TWI852171B - Forecast data processing system and forecast data processing method - Google Patents
Forecast data processing system and forecast data processing method Download PDFInfo
- Publication number
- TWI852171B TWI852171B TW111143818A TW111143818A TWI852171B TW I852171 B TWI852171 B TW I852171B TW 111143818 A TW111143818 A TW 111143818A TW 111143818 A TW111143818 A TW 111143818A TW I852171 B TWI852171 B TW I852171B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- difference
- processing
- prediction
- threshold
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 185
- 238000003672 processing method Methods 0.000 title claims abstract description 18
- 238000003860 storage Methods 0.000 claims abstract description 36
- 238000001914 filtration Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 238000007781 pre-processing Methods 0.000 claims description 8
- 238000005070 sampling Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000007726 management method Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 238000012384 transportation and delivery Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 4
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005314 correlation function Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Abstract
Description
本發明是有關於一種市場需求的滾動預測資料技術,尤其是一種預測資料處理系統以及預測資料處理方法。The present invention relates to a rolling forecast data technology that meets market demand, and in particular to a forecast data processing system and a forecast data processing method.
目前,針對成品的銷售預測以及訂單管理中,主機廠會發出預測資料至配件廠,以令配件廠可提早準備物料與準備生產線。然而,由於每個成品是通過多個材料以及多個製造步驟所製造出來的,且每個在製品的製造流程也不同。並且,大量材料存放於倉庫中也將造成保管成本。因此,當預測資料發生變動時,配件廠必須及時地調整在制工單(例如工作單、生產單)以及在途採購單,以有效地降低庫存成本以及提升準時交貨率。Currently, for sales forecast and order management of finished products, the host factory will send forecast data to the parts factory so that the parts factory can prepare materials and production lines in advance. However, since each finished product is manufactured through multiple materials and multiple manufacturing steps, and the manufacturing process of each work-in-progress is also different. In addition, storing a large amount of materials in the warehouse will also cause storage costs. Therefore, when the forecast data changes, the parts factory must promptly adjust the work-in-progress orders (such as work orders, production orders) and in-transit purchase orders to effectively reduce inventory costs and improve on-time delivery rates.
然而,當有新版本的預測資料或預測資料發生變動時,管理人員必須手動分析以及調整相關庫存數量與在制數量。由於不同客戶發佈預測資料的方式、發佈週期、發佈內容格式、產品型號以及產品需求量級皆不同,導致用戶企業的員工必須比對與撈取大量的相關資料,以及耗費許多工時進行分析。如此一來,導致使用者為了根據預測資料調整庫存量以及相關參數的時間以及人工成本過高,且對企業內用戶非常不友善及不便分析。However, when there is a new version of forecast data or the forecast data changes, the management staff must manually analyze and adjust the relevant inventory quantity and work-in-progress quantity. Because different customers publish forecast data in different ways, release cycles, release content formats, product models, and product demand levels, the employees of the user company must compare and collect a large amount of relevant data, and spend a lot of man-hours on analysis. As a result, the time and labor costs for users to adjust inventory and related parameters according to forecast data are too high, and it is very unfriendly and inconvenient for users within the company to analyze.
本發明是提供一種預測資料處理系統以及預測資料處理方法,可自動地根據多筆預測資料以及設置參數比對至少兩筆預測資料間的差異值以及用戶設定,以產生資料差異值對應的結果以及處理方案。The present invention provides a prediction data processing system and a prediction data processing method, which can automatically compare the difference value between at least two prediction data and user settings according to multiple prediction data and setting parameters to generate a result corresponding to the data difference value and a processing solution.
