TWI851567B - 使製程模擬模型最佳化的方法、系統、及電腦程式產品 - Google Patents
使製程模擬模型最佳化的方法、系統、及電腦程式產品 Download PDFInfo
- Publication number
- TWI851567B TWI851567B TW108112113A TW108112113A TWI851567B TW I851567 B TWI851567 B TW I851567B TW 108112113 A TW108112113 A TW 108112113A TW 108112113 A TW108112113 A TW 108112113A TW I851567 B TWI851567 B TW I851567B
- Authority
- TW
- Taiwan
- Prior art keywords
- simulation model
- semiconductor device
- profile
- device manufacturing
- process simulation
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 775
- 230000008569 process Effects 0.000 title claims abstract description 611
- 238000004088 simulation Methods 0.000 title claims abstract description 274
- 238000004590 computer program Methods 0.000 title claims description 33
- 238000006243 chemical reaction Methods 0.000 claims abstract description 78
- 230000003287 optical effect Effects 0.000 claims abstract description 40
- 238000005389 semiconductor device fabrication Methods 0.000 claims abstract description 18
- 238000004626 scanning electron microscopy Methods 0.000 claims abstract description 14
- 239000004065 semiconductor Substances 0.000 claims description 226
- 238000004519 manufacturing process Methods 0.000 claims description 206
- 239000000758 substrate Substances 0.000 claims description 189
- 238000007667 floating Methods 0.000 claims description 136
- 238000005530 etching Methods 0.000 claims description 54
- 238000012545 processing Methods 0.000 claims description 42
- 239000000463 material Substances 0.000 claims description 38
- 238000001228 spectrum Methods 0.000 claims description 37
- 230000010287 polarization Effects 0.000 claims description 31
- 238000013461 design Methods 0.000 claims description 27
- 238000001459 lithography Methods 0.000 claims description 24
- 238000013386 optimize process Methods 0.000 claims description 23
- 230000005670 electromagnetic radiation Effects 0.000 claims description 19
- 238000005259 measurement Methods 0.000 claims description 19
- 229920002120 photoresistant polymer Polymers 0.000 claims description 18
- 238000004364 calculation method Methods 0.000 claims description 17
- 238000012360 testing method Methods 0.000 claims description 16
- 239000000376 reactant Substances 0.000 claims description 15
- 238000004627 transmission electron microscopy Methods 0.000 claims description 14
- 230000001066 destructive effect Effects 0.000 claims description 12
- 238000009792 diffusion process Methods 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 12
- 238000004458 analytical method Methods 0.000 claims description 10
- 238000009826 distribution Methods 0.000 claims description 10
- 238000011065 in-situ storage Methods 0.000 claims description 10
- 238000004544 sputter deposition Methods 0.000 claims description 10
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 239000011651 chromium Substances 0.000 claims description 8
- 230000003993 interaction Effects 0.000 claims description 8
- 238000002310 reflectometry Methods 0.000 claims description 8
- 238000005137 deposition process Methods 0.000 claims description 5
- 238000000386 microscopy Methods 0.000 claims description 5
- 238000001878 scanning electron micrograph Methods 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 4
- 238000000711 polarimetry Methods 0.000 claims description 4
- 238000000235 small-angle X-ray scattering Methods 0.000 claims description 4
- 238000009966 trimming Methods 0.000 claims description 4
- 206010024769 Local reaction Diseases 0.000 claims description 3
- 238000000149 argon plasma sintering Methods 0.000 claims description 3
- 239000006185 dispersion Substances 0.000 claims description 3
- 230000009257 reactivity Effects 0.000 claims description 2
- 238000005457 optimization Methods 0.000 abstract description 111
- 238000001350 scanning transmission electron microscopy Methods 0.000 abstract 1
- 230000006870 function Effects 0.000 description 47
- 239000010410 layer Substances 0.000 description 29
- 235000012431 wafers Nutrition 0.000 description 24
- 238000002474 experimental method Methods 0.000 description 18
- 150000002500 ions Chemical class 0.000 description 17
- 230000004044 response Effects 0.000 description 15
- 239000000126 substance Substances 0.000 description 13
- 230000007246 mechanism Effects 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 230000004907 flux Effects 0.000 description 9
- 239000000654 additive Substances 0.000 description 8
- 230000000996 additive effect Effects 0.000 description 8
- 238000000151 deposition Methods 0.000 description 8
- 230000036961 partial effect Effects 0.000 description 8
- 230000003542 behavioural effect Effects 0.000 description 7
- 238000004422 calculation algorithm Methods 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 239000013598 vector Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 238000009616 inductively coupled plasma Methods 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 230000000737 periodic effect Effects 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 238000006557 surface reaction Methods 0.000 description 4
- 230000036962 time dependent Effects 0.000 description 4
- 238000000333 X-ray scattering Methods 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 238000013400 design of experiment Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000002085 persistent effect Effects 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000000513 principal component analysis Methods 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 238000012897 Levenberg–Marquardt algorithm Methods 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 229910001423 beryllium ion Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005520 electrodynamics Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000012464 large buffer Substances 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001393 microlithography Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000011165 process development Methods 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000985 reflectance spectrum Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Abstract
本文揭示將製程模擬模型最佳化至使半導體裝置製造操作特性化之製
程參數值的電腦實施方法,該製程模擬模型預測半導體裝置製造操作之結果。該方法涉及使用半導體裝置製造操作之運算性預測結果、及至少部分藉由在反應腔室中執行半導體裝置製造操作所產生之計量結果,來產生成本價值,該反應腔室係於一組固定製程參數值下操作。製程模擬模型之參數的判定可採用製程前輪廓、經由相對輪廓計量結果之參數的結果性製程後輪廓之最佳化。例如光學散射測量、掃描型電子顯微術及穿透型電子顯微術的成本價值可用以引導最佳化。
Description
本發明關於電腦實施方法及電腦程式產品,且尤其關於使製程模擬模型最佳化的電腦實施方法及電腦程式產品。
例如電漿輔助蝕刻製程之半導體裝置製造操作的效能對於半導體裝置處理工作流程的成功而言通常是必要的。然而,蝕刻製程及/或與其關聯之工具(例如蝕刻反應器、微影遮罩等)的最佳化或調諧在技術上可能困難且耗時,通常涉及技術人員手動調整蝕刻製程參數或工具部件設計以產生所期望的目標特徵部輪廓。現今,不存在可賴以決定導致所期望蝕刻輪廓之製程參數值的具有足夠精度之自動化程序。
若干模型模擬蝕刻製程期間發生在半導體基板表面上的物理及/或化學製程。如此模型的實例包含實施為行為模型(例如可從NC之Cary的Coventor(Lam Research之公司)取得的SEMulator3D)或實施為表面反應模型的蝕刻輪廓模型(EPM),見例如M.Kushner及共同工作者的模型、以及Cooperberg及共同工作者的模型。前者係敘述於Y.Zhang,“Low Temperature Plasma Etching Control through Ion Energy Angular Distribution and 3-Dimensional Profile
Simulation,”Chapter 3,dissertation,University of Michigan(2015),且後者係敘述於and the latter in Cooperberg,Vahedi,and Gottscho,“Semiempirical profile simulation of aluminum etching in a Cl2/BCl3 plasma,”J.Vac.Sci.Technol.A 20(5),1536(2002),二者皆在此整體併入作為參考。M.Kushner及共同工作者之蝕刻輪廓模型的額外敘述可見於J.Vac.Sci.Technol.A 15(4),1913(1997)、J.Vac.Sci.Technol.B 16(4),2102(1998)、J.Vac.Sci.Technol.A 16(6),3274(1998)、J.Vac.Sci.Technol.A 19(2),524(2001)、J.Vac.Sci.Technol.A 22(4),1242(2004)、J.Appl.Phys.97,023307(2005),其各者亦在此整體併入作為參考。Coventor之蝕刻輪廓模型的額外敘述可見於由Lorenz等人在2008年11月25日提出申請之美國專利第9,015,016號、及由Greiner等人在2015年1月26日提出申請之美國專利第9,659,126號,其各者亦在此整體併入做為參考。所揭示之如此模型可得益於進一步發展以接近由半導體處理產業所期望之精度及可靠度。
