒於減壓下餾除後,獲得的殘留物以矽膠管柱層析[己烷:乙酸乙酯=9:1(v/v)~乙酸乙酯]純化,獲得呈無色固體之標題化合物(3.00g,67%)。 1H-NMR(400MHz,CDCl 3)δ:2.07(3H,s),3.90(2H,d,J=5.1Hz),4.23(1H,t,J=7.0Hz),4.46(2H,d,J=6.6Hz),5.26(2H,d,J=7.0Hz),5.32(1H,brs),6.96(1H,brs),7.32(2H,t,J=7.3Hz),7.41(2H,t,J=7.3Hz),7.59(2H,d,J=7.3Hz),7.77(2H,d,J=7.3Hz).
步驟2:[({N-[(9H-茀-9-基甲氧基)羰基]甘胺醯基}胺基)甲氧基]乙酸苄酯 於上述步驟1獲得的化合物(3.68g,10.0mmoL)及乙醇酸苄酯(4.99g,30.0mmoL)之四氫呋喃(40.0mL)溶液中,於0℃添加三級丁醇鉀(2.24g,20.0mmoL),並於室溫攪拌15分鐘。於0℃,於反應溶液中添加乙酸乙酯、水,並以乙酸乙酯、氯仿提取,獲得的有機層以硫酸鈉乾燥,並過濾。減壓餾除溶媒,將獲得的殘留物溶解於二烷(40.0mL)、水(10.0mL),添加碳酸氫鈉(1.01g,12.0mmoL)、氯甲酸9-茀基甲酯(2.59g,10.0mmoL),於室溫攪拌2小時。於反應溶液中添加水,並以乙酸乙酯提取,獲得的有機層以硫酸鈉乾燥,並過濾。減壓餾除溶媒,獲得的殘留物以矽膠管柱層析[己烷:乙酸乙酯=100:0(v/v)~0:100]純化,獲得無色油狀之標題化合物(1.88g、40%)。 1H-NMR(400MHz,CDCl 3)δ:3.84(2H,d,J=5.5Hz),4.24(3H,t,J=6.5Hz),4.49(2H,d,J=6.7Hz),4.88(2H,d,J=6.7Hz),5.15-5.27(1H,m),5.19(2H,s),6.74(1H,brs),7.31-7.39(7H,m),7.43(2H,t,J=7.4Hz),7.61(2H,d,J=7.4Hz),7.79(2H,d,J=7.4Hz).
步驟3:[({N-[(9H-茀-9-基甲氧基)羰基]甘胺醯基}胺基)甲氧基]乙酸 將上述步驟2獲得的化合物(1.88g、3.96mmoL)溶解於乙醇(40.0mL)、乙酸乙酯(20.0ml)。添加鈀碳觸媒(376mg),並於氫氣環境下,於室溫攪拌2小時。藉由矽藻土過濾將不溶物去除,減壓餾除溶媒,獲得呈無色固體之標題化合物(1.52g、定量的)。 1H-NMR(400MHz,DMSO-d 6)δ:3.62(2H,d,J=6.3Hz),3.97(2H,s),4.18-4.32(3H,m),4.60(2H,d,J=6.7Hz),7.29-7.46(4H,m),7.58(1H,t,J=5.9Hz),7.72(2H,d,J=7.4Hz),7.90(2H,d,J=7.4Hz),8.71(1H,t,J=6.5Hz).
步驟4:9H-茀-9-基甲基(2-{[(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)甲基]胺基}-2-側氧基乙基)胺甲酸酯 冰冷下,於依喜替康之甲磺酸鹽(0.283g,0.533mmoL)、N-羥基琥珀醯亞胺(61.4mg,0.533mmoL)、及上述步驟3獲得的化合物(0.205g,0.533mmoL)之N,N-二甲基甲醯胺(10.0mL)溶液中,添加N,N-二異丙基乙基胺(92.9μL,0.533mmoL)及N,N’-二環己基碳二亞胺(0.143g,0.693mmoL),並於室溫攪拌3日。減壓餾除溶媒,獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇:水=7:3:1(v/v/v)之分配有機層]純化,獲得呈淡茶色固體之標題化合物(0.352g,82%)。 1H-NMR(400MHz,DMSO-d 6)δ:0.81(3H,t,J=7.4Hz),1.73-1.87(2H,m),2.06-2.20(2H,m),2.34(3H,s),3.01-3.23(2H,m),3.58(2H,d,J=6.7Hz),3.98(2H,s),4.13-4.25(3H,m),4.60(2H,d,J=6.7Hz),5.09-5.22(2H,m),5.32-5.42(2H,m),5.50-5.59(1H,m),6.49(1H,s),7.24-7.30(3H,m),7.36(2H,t,J=7.4Hz),7.53(1H,t,J=6.3Hz),7.66(2H,d,J=7.4Hz),7.75(1H,d,J=11.0Hz),7.84(2H,d,J=7.4Hz),8.47(1H,d,J=8.6Hz),8.77(1H,t,J=6.7Hz). MS(ESI)m/z:802(M+H) +.
步驟5:N-[(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)甲基]甘胺酸醯胺 於上述步驟4獲得的化合物(0.881g,1.10mmoL)之N,N-二甲基甲醯胺(11.0mL)溶液中,添加哌啶(1.1mL),並於室溫攪拌2小時。減壓餾除溶媒,獲得含標題化合物的混合物。本混合物係不進行進一步的純化而使用於以下的反應。
步驟6:N-[(9H-茀-9-基甲氧基)羰基]甘胺醯基甘胺醯基-L-苯基丙胺醯基-N-[(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)甲基]甘胺酸醯胺 冰冷下,於上述步驟5獲得的混合物(0.439mmoL)、N-羥基琥珀醯亞胺(0.101g,0.878mmoL)、及N-[(9H-茀-9-基甲氧基)羰基]甘胺醯基甘胺醯基-L-苯丙胺酸(特開2002-60351號公報;0.440g,0.878mmoL)之N,N-二甲基甲醯胺(50.0mL)溶液中,添加N,N’-二環己基碳二亞胺(0.181g,0.878mmoL),並於室溫攪拌4日。減壓餾除溶媒,獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇=9:1(v/v)]純化,獲得呈淡橙色固體之標題化合物(0.269g,58%)。 MS(ESI)m/z:1063(M+H) +.
