TWI847219B - Audio system with dynamic target listening spot and ambient object interference cancelation - Google Patents

Audio system with dynamic target listening spot and ambient object interference cancelation Download PDF

Info

Publication number
TWI847219B
TWI847219B TW111130514A TW111130514A TWI847219B TW I847219 B TWI847219 B TW I847219B TW 111130514 A TW111130514 A TW 111130514A TW 111130514 A TW111130514 A TW 111130514A TW I847219 B TWI847219 B TW I847219B
Authority
TW
Taiwan
Prior art keywords
speaker
control circuit
circuit
user
target
Prior art date
Application number
TW111130514A
Other languages
Chinese (zh)
Other versions
TW202324374A (en
Inventor
周開祥
Original Assignee
瑞昱半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞昱半導體股份有限公司 filed Critical 瑞昱半導體股份有限公司
Priority to US17/993,348 priority Critical patent/US20230188921A1/en
Publication of TW202324374A publication Critical patent/TW202324374A/en
Application granted granted Critical
Publication of TWI847219B publication Critical patent/TWI847219B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • H04S7/303Tracking of listener position or orientation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/04Circuit arrangements, e.g. for selective connection of amplifier inputs/outputs to loudspeakers, for loudspeaker detection, or for adaptation of settings to personal preferences or hearing impairments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)

Abstract

A sound system is proposed, dynamically playing optimized audio signals based on user position. A sensor circuits dynamically senses a target space to generate a field environment information. First speaker and second speaker are arranged for audio playback. A host device recognizes a user in the field environment information, and determine the user position corresponding to the target space, and adaptively designate the user position as a target listening spot. A sensor circuit contains a camera capturing a field environment image out of the target space. A control circuit utilizes a user interface circuit to perform a configuration procedure which determines an ambient object with location, size and acoustic attribute information. The control circuit performs a channel based compensation operation on the target listening spot to generate optimized first channel audio signal and second channel audio signal.

Description

可動態調整目標聆聽點並消除環境物件干擾的音響系統 A sound system that dynamically adjusts the target listening point and eliminates interference from environmental objects

本申請涉及音訊處理技術,其實是一種可依據音場空間中的狀況變化而動態調整播放效果的音響系統。 This application involves audio processing technology, which is actually an audio system that can dynamically adjust the playback effect according to changes in the sound field space.

現有的音響系統,包含多個喇叭布局在一目標空間周圍而形成一環繞音場環境。每一喇叭可分別輸出對應的聲道音訊。在配置環繞音場環境時,音響系統的安裝人員通常會指派該目標空間的一中心區域為最佳聆聽點,做為安裝多個喇叭的依據。當多個喇叭同時播放多個聲道音訊時,位於該最佳聆聽點的使用者可獲得身歷其境的聆聽效果。 The existing audio system includes multiple speakers arranged around a target space to form an ambient sound field environment. Each speaker can output the corresponding channel audio. When configuring the ambient sound field environment, the installer of the audio system usually designates a central area of the target space as the best listening point as the basis for installing multiple speakers. When multiple speakers play multiple channel audios at the same time, users at the best listening point can get an immersive listening effect.

然而,在現實環境中,使用者的聆聽效果很容易受到各種變數的影響。舉例來說,在傳統的音響系統中,最佳聆聽點的範圍是區域限定的。當使用者移動至該最佳聆聽點以外的區域時,雖然還是聽得到音響系統輸出的多個聲道音訊,但多個聲道音訊在使用者位置上產生的聆聽效果可能已經大打折扣或完全失效。此外,目標空間中的房間格局、傢俱位置和材質,都是可能干擾聆聽效果的環境物件。舉例來說,沙發、窗戶、和窗簾會吸收或反射一部份的聲音能量,而扭曲了最佳聆聽點上收到的各聲道音訊。 However, in real environments, the user's listening effect is easily affected by various variables. For example, in traditional audio systems, the range of the best listening point is limited to a region. When the user moves to an area outside the best listening point, although the multi-channel audio output by the audio system can still be heard, the listening effect of the multi-channel audio at the user's position may have been greatly reduced or completely ineffective. In addition, the room layout, furniture position and material in the target space are all environmental objects that may interfere with the listening effect. For example, sofas, windows, and curtains absorb or reflect part of the sound energy, distorting the audio channels received at the best listening point.