本發明的預測資料處理系統包括儲存裝置以及處理器。儲存裝置儲存預測資料比較模組、資料差值判斷模組以及差值處理模組。處理器耦接儲存裝置,並且執行預測資料比較模組、資料差值判斷模組以及差值處理模組。處理器將多筆預測資料輸入至預測資料比較模組,以使預測資料比較模組產生預測差值資料。處理器通過資料差值判斷模組根據預測差值資料產生差值判定結果。處理器通過差值處理模組根據差值判定結果執行資料差值處理。The prediction data processing system of the present invention includes a storage device and a processor. The storage device stores a prediction data comparison module, a data difference judgment module and a difference processing module. The processor is coupled to the storage device and executes the prediction data comparison module, the data difference judgment module and the difference processing module. The processor inputs a plurality of prediction data into the prediction data comparison module so that the prediction data comparison module generates prediction difference data. The processor generates a difference judgment result according to the prediction difference data through the data difference judgment module. The processor performs data difference processing according to the difference judgment result through the difference processing module.
本發明的資料差值判斷模組包括資料接收單元以及處理判斷單元。處理器將差值判定結果儲存於儲存裝置中。其中歷史處理記錄包括歷史參數設置、歷史處理設置以及歷史處理結果。如此,處理判斷單元可根據歷史處理記錄產生差值判定結果,接著差值處理模組根據所述差值判定結果執行資料差值處理。The data difference judgment module of the present invention includes a data receiving unit and a processing judgment unit. The processor stores the difference judgment result in a storage device. The historical processing record includes historical parameter settings, historical processing settings, and historical processing results. In this way, the processing judgment unit can generate a difference judgment result according to the historical processing record, and then the difference processing module performs data difference processing according to the difference judgment result.
本發明的預測資料處理方法包括以下步驟:將多筆預測資料輸入至預測資料比較模組;通過預測資料比較模組根據多筆預測資料產生預測差值資料;通過資料差值判斷模組根據預測差值資料產生差值判定結果;以及通過差值處理模組根據差值判定結果執行資料差值處理。The prediction data processing method of the present invention includes the following steps: inputting a plurality of prediction data into a prediction data comparison module; generating prediction difference data according to the plurality of prediction data through the prediction data comparison module; generating a difference determination result according to the prediction difference data through a data difference determination module; and performing data difference processing according to the difference determination result through a difference processing module.
基於上述,本發明的預測資料處理系統以及預測資料處理方法,可利用主計單元根據終端市場所給出的多筆預測資料,而自動產生對應多筆預測資料中差異值的結果以及處理建議,以有效地降低人工成本以及提升處理效率。Based on the above, the forecast data processing system and forecast data processing method of the present invention can utilize the main accounting unit to automatically generate results and processing suggestions corresponding to the difference values in the multiple forecast data according to the multiple forecast data provided by the terminal market, so as to effectively reduce labor costs and improve processing efficiency.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more clearly understood, embodiments are given below and described in detail with reference to the accompanying drawings.
現將詳細地參考本發明的示範性實施例,示範性實施例的實例說明於附圖中。只要有可能,相同元件符號在圖式和描述中用來表示相同或相似部分。Reference will now be made in detail to exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numerals are used in the drawings and description to represent the same or similar parts.