在此包含的背景及脈絡上之敘述係僅針對整體呈現揭示內容之脈絡的目的而提供。本揭示內容的多數者呈現發明人的成果,且單純由於如此成果於先前技術章節中敘述或在本文他處呈現為脈絡並不表示將其肯認為先前技術。
本揭示內容的一態樣提供使製程模擬模型最佳化的電腦實施方法,該製程模擬模型從使半導體裝置製造操作特性化之製程參數值預測半導體裝置製造操作的結果。該方法的特徵為以下操作:(a)接收待最佳化的一或更多浮動製程模型參數之目前值;(b)藉由將一或更多浮動製程模型參數之目前值提
供至該製程模擬模型,來產生經配置製程模擬模型;(c)使用經配置製程模擬模型,生成半導體裝置製造操作的運算性預測結果;(d)將半導體裝置製造操作的運算性預測結果與從一或更多基板特徵部獲得的計量結果比較,該一或更多基板特徵部係至少部分藉由執行半導體裝置製造操作而產生,其中該比較基於半導體裝置製造操作之運算性預測結果與該量結果之間的差異,產生一或更多成本價值;(e)使用該一或更多成本價值及/或收斂檢查,以生成一或更多浮動製程模型參數之目前值的更新值;(f)以一或更多浮動製程模型參數之目前值的更新值重新執行操作(b);及(g)重複(c)-(f),直到一或更多浮動製程模型參數之目前值收斂,以產生使成本價值最小化的一或更多浮動製程模型參數之最終值。
在若干實施例中,製程模擬模型在(b)中額外配置有一組固定製程模型參數值,且計量結果係藉由在操作於該組固定製程參數值下之反應腔室中執行半導體裝置製造操作而產生。在若干實施例中,該組製程模型參數值或一或更多浮動製程模型參數包含反應腔室中之一或更多溫度值、反應腔室中之一或更多RF條件、反應腔室中之一或更多製程氣體、反應腔室中之壓力、或其任何組合。
在若干實施例中,半導體裝置製造操作為減去製程或材料加成製程。在若干實施例中,半導體裝置製造操作為蝕刻製程、平坦化製程、或沉積製程。
在若干實施例中,一或更多浮動製程模型參數包含經歷半導體裝置製造操作的基板之特性,其中該特性為反應速率常數、反應物及/或產物黏附係數、反應物擴散常數、產物擴散常數、及/或光分散性質。在若干實施例中,一或更多浮動製程模型參數包含垂直蝕刻速率、橫向蝕刻速率、標稱蝕刻
深度、蝕刻選擇性、離子進入的傾斜角度、離子進入的撚角(twist angle)、進入特徵部之可見度、角分布、濺射最大產率角度、及/或每晶體方向的蝕刻比。在若干實施例中,一或更多浮動製程模型參數包含經歷半導體裝置製造操作之基板的任何二或更多特性之組合。
在若干實施例中,在(b)中產生經配置製程模擬模型額外包含在基板經歷半導體裝置製造操作之前,對製程模擬模型提供基板的輪廓,其中基板的輪廓具有待由半導體裝置製造操作修改的一或更多特徵部。
在若干實施例中,該方法額外包含:在(c)之前,提供經歷半導體裝置製造操作之基板的初始輪廓,藉以在(c)中使用該初始輪廓生成半導體裝置製造操作之運算性預測結果。在若干實施例中,該初始輪廓係使用有關發生在半導體裝置製造操作前之製造步驟的資訊而運算性地生成。在若干實施例中,初始輪廓係藉由在一或更多初始基板特徵部上進行計量而決定,該一或更多初始基板特徵部係由發生在半導體裝置製造操作前之製造步驟所產生。
在若干實施例中,半導體裝置製造操作的結果為藉由入射電磁輻射與經蝕刻特徵部、經沉積特徵部、或經平坦化特徵部之互動所產生的訊號。在若干實施例中,生成半導體裝置製造操作的運算性預測結果包含以下操作:(i)使用經配置製程模擬模型,生成由一系列幾何輪廓坐標代表的運算蝕刻輪廓;及(ii)從(i)中生成的運算蝕刻輪廓,藉由模擬電磁輻射離開該運算蝕刻輪廓的反射而生成經運算的反射或橢圓偏振光譜。在一些情形中,該方法額外包含:在(ii)之前,對運算蝕刻輪廓進行輪廓修整,以使一些隨機輪廓變異平整。在若干實施例中,生成經運算的反射或橢圓偏振光譜涉及使用運算蝕刻輪廓執行嚴格耦合波分析(Rigorous Coupled Wave Analysis,RCWA)模擬。在若干實施
例中,生成經運算的反射或橢圓偏振光譜涉及使用運算蝕刻輪廓執行時域有限差分(Finite Difference Time-Domain,FDTD)模擬。在若干實施例中,該方法額外包含:於該組製程參數值下在測試基板上執行半導體裝置製造操作,以產生經蝕刻基板;及使該經蝕刻基板暴露至入射電磁輻射,以產生包含計量結果的實驗性反射光譜。在若干實施例中,該方法更包含生成一或更多額外經運算的反射或橢圓偏振光譜。在若干實施例中,該方法額外包含藉由在基板上執行反射術(reflectometry)、圓頂散射測量(dome scatterometry)、角分解散射測量(angle-resolved scatterometry)、小角度X光散射測量(small-angle X-ray scatterometry)、及/或橢圓偏振法而獲取而產生計量結果,該基板包含藉由在操作於該組製程參數值下之反應腔室中執行半導體裝置製造操作而產生的特徵部。
在若干實施例中,半導體裝置製造操作的結果為經蝕刻特徵部的輪廓、經沉積特徵部的輪廓、及/或經平坦化特徵部的輪廓。在若干實施例中,生成半導體裝置製造操作的運算性預測結果包含:使用經配置製程模擬模型生成由蝕刻輪廓坐標代表的運算蝕刻輪廓。在如此實施例中,該方法可額外包含:於該組製程參數值下在測試基板上執行半導體裝置製造操作,以產生經蝕刻基板;及量測該經蝕刻基板的特徵部,以產生包含計量結果的實驗性蝕刻輪廓坐標。在若干實施例中,量測經蝕刻基板的特徵部包含在經蝕刻基板上執行顯微術或光學計量。在一些情形中,執行顯微術涉及執行穿透型電子顯微術(TEM)及/或掃描型電子顯微術(SEM)。
在若干實施例中,半導體裝置製造操作的結果為一組幾何輪廓參數,該組幾何輪廓參數將經蝕刻特徵部、經沉積特徵部、或經平面化特徵部
的幾何特性化。該幾何輪廓參數可為光學臨界尺寸(optical critical dimension,OCD)輪廓參數。在若干實施例中,生成半導體裝置製造操作的該運算性預測結果包含:(i)使用經配置製程模擬模型,生成由一系列蝕刻輪廓坐標代表的運算蝕刻輪廓;及(ii)將在(i)中生成的運算蝕刻輪廓轉換成第一組幾何輪廓參數,該第一組幾何輪廓參數將運算蝕刻輪廓的幾何特性化。在如此實施例中,該方法可額外包含:於該組製程參數值下在測試基板上執行半導體裝置製造操作,以產生經蝕刻基板;量測經蝕刻基板的特徵部,以產生實驗性蝕刻輪廓坐標;及將實驗性蝕刻輪廓坐標轉換成第二組幾何輪廓參數,該第二組幾何輪廓參數將經蝕刻基板中之經蝕刻特徵部的幾何特性化。再者,在如此實施例中,一或更多成本價值可基於使用第一組幾何輪廓參數之運算性預測結果與使用第二組幾何輪廓參數之計量結果之間的差異。
在若干實施例中,在(c)中生成的運算性預測結果包含從經配置製程模擬模型運算、且對應至代表基板減去製程或基板加成製程之不同持續時間之時間序列的基板特徵部之幾何輪廓或輪廓參數的序列。在若干實施例中,(d)之計量結果包含在基板減去製程或基板加成製程之不同持續時間從基板之實驗性量測獲得的基板特徵部之幾何輪廓或輪廓參數的序列。
在若干實施例中,該方法額外包含:(i)利用來自(g)之一或更多浮動製程模型參數的最終值配置製程模擬模型;及(ii)使用以來自(g)之一或更多浮動製程模型參數的最終值所配置之製程模擬模型實現:決定微影遮罩的圖案、及產生微影遮罩。在一些情形中,產生微影遮罩包含將圖案轉移至光阻層。在一些如此情形中,該方法額外包含使光阻層顯影並將圖案轉移至下方鉻層。
在若干實施例中,該方法額外包含:(i)以來自(g)之一或更多浮動製程模型參數的最終值配置製程模擬模型;(ii)利用配置有來自(g)之一或更多浮動製程模型參數的最終值之製程模擬模型,以實現:識別半導體處理裝置的設計、及藉由使用半導體處理裝置的設計製造半導體處理裝置。
在若干實施例中,該方法額外包含:(i)以來自(g)之一或更多浮動製程模型參數的最終值配置製程模擬模型;(ii)利用配置有來自(g)之一或更多浮動製程模型參數的最終值之製程模擬模型,來識別半導體處理裝置的操作條件,以藉由在該操作條件下操作半導體處理裝置而實現半導體裝置的製造。
在一些實施例中,重複(c)-(f)包含:在所獲得的一或更多成本價值中識別實質上局部或全域最小值。在若干實施例中,該方法額外包含藉由執行反應腔室中之原位計量、反應腔室之外的非破壞性獨立計量、及/或反應腔室之外的獨立破壞性計量,來獲得計量結果。
在一些實施例中,生成運算性預測結果包含:使用經配置製程模擬模型計算代表半導體基板上之特徵部輪廓之複數點之網格處的局部反應率。在一些如此實施例中,使用經配置製程模擬模型計算局部反應率的步驟計算反應率作為時間的函數。
本揭示內容的另一態樣關於電腦程式產品,其包含非暫態電腦可讀媒體,該非暫態電腦可讀媒體上提供用於致使運算系統執行最佳化之製程模擬模型的複數指令,最佳化之製程模擬模型從將半導體裝置製造操作特性化之製程參數計算半導體裝置製造操作的結果。該複數指令包含用於下列者的指令:(a)接收製程參數值作為對最佳化之製程模擬模型的輸入;(b)使用該製程參數值執行最佳化之製程模擬模型;及(c)輸出半導體裝置製造操作的計算結
果。在若干實施例中,最佳化之製程模擬模型係藉由以上所述方法之其中一者加以最佳化。舉例而言,製程模擬模型係藉由下列者加以最佳化:(i)接收待最佳化的一或更多浮動製程模型參數之目前值;(ii)藉由將一或更多浮動製程模型參數之目前值及一組固定製程模型參數值提供至製程模擬模型,來產生經配置製程模擬模型;(iii)使用經配置製程模擬模型,生成半導體裝置製造操作的運算性預測結果;(iv)將半導體裝置製造操作的運算性預測結果與從一或更多基板特徵部獲得的計量結果比較,該一或更多基板特徵部係至少部分藉由在操作於該組固定製程模型參數值下之反應腔室中執行半導體裝置製造操作而產生,其中該比較基於半導體裝置製造操作之運算性預測結果與計量結果之間的差異,產生一或更多成本價值;(v)使用該一或更多成本價值及/或一收斂檢查,以生成一或更多浮動製程模型參數之目前值的更新值;(vi)以一或更多浮動製程模型參數之目前值的更新值執行操作(ii);(vii)重複(iii)-(vi),直到一或更多浮動製程模型參數之目前值收斂,以產生使成本價值最小化的一或更多浮動製程模型參數之最終值。
關聯於該電腦程式產品的製程模擬模型可藉由使本揭示內容之製程模擬模型態樣最佳化之方法中的上述操作其中任何者加以最佳化。在若干實施例中,該等指令更包含:在(b)之前,接收經歷半導體裝置製造操作的基板之初始輪廓。
在若干實施例中,該一或更多浮動製程模型參數包含垂直蝕刻速率、橫向蝕刻速率、標稱蝕刻深度、蝕刻選擇性、離子進入的傾斜角度、離子進入的撚角、進入特徵部之可見度、角分布、濺射最大產率角度、及/或每晶體方向的蝕刻比。在若干實施例中,(ii)產生經配置製程模擬模型更包含在基板
經歷半導體裝置製造操作之前,對製程模擬模型提供基板的輪廓,其中基板的輪廓具有待由半導體裝置製造操作修改的一或更多特徵部。
在若干實施例中,半導體裝置製造操作的結果為藉由入射電磁輻射與經蝕刻特徵部、經沉積特徵部、或經平坦化特徵部之互動所產生的訊號。在若干實施例中,生成該半導體裝置製造操作的該運算性預測結果包含:使用經配置製程模擬模型,生成由一系列幾何輪廓坐標代表的運算蝕刻輪廓;及從該運算蝕刻輪廓,藉由模擬電磁輻射離開該運算蝕刻輪廓的反射而生成經運算的反射或橢圓偏振光譜。在若干實施例中,最佳化的製程模擬模型係額外藉由下列者而最佳化:於該組製程參數值下在測試基板上執行半導體裝置製造操作,以產生經蝕刻基板;及使該經蝕刻基板暴露至入射電磁輻射,以產生包含計量結果的實驗性反射光譜。
在若干實施例中,最佳化的製程模擬模型係額外藉由下列者而最佳化:藉由在基板上執行反射術、圓頂散射測量、角分解散射測量、小角度X光散射測量、及/或橢圓偏振法而獲取而產生該計量結果,該基板包含藉由在操作於該組製程參數值下之反應腔室中執行半導體裝置製造操作而產生的特徵部。在若干實施例中,生成半導體裝置製造操作的運算性預測結果包含:使用經配置製程模擬模型生成由蝕刻輪廓坐標代表的運算蝕刻輪廓。在一些如此實施例中,最佳化的製程模擬模型係額外藉由下列者而最佳化:於該組製程參數值下在測試基板上執行半導體裝置製造操作,以產生經蝕刻基板;及量測經蝕刻基板的特徵部,以產生包含計量結果的實驗性蝕刻輪廓坐標。
在若干實施例中,半導體裝置製造操作的結果為一組幾何輪廓參數,該組幾何輪廓參數將經蝕刻特徵部、經沉積特徵部、或經平面化特徵部
的幾何特性化。在一些如此實施例中,幾何輪廓參數為光學臨界尺寸(optical critical dimension,OCD)輪廓參數。在若干實施例中,生成半導體裝置製造操作的運算性預測結果包含:使用經配置製程模擬模型,生成由一系列蝕刻輪廓坐標代表的運算蝕刻輪廓;及將該運算蝕刻輪廓轉換成第一組幾何輪廓參數,該第一組幾何輪廓參數將該運算蝕刻輪廓的幾何特性化。在一些如此實施例中,最佳化的製程模擬模型係額外藉由下列者而最佳化:於該組製程參數值下在測試基板上執行半導體裝置製造操作,以產生經蝕刻基板;量測該經蝕刻基板的特徵部,以產生實驗性蝕刻輪廓坐標;及將該實驗性蝕刻輪廓坐標轉換成第二組幾何輪廓參數,該第二組幾何輪廓參數將該經蝕刻基板中之經蝕刻特徵部的幾何特性化。
在若干實施例中,該等指令額外包含將計算結果用以決定微影遮罩之圖案的指令。在若干實施例中,該等指令額外包含將計算結果用以識別半導體處理裝置之設計的指令。在若干實施例中,該等指令額外包含將計算結果用以識別半導體處理裝置之操作條件的指令,以藉由在該操作條件下操作半導體處理裝置而實現半導體裝置的製造。
本揭示內容的另一態樣關於包含上述電腦程式產品及微影遮罩生成裝置的系統,該微影遮罩生成裝置配置成使用半導體裝置製造操作的計算結果決定微影遮罩圖案。關聯於此系統的製程模擬模型可藉由使本揭示內容之製程模擬模型態樣最佳化之方法中的上述操作其中任何者加以最佳化。
本揭示內容的另一態樣關於包含上述電腦程式產品及半導體處理裝置的系統,該半導體處理裝置配置成在半導體裝置製造操作之計算結果中
提供的製程條件下操作。關聯於此系統的製程模擬模型可藉由使本揭示內容之製程模擬模型態樣最佳化之方法中的上述操作其中任何者加以最佳化。
本揭示內容的另一態樣關於使用製程模擬模型預測半導體裝置製造操作(例如蝕刻、平坦化、或沉積材料)之結果、及使用該結果改善半導體裝置製造操作之運作的方法。舉例而言,如此使用方法包含生成經改善遮罩布局(其可實施於遮罩)、設計經改善反應器以供執行半導體裝置製造操作、及/或定義半導體裝置製造操作的製程窗。在本揭示內容之此態樣中使用的製程模擬模型可藉由使本揭示內容之製程模擬模型態樣最佳化之方法中的上述操作其中任何者加以最佳化。
這些及其他特徵將參照相關圖式於以下說明。
300:最佳化程序
302:操作
304:操作
306:操作
308:操作
310:操作
312:操作
400:系統
404:模型
406:輸出
408:反射/橢圓偏振光譜產生器
412:成本函數計算器
418:估計器
500:系統
502:組分
504:模型
506:特徵部輪廓
512:成本函數計算器
514:組分
516:組分
518:收斂檢查器
520:組分
522:組分
524:組分
526:組分
600:系統
604:製程模擬模型
608:輪廓參數轉換器
800:電腦系統
802:輸入/輸出次系統
804:處理器
806:周邊裝置
808:記憶體
810:持久性儲存部
現將結合圖式說明例示性實施例,其中:圖1表示從蝕刻製程之蝕刻輪廓模型運算性產生的蝕刻輪廓之實例。
圖2表示蝕刻輪廓的實例,其類似於圖1所示者,但在此圖中係從利用一或更多計量工具作成之實驗性量測運算出。
圖3顯示依據若干實施例使製程模擬模型最佳化之程序的概觀。
圖4顯示最佳化系統之實施例,其採用模擬與量測之反射或橢圓偏振值的比較。
圖5顯示最佳化系統之實施例,其採用模擬與量測之特徵部輪廓值的比較。
圖6顯示最佳化系統之實施例,其採用一組「輪廓參數」來潛在地利用較少資料點或資料點組代表特徵部輪廓的幾何。
圖7顯示可用以最佳化及/或使用製程模擬模型的例示運算系統。
圖8顯示使用例如CD-SEM之由上而下計量工具的例示最佳化系統/流程。
引言
此處所揭示者為用於改善例如以上指出之蝕刻輪廓模型(EPM)製程模擬模型(及/或其他類似模型)之效用的方法及/或程序,使得製程模擬模型可用以產生由半導體裝置製造操作導致之半導體特徵部輪廓的表示法,該表示法具有對於半導體處理產業可接受之精度程度。總體而言,所揭示之方法在製程模擬模型的預測性能力上改善。