步驟7:甘胺醯基甘胺醯基-L-苯基丙胺醯基-N-[(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)甲基]甘胺酸醯胺 於上述步驟6獲得的化合物(0.269g,0.253mmoL)之N,N-二甲基甲醯胺(4.00mL)溶液中,添加哌啶(0.251mL,2.53mmoL),並於室溫攪拌2小時。減壓餾除溶媒,獲得含標題化合物的混合物。本混合物係不進行進一步的純化而使用於以下的反應。
步驟8:N-[6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯基]甘胺醯基甘胺醯基-L-苯基丙胺醯基-N-[(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)甲基]甘胺酸醯胺 於上述步驟7獲得的化合物(0.253mmoL)之N,N-二甲基甲醯胺(10.0mL)溶液中添加6-順丁烯二醯亞胺己烷酸N-琥珀醯亞胺基酯(0.156g,0.506mmoL),並於室溫攪拌3日。減壓餾除溶媒,獲得的殘留物以矽膠管柱層析[氯仿~氯仿:甲醇=9:1(v/v)]純化,獲得呈淡黃色固體之標題化合物(0.100g,38%)。 1H-NMR(400MHz,DMSO-d 6)δ:0.83(3H,t,J=7.2Hz),1.09-1.21(2H,m),1.33-1.47(4H,m),1.75-1.90(2H,m),2.00-2.23(4H,m),2.36(3H,s),2.69-2.81(1H,m),2.94-3.03(1H,m),3.06-3.22(2H,m),3.23-3.74(6H,m),3.98(2H,s),4.39-4.50(1H,m),4.60(2H,d,J=6.7Hz),5.17(2H,s),5.39(2H,s),5.53-5.61(1H,m),6.50(1H,s),6.96(2H,s),7.11-7.24(5H,m),7.28(1H,s),7.75(1H,d,J=11.0Hz),7.97(1H,t,J=5.7Hz),8.03(1H,t,J=5.9Hz),8.09(1H,d,J=7.8Hz),8.27(1H,t,J=6.5Hz),8.48(1H,d,J=9.0Hz),8.60(1H,t,J=6.5Hz). MS(ESI)m/z:1034(M+H) +.
步驟9:抗體-藥物結合物(6) 抗體之還原:使用製造方法1記載的共通操作B(作為280nm吸光係數,使用1.54)及C,將於實施例7製作的hTINA1-H1L1,以PBS6.0/EDTA調製為10mg/mL。將本溶液(10.0mL)收取至50mL管,添加10mM TCEP(東京化成工業股份有限公司)水溶液(0.317mL;相對於抗體一分子為4.6當量)及1M磷酸氫二鉀水溶液(Nacalai Tesque,Inc.;0.500mL)。確認本溶液之pH為7.4±0.1內後,藉由於37培育1小時,將抗體內鉸鏈區之雙硫鍵還原。 抗體與藥物連接物之結合:上述溶液以常溫水浴培育10分鐘後,添加二甲基亞碸(0.567mL)。其次,添加上述步驟8獲得的化合物之10mM二甲基亞碸溶液(0.635mL;相對於抗體一分子為9.2當量),使用試管混勻器而於室溫攪拌40分鐘,使藥物連接物與抗體結合。其次,添加100mM NAC(Sigma-Aldrich Co.LLC)水溶液(0.127mL;相對於抗體一分子為18.4當量),再於室溫攪拌20分鐘,使藥物連接物之反應停止。 純化:將上述溶液進行製造方法1記載的共通操作D所致的純化,獲得含有標題抗體-藥物結合物的溶液35.0mL。 特性評價:使用製造方法1記載的共通操作E(使用ε D,280=5178(實測値)、ε D,370=20217(實測値)),獲得下述之特性値。 抗體濃度:2.70mg/mL,抗體產量:94.5mg(95%),以共通操作E所測定的抗體每一分子之藥物平均結合數(n):6.4。
[實施例15:hTINA1-H1L1 ADC之製作(7)]
步驟1:抗體-藥物結合物(7) 抗體之還原:使用製造方法1記載的共通操作B(作為280nm吸光係數,使用1.54)及C,將實施例7製作的hTINA1-H1L1,以PBS6.0/EDTA調製為10mg/mL。將本溶液(2.0mL)採取至4mL管,添加10mM TCEP(東京化成工業股份有限公司)水溶液(0.0690mL;相對於抗體一分子為5.0當量)及1M磷酸氫二鉀水溶液(Nacalai Tesque,Inc.;0.0299mL)。確認本溶液之pH為7.0±0.1內後,藉由於37℃培育1小時,將抗體內鉸鏈區之雙硫鍵還原。 抗體與藥物連接物之結合:上述溶液於15℃水浴培育10分鐘後,添加實施例14步驟8獲得的化合物之10mM二甲基亞碸溶液(0.127mL;相對於抗體一分子為9.2當量),於15℃水浴培育1小時,使藥物連接物與抗體結合。其次,添加100mM NAC(Sigma-Aldrich Co.LLC)水溶液(0.0190mL;相對於抗體一分子為13.8當量),使用試管混勻器而於室溫攪拌20分鐘,使藥物連接物之反應停止。 純化:將上述溶液進行製造方法1記載的共通操作D所致的純化,獲得含有標題抗體-藥物結合物的溶液9.00mL。 特性評價:使用製造方法1記載的共通操作E(使用ε D,280=5178(實測値) ε D,370=20217(實測値)),獲得下述之特性値。 抗體濃度:2.04mg/mL,抗體產量:18.4mg(92%),以共通操作E測定的抗體每一分子之藥物平均結合數(n):5.7。
[實施例16:hTINA1-H1L1 ADC之製作(8)]
步驟1:抗體-藥物結合物(8) 抗體之還原:將於實施例7製作的hTINA1-H1L1,使用製造方法1記載的共通操作B(作為280nm吸光係數,使用1.54)及C,以PBS6.0/EDTA調製為10mg/mL。將本溶液(30.0mL)收取至100mL容器,攪拌下添加1M磷酸氫二鉀水溶液(Nacalai Tesque,Inc.;0.4875mL)後,於37℃攪拌10分鐘。攪拌下添加10mM TCEP(東京化成工業股份有限公司)水溶液(0.9721mL;相對於抗體一分子為5.0當量)後,確認本溶液之pH為7.0±0.1內,藉由於37℃攪拌1小時,將抗體內鉸鏈區之雙硫鍵還原。 抗體與藥物連接物之結合:將上述溶液於15℃水浴攪拌10分鐘後,一邊緩緩滴加實施例14步驟8獲得的化合物之10mM二甲基亞碸溶液(2.33mL;相對於抗體一分子為12.0當量),一邊於15℃水浴攪拌1小時,使藥物連接物與抗體結合。其次,添加100mM NAC(Sigma-Aldrich Co.LLC)水溶液(0.251mL;相對於抗體一分子為12.9當量),於室溫攪拌20分鐘,使藥物連接物之反應停止。 純化:將上述溶液,進行製造方法1記載的共通操作D所致的純化,獲得含有標題抗體-藥物結合物的溶液98.0mL。之後,進行製造方法1記載的共通操作A所致的濃縮操作,獲得含有標題抗體-藥物結合物的溶液17.5mL。 特性評價:使用製造方法1記載的共通操作E及F(使用ε D,280=5178(實測値) ε D,370=20217(實測値)),獲得下述之特性値。 抗體濃度:14.6mg/mL,抗體產量:256mg(85%),以共通操作E測定的抗體每一分子之藥物平均結合數(n):6.7;共通操作F所測定的抗體每一分子之藥物平均結合數(n):7.0。
[實施例17:hTINA1-H1L1 ADC之製作(9)]