圖1是本發明的一實施例的預測資料處理系統的示意圖。參考圖1,預測資料處理系統100包括處理器110以及儲存裝置120。處理器110耦接儲存裝置120。在本實施例中,處理器110可包括中央處理器(Central Processing Unit,CPU)、微處理器(Microprocessor Control Unit,MCU)或現場可程式閘陣列(Field Programmable Gate Array,FPGA)等諸如此類的處理電路或具有資料運算功能的晶片,但本發明並不以此為限。儲存裝置120可為記憶體(Memory),其中記憶體可例如是唯讀記憶體(Read Only Memory,ROM)、可擦可規劃式唯讀記憶體(Erasable Programmable Read Only Memory,EPROM)等非揮發記憶體、隨機存取記憶體(Random Access Memory,RAM)等揮發記憶體、及硬碟驅動器(hard disc drive)、半導體記憶體等儲存裝置120,並且用於儲存本發明所提到的各種程式及資訊等資料。在本實施例中,儲存裝置120可儲存多個特定模組、演算法及/或軟體等,以分別供處理器110讀取並執行之。值得注意的是,本發明各實施例所述的模組以及單元可個別由相對應的一個或多個演算法及/或軟體所實現,並且可依其一個或多個演算法及/或軟體的執行結果來實現實施例所描述的相關功能與操作。FIG1 is a schematic diagram of a prediction data processing system of an embodiment of the present invention. Referring to FIG1 , the prediction
在本實施例中,儲存裝置120可儲存預測資料比較模組121、資料差值判斷模組122以及差值處理模組123。處理器110可讀取儲存在儲存裝置120中的這些模組,並且通過執行這些模組來實現針對市場需求的預測滾動資料進行偵測以及處理,以自動地執行差值處理、訊息通知相關承辦人員或通知供應商等功能。在本實施例中,預測資料處理系統100可例如是設置在企業內的電腦主機,並提供使用者介面來供使用者操作以及輸入預測資料。或者,在一實施例中,企業管理系統100也可例如是以雲端伺服器系統的架構來實現之。使用者可通過執行電子設備的使用者介面(User Interface, UI)程式而連線至雲端伺服器進行相關參數設置、閾值設置、處理設定等操作。對此,使用者可操作電子設備的顯示幕所顯示的使用者介面的內容,以使使用者介面或相關程式可提供對應的使用者操作指令及設置資料至雲端伺服器。並且,用戶可通過雲端伺服器或收發器將市場的多筆預測資料傳送至預測資料處理系統100。雲端伺服器可通過執行前述的多個模組來實現可針對終端市場的需求預測資料自動地提供資料分析以及對應處理建議及/或自動執行差值處理的功能。In this embodiment, the
在本實施例中,預測資料比較模組121可經配置以接收/採集儲存在資料庫中的預測資料、工單數據、庫存資料以及採購資料,以使預測資料比較模組121根據多筆預測資料產生預測差值資料。並且,預測資料比較模組121可根據使用者預先設定的設定值(例如根據每週、每季、每個工作天去取值)對多筆預測資料進行資料預處理,以取出所需資料。舉例來說,設定值為比對每個工作天的需求預測資料,如此預測資料比較模組121將多筆預測資料與發貨數量資料沖銷,以產生包含實際未發量的預測差值資料。In this embodiment, the forecast
在本實施例中,資料差值判斷模組122可根據儲存於ERP資料庫或儲存裝置120中的閾值設置資料對預測差值資料產生對應的差值判定結果。閾值設置資料可例如是分析邏輯、分析規則、預設數值、預設差值比例等設定。差值判定結果可例如是小於第一閾值、介於第一閾值與第二閾值之間、介於第二閾值與第三閾值之間、大於第三閾值等判定結果。In this embodiment, the data
在本實施例中,差值處理模組123可經配置以根據差值判定結果執行資料差值處理。資料差值處理可例如是自動地發送暫停供貨訊息至對應的供應以達到自動通知暫停供貨的功效、發送修正訊息至對應的承辦人員(例如採購部門、業務部門以及工單管理部門)以及計算賠償損失等處理。In this embodiment, the
儲存裝置120用以儲存預測資料比較模組121、資料差值判斷模組122以及差值處理模組123。在本實施例中,處理器110以及儲存裝置120、預測資料比較模組121可通過特定的應用程式介面(Application Programming Interface,API)、交互介面或終端設備(Terminal Equipment)來提供預測資料的輸入、閾值設定服務、各項參數設定、多個觸發條件以及條件觸發後的處理內容設定服務(Business service)的功能。The