製程模擬模型可藉由計算許多空間位置之各者處的反應速率或其他關聯於蝕刻製程之製程參數,來模擬基板表面輪廓的「演變」,例如隨時間量測時對於特徵部之蝕刻輪廓的依序變化、或特徵部表面上諸多空間位置處的特徵部形狀上之時間相依變化。反應速率中的變異數可產生自蝕刻劑通量、所選沉積材料的特性、反應腔室的電漿狀況、或若干其他因素的任何者。再者,所計算的反應速率可能隨著所模擬之蝕刻製程的過程而波動。並非所有製程模擬模型皆模擬隨著半導體裝置製造操作之過程的演變,一些者僅在已知反應條件(包含操作的持續時間)及初始特徵部輪廓的情況下預測最終輪廓。
在一些實施例中,模擬蝕刻輪廓的輸出可由一個別組的資料點(亦即如圖1所示,空間性定義及/或以其他方式映射輪廓形狀的輪廓坐標)代表。再者,圖1所示的模擬輪廓可對應至圖2所示的實際量測蝕刻輪廓。模擬蝕刻輪廓隨時間的演變相依於模型化的空間上解析局部蝕刻速率,其因此相依於蝕刻製程的基本化學及物理性質。
因此,例如藉由EPM進行的輪廓模擬可相依於關聯於裝置製造程序隱含之化學反應機制的諸多物理及/化學參數、以及可將腔室環境特性化的任何物理及/或化學參數,例如(但不限於):溫度、壓力、電漿功率、反應物流速等。如此參數典型地在製程工程師的控制之下。
仰賴表面反應之表示法的製程模擬模型採用一組核心、或「基礎」化學及/或物理輸入參數,實例包含(但不以其他方式限制於):反應機率、黏附係數、離子及中性粒子通量等。參數可能並非為可彼此獨立加以控制。再者,在若干製程情況及/或配置中,管理製造程序的製程工程師可能未察覺該等參數的一或更多者,然而該等參數為運行製程模擬模型所需。如此參數可由文獻做出假設具有若干價值,其中其使用引起了被模型化之製程背後隱含的物理及化學機制之若干簡化。
所揭示的方法及/或程序結合實驗技術及資料分析方法,來改善修改基板之半導體製造操作之製程模擬模型的實務產業可應用性。
在若干實施例中,此處所揭示的技術將化學、物理、及/或行為輸入參數值(有時稱為「浮動」製程模型參數值)最佳化,該等參數值係由該等模型所使用,且藉由決定更有效的參數值組來改善模型的預測精度。使參數最佳化改善了其中使用該等參數之製程模擬模型的精度,即使在針對基礎參數所
決定的最佳值可能不同於文獻(或其他實驗)可能判定為「真」或理想之該等參數之物理/化學值的情況中亦然。待最佳化的參數未必直接對應於蝕刻製程的特定化學或物理性質或機制。在一些情形中,其僅代表容許模型針對一組給定輸入(例如反應器條件)精確預測蝕刻結果的參數。
製程模擬模型可考量製程設備內的物理性質及/或可量測量、以及奈米層級的基板及/或半導體晶圓性質。然而,並非所有晶圓性質皆可方便地直接量測,亦即經常需要切出及/或留下基板樣本,以經由例如掃描型電子顯微鏡(SEM)之顯微鏡及其他計量技術加以觀察及/或掃描。
定義
以下用語可在本說明書各處間歇地使用。
在此申請案中,用語「半導體晶圓」、「晶圓」、「基板」、「晶圓基板」及「部分製造積體電路」可互換式地使用。所屬領域具有通常技藝者理解用語「部分製造積體電路」可指處於半導體晶圓上積體電路製造之許多階段的任何者期間的該半導體晶圓。半導體裝置產業中使用的晶圓或基板典型地具有200mm、或300mm、或450mm的直徑。本實施方式假設實施例係於晶圓上實施。然而,揭示內容並非如此受限。工件可具有不同形狀、尺寸、及材料。除了半導體晶圓之外,可利用所揭示實施例的其他工件包括諸多物件,例如印刷電路板、磁性記錄媒體、磁性記錄感測器、反射鏡、光學元件、微機械裝置等。
此處使用的「特徵部」為基板表面上的非平面結構,該基板表面典型地為在半導體裝置製造操作中受到修改的表面。特徵部的實例包括溝槽、貫孔、墊、柱、圓頂等。特徵部可藉由光阻顯影、遮罩定義、微影蝕刻、
微影沉積、磊晶生長、鑲嵌沉積等而產生。特徵部典型地具有縱橫比(深度或高度對寬度)。特徵部縱橫比的實例包含至少約1:1.05、至少約1:1、至少約2:1、至少約5:1、至少約10:1、或更高的縱橫比。在若干實施例中,特徵部具有約10nm至500nm之間的寬度尺寸(其可為臨界尺寸),例如介於約25nm與約300nm之間。特徵部輪廓可逐漸縮窄且/或在特徵部開口包含懸出物。凹入輪廓(re-entrant profile)為從特徵部之底部或內部向特徵部縮窄者。
此處使用的「初始輪廓」為將由半導體裝置製造操作所處理的基板表面之幾何的輪廓。初始輪廓可具有一或更多特徵部(或其可為完全平面)且其作為用於半導體裝置製造操作的起始或輸入輪廓,該半導體裝置製造操作接著修改初始輪廓。初始輪廓可利用關於半導體裝置製造操作前之製造步驟的資訊而運算性地產生。或者,初始輪廓係藉由在從半導體裝置製造操作前之製造步驟生成的基板表面上進行計量而產生。在半導體裝置製造操作期間,真實地或模擬性地將基板表面從初始輪廓修改成最終輪廓。
此處使用的「半導體裝置製造操作」為半導體裝置之製造期間所執行的單元操作。典型地,整體製造程序包含複數半導體裝置製造操作,其各者在其本身的半導體製造工具中執行,例如電漿反應器、電鍍槽、化學機械平坦化工具、濕式蝕刻工具等。半導體裝置製造操作的類別包括例如蝕刻製程及平坦化製程的減去製程、及例如沉積製程的材料加成製程。在各製程的脈絡中,基板蝕刻製程包含蝕刻遮罩層的製程、或更總括而言蝕刻先前沉積及/或以其他方式停留在基板表面上之任何材料層的製程。如此蝕刻製程可蝕刻基板中的層堆疊。
此處使用的「半導體裝置製造操作的結果」為經歷半導體製造操作之基板的特性。如此結果的一實例為半導體製造操作後的基板幾何輪廓。該輪廓為代表特徵部或特徵部之群組的位置之空間中的一組點。舉例而言,輪廓可為經蝕刻特徵部的輪廓、經沉積特徵部的輪廓、經平坦化特徵部的輪廓等。在另一實例中,半導體製造操作的結果為藉由入射電磁輻射與一或更多基板特徵部(例如經蝕刻特徵部、經沉積特徵部、或經平坦化特徵部)之互動所產生的訊號。在如此實例中,結果可為例如可包含作為波長及/或極化狀態之函數之反射大小的反射訊號。結果亦可為橢圓偏振訊號。在另一實例中,半導體製造操作的結果為將例如經蝕刻特徵部、經沉積特徵部、或經平坦化特徵部的特徵部之幾何特性化的一組輪廓參數,例如光學臨界尺寸(OCD)輪廓參數。如此輪廓參數可將特徵部的整體特性(例如其平均臨界尺寸、其側壁角度、其深度等)特性化。
半導體製造操作的結果可在半導體製造操作期間於一時間點或於複數時間點之範圍而獲得。若結果在僅一時間點提供,該時間點可為半導體製造操作完成的時間點。
在此使用之「半導體裝置製造操作的運算性預測結果」為例如藉由運算性模型(例如受考量之裝置製造操作的製程模擬模型)而運算性產生之半導體裝置製造操作的預測結果。在若干實施例中,運算性程序計算由幾何輪廓坐標代表的預測特徵部輪廓。在其他情形中,運算性程序計算由與預測特徵部輪廓互動之電磁輻射產生的預測光學響應。在又其他情形中,運算性程序計算由半導體裝置製造操作產生之特徵部輪廓的預測幾何輪廓參數(例如將所運算之蝕刻輪廓的幾何特性化的一組OCD輪廓參數)。在一些實施例中,特徵部輪
廓、光學響應、及/或輪廓參數係運算為作用時間(function time)(半導體裝置製造操作發生經過該作用時間)。在若干實施例中,為了預測半導體裝置製造操作的結果,運算性程序預測代表半導體基板上之特徵部輪廓的複數點之網格處的局部反應率。此導致偏離運算開始時使用之初始輪廓的基板/特徵部輪廓。
在運算性程序計算預測光學響應的情形中,其可藉由模擬電磁輻射離開該所運算之蝕刻輪廓的反射來運算反射光譜或橢圓偏振響應。反射光譜或橢圓偏振響應可使用例如嚴格耦合波分析(Rigorous Coupled Wave Analysis,RCWA)模擬或時域有限差分(Finite Difference Time-Domain,FDTD)模擬而產生。
在若干實施例中,運算性程序生成基板特徵部的幾何輪廓或輪廓參數之時間序列。在若干實施例中,運算性程序生成藉由模擬在不同時間離開受運算基板特徵部輪廓之電磁輻射的反射而產生之經運算反射光譜或橢圓偏振響應的時間序列。時間序列可在半導體裝置製造操作的不同持續時間生成。半導體裝置製造操作的運算性預測結果可針對基板減去製程及/或基板加成製程而提供。
在此使用的用語「輪廓修整」意指將受運算蝕刻輪廓平滑化以使一些隨機輪廓變異平整。輪廓修整可在例如模擬離開該受運算蝕刻輪廓之電磁輻射之反射的另一運算性程序之前施加至半導體裝置製造操作的運算性預測結果。
在此使用的「計量結果」意指至少部分藉由量測受處理基板的特徵部而生成的結果。量測可在一組固定製程參數值下操作之反應腔室中的半導體裝置製造操作之時或之後作成。在若干實施例中,量測受處理基板的特徵
部生成輪廓坐標。在如此實施例中,量測受處理基板的特徵部可包含在受蝕刻基板上執行顯微術(例如CD-SEM、SEM、TEM、STEM、REM、AFM)、或光學計量。當使用光學計量時,系統可藉由從所量測之光學計量訊號計算輪廓坐標而獲取輪廓坐標。在若干實施例中,計量結果係藉由將所量測的特徵部輪廓坐標轉換成一組幾何輪廓參數而生成,該組幾何輪廓參數將受處理基板中之特徵部的幾何(例如臨界尺寸、側壁角度、深度等)特性化。在若干實施例中,計量結果係藉由在受處理基板上執行反射術(reflectometry)、圓頂散射測量(dome scatterometry)、角分解散射測量(angle-resolved scatterometry)、小角度X光散射測量(small-angle X-ray scatterometry)、及/或橢圓偏振法而獲取。在若干實施例中,計量結果為針對特定製程的終點偵測。可原位判定的終點偵測可藉由諸多光學技術而量測。
在若干實施例中,計量結果係提供作為基板特徵部之經量測幾何輪廓、反射或橢圓偏振資料、或輪廓參數的時間序列。這些經量測的計量結果係於半導體裝置製造操作的不同持續時間生成。
在此使用的「製程模擬模型」為預測半導體裝置製造操作之結果的運算性模型。換言之,其輸出該結果。如所說明,結果的實例包括特徵部輪廓(例如特徵部的詳細笛卡兒坐標)、將特徵部特性化的輪廓參數(例如臨界尺寸、側壁角度、深度等)、及/或若使用光學計量來探測特徵部所產生的反射/橢圓偏振資料。該等結果係基於所模擬之半導體裝置製造操作期間所生成或修改的特徵部。該等結果可在半導體裝置製造操作期間的一或更多時間點加以預測。
對製程模擬模型的輸入包括將半導體裝置製造操作特性化的一或更多製程參數值。通常,用作輸入的製程參數為例如溫度(基座、噴淋頭等)的反應器條件、電漿條件(密度、電位、功率等)、製程氣體條件(組成、成分的分壓、流率、壓力等)、或類似者。典型地,製程模擬模型亦納入初始輪廓基板,該初始輪廓基板代表即將經由模型化半導體裝置製造操作加以處理之前的基板表面之輪廓。在簡易的案例中,初始輪廓僅為平坦表面。更典型地,初始輪廓具有例如遮罩或光阻特徵部的特徵部。
有時,製程模擬模型模擬減去製程,例如基板蝕刻製程或平坦化製程。在諸多實施例中,製程模擬模型為此處所述的蝕刻輪廓模型。有時,製程模擬模型模擬加成製程,例如基板沉積製程(例如化學氣相沉積、物理氣相沉積、原子層沉積等)。
在此使用的「經配置製程模擬模型」敘述配置有一或更多浮動製程模型參數的製程模擬模型。當如此加以配置時,且在納入輸入製程參數及基板初始輪廓之後,可執行製程模擬模型以預測半導體裝置製造操作的結果。
在此使用的「製程參數」為使半導體裝置製造操作期間發生於反應腔室中、且通常在由操作所修改之基板表面上的製程特性化之參數。典型地,需要許多如此製程參數來將製程獨特地特性化。一些製程參數將相對易於控制及/或量測之製程的態樣特性化。如此製程參數的實例包含(基座、噴淋頭等的)溫度、電漿條件(電漿密度、電漿電位、所施加之功率等)、製程氣體條件(組成、成分的分壓、流率、壓力等)、及可調整之腔室幾何參數,例如基座與噴淋頭之間的間隔。其他製程參數將無法直接控制及/或無法輕易量測的製程特性化。如此製程參數的實例包括局部條件(例如基板表面上之一位置處的電漿密
度、方向、或能量)、及機械式特性(例如反應速率常數、反應物及/或產物黏附係數、反應物擴散常數、產物擴散常數、光分散性質、及其組合)。製程參數的值係用作對製程模擬模型的輸入或製程模擬模型的配置。該值可為純量、向量、矩陣、張量等。
在此使用的「固定製程模型參數」為由製程模擬模型所需的製程參數,但其值在用以改善製程模擬模型之效能的最佳化程序期間為固定的。換言之,固定製程模型參數的值在最佳化程序期間不改變。此與其值在最佳化運行期間改變的浮動製程模型參數不同。在一些實施例中,固定製程模型參數可直接受控制且/或易於量測。實例包含反應腔室中的溫度、反應腔室中的一或更多所施加之射頻或電漿條件、反應腔室中的一或更多製程氣體條件、反應腔室中的壓力、或其任何組合。然而,固定製程模型參數可替代性地為局部或機械式參數。有時在此處所述之模型最佳化程序中為了便利起見,而將固定製程模型參數之值或該值的群組由符號μ代表。
在此使用的「浮動製程模型參數」為由製程模擬模型所需的製程參數,但其值在最佳化程序期間浮動(改變、調整等)。從初始或種子值(seed value)到最終值的浮動製程模型參數之反覆修改為模型最佳化程序的目標。若最佳化常式成功,配置有浮動製程模型參數之最終值的製程模擬模型便提供比配置有浮動製程模型參數之初始值的製程模擬模型更佳的預測能力。有時在此處所述之模型最佳化程序中為了便利起見,而將浮動製程模型參數之值或該值的群組由符號α代表。
在若干實施例中,浮動製程模型參數代表經歷半導體裝置製造操作之基板的特性。一般實例包括半導體裝置製造操作期間難以量測的反應器
中之局部條件及/或機械式性質。在一些實例中,特性為反應速率常數、反應物及/或產物黏附係數、反應物擴散常數、產物擴散常數、局部電漿性質(例如基板表面處的離子通量、離子方向、自由基通量等)、光分散性質、或其任何組合。然而,浮動製程模型參數不限於如此參數。可能更典型地用作固定製程模型參數的參數亦可加以使用,或用作浮動製程模型參數、或用作浮動製程模型參數的一部分。如此非機械式參數的實例包括反應腔室中的溫度、反應腔室中的一或更多RF條件、反應腔室中的一或更多製程氣體、反應腔室中的壓力、所施加之電漿條件、或其任何組合。在一些實施例中,浮動製程模型參數包含針對給定製程更全域性聚焦的參數,該給定製程係由製程模擬模型代表。如此浮動製程模型參數的實例包含垂直蝕刻速率、橫向蝕刻速率、標稱蝕刻深度、蝕刻選擇性、垂直沉積速率、濺射產率的電漿角度相依性、及濺射產率的電漿能量相依性,其皆針對經歷給定半導體裝置製造操作的給定材料。浮動製程模型參數的其他實例包含離子進入的傾斜角度、離子進入的撚角(twist angle)、對於蝕刻及/或沉積的(進入特徵部之)可見度、角分布(有時稱為來源σ)、黏附係數(有時稱為等向比(isotropic ratio))、濺射最大產率角度、濺射比、及每晶體方向的蝕刻比,再一次,其皆針對經歷給定半導體裝置製造操作的給定材料。
在諸多實施例中,浮動製程模型參數組合使經歷半導體裝置製造操作之基板特性化的製程模型參數之任何二或更多者。該組合可為參數之個別值的乘積或總和,該等個別值的任一者皆可基於個別參數對模型之預測能力的重要性或基於其他因素而加權。有時,個別參數的一些或所有值在組合前受到正規化。在一些實施例中,個別值係提供作為向量形式的單獨貢獻度。在一實例中,參數的組合可為離子密度及與基板上材料之反應速率。在不考量任何
其他因素的情況下,移除的機率將與離子密度、反應速率、基板材料密度、及原始輪廓之表面積的乘積成比例。因此,離子密度及反應速率無法唯一地判定,但其乘積則可。在一些情形中,浮動製程模型參數不具有對裝置製造操作之特定物理及/或化學製程的已知連接關係。如此浮動製程模型參數在使行為性製程模擬模型最佳化時為合適的。
在反覆最佳化程序期間,在任何迭代處,浮動製程模型參數的值被視為浮動製程模型參數的「目前值」。先前迭代期間的參數值可稱為浮動製程模型參數的先前值,且後繼迭代期間的參數值可稱為浮動製程模型參數的後繼值。從一迭代至下一迭代的浮動製程模型參數值的修改有時稱為浮動製程模型參數之目前值的更新。在反覆最佳化程序的結束處,浮動製程模型參數的值稱為浮動製程模型參數的最終值。
當在此使用時,使製程模擬模型「最佳化」係改善製程模擬模型預測該模型被設計用以模擬之半導體裝置製造操作之結果的能力。通常在此處的討論中,最佳化常式藉由反覆地調整一或更多浮動製程模型參數的目前值而使製程模擬模型最佳化。在預測結果及實驗性判定結果二者皆從相同半導體裝置製造操作產生的情況下,於最佳化期間,使用浮動製程模型參數之目前值之製程模擬模型的運算性預測結果可與實驗性判定結果(例如計量結果)比較。該比較提供反映預測/模擬結果與實驗性判定結果之間差異(或一致性)大小的成本價值(cost value)。最佳化常式使用該成本價值以至少(i)判定浮動製程模型參數值的值是否已收斂、及(ii)若值未收斂,判定如何針對下一迭代調整浮動製程模型參數。在若干實施例中,程序不僅使用目前迭代的成本價值,且亦使用歷史迭代之所有或一些者的成本價值,以搜尋全域最佳值。
當在此使用時,「比較」製程模擬模型之運算性預測結果與實驗性判定結果(例如計量結果)意指比較兩結果的一或更多特徵或指標。該比較提供對於最佳化程序的成本價值或複數價值。差異(成本價值)的實例包含多維結果空間中的L1及L2範數、歐幾里德距離、及馬哈蘭距離。以使用具有複數特徵或指標之結果為例,比較可藉由提取複數指標以敘述差異而完成。舉例而言,該等指標可為特徵部之複數高度處的臨界尺寸(CD)差異、製程終點差異(例如蝕刻製程之終點中的差異)、給定材料的厚度差異、或整體光譜內的光譜差異。這些指標構成最佳化的成本函數;在具有針對該等指標之各者的權重因數情況下,該函數亦可為該等指標的組合。成本函數有時在此稱為「差異」,其應比簡單數學運算「A減B」更寬廣地加以解讀。
