TWI851259B - A system of semantic analysis-based trademark class recommendation and the method thereof - Google Patents

A system of semantic analysis-based trademark class recommendation and the method thereof Download PDF

Info

Publication number
TWI851259B
TWI851259B TW112120780A TW112120780A TWI851259B TW I851259 B TWI851259 B TW I851259B TW 112120780 A TW112120780 A TW 112120780A TW 112120780 A TW112120780 A TW 112120780A TW I851259 B TWI851259 B TW I851259B
Authority
TW
Taiwan
Prior art keywords
trademark
category
information
text
category recommendation
Prior art date
Application number
TW112120780A
Other languages
Chinese (zh)
Other versions
TW202349325A (en
Inventor
吳鵬君
子裕 陳
張育睿
Original Assignee
睿加科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 睿加科技股份有限公司 filed Critical 睿加科技股份有限公司
Publication of TW202349325A publication Critical patent/TW202349325A/en
Application granted granted Critical
Publication of TWI851259B publication Critical patent/TWI851259B/en

Links

Abstract

The present invention provides an online application system with a classification recommend module. The system includes an electronic device operated by a user, which connects to a server through internet. The electronic device comprises a processor, a memory, and a network interface controller. The server includes an application program. The user operates the electronic device to execute the application program's trademark online application module, conducting a trademark application online. The user inputs the required data for the trademark application through the electronic device. The system utilizes the classification recommend module and the risk assessment module to generate classification recommendation reports and risk assessment reports, providing solutions to the user's difficulties in selecting classifications.

Description

一種語意分析商標類別推薦系統及其方法A semantic analysis trademark category recommendation system and method

本發明係關於線上商標申請及管理系統,特別是具有商標類別推薦以及風險評估的系統。 The present invention relates to an online trademark application and management system, particularly a system with trademark category recommendation and risk assessment.

在傳統的商標申請過程中,無論是國內還是國外,都需要印出紙本文件並填寫大量表格,這不符合環保原則,由於商標申請文件的正式性,如果申請人填寫不正確,整個過程可能需要重新進行,這導致了時間的浪費和人力資源的浪費,特別是在其他國家進行商標申請時,除了傳統的文書工作外,如果由人員進行溝通,由於他們具有不同的專業背景、不同的語言用法、文化差異和其他不可預測的因素,可能傳達不準確或被誤解的信息,這導致申請人與外國代理人和政府機構之間存在認知差異。因此,申請人可能無法獲得最初想要的結果。 In the traditional trademark application process, whether domestic or foreign, paper documents need to be printed out and a large number of forms need to be filled out, which is not in line with environmental protection principles. Due to the formality of trademark application documents, if the applicant fills out incorrectly, the entire process may need to be repeated, which leads to a waste of time and human resources. Especially when applying for trademarks in other countries, in addition to traditional paperwork, if communication is carried out by personnel, due to their different professional backgrounds, different language usage, cultural differences and other unpredictable factors, inaccurate or misunderstood information may be conveyed, which leads to cognitive differences between applicants and foreign agents and government agencies. Therefore, applicants may not get the results they originally wanted.

另一方面,過去商標搜尋檢索的目標使用者是專業的從業人士,對於沒有相關專業背景的人來說,理解檢索邏輯非常困難,使用者無法直觀地理解他們想申請的商標到底其申請通過的風險為何,該如何評估是否可安心進行商標申請或需要做其申請文字或圖像上的設計調整。對於商標檢索,由各國政府機構建立的官方搜尋頁面或民間的商標搜尋平台在執行商標檢索過程中,往往只 會列出相似的前案商標案例,並沒有提供任何結果分析、參考點或相關評估,這導致對知識產權一無所知的使用者可能難以判斷這些先前案例對他們自己商標申請案例的影響程度,使用者可能也難以估計風險程度。 On the other hand, in the past, the target users of trademark search were professional practitioners. For those without relevant professional background, it was very difficult to understand the search logic. Users could not intuitively understand the risk of the trademark they wanted to apply for being approved, and how to evaluate whether they could safely proceed with the trademark application or whether they needed to make design adjustments to the application text or images. For trademark searches, official search pages established by government agencies of various countries or private trademark search platforms often only list similar previous trademark cases during the trademark search process, and do not provide any result analysis, reference points or related evaluations. This makes it difficult for users who know nothing about intellectual property to judge the impact of these previous cases on their own trademark application cases, and users may also find it difficult to estimate the risk level.

此外,為了因應各國文化與風土民情對於商品及服務有著不同的定義與解釋,然而目前選擇商標分類的方式是在各國分類標準與國際上通用的尼斯分類的,透過精確或模糊的詞語進行搜索,以找出相似的結果,然而,對於不了解各國官方機構公布分類標準或是國際間的尼斯分類描述方式的使用者來說,要找到正確和相應的結果會非常困難,使用者可能會遺漏一些他們真正需要的重要項目,例如,一家服裝店的店主可能並不清楚他真正需要的是「服裝的批發和零售」,而只是自行在分類中找到一些項目,如「女裝、男裝、襯衫」。從而,在這種狀態下,使用者只能透過傳統人工顧問諮詢的型態來獲取其商標申請上的商標分類與商品項目等挑選建議,而無法針對其自身狀況直接進行商標申請。 In addition, in order to cope with the different definitions and interpretations of goods and services in accordance with the culture and customs of each country, the current way to select trademark classification is to search for similar results by precise or vague words based on the classification standards of each country and the internationally used Nice classification. However, for users who do not understand the classification standards published by official agencies of various countries or the international Nice classification description method, it will be very difficult to find the correct and corresponding results. Users may miss some important items that they really need. For example, the owner of a clothing store may not know that what he really needs is "wholesale and retail of clothing", but just find some items in the classification by himself, such as "women's clothing, men's clothing, shirts". Therefore, under this situation, users can only obtain suggestions on trademark classification and product items for their trademark applications through traditional manual consultation, and cannot directly apply for trademarks based on their own circumstances.

這樣一來,使得商家無法輕易在各國國中自行挑選商標分類,並提出商標申請,最終,使用者(商家)只能尋求本地律師事務所的幫助,在單一國家選擇適當的商標分類與商品項目挑選上尋求一些專業建議與申請案委託執行,一般來說從溝通到收到最後的類別建議在一到數周之間,若是多國或是建議錯誤那種多次的往返常常導致錯失先機,傳統的流程,不僅讓商標申請前的流程複雜性增加,大量使用商標專業人士的顧問時間也增加,進而導致商標申請的成本費用也居高不下,申請前的處理的流程與執行週期也較長,進而影響一般人在有新的品牌名稱、Slogan或商業(品)名稱發想時,容易因為商標申請的難度與費用 門檻,而產生僥倖心態進而放棄進行商標申請,從而為後續可能發生的商標爭議事件埋下了伏筆與不可逆的風險。 As a result, it is not easy for businesses to select trademark classifications and file trademark applications in various countries. Ultimately, users (businesses) can only seek help from local law firms to seek professional advice and entrust the execution of applications on the selection of appropriate trademark classifications and product items in a single country. Generally speaking, it takes one to several weeks from communication to receiving the final classification advice. If there are multiple countries or the advice is wrong, the multiple round trips often lead to missed opportunities. The traditional process not only makes the trademark application process more time-consuming, but also makes the application more time-consuming. The complexity of the process increases, and the time spent on consulting by a large number of trademark professionals also increases, which in turn leads to high costs for trademark applications. The pre-application processing and execution cycle are also longer, which in turn affects the general public. When they have new brand names, slogans or business (product) names, they are prone to give up trademark applications due to the difficulty and cost of trademark applications. This lays the groundwork for possible trademark disputes and irreversible risks.

疫情後,適逢電商與AI發展革命時代,跨境電商交易與跨境服務更是蓬勃發展,有更多的商家需要跨境品牌的需求,對於商標申請人在商標申請有跨國佈局的需求時,通常也因為各國商標商品項目的內容不同,而無法順利將原始申請國的商標申請內容,直接轉換成另一國家的商標申請內容;此時,又需要再次委託專業人士依據原始案件的商品項目進到目標國家的商品項目資料庫中,進行人工比對與挑選;如此一來,又需要耗費大量的人力工時與來回確認,不僅需要更高的執行週期與費用,同時,透過人工的方式,商標專業人士常常因為不是該行業的專家,偶爾也會產生理解上的誤差或推薦操作上的失誤,進而導致後續的補正風險提高,使得商標申請的速度也會變慢,這導致在外國申請商標時執行成本的增加。另一方面對於商標從業人士也因為重複性的執行商標推薦的工作,導致工作滿意度下降與倦怠感提高,正常一個跨境商標推薦,從溝通、到理解、到判斷與製作出推薦意見書,期間處理動輒數小時到數天以上,往往推薦意見書完成後,提供給商標申請人,申請人最終又沒有並未申請,其中所消耗的心神也僅有商標從業人士才有感。 After the epidemic, in the era of e-commerce and AI development revolution, cross-border e-commerce transactions and cross-border services are booming. More merchants need cross-border brands. When trademark applicants need to deploy trademarks across countries, it is usually because the contents of trademark product items in different countries are different, and it is impossible to directly convert the trademark application content of the original application country into the trademark application content of another country. At this time, it is necessary to entrust professionals again to enter the target country based on the product items of the original case. Manual comparison and selection are carried out in the national commodity item database; this requires a lot of man-hours and back-and-forth confirmation, which not only requires a higher execution cycle and cost, but also, through manual methods, trademark professionals are often not experts in the industry, and occasionally there will be misunderstandings or errors in recommended operations, which will lead to an increase in the risk of subsequent corrections and a slowdown in the speed of trademark applications, which leads to an increase in the execution cost when applying for trademarks abroad. On the other hand, trademark practitioners also suffer from reduced job satisfaction and increased burnout due to the repetitive execution of trademark recommendation work. Normally, a cross-border trademark recommendation takes several hours to several days to process from communication, understanding, judgment and preparation of recommendation opinions. Often, after the recommendation opinions are completed, they are provided to the trademark applicant, but the applicant does not apply in the end. The mental effort consumed in this process is only felt by trademark practitioners.

以目前來說,部份廠商或官方系統係有針對商標類別推薦與商標檢索等功能進行系統與上的功能開發,然而,其在實務使用上仍具有不等的缺點,導致用戶無法非常直觀地在使用者體驗上取得其商標申請建議與評估內容,以利用戶進行後續的(多國)商標申請流程;下列逐一列舉並說明其尚未解決的問題。 At present, some manufacturers or official systems have developed systems and functions for trademark category recommendation and trademark search, but they still have different shortcomings in practical use, which makes it difficult for users to obtain trademark application suggestions and evaluation content in a very intuitive user experience, so as to facilitate the subsequent (multi-national) trademark application process. The following lists and explains the unresolved problems one by one.

首先,創作人在使用在美國LegalZoom.com,Inc.公司所提供的LegalZoom平台(https://www.legalzoom.com/business/intellectual-property/trademark-registration-overview.html)來說,LegalZoom的商標申請服務流程,雖已經採用線上化來實現,然而,更具體的說,其屬於一種單純的線上接單流程,即用發出商標申請需求時,需完成平台提供的商標申請表單,如圖1~3,包含提供欲申請的商標名稱、商標名稱使用的場景以及用戶的產業描述等資訊;而在完成上述資訊填寫與付費後,系統會將該資訊傳送至後台而透過LegalZoom指派的專員進行後續的人工線下與顧問服務,進而完成後續的商標申請服務與流程;以上述的服務流程中,LegalZoom平台僅係透過線上接單的方式來實現並取代傳統商標事務所需透過業務人員面對面或是進行線下聯繫與接收客戶申請需求的流程,然而,上述流程中,實質上用戶還是無法自行取得商標類別建議書與執行商標申請流程,還是需要透過冗長的訪談過程。 First of all, for creators using the LegalZoom platform (https://www.legalzoom.com/business/intellectual-property/trademark-registration-overview.html) provided by LegalZoom.com, Inc. in the United States, although the trademark application service process of LegalZoom has been implemented online, more specifically, it is a simple online order-taking process, that is, when issuing a trademark application demand, it is necessary to complete the trademark application form provided by the platform, as shown in Figures 1 to 3, including providing The trademark name to be applied for, the scenario of trademark name use, and the user's industry description; after completing the above information and payment, the system will transmit the information to the backend and the specialists assigned by LegalZoom will perform the subsequent manual offline and consulting services to complete the subsequent trademark application services and processes; in the above service process, the LegalZoom platform only realizes and replaces the traditional trademark affairs through online ordering, which requires face-to-face or offline contact and receiving customer application requirements by business personnel. However, in the above process, users are still unable to obtain trademark category proposals and execute trademark application processes by themselves, and still need to go through a lengthy interview process.

如中國專利公開號CN109800340A所揭露,請參閱圖4及圖5,用戶需先在商標名稱欄位中輸入正確的文字或字詞,用戶最終根據商品標籤信息,推薦至少數一個商品類別中的每個商品類別對應的至少一個商品/服務項目,包括:用戶最終根據商品標籤信息,確定數據庫中至少一個商品標籤類別中的每個商標類別的商標與商標信息的第一個相似度;以及用戶最終根據第一個相似度,推薦至最小一個商標類別中每個商品類別別對應的至少一個商品/服務項目。確定至少一個群中的每個群的近似群組的商標與商標信息的第二相似度,其中,根據第一個相似度推薦至少一個商品類別中的每個商品類別對應的至少一個商品/服務項目,包括:根據第一個相似度和第二相對推薦至少一個商品類別中的每個商品類別對應的至少一個商品/服務項目。例如,用戶確定的商標類別為第7類,如 果第7類中的第一群與第12類中的第二群為相似群,則去掉了將商標信消息與第7類商品標籤的商品標籤進行對比,確定第一相貌之外,還需要將商標信息與第12類商標別中的相貌群(即第二群)的商標前進對比,並確定第二相似度。進一步地,根據第一相似度和第二相似度,推薦商品/服務項目。例如,第一群無相同商標和相似商標,即第一相似度,註冊成功率高,但第二群有很多個相似商標和相同商標,即第二相似度比較高,註冊成功率比較低,因此,結合第一和第二相似度綜合考慮,第一群的註冊成功率比較低,則不推薦註冊第一群。 As disclosed in Chinese Patent Publication No. CN109800340A, please refer to Figures 4 and 5. The user needs to first enter the correct text or word in the trademark name field, and the user ultimately recommends at least one product/service item corresponding to each product category in at least one product category based on the product label information, including: the user ultimately determines the first similarity between the trademark and trademark information of each trademark category in at least one product label category in the database based on the product label information; and the user ultimately recommends at least one product/service item corresponding to each product category in the smallest trademark category based on the first similarity. Determine the second similarity between the trademark and trademark information of the similar group of each group in at least one group, wherein at least one commodity/service item corresponding to each commodity category in at least one commodity category is recommended according to the first similarity, including: recommending at least one commodity/service item corresponding to each commodity category in at least one commodity category according to the first similarity and the second similarity. For example, if the trademark category determined by the user is Class 7, if the first group in Class 7 and the second group in Class 12 are similar groups, then in addition to comparing the trademark information with the commodity label of the commodity label of Class 7 and determining the first similarity, it is also necessary to compare the trademark information with the trademark of the similar group (i.e., the second group) in the trademark category of Class 12 and determine the second similarity. Further, recommend the commodity/service item according to the first similarity and the second similarity. For example, the first group has no identical or similar trademarks, that is, the first similarity, and the registration success rate is high, but the second group has many similar trademarks and identical trademarks, that is, the second similarity is relatively high, and the registration success rate is relatively low. Therefore, considering the first and second similarities comprehensively, the registration success rate of the first group is relatively low, and it is not recommended to register the first group.

但上述中國專利(公開號CN109800340A)存在幾個待改善問題,例如:商標推薦比對主要是根據標籤訊息,倘若標籤設定不夠精確精準或同一商品項目可能可以同時符合多個標籤,在標籤比對的過程中因此可能失準或比對出大量不符合的項目,造成推薦效益降低。此外,上述中國專利是透過中國商標分類中的類別項目的群組關係作為比對時判斷的依據之一,商標類別中群組關係固然是官方在搜尋及檢索的依據,但在商家或是商標從業人士需要知道的推薦類別時,也可能會產生比對出不符合的項目造成資料數量過於龐大,降低推薦的功效。最終,上述中國專利在接收用戶的訊息資料時,用戶所輸入的必須時精準且精確的文字在對應的欄位,例如商標名稱,才有辦法進行標籤的比對進而產生推薦註冊或不推薦註冊的結果資訊。 However, the above-mentioned Chinese patent (publication number CN109800340A) has several issues to be improved, for example: trademark recommendation comparison is mainly based on label information. If the label setting is not accurate enough or the same product item may meet multiple labels at the same time, the label comparison process may be inaccurate or a large number of non-compliant items may be matched, resulting in reduced recommendation efficiency. In addition, the above-mentioned Chinese patent uses the group relationship of category items in the Chinese trademark classification as one of the bases for judgment during comparison. The group relationship in the trademark category is certainly the basis for official search and retrieval, but when merchants or trademark practitioners need to know the recommended categories, it may also produce non-compliant items that are matched, resulting in too much data and reducing the effectiveness of the recommendation. Finally, when the above-mentioned Chinese patent receives information from users, the text entered by the user must be accurate and precise in the corresponding field, such as the trademark name, so that the label can be compared and the result information of recommending registration or not recommending registration can be generated.

又如中國專利公告號CN109902196B所揭露,一種商標類別推薦方法,其中,該方法應用於商標類別推薦設備,具體的,該方法包括:即時構建更新資料;通過所述更新資料對歷史商標資料庫中的商標類別進行更新,其中,所述歷史商標資料庫中的商標類別為歷史推薦商標類別;將經更新得到的商標類別確定為推薦商標類別。就此,商標類別推薦設備通過即時構建更新資料,並且, 該商標類別推薦設備依據該更新資料將歷史商標資料庫中的商標類別進行更新,其中,所述歷史商標資料庫中的商標類別為歷史推薦商標類別;接著,將經更新得到的商標類別確定為推薦商標類別,其中,該推薦商標類別為到此刻為止註冊頻率最小的商標類別,依此即可幫助用戶確定待註冊的商標類別,而用戶也可從該推薦商標類別中繼續選取註冊頻率最小的商標類別。 As disclosed in Chinese Patent Publication No. CN109902196B, a trademark category recommendation method is applied to a trademark category recommendation device. Specifically, the method includes: constructing update data in real time; updating the trademark categories in a historical trademark database through the update data, wherein the trademark categories in the historical trademark database are historical recommended trademark categories; and determining the updated trademark category as a recommended trademark category. In this regard, the trademark category recommendation device constructs update data in real time, and, The trademark category recommendation device updates the trademark category in the historical trademark database according to the update data, wherein the trademark category in the historical trademark database is the historical recommended trademark category; then, the trademark category obtained after the update is determined as the recommended trademark category, wherein the recommended trademark category is the trademark category with the lowest registration frequency so far, thereby helping the user to determine the trademark category to be registered, and the user can also continue to select the trademark category with the lowest registration frequency from the recommended trademark category.

公告號CN109902196B的中國專利存在待改善的問題,其推薦原則是根據歷史推薦紀錄以及根據統計各個商標類別註冊頻率紀錄,透過不斷的更新數據資料確保資料庫中的資料為最新,但推薦系統中推薦次數少或官方註冊頻率少的商標類別,這樣的推薦模型非常明顯對於用戶並不一定是最適合的,因為最少人申請代表用戶也不會有興趣。再者,即使公告號CN109902196B的中國專利還會針對申請人行業領域與商標類別進行相似度比對,找出相近領域且註冊率少的商標類別,實際上對於申請人並沒有提供實質推薦類別甚至是商品項目的效益。最終,公告號CN109902196B的中國專利在接收用戶的訊息資料時,申請人所輸入的必須時精準且精確的文字在對應的欄位,例如商標名稱、行業領域,才有辦法進行後續的行業相似度比對以及找出推薦次數少、註冊頻率少的商標類別。 There are issues that need to be improved in the Chinese patent with announcement number CN109902196B. Its recommendation principle is based on historical recommendation records and statistical registration frequency records of various trademark categories. The data in the database is ensured to be up-to-date by constantly updating the data. However, for trademark categories with few recommendations or official registration frequencies in the recommendation system, such a recommendation model is obviously not necessarily the most suitable for users, because the least number of applicants means that users will not be interested. Furthermore, even though the Chinese patent with announcement number CN109902196B will also conduct a similarity comparison between the applicant's industry field and the trademark category, and find trademark categories with similar fields and low registration rates, it actually does not provide the applicant with the benefit of actually recommending categories or even product items. Finally, when the Chinese patent with announcement number CN109902196B receives user information data, the applicant must enter accurate and precise text in the corresponding fields, such as trademark name and industry field, so that subsequent industry similarity comparison can be carried out and trademark categories with few recommendations and low registration frequencies can be found.

又如中國專利公開號CN111898022A商標類別推薦方法和裝置、以及存儲介質和電子設備所揭露,接收用戶請求的行業;確定所述使用者請求的行業的標識資訊;基於所述使用者請求的行業的標識資訊,獲取所述使用者請求的行業對應的至少一個商標類別;向所述用戶推薦所述至少一個商標類別。可選地,在實施例中,基於所述使用者請求的行業的標識資訊,獲取所述使用者請求的行業對應的至少一個商標類別,包括:基於所述使用者請求的行業的標識資 訊,從資料庫中查找所述使用者請求的行業的商標註冊類別統計資訊;其中,所述行業的商標註冊類別統計資訊用於表示對各行業註冊的每個商標類別數量的統計資訊。可選地,所述行業的商標註冊類別統計資訊,包括:基於所述資料庫中各公司的主體資訊,確定所述各公司所屬行業;基於所述資料庫中各公司的商標資訊,獲取所述各公司的商標註冊類別;基於所述各公司所屬行業和所述各公司的商標註冊類別,對各行業的商標註冊類別進行統計,獲得所述各行業的商標註冊類別統計資訊。向所述用戶推薦所述至少一個商標類別,包括:基於所述各行業的商標註冊類別統計資訊和所述各行業的預設的類別閾值資訊,確定所述各行業的至少一個商標註冊類別;基於所述各行業的至少一個商標註冊類別,向所述用戶推薦所述用戶請求的行業的至少一個商標類別。 As disclosed in Chinese Patent Publication No. CN111898022A, a trademark category recommendation method and apparatus, as well as a storage medium and an electronic device, receive an industry requested by a user; determine identification information of the industry requested by the user; based on the identification information of the industry requested by the user, obtain at least one trademark category corresponding to the industry requested by the user; and recommend the at least one trademark category to the user. Optionally, in an embodiment, based on the identification information of the industry requested by the user, obtaining at least one trademark category corresponding to the industry requested by the user includes: based on the identification information of the industry requested by the user, searching for trademark registration category statistics of the industry requested by the user from a database; wherein the trademark registration category statistics of the industry are used to represent the statistical information of the number of each trademark category registered for each industry. Optionally, the trademark registration category statistical information of the industry includes: determining the industry to which each company belongs based on the subject information of each company in the database; obtaining the trademark registration category of each company based on the trademark information of each company in the database; and performing statistics on the trademark registration categories of each industry based on the industry to which each company belongs and the trademark registration categories of each company to obtain the trademark registration category statistical information of each industry. Recommending the at least one trademark category to the user includes: determining at least one trademark registration category of each industry based on the trademark registration category statistics of each industry and the preset category threshold information of each industry; and recommending at least one trademark category of the industry requested by the user to the user based on the at least one trademark registration category of each industry.