步驟1:抗體-藥物結合物(9) 抗體之還原:將於實施例7製作的hTINA1-H1L1,使用製造方法1記載的共通操作B(作為280nm吸光係數,使用1.54)及C,以PBS6.0/EDTA調製為10mg/mL。將本溶液(5.0mL)收取至15mL容器,攪拌下添加1M磷酸氫二鉀水溶液(Nacalai Tesque,Inc.;0.0813mL)後,於37℃攪拌10分鐘。攪拌下添加10mM TCEP(東京化成工業股份有限公司)水溶液(0.0778mL;相對於抗體一分子為2.4當量)後,確認本溶液之pH為7.0±0.1內,藉由於37℃攪拌1小時,將抗體內鉸鏈區之雙硫鍵還原。 抗體與藥物連接物之結合:將上述溶液於15℃水浴攪拌10分鐘後,一邊緩緩滴加實施例14步驟8獲得的化合物之10mM二甲基亞碸溶液(0.162mL;相對於抗體一分子為5.0當量),並於15℃水浴攪拌1小時,使藥物連接物與抗體結合。其次,添加100mM NAC(Sigma-Aldrich Co.LLC)水溶液(0.0418mL;相對於抗體一分子為12.9當量),於室溫攪拌20分鐘,使藥物連接物之反應停止。 純化:將上述溶液,進行製造方法1記載的共通操作D所致的純化,獲得含有標題抗體-藥物結合物的溶液21.0mL。 特性評價:使用製造方法1記載的共通操作E及F(使用ε D,280=5178(實測値) ε D,370=20217(實測値)),獲得下述之特性値。 抗體濃度:2.26mg/mL,抗體產量:47.5mg(95%),以共通操作E測定的抗體每一分子之藥物平均結合數(n):3.5;以共通操作F測定的抗體每一分子之藥物平均結合數(n):3.6。
[參考例18:hRS7 ADC之製作(10)]
步驟1:抗體-藥物結合物(10) 抗體之還原:將以參考例1製作的hRS7,使用製造方法1記載的共通操作B(作為280nm吸光係數,使用1.56)及C,以PBS6.0/EDTA調製為10mg/mL。將本溶液(2.0mL)採取至4mL管,添加10mM TCEP(東京化成工業股份有限公司)水溶液(0.0690mL;相對於抗體一分子為5.0當量)及1M磷酸氫二鉀水溶液(Nacalai Tesque,Inc.;0.0299mL)。確認本溶液之pH為7.0±0.1內後,藉由於37℃培育1小時間,將抗體內鉸鏈區之雙硫鍵還原。 抗體與藥物連接物之結合:上述溶液於15℃水浴培育10分鐘後,添加實施例14步驟8獲得的化合物之10mM二甲基亞碸溶液(0.1269mL;相對於抗體一分子為9.2當量),於15℃水浴培育1小時,使藥物連接物與抗體結合。其次,添加100mM NAC(Sigma-Aldrich Co.LLC)水溶液(0.0190mL;相對於抗體一分子為13.8當量),使用試管混勻器而於室溫攪拌20分鐘,使藥物連接物之反應停止。 純化:將上述溶液,進行製造方法1記載的共通操作D所致的純化,獲得含有標題抗體-藥物結合物的溶液9.00mL。 特性評價:使用製造方法1記載的共通操作E(使用ε D,280=5178(實測値) ε D,370=20217(實測値)),獲得下述之特性値。 抗體濃度:2.07mg/mL,抗體產量:18.6mg(93%),以共通操作E測定的抗體每一分子之藥物平均結合數(n):5.6。
[實施例19:hTINA1-H1L1 ADC之製作(11)]
步驟1:[2-(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)乙基]胺甲酸三級丁酯 將依喜替康之甲磺酸鹽(3.10g、5.47moL),使用{2-[(三級丁氧基羰基)胺基]乙氧基}乙酸(J.Med.Chem.,1992年,35卷,2928頁;1.55g,6.01mmol)替代4-(三級丁氧基羰基胺基)丁酸,使與實施例1之步驟1同樣地反應,獲得呈淡黃色固體之標題化合物(2.56g,73%)。 1H-NMR(400MHz,DMSO-d 6)δ:0.87(3H,t,J=7.3Hz),1.26(9H,s),1.81-1.91(2H,m),2.13-2.22(2H,m),2.40(3H,s),3.08-3.26(4H,m),3.43-3.53(2H,m),4.00(1H,d,J=15.1Hz),4.05(1H,d,J=15.1Hz),5.14(1H,d,J=18.7Hz),5.22(1H,d,J=18.7Hz),5.40(1H,d,J=16.6Hz),5.44(1H,d,J=16.6Hz),5.59-5.66(1H,m),6.53(1H,s),6.86(1H,t,J=5.4Hz),7.31(1H,s),7.79(1H,d,J=10.9Hz),8.49(1H,d,J=9.1Hz). MS(APCI)m/z:637(M+H) +.
步驟2:2-(2-胺基乙氧基)-N-[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲并[1,2-b]喹啉-1-基]乙醯胺三氟乙酸鹽 將上述步驟1獲得的化合物(1.50g,2.36mol),使與實施例1之步驟2同樣地反應,獲得呈淡黃色固體之標題化合物(1.50g,定量的)。 1H-NMR(400MHz,DMSO-d 6)δ:0.87(3H,t,J=7.5Hz),1.81-1.92(2H,m),2.15-2.23(2H,m),2.41(3H,s),3.05(2H,t,J=5.1Hz),3.15-3.23(2H,m),3.71(2H,t,J=5.1Hz),4.10(2H,s),5.19(1H,d,J=18.7Hz),5.24(1H,d,J=18.7Hz),5.43(2H,s),5.58-5.66(1H,m),6.55(1H,s),7.33(1H,s),7.73-7.84(4H,m),8.55(1H,d,J=9.1Hz). MS(APCI)m/z:537(M+H) +.
步驟3:N-(三級丁氧基羰基)甘胺醯基甘胺醯基-L-苯基丙胺醯基-N-[2-(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)乙基]甘胺酸醯胺 將上述步驟2獲得的化合物(554mg,0.85mmol),使與實施例1之步驟3同樣地反應,獲得標題化合物(775mg,95%)。 1H-NMR(400MHz,DMSO-d 6)δ:0.85(3H,t,J=7.3Hz),1.36(9H,s),1.78-1.89(2H,m),2.13-2.22(2H,m),2.39(3H,s),2.71(1H,dd,J=13.4,9.8Hz),2.95(1H,dd,J=13.4,4.3Hz),3.09-3.23(1H,m),3.23-3.32(2H,m),3.40-3.62(8H,m),3.73(1H,dd,J=16.5,5.5Hz),4.03(2H,s),4.39-4.47(1H,m),5.17(1H,d,J=18.9Hz),5.25(1H,d,J=18.9Hz),5.41(1H,d,J=16.8Hz),5.45(1H,d,J=16.8Hz),5.57-5.64(1H,m),6.54(1H,s),6.99(1H,t,J=5.8Hz),7.13-7.26(5H,m),7.31(1H,s),7.76-7.82(2H,m),7.90(1H,t,J=5.2Hz),8.13(1H,d,J=7.9Hz),8.27(1H,t,J=5.8Hz),8.49(1H,d,J=8.5Hz). MS(APCI)m/z:955(M+H) +.