換言之,承辦人員以及使用者可操作預測資料處理系統100以及儲存裝置120的應用程式介面,以將需求預測系統所產生的多筆預測資料以及各項設定的參數值輸入至儲存裝置120以及處理器110之中,並且預測資料處理系統100可根據預測資料以及設定值自動執行預測資料比較模組121、資料差值判斷模組122以及差值處理模組123,以產生相關的結果、通知訊息以及處理建議。In other words, the responsible personnel and users can operate the application program interface of the prediction
在本實施例中,預測資料處理系統100可例如是設置在終端裝置或工單管理設備的運算裝置中,以供使用者操作。終端裝置可用於調整庫存資料的設備。或者,預測資料處理系統100可例如是設置在雲端伺服器中,以供用戶操作,並連線至庫存伺服器/庫存資料庫。在本實施例中,處理器110可例如包括中央處理單元(Central Processing Unit,CPU),或是其他可程式設計之一般用途或特殊用途的微處理器(Microprocessor)、數位訊號處理器(Digital Signal Processor,DSP)、特殊應用積體電路(Application Specific Integrated Circuits,ASIC)、可程式設計邏輯器件(Programmable Logic Device,PLD)、其他類似處理電路或這些裝置的組合。儲存裝置120可包括記憶體(Memory)及/或資料庫(database),其中記憶體可例如非易失性記憶體(Non-Volatile Memory,NVM)。儲存裝置120可儲存有用於實現本發明各實施例的相關程式、模組、系統或演算法,以供處理器110存取並執行而實現本發明各實施例所描述的相關功能及操作。在本實施例中,預測資料比較模組121、資料差值判斷模組122以及差值處理模組123可例如是以JSON(JavaScript Object Notation)、可延伸標記式語言(Extensible Markup Language,XML)或YAML等諸如此類的程式語言來實現的,但本發明也不限於此。In this embodiment, the prediction
圖2是本發明的一實施例的預測資料處理方法的第一流程圖。參考圖1以及圖2,本實施例的預測資料處理系統100可執行如以下步驟S210~S240。在本實施例中,使用者可操作預測資料比較模組121、資料差值判斷模組122以及差值處理模組123的應用程式介面。在步驟S210,處理器110將多筆預測資料輸入至預測資料比較模組121。在本實施例中,根據評估終端市場的所產生的需求預測資料以及歷史需求預測資料皆可作為預測資料。並且,預測資料可例如是由外部需求預測資料系統(例如用戶端的系統)通過收發器與儲存裝置120建議通訊連接所提供的。FIG. 2 is a first flow chart of a forecast data processing method of an embodiment of the present invention. Referring to FIG. 1 and FIG. 2, the forecast
在步驟S220,處理器110通過預測資料比較模組121產生預測差值資料。在本實施例中,預測資料比較模組121可根據如上述的多筆預測資料以及儲存於儲存裝置120中的參數設定(比對時間的設定、比對品號的設定等)進行資料整理與取值,以找出符合用戶設定的預測差值資料。預測差值資料可包括產品編號、這期需求預測數量、上期需求預測數量以及需求預測突降值(突然下降值)。值得說明的是,預測資料處理系統100可針對終端市場的需求預測資料發生突然大量減少時,產生對應的通知訊息以及計算資料(例如賠償損失值)至外部系統。In step S220, the
在步驟S230,處理器110通過資料差值判斷模組122根據預測差值資料產生差值判定結果。在本實施例中,資料差值判斷模組122根據使用者所預先設定的判斷參數(判斷設定值)對上述的預測差值資料進行比對以產生差值判定結果。差值判定結果可包括小於第一閾值、介於第一閾值與第二閾值之間、介於第二閾值與第三閾值之間、大於第三閾值等判定結果。In step S230, the