當在此使用時,浮動製程模型參數值在配置有浮動製程模型參數值之製程模擬模型針對目前應用適切地執行時「收斂」。諸多收斂準則在本領域中已知且可加以應用。其若干者係於以下敘述。整體而言,成本價值係於最佳化常式之各迭代中加以評估。單一迭代期間產生的成本價值可單獨評估或結合來自其他迭代之成本價值而評估。如此評估容許最佳化常式進行收斂檢查。若成本價值或複數成本價值指示浮動製程模型參數的目前值提供可接受地執行及/或不再明顯改善的製程模擬模型,最佳化常式終止程序並將浮動製程模型參數的目前值視為最終值。最佳化常式已收斂。因此,在若干實施例中,收斂方法判定參數估計之誤差何時無法再改善。此容許對於終止問題的貝氏觀點(Bayesian view)。收斂檢查可搜尋成本價值中之局部或全域最小值(或最大值,取決於成本價值的結構)。最佳化的終止可使用例如隨機梯度下降法、批次梯度下降法、貝氏最佳化法等。
最佳化程序
圖3顯示依據若干實施例使製程模擬模型最佳化之最佳化程序300的概觀。製程模擬模型係配置成使用將半導體裝置製造操作特性化之製程參數值來預測半導體裝置製造操作的結果。
方法可涉及在操作302接收待最佳化之一或更多浮動製程模型參數的目前值。在第一迭代中,這些目前值可視為初始值。然後在操作304藉由將一或更多浮動製程模型參數之目前值、輸入輪廓、及一組固定製程模型參數值提供至製程模擬模型,而產生經配置的製程模擬模型。在操作306,使用經配置的製程模擬模型,而生成半導體裝置製造操作的運算性預測結果。在操作308,藉由在操作於該組固定製程參數值下之反應腔室中執行半導體裝置製造操作,將半導體裝置製造操作的運算性預測結果至少部分與所產生之計量結果比較,其中該比較基於半導體裝置製造操作之運算性預測結果與計量結果間的差異產生一或更多成本價值。在操作310,使用收斂檢查,以判定最佳化程序是否收斂。若是,在311指示程序完成。若非,最佳化程序產生目前值之更新。見操作312。更新可利用成本價值、一或更多浮動製程參數值之目前值、及可選地浮動製程模型參數值的一或更多先前值。在此時點,程序控制與一或更多浮動製程模型參數之目前值一起返回操作304。之後,重複操作304、306、308、及312直到一或更多浮動製程模型參數的目前值收斂,以產生一或更多浮動製程模型參數的最終值。
圖4顯示模擬與量測之反射或橢圓偏振值之比較的最佳化程序之實施例系統400。如所指示,將製程模擬模型最佳化係為了改善製程模擬模型預測半導體裝置製造操作的結果(例如運算性生成之特徵部輪廓)之能力,該模
型係設計成模擬該半導體裝置製造操作。最佳化系統400的反覆操作涉及反覆調整一或更多浮動製程模型參數的目前值α。
在一些實施例中,將初始特徵部輪廓與在圖中以「α」及「μ」表示之兩類型製程模型參數一起輸入至製程模擬模型中,例如先前討論的蝕刻輪廓模型(EPM)。此輸入係由402所示,且其使反射或橢圓偏振比較最佳化系統400開始。如先前介紹之用語「初始輪廓」、及402所示的用語「初始特徵部輪廓」可互換使用,並指稱將由半導體裝置製造操作所處理的基板表面上之空間位置點。舉例而言,初始輪廓可具有一或更多特徵部(或其可為完全平面),且其作為用於接著將修改初始輪廓之半導體裝置製造操作的起始或輸入輪廓。製成模型參數α代表將經過最佳化程序300之過程受到最佳化的一或更多浮動製程模型參數,且固定製程模型參數為執行製程模擬模型所需但不隨最佳化程序過程改變的製程模型參數。用作浮動及固定製程模型參數的參數類型不需一成不變地設定,舉例而言,例如離子通量之局部電漿性質可構成一些最佳化實施例中的浮動模型參數,且可構成其他最佳化實施例中的固定模型參數。
接著,在提供初始輪廓及參數α及μ之初始值之後,執行經配置的製程模擬模型404。在執行期間,模型以意圖預測由製程模擬模型所模型化的半導體裝置製造操作之結果的方式,將輸入初始輪廓調整至輸出輪廓。
製程模擬模型404的執行及其伴隨之計算及調整最終輸出由406所示的運算性產生特徵部輪廓。該輪廓為模型對於所考量之半導體裝置製造操作之結果的預測。在蝕刻製程的情形中,輸入特徵輪廓可為基板上的遮罩輪廓,且輸出運算性生成特徵部輪廓可為遮罩開口下方之基板中的蝕刻輪廓。然
而,在製程模擬模型將平坦化製程或加成製程模型化的情形中,輸出運算性生成特徵部輪廓可為反映平坦化或加成製程之基板的輪廓。
在一些實施例中,輪廓調節器及/或輪廓調節操作(未顯示於圖4中)係於執行使用特徵部輪廓之另一運算性程序之前,例如在執行模擬離開受運算蝕刻輪廓之電磁輻射之反射的運算性程序之前,在半導體裝置製造操作之運算性預測結果上執行。
在圖4所繪示的實施例中,輪廓調節器(若有採用)的操作係於由406所代表之運算性生成特徵部輪廓上進行。輪廓調節器、或輪廓調節操作使由預測特徵部中之輪廓製程模擬模型產生的諸多非週期性變型(aberration)之效應平滑化及/或以其他方式使該效應減少。這些變異可能由製程模擬模型的隨機行為導入。
為了準確地預測藉由提供入射電磁輻射於蝕刻輪廓上而產生的反射圖案(其為製程模擬模型的輸出406),最佳化程序採用運算性工具或例如嚴格耦合波分析(RCWA)演算法,其假設受蝕刻特徵部(例如特徵部或特徵部區域)的特定週期性,且進一步假設受蝕刻基板材料的材料性質及從蝕刻產生之諸多間隙的材料性質。再者,RCWA預期到預期週期性(亦即在所屬領域中定義為從一特徵部區域至下一者之類似區域的長度方向距離)內給定材料(亦即介電固體)至不同材料(亦即空氣)之預測特定轉變。RCWA的替代例為時域有限差分(FDTD)技術。
特徵部中非週期性或隨機變型的存在可能與RCWA法的適當操作干涉,使得該方法可能無法準確地預測存在變型時產生的反射或橢圓偏振光譜。
輪廓調節器從特徵部辨識並移除特定非週期性結構。在一些實施例中,輪廓調節器可基於變型的高度來判定是否考量變型。
舉例而言,輪廓調節器可配置成辨識並僅考量超出預先指定高度的變型。在一些實施例中,「微凸塊」(亦即低於預先指定高度閾值的變型)被輪廓調節器捨棄。類似地,超出預先指定高度閾值的變型可由輪廓調節器平均化或以其他方式結合,以在施加RCWA以運算反射/橢圓偏振光譜之前產生平均輪廓。
返回實施例圖4,將運算性生成特徵部輪廓提供至反射/橢圓偏振光譜產生器408,以輸出運算性生成輸出反射/橢圓偏振光譜,在圖中表示為「R[λ]calc」。舉例而言,反射/橢圓偏振光譜產生器可為實施皆在本文各處敘述之RCWA或時域有限差分(FDTD)的演算法工具。反射/橢圓偏振光譜產生器可為獨立工具或可在工具或常式套組中實施。在一實例中,反射/橢圓偏振光譜產生器為例如可從荷蘭ASML Netherlands B.V.,Veldhoven取得之YieldStarTM散射計產品之工具的一部分。見例如Cramer等人在Proceedings of SPIE,10145,Metrology,Inspection,and Process Control for Microlithography XXXI,101451B(2017年3月28日)的「High-NA optical CD metrology on small in-cell targets enabling improved higher order dose control and process control for logic」,其整體併入於此作為參考。
運算性生成反射/橢圓偏振光譜的準確性取決於製程模擬模型配置有α之目前值時的預測力。在所繪示的程序中,運算性生成反射/橢圓偏振光譜的準確性係藉由將其與表示為R[λ]exp之實驗性量測結果(亦即計量結果)比較而決定,該等實驗性量測結果係從已依據半導體裝置製造操作加以處理之真實基
板的特徵部輪廓生成,該半導體裝置製造操作由製程模擬模型加以模型化。模擬及真實製造操作兩者皆使用相同組的固定製程參數及初始特徵部輪廓。真實(非運算性生成)結果的結果可獲取為來自光學計量技術(例如散射測量及橢圓偏振法)之實驗性量測反射/橢圓偏振光譜,如最佳化系統400之414所示。運算性及實驗性生成結果係針對相同偵測技術(例如用於光學計量的相同極化作用、波長範圍、入射及偵測角度等)及相同特徵部特性(例如特定深度處的CD、終點偵測、沉積層厚度等)。
運算性預測結果R[λ]calc及計量生成結果R[λ]exp係藉由「成本函數計算器」412加以比較(例如判定差異、比率、或其他計量)以輸出例如在圖中指示為R[λ]exp-R[λ]calc的一或更多成本價值。此比較提供反映預測/模擬結果(例如R[λ]calc)與實驗性判定結果R[λ]exp之間之差異(或一致性)大小的成本價值。最佳化系統400使用該成本價值以至少(i)判定浮動製程模型參數值的值是否已收斂;及(ii)若值未收斂,判定如何針對下一迭代調整浮動製程模型參數的目前值、及調整幅度。如先前所介紹,比較結果(成本價值)的一實例為多維結果空間中的簡單歐幾里德距離。在若干實施例中,成本函數在關聯於散射測量工具的結果空間中決定,該散射測量工具係例如提供特定影像形式之散射測量結果的YieldStarTM散射計產品。
估計器418採用「收斂檢查器」,其為用於評估浮動製程模型參數值α之可能收斂性的演算法。在一些實施例中,收斂檢查器或估計器418的執行涉及識別一或更多成本價值中的實質局部或全域最小值及/或經過最近迭代的α中之改變量。在判定α之收斂時,收斂檢查器於420指示該收斂,此導致最終或最佳化的浮動製程模型參數α之值的輸出。如先前所指出,浮動製程模型參
數值從初始或種子值(例如在402所提供)至最終值(例如422處的輸出)的反覆修改為由最佳化系統400所進行之模型最佳化程序的目標。在一些實施例中,反覆執行最佳化程序將導致配置有浮動製程模型參數之最終值的製程模擬模型,其提供比配置有例如浮動製程模型參數之初始值的製程模擬模型更佳的預測能力。
通常,在符合最終收斂準則之前,於最佳化常式的一或更多迭代期間,收斂檢查器418的執行將指示成本價值尚未達到所需的收斂條件。在如此情形中,收斂檢查器調整α的目前值並輸出α的經調整值,如424所示。如由所屬領域中之技術者所理解,調整α可採用α的目前值及/或成本價值、以及可選地α的一或更多先前值及/或成本價值的先前值。可針對此目的而採用梯度下降技術。然後如426所示,將經調整的α再輸入,而在製程模擬模型404中維持恆定的固定製程參數μ。換言之,製程模擬模型係重新配置有經調整的α值。製程模擬模型接著以相同的初始輪廓及相同的固定製程模型參數但經調整的浮動製程模型參數重新執行。最佳化系統400接著重複組分404至418的操作,其可達成所需的收斂條件,或者,若收斂未達成,重複組分404至426的操作。然而,在414獲得的計量結果可在此新的循環中再度使用。透過此循環,最佳化系統400可進一步依需要調整α。最佳化程序持續如所需數目之迭代以能夠輸出α的最終值,其係對應至滿足成本價值的收斂條件。
現參照圖5,顯示最佳化系統500的實例。與先前在圖4中所示的最佳化系統400(其採用反射/橢圓偏振值的比較)相反,此處在圖5中所示的最佳化系統500比較顯示為506的運算性生成特徵部輪廓(針對給定輸入α)與例如特徵部輪廓之實驗性得出量測值(例如經由能量色散X射線掃描型電子顯微鏡(「X-
SEM」)),以如520所示朝收斂調整α。在此情形中,製程模擬模型直接輸出特徵部輪廓,且程序不包含反射/橢圓偏振光譜產生器408。當然,若製程模擬模型輸出特徵部輪廓以外的資訊,該方法將需要適當的轉換器以將輸出改變成輪廓。
除上述者外,最佳化系統500的其餘系統組分及操作502、504、506、512、516、518、520、522、524、及526係相同於或非常類似於先前所述的最佳化系統400之組分及操作402、404、406、412、416、418、420、422、424、及426,且因此亦類似地用以反覆地使代表一或更多浮動製程模型參數的製程模型參數α最佳化,而使代表一或更多固定製程模型參數的μ保持不變。
並且,類似於由系統400所進行的最佳化,用作浮動及固定製程模型參數的諸多類型之參數不需一成不變地設定,舉例而言,例如離子通量之局部電漿性質可構成一些最佳化實施例中的浮動模型參數,且可構成其他最佳化實施例中的固定模型參數。
詳細而言,由系統500執行的最佳化開始於502,其涉及將初始特徵部輪廓α及μ輸入至製程模擬模型中,例如蝕刻輪廓模型(EPM)。製程模擬模型504執行而以意圖預測由製程模擬模型所模型化之半導體裝置製造操作之結果(在此情形中為特徵部輪廓)的方式,將輸入初始輪廓調整至輸出輪廓,例如實質上相同於或類似於由模型404所完成者。製程模擬模型的執行與其伴隨的藉由模型504之計算及調整最終輸出506所示的運算性生成特徵部輪廓。如先前針對最佳化系統400所討論,此輪廓為製程模擬模型對於所考量半導體裝置製造操作之結果的預測。
然而,與最佳化系統400不同,最佳化系統500不採用反射/橢圓偏振光譜產生器(例如顯示為最佳化系統400中之408),因此運算性生成特徵部輪廓506係直接提供至成本函數計算器512,該成本函數計算器512亦接收經由X-SEM獲得之特徵部輪廓的實驗性得出量測值,如514所示。實驗性得出量測值係藉由利用半導體裝置製造操作(其由製程模擬模型所模擬)、並使用相同初始基板輪廓及固定參數值來處理真實基板而獲得。如先前所定義,不論是運算性生成或實驗性得出,特徵部輪廓的幾何為代表特定特徵或特徵群組之諸多位置的空間中一組獨立點或代表如此點的參數(例如不同高度處的一系列CD值)。注意有許多可用於判定特徵部輪廓的技術。一些技術直接輸出輪廓(例如SEM及AFM技術)且其他技術間接地輸出輪廓(例如光學計量技術)。在後者的情形中,必須在比較直接結果與運算性生成結果之前將該直接結果(例如反射光譜)轉換成特徵部輪廓。
類似於最佳化系統400中的成本函數計算器412之執行,成本函數計算器512比較運算性生成特徵部輪廓與特徵部輪廓的實驗性得出量測值,以輸出一或更多成本價值,例如在圖中指示為[蝕刻輪廓]exp-[蝕刻輪廓]calc者(例如516所指示)。此比較提供反映預測/模擬結果(例如[Etch Profile]calc)與實驗性判定結果[Etch Profile]exp之間差異(或一致性)大小的成本價值。並且,相同或相似於最佳化系統400,最佳化系統500使用成本價值以至少(i)判定浮動製程模型參數值是否已收斂;及(ii)若值未收斂,判定如何針對下一迭代調整浮動製程模型參數的目前值、及調整幅度。當然,浮動製程模型參數的調整可採用其他資訊,例如浮動製程模型參數的目前及先前值、及/或成本價值的先前值。
由成本函數計算器512所輸出之516所示的成本價值被提供至收斂檢查器518,其為評估由成本價值指示之α之潛在收斂的演算法。在一些實施例中,且相同或相似於最佳化系統400的收斂檢查器418之執行,收斂檢查器518的執行涉及識別一或更多成本價值中的實質局部或全域最小值。在由收斂檢查器指示α的收斂時,收斂檢查器判定收斂已如520所示發生,其導致輸出最終或最佳化浮動製程模型參數α。
如先前指出,將浮動製程模型參數值從初始或種子值(例如502處提供者)反覆修改至最終值(例如在522輸出者)為由最佳化系統400所示之模型最佳化程序的目標。在一些實施例中,由系統400反覆執行最佳化程序將導致配置有浮動製程模型參數α之最終值的製程模擬模型,其提供比配置有例如浮動製程模型參數之初始值之製程模擬模型更佳的預測能力。
並且,相同或相似於最佳化系統400的收斂檢查器418之執行,在滿足最終收斂準則之前,收斂檢查器518的執行可指示成本價值尚未達到所需的收斂條件。在如此情形中,收斂檢查器調整α的目前值,並輸出α的經調整值,如524所示。接著如526所示,將此經調整的α重新輸入製程模擬模型504中,並維持不變的固定製程參數μ。換言之,製程模擬模型重新配置有經調整的α值。然後以相同的初始輪廓及相同的固定製程模型參數但經調整的浮動製程模型參數,重新執行製程模擬模型。接著最佳化系統500經由組分502至506如同先前般重複所執行的操作,然而在514獲得的實驗性量測輪廓可在此新的循環中再度使用。透過此循環最佳化,系統500可依需要進一步調整α。最佳化繼續進行所需的迭代數,以能夠在522輸出最終收斂值。
現參照圖6,顯示最佳化系統600。與採用圖4所示系統400的實施例(其採用反射/橢圓偏振的比較)相反,圖6所示的最佳化系統600不包含反射/橢圓偏振光譜產生器408,而是包含輪廓參數轉換器608。最佳化系統600的組分602至624之其餘操作係多少類似於對應至圖4所示最佳化系統400之組分402至424的對應操作。相同者的多於敘述予以省略。
如先前所說明,執行製程模擬模型的結果可為由該模型所模擬之半導體裝置製造操作之後(或期間)的基板輪廓。如此輪廓可表示為代表特定特徵或特徵群組內或附近之諸多位置的空間中之一組獨立點。
在系統600的最佳化程序中,且與使用由空間中一組點定義的基板輪廓相反,該程序採用一組「輪廓參數」來代表特徵部輪廓的幾何,例如可能使用較少資料點或資料點組者。亦即,製程模擬模型604(例如EPM)輸出運算性生成特徵部輪廓,其可具有許多如上述的空間中之獨立點。接著藉由「輪廓參數轉換器」608,將如此點系統性地減少、或至少部分消除,以輸出可表示為「簡約輪廓」者,例如610所示表示於輪廓參數Pi中的輪廓。輪廓參數的實例包括特徵部或特徵部群組的這些特性:臨界尺寸、側壁角度、深度、節距等。將特徵部輪廓轉換成一組輪廓參數的技術在所屬領域中已知,且常用在光學臨界尺寸法上。