如上述中國專利(公開號CN111898022A)仍存在待改善的問題,單純使用統計方式,針對中國各公商局備案的公司服務(產品)項目與該公司的商標申請類別進行統計,並存儲成一數據庫,此一模型並不適用其他國家更不適用於跨境類別的推薦分析;當用戶選定某特定產業時,即跳出該產業對應的商標申請類別統計結果,並形成推薦結果;單純只進行商標類別推薦,並無實際商品項目內容推薦;實際上可用度不高,用戶即使勉強從系統提供的產業分類中找到並選出自己公司的產業,其也只能拿到很籠統的"商標類別"資訊,但實務上很高機率不可申請單類全商品項目申請,因此,推薦了但能協助客戶進行商標申請的實務效果有限。 As mentioned above, the Chinese patent (publication number CN111898022A) still has problems to be improved. Simply using statistical methods to collect statistics on the company's service (product) items registered with various Chinese public and commercial bureaus and the company's trademark application categories and store them in a database, this model is not applicable to other countries, let alone cross-border category recommendation analysis; when the user selects a specific industry, the corresponding trademark application category statistics for that industry will pop up. The system calculates the results and forms the recommendation results; it only recommends the trademark category, but does not recommend the actual product item content; the actual usability is not high. Even if the user can barely find and select the industry of his company from the industry classification provided by the system, he can only get very general "trademark category" information, but in practice, there is a high probability that he cannot apply for a single category of all product items. Therefore, the practical effect of recommending but assisting customers in trademark applications is limited.

又如中國專利公開號CN107330109A所揭露,對樣本商標圖像及內容按預設的商標分卡標準進行商標分卡處理,具體處理過程包括:(1)建立由預設的形狀特徵、讀音特徵和含義特徵最小單元多種組合方案所構成的商標分卡標準,(2)對樣本商標是否由漢語文字、圖形、字母、數位或符號構成要素 進行識別,獲取構成要素的內容,(3)樣本商標各構成要素的形狀特徵最小單元、讀音特徵最小單元和含義特徵最小單元;(4)根據已建立的商標分卡標準,提取每一組合方案所生成或轉換得到的各種文字、圖形的切分資訊,將這些切分資訊作為樣本商標分卡資訊,並設定每一預設的商標分卡標準的近似度評價分值。以輸入商標分卡資訊集合作為檢索關鍵字對存儲於商標記憶體的樣本商標分卡資訊進行檢索,獲取相關的結果商標的分卡資訊及分卡匹配資訊;按照預設的商標形近率、商標義近率、商標音近率和檢索關鍵字匹配得分率計算公式進行運算;計算獲取商標近似度綜合量化值,然後利用商標近似度綜合量化值的大小對結果商標進行排序。 For example, as disclosed in Chinese patent publication number CN107330109A, sample trademark images and contents are processed according to the preset trademark classification standard. The specific processing process includes: (1) establishing a trademark classification standard composed of multiple combinations of preset shape features, pronunciation features and meaning features, (2) determining whether the sample trademark is composed of Chinese characters, graphics, letters, numbers or symbols. (1) identify the content of the constituent elements, (2) identify the smallest unit of shape features, the smallest unit of pronunciation features, and the smallest unit of meaning features of each constituent element of the sample trademark; (3) extract the segmentation information of various texts and graphics generated or converted by each combination scheme according to the established trademark score card standard, use this segmentation information as the sample trademark score card information, and set the similarity evaluation score of each preset trademark score card standard. Using the input trademark subcard information set as the search keyword, the sample trademark subcard information stored in the trademark memory is searched to obtain the subcard information and subcard matching information of the relevant result trademarks; the calculation is performed according to the preset trademark shape similarity rate, trademark meaning similarity rate, trademark pronunciation similarity rate and search keyword matching score rate calculation formula; the trademark proximity comprehensive quantitative value is calculated and obtained, and then the result trademarks are sorted according to the size of the trademark proximity comprehensive quantitative value.

上述中國專利(公開號CN107330109A)仍存在待改善的問題,這案件是主要針對商標的檢索邏輯進行技術發展,透過型、音、義等不同角度針對用戶輸入的商標logo進行分析與比對、計算相似度與排序,即使幫用戶排序了,同時並列舉很多前案出來,但用戶還是不知道該不該申請,此外,商標的前案是建立在同類別,甚至是同"近似群組"的概念下才成立的,即使你的logo與別人類似,但你在賣食物對方在賣手機,這種狀態下,別人的logo應該不會影響到你的商標申請才對,此案僅是進行大量的檢索並排序出相似程度,實際上申請人仍不知道該申請哪一類別較適合,仍無從解決跨國商標推薦等相關的問題。 The above-mentioned Chinese patent (publication number CN107330109A) still has problems to be improved. This case is mainly aimed at the technical development of trademark search logic. It analyzes and compares the trademark logos input by users from different angles such as type, pronunciation, and meaning, calculates similarity and sorts them. Even if it helps users sort and cites many previous cases at the same time, users still don’t know whether to apply for it. In addition, the previous cases of trademarks are It is established under the concept of the same category or even the same "similar group". Even if your logo is similar to others, but you are selling food and the other person is selling mobile phones, in this case, the other person's logo should not affect your trademark application. This case only conducts a large number of searches and sorts out the similarities. In fact, the applicant still does not know which category to apply for, and still cannot solve the related issues such as cross-border trademark recommendation.

又如美國專利公開號US20140280104A1所揭露,舉例來說,在本文所描述的解決方案的一個例子中,進行商標搜尋,將搜尋商標與許多潛在相關的參考資料進行比較,例如現有的商標註冊、普通法參考、域名等。搜尋結果被編譯成一個數據集,該數據集可以存儲在任何適當的數據存儲機制中。對該數據集進行分析,以確定與每個參考相關的多個類別的接近度分數。例如,這些類別可 以包括:外觀相似性、音響相似性、內涵相似性、商業印象相似性、商品/服務相似性、交易渠道相似性、銷售條件相似性、先前商標的知名度等。相關的接近度分數是潛在商標風險和衝突的客觀衡量。例如,在一個例子中,接近度分數可以用0-5的數字表示,其中較高的分數表示較高的關注程度,在這樣的例子中,外觀相似性的較高接近度分數表示外觀相似性較高,先前商標的較高分數表示該商標較有名。換句話說,接近度分數越高,該因素越有可能指示潛在的侵權或衝突。 As disclosed in US Patent Publication No. US20140280104A1, for example, in one example of the solution described herein, a trademark search is performed, and the searched trademark is compared with a number of potentially relevant references, such as existing trademark registrations, common law references, domain names, etc. The search results are compiled into a data set, which can be stored in any appropriate data storage mechanism. The data set is analyzed to determine proximity scores for multiple categories associated with each reference. For example, these categories may include: appearance similarity, sound similarity, connotation similarity, business impression similarity, product/service similarity, transaction channel similarity, sales condition similarity, previous trademark popularity, etc. The associated proximity score is an objective measure of potential trademark risk and conflict. For example, in one example, the proximity score can be represented by a number from 0-5, where higher scores indicate a higher level of concern, in which case a higher proximity score for appearance similarity indicates a higher appearance similarity, and a higher score for a prior trademark indicates that the trademark is more famous. In other words, the higher the proximity score, the more likely that factor is to indicate potential infringement or conflict.

上述美國專利(公開號US20140280104A1)雖然透過比對後進行評分來顯示近似程度,透過介面顯示近似前案落在哪些類別,但仍存在待改善的問題,例如使用者雖然可以知道避免在哪個類別申請,不過卻不知道適合申請哪些類別,若是進行跨國上的商標推薦更是無法協助完成,以及用戶需要輸入精準且精確的文字在對應的欄位中,例如商標名稱、商品領域,才能有效進行後續的比對和評分,在實際使用上效益也相當有限。 Although the above-mentioned US patent (publication number US20140280104A1) shows the degree of similarity by scoring after comparison, and displays the categories of the similar previous case through the interface, there are still problems to be improved. For example, although users can know which categories to avoid applying in, they do not know which categories are suitable for application. If they are conducting cross-border trademark recommendations, they cannot assist in completing them. In addition, users need to enter precise and accurate text in the corresponding fields, such as trademark names and product fields, in order to effectively conduct subsequent comparisons and scoring. The benefits in actual use are also quite limited.

又如美國專利公開號US20170322983A1所揭露,用其特殊的UI來表示前案與檢索商標的相似程度,"顯示器"為透過前案於不同顯示器上顯示的位置來顯示該前案對於本案的相似(近似威脅)程度,用戶可透過顯示器的不同區塊位置來觀察各種不同程度"近似前案"的內容分類。 For example, as disclosed in US Patent Publication No. US20170322983A1, a special UI is used to indicate the similarity between the previous case and the searched trademark. The "display" displays the similarity (similar threat) of the previous case to the current case through the position of the previous case displayed on different displays. Users can observe the content classification of various degrees of "similar previous cases" through different block positions of the display.

上述美國專利(公開號US20170322983A1),其商標檢索邏輯與功能僅限於"文字商標"的近似比對與分數轉換,與本案差異還是在於出發點,本案是以商標申請分類推薦建議作為出發點來進行前案檢索與風險評估,並進行類別推薦,前案的目的是用來做高專業度的商標檢索為導向,並透過"顯示器"的畫面呈現與操作,讓用戶可針對不同程度的近似商標做分類查看。 The trademark search logic and function of the above-mentioned US patent (publication number US20170322983A1) are limited to the similarity comparison and score conversion of "text trademarks". The difference between this case and this case lies in the starting point. This case uses the trademark application classification recommendation as a starting point to conduct previous case search and risk assessment, and make category recommendations. The purpose of the previous case is to be used for highly professional trademark search, and through the screen presentation and operation of the "display", users can classify and view trademarks with different degrees of similarity.

又如新加坡智慧財產局(IPOS)官方網頁中的商標類別搜尋系統,請參閱圖6至圖7,提供使用者可以輸入商品服務的種類名稱例如car repair,該系統針對輸入的文字在資料庫中比對尋找出所有包含car或repair的商品項目,在搜尋結果中顯示所有包含car或repair的商品項目,並標示其是屬於哪一個類別。 Another example is the trademark category search system on the official website of the Intellectual Property Office of Singapore (IPOS), see Figures 6 and 7. It allows users to enter the name of a product or service, such as car repair. The system matches the entered text in the database to find all product items containing car or repair, and displays all product items containing car or repair in the search results, and indicates which category they belong to.

上述IPOS的商標類別搜尋系統僅是一般的簡單的全文字比對,若有一兩字不同都無法搜尋完整,過程中會列出所有包含的商品項目,對於使用者來說並沒有達到推薦甚至是風險評估的效果,再者,使用者所輸入的文字也必須是明確的商品單字或是服務單字,否則系統無法執行比對,例如輸入I run a car repair store,其搜尋結果為0,在輸入上也較難讓一般申請人輕易地得知該申請的商標類別項目,因一般申請人並不一定知道商標商品項目的名稱或哪些文字才是符合搜尋的標的。 The trademark category search system of IPOS mentioned above is just a general simple full text comparison. If one or two words are different, the search cannot be complete. In the process, all the included product items will be listed. For users, it does not achieve the effect of recommendation or even risk assessment. Moreover, the words entered by the user must be clear product words or service words, otherwise the system cannot perform the comparison. For example, if you enter "I run a car repair store", the search result is 0. It is also difficult for general applicants to easily know the trademark category item of the application in terms of input, because general applicants do not necessarily know the name of the trademark product item or which words are in line with the search target.

由上述說明可以得知,實有必要對習知的技術進行改良或調整,藉以提升其使用上的便利性。有鑑於此,本發明之發明人係極力加以研究創作,而終於研發完成本發明之系統。 From the above description, it can be seen that it is necessary to improve or adjust the known technology to enhance its convenience in use. In view of this, the inventor of this invention has made great efforts to research and create, and finally developed and completed the system of this invention.

本發明之目的在於提出具有商標類別推薦之線上申請系統,解決了上述現有技術中存在的問題。 The purpose of this invention is to propose an online application system with trademark category recommendation, which solves the problems existing in the above-mentioned existing technologies.

因此,為了達成上述本發明之目的,本發明係提供所述一種語意分析商標類別推薦系統,其包括:使用者操作的電子裝置,電子裝置透過網路資訊連接一伺服器,其中,該電子裝置包含一處理器、一記憶體及一網路介面控制器,伺服器包含一應用程式。 Therefore, in order to achieve the above-mentioned purpose of the present invention, the present invention provides a semantic analysis trademark category recommendation system, which includes: an electronic device operated by a user, the electronic device is connected to a server through network information, wherein the electronic device includes a processor, a memory and a network interface controller, and the server includes an application.

該處理器透過網路介面控制器以連上伺服器並執行應用程式,從而配置啟用商標線上申請模組及類別推薦模組,更進一步該處理器配置啟用申請資料收集單元、類別項目選擇單元、資料傳輸單元、文字解析單元、類別項目比對單元以及報告產生單元。 The processor connects to the server through a network interface controller and executes the application program, thereby configuring and activating the trademark online application module and the category recommendation module. The processor further configures and activates the application data collection unit, the category item selection unit, the data transmission unit, the text parsing unit, the category item comparison unit, and the report generation unit.

此外,該處理器還配置啟用一資料收發模組,將多個資料庫中的資料載入記憶體中。 In addition, the processor is also configured to enable a data transceiver module to load data from multiple databases into the memory.

處理器透過網路介面控制器進一步連上多個送件伺服器,使資料傳輸單元得以將使用者之商標申請文件上傳至選定國家之送件伺服器。 The processor is further connected to multiple submission servers via a network interface controller, allowing the data transmission unit to upload the user's trademark application documents to the submission server in the selected country.

使用者操作電子裝置的處理器執行應用程式之商標線上申請模組進行商標線上申請,使用者藉由電子裝置輸入商標申請所需的資料,例如:商標名稱、商標圖樣、申請人、聯絡人、欲申請的商品項目或對商品服務的描述等,電子裝置的顯示螢幕會顯示相對應的欄位供使用者填入相對應的資料,處理器進而啟用申請資料收集單元,將使用者輸入在對應欄位之資料分類後存入記憶體,因後續會特別使用到商標申請資料中的商標名稱、商標圖樣、欲申請的商品項目以及對商品服務的描述這些欄位的資訊,遂先經由申請資料收集單元做分類。 The user operates the processor of the electronic device to execute the trademark online application module of the application to apply for the trademark online. The user enters the data required for the trademark application through the electronic device, such as: trademark name, trademark image, applicant, contact person, product items to be applied for, or description of the product and service, etc. The display screen of the electronic device will display the corresponding fields for the user to fill in the corresponding data. The processor then activates the application data collection unit, and the data entered by the user in the corresponding fields is classified and stored in the memory. Since the trademark name, trademark image, product items to be applied for, and description of the product and service in the trademark application data will be used in particular in the future, the information in these fields is first classified by the application data collection unit.

較佳地,該處理器配置啟用該類別項目選擇單元,將已預先存入該記憶體的商標類別項目透過該電子裝置提供使用者選取。 Preferably, the processor is configured to enable the category item selection unit, and provide the trademark category items pre-stored in the memory for the user to select through the electronic device.

較佳地,該處理器配置啟用該資料傳輸單元,透過該網路介面控制器連上至少一國家的送件伺服器,上傳使用者完成之商標申請文件。 Preferably, the processor is configured to enable the data transmission unit to connect to a filing server in at least one country through the network interface controller to upload the trademark application documents completed by the user.

較佳地,該處理器配置啟用該文字解析單元,對使用者輸入的商標申請資料進行語意分析擷取出關鍵字。 Preferably, the processor is configured to enable the text parsing unit to perform semantic analysis on the trademark application data input by the user to extract keywords.

較佳地,該處理器配置啟用該類別項目比對單元,將經過該文字解析單元擷取出之關鍵字與預先儲存在該記憶體中的商標類別項目進行比對,且將比對結果存回該記憶體中。 Preferably, the processor is configured to enable the category item matching unit, compare the keywords extracted by the text parsing unit with the trademark category items pre-stored in the memory, and store the comparison results back in the memory.

較佳地,該處理器配置啟用該報告產生單元,將該記憶體中的比對結果依照字詞相似程度進行排列而產生該類別推薦報告。 Preferably, the processor is configured to enable the report generation unit to sort the matching results in the memory according to the degree of word similarity to generate the category recommendation report.

較佳地,該處理器透過該網路介面控制器以連上該伺服器並執行該應用程式,從而進一步配置啟用一風險評估模組,對使用者輸入之商標申請資料中的商標名稱進行前案比對,且該處理器執行該應用程式中的該風險評估模組進一步配置啟用該文字解析單元、一檢索比對單元及該報告產生單元。 Preferably, the processor connects to the server through the network interface controller and executes the application, thereby further configuring and activating a risk assessment module to compare the trademark name in the trademark application data input by the user with previous cases, and the processor executes the risk assessment module in the application to further configure and activate the text parsing unit, a search comparison unit and the report generation unit.

較佳地,該處理器配置啟用該文字解析單元,對使用者輸入的商標申請資料之商標名稱做文字排列組合並存入該記憶體中,該處理器進一步配置啟用該檢索比對單元,將該記憶體中之全部文字排列組合分別與預先儲存在該記憶體中之商標前案進行比對,產生比對結果存回該記憶體中。 Preferably, the processor is configured to activate the text parsing unit, to perform text arrangement and combination on the trademark name of the trademark application data input by the user and store it in the memory, and the processor is further configured to activate the search and comparison unit, to compare all the text arrangement combinations in the memory with the trademark previous cases pre-stored in the memory, and to generate the comparison results and store them back in the memory.

較佳地,該處理器配置啟用該報告產生單元,將該記憶體中的比對結果根據字詞近似程度排列,而產生該風險評估報告。 Preferably, the processor is configured to enable the report generation unit to sort the matching results in the memory according to the degree of word similarity to generate the risk assessment report.

以下僅藉由具體實施例,且佐以圖式作詳細之說明。 The following is a detailed description using only specific implementation examples and accompanying drawings.

100:電子裝置 100: Electronic devices

110:處理器 110: Processor

120:記憶體 120: Memory

130:網路介面控制器 130: Network interface controller

200:網路 200: Internet

300:伺服器 300: Server

310:應用程式 310: Applications

311:商標線上申請模組 311: Trademark online application module

3111:申請資料收集單元 3111: Application for data collection unit

3112:類別項目選擇單元 3112:Category item selection unit

3113:資料傳輸單元 3113:Data transmission unit

312:類別推薦模組 312: Category recommendation module

3121:文字解析單元 3121: Text parsing unit

3122:類別項目比對單元 3122: Category item comparison unit

3123:報告產生單元 3123: Report generation unit

3124:知識圖譜比對單元 3124: Knowledge graph comparison unit

313:資料收發模組 313: Data transceiver module

314:風險評估模組 314: Risk Assessment Module

3142:檢索比對單元 3142: Search and match unit

400:資料庫 400: Database

500:送件伺服器 500: Delivery server

600:輸入模組 600: Input module

601:資訊擷取單元 601: Information acquisition unit

700:多語翻譯模型 700:Multilingual translation model

U:使用者 U: User

S101、S102、S103、S104、S105、S106、S107、S108:步驟 S101, S102, S103, S104, S105, S106, S107, S108: Steps

S201、S202、S203、S204、S205、S206、S207、S208:步驟 S201, S202, S203, S204, S205, S206, S207, S208: Steps

S301、S302、S303、S304、S305、S306、S307、S308、S309:步驟 S301, S302, S303, S304, S305, S306, S307, S308, S309: Steps

S401、S402、S403、S404、S405、S406、S407、S408:步驟 S401, S402, S403, S404, S405, S406, S407, S408: Steps

S501、S502、S503、S504、S505、S506、S507、S508、S509:步驟 S501, S502, S503, S504, S505, S506, S507, S508, S509: Steps

S601、S602、S603、S604、S605、S606、S607、S608、S609、S610、 S611:步驟 S601, S602, S603, S604, S605, S606, S607, S608, S609, S610, S611: Step

S701、S702、S703、S704、S705、S706、S707、S708、S709:步驟 S701, S702, S703, S704, S705, S706, S707, S708, S709: Steps

S801、S802、S803、S804、S805、S806、S807、S808、S809、S810、S811、S812、S813:步驟 S801, S802, S803, S804, S805, S806, S807, S808, S809, S810, S811, S812, S813: Steps

S901、S902、S903、S904、S905、S906、S907、S908、S909、S910、S911、S912、S913;S914:步驟 S901, S902, S903, S904, S905, S906, S907, S908, S909, S910, S911, S912, S913; S914: Step

圖1係先前技術的示意圖;圖2係先前技術的另一示意圖;圖3係先前技術的另一示意圖;圖4係先前技術的另一示意圖;圖5係先前技術的另一示意圖; 圖6係先前技術的另一示意圖;圖7係先前技術的另一示意圖;圖8係顯示本發明之系統的示意圖;圖9係顯示本發明之系統的電子裝置的示意圖;圖10係顯示本發明之系統的伺服器的示意圖;圖11係顯示本發明之系統的應用程式的示意圖;圖12係顯示本發明之方法的流程圖;圖13係顯示本發明之方法的另一實施例流程圖;圖14係顯示本發明之方法的另一實施例流程圖;圖15係顯示本發明之方法的另一實施例流程圖;圖16係顯示本發明之方法的另一實施例流程圖;圖17係顯示本發明之方法的另一實施例流程圖;圖18係顯示本發明之方法的另一實施例流程圖;圖19係顯示本發明之方法的另一實施例流程圖;圖20係顯示本發明之方法的另一實施例流程圖;圖21A及21B係顯示本發明之應用實例示意圖;圖22係顯示本發明之方法的另一實施例流程圖;圖23係顯示本發明之方法的另一實施例流程圖;圖24係顯示本發明之方法的使用情境示意圖;圖25係顯示本發明之方法的使用情境示意圖;以及圖26係顯示本發明之方法的使用情境示意圖。 FIG. 1 is a schematic diagram of the prior art; FIG. 2 is another schematic diagram of the prior art; FIG. 3 is another schematic diagram of the prior art; FIG. 4 is another schematic diagram of the prior art; FIG. 5 is another schematic diagram of the prior art; FIG. 6 is another schematic diagram of the prior art; FIG. 7 is another schematic diagram of the prior art; FIG. 8 is a schematic diagram showing the system of the present invention; FIG. 9 is a schematic diagram showing the electronic device of the system of the present invention; FIG. 10 is a schematic diagram showing the server of the system of the present invention; FIG. 11 is a schematic diagram showing the application of the system of the present invention; FIG. 12 is a flow chart showing the method of the present invention; FIG. 13 is a flow chart showing another embodiment of the method of the present invention; FIG. 14 is a flow chart showing another embodiment of the method of the present invention; FIG. 15 is a flow chart showing the method of the present invention. Another embodiment flow chart; FIG. 16 is a flow chart showing another embodiment of the method of the present invention; FIG. 17 is a flow chart showing another embodiment of the method of the present invention; FIG. 18 is a flow chart showing another embodiment of the method of the present invention; FIG. 19 is a flow chart showing another embodiment of the method of the present invention; FIG. 20 is a flow chart showing another embodiment of the method of the present invention; FIG. 21A and FIG. 21B are schematic diagrams showing application examples of the present invention; FIG. 22 is a flow chart showing another embodiment of the method of the present invention; FIG. 23 is a flow chart showing another embodiment of the method of the present invention; FIG. 24 is a schematic diagram showing the use scenario of the method of the present invention; FIG. 25 is a schematic diagram showing the use scenario of the method of the present invention; and FIG. 26 is a schematic diagram showing the use scenario of the method of the present invention.