在步驟S240,處理器110通過差值處理模組123根據差值判定結果執行資料差值處理,以有效地改善預測資料突然改變的狀況,進而優化製造端以及供貨端的管理效率。因此,本實施例的預測資料處理系統100以及預測資料處理方法,可有效地根據外部先進規劃排程系統或使用者輸入的預測資料提供對應的處理建議以及判定結果至相關人員的電子裝置(例如個人計算器、智慧手機等裝備)。In step S240, the
圖3是本發明的一實施例的預測資料處理方法的第二流程圖。參考圖1以及圖3。在本實施例中,資料差值判斷模組122可為通過自注意力機制(self-attention mechanism,SAM)模型所建構的神經網路(Neural Network)模組,或其他類似的神經網路模組,並可實現深度強化式機器學習(Deep Reinforcement Learning, DRL)功能。資料差值判斷模組122可例如利用多層的類神經網路。並且,資料差值判斷模組122可經訓練以學習推理儲存裝置120中的預測資料以及處理記錄,以進而從大資料中找出例如對應產品編號、預測資料預測差值資料等之間的關聯,以產生對應的差值處理關聯函數。如此一來,資料差值判斷模組122的預測資料處理系統100,即實現根據歷史預測資料以及歷史處理結果自動產生處理建議的功能。在本實施例中,預測資料處理系統100可執行如以下步驟S310~S352,以達到產生預測差值資料的差值判定結果以及執行資料差值處理。FIG3 is a second flow chart of a prediction data processing method of an embodiment of the present invention. Refer to FIG1 and FIG3. In this embodiment, the data
在步驟S310,處理器110可輸入預測資料以及預測規則至預測資料比較模組121。預測資料可包括客戶品號、交貨日期、交貨數量、客戶全稱、發佈日期、客戶訂單號等任何與在制產品(WIP)的生產與控管有關的製造資訊以及庫存資訊。在本實施例中,預測資料可由使用者通過交互介面以及終端設備所輸入的預測資料。並且,預測資料處理系統100通過收發器(transceiver)接收預測資料,並輸入至儲存裝置120,以使處理器110可從儲存裝置120讀取預測資料且輸入至預測資料比較模組121之中。在另一實施例中,預測資料處理系統100還包括需求預測系統,並且需求預測系統耦接儲存裝置120以及處理器110。如此一來,需求預測系統可根據評估人員所輸入的終端市場資料產生多筆預測資料。In step S310, the
在步驟S320,處理器110可通過預測資料比較模組121根據多筆預測資料產生預測差值資料。預測差值資料可包括下降數量、差異數量、前期數量、本期數量以及成品品號等資料。在一實施例中,預測資料比較模組121包括資料預處理單元以及資料比較單元。如此,預測資料處理系統100通過資料預處理單元根據資料取樣設置對多筆預測資料進行預處理,以使資料預處理單元獲得多筆初始資料。在本實施例中,資料取樣設置可例如是取樣商品號、取樣預測資料間隔以及取樣類型等與庫存管理以及預測資料有關的取樣與比對設定資訊。In step S320, the
在一實施例中,處理器110通過資料比較單元根據資料比對設置比對上述多筆初始資料,以使資料比較單元產生多筆預測差值資料。資料比對設置可包括取數類型、基準日日期、分析類型以及沖銷週期等與資料比對有關的參數設置資訊。舉例來說,預測資料比較模組121根據資料比對設置以及多筆預測資料所產生預測差值資料,預測差值資料可例如包括成品A的商品編號、成品A在這周的預測數量、成品A在前一周的預測數量以及成品A這周預測數量與前一周的預測數量的差異值。In one embodiment, the
在步驟S330,處理器110可取得預測突降任務過濾規則設置。在本實施例中,預測突降任務過濾規則設置可包括分析模型、邏輯、數量、比率、客戶商品號碼、商品名稱、客戶全名、分析類型以及操作類型等與預測資料中突降有關的過濾規則。換言之,預測突降任務過濾規則包括不同的成品於不同突降量時的觸發參數。舉例而言,預測突降任務過濾規則設置可例如是當成品A在需求預測的突降數量未達1000時,自動過濾掉不處理。當成品A在需求預測的突降數量大於1000且小於10000時,對應的操作類型為自動調整成品A的在制工單(例如工作單、生產單)數量、當成品A在需求預測的突降數量大於10000且小於100000時,對應的操作類型為發送資訊(訊息)至相關人員進行人工判斷、以及當成品A在需求預測的突降數量大於100000時,對應的操作類型為自動發送消息至相關供應商送貨;另外,當多備庫備料的呆滯天數大於180天時,自動計算庫存損失金額。In step S330, the