類似於先前所述的最佳化系統400及500,最佳化系統600的成本函數計算器612接收從實驗性生成資料(例如X-SEM、CD-SEM、或光學計量)得出的幾何輪廓參數Pi。這些輪廓參數可使用OCD方法從如此實驗性生成資料得出。結果為具有將幾何模型(例如梯形模型或圓角模型)之不同態樣特性化的參數之特徵部的幾何特性。成本函數計算器612亦從輪廓參數轉換器608接收輪廓
參數。利用這些輸入,成本函數計算器612輸出一或更多其成本價值,例如[Pi]exp-[Pi]calc 616。如此成本價值係如先前針對收斂檢查器418及/或518所討論由收斂檢查器618同樣地接收及使用,以依需要反覆調整α而最終如620所示達到收斂,並如622所示輸出最終α。
在若干實施例中,被模擬並經由計量加以實驗性評估的系統具有多層堆疊的沉積材料,包含可選的遮罩層。使用包含不同厚度及可選地不同材料之層的多層堆疊加以校準之製程模擬模型可具有極大實用價值。通常,蝕刻製程係執行於異質材料的多層堆疊上。然而,當利用具有待蝕刻材料之多層堆疊的基板校準製程模擬模型時,重要的是模擬模型針對堆疊中之各層使用正確的厚度值。在此方面,在此所述的方法可採取其中包含待用於校準之多層堆疊的實體基板藉由計量加以初步評估以判定堆疊中各層之厚度的方式執行。這些厚度接著被用於在製程模擬模型中所考量之基板的運算性表示。依此方式,模擬適當地表示將用以提供藉由計量獲得之實驗性資訊的實體結構,以供校準製程模擬模型。
在一些實施例中,在製程模擬模型已完全校準之後(例如α之值已收斂至模型可肯定地使用的程度),將模型實現並用於預測蝕刻結果及與之關聯的所有應用(例如定義微影遮罩、設計新蝕刻設備、在蝕刻製程窗中指定等)。在如此製程模擬模型的實際使用期間,若發現模型已無法準確地預測由真實蝕刻製程所產生之蝕刻輪廓,如此資訊可用以進一步校準、或至少改進模型的校準。導致錯誤預測之條件的模擬結果與蝕刻製程的實際結果一起被提供至最佳化常式,以進一步將用於製程模擬模型的參數值(α)最佳化。依此方式,製程模擬模型的預測能力可在該模型用於其中之實體條件領域內獲得改善,且/或
該模型的領域延伸至由該模型因之而不正確地預測蝕刻結果的蝕刻條件所表示之新的實體應用。當然,在製程模擬模型的壽命過程,可將此重新校準利用複數次,亦即,每當發現失效的預測能力時。
額外實施例-CD-SEM最佳化資料
蝕刻模型可產生包含x及y維度的三維輪廓,由上觀之時,該x及y維度在與晶圓或積體電路晶片之表面平行(或在其上)的平面上。蝕刻模型亦可提供正交於或積體電路之表面之方向上的z維度資訊。Z方向值指出蝕刻深度。反之,外廓(contour)為僅含有x及y維度的二維表示法。僅x及y維度用於經由下線(tapeout)提供且實施於微影光罩的設計布局。在若干實施例中,在此所述的蝕刻模型藉由指定蝕刻輪廓中之z方向高度或藉由指定受蝕刻堆疊中之材料而產生x-y外廓。並且,在一些情形中,蝕刻輪廓僅於兩維度(z方向及x方向)中提供。再者,外廓可僅在一維度(x方向)或例如臨界尺寸或節距之特徵部參數中提供。
CD-SEM或臨界尺寸掃描型電子顯微術為提供例如積體電路晶片或試料之基板表面上的特徵及圖案之俯視圖(顯示x-y平面)的電子顯微技術。由此優勢,這些特徵部可作為基板上的俯視外廓而加以觀看。CD-SEM可提供外廓的奈米尺度解析度。除了鮮明的外廓之外,CD-SEM亦可提供邊界(外廓邊緣)處的強度梯度。這些梯度可至少部分顯露特徵部上其中特徵部側壁從一高度傾斜至一不同高度的過渡區域。單CD-SEM影像可提供足以分辨一或更多層(可能獨立地受蝕刻)處的外廓及單層之側壁中的斜坡。在多階段製程之不同階段取得的複數CD-SEM影像可加以疊合以顯示特徵部外廓從一製造程序操作至下一製造程序操作的進展。
用於進行CD-SEM的設備可包含藉由量測圖案之特徵部的尺寸而檢視基板上圖案的專用系統。CD-SEM系統的實例包含Hitachi CG6300及KLA-Tencor 8100XP、及應用材料的VeritySEM 5i。CD-SEM有時用於:ADI(顯影後檢視):藉由曝光工具及後續顯影轉移圖案之後檢視光阻圖案;及AEI(蝕刻後檢視):使用光阻圖案作為遮罩蝕刻、且接著量測受蝕刻圖案之尺寸之後檢視基板。
在發展製造程序當中,有時將CD-SEM用以識別特定處理條件在所轉移之圖案上的效應,特別是曝光工具之焦點及劑量的效應。製程窗係使用曝光條件(焦點及劑量)與曝光結果的關係而生成。
如所說明,例如蝕刻模型之製程模擬模型的校準或最佳化可使用橫斷SEM或TEM而進行,其為破壞性的,且可能呈現有時難以解讀的線邊界。使用這些技術是昂貴的,且可能導致樣本收集不足。此負面地影響蝕刻模型校準的整備時間及結果的準確性。
校準亦可利用如使用CD-SEM獲得之俯視資訊進行,CD-SEM取得俯視影像並擷取特徵部的CD(臨界尺寸)。量測CD係高度相依於結構輪廓。伴隨CD-SEM的挑戰為有時在CD受到判定的位置上有不準確性,特別是在z方向上。在結構輪廓中錯誤位置的相關CD限制了經校準蝕刻模型的穩健性。此可藉由使用CD-SEM並結合例如下列者的提供z方向解析資訊之一或更多技術而加以處置:CDSAXS(臨界尺寸小角度X光散射)、穿透型電子顯微技術(例如STEM)、薄膜、或OCD散射測量技術。包含z方向分量的特徵部表示法在此有
時稱為基於輪廓的表示法,且其係基於所產生之輪廓的計量技術,例如X光散射、TEM、及OCD計量。
如所說明,在晶圓層級的輪廓演進方面,蝕刻結果可經由蝕刻模型加以模擬。在此所述的實施例僅使用CD-SEM或結合其他計量法以校準蝕刻模型的浮動參數。在若干實施例中,校準使用由提供更詳細輪廓資訊之一或更多其他計量法(例如STEM及/或光學散射測量)輔助的CD-SEM。由CD-SEM結合輪廓計量法(例如光學散射測量或STEM)所量測的時間演進可提供用於將蝕刻模型之浮動參數最佳化的邊界條件(校準資訊)。由CD-SEM生成的俯視外廓奈米解析度係由CDSAXS、TEM、及/或OCD技術收集之側視輪廓資訊的準確性所補足。校準程序可採用晶圓層級的複數測試圖案/樣本(例如來自微電路設計庫(clip design library)的量規)。每一測試圖案係轉移至執行蝕刻或處理所在的測試基板,且所產生之基板特徵部係使用CD-SEM及可選地一或更多其他計量技術加以量測。
使用CD-SEM輸出的最佳化可利用圖4、5、及6所繪示之程序的任何一或更多者而進行。特定針對使用CD-SEM之程序的單獨程序流程係繪示於圖8。
如圖8所示,程序開始於供給運行製程模擬模型所需的諸多參數。整體程序反覆地改進這些參數(浮動參數)的其中一者。剛開始,製程模擬模型(識別為「SEM3D或SKM」)接收下列者作為輸入:(a)控制參數(α向量或浮動參數)、(b)恆定參數(μ向量或固定參數)、(c)進入的輪廓(光阻、遮罩、或其他疊層設計布局的x-z表示法)、及(d)進入的圖案(圖案光阻、遮罩、或其他疊層設計布局的俯視x-y表示法)。以這些輸入執行製程模擬模型提供了被模型化之一
或更多特徵部的特徵部輪廓(x-z)、外廓(x-y)、及LER或LWR之一或更多者作為輸出。
在內最佳化迴圈中,從使用進入的輪廓/圖案且經歷由製程模擬模型加以模型化之裝置製造操作的一或更多受處理基板,提供橫斷計量資料(例如CDSAXS、STEM、X-SEM等)與俯視計量資料(例如CD-SEM)。計量資料的值可與製程模擬模型的對應輸出比較(是否A=A’?;是否B=B’?;及是否C=C’?),且任何差異可用以產生一或更多如上述的成本函數。
在外最佳化迴圈中,將由製程模擬模型輸出的輪廓、外廓、及/或LER/LWR提供至例如上述之RCWA或FDTD的光譜產生器。將產生的輸出與實驗性生成光譜做比較(B=B’?),以再一次如上述產生不同的成本函數。實驗性生成光譜可藉由許多具有或不具有OCD轉換之光學計量技術的任何者產生。見圖4及6的討論。在若干實施例中,該比較係在用於特定散射測量工具或技術(例如上述的YieldStarTM工具)的空間中執行。
內及外最佳化迴圈可單獨或一起使用。當一起使用時,產生基於一般參數B與A、C、及D之一或更多者的組合成本函數。然後將該成本函數用以如本文他處所述調整浮動參數α的值。
CD-SEM的反向散射電子強度容許判定CD外廓及LWR/LER(線寬粗糙度及/或線邊粗糙度)。此資訊可提供做為CD-SEM輸出以促進模型校準。將製程模擬模型(舉例而言,蝕刻輪廓模型,例如此處所述的表面動態模型或行為模型)用以模擬例如設計布局或遮罩之輸入結構的修改、或其一部分,例如在一或更多量規/微電路中所提供者。如本文他處所述,模擬結果與實驗性結果之間的差異係藉由一或更多指標的成本函數加以評估。使用CD-SEM輸出的成本
函數可與其他不使用CD-SEM之資料串流(例如X光散射、TEM、或OCD技術)的計量成本函數結合。以促進經由例如浮動參數值α之非線性迴歸的最佳化。
如所指出,CD-SEM輸出可包含特徵部外廓及LWR及/或LER。此外,透過存在於CD-SEM影像中之強度梯度,CD-SEM輸出可擷取堆疊之各材料(例如旋塗材料、硬遮罩、下方基板等)之複數位置中、及/或蝕刻之各步驟內蝕刻輪廓的演進。強度梯度可至少部分反映其中側壁具有斜坡(亦即其非純粹垂直)的輪廓之過渡區域。因此,雖然CD-SEM在判定特徵部外廓(在x-y平面)方面可具有優勢,其亦可提供一些z方向資訊。此可補充1D或2D結構資訊。
藉由使用CD-SEM計量資料並結合其他計量資料,可產生多特徵部製程模擬模型。舉例而言,除了特徵部輪廓(藉由X光散射、TEM、SEM、AFM、OCD等校準)之外,還可將單一蝕刻模型用以預測俯視的特徵部或圖案外廓/梯度(藉由CD-SEM校準)及/或LER及/或LWR估算(由CD-SEM校準)。這些製造操作的預測結果之任何者可存在於複數時間步驟中。對於採用複數時間步驟的製程模擬模型而言,校準資訊可能需要經由計量擷取的複數時間快照。
在若干實施例中,為了使製程模擬模型最佳化,方法可將以下類型之計量資料的二或更多者之成本函數:TEM/SEM/AFM(x-z資料中的差異)、OCD(光譜中的差異)、及CD-SEM(外廓/梯度值中的差異,典型地從x-y平面優勢觀之)結合成加權混合計量。在若干實施例中,最佳化程序採用L2範數成本函數中的計量誤差槓(error bar),如卡方(chi-square)中者。當然,如所說明,可使用其他成本函數。可使用訓練、驗證、及測試,如習知機器學習中者。機器學習程序流程的進一步說明見本文其他敘述。全域最佳化方法可用以搜尋相對實驗性資料的最低MSE(均方誤差)。
相關可選點-CD-SEM
在若干實施例中,取決於輪廓敏感性及準確性要求,而使用CDF-SEM的複數樣本裝載法(例如由不同量規/微電路所提供)與例如OCD及/或TEM的一或更多其他計量技術,來產生最佳化計量結果。
在計量不確定性高的情形中,一起在製程模擬模型參數空間中使用下列者之二或更多者:經校準核心參數、蝕刻物理參數、蝕刻行為參數、及/或結構參數。
核心參數及及其他輪廓參數的反覆最佳化。將輪廓參數表示為局部特徵部密度及相鄰結構之形狀的函數之核心參數可相對使用CD-SEM的1D及2D影像之大樣本尺寸加以校準。
使用基於CD-SEM之混合計量以校準蝕刻模型的此最佳化程序流程可具有若干優點,例如:
1.CD-SEM可提供準確二維外廓(x-y資訊)的輸入。STEM可提供詳細且準確的輪廓(包含z方向資訊)。OCD提供良好精確性輪廓計量(包含z方向資訊)。結合這些個別記住的長處提供良好的準確性。
2.校準容許蝕刻模型參數與俯視外廓(x-y視圖)之間的直接映射、及其之間的可選蝕刻模型。其提供直接途徑以整合OPC/CD-SEM(工業標準)與蝕刻OPC加上輪廓計量。OPC及CD-SEM係常用於工業而不考慮輪廓作用。在此處一些實施例中,蝕刻輪廓的考量係整合於標準OPC流程中。再者,當蝕刻模型提供相較於輪廓計量的模擬輪廓時,方法不僅將OPC模擬延伸為EtchOPC(具有模擬輪廓),且亦將CD-SEM延伸為CD-SEM+蝕刻後輪廓計量。此「蝕刻延伸」可整合至標準OPC流程中。
3.輪廓演進連結至CD-SEM外廓的蝕刻步驟式改變。而提供比較各步驟之一致性並評估各步驟之誤差的方法。
4.低成本:OCD(為非破壞性技術)花費低於CD-SEM(由於與電子束的交互作用而施以偏壓),其因此花費低於STEM(破壞性)。
蝕刻輪廓模型
如所提及,蝕刻輪廓模型(EPM)為一類型的製程模擬模型。其從一組輸入蝕刻反應參數(獨立變數)運算理論性判定之蝕刻輪廓,該組輸入蝕刻反應參數將蝕刻反應的一些特徵(例如若干潛在的物理及化學蝕刻製程及反應機制)特性化。這些製程可被模型化成代表受蝕刻特徵部及其環境之網格中之時間及位置的函數。輸入參數的實例包含例如離子通量之電漿參數、及例如特定化學反應將發生之機率的化學反應參數。其他實例包含受蝕刻基板的特性(例如厚度及材料的逐層敘述)、一或更多待蝕刻特徵部的初始遮罩布局、製程腔室條件等。如此參數可從包括其他模型的諸多來源獲得,該等其他模型從一般反應器配置及例如壓力、基板溫度、電漿源參數(例如提供至電漿源的功率、頻率、工作週期)、反應物、及其流率的製程條件計算該等參數。在一些實施例中,如此模型可為EPM的一部分。
EPM將如此參數視為獨立變數(其在本文所述最佳化常式的背景下可為固定的及/或浮動的),且功能性產生蝕刻輪廓作為響應變數。換言之一組獨立變數為用作對模型之輸入的參數,且響應變數為由模型所計算的蝕刻輪廓特徵。EPM可採用反應參數與蝕刻輪廓之間的一或更多關係。該等關係可包含例如係數、權重、及/或其他以經定義方式應用至獨立變數以產生關於蝕刻輪廓之響應變數的模型參數(以及反應參數及/或其他模型參數的線性函數、第二
或更高階多項式函數等)。如此權重、係數等可代表上述反應參數的一或更多者。在一些實施例中,這些模型參數為在此所述最佳化技術期間經調諧或調整的浮動製程模型參數值。在一些實施例中,反應參數的一些者為待最佳化的模型參數,而其他者被用作固定製程模型參數。舉例而言,在一些實施例中,化學反應參數可為可最佳化之浮動製程模型參數,而電漿參數可為固定製程模型參數。
如所說明,一些EPM採用基礎反應機制參數,且對潛在的化學及物理性質可為基礎性的,而因此實驗製程工程師一般對於這些量值不具有控制權。在蝕刻輪廓模型中,這些變數可應用在網格之各位置處且應用複數次(由經定義之時間步驟所分隔)。在一些實施例中,網格解析度可在約數埃與約一微米之間變動。在一些採用時間相依模型化的實施例中,時間步驟可在約1e-15與1e-10秒之間變動。在若干實施例中,最佳化採用兩類型的機制獨立變數:(1)局部電漿參數、及(2)局部化學反應參數。這些參數在其可在一些情形中將位置之函數項下改變置網格之解析度方面為「局部性」。電漿參數的實例包含局部電漿性質,像是例如離子、自由基、光子、電子、受激發物種、沉積器物種之粒子的通量及能量、及其能量與角分布等。化學及物理化學反應參數的實例包含速率常數(例如特定化學反應將發生在特定時間的機率)、黏附係數、蝕刻的能量閾值、參考能量、用以定義濺鍍良率的能量指標、角降伏函數及其參數等。再者,參數化的化學反應可包含其中反應物包括受蝕刻材料及蝕刻劑的反應。應理解,除了直接蝕刻基板的反應之外,化學反應參數可另包含諸多種類的反應。如此反應的實例包括副反應,其包含寄生反應、沉積反應、副產物的反應等。這些的任何者可能影響整體蝕刻速率。亦應理解,除了上述電漿及化
學反應輸入參數之外,模型可能還需要其他輸入參數。如此其他參數的實例包含反應位置處的溫度、反應物的分壓等。在一些情形中,這些及/或其他非機制參數設輸入至輸出機制參數之一些者的模組中。在一些實施例中,模型不採用機制參數,至少不直接採用。
EPM模型變數的初始(未最佳化)值、以及在最佳化期間固定之變數(例如一些實施例中的電漿參數)可從諸多來源獲得,例如文獻、藉由其他運算性模組或模型的計算等。在一些實施例中,獨立輸入變數(例如電漿參數)可藉由使用例如來自蝕刻腔室電漿模型(就電漿參數之情形而言)的模型而決定。如此模型可從諸多製程參數計算可用的輸入EPM參數,製程工程師對於該等製程參數具有控制權(例如藉由轉動旋鈕),舉例而言,例如壓力、流速、電漿功率、晶圓溫度、ICP線圈電流、偏置電壓/功率、脈衝頻率、脈衝工作週期等的腔室環境參數。
EPM可採取許多不同型式的任何者。最終,其提供獨立及響應變數之間的關係。該關係可為線性或非線性。在若干實施例中,EPM為所屬領域中稱為基於單元之蒙地卡羅表面反應模型者。呈其諸多形式的這些模型運作以就半導體晶圓製造方面模擬晶圓特徵部隨著時間的形貌演變。模型發出假型粒子,該假型粒子具有由電漿模型或針對晶圓上任意徑向位置之實驗性診斷所產生的能量及角分布。將假型粒子統計性地加權,以表示朝向表面的自由基及離子之通量。模型處置導致表面上之蝕刻、濺鍍、混合、及沉積的諸多表面反應機制以預測輪廓演變。在蒙地卡羅積分期間,諸多離子及中性假型粒子的軌跡係於晶圓特徵部內受到追蹤,直到其反應或離開運算域。EPM具有先進的諸
多材料上蝕刻、剝除、原子層蝕刻、離子化金屬物理氣相沉積、及電漿增強化學氣相沉積之預測能力。