換句話說,傳統的音響系統無法動態調整最佳聆聽點的位置,使用者被迫限制移動以遷就最佳聆聽點的位置,實屬不便。另一方面,各聲道音訊可能受到環境物件的干擾而扭曲失真,使最佳聆聽點的 範圍更加侷限甚至是消失。這麼一來,以高昂成本布建的音場環境就失去意義。 In other words, traditional audio systems cannot dynamically adjust the position of the best listening point, and users are forced to limit their movements to adjust to the best listening point, which is inconvenient. On the other hand, the audio of each channel may be distorted by the interference of environmental objects, making the range of the best listening point more limited or even disappearing. In this way, the sound field environment built at a high cost loses its meaning.

有鑑於此,如何使音響系統隨著使用者移動而動態調整最佳聆聽點,並消除目標空間中的環境物件的干擾,是有待解決的問題。 In view of this, how to make the audio system dynamically adjust the best listening point as the user moves and eliminate the interference of environmental objects in the target space is a problem to be solved.

本說明書提供一種音響系統的實施例,可動態地依據使用者位置優化播放效果,其中音響系統包含一感測器電路,一第一喇叭和一第二喇叭,以及一主機裝置。該感測器電路設置為可動態地感測一目標空間而產生一音場環境資訊。第一喇叭和一第二喇叭,設置為可播放音訊。主機裝置耦接該感測器電路、該第一喇叭和該第二喇叭,包含一辨識電路,一控制電路以及一音訊傳輸電路。辨識電路設置為可從該音場環境資訊中辨識出一使用者並判斷該使用者在該目標空間中的一使用者位置。控制電路耦接該辨識電路,設置為可將該使用者位置動態地指派為一目標聆聽點。音訊傳輸電路耦接該控制電路、該第一喇叭和該第二喇叭,設置為可傳輸音訊。其中,該感測器電路包含一攝影機,設置為可捕捉該目標空間的一音場環境影像。該辨識電路分析該音場環境影像而獲取該目標空間中一環境物件的空間配置資訊和聲學屬性資訊。該控制電路依據該目標聆聽點,及該環境物件的空間配置資訊及聲學屬性資訊,進行通道基底補償運作以產生對該目標聆聽點優化的一第一聲道音訊和一第二聲道音訊。最後,該控制電路透過該音訊傳輸電路分別地輸出該第一聲道音訊和該第二聲道音訊至對應的該第一喇叭和該第二喇叭。 This specification provides an embodiment of an audio system that can dynamically optimize the playback effect based on the user's position, wherein the audio system includes a sensor circuit, a first speaker, a second speaker, and a host device. The sensor circuit is configured to dynamically sense a target space and generate sound field environment information. The first speaker and the second speaker are configured to play audio. The host device is coupled to the sensor circuit, the first speaker, and the second speaker, and includes an identification circuit, a control circuit, and an audio transmission circuit. The identification circuit is configured to identify a user from the sound field environment information and determine a user position of the user in the target space. The control circuit is coupled to the identification circuit and configured to dynamically assign the user position as a target listening point. The audio transmission circuit is coupled to the control circuit, the first speaker and the second speaker, and is configured to transmit audio. The sensor circuit includes a camera configured to capture a sound field environment image of the target space. The recognition circuit analyzes the sound field environment image to obtain spatial configuration information and acoustic property information of an environmental object in the target space. The control circuit performs a channel floor compensation operation based on the target listening point and the spatial configuration information and acoustic property information of the environmental object to generate a first channel audio and a second channel audio optimized for the target listening point. Finally, the control circuit outputs the first channel audio and the second channel audio to the corresponding first speaker and the second speaker respectively through the audio transmission circuit.