現在將參照其中示出本發明概念的示例性實施例的附圖在下文中更充分地闡述本發明概念。以下藉由參照附圖更詳細地闡述的示例性實施例,本發明概念的優點及特徵以及其達成方法將顯而易見。 The inventive concept will now be more fully described below with reference to the accompanying drawings in which exemplary embodiments of the inventive concept are shown. The advantages and features of the inventive concept and the method of achieving the same will become apparent from the exemplary embodiments described in more detail below with reference to the accompanying drawings.

本文所用術語僅用於闡述特定實施例,而並非旨在限制本發明。除非上下文中清楚地另外指明,否則本文所用的單數形式的用語「一」及「該」旨在亦包括複數形式。本文所用的用語「及/或」包括相關所列項其中一或多者的任意及所有組合。應理解,當稱元件「連接」或「耦合」至另一元件時,所述元件可直接連接或耦合至所述另一元件或可存在中間元件。 The terms used herein are used only to describe specific embodiments and are not intended to limit the present invention. Unless the context clearly indicates otherwise, the singular forms of the terms "a", "an" and "the" used herein are intended to include the plural forms as well. The term "and/or" used herein includes any and all combinations of one or more of the relevant listed items. It should be understood that when an element is said to be "connected" or "coupled" to another element, the element may be directly connected or coupled to the other element or there may be intermediate elements.

本文中參照圖來闡述示例性實施例,其中所述圖式是理想化示例性說明圖。因此,預期存在由例如製造技術及/或容差所造成的相對於圖示形狀的偏離。因此,圖中所示的區為示意性的,且其形狀並非旨在說明裝置的實際形狀、亦並非旨在限制示例性實施例的範圍。 Exemplary embodiments are described herein with reference to figures, which are idealized exemplary illustrations. Therefore, deviations from the illustrated shapes due to, for example, manufacturing techniques and/or tolerances are expected. Therefore, the regions shown in the figures are schematic, and their shapes are not intended to illustrate the actual shape of the device nor to limit the scope of the exemplary embodiments.

請結合參閱圖8、圖9,圖8為顯示本發明系統之架構示意圖;圖9為顯示本發明系統之另一架構示意圖。本發明系統藉由提供一使用者U操作的一電子裝置100來實現,電子裝置100透過網路200資訊連接一伺服器300,其中,該電子裝置100包含一處理器110、一記憶體120及一網路介面控制器130,該伺服器300包含一應用程式310,使得該處理器110透過網路介面控制器130以連上伺服器300並執行應用程式310,從而配置啟用商標線上申請模組311及類別推薦模組312,更進一步該處理器110配置啟用申請資料收集單元3111、類別項目選擇單元3112、資料傳輸單元3113、文 字解析單元3121、類別項目比對單元3122以及報告產生單元3123,此外,該處理器110還配置啟用一資料收發模組313,將多個資料庫400中的資料載入記憶體120中。 Please refer to FIG. 8 and FIG. 9 . FIG. 8 is a schematic diagram showing the structure of the system of the present invention; FIG. 9 is another schematic diagram showing the structure of the system of the present invention. The system of the present invention is implemented by providing an electronic device 100 operated by a user U. The electronic device 100 is connected to a server 300 through a network 200. The electronic device 100 includes a processor 110, a memory 120 and a network interface controller 130. The server 300 includes an application 310. The processor 110 connects to the server 300 through the network interface controller 130 and executes the application 310, thereby configuring and activating the system. The online trademark application module 311 and the category recommendation module 312 are configured. Furthermore, the processor 110 is configured to enable the application data collection unit 3111, the category item selection unit 3112, the data transmission unit 3113, the text analysis unit 3121, the category item comparison unit 3122 and the report generation unit 3123. In addition, the processor 110 is also configured to enable a data transceiver module 313 to load the data in the multiple databases 400 into the memory 120.

伺服器可為雲端伺服器或為架設為地端伺服器的架構。 The server can be a cloud server or a local server.

於本實施例當中,創作人係採用以下規格的伺服器進行本技術之商標商品項目轉化模型訓練與推算執行;處理器(CPU)係採用高效能多核心處理器,尤其對於處理大量數據以及進行複雜計算時,至少使用一個具有16核或以上的CPU(例如AMD Ryzen Threadripper或Intel Xeon系列)。且記憶體(RAM)的大小可以為但不限於64GB或更高的RAM規格以便能夠處理的語料庫的大小以及詞向量模型的大小。網路介面控制器為一個高速穩定的網路連線硬體,特別是使用在雲端計算資源或者下載/上傳大量數據。其中,最重要的圖形處理單元(GPU)係使用高效能的GPU(如NVIDIA的RTX 30系列或Tesla系列)以降低模型訓練的時間;其中,於本案伺服器的訓練架構中,係採用如上較高規格的訓練用伺服器,而於模型訓練完成並進行推算處理時,係可採用較低規格的伺服器主機,並可同為部屬本系統的雲端或地端伺服器主機。於本案架構中,伺服器主機規格的採用係不影響本案所強調的技術特徵,因而任何伺服器主機規格應仍落入本案技術範圍當中。其中,該處理器110透過網路介面控制器130進一步連上多個送件伺服器500,使資料傳輸單元3113得以將使用者U之商標申請文件上傳至選定國家之送件伺服器500。 In this embodiment, the creator uses a server with the following specifications to perform the trademark product item conversion model training and inference execution of this technology; the processor (CPU) uses a high-performance multi-core processor, especially for processing large amounts of data and performing complex calculations, at least one CPU with 16 cores or more (such as AMD Ryzen Threadripper or Intel Xeon series) is used. And the size of the memory (RAM) can be but is not limited to 64GB or higher RAM specifications so that the size of the corpus and the size of the word vector model can be processed. The network interface controller is a high-speed and stable network connection hardware, especially for use in cloud computing resources or downloading/uploading large amounts of data. Among them, the most important graphics processing unit (GPU) uses a high-performance GPU (such as NVIDIA's RTX 30 series or Tesla series) to reduce the time of model training; in the server training architecture of this case, a higher-specification training server as above is used, and when the model training is completed and the inference processing is performed, a lower-specification server host can be used, and it can be a cloud or ground server host deployed in this system. In the architecture of this case, the use of server host specifications does not affect the technical features emphasized in this case, so any server host specifications should still fall within the technical scope of this case. The processor 110 is further connected to multiple delivery servers 500 via the network interface controller 130, so that the data transmission unit 3113 can upload the trademark application documents of user U to the delivery server 500 of the selected country.

具體地,使用者U操作電子裝置100的處理器110執行應用程式310之商標線上申請模組311進行商標線上申請,使用者U藉由電子裝置 100輸入商標申請所需的資料,例如:商標名稱、商標圖樣、申請人、聯絡人、欲申請的商品項目或對商品服務的描述等,電子裝置100的顯示螢幕會顯示相對應的欄位供使用者U填入相對應的資料,處理器110進而啟用申請資料收集單元3111,將使用者U輸入在對應欄位之資料分類後存入記憶體120,因後續會特別使用到商標申請資料中的商標名稱、商標圖樣、欲申請的商品項目以及對商品服務的描述這些欄位的資訊,遂先經由申請資料收集單元3111做分類。 Specifically, the user U operates the processor 110 of the electronic device 100 to execute the trademark online application module 311 of the application 310 to apply for the trademark online. The user U uses the electronic device 100 to input the data required for the trademark application, such as the trademark name, trademark image, applicant, contact person, product items to be applied for or description of the product or service, etc., and the display screen of the electronic device 100 will display the corresponding The fields are for user U to fill in the corresponding data. The processor 110 then activates the application data collection unit 3111, and classifies the data entered by user U in the corresponding fields and stores them in the memory 120. Since the trademark name, trademark image, product items to be applied for, and description of the product and service in the trademark application data will be particularly used later, the information in these fields is first classified by the application data collection unit 3111.

具體地,處理器110執行應用程式310啟用商標線上申請模組311的類別項目選擇單元3112,使用者U可以直接透過電子裝置100選擇欲申請商標的商品項目,處理器110存取記憶體120中預先存入的商標類別和項目列表,顯示於電子裝置100的顯示螢幕,提供有經驗或專業使用者直接尋找對應商品或服務的類別項目,並於選擇後接續完成商標線上申請。 Specifically, the processor 110 executes the application 310 to activate the category item selection unit 3112 of the trademark online application module 311. The user U can directly select the product item for which the trademark is to be applied through the electronic device 100. The processor 110 accesses the trademark category and item list pre-stored in the memory 120 and displays them on the display screen of the electronic device 100, so that experienced or professional users can directly find the category items corresponding to the product or service, and continue to complete the trademark online application after selection.

倘若使用者U非有經驗或專業人士,可以透過電子裝置100的顯示螢幕選擇類別推薦選項,處理器110遂啟用類別推薦模組312進行商標商品項目推薦,讓使用者U可以參考推薦項目快速選擇適合的類別項目。 If the user U is not an experienced or professional person, he can select the category recommendation option through the display screen of the electronic device 100, and the processor 110 will activate the category recommendation module 312 to recommend trademark product items, so that the user U can refer to the recommended items and quickly select the appropriate category items.

處理器110進一步啟用文字解析單元3121,讀取記憶體120中經過申請資料收集單元3111分類後之商標申請資料,特別是其中的商品項目及對商品服務的描述,對使用者U輸入的商品服務描述之文字做語意分析擷取出關鍵字,其中商品服務描述可以是例如:我要開一間賣手沖咖啡的咖啡廳、販賣飲料蛋糕手做餅乾與飾品等。 The processor 110 further activates the text parsing unit 3121 to read the trademark application data classified by the application data collecting unit 3111 in the memory 120, especially the product items and descriptions of the products and services, and performs semantic analysis on the text of the product and service description input by the user U to extract keywords, wherein the product and service description can be, for example: I want to open a cafe selling hand-brewed coffee, selling beverages, cakes, hand-made cookies and accessories, etc.

具體地,關鍵字擷取是一種自然語言處理技術,旨在從文本中自動提取出重要的關鍵字或詞組,方法可以為但是不限於統計方法,頻 率法(Frequency-based methods)、文本統計法(Statistical methods)、文本向量化方法(Text vectorization methods)或機器學習方法(Machine learning methods)。 Specifically, keyword extraction is a natural language processing technology that aims to automatically extract important keywords or phrases from text. The method can be but not limited to statistical methods, frequency methods, statistical methods, text vectorization methods or machine learning methods.

頻率法基於詞語在文本中的頻率來判斷其重要性。常見的方法有TF-IDF(詞頻-逆文件頻率)和詞頻(Term Frequency)等。TF-IDF考慮了詞語在文本中的出現頻率以及在整個文集中的重要程度,詞頻則僅考慮了詞語在文本中的出現頻率。 Frequency methods judge the importance of words based on their frequency in the text. Common methods include TF-IDF (Term Frequency-Inverse Document Frequency) and Term Frequency. TF-IDF considers the frequency of a word in the text and its importance in the entire collection, while term frequency only considers the frequency of a word in the text.

文本統計法基於統計模型來分析詞語在文本中的分布和關聯性。常見的方法有互信息(Mutual Information)、點互信息(Pointwise Mutual Information)和卡方檢驗(Chi-squared Test)等。這些方法通常需要建立一個詞語和文本之間的統計模型,並根據該模型計算詞語的重要性。 Text statistics is based on statistical models to analyze the distribution and relevance of words in text. Common methods include mutual information, pointwise mutual information, and chi-squared test. These methods usually require the establishment of a statistical model between words and texts, and the calculation of word importance based on the model.

文本向量化方法將文本轉換為向量表示,然後使用向量空間模型(Vector Space Model)來計算詞語的重要性。常見的方法有詞袋模型(Bag-of-Words Model)、詞向量(Word Embeddings)和文本向量化方法(如TF-IDF向量化)等。 The text vectorization method converts the text into a vector representation and then uses the Vector Space Model to calculate the importance of words. Common methods include the Bag-of-Words Model, Word Embeddings, and text vectorization methods (such as TF-IDF vectorization).

機器學習方法使用機器學習算法來訓練模型,從文本中學習詞語的重要性。常見的方法有文本分類、文本聚類和關鍵詞提取模型等。這些方法需要使用標註好的文本數據進行模型的訓練。 Machine learning methods use machine learning algorithms to train models and learn the importance of words from text. Common methods include text classification, text clustering, and keyword extraction models. These methods require the use of labeled text data for model training.

上述也能透過使用腳本語言(例如Python)編寫一個程式來執行。 The above can also be done by writing a program using a scripting language (such as Python).

在文字解析單元3121擷取出關鍵字後,處理器110接著啟用類別項目比對單元3122,將記憶體120中使用者U輸入的商品項目、擷取出 之關鍵字與商標類別項目進行比對,該商標類別項目已經預先透過資料收發模組313連接多個資料庫400將不同國家的商標類別項目存入記憶體120中,依據使用者U欲申請的國家選擇比對該國的商標類別項目。 After the text parsing unit 3121 extracts the keywords, the processor 110 then activates the category item matching unit 3122 to compare the product item input by the user U in the memory 120, the extracted keywords and the trademark category item. The trademark category item has been connected to multiple databases 400 through the data transceiver module 313 to store trademark category items of different countries in the memory 120 in advance. The trademark category item of the country to which the user U wants to apply is selected for comparison.

具體而言,比對方法可以為但不限於使用腳本語言(例如Python)編寫一個程式,將每個類別名稱逐一讀入,再透過程式讀取記憶體120中的商標類別項目文字,以搜尋是否有符合或近似的項目,或是使用SQL語言進行比對,使用SELECT語句來從中選取符合特定條件的類別項目,以此找出是否存在於商標類別項目中。 Specifically, the comparison method may be, but is not limited to, using a scripting language (such as Python) to write a program to read each category name one by one, and then use the program to read the trademark category item text in the memory 120 to search for matching or similar items, or using SQL language for comparison, using a SELECT statement to select category items that meet specific conditions, so as to find out whether they exist in the trademark category items.

若使用腳本語言(例如Python)編寫程式可以逐一讀入每個商標類別項目,接著,透過Python中的檔案處理功能,讀商標類別項目中的文字,以搜尋是否有符合或近似的文字,為了進行文字比對,可以使用Python中的字串處理方法,如字串比對、正規表達式等,透過這些方法,程式可以判斷商標類別項目中的文字是否包含與商品項目或關鍵字相符的字詞,以確定是否有符合的文字存在。 If you use a scripting language (such as Python) to write a program, you can read each trademark category item one by one. Then, through the file processing function in Python, read the text in the trademark category item to search for matching or similar text. In order to perform text matching, you can use the string processing methods in Python, such as string matching, regular expressions, etc. Through these methods, the program can determine whether the text in the trademark category item contains words that match the product item or keyword to determine whether there is matching text.

另外,比對的方法可以是但不限於透過字串匹配算法(例如Levenshtein Distance、Jaro-Winkler Distance等),Levenshtein Distance(也稱為Edit Distance)是一種衡量兩個字串相似度的算法,其原理是計算將一個字串轉換為另一個字串所需的最少操作數,這些操作可以是插入一個字符、刪除一個字符或替換一個字符。 In addition, the comparison method can be but is not limited to string matching algorithms (such as Levenshtein Distance, Jaro-Winkler Distance, etc.). Levenshtein Distance (also known as Edit Distance) is an algorithm that measures the similarity of two strings. The principle is to calculate the minimum number of operations required to convert one string to another. These operations can be to insert a character, delete a character, or replace a character.

舉例而言,假設有兩個字串"kitten"和"sitting",要計算它們之間的Levenshtein Distance,我們將"kitten"轉換為"sitting",需要經過以下幾個步驟:把"k"替換為"s",成為"sitten";把"e"替換為"i",成為 "sittin";插入一個"g",成為"sitting",因此,這兩個字串之間的Levenshtein Distance為3,即需要3次操作才能把一個字串轉換為另一個字串。透過這種算法,我們可以計算出任意兩個字串之間的距離,並用它來比較它們之間的相似度。 For example, suppose there are two strings "kitten" and "sitting". To calculate the Levenshtein Distance between them, we need to convert "kitten" to "sitting" through the following steps: replace "k" with "s" to get "sitten"; replace "e" with "i" to get "sittin"; insert a "g" to get "sitting". Therefore, the Levenshtein Distance between the two strings is 3, which means that 3 operations are required to convert one string into another. Through this algorithm, we can calculate the distance between any two strings and use it to compare their similarities.

此外,Jaro-Winkler Distance是一種衡量兩個字串相似度的算法,它是基於Jaro Distance的改進版本,通常用於比較較短的字串,比如人名、地址等,Jaro-Winkler Distance會根據兩個字串的相同字元和字元位置之間的距離,計算出一個0到1之間的相似度值,其中0表示完全不相似,1表示完全相同。Jaro-Winkler Distance算法的主要步驟如下:計算Jaro距離,計算兩個字串之間的相似度,它主要考慮了字串中字符的順序,以及兩個字串中共有的字符數量;計算Winkler修正因素,主要用於處理相似字串的情況,它通過計算共同前綴的長度以及一個常數p的值,來調整Jaro距離的值;計算Jaro-Winkler Distance,Jaro-Winkler Distance=Jaro距離+Winkler修正因素。 In addition, Jaro-Winkler Distance is an algorithm for measuring the similarity between two strings. It is an improved version of Jaro Distance and is usually used to compare shorter strings, such as names, addresses, etc. Jaro-Winkler Distance will calculate a similarity value between 0 and 1 based on the distance between the same characters and character positions of the two strings, where 0 means completely dissimilar and 1 means exactly the same. The main steps of the Jaro-Winkler Distance algorithm are as follows: Calculate the Jaro distance, which is the similarity between two strings. It mainly considers the order of the characters in the strings and the number of characters in common in the two strings; calculate the Winkler correction factor, which is mainly used to deal with similar strings. It adjusts the value of the Jaro distance by calculating the length of the common prefix and the value of a constant p; calculate the Jaro-Winkler Distance, Jaro-Winkler Distance = Jaro distance + Winkler correction factor.

在類別項目比對單元3122產生比對結果之後存入記憶體120中,同時處理器110啟用報告產生單元3123,將比對結果依照字詞相似程度進行排列,完全相同或近似程度高列為優先推薦的類別項目,具體而言,在比對的過程中可以依不同的方式計算近似程度,例如編輯距離(Edit Distance)、餘弦相似度(Cosine Similarity)或Jaccard相似度(Jaccard Similarity),經過近似程度排列後之類產生一推薦報告,使用者U透過推薦報告可以清楚的知道如何選擇商標類別項目。 After the category item comparison unit 3122 generates the comparison result, it is stored in the memory 120. At the same time, the processor 110 activates the report generation unit 3123 to sort the comparison results according to the word similarity. The completely identical or highly similar category items are listed as the priority recommended category items. Specifically, the similarity can be calculated in different ways during the comparison process, such as edit distance, cosine similarity or Jaccard similarity. After the similarity is sorted, a recommendation report is generated. The user U can clearly know how to choose the trademark category item through the recommendation report.

進一步地,處理器110透過該網路介面控制器130以連上該伺服器300並執行該應用程式310,從而配置啟用一風險評估模組314,對使用者U輸入之商標申請資料中的商標名稱進行前案比對,且處理器110執行該應用程式310中的風險評估模組314進一步配置啟用文字解析單元3121、檢索比對單元3142及報告產生單元3123。 Furthermore, the processor 110 connects to the server 300 through the network interface controller 130 and executes the application 310, thereby configuring and activating a risk assessment module 314 to perform a previous case comparison on the trademark name in the trademark application data input by the user U, and the processor 110 executes the risk assessment module 314 in the application 310 to further configure and activate the text parsing unit 3121, the search comparison unit 3142 and the report generation unit 3123.

文字解析單元3121對存在記憶體120中的商標申請資料中的商標名稱進行文字排列組合,具體而言,若要將一個字詞進行單一文字的排列組合,可以使用以下步驟進行:首先,將字詞的第一個字元取出,作為起始字元;接著,將剩餘的字元進行排列組合,這可以透過遞迴或迭代的方式進行,遞迴是一種自我調用的過程,將問題分解成更小的子問題並遞迴處理,直到達到終止條件,迭代則是使用迴圈來重複執行相同的操作,直到達到終止條件;將第一個字元插入到每個排列組合的不同位置,形成新的排列組合,插入的位置可以從頭到尾逐一嘗試,這樣可以保證生成所有可能的排列組合;重複上述步驟,直到處理完所有的字元。 The text parsing unit 3121 performs text arrangement and combination on the trademark name in the trademark application data stored in the memory 120. Specifically, if a word is to be arranged and combined as a single word, the following steps can be used: first, the first character of the word is taken out as the starting character; then, the remaining characters are arranged and combined. This can be done by recursion or iteration. Recursion is a self-calling method. The process is to decompose the problem into smaller sub-problems and process them in a loop until the termination condition is reached. Iteration is to use loops to repeatedly perform the same operation until the termination condition is reached; insert the first character into a different position of each permutation combination to form a new permutation combination. The insertion position can be tried one by one from the beginning to the end, so that all possible permutations and combinations can be generated; repeat the above steps until all characters are processed.