步驟4:甘胺醯基甘胺醯基-L-苯基丙胺醯基-N-[2-(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)乙基]甘胺酸醯胺三氟乙酸鹽 將上述步驟3獲得的化合物(630mg,0.659mmol),使與實施例1之步驟4同樣地反應,獲得標題化合物(588mg,92%)。 1H-NMR(400MHz,DMSO-d 6)δ:0.86(3H,t,J=7.3Hz),1.79-1.90(2H,m),2.13-2.22(2H,m),2.39(3H,s),2.71(1H,dd,J=13.4,10.1Hz),2.99(1H,dd,J=13.4,4.3Hz),3.09-3.23(1H,m),3.24-3.32(3H,m),3.41-3.71(7H,m),3.86(1H,dd,J=16.8,5.8Hz),4.04(2H,s),4.52(1H,td,J=9.0,4.1Hz),5.17(1H,d,J=18.9Hz),5.25(1H,d,J=18.9Hz),5.41(1H,d,J=16.5Hz),5.45(1H,d,J=16.5Hz),5.56-5.65(1H,m),6.55(1H,s),7.13-7.26(5H,m),7.32(1H,s),7.80(1H,d,J=11.0Hz),7.87-8.01(4H,m),8.29-8.36(2H,m),8.46-8.55(2H,m). MS(APCI)m/z:855(M+H) +.
步驟5:N-[6-(2,5-二側氧基-2,5-二氫-1H-吡咯-1-基)己醯基]甘胺醯基甘胺醯基-L-苯基丙胺醯基-N-[2-(2-{[(1S,9S)-9-乙基-5-氟-9-羥基-4-甲基-10,13-二側氧基-2,3,9,10,13,15-六氫-1H,12H-苯并[de]哌喃并[3’,4’:6,7]吲并[1,2-b]喹啉-1-基]胺基}-2-側氧基乙氧基)乙基]甘胺酸醯胺 以三乙基胺(31.4μL,0.22mmoL)替代二異丙基乙基胺,使用6-順丁烯二醯亞胺己烷酸N-琥珀醯亞胺基(95.3mg,0.31mmoL)替代3-(2-(2-(3-丁烯二醯亞胺丙醯胺)乙氧基)乙氧基)丙酸N-琥珀醯亞胺基,將上述步驟4獲得的化合物(240mg,0.247mmol),使以與實施例1之步驟5同樣地反應,獲得標題化合物(162mg,62%)。 1H-NMR(400MHz,DMSO-d 6)δ:0.86(3H,t,J=7.6Hz),1.13-1.22(2H,m),1.40-1.51(4H,m),1.78-1.90(2H,m),2.09(2H,t,J=7.6Hz),2.14-2.21(2H,m),2.39(3H,s),2.74(1H,dd,J=13.6,9.7Hz),2.96(1H,dd,J=13.6,4.5Hz),3.08-3.24(1H,m),3.24-3.30(1H,m),3.33-3.40(4H,m),3.47-3.68(7H,m),3.72(1H,dd,J=16.6,5.7Hz),4.03(2H,s),4.42(1H,td,J=8.6,4.2Hz),5.17(1H,d,J=18.7Hz),5.25(1H,d,J=18.7Hz),5.40(1H,d,J=17.2Hz),5.44(1H,d,J=17.2Hz),5.57-5.64(1H,m),6.52(1H,s),6.99(2H,s),7.13-7.25(5H,m),7.31(1H,s),7.74-7.81(2H,m),7.99(1H,t,J=5.7Hz),8.03-8.11(2H,m),8.22(1H,t,J=5.7Hz),8.47(1H,d,J=9.1Hz). MS(APCI)m/z:1048(M+H) +.
步驟6:抗體-藥物結合物(11) 抗體之還原:將實施例7製作的hTINA1-H1L1,使用製造方法1記載的共通操作B(作為280nm吸光係數,使用1.54)及C,以PBS6.0/EDTA調製為10mg/mL。將本溶液(3.0mL)收取至15mL容器,攪拌下添加1M磷酸氫二鉀水溶液(Nacalai Tesque,Inc.;0.0488mL)後,於37℃攪拌10分鐘。攪拌下添加10mM TCEP(東京化成工業股份有限公司)水溶液(0.0972mL;相對於抗體一分子為5.0當量)後,確認本溶液之pH為7.0±0.1內,藉由於37℃攪拌1小時,將抗體內鉸鏈區之雙硫鍵還原。 抗體與藥物連接物之結合:將上述溶液於15℃水浴攪拌10分鐘後,一邊緩緩滴加實施例11a步驟8獲得的化合物之10mM二甲基亞碸溶液(0.2333mL;相對於抗體一分子為12.0當量),一邊於15℃水浴攪拌1小時,使藥物連接物與抗體結合。其次,添加100mM NAC(Sigma-Aldrich Co.LLC)水溶液(0.0251mL;相對於抗體一分子為12.9當量),於室溫攪拌20分鐘,使藥物連接物之反應停止。 純化:將上述溶液,進行製造方法1記載的共通操作D所致的純化,獲得含有標題抗體-藥物結合物的溶液14mL。 特性評價:使用製造方法1記載的共通操作E及F(使用ε D,280=5193(實測値) ε D,370=20347(實測値)),獲得下述之特性値。 抗體濃度:1.93mg/mL,抗體產量:27.0mg(90%),以共通操作E測定的抗體每一分子之藥物平均結合數(n):7.1;以共通操作F測定的抗體每一分子之藥物平均結合數(n):7.0。
[參考例2:hRS7-CL2A-SN38之製作(12)]
步驟1:抗體-藥物結合物(12) 抗體之還原:將參考例1製作的hRS7,使用製造方法1記載的共通操作B(作為280nm吸光係數,使用1.54)及C,以PBS6.0/EDTA調製為10mg/mL。將本溶液(10.0mL)收取於50mL管,添加10mM TCEP(東京化成工業股份有限公司)水溶液(0.317mL;相對於抗體一分子為4.6當量)及1M磷酸氫二鉀水溶液(Nacalai Tesque,Inc.;0.500mL)。確認本溶液之pH為7.4±0.1內後,藉由於37培育1小時,將抗體內鉸鏈區之雙硫鍵還原。 抗體與藥物連接物之結合:上述溶液於常溫水浴培育10分鐘後,添加二甲基亞碸(0.567mL)。其次,添加依據美國專利公開第2011/0293513號說明書而合成的CL2A-SN38之10mM二甲基亞碸溶液(0.635mL;相對於抗體一分子為9.2當量),使用試管混勻器,於室溫攪拌40分鐘,使藥物連接物與抗體結合。其次,添加100mM NAC(Sigma-Aldrich Co.LLC)水溶液(0.127mL;相對於抗體一分子為18.4當量),再於室溫攪拌20分鐘,使藥物連接物之反應停止。 純化:於上述反應溶液,重複2次製造方法1-共通操作D記載的膠體過濾純化操作,其次,以含有聚山梨醇酯80(0.01%)的25mM繭糖(trehalose)溶液,同樣地進行1次NAP-25管柱所致的膠體過濾純化操作後,將獲得的溶出液(35mL)冷凍乾燥。 特性評價:針對凍結乾燥前之溶出液,使用製造方法1記載的共通操作E,獲得下述之特性値。 抗體濃度:2.78mg/mL,抗體產量:97.3mg(97%),抗體每一分子之藥物平均結合數(n):5.6