本說明書提供一種音響系統的實施例,可動態地依據使用者位置優化播放效果,其中音響系統包含一感測器電路,一第一喇叭和一第二喇叭,以及一主機裝置。該感測器電路設置為可動態地感測一目標空間而產生一音場環境資訊。一第一喇叭和一第二喇叭,設置為可播放音訊。主機裝置耦接該感測器電路、該第一喇叭和該第二喇 叭,包含一辨識電路、一控制電路和一音訊傳輸電路。辨識電路設置為可從該音場環境資訊中辨識出一使用者並判斷該使用者在該目標空間中的一使用者位置。控制電路耦接該辨識電路,設置為可將該使用者位置動態地指派為一目標聆聽點。音訊傳輸電路耦接該控制電路、該第一喇叭和該第二喇叭,設置為可傳輸音訊。其中,該感測器電路包含一攝影機,設置為可捕捉該目標空間的一音場環境影像。該辨識電路分析該音場環境影像而獲取該目標空間中一環境物件的空間配置資訊和聲學屬性資訊。該控制電路將該目標空間對應至一物件基底空間,並依據該環境物件對應地在該物件基底空間中建立一補償音源物件。該補償音源物件的一中繼資料包含:該環境物件的座標位置、大小,以及對聲音的反射率和吸收率。該控制電路依據該目標聆聽點和該中繼資料進行一物件基底補償運作,抵消該環境物件對該目標聆聽點的干擾而產生對該目標聆聽點優化的一第一聲道音訊和一第二聲道音訊。該控制電路透過該音訊傳輸電路分別地輸出該第一聲道音訊和該第二聲道音訊至對應的該第一喇叭和該第二喇叭。 The present specification provides an embodiment of an audio system, which can dynamically optimize the playback effect according to the user's position, wherein the audio system includes a sensor circuit, a first speaker, a second speaker, and a host device. The sensor circuit is configured to dynamically sense a target space and generate a sound field environment information. A first speaker and a second speaker are configured to play audio. The host device is coupled to the sensor circuit, the first speaker, and the second speaker, and includes an identification circuit, a control circuit, and an audio transmission circuit. The identification circuit is configured to identify a user from the sound field environment information and determine a user position of the user in the target space. The control circuit is coupled to the identification circuit and configured to dynamically assign the user position as a target listening point. The audio transmission circuit is coupled to the control circuit, the first speaker and the second speaker, and is configured to transmit audio. The sensor circuit includes a camera, which is configured to capture a sound field environment image of the target space. The recognition circuit analyzes the sound field environment image to obtain spatial configuration information and acoustic property information of an environmental object in the target space. The control circuit corresponds the target space to an object base space, and establishes a compensation sound source object in the object base space according to the environmental object. Metadata of the compensation sound source object includes: the coordinate position, size, and reflectivity and absorptivity of the environmental object to sound. The control circuit performs an object-based compensation operation based on the target listening point and the metadata to offset the interference of the environmental object on the target listening point and generate a first channel audio and a second channel audio optimized for the target listening point. The control circuit outputs the first channel audio and the second channel audio to the corresponding first speaker and the second speaker respectively through the audio transmission circuit.

本說明書提供一種音響系統的實施例,可動態地依據使用者位置優化播放效果,其中音響系統包含一感測器電路,一第一喇叭和一第二喇叭,以及一主機裝置。該感測器電路設置為可動態地感測一目標空間而產生一音場環境資訊。該第一喇叭和該第二喇叭設置為可播放音訊。該主機裝置耦接該感測器電路、該第一喇叭和該第二喇叭,包含一辨識電路、一控制電路、一音訊傳輸電路和一人機介面電路。該辨識電路設置為可從該音場環境資訊中辨識出一使用者並判斷該使用者在該目標空間中的一使用者位置。該控制電路耦接該辨識電路,設置為可將該使用者位置動態地指派為一目標聆聽點。該音訊傳輸電路耦接該控制電路、該第一喇叭和該第二喇叭,設置為可傳輸音訊。該人機介面電路耦接該控制電路,設置為可運行一 配置程序,而獲取該目標空間中一環境物件的空間配置資訊和聲學屬性資訊。其中,該控制電路依據該目標聆聽點,及該環境物件的空間配置資訊及聲學屬性資訊,進行一通道基底補償運作以產生對該目標聆聽點優化的一第一聲道音訊和一第二聲道音訊。該控制電路透過該音訊傳輸電路分別地輸出該第一聲道音訊和該第二聲道音訊至對應的該第一喇叭和該第二喇叭。 This specification provides an embodiment of an audio system that can dynamically optimize the playback effect based on the user's position, wherein the audio system includes a sensor circuit, a first speaker, a second speaker, and a host device. The sensor circuit is configured to dynamically sense a target space and generate sound field environment information. The first speaker and the second speaker are configured to play audio. The host device is coupled to the sensor circuit, the first speaker, and the second speaker, and includes an identification circuit, a control circuit, an audio transmission circuit, and a human-machine interface circuit. The identification circuit is configured to identify a user from the sound field environment information and determine a user position of the user in the target space. The control circuit is coupled to the identification circuit and is configured to dynamically assign the user position as a target listening point. The audio transmission circuit is coupled to the control circuit, the first speaker and the second speaker and is configured to transmit audio. The human-machine interface circuit is coupled to the control circuit and is configured to run a configuration program to obtain spatial configuration information and acoustic property information of an environmental object in the target space. The control circuit performs a channel floor compensation operation based on the target listening point and the spatial configuration information and acoustic property information of the environmental object to generate a first channel audio and a second channel audio optimized for the target listening point. The control circuit outputs the first channel audio and the second channel audio to the corresponding first speaker and the second speaker respectively through the audio transmission circuit.