要注意的是,上述排列組合方法僅為示範,並無加以限定,其主要作用在有利於後續比對過程中,盡可能找出相似的名稱。 It should be noted that the above arrangement and combination method is only for demonstration and not for limitation. Its main function is to help find similar names as much as possible in the subsequent comparison process.

在文字解析單元3121完成將使用者U輸入的商標名稱之所有排列組合後存入記憶體120中,且處理器110同時啟用檢索比對單元3142,在此之前已預先透過資料收發模組313連接資料庫400而儲存所有已申請的商標資訊在記憶體120中,這些已申請的商標資訊即為商標前案,做為後續比對的基礎。 After the text parsing unit 3121 completes all permutations and combinations of the trademark name input by the user U, it is stored in the memory 120, and the processor 110 simultaneously activates the search and comparison unit 3142. Prior to this, the data transceiver module 313 has been connected to the database 400 to store all the applied trademark information in the memory 120. These applied trademark information are the trademark cases, which serve as the basis for subsequent comparison.

具體地,檢索比對單元3142將記憶體120中所有排列組合與記憶體120中的商標前案進行比對,比對的方法如上述的類別項目比對單元3122近似,因此不再贅述。 Specifically, the search and comparison unit 3142 compares all permutations and combinations in the memory 120 with the previous trademarks in the memory 120. The comparison method is similar to that of the above-mentioned category item comparison unit 3122, so it will not be described in detail.

檢索比對單元3142比對後產生的比對結果同樣會存回記憶體120中,同時處理器110啟用報告產生單元3123,將比對結果進行近似程度排列,其近似程度計算方式如同上述類別推薦報告,近似程度越高排列順序越前或越上,而產生風險評估報告,該報告呈現的方式可為線上圖像、可下載之文書檔案、可轉發至通訊軟體之檔案格式、可分享至社群軟體之檔案格式、電子布告欄或其組合。 The comparison results generated by the search and comparison unit 3142 will also be stored back in the memory 120. At the same time, the processor 110 activates the report generation unit 3123 to sort the comparison results by similarity. The similarity calculation method is the same as the above-mentioned category recommendation report. The higher the similarity, the higher the ranking order, and the risk assessment report is generated. The report can be presented in the form of an online image, a downloadable document file, a file format that can be forwarded to a communication software, a file format that can be shared to a social software, an electronic bulletin board, or a combination thereof.

在另一實施例中,處理器110可以同時啟用類別推薦模組312與風險評估模組314,在報告產生單元3123所產生的則會是結合商標類別推薦與風險評估的綜合報告。 In another embodiment, the processor 110 may simultaneously enable the category recommendation module 312 and the risk assessment module 314, and the report generation unit 3123 may generate a comprehensive report combining trademark category recommendation and risk assessment.

具體地,文字解析單元3121同時存取記憶體120中使用者U輸入之商標名稱、商品項目及商品服務描述,並對商標名稱進行文字排列組合、對商品服務描述進行關鍵字擷取,且存回記憶體120中,接著處理器110啟用類別項目比對單元3122與檢索比對單元3142,分別對關鍵字與所有文字排列組合進行對應的比對,產生的比對結果存回記憶體120。 Specifically, the text parsing unit 3121 simultaneously accesses the trademark name, product item, and product service description input by the user U in the memory 120, and performs text arrangement and combination on the trademark name, and keyword extraction on the product service description, and stores them back in the memory 120. Then the processor 110 activates the category item matching unit 3122 and the search matching unit 3142, respectively, to perform corresponding comparisons on the keywords and all the text arrangement combinations, and stores the generated comparison results back in the memory 120.

接著,處理器110啟用報告產生單元3123讀取記憶體120中的比對結果,綜合商標類別項目與商標名稱近似程度排列,具體而言,先排列出商標名稱近似程度,再分析計算該商標屬於的類別項目與推薦的商標類別項目近似程度,若商標名稱高度近似且該商標屬於的類別項目符合高 度推薦的商標類別項目則代表此商標前案為高度近似前案,在綜合報告中會以明顯顏色來呈現。 Next, the processor 110 activates the report generation unit 3123 to read the comparison results in the memory 120, and arranges the trademark category items and the similarity of the trademark names. Specifically, the similarity of the trademark names is first arranged, and then the similarity between the category items to which the trademark belongs and the recommended trademark category items is analyzed and calculated. If the trademark names are highly similar and the category items to which the trademark belongs meet the highly recommended trademark category items, it means that the trademark predecessor is a highly similar predecessor, which will be presented in a prominent color in the comprehensive report.

綜合報告中所顯示的顏色用以明顯區分使用者U盡量避開的商標類別項目,該商標類別項目具有較多高度近似的商標前案,提供使用者U清楚的選擇適合且風險較低的類別項目。 The colors displayed in the comprehensive report are used to clearly distinguish the trademark category items that User U tries to avoid. Such trademark category items have many highly similar trademark precedents, providing User U with a clear way to choose appropriate and lower-risk category items.

本發明的另一實施例請參閱圖10,本系統用以接收一使用者端藉由操作一電子裝置所提供之字串與欲查詢的至少一個目標國家,經該電子裝置的一處理器透過一網路介面控制器連上一伺服器並執行一應用程式,運算產出商標類別推薦報告,該系統至少包括:輸入模組600、多語翻譯模型700、類別推薦模組312、風險評估模組314及資料庫400,其中資料庫400可以為尼斯商標類別資料庫及多個國家的商標類別資料庫、多國商標資料庫。 Please refer to FIG. 10 for another embodiment of the present invention. The system is used to receive a string provided by a user terminal through an electronic device and at least one target country to be queried. A processor of the electronic device is connected to a server through a network interface controller and executes an application program to calculate and generate a trademark category recommendation report. The system at least includes: an input module 600, a multilingual translation model 700, a category recommendation module 312, a risk assessment module 314 and a database 400, wherein the database 400 can be the Nice trademark category database, trademark category databases of multiple countries, and a multinational trademark database.

其中,尼斯商標類別資料庫及多個國家的商標類別資料庫主要是分別儲存有尼斯國際商標類別的分類與商品項目資料,以及各個對應國家的商標類別分類與商品項目資料,而多國商標資料庫則是儲存有各個對應國家的商標申請資料。 Among them, the Nice Trademark Classification Database and the Trademark Classification Database of Multiple Countries mainly store the classification and product item data of the Nice International Trademark Classification, as well as the trademark class classification and product item data of each corresponding country, while the Multinational Trademark Database stores the trademark application data of each corresponding country.

使用者端可以為品牌業主、商標申請人、商標從業人士、法律相關從業人士的組合中任意選擇。 The user can choose any combination of brand owners, trademark applicants, trademark practitioners, and legal practitioners.

輸入模組600用以接收使用者端所輸入的字串,並將該字串進行標籤化處理,並發送一字串資訊,具體地,字串標籤化(Tokenization)是將一個句子或文件拆分成個別的詞彙(tokens)的過程,以下舉例一個簡單的字串標籤化處理方法: 去除標點符號:使用正則表達式或預先定義的標點符號列表,將字串中的標點符號去除,例如句點、逗號、問號等。拆分字詞:將字串按照空格或其他特定的分隔符號進行拆分,每個拆分的部分即為一個詞彙。處理特殊情況:處理特殊情況,例如縮寫詞、連字符、數字等。可以使用正則表達式或特定的規則來處理這些情況,將它們拆分成合適的詞彙。轉換為小寫(若為具有大小寫區分的語言):將所有詞彙轉換為小寫形式,以統一詞彙的表示方式。 The input module 600 is used to receive the string input by the user, tokenize the string, and send a string information. Specifically, string tokenization is the process of splitting a sentence or document into individual words (tokens). The following is an example of a simple string tokenization method: Remove punctuation: Use regular expressions or predefined punctuation lists to remove punctuation in the string, such as periods, commas, question marks, etc. Split words: Split the string according to spaces or other specific separators, and each split part is a word. Handle special cases: Handle special cases, such as abbreviations, hyphens, numbers, etc. Regular expressions or specific rules can be used to handle these cases and split them into appropriate words. Convert to lowercase (if the language is case-sensitive): Convert all words to lowercase to unify the way words are represented.

多語翻譯模型700係透過大型語言翻譯訓練出之一運算模型,在接收到該字串資訊時,判斷輸入的字串語言,與使用者選擇的目標國家之官方語言是否一致,若非一致則對使用者輸入的字串進行翻譯,遂將字串翻譯為符合該目標國家之官方語言,並將翻譯後的字串資訊進行發送。 The multilingual translation model 700 is a computational model trained through large-scale language translation. When receiving the string information, it determines whether the input string language is consistent with the official language of the target country selected by the user. If not, the string input by the user is translated into the official language of the target country and the translated string information is sent.

類別推薦模組312係透過自然語言模型與商標分類表及細目所訓練出之運算模型,用以將模糊語意(或非精準敘述)的字串資訊解析為商標類別推薦資訊,其中更包含:文字解析單元3121、類別項目比對單元3122以及報告產生單元3123。 The category recommendation module 312 is an operational model trained through a natural language model and a trademark classification table and detailed items, and is used to parse the string information of ambiguous semantics (or inaccurate description) into trademark category recommendation information, which further includes: a text parsing unit 3121, a category item matching unit 3122, and a report generation unit 3123.

自然語言模型是可以根據已知的文本資料來預測下一個詞彙或生成符合文法和語意的句子,可以為但不限於:N-gram模型:N-gram模型是一種基於機率的語言模型,它假設詞彙出現的機率只與前面N-1個詞彙有關。例如,在二元(bigram)模型中,對於給定的前一個詞彙,預測下一個詞彙的機率。 A natural language model can predict the next word or generate a sentence that conforms to grammar and semantics based on known text data. It can be, but is not limited to: N-gram model: The N-gram model is a probability-based language model that assumes that the probability of a word appearing is only related to the previous N-1 words. For example, in a bigram model, for a given previous word, the probability of predicting the next word.

遞歸神經網路(RNN)模型:RNN是一種適合處理序列數據的神經網路,它可以捕捉詞彙間的時間相依性。在自然語言處理中,RNN常用於語言模型的建構,其中每個詞彙被視為一個時間步。 Recurrent Neural Network (RNN) Model: RNN is a neural network suitable for processing sequence data, which can capture the temporal dependencies between words. In natural language processing, RNN is often used to construct language models, where each word is regarded as a time step.

預訓練語言模型(例如BERT):預訓練語言模型是通過大規模無監督訓練而得到的模型,可以理解和生成自然語言。BERT模型利用Transformer網路架構,在大量的文本資料上進行預訓練,然後進行微調以適應特定的任務,如文本分類、命名實體識別等。 Pre-trained language models (e.g. BERT): Pre-trained language models are models obtained through large-scale unsupervised training that can understand and generate natural language. The BERT model uses the Transformer network architecture to be pre-trained on a large amount of text data, and then fine-tuned to adapt to specific tasks such as text classification, named entity recognition, etc.

商標分類表及細目為從各國的商標別資料庫中擷取出的分類,以及分類中的所有商品項目,將其擷取出來並形成列表,提供自然語言模型進行訓練與運算。 The trademark classification table and details are the classifications extracted from the trademark databases of various countries, as well as all the product items in the classifications. They are extracted and listed to provide natural language models for training and calculation.

文字解析單元3121用以將該翻譯後字串資訊進行解析,擷取出關鍵字以及與商業行為、產品、服務等統稱為產業資訊之描述文字。 The text analysis unit 3121 is used to analyze the translated string information and extract keywords and descriptive texts related to business activities, products, services, etc., collectively referred to as industry information.

類別項目比對單元3122,係用以接收該等關鍵字及產業資訊的相關描述文字,並將其與該目標國家之商標類別資料庫進行比對,並運算產生最接近至少一個類別資訊與該類別之一產品項目資訊與一服務項目資訊,即為推薦類別與推薦商品項目,一個推薦類別搭配至少一個推薦商品項目。 The category item comparison unit 3122 is used to receive the relevant description texts of the keywords and industry information, and compare them with the trademark category database of the target country, and calculate and generate the closest at least one category information and one product item information and one service item information of the category, that is, the recommended category and recommended product item. One recommended category is matched with at least one recommended product item.

報告產生單元3123,係用以接收該推薦類別、該推薦商品項目與該目標國家,用該輸入語言透過一模板化格式產出一商標類別推薦報告,具體地,若最初使用者所輸入的字串之語言與目標國家的官方語言不相同,則產生之商標類別推薦報告會再透過多語翻譯模型700將推薦類別與推薦商品項目等文字翻譯回輸入字串時所使用的語言。 The report generation unit 3123 is used to receive the recommended category, the recommended product item and the target country, and generate a trademark category recommendation report in a template format using the input language. Specifically, if the language of the string initially input by the user is different from the official language of the target country, the generated trademark category recommendation report will be translated back to the language used when the string was input through the multilingual translation model 700.

具體地,輸入的字串可以包含商標文字、商標描述、商業行為、公司名稱、股票代碼、產品名稱、服務名稱或其組合資訊。 Specifically, the input string may contain trademark words, trademark descriptions, business practices, company names, stock symbols, product names, service names, or a combination thereof.

使用者端輸入字串的方式可以是文字輸入、語音輸入或視頻輸入。 The user can input strings through text input, voice input or video input.

該輸入模組600更包含一資訊擷取單元601,係用以將標籤化後的字串資訊主動至網路空間擷取相關資訊,並可將該資訊傳送至多語翻譯模型700進行翻譯。 The input module 600 further includes an information acquisition unit 601, which is used to actively send the labeled string information to the network space to acquire relevant information, and can transmit the information to the multilingual translation model 700 for translation.

具體地,資訊擷取單元601是依據使用者所輸入的字串,在經過文字解析單元3121解析後所產生的產業相關資訊,在網路空間進行爬取資訊,在此所爬取的資訊可以為使用者的官方網站、包含擷取出的關鍵字的新聞或其他網路文章。 Specifically, the information acquisition unit 601 crawls information in the cyberspace based on the industry-related information generated after the text analysis unit 3121 analyzes the string input by the user. The crawled information may be the user's official website, news or other online articles containing the extracted keywords.

風險評估模組314係用以將自輸入的字串中所擷取出之關鍵字與該目標國家商之商標資料庫進行比對,並產出一風險資訊,風險資訊更可透過該報告產生單元3123整併至該商標類別推薦報告進而產生風險評估報告。 The risk assessment module 314 is used to compare the keywords extracted from the input string with the trademark database of the target country and generate risk information. The risk information can be integrated into the trademark category recommendation report through the report generation unit 3123 to generate a risk assessment report.

具體地,是先經由類別推薦模組312運算後產生推薦商標類別與推薦商品項目,再經由風險評估模組在該些推薦類別中進行檢索比對,首先是比對關鍵字與目標國家商標資料庫中是否存在近似的名稱,若在推薦類別中存在近似前案,則再比對商品項目的近似程度,最終交叉分析之後產生風險評估報告。 Specifically, the recommended trademark categories and recommended product items are generated after calculation by the category recommendation module 312, and then the risk assessment module searches and compares the recommended categories. First, it compares whether there are similar names in the target country's trademark database with the keywords. If there are similar previous cases in the recommended categories, the similarity of the product items is compared. Finally, a risk assessment report is generated after cross-analysis.

請接續參閱圖11,本系統之類別推薦模組312更包含知識圖譜比對單元3124,具體地,該資訊擷取單元601除了可以爬取與使用者本身官網或相關的網路資訊以外,還可以依據解析後的產業資訊去爬取相似產 業或相似背景的公司資訊,並再將這些資訊藉由知識圖譜比對單元3124進行比對,將相似產業或相似背景公司申請過的商標前案比對搜尋出來,並且擷取出該些案件所申請的類別與其中的商品項目併入由類別項目比對單元3122比對出的推薦類別及推薦商品項目中。 Please continue to refer to Figure 11. The category recommendation module 312 of this system further includes a knowledge graph comparison unit 3124. Specifically, the information acquisition unit 601 can crawl the user's official website or related network information, and can also crawl company information of similar industries or similar backgrounds based on the parsed industry information, and then compare these information through the knowledge graph comparison unit 3124, and search out the previous trademark cases applied for by companies of similar industries or similar backgrounds, and extract the categories applied for in these cases and the product items therein and merge them into the recommended categories and recommended product items compared by the category item comparison unit 3122.

知識圖譜(Knowledge Graph),其中的每個節點代表不同公司的商標申請案件紀錄資料,邊則代表各公司之間的產業相關性或相似性。這種方法可以直觀地顯示出不同公司間所申請的商標中類別/商品項目與產業之間關係,而此知識圖普的建構係透過時間進行蒐集,當中,係包括但不限定於如下的資訊:已完成註冊之商標公告資訊(商標家族)、透過字義擴充與翻譯比對所建構的前案對照表、以及部分國家智財局公開之商標申請案件。 The Knowledge Graph, in which each node represents the trademark application case record data of different companies, and the edge represents the industry relevance or similarity between the companies. This method can intuitively show the relationship between the categories/product items and industries in the trademarks applied for by different companies. The construction of this knowledge graph is collected over time, including but not limited to the following information: the announcement information of registered trademarks (trademark families), the previous case comparison table constructed through word meaning expansion and translation comparison, and some trademark application cases disclosed by the National Intellectual Property Administration.

並且,其詳細的建構流程如下:數據蒐集:收集已有的商標資料,包括公司申請過的商標、商標名稱、類別等相關資訊。這些資料可以從商標資料庫、專利局等來源獲取。 Moreover, its detailed construction process is as follows: Data collection: Collect existing trademark data, including trademarks applied by the company, trademark names, categories and other related information. These data can be obtained from sources such as trademark databases and patent offices.

知識圖譜建構:將商標資料與其他相關資訊,例如公司信息、產業類別等,結合在一起,建構一個知識圖譜。知識圖譜可以使用圖形數據庫或圖形表示法來表示不同實體(例如公司、商標、產業)之間的關係。 Knowledge graph construction: Combine trademark data with other relevant information, such as company information, industry categories, etc., to construct a knowledge graph. Knowledge graphs can use graphical databases or graphical representations to represent the relationships between different entities (such as companies, trademarks, industries).

相似度計算:根據知識圖譜中的關係和屬性,計算不同商標之間的相似度。這可以基於不同的特徵,例如商標名稱的相似度、所屬類別的相似度等。 Similarity calculation: Calculate the similarity between different trademarks based on the relationships and attributes in the knowledge graph. This can be based on different features, such as similarity of trademark names, similarity of categories, etc.

本發明的另一實施例請參閱圖12,顯示本發明之方法流程圖,其包含步驟S101~S108。 Please refer to Figure 12 for another embodiment of the present invention, which shows a flow chart of the method of the present invention, which includes steps S101~S108.

在步驟S101中用戶輸入介紹文字,主要是透過操作電子裝置100輸入任意的文字,並沒有限定一定要是商標名稱或制式的字詞;在步驟S102中文字解析單元3121對用戶輸入的介紹文字進行語意分析,且判斷輸入的文字中是否包含有用戶的品牌名稱、公司名稱、公司介紹、商品介紹等資訊;若是則進行步驟S103,文字解析單元3121將用戶輸入的介紹文字中的品牌名稱與公司名稱擷取出來;並接著進行步驟S104,對擷取出的文字做識別性的判別,主要是因為商標的核准條件之一為需具有識別性,在步驟S105中透過文字解析單元3121先排除不具識別性文字並擷取出識別性文字,例如ABC股份有限公司中的”股份有限公司”即為不具識別性文字;前述的判斷若為否與經過步驟S105後進行步驟S106,將用戶輸入的介紹文字或具識別性文字再次透過文字解析單元3121進行產業分析,同時也進行產品及服務內容的解析,在步驟S107中,還會啟用類別項目比對單元3122,將步驟S106的識別性文字、經解析分析後的介紹文字與資料庫400中的商標類別項目進行比對,且在步驟S108中將比對結果透過報告產生單元3123形成類別推薦報告,進一步附上推薦理由。 In step S101, the user inputs the introduction text, mainly by operating the electronic device 100 to input any text, and it is not limited to the trademark name or standardized words; in step S102, the text parsing unit 3121 performs semantic analysis on the introduction text input by the user, and determines whether the input text contains the user's brand name, company name, company introduction, product introduction and other information; if so, step S103 is performed, and the text parsing unit 3121 extracts the brand name and company name from the introduction text input by the user; and then step S104 is performed to determine the identity of the extracted text, mainly because one of the approval conditions for the trademark is that it must have identity. In step S105, the text parsing unit 3121 performs semantic analysis on the introduction text input by the user, and determines whether the input text contains the user's brand name, company name, company introduction, product introduction and other information; if so, step S103 is performed, and the text parsing unit 3121 extracts the brand name and company name from the introduction text input by the user; and then step S104 is performed to determine the identity of the extracted text, mainly because one of the approval conditions for the trademark is that it must have identity. 1. First, exclude non-identifying words and extract identifying words. For example, "株式会社" in ABC股份有限公司 is a non-identifying word. If the above judgment is negative, after step S105, proceed to step S106, and the introduction words or identifying words entered by the user are again analyzed by the text analysis unit 3121 for industry, and also for product and In step S107, the service content analysis will also activate the category item comparison unit 3122 to compare the identification text and the introduction text after analysis in step S106 with the trademark category items in the database 400, and in step S108, the comparison result will be generated into a category recommendation report through the report generation unit 3123, and the recommendation reason will be attached.

本發明之另一實施例,與圖12之實施例的差異在於步驟S106之後,在步驟S106中將用戶輸入的介紹文字或具識別性文字再次透過文字解析單元3121進行產業分析,同時也進行產品及服務內容的解析,進一步,類別項目比對單元3122先對經解析後的產業敘述進行比對,進而產生推薦的商標類別,接著,類別項目比對單元3122對經解析後的商品及服務內容描述在已經產生的推薦的商標類別中進行比對,進而產生該商標類別的推 薦商品項目,最後再進到步驟S108,將比對結果透過報告產生單元3123形成類別推薦報告,進一步附上推薦理由。 Another embodiment of the present invention is different from the embodiment of FIG. 12 in that after step S106, the introductory text or identifying text input by the user is again analyzed by the text parsing unit 3121 in step S106, and the product and service content is also analyzed. Furthermore, the category item comparison unit 3122 first compares the analyzed industry description to perform a comparison. The recommended trademark category is generated, and then the category item comparison unit 3122 compares the parsed product and service content descriptions in the generated recommended trademark category, thereby generating recommended product items of the trademark category. Finally, the process proceeds to step S108, and the comparison results are formed into a category recommendation report through the report generation unit 3123, and the recommendation reason is further attached.