在步驟S340,處理器110可通過資料差值判斷模組122根據預測差值資料、預測突降任務過濾規則產生差值判定結果。差值判定結果可包括在制工單數量、庫存數量、在途採購數。在途採購數例如是採購部門已下單但材料/產品尚未送達倉庫的數量。在一實施例中,資料差值判斷模組122包括資料接收單元以及處理判斷單元。如此,處理器110可通過資料接收單元以及收發器接收庫存資料(即包括在制工單數量、庫存數量、在途採購數量等)以及閾值設置資料。值得說明的是,差值判定結果還可包括將處理建議以及預測差值資料輸出至相關承辦人員的終端裝置之中,並且等待承辦人員的指令。也就是說,預測資料處理系統100所產生的差值判定結果(例如包括對應的操作類型)可先傳送至用戶(例如承辦人員)的電子裝置中,並且等待使用者進一步地確認與調整所發出的處理指示。接著,預測資料處理系統100將使用者的處理指示作為差值判定結果,以使差值處理模組123執行經使用者確認的資料差值處理,進而提高預測資料處理系統100的安全性以及可靠度。In step S340, the
處理器110通過處理判斷單元根據預測差值資料、庫存資料以及閾值設置資料產生差值判定結果。如上所述,差值判定結果可包括預測突降任務過濾規則中的對應操作類型,因此差值判定結果可包括多個觸發條件,觸發條件例如是低於閾值、高於閾值以及介於第一閾值與第二閾值之間。並且,每一觸發條件相關於不同的操作,例如發送資訊至供應商、計算損失賠償金額以及自動調整在製品工單參數等操作。The
在步驟S350,處理器110可通過差值處理模組123根據差值判定結果執行資料差值處理。在步驟S351,處理器110根據差值判定結果為預測資料差值低於閾值且對應的操作類型為產生任務卡以及對應的解決方案,對應地通過差值處理模組123產生任務卡以及產生解決方案。如此,通過預測資料處理系統100所發出的任務卡,承辦人員(例如生管人員、計畫員)可大幅地減少人工檢查每筆預測資料的作業與比對時間就可以得知預測資料的資料差值以及相關資料。並且,承辦人員可將預測資料處理系統100所產生的解決方案作為參考,以提升承辦人員的處理效率。解決方案可例如是調整在制工單參數以及通知對應的供應商。任務卡可例如是工作分派系統的通知資訊(即通知訊息)以及處理指示等資訊。In step S350, the
在步驟S352,處理器110根據差值判定結果為預測資料差值高於閾值且對應的操作類型為自動通知供應商暫停送貨。如此,處理器110通過差值處理模組123產生通知暫停送貨資訊至對應的供應商的終端裝置。終端裝置可例如是對應承辦人員的電子裝置,例如個人電腦裝置、智慧手機等電子裝置。In step S352, the
在一實施例中,處理器110通過處理判斷單元根據儲存於儲存裝置120的歷史處理記錄產生差值判定結果。並且,處理器110也可將每次所產生的差值判定結果儲存於儲存裝置120中。歷史處理記錄包括歷史參數設置、歷史處理設置以及歷史處理結果。如此一來,資料差值判斷模組122可根據現有的預測差值資料以及歷史處理記錄自動地產生包括處理建議(即解決方案)的差值判定結果。In one embodiment, the
在一實施例中,閾值設置資料包括預測差值資料分別小於第一閾值、介於第一閾值與第二閾值之間、介於第二閾值與第三閾值之間、以及大於第三閾值的處理設置。舉例而言,預測資料處理系統100通過資料差值判斷模組122根據預測差值資料產生差值判定結果的步驟可例如包括以下的四種情況:情況一,在處理判斷單元判斷預測差值資料小於第一閾值時,處理器110通過處理判斷單元自動過濾掉不做任何處理。情況二,在處理判斷單元判斷預測差值資料介於第一閾值以及第二閾值之間時,處理器110自動產生調整在制數量資訊,以使差值處理模組123調整在制工單裡對應成品的在制數量。舉例而言,當預測差值資料介於第一閾值與第二閾值之間時,差值處理模組123自動地調整在制工單的在制資料並且不輸出通知資訊或任務卡至承辦人員。In one embodiment, the threshold setting data includes processing settings for the predicted difference data to be less than a first threshold, between the first threshold and the second threshold, between the second threshold and the third threshold, and greater than the third threshold. For example, the step of the predicted