[實施例20:hTINA1-H1L1 ADC之製作(13)]
步驟1:抗體-藥物結合物(13) 抗體之還原:將實施例7製作的hTINA1-H1L1,使用製造方法1記載的共通操作B(作為280nm吸光係數,使用1.54)及C,將媒體取代為PBS6.0/EDTA,調製為10mg/mL之抗體濃度。將本溶液(100mL)置入聚碳酸酯製之250mL三角燒瓶容器,磁性攪拌子攪拌下、於室溫添加1M磷酸氫二鉀水溶液(1.4mL)後,添加10mM TCEP水溶液(1.62mL;相對於抗體一分子為2.5當量)。確認本溶液之pH為7.0±0.1內後,停止攪拌,經由於37℃培育2小時,將抗體內鉸鏈區之雙硫鍵還原。 抗體與藥物連接物之結合:將上述溶液冷卻至15℃後,攪拌下,緩緩滴加DMSO(3.24mL)。其次,緩緩滴加含實施例14步驟8之化合物10mM的DMSO溶液(1.76mL;相對於抗體一分子為5.0當量)。將此溶液於15℃攪拌1小時,使藥物連接物與抗體結合。其次,攪拌下,添加100mM NAC水溶液(0.324mL;相對於抗體一分子為5.0當量),再於室溫培育20分鐘,使未反應之藥物連接物之反應性停止。 純化:攪拌下,於上述溶液中緩緩添加20%乙酸水(約0.52mL)及ABS(100mL),將本溶液之pH作成5.5±0.1。經由精密過濾此溶液(0.45μm、PVDF膜)去除白濁物,獲得約200mL濾液。對此濾液,使用以超過濾過膜(Merck股份有限公司、Pellicon XL Cassette、Ultracell 30KDa)、管泵(美國Cole-Parmer公司MasterFlex Pump model 77521-40、泵壓頭model 7518-00)及管子(美國Cole-Parmer公司MasterFlex Tube L/S16)所構成的超過濾裝置,進行超過濾純化。即,一邊於於反應液中滴加作為純化緩衝液之ABS(計1600mL),一邊進行超過濾純化下,去除未結合之藥物連接物及其他低分子量試藥的同時,將緩衝液取代為ABS,再進行至濃縮。對獲得的純化溶液,進行精密過濾(0.22μm、PVDF膜),獲得含有標題抗體-藥物結合物的溶液88mL。 特性評價:使用共通操作E及共通操作F(使用ε D,280=5178 ε D,370=20217),獲得下述之特性値。 抗體濃度:9.96mg/mL,抗體產量:876mg(88%),共通操作E測定的抗體每一分子之藥物平均結合數(n):3.8;共通操作F測定的抗體每一分子之藥物平均結合數(n):3.8。
[實施例21:ADC之抗腫瘤效果之評價] 21-a)ADC之抗腫瘤效果(1) 小鼠:5-6週齡之雌BALB/c-nu/nu小鼠(日本Charles River股份有限公司)於實驗使用前,以SPF條件下馴化4-7日。對小鼠給餌經滅菌的固形飼料(FR-2,Funabashi Farms Co.,Ltd),給予經滅菌的自來水(添加5-15ppm次亞氯酸鈉溶液而調製)。 測定、計算式:於全部之研究,腫瘤之長徑及短徑以電子式數位測徑器(CD-15C,Mitutoyo Corp.)於1週測定2次,計算腫瘤體積(mm 3)。計算式係如以下所示。 腫瘤體積(mm 3)=1/2×長徑(mm)×[短徑(mm)] 2
抗體-藥物結合物全部以生理食鹽水(大塚製藥工場股份有限公司)稀釋,將10mL/kg之液量於尾靜脈內投予。自ATCC購入的人類大腸癌細胞株COLO205懸浮於生理食鹽水的2×10 6個細胞皮下移植至雌BALB/c-nu/nu小鼠之右側腹部(第0日),第7日實施隨機分組。抗體-藥物結合物(1)、(6)、(12)於第7、14、21日全部以10mg/kg之用量自尾靜脈內投予。作為陰性對照,未結合藥物的hTINA1-H1L1抗體及hRS7抗體以25mg/kg之用量而同樣地投予。抗體-藥物結合物(1)、(6)之投予所致的腫瘤體積與抗體-藥物結合物(12)之投予相比,顯著減少,任一者皆發揮腫瘤增殖抑制效果(第13圖)。又,圖中,横軸表示日數,縱軸表示腫瘤體積。
21-b)ADC之抗腫瘤效果(2) 將自ATCC購入的人類胰臓腺癌細胞株Bx-PC3移植至雌BALB/c-nu/nu小鼠,再將固形繼代的腫瘤片皮下移植於雌BALB/c-nu/nu小鼠右側腹部(第0日),第16日實施隨機分組。抗體-藥物結合物(1)、(6)、(12)於第16、23、30日全部以10mg/kg之用量自尾靜脈內投予。作為陰性對照,未結合藥物的hTINA1-H1L1抗體及hRS7抗體以25mg/kg之用量同樣地投予。抗體-藥物結合物(1)、(6)之投予所致的腫瘤體積與抗體-藥物結合物(12)之投予相比,顯著減少,任一者皆發揮腫瘤增殖抑制效果(第14圖)。
21-c)ADC之抗腫瘤效果(3) 將自ATCC購入的人類胰臓腺癌細胞株Capan-1移植至雌BALB/c-nu/nu小鼠,再將固形繼代的腫瘤片皮下移植於雌BALB/c-nu/nu小鼠右側腹部(第0日),於第18日實施隨機分組。抗體-藥物結合物(1)、(6)、(12)於第18、25、32日全部以10mg/kg之用量自尾靜脈內投予。作為陰性對照,未結合藥物的hTINA1-H1L1抗體及hRS7抗體以25mg/kg之用量同樣地投予。抗體-藥物結合物(1)、(6)之投予所致的腫瘤體積與抗體-藥物結合物(12)之投予相比,顯著減少,任一者皆發揮腫瘤增殖抑制效果(第15圖)。
21-d)ADC之抗腫瘤效果(4) 與實施例21-a)同樣地,將COLO205皮下移植至雌BALB/c-nu/nu小鼠(第0日),第11日實施隨機分組。第11、18、25日將抗體-藥物結合物(2)、(5)全部以10mg/kg、抗體-藥物結合物(7)、(10)全部以3mg/kg之用量自尾靜脈內投予。抗體-藥物結合物(2)、(5)、(7)、(10)之投予所致任一者皆發揮腫瘤增殖抑制效果(第16圖)。
21-e)ADC之抗腫瘤效果(5) 與實施例21-b)同樣地將Bx-PC3皮下移植至雌BALB/c-nu/nu小鼠(第0日),於第25日實施隨機分組。抗體-藥物結合物(2)、(5)、(7)、(10)於第25、32日全部以3mg/kg之用量自尾靜脈內投予。抗體-藥物結合物(2)、(5)、(7)、(10)之投予所致任一者皆發揮腫瘤增殖抑制效果(第17圖)。
21-f)ADC之抗腫瘤效果(6) 與實施例21-a)同樣地,將COLO205皮下移植至雌BALB/c-nu/nu小鼠(第0日),於第9日實施隨機分組。第9、16日抗體-藥物結合物(3)、(4)、(8)、(9)全部以10mg/kg之用量自尾靜脈內投予。抗體-藥物結合物(3)、(4)、(8)、(9)之投予所致任一者皆發揮腫瘤增殖抑制效果(第18圖)。