請接續參閱圖13,顯示本發明之另一實施例方法流程圖,其中包含步驟S201~S208。 Please continue to refer to Figure 13, which shows a flowchart of another embodiment of the method of the present invention, which includes steps S201~S208.

在此實施例中,步驟S201用戶透過操作電子裝置100複製公司介紹資訊的文字描述後貼入,特別的是,用戶於步驟S201輸入的是一段文字敘述並非單純字詞、名詞;在步驟S202中,文字解析單元3121對用戶輸入的文字進行語意分析、擷取關鍵字;並判斷輸入的文字描述中是否具有用戶的品牌名稱、公司名稱等資訊,而後續的步驟S203~S208與前述的步驟S103~S108相同,因此不再贅述。 In this embodiment, in step S201, the user copies the text description of the company introduction information by operating the electronic device 100 and then pastes it. In particular, the user inputs a text description in step S201 instead of simple words or nouns; in step S202, the text analysis unit 3121 performs semantic analysis on the text input by the user and extracts keywords; and determines whether the input text description contains information such as the user's brand name and company name, and the subsequent steps S203~S208 are the same as the aforementioned steps S103~S108, so they are not repeated here.

請接續參閱圖14,顯示本發明之另一實施例方法流程圖,其中包含步驟S301~S309。 Please continue to refer to Figure 14, which shows a flowchart of another embodiment of the method of the present invention, which includes steps S301~S309.

在步驟S301中用戶透過操作電子裝置100輸入介紹文字,並經由文字解析單元3121判斷輸入的語言是否為預設接收的語言是否需進行翻譯;若是需進行翻譯則先進行步驟S302進行語言翻譯,若不需翻譯或完成步驟S302後進行步驟S303,文字解析單元3121對用戶輸入的介紹文字進行語意分析、擷取關鍵字;而後續的步驟S304~S309與前述的步驟S103~S108相同,因此不再贅述。 In step S301, the user inputs the introduction text by operating the electronic device 100, and the text analysis unit 3121 determines whether the input language is the default received language and whether translation is required; if translation is required, step S302 is performed first to perform language translation; if translation is not required or after completing step S302, step S303 is performed, and the text analysis unit 3121 performs semantic analysis on the introduction text input by the user and extracts keywords; and the subsequent steps S304~S309 are the same as the aforementioned steps S103~S108, so they are not repeated.

請接續參閱圖15,顯示本發明之另一實施例方法流程圖,其中包含步驟S401~S408。 Please continue to refer to Figure 15, which shows another method flow chart of the present invention, which includes steps S401~S408.

在步驟S401中用戶透過操作電子裝置100利用語音方式敘述輸入說明文字,且透過文字解析單元3121將語音轉換為文字儲存於記憶體 120中,其中的語音識別技術可以基於模型和算法,將音訊數據與語音模型進行比對,識別出對應的文字內容,並進行文字的後處理,例如語法校正、拼寫修正和語義分析;接著對文字進行判斷,判斷是否具有用戶的品牌名稱、公司名稱等資訊;而後續的步驟S403~S408與前述的步驟S103~S108相同,因此不再贅述。 In step S401, the user uses voice to input the explanatory text by operating the electronic device 100, and the text parsing unit 3121 converts the voice into text and stores it in the memory 120. The voice recognition technology can compare the audio data with the voice model based on the model and algorithm, identify the corresponding text content, and perform post-processing of the text, such as grammar correction, spelling correction and semantic analysis; then judge the text to determine whether it contains the user's brand name, company name and other information; and the subsequent steps S403~S408 are the same as the aforementioned steps S103~S108, so they are not repeated.

請接續參閱圖16,顯示本發明之另一實施例方法流程圖,其中包含步驟S501~S509。 Please continue to refer to Figure 16, which shows a flowchart of another embodiment of the method of the present invention, which includes steps S501~S509.

在此實施例中之步驟S501~S507與前述的步驟S101~S107相同,因此不再贅述。在步驟S508中啟用檢索比對單元3142,將擷取出之具有識別性文字與資料庫400中的已申請的商標前案進行比對,且將比對結果存入記憶體120;在步驟509中,透過報告產生單元3123將比對結果經過排列後產生類別推薦報告以及近似前案列表,且同時附上類別推薦的理由。 Steps S501 to S507 in this embodiment are the same as the aforementioned steps S101 to S107, and therefore will not be described in detail. In step S508, the search comparison unit 3142 is activated to compare the extracted identifying text with the applied trademark previous cases in the database 400, and the comparison results are stored in the memory 120; in step 509, the comparison results are arranged by the report generation unit 3123 to generate a category recommendation report and a list of similar previous cases, and the reasons for the category recommendation are also attached.

請接續參閱圖17,顯示本發明之另一實施例方法流程圖,其中包含步驟S601~S611。 Please continue to refer to Figure 17, which shows a flowchart of another embodiment of the method of the present invention, which includes steps S601~S611.

在此實施例中主要是提供用戶不同國家(跨國)的商標類別推薦,在步驟S601~S608與前述的步驟S101~S108相同,因此不再贅述。在步驟S608後,電子裝置100的顯示螢幕顯示是否進行跨國商品項目轉換提供用戶選擇,若否則結束,若是將進行步驟S609,提供資料庫400中存在的多個國家給用戶選擇,有別於原始申請的國家,再選擇至少一第二申請國;在步驟S610中用戶選定國家後,處理器110讀取記憶體120中該國的商標類別項目並啟用類別項目比對單元3122進行比對;在步驟S611中將比對結果顯示於電子裝置100的顯示螢幕,藉以達到跨國的商標類別推薦功效。 In this embodiment, the main purpose is to provide users with trademark category recommendations of different countries (multinational). Steps S601 to S608 are the same as the aforementioned steps S101 to S108, and therefore will not be described in detail. After step S608, the display screen of the electronic device 100 displays whether to perform a transnational product item conversion for the user to choose. If not, the process ends. If yes, step S609 is performed to provide multiple countries in the database 400 for the user to choose from. Different from the country of the original application, at least one second application country is selected. After the user selects a country in step S610, the processor 110 reads the trademark category items of the country in the memory 120 and activates the category item comparison unit 3122 for comparison. In step S611, the comparison result is displayed on the display screen of the electronic device 100, so as to achieve the effect of transnational trademark category recommendation.

請接續參閱圖18,顯示本發明之另一實施例方法流程圖,其中包含步驟S701~S709。 Please continue to refer to Figure 18, which shows a flowchart of another embodiment of the method of the present invention, which includes steps S701~S709.

在此實施例中步驟S701用戶透過操作電子裝置100輸入介紹文字後,遂先進行申請國家的選擇,在確定商標申請國家後進行步驟S702,文字解析單元3121對用戶輸入的介紹文字做語意分析,並判斷介紹文字中是否具有品牌名稱、公司名稱等資訊,而後續的步驟S703~S707與前述的步驟S103~S107相同,因此不再贅述。在步驟S708中,將步驟S707所產生的比對結果依據用戶在步驟S701所選擇的國家進行跨國轉換,將原始的推薦類別項目轉換為該選擇國家的商品項目;在步S709中報告產生單元3123將轉換結果輸出產生跨國的類別推薦報告。 In this embodiment, after the user inputs the introduction text by operating the electronic device 100 in step S701, the application country is selected first. After the trademark application country is determined, step S702 is performed. The text parsing unit 3121 performs semantic analysis on the introduction text input by the user and determines whether the introduction text contains information such as brand name, company name, etc. The subsequent steps S703~S707 are the same as the aforementioned steps S103~S107, so they are not repeated here. In step S708, the comparison result generated in step S707 is converted across countries according to the country selected by the user in step S701, and the original recommended category items are converted into commodity items of the selected country; in step S709, the report generation unit 3123 outputs the conversion result to generate a cross-country category recommendation report.

請接續參閱圖19,顯示本發明之另一實施例方法流程圖,其中包含步驟S801~S813。 Please continue to refer to Figure 19, which shows a flowchart of another embodiment of the method of the present invention, which includes steps S801~S813.

在此實施例中也是提供可以跨國轉換的類別推薦及風險評估,且步驟S801~S806與前述的步驟S101~S106相同,因此不再贅述。在步驟S807中將已經擷取出的具有識別性文字及解析後的文字透過文字解析單元3121進行語言轉換,在此實施例中預設將所有文字統一轉換為英文;在步驟S808中,類別項目比對單元3122將已轉換為英文的文字與在資料庫400中已經預先轉換為英文的資訊資料進行比對;在步驟S809、S810中,分別是比對商品項目以及比對已申請的案件名稱,比對已申請的案件名稱是透過檢索比對單元3142;在步驟S811中,將步驟S809、S810的比對結果藉由報告產生單元3123進行綜合分析;在步驟S812中報告產生單元3123在 比對結果中以顏色區分類別推薦的優先順位;在步驟S813中報告產生單元3123綜合分析類別推薦與檢索結果後整合產生跨國的風險評估報告。 In this embodiment, category recommendations and risk assessments that can be converted across countries are also provided, and steps S801 to S806 are the same as the aforementioned steps S101 to S106, so they are not repeated here. In step S807, the extracted identifiable text and the parsed text are converted to English by the text parsing unit 3121. In this embodiment, all text is converted to English by default. In step S808, the category item comparison unit 3122 compares the text converted to English with the information data that has been pre-converted to English in the database 400. In steps S809 and S810, the product items are compared and the applied cases are compared. The case name is compared with the case name that has been applied for through the search and comparison unit 3142; in step S811, the comparison results of steps S809 and S810 are comprehensively analyzed by the report generation unit 3123; in step S812, the report generation unit 3123 distinguishes the priority of the category recommendation by color in the comparison result; in step S813, the report generation unit 3123 comprehensively analyzes the category recommendation and the search result and integrates them to generate a cross-border risk assessment report.

請接續參閱圖20,顯示本發明之另一實施例方法流程圖,其中包含步驟S901~S914。 Please continue to refer to Figure 20, which shows another method flow chart of the present invention, including steps S901~S914.

此實施例也是提供跨國的類別推薦與風險評估方法,且步驟S901~S906與前述的步驟S101~S106相同、步驟S907與前述步驟S807相同,因此不再贅述。在步驟S908中啟用文字解析單元3121將擷取出的識別性文字與解析後的文字進行同義詞或近似詞生成,產出近似詞或同義詞的方法可以為但不限於文字解析單元3121利用已有的詞彙表,將詞彙的同義詞或相似詞納入詞彙表中,透過匹配詞彙表中的詞彙,生成近似詞或同義詞。例如WordNet就是一個基於詞彙表擴充法的同義詞生成系統,或是利用大量的語料庫來學習單詞之間的關係,包括詞彙共現和上下文相似度等,生成詞彙之間的相似性分數,進而生成近似詞或同義詞。例如LSI(Latent Semantic Indexing)和LDA(Latent Dirichlet Allocation)。 This embodiment also provides a cross-national category recommendation and risk assessment method, and steps S901 to S906 are the same as the aforementioned steps S101 to S106, and step S907 is the same as the aforementioned step S807, so they are not repeated. In step S908, the text parsing unit 3121 is activated to generate synonyms or similar words for the extracted identification text and the parsed text. The method of generating similar words or synonyms can be, but is not limited to, the text parsing unit 3121 using an existing vocabulary, including synonyms or similar words of the vocabulary into the vocabulary, and generating similar words or synonyms by matching the words in the vocabulary. For example, WordNet is a synonym generation system based on vocabulary expansion, or using a large corpus to learn the relationship between words, including word co-occurrence and context similarity, to generate similarity scores between words, and then generate similar words or synonyms. For example, LSI (Latent Semantic Indexing) and LDA (Latent Dirichlet Allocation).

WordNet是一個英文詞彙的電腦化詞彙庫,包含大量的英文單詞,並以詞彙的語意和語法關係作為基礎組織和管理單詞,WordNet的目的是提供一個可靠的語言資源,用於自然語言處理和語義分析。 WordNet is a computerized vocabulary of English words, containing a large number of English words, and organizing and managing words based on the semantic and grammatical relationships of the words. The purpose of WordNet is to provide a reliable language resource for natural language processing and semantic analysis.

LSI(Latent Semantic Indexing)是一種自然語言處理技術,用於識別同義詞和相似詞,它的基本原理是通過將文本轉換為向量空間模型,然後進行奇異值分解(Singular Value Decomposition,SVD)來識別詞語之間的語義關係,具體而言,LSI運用了文本中的詞頻統計學方法,將文本中的詞彙進行處理,將它們轉換為向量空間模型。在進行SVD之前,LSI 通常使用TF-IDF(Term Frequency-Inverse Document Frequency)權重來加權詞彙,以消除一些常用詞語的影響,從而更好地捕捉詞彙之間的關聯性,透過這樣的處理,LSI可以生成一個詞彙-文本矩陣,其中每個詞彙對應於一個向量。通過奇異值分解,LSI可以分解出這個詞彙-文本矩陣的奇異值和奇異向量,從而捕捉文本中隱含的語義信息。基於這些語義信息,LSI可以計算兩個詞彙之間的相似度,從而找出同義詞或相似詞。 LSI (Latent Semantic Indexing) is a natural language processing technology used to identify synonyms and similar words. Its basic principle is to identify the semantic relationship between words by converting the text into a vector space model and then performing singular value decomposition (SVD). Specifically, LSI uses the word frequency statistics method in the text to process the words in the text and convert them into a vector space model. Before performing SVD, LSI usually uses TF-IDF (Term Frequency-Inverse Document Frequency) weights to weight the words to eliminate the influence of some common words, so as to better capture the correlation between words. Through such processing, LSI can generate a word-text matrix in which each word corresponds to a vector. Through singular value decomposition, LSI can decompose the singular values and singular vectors of this word-text matrix to capture the implicit semantic information in the text. Based on this semantic information, LSI can calculate the similarity between two words to find synonyms or similar words.

此外,LDA(Latent Dirichlet Allocation)是一種常用的主題模型,可以將一個文集中的文本分配到多個主題中,同時可以找到每個主題所代表的詞彙分布,這個詞彙分布可以用來尋找同義詞或近似詞,首先需要準備一個文本集,這個文本集可以是任何包含目標詞彙的文本集合。接著,使用LDA將這個文本集分配到多個主題中,同時可以找到每個主題所代表的詞彙分布,對於一個目標詞彙,可以使用其在LDA模型中對應的詞彙分布來尋找同義詞或近似詞。具體來說,可以計算目標詞彙的詞彙分布和其他詞彙的詞彙分布之間的相似度,找到與目標詞彙相似的詞彙作為同義詞或近似詞。 In addition, LDA (Latent Dirichlet Allocation) is a commonly used topic model that can distribute text in a collection to multiple topics and find the vocabulary distribution represented by each topic. This vocabulary distribution can be used to find synonyms or similar words. First, you need to prepare a text set, which can be any text set containing the target vocabulary. Then, use LDA to distribute this text set to multiple topics and find the vocabulary distribution represented by each topic. For a target vocabulary, you can use its corresponding vocabulary distribution in the LDA model to find synonyms or similar words. Specifically, you can calculate the similarity between the vocabulary distribution of the target vocabulary and the vocabulary distribution of other words, and find words similar to the target vocabulary as synonyms or similar words.

文字解析單元3121同樣可使用腳本語言(例如Python)編寫一個程式來執行WordNet、LSI(Latent Semantic Indexing)、LDA(Latent Dirichlet Allocation)進行文字解析並產出同義詞或近似詞。 The text parsing unit 3121 can also use a scripting language (such as Python) to write a program to execute WordNet, LSI (Latent Semantic Indexing), LDA (Latent Dirichlet Allocation) to perform text parsing and generate synonyms or similar words.

其中,值得提出說明的是,於本發明技術中的機器翻譯係採用直接的方法並基於深度學習的機器翻譯模型,例如Google的Transformer模型或Facebook的FAIR SEQ模型,將一國的商標商品項目語句直接翻譯 成另一國的語言。從而進入另一國的商品項目資料庫中進行直接的文字比對。 It is worth pointing out that the machine translation in the present invention adopts a direct method and a deep learning-based machine translation model, such as Google's Transformer model or Facebook's FAIR SEQ model, to directly translate the trademark product item language of one country into the language of another country. Then, the product item database of another country is entered for direct text comparison.

此外,於本發明技術中建立一個跨國商標商品項目的知識圖譜(Knowledge Graph),知識圖譜用以建立節點矩陣關聯,其中的每個節點代表不同國家的商品項目,邊則代表商品項目之間的相關性或相似性。並依各國之間商品項目與各國商標項目之間的等價關係根據時間演進的動態學習模式,該知識圖譜單元轉換至少包含以下步驟:將多國商標商品項目與商標專案關係資料收集與動態模型學習,透過圖譜查詢與自然與研磨行推理,推算出最佳匹配、最短路徑、最大流量,並根據最終決策結果進行優化商品項目之等價關係。這種方法可以直觀地顯示出不同國家間的商品項目轉換關係,而此知識圖普的建構係透過時間進行蒐集,當中,係包括但不限定於如下的資訊:已完成註冊之跨國商標公告資訊(商標家族)、先前用戶完成轉換的結果、透過字義擴充與翻譯比對所建構的商品項目對照表、以及部分國家智財局公開之商品項目翻譯對照表。 In addition, a knowledge graph of multinational trademarked product items is established in the present invention. The knowledge graph is used to establish node matrix associations, where each node represents a product item from a different country, and the edge represents the correlation or similarity between product items. Based on the dynamic learning model of time evolution based on the equivalence relationship between product items and trademark items of each country, the knowledge graph unit conversion includes at least the following steps: collecting data on the relationship between multinational trademarked product items and trademark projects and learning dynamic models, and calculating the best match, shortest path, and maximum flow through graph query and natural and abrasive reasoning, and optimizing the equivalence relationship of product items based on the final decision result. This method can intuitively show the conversion relationship between commodity items in different countries. The construction of this knowledge map is collected over time, including but not limited to the following information: information on the announcement of registered transnational trademarks (trademark families), the results of conversion completed by previous users, a commodity item comparison table constructed through word meaning expansion and translation comparison, and a partial commodity item translation comparison table published by the National Intellectual Property Administration.

其詳細的建構流程如下:在商標商品項目(goods or services)的跨國申請轉換技術中,知識圖譜可能包括以下元素:實體:各國的商標商品項目。 The detailed construction process is as follows: In the cross-border application transfer technology of trademark goods or services, the knowledge graph may include the following elements: Entity: trademark goods items in various countries.

關係:各商品項目之間的相似性或等價關係,例如,美國的某一商標商品項目可能與德國的某一商品項目具有相同或相似的含義使用知識圖譜進行跨國商標申請轉換,係遵循以下步驟:資料收集:首先,收集各國商標商品專案的資料,以及這些商品專案之間的關係。這部份需要大量的人工努力,部份也需要自動化的資料抓取 和處理技術。並使用收集到的資料構建知識圖譜,當中每個商品項目都是一個節點,每個節點之間的關係是一條邊。 Relationship: Similarity or equivalence between product items. For example, a certain trademark product item in the United States may have the same or similar meaning as a certain product item in Germany. The following steps are followed to use the knowledge graph for cross-border trademark application conversion: Data collection: First, collect data on trademark product items in various countries and the relationships between these product items. This part requires a lot of manual effort, and partly requires automated data crawling and processing technology. And use the collected data to construct a knowledge graph, in which each product item is a node and the relationship between each node is an edge.

圖譜查詢和推理:使用查詢和推理技術,係基於知識圖譜找出原始國家的商標商品專案與目標國家的商品專案之間的最佳匹配,當中涉及到圖論中的最短路徑、最大流等問題。最後係執行結果評估和回饋:對查詢和推理的結果進行評估,如果結果不準確或不滿意,可以根據回饋更新知識圖譜。 Graph query and reasoning: Using query and reasoning techniques, the best match between the trademark product project of the original country and the product project of the target country is found based on the knowledge graph, which involves problems such as the shortest path and maximum flow in graph theory. Finally, the result evaluation and feedback are performed: the query and reasoning results are evaluated. If the results are inaccurate or unsatisfactory, the knowledge graph can be updated based on the feedback.

另一方面,於本發明技術的詞向量分析在商標商品項目的跨國申請轉換技術中,係被運用來捕捉和理解不同國家商標分類系統中商品項目的語意相關性,並實現轉換的過程。 On the other hand, in the technology of the present invention, the word vector analysis is used in the cross-border application conversion technology of trademark product items to capture and understand the semantic relevance of product items in the trademark classification systems of different countries and realize the conversion process.

以下提供本發明技術的其中一種應用方法和建立資料庫模型與訓練方式:建立多語言詞向量模型:首先,我們將不同國家的商標商品項目敘述轉換成詞向量。這邊係通過訓練一個多語言詞向量模型實現,例如,我們可使用公開的大規模多語言文本數據集來訓練這個模型,或者使用已經訓練好的多語言詞向量模型,如Facebook的FastText但不限定上述語言模型。 The following provides one of the application methods of the present invention and the database model and training method: Establish a multilingual word vector model: First, we convert the descriptions of trademark product items in different countries into word vectors. This is achieved by training a multilingual word vector model. For example, we can use a large-scale public multilingual text dataset to train this model, or use a pre-trained multilingual word vector model, such as Facebook's FastText but not limited to the above language models.

轉換商品項目敘述:將原始國家的商標商品項目敘述轉換成詞向量,然後再將這些詞向量轉換成目標國家的語言。這一步係可通過詞向量之間的相似性實現,例如,我們可以找出原始語言中的詞向量與目標語言中詞向量的最近鄰居,並用這些最近鄰居的詞語來組成新的商品項目敘述。 Transform product item descriptions: Transform the product item descriptions of the trademark in the original country into word vectors, and then transform these word vectors into the language of the target country. This step can be achieved through the similarity between word vectors. For example, we can find the nearest neighbors of the word vectors in the original language and the word vectors in the target language, and use these nearest neighbor words to form new product item descriptions.

人工審核與調整修正:由於詞向量模型雖然強大,但仍然無法完全理解語言的細微差別和文化差異,因此在轉換完成後,可透過人工審核和修正來強化此訓練效果。例如,透過專家團隊來審核和修正轉換結果,並將這些 修正的數據再次用於訓練模型,以此來不斷提高模型的轉換精度。並且持續優化模型:隨著時間的推移,可以根據實際的需求和效果,不斷優化模型,例如,增加更多語言的支持,或者改善處理特定種類商品項目的能力。 Manual review and adjustment: Although the word vector model is powerful, it still cannot fully understand the subtle differences in language and cultural differences. Therefore, after the conversion is completed, the training effect can be strengthened through manual review and correction. For example, a team of experts can review and correct the conversion results, and use these corrected data to train the model again to continuously improve the conversion accuracy of the model. And continue to optimize the model: Over time, the model can be continuously optimized according to actual needs and effects, for example, adding support for more languages, or improving the ability to handle specific types of product items.