情況三,在處理判斷單元判斷預測差值資料介於第二閾值以及第三閾值之間時,處理器110通過處理判斷單元產生處理過程以及預測差值資料資訊(即通知資訊),併發包含通知資訊的任務卡給承辦人員(例如生管人員、計畫員、採購員以及業務員等),以令承辦人員確認與判斷解決方案。情況四,在處理判斷單元判斷預測差值資料大於第三閾值時,處理器110通過處理判斷單元自動產生暫停供貨資訊至對應的供應商,進而降低人工處理預測資料突降情況的比例。在本實施例中,第三閾值大於第二閾值,且第二閾值大於第一閾值。In case 3, when the processing and judging unit judges that the forecast difference data is between the second threshold and the third threshold, the
在一實施例中,當供應商接收到預測資料處理系統100所發出的資訊(例如暫停供貨的資訊)後,供應商根據供貨資訊以及狀況產生回饋訊息至預測資料處理系統100。如此,處理器110將回饋訊息輸入至差值處理模組123。並且,處理器110通過差值處理模組123根據回饋訊息以及閾值設置資料執行對應的差值處理。差值處理可例如是計算庫存損失值。舉例而言,處理器110通過差值處理模組123根據回饋訊息、閾值設置資料以及庫存資料計算出庫存損失值。並且,處理器110通過差值處理模組123輸出庫存損失值至承辦人員的終端裝置。閾值設置資料可包括庫存天數。舉例而言,當供應商回復成品A涉及的原材料無法暫停供貨,則預測資料處理系統100可根據預設的庫存天數,根據庫存資料計算與成品A相關的材料庫存天數,以使差值處理模組123計算出庫存損失值。In one embodiment, when the supplier receives information (e.g., information about suspending supply) from the forecast
如此一來,本實施例的預測資料系統100可根據設定參數以及預測資料產生預測差值資料(例如資料突降值)以及對應的解決方案與建議並且可同時考慮庫存資料以及歷史處理記錄,以提供快速且精確的處理方案以及通知資訊。In this way, the
綜上所述,本發明的預測資料處理系統100以及預測資料處理方法,可讓使用者通過輸入多筆預測資料至應用程式介面的方式,將預測資料輸入至儲存裝置120中,以通過預測資料比較模組121產生預測差值資料。並且,可根據預測差值資料產生差值判定結果。如此一來,預測資料處理系統100可根據差值處理模組123執行對應預測差值資料的資料差值處理,而可有效地提升預測資料發生變化時的處理效率。In summary, the prediction
最後應說明的是:以上各實施例僅用以說明本發明的技術方案,而非對其限制;儘管參照前述各實施例對本發明進行了詳細的說明,本領域的普通技術人員應當理解:其依然可以對前述各實施例所記載的技術方案進行修改,或者對其中部分或者全部技術特徵進行等同替換;而這些修改或者替換,並不使相應技術方案的本質脫離本發明各實施例技術方案的範圍。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit it. Although the present invention has been described in detail with reference to the above embodiments, ordinary technical personnel in this field should understand that they can still modify the technical solutions described in the above embodiments, or replace part or all of the technical features therein with equivalents. However, these modifications or replacements do not deviate the essence of the corresponding technical solutions from the scope of the technical solutions of the embodiments of the present invention.