21-g)ADC之抗腫瘤效果(7) 與實施例21-b)同樣地,將Bx-PC3皮下移植至雌BALB/c-nu/nu小鼠(第0日),第21日實施隨機分組。第21、28日將抗體-藥物結合物(3)、(4)、(8)、(9)全部以3mg/kg之用量自尾靜脈內投予。抗體-藥物結合物(3)、(4)、(8)、(9)之投予所致任一者皆發揮腫瘤增殖抑制效果(第19圖)。
21-h)ADC之抗腫瘤效果(8) 將自ATCC購入的人類卵巢癌細胞株NIH:OVCAR-3 8×10 6cells懸浮於Matrigel(Becton,Dickinson and Company),皮下移植至雌BALB/c-nu/nu小鼠(第0日),於第25日實施隨機分組。第25日抗體-藥物結合物(3)、(4)、(8)、(9)全部以3mg/kg之用量自尾靜脈內投予。抗體-藥物結合物(3)、(4)、(8)、(9)之投予所致任一者皆發揮腫瘤增殖抑制效果(第20圖)。
21-i)ADC之抗腫瘤效果(9) 將自ATCC購入的人類胃癌細胞株NCI-N87 1×10 7個細胞懸浮於生理食鹽水,皮下移植至雌BALB/c-nu/nu小鼠(第0日),於第6日實施隨機分組。第6日將抗體-藥物結合物(3)、(4)、(8)、(9)全部以3mg/kg之用量自尾靜脈內投予。抗體-藥物結合物(3)、(4)、(8)、(9)之投予所致任一者皆發揮腫瘤增殖抑制效果(第21圖)。
21-j)ADC之抗腫瘤效果(10) 將自ATCC購入的人類肺癌細胞株NCI-H292 5×10 6個細胞懸浮於生理食鹽水,皮下移植至雌BALB/c-nu/nu小鼠(第0日),於第9日實施隨機分組。第9日將抗體-藥物結合物(3)、(4)、(8)、(9)全部以3mg/kg之用量自尾靜脈內投予。抗體-藥物結合物(3)、(4)、(8)、(9)之投予所致任一者皆發揮腫瘤增殖抑制效果(第22圖)。
21-k)ADC之抗腫瘤效果(11) 將自ATCC購入的人類咽頭癌細胞株FaDu 3×10 6個細胞懸浮於生理食鹽水,皮下移植至雌BALB/c-nu/nu小鼠(第0日),於第11日實施隨機分組。第11日將抗體-藥物結合物(3)、(4)、(8)、(9)全部以3mg/kg之用量自尾靜脈內投予。抗體-藥物結合物(3)、(4)、(8)、(9)之投予所致任一者皆發揮腫瘤增殖抑制效果(第23圖)。
21-l)ADC之抗腫瘤效果(12) 將自ATCC購入的人類胰臓腺癌細胞株CFPAC-1 4×10 6個細胞懸浮於生理食鹽水,皮下移植至雌BALB/c-nu/nu小鼠(第0日),於第14日實施隨機分組。於第14日將抗體-藥物結合物(3)、(4)、(8)、(9)全部以3mg/kg之用量自尾靜脈內投予。抗體-藥物結合物(3)、(4)、(8)、(9)之投予所致任一者皆發揮腫瘤增殖抑制效果(第24圖)。
21-m)ADC之抗腫瘤效果(13) 與實施例21-l同樣地,將CFPAC-1皮下移植至雌BALB/c-nu/nu小鼠(第0日),於第14日實施隨機分組。第14日將抗體-藥物結合物(8)、(13)全部以1mg/kg之用量自尾靜脈內投予。抗體-藥物結合物(8)、(13)之投予所致任一者皆發揮腫瘤增殖抑制效果(第25圖)。
21-n)ADC之抗腫瘤效果(14) 將自ATCC購入的人類胰臓腺癌細胞株HPAC 3×10 6個細胞懸浮於生理食鹽水而皮下移植至雌BALB/c-nu/nu小鼠(第0日),於第12日實施隨機分組。第12日將抗體-藥物結合物(8)、(13)全部以3mg/kg之用量自尾靜脈內投予。抗體-藥物結合物(8)、(13)之投予所致任一者皆發揮腫瘤增殖抑制效果(第26圖)。
21-o)ADC之抗腫瘤效果(15) 將獲自Japan Health Sci. Foundation的人類食道癌組織皮下移植至NOG小鼠(公益財團法人 實驗動物中央研究所)而使增殖獲得的腫瘤片,再皮下移植至雌NOD-scid小鼠(日本Charles River股份有限公司)(第0日),於第27日實施隨機分組。第27日將抗體-藥物結合物(8)、(13)全部以3mg/kg之用量自尾靜脈內投予。抗體-藥物結合物(8)、(13)之投予所致任一者皆發揮腫瘤增殖抑制效果(第27圖)。
[實施例22:ADC之抗細胞效果之評價] 將TROP2抗原陽性細胞株BxPC3、NCI-H292、NIH:OVCAR-3、CFPAC-1、FaDu、人類肺腺癌細胞株Calu-3(ATCC)、人類卵巢癌細胞株CaOV3(ATCC)、及TROP2抗原陰性細胞株人類肺癌細胞株Calu-6(ATCC)、人類皮膚黒色腫細胞株A375(ATCC)各自使用於ADC之抗細胞效果之評價。BxPC3及NCI-H292以含10%胎牛血清(Moregate)的RPMI1640 Medium(Gibco)、NIH:OVCAR-3以含20%胎牛血清及0.01mg/mL 胰島素(Invitrogen)的RPMI1640 Medium、CFPAC-1以含10%胎牛血清的Iscove‘s Modified Dulbecco’s Medium(Gibco)、FaDu、Calu-3及Calu-6以含10%胎牛血清的Eagle’s Minimum Essential Medium(ATCC)、CaOV3及A375以含10%胎牛血清的Dulbecco’s Modified Eagle Medium(Gibco),分別調製為2.2×10 6個細胞/mL,各接種90μL於96孔細胞培養用微量盤。再以RPMI1640 Medium稀釋為100nM、20nM、4nM、0.8nM、0.16nM、0.032nM、0.0064nM的抗體-藥物結合物(4)、(8)或用以比較而將RPMI1640 Medium各添加10μL,於37℃、5%CO 2下培養6日。培養後,將微量盤自培養箱取出,於室溫靜置30分鐘。添加培養液與等量之CellTiter-Glo Luminescent Cell Viability Assay(Promega),以平盤混合物攪拌10分鐘而將細胞溶解後,以平盤讀取機計測發光量。 6日培養後之細胞增殖抑制率係以下式算出。 細胞增殖抑制率(%)=a÷b×100 a:6日培養後之檢體添加孔之平均値-培養開始時之檢體未添加孔之平均値 b:6日培養後之培養基添加孔之平均値-培養開始時之檢體未添加孔之平均値 又GI 50値係以下式算出。 GI 50(nM)=antilog((50-f)×(LOG 10(d)-LOG 10(c))÷(f-e)+LOG 10(d)) c:檢體濃度c d:檢體濃度d e:檢體濃度c中的細胞增殖阻礙率 f:檢體濃度d中的細胞增殖阻礙率 c、d係包夾細胞增殖阻礙率50%的2點,c>d。
抗體-藥物結合物(4)及(8)係對為TROP2抗原陽性細胞株的BxPC3、NCI-H292、NIH:OVCAR-3、CFPAC-1、FaDu、Calu-3、CaOV3,呈現GI 50<1(nM)之抗細胞效果。另一方面,為TROP2抗原陰性細胞株的Calu-6,對A375未呈現抗細胞效果(>100(nM))。