以上的方法只是一種可能的方式,實際的實施可能會根據具體的需求和條件進行調整。以本案的實際轉化案例來說,係透過以下的”詞向量”轉化模型而完成,當中係包含:詞向量訓練:利用大規模語料庫訓練詞向量模型,並基於語境將每個詞映射到一個高維空間,其中近似詞會在這個空間內彼此靠近。其轉化公式為以下目標函數:

Figure 112120780-A0305-02-0037-4
The above method is just one possible way, and the actual implementation may be adjusted according to specific needs and conditions. For the actual conversion case in this case, it is completed through the following "word vector" conversion model, which includes: Word vector training: Use a large-scale corpus to train the word vector model, and map each word to a high-dimensional space based on the context, where similar words will be close to each other in this space. The conversion formula is the following target function:
Figure 112120780-A0305-02-0037-4

其中T是語料庫的詞數,c是一個選擇的窗口大小,θ是模型參數,p(w_{t+j}|w_t)是給定中心詞w_t的情況下,上下文詞w_{t+j}的條件概率。 where T is the number of words in the corpus, c is a chosen window size, θ is the model parameter, and p ( w_ { t + j }| w_t ) is the conditional probability of the context word w_ { t + j } given the center word w_t.

轉換函數:利用已訓練的詞向量模型,我們可以為A國和B國的商品項目產生對應的詞向量,並且,我們建立一個轉換函數來將A國的商品項目詞向量映射到B國的商品項目詞向量當中。並最小化A國的詞向量與其對應的B國詞向量之間的距離。假設我們有一組A國與B國的商品項目配對(x_i,y_i),其中i=1,...,N,N是配對數量,那最小化目標的公式為:min_W Σ_{i=1}^{N}∥Wx_i-y_i∥^2 Conversion function: Using the trained word vector model, we can generate corresponding word vectors for the product items of country A and country B, and we establish a conversion function to map the word vector of the product item of country A to the word vector of the product item of country B. And minimize the distance between the word vector of country A and its corresponding word vector of country B. Suppose we have a set of product item pairs of country A and country B (x_i, y_i), where i=1,...,N, N is the number of pairs, then the formula for minimizing the objective is: min _ W Σ _{ i =1}^{ N }∥ Wx _ i - y _ i ∥^2

其中W是我們希望學習的轉換矩陣。假設我們要轉換的美國商標商品項目是"computer software",我們首先將這個片語轉換為詞向量,並使用已經訓練好的詞向量模型,我們可以得到"computer software"的詞向量表示v_US。然後,我們應用轉換矩陣W到v_US,即W * v_US,得到的結果就是 轉換後的詞向量v_TW。接下來,我們需要找到最接近v_TW的臺灣商標商品項目。這可以通過計算v_TW與臺灣商標商品項目詞向量的相似度來實現,相似度一般使用余弦相似度來衡量。計算公式如下:sim(a,b)=ab/(∥a∥*∥b∥)其中a和b是兩個詞向量,a.b表示向量點積,∥a∥和∥b∥分別表示向量a和b的範數。 Where W is the transformation matrix we want to learn. Assuming that the U.S. trademark product item we want to transform is "computer software", we first convert this phrase into a word vector, and using the trained word vector model, we can get the word vector representation v_US of "computer software". Then, we apply the transformation matrix W to v_US, that is, W * v_US, and the result is the transformed word vector v_TW. Next, we need to find the Taiwanese trademark product item that is closest to v_TW. This can be achieved by calculating the similarity between v_TW and the Taiwanese trademark product item word vector. The similarity is generally measured using cosine similarity. The calculation formula is as follows: sim ( a , b ) = a . b /(∥ a ∥*∥ b ∥) where a and b are two word vectors, a.b represents the dot product of vectors, and ∥a∥ and ∥b∥ represent the norms of vectors a and b respectively.

最後系統查詢所有的臺灣商標商品項目詞向量,找到與v_TW余弦相似度最高的項目,這個項目就是轉換後的結果。當中,系統可判斷出找到的最相似的臺灣商標商品項目是"電腦軟體",並將其設定為轉換的結果。 Finally, the system searches all Taiwan trademark product item word vectors and finds the item with the highest cosine similarity to v_TW. This item is the result of the conversion. Among them, the system can determine that the most similar Taiwan trademark product item found is "computer software" and set it as the result of the conversion.

其中,於本系統與方法架構中,確保各國商品項目資料庫的更新係為核心重點,由於每個國家的商品項目資料庫於每年可能進行一至兩次不定時的更新,當中,有可能淘汰掉舊的商品項目名稱,也會新增新的商品項目;其中,新增的商品項目如官方有告知其對應到原始舊版的某一商品項目時,則需一同將此類訊息更新於系統的知識圖譜當中;反之,若官方未告知對應關係,則可透過詞像量比對或人工等方式來進行對照關係的維護。 Among them, in the framework of this system and method, ensuring the update of the commodity item database of each country is the core focus. Since the commodity item database of each country may be updated once or twice a year, old commodity item names may be eliminated and new commodity items may be added. Among them, if the official has informed that the newly added commodity item corresponds to a certain commodity item of the original old version, such information must be updated in the knowledge atlas of the system; on the contrary, if the official has not informed the corresponding relationship, the corresponding relationship can be maintained through word image comparison or manual methods.

在步驟S909中將步驟S907及S908的文字與資料庫400中已經語言轉換過的商標類別項目透過類別項目比對單元3122進行比對;在步驟S910及S911中,依據文字進行解析產生類別推薦,同時依識別性文字透過檢索比對單元3142進行前案檢索;在步驟S912中報告產生單元3123將檢索結果與比對結果進行綜合分析,並於步驟S913中以顏色方式區分推薦類別,再於步驟S914中透過報告產生單元3123進行推薦類別中的檢索前案比對,產生風險評估報告。 In step S909, the text in steps S907 and S908 is compared with the language-converted trademark category items in the database 400 through the category item comparison unit 3122; in steps S910 and S911, the text is analyzed to generate category recommendations, and the previous cases are searched through the search comparison unit 3142 based on the identification text; in step S912, the report generation unit 3123 comprehensively analyzes the search results and the comparison results, and distinguishes the recommended categories by color in step S913, and then in step S914, the report generation unit 3123 compares the searched previous cases in the recommended category to generate a risk assessment report.

接著請參閱圖21A及圖21B,係顯示本發明的應用實例示意圖。如圖所示,使用者在本系統的網頁中(https://inta.aiplux.com/)任意輸入描述文字或介紹文字,其文字內容可以包含但不限於品牌名稱、公司名稱、商品描述、服務描述、公司理念、公司介紹等,在輸入完描述文字後即可按下分析按鈕。 Next, please refer to Figures 21A and 21B, which are schematic diagrams showing application examples of the present invention. As shown in the figure, the user can enter any descriptive text or introduction text in the webpage of this system (https://inta.aiplux.com/). The text content can include but is not limited to brand name, company name, product description, service description, company philosophy, company introduction, etc. After entering the descriptive text, you can press the analysis button.

經由本系統的類別推薦模組運算之後即立即產生結果,其結果包含從描述文字中擷取出的品牌名稱、公司名稱、商標名稱,以及從描述文字中解析出的產業資訊,最重要的是,依據解析出的產業資訊經過比對後產生的推薦商標類別,以及該商標類別中的推薦商品項目。 The results are generated immediately after the category recommendation module of this system calculates, and the results include the brand name, company name, trademark name extracted from the description text, and the industry information parsed from the description text. Most importantly, the recommended trademark category is generated after comparison based on the parsed industry information, and the recommended product items in the trademark category.

接下來,本案將透過具體流程說明與展示,進而說明當用戶輸入任一段敘述進入本發明系統時,其系統的後台運作流程具體分為以下五個主要動作並使用其對應技術據以實現:實體識別(NER)、主題建模或文本分類、識別性文字判斷、商標類別推薦以及商標商品項目(goods and services)推薦。其中,舉例當用戶輸入系統訊息為『AIPLUX科技股份有限公司發表台灣第一個大語言模型,該模型透過超級電腦建立出的高達1,760億參數,結合語意理解與文本生成能力,推出企業級生成式AI解決方案。』為例,則於實體識別(NER)階段:系統使用NER模型進而識別出文本中的組織名稱(例如"AIPLUX科技股份有限公司")。 Next, this case will explain and demonstrate the specific process, and further explain that when the user enters any description into the system of the present invention, the background operation process of the system is specifically divided into the following five main actions and implemented using the corresponding technologies: entity recognition (NER), topic modeling or text classification, discriminative text judgment, trademark category recommendation, and trademark goods and services recommendation. For example, when the user enters the system message "AIPLUX Technology Co., Ltd. published Taiwan's first large language model, which was established by supercomputers with up to 176 billion parameters, combining semantic understanding and text generation capabilities to launch an enterprise-level generative AI solution. 'For example, in the entity recognition (NER) stage: the system uses the NER model to further identify the organization name in the text (such as "AIPLUX Technology Co., Ltd.").

並且,於主題建模或文本分類階段,則協助系統理解文本中的主要話題並將它們分類到相應的產業,進而使用主題建模來識別出“人工智能”、“自然語言處理”和“大數據”等關鍵詞,並將其歸類到相應的產業類別。此外,於識別性文字判斷階段中,系統需要找出文本中的關鍵字,這些詞 彙能夠代表該公司的主要名稱,在這個例子中,系統即將"AIPLUX"視為識別性的詞彙。 Furthermore, in the topic modeling or text classification stage, it helps the system understand the main topics in the text and classify them into corresponding industries. It then uses topic modeling to identify keywords such as "artificial intelligence", "natural language processing" and "big data" and classify them into corresponding industry categories. In addition, in the discriminative text judgment stage, the system needs to find keywords in the text that can represent the main name of the company. In this example, the system will consider "AIPLUX" as a discriminative term.

於商標類別推薦階段中,系統係依據以上的信息來推薦商標的國際類別。當中,若以一家公司主要從事人工智能、自然語言處理和大數據相關的業務,系統將推薦9類(科學儀器)、42類(科學和技術服務)和41類(教育和娛樂服務)等相關的商標類別。最後,於商標商品項目(goods and services)推薦階段中,系統根據公司的產業類別和主要業務來推薦相關的商品和服務項目。當中,若以一家公司主要從事人工智能的研發,我們可以推薦與人工智能相關的商品和服務項目,如“人工智能顧問服務”、“人工智能技術研究”等。 In the trademark category recommendation stage, the system recommends the international category of the trademark based on the above information. Among them, if a company is mainly engaged in artificial intelligence, natural language processing and big data related businesses, the system will recommend relevant trademark categories such as 9 categories (scientific instruments), 42 categories (scientific and technical services) and 41 categories (education and entertainment services). Finally, in the trademark goods and services recommendation stage, the system recommends related goods and services items based on the company's industry category and main business. Among them, if a company is mainly engaged in the research and development of artificial intelligence, we can recommend goods and services related to artificial intelligence, such as "artificial intelligence consulting services", "artificial intelligence technology research", etc.

更詳細地說明,其中,實體識別(NER)屬於一種自然語言處理(NLP)技術,並用於識別文本中的具有特定意義的詞語,如人名、組織名、地名等。其不限定但可使用以下模型來完成:隱馬爾科夫模型(HMM)、最大熵馬爾科夫模型(MEMM)、條件隨機域(CRF)、或基於神經網路的模型如BiLSTM-CRF。其中,於本案展示中,係透過BiLSTM-CRF模型來執行,其具體步驟係對每個單詞進行詞嵌入並將單詞轉換為密集的向量表示,詞嵌入可以利用如word2vec、GloVe(Global Vectors for Word Representation)、CKIP(Chinese Knowledge and Information Processing)或者BERT(Bidirectional Encoder Representations from Transformers)等預訓練模型獲得。並使用雙向長短期記憶(BiLSTM)網絡對詞嵌入進行處理,其中,於這一階段係可獲取每個詞在其語境中的表示。接著,將BiLSTM的輸出送入CRF層:CRF層能考慮標籤之間的依賴性,使得序列標記結果更加準確。 To explain in more detail, entity recognition (NER) is a natural language processing (NLP) technology and is used to identify words with specific meanings in text, such as names of people, organizations, places, etc. It is not limited but can be completed using the following models: hidden Markov model (HMM), maximum entropy Markov model (MEMM), conditional random field (CRF), or neural network-based models such as BiLSTM-CRF. Among them, in this case demonstration, it is implemented through the BiLSTM-CRF model. The specific steps are to embed each word and convert the word into a dense vector representation. The word embedding can be obtained using pre-trained models such as word2vec, GloVe (Global Vectors for Word Representation), CKIP (Chinese Knowledge and Information Processing) or BERT (Bidirectional Encoder Representations from Transformers). The word embedding is processed using a bidirectional long short-term memory (BiLSTM) network. At this stage, the representation of each word in its context can be obtained. Then, the output of the BiLSTM is sent to the CRF layer: the CRF layer can consider the dependency between labels, making the sequence labeling result more accurate.

以本展示內容中,使用者輸入『AIPLUX科技股份有限公司發表台灣第一個企業用大語言模型,該模型透過超級電腦建立出的高達1,760億參數,結合語意理解與文本生成能力,推出企業級生成式AI解決方案。』為例,將句子切分為單詞序列:["AIPLUX科技股份有限公司","發表","台灣","第一個","企業用","大","語言模型","該模型","透過","超級","電腦","建立","出","的","高達","1,760","億","參數","結合","繁中","的","語意理解","與","文本生成能力","推出","企業級","生成式","AI","解決方案"],進一步地使用預訓練的使用預訓練的詞嵌入模型(例如word2vec、GloVe或BERT)將每個詞轉換為一個向量。 In this demonstration, the user inputs "AIPLUX Technology Co., Ltd. has released Taiwan's first large language model for enterprise use. The model has up to 176 billion parameters built by supercomputers, combining semantic understanding and text generation capabilities to launch an enterprise-level generative AI solution. 』 Take the sentence as an example, split the sentence into word sequences: ["AIPLUX Technology Co., Ltd.", "published", "Taiwan", "first", "enterprise use", "big", "language model", "the model", "through", "super", "computer", "established", "out", "of", "up to", "1,760", "billion", "parameters", "combined", "traditional Chinese", "of", "semantic understanding", "with", "text generation capability", "launched", "enterprise-level", "generative", "AI", "solution"], and further use pre-trained word embedding models (such as word2vec, GloVe or BERT) to convert each word into a vector.

例如,我們假設"AIPLUX科技股份有限公司"的詞向量為[0.1,0.2,...,0.5](實際上,一個詞向量通常有幾百到幾千個維度),"發表"的詞向量為[0.2,0.3,...,0.6],等等。將詞向量送入BiLSTM網路。BiLSTM可以獲取每個詞的上下文資訊。例如,給定"AIPLUX科技股份有限公司"的詞向量,BiLSTM可以根據其前後的詞("發表"和"台灣")來生成一個新的向量,這個向量包含了"AIPLUX科技股份有限公司"在句子中的上下文資訊。將BiLSTM的輸出送入CRF層。CRF層會給出每個詞的標籤概率。例如,CRF可能會判斷"AIPLUX科技股份有限公司"的標籤為"ORG"(代表組織名),"發表"的標籤為"O"(代表非實體詞),等等。 For example, we assume that the word vector of "AIPLUX Technology Co., Ltd." is [0.1, 0.2, ..., 0.5] (in fact, a word vector usually has hundreds to thousands of dimensions), the word vector of "publish" is [0.2, 0.3, ..., 0.6], and so on. Feed the word vector into the BiLSTM network. BiLSTM can obtain contextual information for each word. For example, given the word vector of "AIPLUX Technology Co., Ltd.", BiLSTM can generate a new vector based on the words before and after it ("publish" and "Taiwan"), which contains the contextual information of "AIPLUX Technology Co., Ltd." in the sentence. Feed the output of BiLSTM into the CRF layer. The CRF layer will give the label probability of each word. For example, CRF may determine that the label of "AIPLUX Technology Co., Ltd." is "ORG" (representing the organization name), the label of "publish" is "O" (representing a non-entity word), and so on.

最後,我們選擇概率最大的標籤序列作為NER的結果。例如,對於上述句子,NER的結果可能為:["ORG","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O"] Finally, we select the label sequence with the highest probability as the result of NER. For example, for the above sentence, the NER result may be: ["ORG","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O","O"]

從而,以這個結果表示,"AIPLUX科技股份有限公司"被識別為一個組織名,其餘的詞都被識別為非實體詞。 Therefore, according to this result, "AIPLUX Technology Co., Ltd." is identified as an organization name, and the rest of the words are identified as non-entity words.

接著,以主題建模或文本分類階段中,主題建模通常使用無監督學習演算法,如Latent Dirichlet Allocation(LDA),通過分析文檔的詞頻,識別出文檔的主題。而文本分類則使用有監督學習演算法,需要預先標注好的資料,於本案中使用的演算法技術包含但不限定為以下演算法:樸素貝葉斯(Naive Bayes)、支持向量機(SVM)、或者深度學習方法如卷積神經網路(CNN)、長短期記憶網路(LSTM)等。而於本次演示過程中,所採用的主題建模LDA演算法主要技術係將每個文檔可以看作是一個主題的混合體,而每個主題則可以看作是詞語的概率分佈。具體實現上,LDA使用Dirichlet分佈來建模文檔對主題的分佈和主題對詞語的分佈,然後通過反覆運算優化,得到每個文檔的主題分佈和每個主題的詞語分佈。在經過分詞後,我們得到文檔的詞項表示,並在LDA的計算過程中,系統可得到每個主題的詞項分佈和每篇文檔的主題分佈後,透過檢查每個主題的詞項分佈,找出每個主題的關鍵字。當中,即將"人工智慧"、"自然語言處理"和"大資料"等判定為同一主題的關鍵字,進而進行摘錄。 Next, in the topic modeling or text classification stage, topic modeling usually uses unsupervised learning algorithms, such as Latent Dirichlet Allocation (LDA), to identify the topic of the document by analyzing the word frequency of the document. Text classification uses supervised learning algorithms, which require pre-annotated data. The algorithm technology used in this case includes but is not limited to the following algorithms: Naive Bayes, support vector machine (SVM), or deep learning methods such as convolutional neural network (CNN), long short-term memory network (LSTM), etc. In this demonstration, the main technology of the topic modeling LDA algorithm used is to regard each document as a mixture of topics, and each topic can be regarded as the probability distribution of words. In practice, LDA uses Dirichlet distribution to model the distribution of documents to topics and the distribution of topics to words, and then through repeated calculations and optimization, we get the distribution of topics for each document and the distribution of words for each topic. After word segmentation, we get the term representation of the document, and in the calculation process of LDA, the system can get the term distribution of each topic and the topic distribution of each document, and then find the keywords of each topic by checking the term distribution of each topic. Among them, "artificial intelligence", "natural language processing" and "big data" are determined as keywords of the same topic, and then excerpted.

以識別性文字判斷階段中,關鍵字提取係可透過TF-IDF或TextRank等方法完成,其中,TF-IDF考慮了詞頻(TF)和逆文檔頻率(IDF)來評估一個詞的重要性。識別性文字判斷的主要任務是找出那些對商標有獨特標識性的部分,也就是那些能夠說明消費者識別並區分商品來源的文字。在你提供的例子中,“AIPLUX”就可能被判斷為識別性文字,因為它可能是一個特定的品牌名稱或公司名稱,而“科技股份有限公司”則可能被判斷為不具識 別性的文字,因為它是一個通用的詞彙,無法幫助消費者區分商品來源。這個任務可以通過以下步驟實現:首先,構建一個包含所有已注冊商標的詞典,這個詞典可以從各智財局的商標資料庫中獲取;其次,構建一個包含所有常見詞彙的詞典,這個詞典可以從大規模的文本資料中獲取,例如Wiki百科或其他大型語料庫。最後,透過上述兩個詞典來識別出文本中的識別性文字和非識別性文字。 In the identification word determination stage, keyword extraction can be done through methods such as TF-IDF or TextRank, where TF-IDF considers term frequency (TF) and inverse document frequency (IDF) to evaluate the importance of a word. The main task of identification word determination is to find those parts that are unique to the trademark, that is, those words that can explain consumers to identify and distinguish the source of the product. In the example you provided, "AIPLUX" may be determined as an identification word because it may be a specific brand name or company name, while "科技股份有限公司" may be determined as a non-identifying word because it is a general term that cannot help consumers distinguish the source of the product. This task can be achieved through the following steps: first, build a dictionary containing all registered trademarks, which can be obtained from the trademark databases of various intellectual property offices; second, build a dictionary containing all common words, which can be obtained from large-scale text data, such as Wikipedia or other large corpora. Finally, use the above two dictionaries to identify the identifiable and non-identifiable words in the text.

其中,單純透過上述兩個詞典的評估方式,仍存有不足與判斷失真風險,識別性文字通常具有一定的獨特性,因此不太可能出現在常見詞彙詞典中。然而,這個假設並不總是成立,有些識別性文字可能也是常見詞彙。因此,在實際應用中,我們可能需要結合其他資訊來提高識別性文字判斷的準確性,例如使用機器學習模型來預測一個詞是否具有識別性,或者使用知識圖譜來理解一個詞在特定上下文中的含義。 Among them, simply using the above two dictionaries for evaluation still has deficiencies and the risk of judgment distortion. Identification words usually have certain uniqueness and are therefore unlikely to appear in common vocabulary dictionaries. However, this assumption is not always true, and some identification words may also be common words. Therefore, in practical applications, we may need to combine other information to improve the accuracy of identification word judgment, such as using machine learning models to predict whether a word is identification, or using knowledge graphs to understand the meaning of a word in a specific context.

承上述,本發明實施例中,係進一步地,系統使用TF-IDF的方法來提取關鍵字。進而用以評估一個詞在一個文檔集合中的重要性。TF-IDF的計算公式為:TF-IDF(t,d,D)=TF(t,d)*IDF(t,D) Based on the above, in the embodiment of the present invention, the system further uses the TF-IDF method to extract keywords. It is then used to evaluate the importance of a word in a document set. The calculation formula of TF-IDF is: TF - IDF ( t , d , D ) = TF ( t , d ) * IDF ( t , D )

其中:t是一個詞,d是一個文檔,D是所有文檔的集合,TF(t,d)是詞t在文檔d中的詞頻(term frequency),通常可以通過計數詞t在文檔d中出現的次數並除以文檔d中的總詞數來計算;IDF(t,D)是詞t的逆文檔頻率(inverse document frequency),可以通過計算文檔總數除以包含詞t的文檔數目的對數來計算。 Where: t is a word, d is a document, D is the set of all documents, TF(t,d) is the term frequency of word t in document d, which can usually be calculated by counting the number of times word t appears in document d and dividing it by the total number of words in document d; IDF(t,D) is the inverse document frequency of word t, which can be calculated by calculating the total number of documents divided by the logarithm of the number of documents containing word t.