本說明書提供一種音響系統的實施例,可動態地依據使用者位置優化播放效果,其中音響系統包含一感測器電路,一第一喇叭和一第二喇叭,以及一主機裝置。該感測器電路設置為可動態地感測一目標空間而產生一音場環境資訊。該第一喇叭和該第二喇叭設置為可播放音訊。該主機裝置耦接該感測器電路、該第一喇叭和該第二喇叭,包含一辨識電路、一控制電路、一音訊傳輸電路和一人機介面電路。該辨識電路設置為可從該音場環境資訊中辨識出一使用者並判斷該使用者在該目標空間中的一使用者位置。該控制電路耦接該辨識電路,設置為可將該使用者位置動態地指派為一目標聆聽點。該音訊傳輸電路耦接該控制電路、該第一喇叭和該第二喇叭,設置為可傳輸音訊。該人機介面電路耦接該控制電路,設置為可運行一配置程序,而獲取該目標空間中一環境物件的空間配置資訊和聲學屬性資訊。其中,該控制電路將該目標空間對應至一物件基底空間,並依據該環境物件對應地在該物件基底空間中建立一補償音源物件。該補償音源物件的一中繼資料包含:該環境物件的座標位置、大小,以及對聲音的反射率和吸收率。該控制電路依據該目標聆聽點和該中繼資料進行一物件基底補償運作,抵消該環境物件對該目標聆聽點的干擾而產生對該目標聆聽點優化的一第一聲道音訊和一第二聲道音訊。該控制電路透過該音訊傳輸電路分別地輸出該第一聲道音訊和該第二聲道音訊至對應的該第一喇叭和該第二喇叭。 This specification provides an embodiment of an audio system that can dynamically optimize the playback effect based on the user's position, wherein the audio system includes a sensor circuit, a first speaker, a second speaker, and a host device. The sensor circuit is configured to dynamically sense a target space and generate sound field environment information. The first speaker and the second speaker are configured to play audio. The host device is coupled to the sensor circuit, the first speaker, and the second speaker, and includes an identification circuit, a control circuit, an audio transmission circuit, and a human-machine interface circuit. The identification circuit is configured to identify a user from the sound field environment information and determine a user position of the user in the target space. The control circuit is coupled to the identification circuit and is configured to dynamically assign the user position as a target listening point. The audio transmission circuit is coupled to the control circuit, the first speaker and the second speaker and is configured to transmit audio. The human-machine interface circuit is coupled to the control circuit and is configured to run a configuration program to obtain spatial configuration information and acoustic property information of an environmental object in the target space. The control circuit corresponds the target space to an object base space and establishes a compensation sound source object in the object base space in accordance with the environmental object. Metadata of the compensation sound source object includes: the coordinate position, size, and reflectivity and absorptivity of the environmental object to sound. The control circuit performs an object-based compensation operation based on the target listening point and the metadata to offset the interference of the environmental object on the target listening point and generate a first channel audio and a second channel audio optimized for the target listening point. The control circuit outputs the first channel audio and the second channel audio to the corresponding first speaker and the second speaker respectively through the audio transmission circuit.

上述實施例的優點之一,是音響系統可透過感測器動態地追蹤使用者位置,並持續地針對使用者位置優化播放效果。使用者不需要為了獲得最佳體驗而去遷就固定的聆聽位置。 One of the advantages of the above embodiment is that the audio system can dynamically track the user's position through sensors and continuously optimize the playback effect for the user's position. The user does not need to move to a fixed listening position in order to obtain the best experience.