無 [序列表之非關鍵詞文字]
序列識別號1:編碼TINA1抗體之重鏈之可變區的cDNA之核苷酸序列 序列識別號2:TINA1抗體之重鏈之可變區之胺基酸序列 序列識別號3:編碼TINA1抗體之輕鏈之可變區的cDNA之核苷酸序列 序列識別號4:TINA1抗體之輕鏈之可變區之胺基酸序列 序列識別號5:編碼人類κ鏈分泌訊號及人類κ鏈恆定區的核苷酸序列 序列識別號6:編碼人類重鏈分泌訊號及人類IgG1恆定區的核苷酸序列 序列識別號7:cTINA1抗體重鏈之核苷酸序列 序列識別號8:cTINA1抗體重鏈之胺基酸序列 序列識別號9:cTINA1抗體輕鏈之核苷酸序列 序列識別號10:cTINA1抗體輕鏈之胺基酸序列 序列識別號11:hTINA1-H1之核苷酸序列 序列識別號12:hTINA1-H1之胺基酸序列 序列識別號13:hTINA1-H2之核苷酸序列 序列識別號14:hTINA1-H2之胺基酸序列 序列識別號15:hTINA1-H3之核苷酸序列 序列識別號16:hTINA1-H3之胺基酸序列 序列識別號17:hTINA1-L1之核苷酸序列 序列識別號18:hTINA1-L1之胺基酸序列 序列識別號19:hTINA1-L2之核苷酸序列 序列識別號20:hTINA1-L2之胺基酸序列 序列識別號21:hTINA1-L3之核苷酸序列 序列識別號22:hTINA1-L3之胺基酸序列 序列識別號23:TINA1抗體之CDRH1之胺基酸序列 序列識別號24:TINA1抗體之CDRH2之胺基酸序列 序列識別號25:TINA1抗體之CDRH3之胺基酸序列 序列識別號26:TINA1抗體之CDRL1之胺基酸序列 序列識別號27:TINA1抗體之CDRL2之胺基酸序列 序列識別號28:TINA1抗體之CDRL3之胺基酸序列 序列識別號29:hRS7抗體重鏈之核苷酸序列 序列識別號30:hRS7抗體重鏈之胺基酸序列 序列識別號31:hRS7抗體輕鏈之核苷酸序列 序列識別號32:hRS7抗體輕鏈之胺基酸序列 序列識別號33:引子mG2aVR2 序列識別號34:引子mKVR2 序列識別號35:引子3.3-F1 序列識別號36:引子3.3-R1 序列識別號37:引子TINA1H-F 序列識別號38:引子TINA1H-R 序列識別號39:引子TINA1L-F 序列識別號40:引子TINA1L-R 序列識別號41:引子EG-Inf-F 序列識別號42:引子EG1-Inf-R 序列識別號43:引子CM-LKF 序列識別號44:引子KCL-Inf-R
[第1圖]呈示cTINA1抗體重鏈之核苷酸序列(序列識別號7)及胺基酸序列(序列識別號8)。 [第2圖]呈示cTINA1抗體輕鏈之核苷酸序列(序列識別號9)及胺基酸序列(序列識別號10)。 [第3圖]呈示hTINA1-H1重鏈之核苷酸序列(序列識別號11)及胺基酸序列(序列識別號12)。 [第4圖]呈示hTINA1-H2重鏈之核苷酸序列(序列識別號13)及胺基酸序列(序列識別號14)。 [第5圖]呈示hTINA1-H3重鏈之核苷酸序列(序列識別號15)及胺基酸序列(序列識別號16)。 [第6圖]呈示hTINA1-L1輕鏈之核苷酸序列(序列識別號17)及胺基酸序列(序列識別號18)。 [第7圖]呈示hTINA1-L2輕鏈之核苷酸序列(序列識別號19)及胺基酸序列(序列識別號20)。 [第8圖]呈示hTINA1-L3輕鏈之核苷酸序列(序列識別號21)及胺基酸序列(序列識別號22)。 [第9圖]呈示TINA1抗體之CDRH1之胺基酸序列(序列識別號23)、CDRH2之胺基酸序列(序列識別號24)、CDRH3之胺基酸序列(序列識別號25)、CDRL1之胺基酸序列(序列識別號26)、CDRL2之胺基酸序列(序列識別號27)、及CDRL3之胺基酸序列(序列識別號28)。 [第10圖]呈示抗CD9抗體、抗CD46抗體、抗CD55抗體、抗CD59抗體、抗CD71抗體、抗CD73抗體、抗CD147抗體、抗CD276抗體、抗EpCAM抗體、抗EGFR抗體、及抗TROP2抗體(TINA1抗體)之細胞內在化能力。 [第11圖]呈示抗CD59抗體、抗CD71抗體、抗EGFR抗體、抗EpCAM抗體、及抗TROP2抗體(TINA1抗體)之細胞內在化能力。 [第12圖]呈示各種抗TROP2抗體之細胞內在化能力。 [第13圖]呈示抗體-藥物結合物(1)、(6)、或(12)對人類大腸癌細胞株COLO205皮下移植BALB/c-nu/nu小鼠所示的抗腫瘤效果。 [第14圖]呈示抗體-藥物結合物(1)、(6)、或(12)對人類胰臓腺癌(pancreatic adenocarcinoma)細胞株BxPC-3皮下移植BALB/c-nu/nu小鼠所示的抗腫瘤效果。 [第15圖]呈示抗體-藥物結合物(1)、(6)、或(12)對人類胰臓腺癌細胞株Capan-1皮下移植BALB/c-nu/nu小鼠所示的抗腫瘤效果。 [第16圖]呈示抗體-藥物結合物(2)、(5)、(7)、或(10)對人類大腸癌細胞株COLO205皮下移植BALB/c-nu/nu小鼠所示的抗腫瘤效果。 [第17圖]呈示抗體-藥物結合物(2)、(5)、(7)、或(10)對人類胰臓癌細胞株BxPC-3皮下移植BALB/c-nu/nu小鼠所示的抗腫瘤效果。 [第18圖]呈示抗體-藥物結合物(3)、(4)、(8)、或(9)對人類大腸癌細胞株COLO205皮下移植BALB/c-nu/nu小鼠所示的抗腫瘤效果。 [第19圖]呈示抗體-藥物結合物(3)、(4)、(8)、或(9)對人類胰臓癌細胞株BxPC-3皮下移植BALB/c-nu/nu小鼠所示的抗腫瘤效果。 [第20圖]呈示抗體-藥物結合物(3)、(4)、(8)、或(9)對人類卵巢癌細胞株NIH:OVCAR-3皮下移植BALB/c-nu/nu小鼠所示的抗腫瘤效果。 [第21圖]呈示抗體-藥物結合物(3)、(4)、(8)、或(9)對人類胃癌細胞株NCI-N87皮下移植BALB/c-nu/nu小鼠所示的抗腫瘤效果。 [第22圖]呈示抗體-藥物結合物(3)、(4)、(8)、或(9)對人類肺癌細胞株NCI-H292皮下移植BALB/c-nu/nu小鼠所示的抗腫瘤效果。 [第23圖]呈示抗體-藥物結合物(3)、(4)、(8)、或(9)對人類咽癌細胞株FaDu皮下移植BALB/c-nu/nu小鼠所示的抗腫瘤效果。 [第24圖]呈示抗體-藥物結合物(3)、(4)、(8)、或(9)對人類胰臓腺癌細胞株CFPAC-1皮下移植BALB/c-nu/nu小鼠所示的抗腫瘤效果。 [第25圖]呈示抗體-藥物結合物(8)或(13)對人類胰臓腺癌細胞株CFPAC-1皮下移植BALB/c-nu/nu小鼠所示的抗腫瘤效果。 [第26圖]呈示抗體-藥物結合物(8)或(13)對人類胰臓腺癌細胞株HPAC皮下移植BALB/c-nu/nu小鼠所示的抗腫瘤效果。 [第27圖]呈示抗體-藥物結合物(8)或(13)對人類食道癌組織皮下移植NOD-scid小鼠所示的抗腫瘤效果。