以“AIPLUX科技股份有限公司”當中,系統判定其為包含兩個詞的文檔,其中“AIPLUX”出現了一次,“科技股份有限公司”也出現了一次,所以他們的TF值都是1/2=0.5。接著我們需要計算IDF值,假設我們的文件庫包含了10000個文檔,“AIPLUX”只在10個文檔中出現過,而“科技股份有限公司”在1000個文檔中出現過,所以他們的IDF值分別是log(10000/10)=3和log(10000/1000)=1。最後,我們將TF值和IDF值相乘,得到“AIPLUX”的TF-IDF值是0.5 * 3=1.5,而“科技股份有限公司”的TF-IDF值是0.5 * 1=0.5。由此我們可以看出,“AIPLUX”在這個文檔中的重要性大於“科技股份有限公司”。 For "AIPLUX Technology Co., Ltd.", the system determines that it is a document containing two words, in which "AIPLUX" appears once and "Technology Co., Ltd." also appears once, so their TF values are both 1/2=0.5. Then we need to calculate the IDF value. Assuming that our document library contains 10,000 documents, "AIPLUX" only appears in 10 documents, and "Technology Co., Ltd." appears in 1,000 documents, so their IDF values are log(10000/10)=3 and log(10000/1000)=1 respectively. Finally, we multiply the TF value and the IDF value, and get the TF-IDF value of "AIPLUX" is 0.5 * 3=1.5, and the TF-IDF value of "Technology Co., Ltd." is 0.5 * 1=0.5. From this we can see that "AIPLUX" is more important than "Technology Co., Ltd." in this document.

更進一步地,本發明係採用知識圖譜(Knowledge Graph)技術以更加優化本技術中的識別性文字判斷效果,其中,知識圖譜能夠存儲大量的實體及其屬性和關係的資訊。在這個問題中,我們可以將“AIPLUX”和“科技股份有限公司”作為實體,他們的屬性可以包括他們在文檔中出現的次數,他們的TF-IDF值等,他們的關係可以是他們在同一文檔中共同出現等。此外,本案知識圖譜整合和並存儲智財局審查商標歷程中的資料。舉例在審查的歷程中,“科技股份有限公司”或”股份有限公司”被多次提到並被視為不具有識別性的文字,那麼我們可以將這個資訊添加到知識圖譜中,“科技股份有限公司”的屬性中就可以添加一個“識別性:低”的標籤;如此,在後續的關鍵字提取過程中,我們就可以利用這個資訊,為“科技股份有限公司”這個詞分配一個較低的權重,使得模型更偏向於將“AIPLUX”識別為關鍵字。進而更好地理解文本中的實體及其屬性和關係,從而更準確地提取關鍵字與進行識別性文字的判斷。 Furthermore, the present invention adopts the knowledge graph technology to further optimize the identification text judgment effect in the present technology, wherein the knowledge graph can store a large amount of information about entities and their attributes and relationships. In this problem, we can take "AIPLUX" and "科技股份有限公司" as entities, their attributes can include the number of times they appear in the document, their TF-IDF values, etc., and their relationship can be that they appear together in the same document, etc. In addition, the knowledge graph in this case integrates and stores data from the trademark review process of the Intellectual Property Office. For example, during the review process, "科技股份有限公司" or "股份有限公司" was mentioned many times and was considered as non-identifiable text. Then we can add this information to the knowledge graph, and add a "Identification: Low" label to the attribute of "科技股份有限公司"; in this way, in the subsequent keyword extraction process, we can use this information to assign a lower weight to the term "科技股份有限公司", making the model more inclined to identify "AIPLUX" as a keyword. This will help us better understand the entities in the text, their attributes, and relationships, so as to more accurately extract keywords and make identification text judgments.

而在商標類別推薦的階段中,在這個階段中,系統利用之前從文本中提取出的關鍵字與主題,以及他們對應的產業分類,來為用戶推薦相應的商標類別。例如,對於一家主要從事人工智慧、自然語言處理和大資料相關業務的公司,系統將推薦9類(科學儀器)、42類(科學和技術服務)和41類(教育和娛樂服務)等相關的商標類別。其過程中係透過查閱資料表與推薦系統演算法來實現。其中,系統後台創建一個查閱資料表,將關鍵字或主題映射到他們對應的商標類別,如下表所示:

Figure 112120780-A0305-02-0045-1
In the stage of trademark category recommendation, the system uses the keywords and topics previously extracted from the text, as well as their corresponding industry classifications, to recommend corresponding trademark categories for users. For example, for a company that mainly engages in artificial intelligence, natural language processing, and big data-related businesses, the system will recommend relevant trademark categories such as Category 9 (scientific instruments), Category 42 (scientific and technical services), and Category 41 (education and entertainment services). The process is achieved through the use of a lookup table and a recommendation system algorithm. The system creates a lookup table in the background to map keywords or topics to their corresponding trademark categories, as shown in the following table:
Figure 112120780-A0305-02-0045-1

接著,系統後台可以根據使用者輸入的文本中出現的關鍵字或主題,來查找他們對應的商標類別,並將這些類別推薦給用戶。同時,系統後台係合併透過該用戶的產業資訊結果,進入商業信息查詢平台中,找到類似同產業的其他公司,再從該些其他公司所以經申請的商標前案,去進行統整與歸納後,最終以詞向量比對分析推薦結果,結合產業資訊比對分析推薦結果,來統整推薦商標類別與商品項目(goods and services)的挑選建議。 Then, the system backend can find the corresponding trademark categories based on the keywords or topics in the text entered by the user, and recommend these categories to the user. At the same time, the system backend merges the industry information results of the user, enters the business information query platform, finds other companies in similar industries, and then integrates and summarizes the previous trademarks applied for by these other companies. Finally, the word vector comparison analysis recommendation results are combined with the industry information comparison analysis recommendation results to integrate the recommended trademark categories and product items (goods and services) selection suggestions.

其中,系統後台係不僅可透過通用Nice分類內容進行商品項目(goods and services)挑選,其更可依據用戶提供的產品訊息,進行各國的商品項目(goods and services)內容中挑選,具體上系統後台係提供各國加商品項目的詞 向量分析,之後再依據用戶的介紹訊息,進行詞向量分析與比對,進而最終挑選出對應的推薦"商品項目"內容。 The system backend can not only select goods and services through the general Nice classification content, but also select goods and services from various countries based on the product information provided by the user. Specifically, the system backend provides word vector analysis of the goods and services added by each country, and then performs word vector analysis and comparison based on the user's introduction information, and finally selects the corresponding recommended "goods and services" content.

其中,主要包含了兩個階段:一是用詞向量(Word Vector)比對來推薦商品和服務項目,二是用產業資訊比對來進一步優化推薦結果。當系統後台已經具備了各國的商品和服務項目的詞向量,那麼系統可以先將用戶介紹信息中的產品名稱轉換為詞向量。例如,假設用戶介紹的產品是"AI智能機器人",於本演示過程中,係採用Word2Vec的模型來轉換這個詞語為一個詞向量v。 Among them, it mainly includes two stages: one is to recommend products and services by comparing word vectors, and the other is to further optimize the recommendation results by comparing industry information. When the system background already has word vectors for products and services of various countries, the system can first convert the product name in the user introduction information into a word vector. For example, assuming that the product introduced by the user is "AI intelligent robot", in this demonstration process, the Word2Vec model is used to convert this word into a word vector v.

然後,系統後台可以遍歷各國的商品和服務項目的詞向量,並計算它們與v的相似性,並使用餘弦相似度來計算詞向量之間的相似性,其公式如下:similarity=cos(θ)=vw/(∥v∥*∥w∥) Then, the system background can traverse the word vectors of goods and services in various countries and calculate their similarity with v, and use cosine similarity to calculate the similarity between word vectors. The formula is as follows: similarity = cos (θ) = vw /(∥ v ∥*∥ w ∥)

其中v和w分別是兩個詞向量,"∥"表示向量的長度。最後,系統可以選擇相似度最高的那些商品和服務項目作為推薦結果。 Among them, v and w are two word vectors, and "∥" represents the length of the vector. Finally, the system can select the products and services with the highest similarity as the recommendation results.

另一方面,透過產業資訊比對推薦商品和服務項目過程中,系統後台係利用用戶的產業資訊,找到同產業的其他公司,然後從這些公司的商標申請中找出最常見的商品和服務項目。具體來說,首先在商業信息查詢平台上搜索同產業的公司,然後收集這些公司的商標申請。我們可以將每個申請中的商品和服務項目看作一個詞,並計算每個詞的頻率。接著,系統後台可以選擇頻率最高的詞語作為推薦的商品和服務項目。 On the other hand, in the process of recommending products and services through industry information comparison, the system background uses the user's industry information to find other companies in the same industry, and then finds the most common products and services from the trademark applications of these companies. Specifically, first search for companies in the same industry on the business information query platform, and then collect the trademark applications of these companies. We can regard the products and services in each application as a word and calculate the frequency of each word. Then, the system background can select the words with the highest frequency as recommended products and services.

如此一來,系統後台目前已經得到了兩個推薦結果:一個是基於詞向量比對的結果,另一個是基於產業資訊比對的結果。接著,系統後台可將 這兩個結果結合起來,形成最終的推薦結果。具體來說,為每個商品和服務項目分配一個分數,這個分數是該項目在詞向量比對結果中的排名和在產業資訊比對結果中的排名的加權平均。然後,我們可以選擇分數最高的項目作為最終的推薦結果。 In this way, the system background has currently obtained two recommendation results: one is based on word vector comparison, and the other is based on industry information comparison. Then, the system background can combine these two results to form the final recommendation result. Specifically, a score is assigned to each product and service item, which is a weighted average of the item's ranking in the word vector comparison result and the ranking in the industry information comparison result. Then, we can choose the item with the highest score as the final recommendation result.

以下是該步驟的公式:score(item)=α*rank_vector(item)+β*rank_industry(item) The following is the formula for this step: score ( item ) = α * rank _ vector ( item ) + β * rank _ industry ( item )

其中,rank_vector(item)是項目在詞向量比對結果中的排名,rank_industry(item)是項目在產業資訊比對結果中的排名,α和β是兩種方法的權重,它們的和為1。在實際應用中,α和β的值可以通過交叉驗證來確定,以優化推薦結果的質量,因此α和β屬於可調式參數,於本案介紹中,即不再加以贅述其權重調整方式與過程。可調式參數係根據該使用者端進行客製化設定,該可調式參數可由使用者端喜好、使用者端習慣、使用者端可承受風險的能力的選項中任意選擇。 Among them, rank_vector(item) is the ranking of the item in the word vector comparison results, rank_industry(item) is the ranking of the item in the industry information comparison results, α and β are the weights of the two methods, and their sum is 1. In practical applications, the values of α and β can be determined by cross-validation to optimize the quality of the recommendation results. Therefore, α and β are adjustable parameters. In this case introduction, the weight adjustment method and process will not be elaborated. Adjustable parameters are customized according to the user end. The adjustable parameters can be arbitrarily selected from the options of user end preferences, user end habits, and user end risk tolerance.

倘若使用者輸入的描述文字中經本系統解析後找不到公司名稱、品牌名稱或商標名稱,也不影響後續的類別推薦,本系統仍可以對描述文字進行解析產生產業資訊,並且再依據產業資訊比對後產生推薦的商標類別,以及該商標類別中的推薦商品項目。 If the company name, brand name or trademark name is not found in the description text entered by the user after being parsed by this system, it will not affect the subsequent category recommendation. This system can still parse the description text to generate industry information, and then generate recommended trademark categories and recommended product items in the trademark category based on the comparison of industry information.

請再接續參閱圖22及圖23,係為本發明之實施例流程圖。 Please continue to refer to Figures 22 and 23, which are flow charts of the embodiments of the present invention.

使用者透過電子裝置的輸入模組任意輸入一段描述文字,並進一步選擇欲產生商標推薦的目標國家,本系統先判斷描述文字語言與目標國家的官方語言是否相同,若不同則會先對描述文字進行翻譯,若相同則直 接進行後續流程,再對描述文字進行解析與擷取,產出關鍵字和產業相關文字,產業相關文字即為產業資訊。 The user enters a description text through the input module of the electronic device, and further selects the target country for which the trademark recommendation is to be generated. The system first determines whether the description text language is the same as the official language of the target country. If they are different, the description text will be translated first. If they are the same, the subsequent process will be directly carried out. The description text will then be analyzed and extracted to generate keywords and industry-related texts. Industry-related texts are industry information.

對關鍵字部分進行識別性文字判斷與擷取,主要是透過與非識別性文字資料庫進行比對,確認關鍵字中是否有包含非識別性文字,若有則將非識別性文字剔除,僅保留識別性文字,具體地,非識別性文字資料庫建立的方式可以為但不限於利用大型語言模型資料庫進行訓練,將常用字或語助詞、介係詞等判別為不具識別性。 The keyword part is judged and extracted for identifying characters, mainly by comparing with the non-identifying character database to confirm whether the keyword contains non-identifying characters. If so, the non-identifying characters are removed and only the identifying characters are retained. Specifically, the non-identifying character database can be established by, but not limited to, using a large language model database for training, and common characters or interjections, prepositions, etc. are judged as non-identifying.

另一方面對經過解析後產生的產業資訊(產業相關文字)透過經訓練的語言生成模型產生對應於使用者輸入的描述文字的產業類別。 On the other hand, the industry information (industry-related text) generated after parsing is used to generate industry categories corresponding to the descriptive text input by the user through a trained language generation model.

藉由類別推薦模組依據上述產生的產業類別進行商標的類別與商品項目比對,具體而言,比對的資料庫會依據使用者選擇的目標國家不同而不同,例如使用者目標國家選擇美國,則會與美國官方的商標類別資料庫進行比對,若選擇台灣,會與台灣官方的商標類別資料庫進行比對,目的在於因為不同國家的商標類別中的商品項目會有所不同,因為有時可能發生在台灣有的商品項目在美國同一類別中卻找不到,因此依據目標國家的商標類別資料庫比對很重要,才不會產生的推薦商品項目實際上在該國卻不存在,本系統會根據可調式參數利用且例如詞向量的近似度比對產生包含至少一推薦類別與至少一推薦商品項目的至少一商標類別推薦資訊之比對結果,尋找接近的商標類別與商品項目,達到精準推薦的功效。可調式參數係根據該使用者端進行客製化設定,該可調式參數可由使用者端喜好、使用者端習慣、使用者端可承受風險的能力的選項中任意選擇。 The category recommendation module compares the trademark category and product items according to the above-generated industry categories. Specifically, the comparison database will be different depending on the target country selected by the user. For example, if the user selects the United States as the target country, it will be compared with the official US trademark category database. If the user selects Taiwan, it will be compared with the official Taiwan trademark category database. The purpose is that the product items in the trademark categories of different countries may be different, and sometimes there may be differences. There are some product items in Taiwan that cannot be found in the same category in the United States. Therefore, it is very important to compare with the trademark category database of the target country so as not to generate recommended product items that do not actually exist in that country. This system will use adjustable parameters and, for example, the similarity comparison of word vectors to generate a comparison result of at least one recommended category and at least one recommended product item, including at least one trademark category recommendation information , to find similar trademark categories and product items, and achieve the effect of accurate recommendation. The adjustable parameters are customized according to the user end, and the adjustable parameters can be arbitrarily selected from the options of user end preferences, user end habits, and user end risk tolerance.

比對的結果再經由報告產生單元進行排列並填入模組化的格式中,進而產生商標類別推薦報告。其中風險評估模組,係用以將自字串中擷取出之關鍵字與該目標國家之商標資料庫進行比對,並產出一風險資訊,該類別推薦模組更包含一知識圖譜單元,係用以建立節點矩陣關聯,並依各國之間商品項目與各國商標項目之間的等價關係根據時間演進的動態學習模式,該知識圖譜單元轉換至少包含以下步驟:將多國商標商品項目與商標專案關係資料收集與動態模型學習,透過圖譜查詢與自然與研磨行推理,推算出最佳匹配、最短路徑、最大流量,並根據最終決策結果進行優化商品項目之等價關係。 The comparison results are then arranged and filled into a modular format by the report generation unit to generate a trademark category recommendation report. The risk assessment module is used to compare the keywords extracted from the string with the trademark database of the target country and generate risk information. The category recommendation module also includes a knowledge graph unit, which is used to establish node matrix associations and dynamically learn the equivalent relationship between product items and trademark items in different countries according to the time evolution. The knowledge graph unit conversion includes at least the following steps: collect the relationship data between multi-national trademark product items and trademark projects and learn the dynamic model, calculate the best match, shortest path, and maximum flow through graph query and natural and abrasive reasoning, and optimize the equivalent relationship between product items according to the final decision result.

報告呈現的方式可為線上圖像、可下載之文書檔案、可轉發至通訊軟體之檔案格式、可分享至社群軟體之檔案格式、電子布告欄或其組合。 The report can be presented in the form of online images, downloadable documents, files that can be forwarded to communication software, files that can be shared to social networking software, electronic bulletin boards, or a combination thereof.

在圖23中,與圖22的差異在於產生目標國家的商標類別推薦資訊之後,風險評估模組進一步在該商標類別推薦資訊中透過檢索比對單元進行前案比對,該目標國家之商標資料庫中搜尋比對出近似具識別性文字的前案商標,檢索比對單元是在該推薦類別中尋找是否有與上述從關鍵字中擷取出的識別性文字相似或近似的申請在前的商標案件,並將檢索結果與推薦類別與推薦商品項目進行整合分析,例如在推薦類別為第9類,檢索比對發現第9類有近似前案,這時檢索比對單元會再詳細比對分析推薦商品項目與前案商品項目,若商品項目完全無重疊則判定的近似度會比部分商品項目重疊的近似度低。將檢索結果與該識別性文字進行近似度運算及排列,同時運算檢索結果中的前案申請類別與該至少一商標類別推薦資訊的近似度,進而產生評估結果。 In FIG. 23, the difference from FIG. 22 is that after generating the target country's trademark category recommendation information, the risk assessment module further compares the trademark category recommendation information with previous cases through the search and comparison unit. The target country's trademark database searches for previous trademarks with similar identifying words. The search and comparison unit searches in the recommended category to see if there are any identifying words extracted from the keywords above. The search results are combined with the recommended categories and recommended product items for analysis. For example, if the recommended category is Category 9, the search comparison finds that there is a similar previous case in Category 9. At this time, the search comparison unit will further compare and analyze the recommended product items and the previous product items in detail. If the product items are completely non-overlapping, the similarity will be lower than the similarity of some product items overlapping. The search results and the identifying text are similarly calculated and arranged, and the similarity between the previous application category in the search results and the recommended information of at least one trademark category is calculated to generate an evaluation result.

最後將整合分析結果透過報告產生單元同樣套入模組化格式產生風險評估報告。 Finally, the integrated analysis results are put into the modular format through the report generation unit to generate a risk assessment report.

進一步地,本系統還建立一個馳名商標資料庫,在上述的比對中,即使使用者與檢索比對出的前案在不同商標類別,但若前案是屬於馳名商標資料庫中的其中之一,則其檢索比對的結果仍會顯示此前案,且會優先排列,並顯示為高風險。 Furthermore, the system has also established a Chiming trademark database. In the above comparison, even if the user and the previous case found by the search are in different trademark categories, if the previous case belongs to one of the Chiming trademark database, the search result will still show the previous case, and it will be prioritized and displayed as high risk.

進一步地,類別推薦模組對描述文字進行解析並擷取出關鍵字和產業相關文字形成產業資訊之後,還可以透過資訊擷取單元依據擷取出的產業相關文字,主動至外部網路資訊中搜尋比對具有相似產業相關文字描述的公司,並將搜尋比對出的公司資訊傳送至該類別推薦模組的一知識圖譜比對單元,再透過該知識圖譜比對單元進行商標類別比對,並產生至少一商標類別推薦資訊,商標類別推薦資訊至少包含:一推薦類別與至少一推薦商品項目。 Furthermore, after the category recommendation module parses the description text and extracts keywords and industry-related text to form industry information, the information extraction unit can proactively search and match companies with similar industry-related text descriptions in external network information based on the extracted industry-related text, and transmit the searched and matched company information to a knowledge graph comparison unit of the category recommendation module, and then perform trademark category comparison through the knowledge graph comparison unit, and generate at least one trademark category recommendation information, which at least includes: a recommended category and at least one recommended product item.

請接續參閱圖24至圖26,係顯示本發明系統之使用情境示意圖。 Please continue to refer to Figures 24 to 26, which are schematic diagrams showing the use scenarios of the system of the present invention.

如圖24所顯示,在此使用情境中,使用者的角色為一般商家、品牌方或商標申請人,透過載具例如手機、電腦等電子裝置,連上網路後啟用伺服器並藉由網頁的欄位任意輸入描述文字的字串,該些字串透過雲端部分的伺服器進行語意分析,具體地,先判斷該字串的語言以及目標國家的官方語言是否相同,若不同藉由多語翻譯模型進行翻譯,並接著進行字串解析,擷取關鍵字和產生產業資訊,接著經由類別項目比對單元與目標國家的商標分類資料庫進行比對,而產生商標類別推薦報告反饋回使用者的載具。 As shown in Figure 24, in this usage scenario, the user is a general merchant, brand owner or trademark applicant. Through a vehicle such as a mobile phone, computer or other electronic device, the server is activated after connecting to the Internet and any descriptive text string is entered through the field of the web page. These strings are semantically analyzed through the server of the cloud part. Specifically, it is first determined whether the language of the string is the same as the official language of the target country. If not, it is translated through a multilingual translation model, and then the string is parsed, keywords are extracted and industry information is generated. Then, it is compared with the trademark classification database of the target country through the category item comparison unit, and a trademark category recommendation report is generated and fed back to the user's vehicle.

進一步地,再由推薦的商標類別中檢索商標前案,尋找在推類別中是否存在商標前案,以及其商標與商品項目近似程度,檢索結果之後結合推薦類別與推薦商品項目產生風險評估資訊,最終產生風險評估報告反饋回使用者的載具。 Furthermore, the previous trademark cases are searched in the recommended trademark categories to find out whether there are previous trademark cases in the recommended categories and the similarity between the trademarks and the product items. After the search results are combined with the recommended categories and the recommended product items, risk assessment information is generated, and finally a risk assessment report is generated and fed back to the user's vehicle.