100:預測資料處理系統 110:處理器 120:儲存裝置 121:預測資料比較模組 122:資料差值判斷模組 123:差值處理模組 S210~S240、S310~S350、S351、S352:步驟 100: Prediction data processing system 110: Processor 120: Storage device 121: Prediction data comparison module 122: Data difference judgment module 123: Difference processing module S210~S240, S310~S350, S351, S352: Steps
圖1是本發明的一實施例的預測資料處理系統的示意圖。 圖2是本發明的一實施例的預測資料處理方法的第一流程圖。 圖3是本發明的一實施例的預測資料處理方法的第二流程圖。 FIG1 is a schematic diagram of a prediction data processing system of an embodiment of the present invention. FIG2 is a first flow chart of a prediction data processing method of an embodiment of the present invention. FIG3 is a second flow chart of a prediction data processing method of an embodiment of the present invention.
S210、S220、S230、S240:步驟 S210, S220, S230, S240: Steps
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211293222.8A CN115587841A (en) | 2022-10-21 | 2022-10-21 | Prediction data processing system and prediction data processing method |
CN202211293222.8 | 2022-10-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202418156A TW202418156A (en) | 2024-05-01 |
TWI852171B true TWI852171B (en) | 2024-08-11 |
Family
ID=
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115201608A (en) | 2022-07-26 | 2022-10-18 | 广东粤电靖海发电有限公司 | Power plant equipment operation parameter monitoring method based on neural network |
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115201608A (en) | 2022-07-26 | 2022-10-18 | 广东粤电靖海发电有限公司 | Power plant equipment operation parameter monitoring method based on neural network |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11816596B2 (en) | Process discovery and optimization using time-series databases, graph-analytics, and machine learning | |
WO2020143344A1 (en) | Method and device for warehouse receipt pledge financing based on blockchain architecture | |
CN102346880B (en) | Enterprise Resources Planning computer system and method | |
CA2992181A1 (en) | System and method for operating an enterprise on an autonomous basis | |
EP3876177A1 (en) | System and method for retail price optimization | |
CN115587841A (en) | Prediction data processing system and prediction data processing method | |
JP2018063598A (en) | Business supporting system and business supporting method | |
KR102452440B1 (en) | Inventory management and order processing methods, devices and systems for distribution of electronic equipment | |
CN111242531A (en) | Raw material management and control method and device and electronic equipment | |
JP2004021364A (en) | Management intention decision support system | |
CN111630491A (en) | Extensible software tool with customizable machine prediction | |
CN117788115A (en) | Method, device, equipment and storage medium for determining article demand information | |
US20190180294A1 (en) | Supplier consolidation based on acquisition metrics | |
Yulia et al. | Simulation modelling of supply chain with allowance of reliability | |
TWI852171B (en) | Forecast data processing system and forecast data processing method | |
JP6807415B2 (en) | Information processing equipment, information processing methods and programs | |
Prakash et al. | Effects of inventory classifications on CONWIP system: a case study | |
US20200356920A1 (en) | Risk reduction system and method | |
Danese et al. | Supplier network relocation in a capital-intensive context: a longitudinal case study | |
CN114626660A (en) | Method and apparatus for surge regulation forecasting | |
Mohammadi et al. | A mixed integer programming model formulation for solving the lot-sizing problem | |
CN113793189A (en) | Information prediction method, device, equipment and storage medium | |
CN113762879A (en) | Method, device and system for setting postage | |
TWI822469B (en) | Processing system and method for difference data | |
Routroy et al. | Study of one way product substitution on supply chain performance |