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0011
Figure 12_A0101_SEQ_0012
Figure 12_A0101_SEQ_0013
Figure 12_A0101_SEQ_0014
Figure 12_A0101_SEQ_0015
Figure 12_A0101_SEQ_0016
Figure 12_A0101_SEQ_0017
Figure 12_A0101_SEQ_0018
Figure 12_A0101_SEQ_0019
Figure 12_A0101_SEQ_0020
Figure 12_A0101_SEQ_0021
Figure 12_A0101_SEQ_0022
Figure 12_A0101_SEQ_0023
Figure 12_A0101_SEQ_0024
Figure 12_A0101_SEQ_0025
Figure 12_A0101_SEQ_0026
Figure 12_A0101_SEQ_0027
Figure 12_A0101_SEQ_0028
無。

Claims (9)

  1. 一種抗體-藥物結合物用於製造治療肺癌之藥劑的用途,其中該抗體-藥物結合物為下式所示包含連接物及藥物的抗體-藥物結合物且與抗TROP2抗體連接, -(琥珀醯亞胺-3-基-N)-CH 2CH 2CH 2CH 2CH 2-C(=O)-GGFG-NH-CH 2-O-CH 2-C(=O)-(NH-DX) 其中 -(琥珀醯亞胺-3-基-N)-具有下式所示的結構: , 在其第3位經由硫醚鍵與抗TROP2抗體結合,於第1位之氮原子上與含其之連接物結構內的亞甲基結合; -(NH-DX)係表示下式基團: , 其中在第1位之胺基的氮原子為結合部位; -GGFG-表示-Gly-Gly-Phe-Gly-之四胜肽殘基; 其中該抗TROP2抗體包含:於其重鏈可變區之序列識別號23之胺基酸序列所構成的CDRH1、序列識別號24之胺基酸序列所構成的CDRH2及序列識別號25之胺基酸序列所構成的CDRH3;及於其輕鏈可變區之序列識別號26之胺基酸序列所構成的CDRL1、序列識別號27之胺基酸序列所構成的CDRL2及序列識別號28之胺基酸序列所構成的CDRL3。
  2. 如請求項1之用途,其中該抗TROP2抗體包含選自下列群組之重鏈可變區及輕鏈可變區: 序列識別號12之位置20至140的胺基酸序列所構成的重鏈可變區及序列識別號18之位置21至129的胺基酸序列所構成的輕鏈可變區; 序列識別號14之位置20至140的胺基酸序列所構成的重鏈可變區及序列識別號18之位置21至129的胺基酸序列所構成的輕鏈可變區; 序列識別號14之位置20至140的胺基酸序列所構成的重鏈可變區及序列識別號20之位置21至129的胺基酸序列所構成的輕鏈可變區;及 序列識別號16之位置20至140的胺基酸序列所構成的重鏈可變區及序列識別號22之位置21至129的胺基酸序列所構成的輕鏈可變區。
  3. 如請求項1之用途,其中該抗TROP2抗體包含選自下列群組的重鏈及輕鏈: 序列識別號12之位置20至470的胺基酸序列所構成的重鏈及序列識別號18之位置21至234的胺基酸序列所構成的輕鏈; 序列識別號14之位置20至470的胺基酸序列所構成的重鏈及序列識別號18之位置21至234的胺基酸序列所構成的輕鏈; 序列識別號14之位置20至470的胺基酸序列所構成的重鏈及序列識別號20之位置21至234的胺基酸序列所構成的輕鏈;及 序列識別號16之位置20至470的胺基酸序列所構成的重鏈及序列識別號22之位置21至234的胺基酸序列所構成的輕鏈。
  4. 如請求項1之用途,其中該抗TROP2抗體包含序列識別號12之位置20至140的胺基酸序列所構成的重鏈可變區及序列識別號18之位置21至129的胺基酸序列所構成的輕鏈可變區。
  5. 如請求項1之用途,其中該抗TROP2抗體包含序列識別號12之位置20至470的胺基酸序列所構成的重鏈及序列識別號18之位置21至234的胺基酸序列所構成的輕鏈。
  6. 如請求項3之用途,其中該抗TROP2抗體於重鏈之羧基末端缺少離胺酸殘基。
  7. 如請求項5之用途,其中該抗TROP2抗體於重鏈之羧基末端缺少離胺酸殘基。
  8. 如請求項1至7中任一項之用途,其中每個抗體結合的藥物-連接物結構的平均單元數在2至8之範圍。
  9. 如請求項1至7中任一項之用途,其中每個抗體結合的藥物-連接物結構的平均單元數在3至8之範圍。
TW112127350A 2013-12-25 2014-12-25 抗體-藥物結合物之用途 TWI852695B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-267548 2013-12-25
JP2013267548 2013-12-25

Publications (2)

Publication Number Publication Date
TW202344273A TW202344273A (zh) 2023-11-16
TWI852695B true TWI852695B (zh) 2024-08-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120121615A1 (en) 2010-11-17 2012-05-17 Flygare John A Alaninyl maytansinol antibody conjugates

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120121615A1 (en) 2010-11-17 2012-05-17 Flygare John A Alaninyl maytansinol antibody conjugates

Similar Documents

Publication Publication Date Title
JP7259104B2 (ja) 抗trop2抗体-薬物コンジュゲート
JP7146031B2 (ja) 抗her2抗体-薬物コンジュゲート
TW201620553A (zh) 抗cd98抗體-藥物結合物
TWI852695B (zh) 抗體-藥物結合物之用途
BR112016013704B1 (pt) Conjugado de anticorpo-fármaco anti-trop2,fármaco antitumor e/ou anticâncer,composição farmacêutica e uso dos mesmos.