在一些實施例中,EPM利用二或三維中的直線型網格,該網格具有足夠細微的解析度以適切的處置/模型化晶圓特徵部的尺寸(然而原則上,網格(不論是2D或3D)亦可利用非直線型坐標)。網格可視為二或三維中的格點陣列。其亦可視為代表關聯於(置中於)各格點之2D中之局部面積、或3D中之局部體積的單元之陣列。網格內的各單元可代表一不同材料或材料的混合物。不論是2D或3D網格被選定作為模型化的基礎,其皆可相依於受到模型化之基板特徵部的類別/類型。舉例而言,2D網格可用以模型化長溝槽特徵部(例如在多晶矽基板中),在溝槽末端之幾何並非過度相關於沿著溝槽長度的大部分並遠離溝槽末端而發生之反應性製程的假定下(亦即,對於此剖面2D模型的目的而言,溝槽係假定為無限,再一次,其為遠離溝槽特徵部末端之溝槽特徵部的合理假設),2D網格描繪溝槽的剖面形狀。另一方面,利用3D網格將圓形通孔特徵部(穿透矽通孔(TSV))模型化可為合適的(因為特徵部的x、y水平維度係彼此相同)。
網格間距可在例如從次奈米(例如從1埃)到數微米(例如10微米)的範圍內。一般而言,各網格單元被指派一材料識別,例如光阻、多晶矽、氣相蝕刻劑或電漿(例如在不由特徵部佔據之空間區域中),其可在輪廓評估期間改變。固相物種可由運算性單元中的材料識別所代表;氣相物種可由運算性假型粒子所代表。依此方式,網格提供晶圓特徵部之幾何/形貌在反應性蝕刻製程中隨時間演變時之基板特徵部及周圍氣體環境(例如電漿)的合理詳細表示法(例如針對運算性目的)。
以上敘述的一些者已聚焦在例如表面動態模型的製程模擬模型上,其採用半導體裝置製造操作的機制表示法。如此模型係更加詳述於2016年2月8日提出申請之美國公開專利申請案第20170228482號及2016年6月21日提出申請之美國公開專利申請案第20170363950號,二者皆在此整體併入做為參考。然而,若干實施例使用相當不同的模型來代表半導體裝置製造操作。在一些情形中,模型不採用(至少不直接採用)嘗試說明半導體裝置製造操作之潛在化學及物理性質的機制參數。舉例而言,行為模型可採用製程的摘錄以預測由一或更多半導體裝置製造操作產生的特徵部之結構細節。行為模型的一實例為來自Coventor(Lam Research之公司)的SEMulator3DTM。行為模型的實例係呈現於美國專利第9,015,016號及美國專利第9,659,126號,二者皆於先前併入做為參考。
在諸多實施例中,在此所述的製程模擬模型在三個維度將特徵部模型化。在一些情形中,在此所述的製程模擬模型預測半導體裝置製造操作在不僅一特徵部上、且在設計布局之區域上(例如大型多元件區域上)之一組特徵部上的影響。
雖然以上敘述已聚焦於蝕刻模型,但本揭示內容亦關於其他模型,例如用於預測基板上平坦化製程或沉積製程之效應的模型。
實驗及輪廓量測
為了使製程模擬模型最佳化,可執行諸多實驗來以實驗容許的準確度判定從執行於由諸多組製程參數所指明之諸多製程條件下之實際製程產生的實際輪廓。因此,舉例而言,吾人指明一組製程參數(例如蝕刻劑流速、電漿功率、溫度、壓力等)的第一組值、據此設定腔室設備、使蝕刻劑流入腔室
中、激發電漿等,並進行第一半導體基板的處理,以產生第一輪廓。吾人接著指明同組製程參數的第二組值、處理第二基板,以產生第二輪廓,依此類推。
製程參數的諸多組合可用以依需要呈現廣泛的或集中的製程空間,以使製程模擬模型最佳化。接著將相同的製程參數之組合用以藉由製程模擬模型計算(獨立)例如機制參數的輸入參數,以提供可與實驗性結果比較的輪廓輸出(響應變數)。因為實驗是昂貴且耗時的,所以可採用技術,而以減少針對使製程模擬模型最佳化提供穩健訓練組所需要進行之實驗數的方式設計實驗。例如實驗設計(design of experiments,DOE)的技術可用於此目的。一般而言,如此技術判定在諸多實驗中使用何組製程參數。其藉由考量製程參數之間的統計性互動、隨機化等,來選擇製程參數的組合。舉例而言,DOE可識別涵蓋已完成製程之中心點周圍的有限參數範圍之小數目的實驗。
在一些方法中,研究者將在模型最佳化程序的早期進行所有實驗,且僅使用該等實驗於最佳化常式迭代中,直到收斂。或者,實驗設計者可針對最佳化之早期迭代進行一些實驗,之後隨著最佳化繼續而進行額外實驗。最佳化程序可通知實驗設計者針對後續迭代應受評估的特定參數及因之而應進行的特定實驗。
一或更多原位或離線計量工具可用以量測由該等實驗性程序操作產生之實驗性生成輪廓。量測可在製程結束時、製程期間、或製程期間一或更多時間點做成。當量測在製程結束之時做成時,量測計量可能是破壞性的,當量測在蝕刻製程期間以間隔方式作成時,量測計量通常為非破壞性的(因此不中斷蝕刻)。合適的計量技術之實例包含但不限於原位反射量測術、OCD、剖面SEM、CD-SEM、及上述其他者。注意計量工具可直接量測特徵部的輪廓,
例如在SEM的情形(其中實驗基本地形成特徵部之蝕刻輪廓的影像),或其可間接地判定特徵部之蝕刻輪廓,例如在OCD量測的情形(其中進行一些後處理以從實際量測資料得出特徵部之蝕刻輪廓)。計量技術可依其所進行的處所及其對樣本所進行之行為而加以分類;分類包含原位、離線非破壞性、及破壞性計量。原位計量包含例如反射測量術、及橢圓偏振法、離線非破壞性計量包含例如單波長及寬頻OCD計量或散射測量法、圓頂散射測量法、CD-SAXS、及CD-SEM(俯視SEM);且破壞性計量包含例如X-SEM、STEM、及TEM。
無論如何,實驗及計量程序的結果為一組量測輪廓,各量測輪廓大致包含針對代表上述特徵部之輪廓形狀的一系列坐標或一組網格值的一系列值。然後將輪廓用作輸入,以訓練、最佳化、並改善如在此所述的電腦化石刻輪廓模型。
反射量測法及橢圓偏振法光譜分析及模型化工具
當使用製程模擬模型以生成特徵部輪廓值時,從幾何性質生成的光學參數可利用例如RCWA法或類似技術的光學模型化常式加以模型化或預測。
RCWA為唯一可用以描述來自例如光柵週期性結構或傳送通過如此光柵之反射(繞射、散射)輻射之特性的方法。RCWA由Moharam及Gaylord大幅發展,且敘述於科學文獻中。見例如整體併入於此作為參考的M.G.Moharam and T.K.Gaylord「Rigorous coupled-wave analysis of planar-grating diffraction」J.Opt Soc of America,Vol.71,Issue 7,pp.811-818(1981)。RCWA計算諸多繞射階(第零階及更高階)的強度及極化特性。其他可提供結果的光學
模型化法包含但不限於C方法、模態方法、瑞利(Rayleigh)近似、電場積分方程式(EFIE)、及共軛梯度快速傅立葉轉換(CG-FFT)。
RCWA為運算電磁學中的半分析式方法,其通常用以解決來自週期性介電結構的散射。其為傅立葉空間方法,因此裝置及場係表示為空間諧波的總和。該方法係基於弗洛奎定理(Floquet’s theorem),週期性微分方程式的解可利用弗洛奎函數(或有時稱為布洛赫波(Bloch wave),尤其是在固態物理中)加以展開。裝置被分為各在z方向上為一致的層。針對具有例如沿著z方向分級之介質電容率之性質的彎曲裝置,需要階梯近似法。將各層中的電磁模式加以計算並分析式傳播通過該等層。整體問題係藉由使用例如散射矩陣的技術匹配層間介面之各者處的邊界條件來解決。為了針對由入射平面波之波向量決定之電磁模式而解出,在週期性介電介質中,馬克士威方程式(Maxwell’s equations)(呈偏微分形式)以及邊界條件係由弗洛奎函數展開,並轉變成大型代數方程式。在截斷較高階弗洛奎函數的情況下,取決於所需要的準確度及收斂速度,無限大代數方程式成為有限且可由電腦解出。
運算性生成由(或可由)光束交互作用產生之光學參數的另一方式為藉由使用時域有限差分(FDTD)法。此為用於電動力學的數值分析技術。其為用於尋找對於時間相依之呈偏微分形式的馬克士威方程式之近似解的基於網格之有限差分法。方程式係離散化成時間及空間偏導數。所產生的有限差分方程式以跳位方式解出:體積空間中的電場向量分量在時間上的一給定時點解出,且然後磁場向量分量在相同間體積中於時間上的下一時點解出,且程序重複直到計算出所期望的暫態或穩態電磁場。
收斂度檢查
上述浮動製程模型參數最佳化程序可為反覆非線性最佳化程序,例如,其將一般為輸入參數之非線性函數的誤差度量或成本價值最佳化,且由此,可採用諸多所屬領域中已知的技術。舉例而言,見各者整體併入於此做為參考的:Biggs,M.C.,「Constrained Minimization Using Recursive Quadratic Programming」,Towards Global Optimization(L.C.W.Dixon and G.P.Szergo,eds.),North-Holland,pp 341-349,(1975);Conn,N.R.、N.I.M.Gould、及Ph.L.Toint,「Trust-Region Methods」,MPS/SIAM Series on Optimization,SIAM and MPS(2000);Moré,J.J.及D.C.Sorensen,「Computing a Trust Region Step」,SIAM Journal on Scientific and Statistical Computing,Vol.3,pp 553-572,(1983);Byrd,R.H.、R.B.Schnabel、及G.A.Shultz,「Approximate Solution of the Trust Region Problem by Minimization over Two-Dimensional Subspaces」,Mathematical Programming,Vol.40,pp 247-263(1988);Dennis,J.E.,Jr.,「Nonlinear least-squares」,State of the Art in Numerical Analysis ed.D.Jacobs,Academic Press,pp 269-312(1977);Moré,J.J.,「The Levenberg-Marquardt Algorithm:Implementation and Theory」,Numerical Analysis,ed.G.A.Watson,Lecture Notes in Mathematics 630,Springer Verlag,pp 105-116(1977);Powell,M.J.D.,「A Fast Algorithm for Nonlinearly Constrained Optimization Calculations」,Numerical Analysis,G.A.Watson ed.,Lecture Notes in Mathematics,Springer Verlag,Vol.630(1978)。
一般而言,用以計算成本的比較將運算性預測及計量結果的複數態樣或指標做比較。這些指標的運算性生成與量測值之間的差異構成用於最佳化的成本函數。該等指標的實例包含材料之複數高度的臨界尺寸(CD)差異、
給定材料的厚度差異、及整體光譜的光譜差異。成本函數可為其之組合,可選地具有針對其之權重因數。差異可表現為L1或L2範數、歐幾里德距離、馬哈蘭距離等。在一些實施例中,這些技術使受到若干可加諸於輸入參數及/或誤差指標上之限制的目標函數(在此為成本函數/價值)最佳化。在若干如此實施例中,限制函數本身可為非線性。舉例而言,在其中經運算蝕刻輪廓以由製程模擬模型輸出之一組堆疊梯形表示的實施例中,成本價值可定義為這些堆疊梯形之邊界所表示之區域與量測實驗性蝕刻輪廓之區域之間的差異。在此情形中,誤差指標為由製程模擬模型輸出之響應變數的非線性函數,且因此從剛才所述者中選定受限最佳化技術,其容許指定非線性限制。廣泛使用之成本函數的實例係由SciPy.org在全球資訊網上提供:docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html#scipy.optimize.least_squares
最佳化製程模擬模型的應用
在任何需要蝕刻製程之詳細評估及特性化的情況,在此揭示之經最佳化的電腦化蝕刻模型皆可有助於半導體處理工作流程。舉例而言,若正發展新的蝕刻製程,模型可用以針對許多製程參數之組合判定蝕刻輪廓特性,而不需要進入實驗室並單獨執行各實驗。依此方式,經最佳化的蝕刻輪廓模型可實現更快速的製程發展循環,且在一些實施例中可顯著減少微調目標輪廓所需要的工作。
微影操作及遮罩發展亦可大幅受益於準確蝕刻輪廓模型化,因為估計邊緣放置誤差通常在微影工作中相當重要,且輪廓形狀的準確計算提供該資訊。
在此整體併入作為參考的2016年12月1日提出申請之美國專利申請案第15/367,060號敘述邊緣放置誤差偵測及微影遮罩設計。注意至少有可應用在此方面之兩層級的設計布局修正:微影及蝕刻。換言之,基於光學及蝕刻兩者的考量可用以決定遮罩布局。基於蝕刻的考量係使用如在此所述般製備之模型而加以決定。
為了使用在此所述之布局決定來製造光微影遮罩,程序開始於所謂的「毛胚」,其包含塗佈有鉻層及光阻層的玻璃基板。有時使用代替鉻或除了鉻之外的材料。舉例而言,衰減的相位偏移遮罩使用例如鉬矽化物層的額外層。光阻可為正型或負型光阻。在電子束暴露時,所形成的圖案係形成於光阻上,該圖案可經由蝕刻製程轉移至下方的鉻層。鉻在光微影遮罩上提供不透明區域,其在半導體晶圓的曝光期間投射陰影。
光微影遮罩的製造類似於半導體裝置製造期間的微影步驟。然而,相對於光(例如深UV),光阻的曝光係由電子束完成。使毛胚暴露至撞擊於由遮罩設計布局(其至少部分使用在此所述之一類型EPM所決定)所指定之位置中之光阻上的電子束輻射。接著,使遮罩顯影以產生布局的圖案。目前所形成的光阻圖案接著藉由適當的蝕刻製程(例如電漿或濕式蝕刻)被轉移至下方鉻層。之後,將光阻移除,且利用薄膜覆蓋暴露的鉻圖案以防止汙染
在此揭示的最佳化模型亦可有助於解決倒數問題:其中吾人期望特定目標蝕刻輪廓,且想要發現達成該特定目標蝕刻輪廓的一或更多特定製程參數(或EPM輸入參數)組合。再一次,此可藉由實驗性試誤而完成,但從給定組製程參數(或EPM輸入參數)及條件產生的蝕刻輪廓之準確模型化可取代對於實驗的需求,或至少在探索製程/輸入參數空間的初始階段如此,直到可識別
良好的候選者以供完整實驗性研究。在一些實施例中,可實際上以全自動方式將模型數值性反轉,亦即反覆定位一組產生給定蝕刻輪廓的參數。再一次,蝕刻輪廓坐標空間的維數縮減(經由PCA)、及所需蝕刻輪廓對此空間上的投影可使此數值性反轉更加可行。
基於此處所提供的揭示內容,EPM可用以促進製程窗及硬體最佳化。在一些實施例中,將EPM用以針對現存未經修改的反應器或反應器設計判定參數組(例如製程窗)。在一些實施例中,將EPM用以決定經修改的反應器設計,例如但不限於反應器的部件。舉例而言,EPM可建議噴淋頭設計修改(例如從現存設計改變孔圖案或內部流動管線)。在其他實例中,EPM可建議電漿產生器設計修改(例如從現存設計改變電容耦合電漿(「CCP」)電極或感應耦合電漿(「ICP」)線圈的配置及/或設置)。在一實例中,EPM可建議對於晶圓基座的設計或位置之改變。在又另一實例中,EPM可建議對於腔室壁的位置或形狀之改變。CCP及ICP反應器的一般敘述係見於2016年6月21日提出申請之美國公開專利申請案第20170363950號,且其係整體併入於此做為參考。
在若干實施例中,經最佳化的EPM可與蝕刻器裝置整合、或整合至部署一或更多蝕刻器裝置的半導體製造設備基礎設施中。經最佳化EPM可用以決定對於製程參數的適當調整,以提供期望的蝕刻輪廓、或理解蝕刻輪廓上之製程參數中的改變之效應。因此,舉例而言,製造設備內用於處理半導體基板的系統可包含用於蝕刻半導體基板的蝕刻器裝置,其操作係由一組獨立輸入參數所調整,該組獨立輸入參數係由實施經最佳化EPM的控制器所控制。合適的控制蝕刻器裝置之操作的控制器典型地包含處理器及記憶體,記憶體儲存經最佳化EPM,且處理器使用所儲存的EPM,以針對一組輸入製程參數的一組
給定值運算蝕刻特徵部輪廓。在運算輪廓之後,在一些實施例中,控制器可(回應所運算之輪廓的形狀)藉由改變該組獨立輸入參數的一或更多值,來調整蝕刻器裝置的操作。
在一些實施例中,模型係用於即時監控及處理原位光學訊號,以從原位光學資訊產生幾何蝕刻參數(例如即時終點或臨界尺寸監控)。如此原位監控及處理能力可在諸多反應器配置的任何者(例如電容耦合電漿反應器及感應耦合電漿反應器)中提供。在若干實施例中,特徵部特性化程序(例如終點評估)在約100m以下(從其接收到例如光學量測值之輸入變數值的時間起)完成處理。在若干實施例中,特徵部特性化演算法在約20ms以下完成處理。如此快速的處理可在例如具有關鍵步驟改變需求的應用中或高蝕刻速率製程(例如在小於約一分鐘之內完成的蝕刻製程)中採用。在具有由處理體系(例如在RF脈衝或氣體脈衝中)引發之諸多變異的製程中、或當晶圓結構本身具有複雜結構(例如在交替材料的堆疊中)時,可能需要資料陣列(例如其數千者),有時係針對複數時間樣本(例如一百以上、或一千以上)的各者。模型的執行時間亦取決於所使用之演算法的類型。在一些實施例中,模型從蝕刻製程的開始起到目前時間處理光譜資訊之時間演進的所有或大部分。此可能需要例如利用多路主成分分析(PCA)及多路偏最小平方(PLS)產生大量模型,其中各模型相對對應時間間隔之歷史軌跡從蝕刻開始比較光學量測軌跡直到目前時間步驟。在模型校準期間和蝕刻時間加長時之即時製程監控期間,如此模型皆可具有增加的運算性需求。在如此情形中,系統可配置有額外的處理能力,例如具有大量緩衝空間的處理器、多執行緒、及/或多核心。