進一步地,該商標類別推薦報告的方式可為線上圖像、可下載之文書檔案、可轉發至通訊軟體之檔案格式、可分享至社群軟體之檔案格式、電子布告欄或其組合。 Furthermore, the trademark category recommendation report may be in the form of an online image, a downloadable document file, a file format that can be forwarded to a communication software, a file format that can be shared to a social networking software, an electronic bulletin board, or a combination thereof.

且還可以依據輸入的字串,在地端伺服器例如各國家的官方商標申請資料庫或任意網路資訊中進行爬取資訊,搜尋其他相似產業公司申請之商標紀錄,從中獲取商標類別及商品項目也一同作為推薦的選項。 It can also crawl information from local servers such as official trademark application databases of various countries or any online information based on the input string, search for trademark records applied for by other companies in similar industries, and obtain trademark categories and product items as recommended options.

最終使用者可以依據此報告提供給專業的事務所或直接整理後自行將申請文件遞交給官方機構,進行商標申請。 The end user can provide this report to a professional firm or directly submit the application documents to the official agency for trademark application.

如圖25所顯示,在此使用情境中,使用者的角色為專業商標從業人士(Trademark Practitioners)或事務所(Trademark or law firm),使用者透過載具通常是例如電腦等電子裝置,連上網路後啟用伺服器並藉由網頁的欄位任意輸入描述文字的字串,透過本發明之系統取得商標類別推薦報告甚至是風險評估報告,使用者可以直接或再次經過模組化固定格式整理報告後產生商標建議書,經過自動套用商標從業人士或是法律事務所自己的格式後,將提供給使用者的客戶,這裡的客戶即為品牌業者、商家或商標申請人,經客戶確認之後即可將申請文件遞交至官方機構完成案件的處理。 As shown in Figure 25, in this usage scenario, the user's role is a professional trademark practitioner or a law firm. The user uses a carrier, usually an electronic device such as a computer, to connect to the Internet, activate the server, and enter any descriptive text string through the webpage field to obtain a trademark category recommendation report or even a risk assessment report through the system of the present invention. The user can directly or again organize the report in a modular fixed format to generate a trademark proposal. After automatically applying the trademark practitioner or law firm's own format, it will be provided to the user's client, which is the brand owner, merchant or trademark applicant. After the client confirms, the application documents can be submitted to the official agency to complete the case processing.

風險評估報告的示意圖可以參閱圖26,要注意的是,圖26僅為使用情境中的示範例,並沒有加以限定其報告的顯示方式與格式。如圖26所顯示,在風險評估報告中,會列出在推薦類別中具有的商標近似前案,以及其基本資訊例如商標名稱/圖片、國家、申請日、申請人、分類與商品項目、官方號碼、風險等級等等,透過顯示介面的方式讓使用者可以清楚知道欲申請的商標在對應的商標類別中申請的風險高低,更進一步還可以透過切換目標國家進而顯示針對不同目標國家的風險評估報告,不同目標國家其推薦類別高機率會相同,但商品項目則會有些許不同,且具有的近似商標前案也會有所不同,藉由本發明之系統的語意分析、自動翻譯跟判斷功能可以快速產生多份不同目標國家的報告,大幅減少時間成本以及過往的類別分析、檢索的門檻。 The schematic diagram of the risk assessment report can be found in Figure 26. It should be noted that Figure 26 is only an example in the usage scenario and does not limit the display method and format of the report. As shown in Figure 26, in the risk assessment report, similar trademarks in the recommended category are listed, as well as their basic information such as trademark name/image, country, application date, applicant, category and product item, official number, risk level, etc. Through the display interface, users can clearly know the risk level of the trademark to be applied for in the corresponding trademark category. Furthermore, they can also switch The target country then displays risk assessment reports for different target countries. The recommended categories for different target countries are likely to be the same, but the product items will be slightly different, and the similar trademark cases will also be different. Through the semantic analysis, automatic translation and judgment functions of the system of the present invention, multiple reports for different target countries can be quickly generated, greatly reducing the time cost and the threshold of previous category analysis and retrieval.

由圖24及圖25可以看出,無論使用者為終端客戶或是中間的從業人士,皆可以大幅縮短搜尋與商標推薦分類的時間成本,並且透過本發明之系統的特徵:輸入任意的描述文字即可以透過多語翻譯模型、文字解析單元,進行語意分析以及文字的生成,在短時間內理解描述文字並且進行類別的比對和近似排列而生成推薦類別和商品項目,在跨國申請時更是發揮到更大的功效。 As can be seen from Figures 24 and 25, whether the user is an end customer or an intermediate practitioner, the time cost of searching and recommending trademarks can be greatly shortened. Moreover, through the characteristics of the system of the present invention: inputting any descriptive text can be used to perform semantic analysis and text generation through a multilingual translation model and a text parsing unit, understand the descriptive text in a short time, and perform category comparison and similar arrangement to generate recommended categories and product items, which is even more effective in cross-border applications.

最後,再將本發明的技術特徵及其可達成之技術功效彙整如下: Finally, the technical features of the present invention and the technical effects it can achieve are summarized as follows:

其一,藉由本發明之一種語意分析商標類別推薦系統,解決一般使用者在線上申請商標的時候,不知道販售的商品或提供的服務是屬於哪一 個商標類別,而不知道該如何為自己的商標選擇適合的類別項目,透過本發明之商標類別推薦報告提供使用者快速的選擇。 First, the semantic analysis trademark category recommendation system of the present invention can solve the problem that when general users apply for trademarks online, they do not know which trademark category the goods they sell or the services they provide belong to, and do not know how to choose the appropriate category for their trademarks. The trademark category recommendation report of the present invention can provide users with a quick choice.

其二,藉由本發明之一種語意分析商標類別推薦系統,解決使用者在申請商標前不知道自己的商標是否已存在類似的前案,透過本發明之風險評估報告提供使用者立即得且淺顯易懂的排列方式了解檢索結果。 Secondly, the semantic analysis trademark category recommendation system of the present invention can solve the problem that users do not know whether their trademarks have similar cases before applying for trademarks. The risk assessment report of the present invention provides users with an immediate and easy-to-understand arrangement of search results.

其三,藉由本發明之一種語意分析商標類別推薦系統所產生的綜合報告,結合商標類別推薦與前案檢索,明確標示出在哪些類別項目具有較多或較少的商標前案,可以用顏色明顯區分或是其他任何可標註的方式呈現,提供使用者更明確的商標類別項目選擇建議。 Third, through the comprehensive report generated by the semantic analysis trademark category recommendation system of the present invention, combined with trademark category recommendation and previous case search, it is clearly marked which category items have more or fewer trademark previous cases, which can be clearly distinguished by color or presented in any other way that can be marked, providing users with clearer trademark category item selection suggestions.

必須加以強調的是,上述之詳細說明係針對本發明可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。 It must be emphasized that the above detailed description is a specific description of the feasible embodiments of the present invention, but the embodiments are not intended to limit the patent scope of the present invention. Any equivalent implementation or modification that does not deviate from the technical spirit of the present invention should be included in the patent scope of this case.

100: 電子裝置 200: 網路 300: 伺服器 400: 資料庫 500: 送件伺服器 U:使用者 100: electronic device 200: network 300: server 400: database 500: delivery server U: user

Claims (19)

一種語意分析商標類別推薦系統,用以接收一使用者端藉由操作一電子裝置所提供之字串與欲查詢的至少一個目標國家,經該電子裝置的一處理器透過一網路介面控制器連上一伺服器並執行一應用程式,運算產出商標類別推薦報告,該系統至少包括:一輸入模組,用以接收該使用者所輸入的字串,並將該字串進行標籤化處理,並發送一字串資訊;一類別推薦模組,係透過自然語言模型與商標分類表及細目所訓練出之運算模型,用以將字串資訊解析為商標類別推薦資訊,其中更包含:一文字解析單元,用以將該字串資訊進行解析,擷取出關鍵字以及與產業資訊,並進行發送;一類別項目比對單元,係用以接收該等關鍵字及產業資訊,並將其與該目標國家之商標類別資料庫進行比對,並運算產生至少一推薦類別與至少一推薦商品項目;以及一報告產生單元,係用以接收該推薦類別、該推薦商品項目與該目標國家,用該輸入語言透過一模板化格式產出一商標類別推薦報告。 A semantic analysis trademark category recommendation system is used to receive a string provided by a user terminal by operating an electronic device and at least one target country to be queried, and a processor of the electronic device is connected to a server through a network interface controller and executes an application program to calculate and generate a trademark category recommendation report. The system at least includes: an input module, which is used to receive the string input by the user, label the string, and send a string information; a category recommendation module, which is an operation model trained by a natural language model and a trademark classification table and detailed headings, and is used to convert the string into a The information is parsed into trademark category recommendation information, which further includes: a text parsing unit, which is used to parse the string information, extract keywords and industry information, and send them; a category item comparison unit, which is used to receive the keywords and industry information, compare them with the trademark category database of the target country, and calculate and generate at least one recommended category and at least one recommended product item; and a report generation unit, which is used to receive the recommended category, the recommended product item and the target country, and generate a trademark category recommendation report in a template format using the input language. 如請求項1所述之語意分析商標類別推薦系統,其中系統還包含一多語翻譯模型,係透過大型語言翻譯訓練出之一運算模型,用以接收該字串資訊,判斷該使用者輸入的字串是否與該目標國家之官方語言相同,若不同則將該字串翻譯為該目標國家之官方語言,並將所有翻譯後字串資訊進行發送。 The semantic analysis trademark category recommendation system as described in claim 1, wherein the system also includes a multilingual translation model, which is an operation model trained through large-scale language translation, for receiving the string information, determining whether the string input by the user is the same as the official language of the target country, and if different, translating the string into the official language of the target country, and sending all translated string information. 如請求項1所述之語意分析商標類別推薦系統,其中該字串更可包含商標文字、商標描述、商業行為、公司名稱、股票代碼、產品名稱、服務名稱或其組合資訊。 A semantic analysis trademark category recommendation system as described in claim 1, wherein the string may further include trademark text, trademark description, business behavior, company name, stock code, product name, service name or a combination thereof. 如請求項1所述之語意分析商標類別推薦系統,其中該使用者端輸入字串的方式可以是文字輸入、語音輸入或視頻輸入。 The semantic analysis trademark category recommendation system as described in claim 1, wherein the user terminal inputs the string by text input, voice input or video input. 如請求項2所述之語意分析商標類別推薦系統,其中該輸入模組更包含一資訊擷取單元,係用以將標籤化後的該字串資訊主動至網路空間擷取相關資訊,並可將該資訊傳送至該多語翻譯模型進行翻譯。 The semantic analysis trademark category recommendation system as described in claim 2, wherein the input module further includes an information acquisition unit, which is used to actively send the labeled string information to the network space to acquire relevant information, and can transmit the information to the multilingual translation model for translation. 如請求項1所述之語意分析商標類別推薦系統,其中該類別項目比對單元所述之該商標類別資料庫,更包含該目標國家之商標類別資料庫與國際尼斯商標類別資料庫。 The semantic analysis trademark category recommendation system as described in claim 1, wherein the trademark category database described in the category item comparison unit further includes the trademark category database of the target country and the International Nice Trademark Category Database. 如請求項1所述之語意分析商標類別推薦系統,其中該系統更包含一風險評估模組,係用以將自字串中擷取出之關鍵字與該目標國家之商標資料庫進行比對,並產出一風險資訊。 The semantic analysis trademark category recommendation system as described in claim 1, wherein the system further comprises a risk assessment module for comparing the keywords extracted from the string with the trademark database of the target country and generating risk information. 如請求項7所述之語意分析商標類別推薦系統,其中該風險資訊更可透過該報告產生單元整併至該商標類別推薦報告。 The semantic analysis trademark category recommendation system as described in claim 7, wherein the risk information can be further integrated into the trademark category recommendation report through the report generation unit. 如請求項1所述之語意分析商標類別推薦系統,其中該報告呈現的方式可為線上圖像、可下載之文書檔案、可轉發至通訊軟體之檔案格式、可分享至社群軟體之檔案格式、電子布告欄或其組合。 The semantic analysis trademark category recommendation system as described in claim 1, wherein the report can be presented in the form of an online image, a downloadable document file, a file format that can be forwarded to a communication software, a file format that can be shared to a social software, an electronic bulletin board, or a combination thereof. 如請求項1所述之語意分析商標類別推薦系統,其中該使用者端可以為品牌業主、商標申請人、商標從業人士、法律相關從業人士的組合中任意選擇。 The semantic analysis trademark category recommendation system as described in claim 1, wherein the user terminal can be selected from any combination of brand owners, trademark applicants, trademark practitioners, and legal practitioners. 如請求項1所述之語意分析商標類別推薦系統,其中該類別推薦模組更包含一知識圖譜單元,係用以建立節點矩陣關聯,並依各國之間商品項目與各國商標項目之間的等價關係根據時間演進的動態學習模式,該知識圖譜單元轉換至少包含以下步驟:將多國商標商品項目與商標專案關係資料收集與動態模型學習,透過圖譜查詢與自然與研磨行推理,推算出最佳匹配、最短路徑、最大流量,並根據最終決策結果進行優化商品項目之等價關係。 As described in claim 1, the semantic analysis trademark category recommendation system, wherein the category recommendation module further includes a knowledge graph unit, which is used to establish node matrix associations, and according to the dynamic learning model of time evolution based on the equivalence relationship between product items and trademark items of various countries, the knowledge graph unit conversion at least includes the following steps: collecting multi-national trademark product items and trademark project relationship data and dynamic model learning, through graph query and natural and abrasive reasoning, inferring the best match, shortest path, maximum flow, and optimizing the equivalence relationship of product items according to the final decision result. 一種語意分析商標類別推薦方法,由使用者端操作一電子裝置查詢的至少一個目標國家,經該電子裝置的一處理器透過一網路介面控制器連上一伺服器並執行一應用程式,運算產出的方法,至少包含以下步驟:(1)使用者透過該電子裝置之一輸入模組任意輸入一段描述文字;(2)藉由一類別推薦模組對描述文字進行解析並擷取出關鍵字和產業相關文字形成產業資訊; (3)透過一類別推薦模組將解析出之產業相關文字與該目標國家商標類別資料庫進行比對,根據一可調式參數產出比對結果,並產生包含至少一推薦類別與至少一推薦商品項目的至少一商標類別推薦資訊;以及(4)透過一報告產生單元將步驟(3)的商標類別推薦資訊經由一模板化格式產生商標類別推薦報告。 A semantic analysis trademark category recommendation method is provided, wherein a user operates an electronic device to query at least one target country, and a processor of the electronic device is connected to a server through a network interface controller and executes an application program. The method of calculating the output includes at least the following steps: (1) the user enters a description text through an input module of the electronic device; (2) a category recommendation module parses the description text and extracts keywords and product information. (3) using a category recommendation module to compare the parsed industry-related text with the target country's trademark category database, outputting a comparison result according to an adjustable parameter, and generating at least one trademark category recommendation information including at least one recommended category and at least one recommended product item; and (4) using a report generation unit to generate a trademark category recommendation report using the trademark category recommendation information of step (3) in a templated format. 如請求項12所述之語意分析商標類別推薦方法,其中,於該步驟(2),更可包含透過一文字解析單元對擷取出的關鍵字進行識別性文字擷取,其中可區分為:步驟(21)該文字解析單元藉由與非識別性文字資料庫比對,進而產生擷取出識別性文字;以及步驟(22)該文字解析單元連結類別項目比對單元之語言模型,對產業相關文字進行轉換生成產業類別。 The semantic analysis trademark category recommendation method as described in claim 12, wherein the step (2) may further include extracting identifying words from the extracted keywords through a text analysis unit, which can be divided into: step (21) the text analysis unit generates extracted identifying words by comparing with a non-identifying word database; and step (22) the text analysis unit links the language model of the category item comparison unit to convert industry-related words to generate industry categories. 如請求項12所述之語意分析商標類別推薦方法,其中,於步驟(1)中進一步包含:步驟(11)使用者選擇至少一個欲生成的商標類別推薦之目標國家;且在步驟(3)中進一步包含:步驟(31)該類別推薦模組依據使用者選擇的國家,至該目標國家商標類別資料庫中的類別進行比對。 The semantic analysis trademark category recommendation method as described in claim 12, wherein step (1) further comprises: step (11) the user selects at least one target country for which the trademark category recommendation is to be generated; and step (3) further comprises: step (31) the category recommendation module compares the category in the trademark category database of the target country based on the country selected by the user. 如請求項12所述之語意分析商標類別推薦方法,其中,於步驟(3)後進一步包含: 步驟(301)透過一風險評估模組對該識別性文字進行風險評估,藉由一檢索比對單元將在步驟(3)中產生的至少一商標類別推薦資訊中將識別性文字與該目標國家之商標資料庫進行比對產生檢索結果;步驟(302)該報告產生單元將該至少一商標類別推薦資訊與檢索結果進行整合與分析,將檢索結果與該識別性文字進行近似度運算及排列,同時運算檢索結果中的前案申請類別與該至少一商標類別推薦資訊的近似度,進而產生評估結果;以及步驟(303)該報告產生單元結合該至少一類別推薦類別與評估結果,經由該模板化格式產生風險評估報告。 The semantic analysis trademark category recommendation method as described in claim 12, wherein after step (3), further comprising: Step (301) performing risk assessment on the identifying text through a risk assessment module, and using a search comparison unit to compare the identifying text in at least one trademark category recommendation information generated in step (3) with the trademark database of the target country to generate a search result; Step (302) the report generation unit The at least one trademark category recommendation information is integrated and analyzed with the search results, the search results and the identifying text are similarly calculated and arranged, and the similarity between the previous application category in the search results and the at least one trademark category recommendation information is calculated to generate an evaluation result; and in step (303), the report generation unit combines the at least one category recommendation category with the evaluation result to generate a risk assessment report in the template format. 如請求項12所述之語意分析商標類別推薦方法,其中於步驟(2)後進一步包含:步驟(21)一資訊擷取單元依據步驟(2)中擷取出的產業相關文字,主動至外部網路資訊中搜尋比對具有相似產業相關文字描述的公司,並將搜尋比對出的公司資訊傳送至該類別推薦模組的一知識圖譜比對單元;以及步驟(22)透過該知識圖譜比對單元進行商標類別比對,並產生至少一商標類別推薦資訊。 The semantic analysis trademark category recommendation method as described in claim 12, wherein after step (2), further comprises: step (21) an information extraction unit actively searches for companies with similar industry-related text descriptions in external network information based on the industry-related text extracted in step (2), and transmits the searched and matched company information to a knowledge graph comparison unit of the category recommendation module; and step (22) performs trademark category comparison through the knowledge graph comparison unit and generates at least one trademark category recommendation information. 如請求項14所述之語意分析商標類別推薦方法,其中於步驟(11)之後,還包含:步驟(12)輸入模組判斷該輸入的字串語言與該目標國家的官方語言是否相同,若不相同則會先透過一多語翻譯模型進行翻譯,將字串語言翻譯為該目標國家的官方語言。 The semantic analysis trademark category recommendation method as described in claim 14, wherein after step (11), it further comprises: step (12) the input module determines whether the input string language is the same as the official language of the target country. If not, it will first be translated through a multilingual translation model to translate the string language into the official language of the target country. 如請求項12所述之語意分析商標類別推薦方法,其中該可調式參數係根據該使用者端進行客製化設定,該可調式參數可由使用者端喜好、使用者端習慣、使用者端可承受風險的能力的選項中任意選擇。 The semantic analysis trademark category recommendation method as described in claim 12, wherein the adjustable parameter is customized according to the user terminal, and the adjustable parameter can be arbitrarily selected from the options of user terminal preferences, user terminal habits, and user terminal's ability to bear risks. 如請求項14所述之語意分析商標類別推薦方法,其中該商標類別推薦資訊至少包含:一推薦類別與至少一推薦商品項目。 The semantic analysis trademark category recommendation method as described in claim 14, wherein the trademark category recommendation information at least includes: a recommended category and at least one recommended product item.
TW112120780A 2022-06-02 2023-06-02 A system of semantic analysis-based trademark class recommendation and the method thereof TWI851259B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263348027P 2022-06-02 2022-06-02
US63/348,027 2022-06-02

Publications (2)

Publication Number Publication Date
TW202349325A TW202349325A (en) 2023-12-16
TWI851259B true TWI851259B (en) 2024-08-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150324469A1 (en) 2014-05-09 2015-11-12 Thomson Reuters Global Resources System and Methods for Automating Trademark and Service Mark Searches

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150324469A1 (en) 2014-05-09 2015-11-12 Thomson Reuters Global Resources System and Methods for Automating Trademark and Service Mark Searches

Similar Documents

Publication Publication Date Title
Ramzan et al. An intelligent data analysis for recommendation systems using machine learning
Welbers et al. Text analysis in R
US10896212B2 (en) System and methods for automating trademark and service mark searches
Moussa et al. A survey on opinion summarization techniques for social media
US20220012296A1 (en) Systems and methods to automatically categorize social media posts and recommend social media posts
US10565533B2 (en) Systems and methods for similarity and context measures for trademark and service mark analysis and repository searches
US20150089409A1 (en) System and method for managing opinion networks with interactive opinion flows
US20170103439A1 (en) Searching Evidence to Recommend Organizations
Qasim et al. Concept map construction from text documents using affinity propagation
CN112989208B (en) Information recommendation method and device, electronic equipment and storage medium
Rodrigues et al. Advanced applications of natural language processing for performing information extraction
WO2021002800A1 (en) Apparatus and method for tagging electronic legal documents for classification and retrieval
US20240211517A1 (en) Knowledge insight capturing system
CN114141384A (en) Method, apparatus and medium for retrieving medical data
CN114255067A (en) Data pricing method and device, electronic equipment and storage medium
Saoudi et al. Trends and challenges of Arabic Chatbots: Literature review
CN112182239B (en) Information retrieval method and device
Ramzan et al. An intelligent data analysis for hotel recommendation systems using machine learning
Ali et al. CLOE: a cross-lingual ontology enrichment using multi-agent architecture
TWI851259B (en) A system of semantic analysis-based trademark class recommendation and the method thereof
US11017172B2 (en) Proposition identification in natural language and usage thereof for search and retrieval
TW202349325A (en) A system of semantic analysis-based trademark class recommendation and the method thereof
TWI853595B (en) A trademark system with a classification transform module and execution method.
JP7498876B1 (en) Search support system, search support method and program
Munarko et al. CASBERT: BERT-based retrieval for compositely annotated biosimulation model entities