在若干實施例中,模型使用僅占有限範圍之波長的光學輸出訊號(或光學訊號的其他態樣),其可針對判定受關注之幾何參數而加以選擇。此範圍中的訊號係用作模型的獨立變數(或獨立變數的群組)。在一些如此實施例中,可用光學訊號的大部分者並未用作輸入。所選定範圍可代表可由計量工具量測之值的完整範圍之一小部分(例如小於約10%或甚至為離散值)。使用經選定範圍作為模型輸入可需要較少運算,且因此計算更快以判定蝕刻特徵部的幾何。其亦可容許經選定的相依變數受到計算而無來自相關幾何參數的干擾,舉例而言,蝕刻深度可在無來自強相關於臨界尺寸之輸入訊號的顯著干擾之情況下加以計算。舉例而言,第一波長範圍可強相關於蝕刻深度,而一不同波長範圍可強相關於臨界尺寸但僅弱相關於蝕刻深度。為了避免遮蔽訊號,聚焦於蝕刻深度的程序僅使用第一波長範圍中的光學訊號。
一般而言,可與所揭示之經最佳化EPM一起使用的蝕刻器裝置可為任何類型的適用於藉由從半導體基板移除材料而蝕刻半導體基板之半導體處理裝置。在一些實施例中,蝕刻器裝置可構成感應耦合電漿(ICP)反應器;在一些實施例中,期可構成電容耦合電漿(CCP)反應器。因此,與這些所揭示之經最佳化EPM一起使用的蝕刻器裝置可具有處理腔室、用以在處理腔室內固持基板的基板固持器、及用以在處理腔室內產生電漿的電漿產生器。裝置可更包含用於使一或更多製程氣體流入處理腔室中的一或更多閥控制製程氣體入口、流體連接至一或更多真空泵以供從處理腔室排空氣體的一或更多氣體出口等。關於蝕刻器裝置(一般亦稱為蝕刻反應器、或電漿蝕刻反應器等)的進一步細節。
所揭示運算性實施例的脈絡
在此揭示的若干實施例關於產生及/或使用製程模擬模型的系統。在此揭示的若干實施例關於產生及/或使用實施於如此系統上之製程模擬模型的方法。產生製程模擬模型的系統可配置成分析資料以供校準或最佳化用以代表半導體裝置製造操作在基板上之效果的表示法或關係。產生製程模擬模型的系統亦可配置成接收資料及指令,例如代表發生在半導體裝置製造操作期間之實際製程的程式碼。依此方式,使製程模擬模型產生或程式化於如此系統上。使用製程模擬模型的程式化系統可配置成(i)接收輸入,例如將半導體裝置製造操作及/或產生基板中特徵部之初始設計布局或遮罩特性化的製程參數;及(ii)執行判定半導體裝置製造操作在基板上之效果的指令。為此,系統可計算半導體裝製造操作的時間相依(或非時間相依)結果。
具有諸多電腦架構之任何者的許多類型之運算系統可用作所揭示之系統以供實施製程模擬模型及用以產生及/或最佳化如此模型的演算法。舉例而言,系統可包含執行於一或更多一般目的處理器、或如可程式邏輯裝置(例如場域可程式閘陣列(FPGA))之特殊設計處理器上的軟體元件。再者,系統可實施於單一裝置上或分布於多個裝置範圍。運算元件的功能可併入彼此,或進一步分成多個次模組。
在一些實施例中,產生或執行製程模擬模型期間在適當程式化之系統上執行的編碼可採取軟體元件的形式體現,其可儲存於非揮發性儲存媒體(例如光碟、快閃儲存裝置、行動硬碟等),其包含驅使電腦裝置(例如個人電腦、伺服器、網路設備等)的若干指令。
在一定程度上,軟體元件係實施為由程式設計師/開發者所製備的一組命令。然而,可由電腦硬體執行的模組軟體為使用選自特定機器語言指
令集之「機器碼」、或設計至硬體處理器中之「原生指令」提交至記憶體的可執行編碼。機器語言指令集或原生指令集對於硬體處理器為已知,且實質上內建於硬體處理器中。此為系統及應用軟體與硬體處理器交流所憑藉的「語言」。各原生指令為由處理架構認可且可指明用於算術、定址、或控制函數之特定暫存器;特定記憶體位置或偏移;及用以解譯運算元之特定定址模式的單獨編碼。更複雜的操作係藉由結合這些簡單原生指令而建立,該等原生指令係依序執行、或以其他方式由控制流程指令所導引。
可執行軟體指令與硬體處理器之間的相互關係為結構性的。換言之,指令本身為一系列符號或數值。其本質上不傳送任何資訊。處理器藉由設計而預先配置成解譯符號/數值,此賦予指令意義。
在此使用的模型可配置成在單一位置執行於單一機器上、在單一位置執行於複數機器上、或在複數位置執行於複數機器上。當採用複數機器時,個別機器可針對其特定任務加以定製。舉例而言,需要大型編碼區塊及/或顯著處理能力的操作可實施於大型及/或固定式機器。
此外,若干實施例關於有形且/或非暫態電腦可讀媒體或電腦程式產品,其包含用於執行諸多電腦實施操作的程式指令及/或資料(包括資料結構)。電腦可讀媒體的實例包含但不限於半導體記憶體裝置、相變化裝置、磁性媒體(例如磁碟機、磁帶)、光學媒體(例如CD)、磁光媒體、及特別配置成儲存及執行程式指令的硬體裝置(例如唯讀記憶體裝置(ROM)及隨機存取記憶體(RAM))。電腦可讀媒體可直接由終端用戶控制,或媒體可由終端用戶間接控制。直接受控制之媒體的實例包含位於用戶設施處的媒體、及/或不與其他實體共享的媒體。間接受控制之媒體的實例包含可經由外部網路及/或經由提供共享
資源(例如「雲端」)之服務間接通往用戶的媒體。程式指令的實例包含例如由編碼器產生的機器碼、及含有可由電腦使用解譯器執行之更高階碼的檔案兩者。
在諸多實施例中,在所揭示方法及裝置中採用的資料或資訊係以電子形式提供。如此資料或資訊可包含設計布局、固定參數值、浮動參數值、特徵部輪廓、計量結果等。當在此使用時,以電子形式提供的資料或其他資訊可用在機器上的儲存及機器間的傳輸。習知上,電子形式的資料係數位式提供,且可在諸多資料結構、列表、資料庫等中儲存為位元及/或位元組。資料可以電子、光學等方式體現。
在若干實施例中,製程模擬模型可各被視為與用戶及與系統軟體介接之應用軟體的形式。系統軟體典型地與電腦硬體及相關記憶體介接。在若干實施例中,系統軟體包含操作系統軟體及/或韌體、以及安裝於系統中之任何中間軟體及驅動程式。系統軟體提供電腦之基本的非任務專用功能。反之,模組及其他應用軟體係用以完成特定任務。針對模組的各原生指令係儲存於記憶體裝置中,且由一數值代表。
例示電腦系統800係繪示於圖7中。如所示,電腦系統800包含輸入/輸出次系統802,其可實施用於取決於應用而與人類用戶及/或其他電腦系統互動的介面。本發明的實施例可實施於系統800上的程式碼中,而I/O次系統802用以從人類用戶接收輸入程式敘述及/或資料(例如經由GUI或鍵盤)並將該程式敘述及/或資料往回對用戶顯示。I/O次系統802可包含例如鍵盤、滑鼠、圖形使用者介面、觸控螢幕、或其他輸入用介面、及例如LED或其他平板顯示器、或
其他輸出用介面。本揭示內容之實施例的例如下單引擎之其他元件可與電腦系統一起實施,其可類似電腦系統800者,但不具有I/O。
程式碼可儲存在非暫態媒體中,例如持久性儲存部810或記憶體808或兩者。一或更多處理器804從一或更多非暫態媒體讀取程式碼,並執行該等碼以使電腦系統得以完成由本文實施例執行之方法,例如涉及產生或使用如在此敘述之製程模擬模型者。熟悉所屬領域者將理解,處理器可接收例如執行訓練及/或模型化操作的來源碼,並將來源碼解譯或編寫成在處理器之硬體閘層級可理解的機器碼。匯流排耦接I/O次系統802、處理器804、周邊裝置806、記憶體808、持久性儲存部810。
結論
在敘述內容中,提出許多具體細節以提供所呈現實施例的透徹理解。所揭示實施例可在不具有這些具體細節之一些或全部者的情況下實施。在其他情形中,為人熟知的製程操作未加詳述,以免不必要地使所揭示實施例模糊。雖然所揭示實施例係結合特定實施例而敘述,但吾人將理解,該等特定實施例並非意圖限制所揭示之實施例。
500:系統
502:組分
504:模型
506:特徵部輪廓
512:成本函數計算器
514:組分
516:組分
518:收斂檢查器
520:組分
522:組分
524:組分
526:組分
Claims (68)
- 一種使製程模擬模型最佳化的電腦實施方法,該製程模擬模型從使一半導體裝置製造操作特性化之製程參數值預測該半導體裝置製造操作的結果,該方法包含:(a)接收待最佳化的一或更多浮動製程模型參數之目前值;(b)藉由將該一或更多浮動製程模型參數之目前值及一組固定製程模型參數值提供至該製程模擬模型,來產生一經配置製程模擬模型;(c)使用該經配置製程模擬模型,生成該半導體裝置製造操作的一運算性預測結果,其中該半導體裝置製造操作為以下至少一者:一減去製程、一材料加成製程、一蝕刻製程、一平坦化製程、或一沉積製程;(d)將該半導體裝置製造操作的該運算性預測結果與從一或更多基板特徵部獲得的一計量結果比較,該一或更多基板特徵部係至少部分藉由在操作於該組固定製程模型參數值下之一反應腔室中執行該半導體裝置製造操作而產生,其中該比較基於該半導體裝置製造操作之該運算性預測結果與該計量結果之間的差異,產生一或更多成本價值;(e)使用該一或更多成本價值及/或一收斂檢查,以生成該一或更多浮動製程模型參數之目前值的更新值;(f)以該一或更多浮動製程模型參數之目前值的更新值執行操作(b);及(g)重複(c)-(f),直到該一或更多浮動製程模型參數之目前值收斂,以產生使該成本價值最小化的該一或更多浮動製程模型參數之最終值。
- 如請求項第1項之使製程模擬模型最佳化的電腦實施方法,其中該組固定製程模型參數值或該一或更多浮動製程模型參數包含該反應腔室中之 一或更多溫度值、該反應腔室中之一或更多RF條件、該反應腔室中之一或更多製程氣體、該反應腔室中之壓力、或其任何組合。
- 如請求項第1項之使製程模擬模型最佳化的電腦實施方法,其中該一或更多浮動製程模型參數包含經歷該半導體裝置製造操作的一基板之一特性,其中該特性為反應速率常數、反應物及/或產物黏附係數、反應物擴散常數、產物擴散常數、及/或光分散性質。
- 如請求項第1項之使製程模擬模型最佳化的電腦實施方法,其中該一或更多浮動製程模型參數包含垂直蝕刻速率、橫向蝕刻速率、標稱蝕刻深度、蝕刻選擇性、離子進入的傾斜角度、離子進入的撚角(twist angle)、進入特徵部之可見度、角分布、濺射最大產率角度、及/或每晶體方向的蝕刻比。
- 如請求項第1項之使製程模擬模型最佳化的電腦實施方法,其中該一或更多浮動製程模型參數包含經歷該半導體裝置製造操作之一基板的任何二或更多特性之組合。
- 如請求項第1項之使製程模擬模型最佳化的電腦實施方法,其中操作(b)產生一經配置製程模擬模型更包含在基板經歷該半導體裝置製造操作之前,對該製程模擬模型提供該基板的輪廓,其中該基板的輪廓具有待由該半導體裝置製造操作修改的一或更多特徵部。
- 如請求項第1項之使製程模擬模型最佳化的電腦實施方法,更包含:在操作(c)之前,提供經歷該半導體裝置製造操作之基板的初始輪廓,藉以在操作(c)中使用該初始輪廓生成該半導體裝置製造操作之該運算性預測結果。
- 如請求項第7項之使製程模擬模型最佳化的電腦實施方法,其中該初始輪廓係使用有關發生在該半導體裝置製造操作前之製造步驟的資訊而運算性地生成。
- 如請求項第8項之使製程模擬模型最佳化的電腦實施方法,其中該初始輪廓係藉由在一或更多初始基板特徵部上進行計量而決定,該一或更多初始基板特徵部係由發生在該半導體裝置製造操作前之製造步驟所產生。
- 如請求項第1項之使製程模擬模型最佳化的電腦實施方法,其中半導體裝置製造操作的結果為藉由入射電磁輻射與經蝕刻特徵部、經沉積特徵部、或經平坦化特徵部之互動所產生的訊號。
- 如請求項第1-10項中任一項之使製程模擬模型最佳化的電腦實施方法,其中生成該半導體裝置製造操作的該運算性預測結果包含:(i)使用該經配置製程模擬模型,生成由一系列幾何輪廓坐標代表的運算蝕刻輪廓;及(ii)從(i)中生成的該運算蝕刻輪廓,藉由模擬電磁輻射離開該運算蝕刻輪廓的反射而生成經運算的反射或橢圓偏振光譜。
- 如請求項第11項之使製程模擬模型最佳化的電腦實施方法,更包含在(ii)之前,對該運算蝕刻輪廓進行輪廓修整,以使一些隨機輪廓變異平整。
- 如請求項第11項之使製程模擬模型最佳化的電腦實施方法,其中生成經運算的反射或橢圓偏振光譜包含使用該運算蝕刻輪廓執行嚴格耦合波分析(Rigorous Coupled Wave Analysis,RCWA)模擬。
- 如請求項第11項之使製程模擬模型最佳化的電腦實施方法,其中生成經運算的反射或橢圓偏振光譜包含使用該運算蝕刻輪廓執行時域有限差分(Finite Difference Time-Domain,FDTD)模擬。
- 如請求項第11項之使製程模擬模型最佳化的電腦實施方法,更包含:於該組固定製程模型參數值下在測試基板上執行該半導體裝置製造操作,以產生經蝕刻基板;及使該經蝕刻基板暴露至入射電磁輻射,以產生包含該計量結果的實驗性反射光譜。
- 如請求項第11項之使製程模擬模型最佳化的電腦實施方法,更包含生成一或更多額外經運算的反射或橢圓偏振光譜。
- 如請求項第1-10項中任一項之使製程模擬模型最佳化的電腦實施方法,更包含藉由在基板上執行反射術(reflectometry)、圓頂散射測量(dome scatterometry)、角分解散射測量(angle-resolved scatterometry)、小角度X光散射測量(small-angle X-ray scatterometry)、及/或橢圓偏振法而獲取而產生該計量結果,該基板包含藉由在操作於該組固定製程模型參數值下之該反應腔室中執行該半導體裝置製造操作而產生的特徵部。
- 如請求項第1-10項中任一項之使製程模擬模型最佳化的電腦實施方法,其中半導體裝置製造操作的結果為經蝕刻特徵部的輪廓、經沉積特徵部的輪廓、或經平坦化特徵部的輪廓。
- 如請求項第1-10項中任一項之使製程模擬模型最佳化的電腦實施方法,其中生成該半導體裝置製造操作的該運算性預測結果包含:使用該經配置製程模擬模型生成由蝕刻輪廓坐標代表的運算蝕刻輪廓。
- 如請求項第19項之使製程模擬模型最佳化的電腦實施方法,更包含:於該組固定製程模型參數值下在測試基板上執行該半導體裝置製造操作,以產生經蝕刻基板;及量測該經蝕刻基板的特徵部,以產生包含該計量結果的實驗性蝕刻輪廓坐標。
- 如請求項第20項之使製程模擬模型最佳化的電腦實施方法,其中量測該經蝕刻基板的特徵部包含在該經蝕刻基板上執行顯微術或光學計量。
- 如請求項第21項之使製程模擬模型最佳化的電腦實施方法,其中執行顯微術包含執行穿透型電子顯微術(TEM)及/或掃描型電子顯微術(SEM)。
- 如請求項第1-10項任一項之使製程模擬模型最佳化的電腦實施方法,其中該半導體裝置製造操作的結果為一組幾何輪廓參數,該組幾何輪廓參數將經蝕刻特徵部、經沉積特徵部、或經平面化特徵部的幾何特性化。
- 如請求項第23項之使製程模擬模型最佳化的電腦實施方法,其中該幾何輪廓參數為光學臨界尺寸(optical critical dimension,OCD)輪廓參數。
- 如請求項第1-10項中任一項之使製程模擬模型最佳化的電腦實施方法,其中生成該半導體裝置製造操作的該運算性預測結果包含: (i)使用該經配置製程模擬模型,生成由一系列蝕刻輪廓坐標代表的運算蝕刻輪廓;及(ii)將在(i)中生成的該運算蝕刻輪廓轉換成第一組幾何輪廓參數,該第一組幾何輪廓參數將該運算蝕刻輪廓的幾何特性化。
- 如請求項第25項之使製程模擬模型最佳化的電腦實施方法,更包含:於該組固定製程模型參數值下在測試基板上執行該半導體裝置製造操作,以產生經蝕刻基板;量測該經蝕刻基板的特徵部,以產生實驗性蝕刻輪廓坐標;及將該實驗性蝕刻輪廓坐標轉換成第二組幾何輪廓參數,該第二組幾何輪廓參數將該經蝕刻基板中之經蝕刻特徵部的幾何特性化。
- 如請求項第26項之使製程模擬模型最佳化的電腦實施方法,其中該一或更多成本價值係基於使用該第一組幾何輪廓參數之該運算性預測結果與使用該第二組幾何輪廓參數之該計量結果之間的差異。
- 如請求項第1-10項中任一項之使製程模擬模型最佳化的電腦實施方法,其中:在操作(c)中生成的該運算性預測結果包含從該經配置製程模擬模型運算、且對應至代表基板減去製程或基板加成製程之不同持續時間之時間序列的基板特徵部之幾何輪廓或輪廓參數的序列;且操作(d)之該計量結果包含在該基板減去製程或該基板加成製程之該不同持續時間從基板之實驗性量測獲得的該基板特徵部之幾何輪廓或輪廓參數的序列。
- 如請求項第1-10項中任一項之使製程模擬模型最佳化的電腦實施方法,更包含:(i)利用來自操作(g)之該一或更多浮動製程模型參數的該最終值,配置該製程模擬模型;及(ii)使用以來自操作(g)之該一或更多浮動製程模型參數的該最終值所配置之該製程模擬模型實現:決定微影遮罩的圖案;及產生該微影遮罩。
- 如請求項第29項之使製程模擬模型最佳化的電腦實施方法,其中產生該微影遮罩包含將該圖案轉移至一光阻層。
- 如請求項第30項之使製程模擬模型最佳化的電腦實施方法,更包含使該光阻層顯影並將該圖案轉移至下方鉻層。
- 如請求項第1-10項中任一項之使製程模擬模型最佳化的電腦實施方法,更包含:(i)以來自(g)之該一或更多浮動製程模型參數的最終值配置該製程模擬模型;(ii)利用配置有來自(g)之該一或更多浮動製程模型參數的最終值之該製程模擬模型,以實現:識別一半導體處理裝置的設計;及藉由使用該半導體處理裝置的設計製造該半導體處理裝置。
- 如請求項第1-10項中任一項之使製程模擬模型最佳化的電腦實施方法,更包含: (i)以來自(g)之該一或更多浮動製程模型參數的最終值配置該製程模擬模型;(ii)利用配置有來自(g)之該一或更多浮動製程模型參數的最終值之該製程模擬模型,來識別一半導體處理裝置的操作條件,以藉由在該操作條件下操作該半導體處理裝置而實現半導體裝置的製造。
- 如請求項第1-10項中任一項之使製程模擬模型最佳化的電腦實施方法,其中重複(c)-(f)直到該一或更多浮動製程模型參數的目前值收斂包含:在所獲得的該一或更多成本價值中識別實質上局部或全域最小值。
- 如請求項第1-10項中任一項之使製程模擬模型最佳化的電腦實施方法,其中生成該運算性預測結果包含:使用該經配置製程模擬模型計算代表半導體基板上之特徵部輪廓之複數點之網格處的局部反應率。
- 如請求項第35項之使製程模擬模型最佳化的電腦實施方法,其中使用該經配置製程模擬模型計算局部反應率的步驟計算反應率作為時間的函數。
- 如請求項第1-10項中任一項之使製程模擬模型最佳化的電腦實施方法,更包含藉由執行該反應腔室中之原位計量、該反應腔室之外的非破壞性獨立計量、及/或該反應腔室之外的獨立破壞性計量,來獲得該計量結果。
- 一種電腦程式產品,其包含一非暫態電腦可讀媒體,該非暫態電腦可讀媒體上提供用於致使運算系統執行最佳化之製程模擬模型的複數指令,該最佳化之該製程模擬模型從將一半導體裝置製造操作特性化之製程參數值計算該半導體裝置製造操作的結果,其中該複數指令包含用於下列者的指令: (a)接收製程參數值作為對最佳化之該製程模擬模型的輸入;(b)使用該製程參數值執行最佳化之該製程模擬模型,其中最佳化之該製程模擬模型係藉由下列者加以最佳化:(i)接收待最佳化的一或更多浮動製程模型參數之目前值;(ii)藉由將該一或更多浮動製程模型參數之目前值及一組固定製程模型參數值提供至該製程模擬模型,來產生一經配置製程模擬模型;(iii)使用該經配置製程模擬模型,生成該半導體裝置製造操作的一運算性預測結果,其中該半導體裝置製造操作為以下至少一者:一減去製程、一材料加成製程、一蝕刻製程、一平坦化製程、或一沉積製程;(iv)將該半導體裝置製造操作的該運算性預測結果與從一或更多基板特徵部獲得的一計量結果比較,該一或更多基板特徵部係至少部分藉由在操作於該組固定製程模型參數值下之一反應腔室中執行該半導體裝置製造操作而產生,其中該比較基於該半導體裝置製造操作之該運算性預測結果與該計量結果之間的差異,產生一或更多成本價值;(v)使用該一或更多成本價值及/或一收斂檢查,以生成該一或更多浮動製程模型參數之目前值的更新值;(vi)以該一或更多浮動製程模型參數之目前值的更新值執行操作(ii);及(vii)重複(iii)-(vi),直到該一或更多浮動製程模型參數之目前值收斂,以產生使該成本價值最小化的該一或更多浮動製程模型參數之最終值;及(c)輸出該半導體裝置製造操作的計算結果。
- 如請求項第38項之電腦程式產品,其中該複數指令更包含用於下列者的指令:在(b)之前,接收經歷該半導體裝置製造操作的基板之初始輪廓。
- 如請求項第38項之電腦程式產品,其中該一或更多浮動製程模型參數包含垂直蝕刻速率、橫向蝕刻速率、標稱蝕刻深度、蝕刻選擇性、離子進入的傾斜角度、離子進入的撚角、進入特徵部之可見度、角分布、濺射最大產率角度、及/或每晶體方向的蝕刻比。
- 如請求項第38項之電腦程式產品,其中(ii)產生一經配置製程模擬模型更包含在基板經歷該半導體裝置製造操作之前,對該製程模擬模型提供該基板的輪廓,其中該基板的輪廓具有待由該半導體裝置製造操作修改的一或更多特徵部。
- 如請求項第38項之電腦程式產品,其中半導體裝置製造操作的結果為藉由入射電磁輻射與經蝕刻特徵部、經沉積特徵部、或經平坦化特徵部之互動所產生的訊號。
- 如請求項第38-42項中任一項之電腦程式產品,其中生成該半導體裝置製造操作的該運算性預測結果包含:使用該經配置製程模擬模型,生成由一系列幾何輪廓坐標代表的運算蝕刻輪廓;及從該運算蝕刻輪廓,藉由模擬電磁輻射離開該運算蝕刻輪廓的反射而生成經運算的反射或橢圓偏振光譜。
- 如請求項第43項之電腦程式產品,其中最佳化的該製程模擬模型係額外藉由下列者而最佳化: 於該組固定製程模型參數值下在測試基板上執行該半導體裝置製造操作,以產生經蝕刻基板;及使該經蝕刻基板暴露至入射電磁輻射,以產生包含該計量結果的實驗性反射光譜。
- 如請求項第38項之電腦程式產品,其中最佳化的該製程模擬模型係額外藉由下列者而最佳化:藉由在基板上執行反射術、圓頂散射測量、角分解散射測量、小角度X光散射測量、及/或橢圓偏振法而獲取而產生該計量結果,該基板包含藉由在操作於該組固定製程模型參數值下之該反應腔室中執行該半導體裝置製造操作而產生的特徵部。
- 如請求項第38項之電腦程式產品,其中生成該半導體裝置製造操作的該運算性預測結果包含:使用該經配置製程模擬模型生成由蝕刻輪廓坐標代表的運算蝕刻輪廓。
- 如請求項第46項之電腦程式產品,其中最佳化的該製程模擬模型係額外藉由下列者而最佳化:於該組固定製程模型參數值下在測試基板上執行該半導體裝置製造操作,以產生經蝕刻基板;及量測該經蝕刻基板的特徵部,以產生包含該計量結果的實驗性蝕刻輪廓坐標。
- 如請求項第38項之電腦程式產品,其中該半導體裝置製造操作的結果為一組幾何輪廓參數,該組幾何輪廓參數將經蝕刻特徵部、經沉積特徵部、或經平面化特徵部的幾何特性化。
- 如請求項第48項之電腦程式產品,其中該幾何輪廓參數為光學臨界尺寸(optical critical dimension,OCD)輪廓參數。
- 如請求項第38項之電腦程式產品,其中生成該半導體裝置製造操作的該運算性預測結果包含:使用該經配置製程模擬模型,生成由一系列蝕刻輪廓坐標代表的運算蝕刻輪廓;及將該運算蝕刻輪廓轉換成第一組幾何輪廓參數,該第一組幾何輪廓參數將該運算蝕刻輪廓的幾何特性化。
- 如請求項第50項之電腦程式產品,其中最佳化的該製程模擬模型係額外藉由下列者而最佳化:於該組固定製程模型參數值下在測試基板上執行該半導體裝置製造操作,以產生經蝕刻基板;量測該經蝕刻基板的特徵部,以產生實驗性蝕刻輪廓坐標;及將該實驗性蝕刻輪廓坐標轉換成第二組幾何輪廓參數,該第二組幾何輪廓參數將該經蝕刻基板中之經蝕刻特徵部的幾何特性化。
- 如請求項第38-42項中任一項之電腦程式產品,更包含將該計算結果用以決定微影遮罩之圖案的指令。
- 如請求項第38-42項中任一項之電腦程式產品,更包含將該計算結果用以識別半導體處理裝置之設計的指令。
- 如請求項第38-42項中任一項之電腦程式產品,更包含將該計算結果用以識別半導體處理裝置之操作條件的指令,以藉由在該操作條件下操作該半導體處理裝置而實現該半導體裝置的製造。
- 一種包含請求項第38-42項中任一項之電腦程式產品及微影遮罩生成裝置的系統,該微影遮罩生成裝置配置成使用該半導體裝置製造操作的該計算結果決定微影遮罩圖案。
- 一種包含請求項第38-42項中任一項之電腦程式產品及半導體處理裝置的系統,該半導體處理裝置配置成在該半導體裝置製造操作之該計算結果中提供的製程條件下操作。
- 一種使製程模擬模型最佳化的電腦實施方法,該製程模擬模型從使一半導體裝置製造操作特性化之製程參數值預測該半導體裝置製造操作的結果,該方法包含:(a)接收待最佳化的一或更多浮動製程模型參數之目前值,其中該一或更多浮動製程模型參數包含以下一者以上:經歷該半導體裝置製造操作的基板之特性,其中該特性為反應速率常數、反應物及/或產物黏附係數、反應物擴散常數、產物擴散常數、光分散性質、垂直蝕刻速率、橫向蝕刻速率、標稱蝕刻深度、蝕刻選擇性、離子進入的傾斜角度、離子進入的撚角(twist angle)、進入特徵部之可見度、角分布、濺射最大產率角度、及/或每晶體方向的蝕刻比;(b)藉由將該一或更多浮動製程模型參數之目前值及一組固定製程模型參數值提供至該製程模擬模型,來產生一經配置製程模擬模型;(c)使用該經配置製程模擬模型,生成該半導體裝置製造操作的一運算性預測結果;(d)將該半導體裝置製造操作的該運算性預測結果與從一或更多基板特徵部獲得的一俯視計量結果比較,該一或更多基板特徵部係至少部分藉由在操作於該組固定製程模型參數值下之一反應腔室中執行該半導體裝置製造操作而產 生,其中該比較基於該半導體裝置製造操作之該運算性預測結果與該俯視計量結果之間的差異,產生一或更多成本價值;(e)使用該一或更多成本價值及/或一收斂檢查,以生成該一或更多浮動製程模型參數之目前值的更新值;(f)以該一或更多浮動製程模型參數之目前值的更新值執行操作(b);及(g)重複(c)-(f),直到該一或更多浮動製程模型參數之目前值收斂,以產生使該成本價值最小化的該一或更多浮動製程模型參數之最終值。
- 如請求項第57項之使製程模擬模型最佳化的電腦實施方法,其中該俯視計量結果包含該一或更多基板特徵部的一或更多CD-SEM影像,該一或更多基板特徵部係至少部分藉由在操作於該組固定製程模型參數值下之反應腔室中執行該半導體裝置製造操作而產生。
- 如請求項第57或58項之使製程模擬模型最佳化的電腦實施方法,其中(d)更包含比較該半導體裝置製造操作的該運算性預測結果與從該一或更多基板特徵部獲得的基於輪廓之計量結果,該一或更多基板特徵部係至少部分藉由在操作於該組固定製程模型參數值下之反應腔室中執行該半導體裝置製造操作而產生,且其中該一或更多成本價值基於該半導體裝置製造操作的該運算性預測結果與該基於輪廓之計量結果之間的差異構成至少一成本函數。
- 如請求項第59項之使製程模擬模型最佳化的電腦實施方法,其中該基於輪廓之計量結果係藉由CD-SAXS計量程序而獲得。
- 如請求項第59項之使製程模擬模型最佳化的電腦實施方法,其中該基於輪廓之計量結果係藉由TEM計量程序而獲得。
- 如請求項第59項之使製程模擬模型最佳化的電腦實施方法,其中該基於輪廓之計量結果係藉由OCD計量程序而獲得。
- 一種電腦程式產品,其包含一非暫態電腦可讀媒體,該非暫態電腦可讀媒體上提供用於致使運算系統執行最佳化之製程模擬模型的複數指令,該最佳化之該製程模擬模型從將一半導體裝置製造操作特性化之製程參數計算該半導體裝置製造操作的結果,其中該複數指令包含用於下列者的指令:(a)接收製程參數值作為對最佳化之該製程模擬模型的輸入;(b)使用該製程參數值執行最佳化之該製程模擬模型,其中最佳化之該製程模擬模型係藉由下列者加以最佳化:(i)接收待最佳化的一或更多浮動製程模型參數之目前值,其中該一或更多浮動製程模型參數包含以下一者以上:經歷該半導體裝置製造操作的基板之特性,其中該特性為反應速率常數、反應物及/或產物黏附係數、反應物擴散常數、產物擴散常數、光分散性質、垂直蝕刻速率、橫向蝕刻速率、標稱蝕刻深度、蝕刻選擇性、離子進入的傾斜角度、離子進入的撚角、進入特徵部之可見度、角分布、濺射最大產率角度、及/或每晶體方向的蝕刻比;(ii)藉由將該一或更多浮動製程模型參數之目前值及一組固定製程模型參數值提供至該製程模擬模型,來產生一經配置製程模擬模型;(iii)使用該經配置製程模擬模型,生成該半導體裝置製造操作的一運算性預測結果;(iv)將該半導體裝置製造操作的該運算性預測結果與從一或更多基板特徵部獲得的一俯視計量結果比較,該一或更多基板特徵部係至少部分藉 由在操作於該組固定製程模型參數值下之一反應腔室中執行該半導體裝置製造操作而產生,其中該比較基於該半導體裝置製造操作之該運算性預測結果與該俯視計量結果之間的差異,產生一或更多成本價值;(v)使用該一或更多成本價值及/或一收斂檢查,以生成該一或更多浮動製程模型參數之目前值的更新值;(vi)以該一或更多浮動製程模型參數之目前值的更新值執行操作(ii);(vii)重複(iii)-(vi),直到該一或更多浮動製程模型參數之目前值收斂,以產生使該成本價值最小化的該一或更多浮動製程模型參數之最終值;及(c)輸出該半導體裝置製造操作的計算結果。
- 如請求項第63項之電腦程式產品,其中該俯視計量結果包含該一或更多基板特徵部的一或更多CD-SEM影像,該一或更多基板特徵部係至少部分藉由在操作於該組固定製程模型參數值下之反應腔室中執行該半導體裝置製造操作而產生。
- 如請求項第63或64項之電腦程式產品,其中(iv)更包含比較該半導體裝置製造操作的該運算性預測結果與從該一或更多基板特徵部獲得的基於輪廓之計量結果,該一或更多基板特徵部係至少部分藉由在操作於該組固定製程模型參數值下之反應腔室中執行該半導體裝置製造操作而產生,且其中該一或更多成本價值基於該半導體裝置製造操作的該運算性預測結果與該基於輪廓之計量結果之間的差異構成至少一成本函數。
- 如請求項第65項之電腦程式產品,其中該基於輪廓之計量結果係藉由CD-SAXS計量程序而獲得。
- 如請求項第65項之電腦程式產品,其中該基於輪廓之計量結果係藉由TEM計量程序而獲得。
- 如請求項第65項之電腦程式產品,其中該基於輪廓之計量結果係藉由OCD計量程序而獲得。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/946,940 | 2018-04-06 | ||
US15/946,940 US10572697B2 (en) | 2018-04-06 | 2018-04-06 | Method of etch model calibration using optical scatterometry |
US201862656299P | 2018-04-11 | 2018-04-11 | |
US62/656,299 | 2018-04-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201945967A TW201945967A (zh) | 2019-12-01 |
TWI851567B true TWI851567B (zh) | 2024-08-11 |
Family
ID=
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150371134A1 (en) | 2014-06-19 | 2015-12-24 | Semiconductor Manufacturing International (Shanghai) Corporation | Predicting circuit reliability and yield using neural networks |
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150371134A1 (en) | 2014-06-19 | 2015-12-24 | Semiconductor Manufacturing International (Shanghai) Corporation | Predicting circuit reliability and yield using neural networks |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11704463B2 (en) | Method of etch model calibration using optical scatterometry | |
TWI805580B (zh) | 透過邊緣放置誤差預測之設計佈局圖案近接校正 | |
TWI846635B (zh) | 光阻及蝕刻模型建立 | |
US10254641B2 (en) | Layout pattern proximity correction through fast edge placement error prediction | |
US10585347B2 (en) | Photoresist design layout pattern proximity correction through fast edge placement error prediction via a physics-based etch profile modeling framework | |
CN112136135A (zh) | 使用关键尺寸扫描型电子显微镜的工艺仿真模型校正 | |
US20190049937A1 (en) | Methods and apparatuses for etch profile optimization by reflectance spectra matching and surface kinetic model optimization | |
TW201734684A (zh) | 藉由表面動力模型最佳化之蝕刻輪廓匹配用方法及設備 | |
TWI851567B (zh) | 使製程模擬模型最佳化的方法、系統、及電腦程式產品 | |
US20240112961A1 (en) | Matching pre-processing and post-processing substrate samples | |
WO2024220228A1 (en) | Methods and systems for measurement of semiconductor structures with multi-pass statistical optimization |