上述實施例的另一優點,是音響系統可辨識目標空間中的環境物件,並據以調整聲道音訊以抵消環境物件的干擾。 Another advantage of the above embodiment is that the audio system can identify environmental objects in the target space and adjust the channel audio accordingly to offset the interference of the environmental objects.

本發明的其他優點將搭配以下的說明和圖式進行更詳細的解說。 Other advantages of the present invention will be explained in more detail with the following description and diagrams.

100:音響系統(audio system) 100: audio system

110:第一喇叭(first speaker) 110: first speaker

112:第一聲道音訊(first channel signal) 112: First channel audio (first channel signal)

120:第二喇叭(second speaker) 120: Second speaker

122:第二聲道音訊(second channel signal) 122: Second channel audio (second channel signal)

130:主機裝置(host device) 130: Host device

131:儲存電路(storage circuit) 131: Storage circuit

132:控制電路(control circuit) 132: Control circuit

133:人機介面電路(user interface circuit) 133: User interface circuit

134:辨識電路(recognizer circuit) 134: Recognizer circuit

135:音訊傳輸電路(audio transmission circuit) 135: Audio transmission circuit

136:通信電路(communication circuit) 136: Communication circuit

140:感測器電路(sensor circuit) 140: Sensor circuit

150:用戶設備(user equipment) 150: User equipment

160:遠端資料庫(remote database) 160: Remote database

170:目標空間(target space) 170: target space

171:第一位置(first position) 171: first position

172:第二位置(second position) 172: Second position

173:移動軌跡(movement trail) 173: Movement trail

175:環境物件(ambient object) 175: Ambient object

180:使用者(user) 180: User

202~218:流程(operation) 202~218: Operation

312~316:流程(operation) 312~316: Operation

410:流程(operation) 410: Operation

600:目標空間(target space) 600: target space

601:第一位置(first location) 601: first location

602:第二位置(first location) 602: Second location (first location)

610:攝影機(camera) 610: Camera (camera)

620:紅外線感測器(infrared sensor) 620: Infrared sensor

630:無線偵測器(radio detector) 630: Radio detector

700:目標空間(target space) 700: target space

800:目標空間(target space) 800: target space

902~910:流程(operation) 902~910: Operation

1002~1012:流程(operation) 1002~1012: Operation

1100:目標空間(target space) 1100: target space

1103:物件移動軌跡(movement trail) 1103: Object movement trail

1105:虛擬音源物件(virtual audio object) 1105: Virtual audio object

1110:第一喇叭(first speaker) 1110: first speaker

1120:第二喇叭(second speaker) 1120: second speaker

1130:第三喇叭(third speaker) 1130: Third speaker

1140:第四喇叭(fourth speaker) 1140: fourth speaker

P0:原點(original point) P0: original point

P1:第一位置(first position) P1: first position

P1’:新第一位置(new first position) P1’: new first position

P2:第二位置(second position) P2: second position

1200:目標空間(target space) 1200: target space

1201:目標聆聽點(target listening spot) 1201: target listening spot

1203:移動軌跡(movement trail) 1203: Movement trail

1210:第一喇叭(first speaker) 1210: first speaker

1212:第一聲道輸出(first channel output) 1212: first channel output

1220:第二喇叭(second speaker) 1220: second speaker

1222:第二聲道輸出(second channel output) 1222: Second channel output

1230:第三喇叭(third speaker) 1230: Third speaker

1240:第四喇叭(fourth speaker) 1240: fourth speaker

1250:第五喇叭(fifth speaker) 1250: fifth speaker

1252:第五聲道輸出(fifth channel output) 1252: fifth channel output

1260:第六喇叭(sixth speaker) 1260: Sixth speaker

1262:第六聲道輸出(sixth channel output) 1262: Sixth channel output

1304~1312:流程(operation) 1304~1312: Operation

圖1為本發明一實施例的音響系統的功能方塊圖。 Figure 1 is a functional block diagram of an audio system of an embodiment of the present invention.

圖2為本發明一實施例的動態音效優化方法流程圖。 Figure 2 is a flow chart of a dynamic sound optimization method according to an embodiment of the present invention.

圖3為本發明一實施例的動態音效優化方法流程圖。 Figure 3 is a flow chart of a dynamic sound optimization method according to an embodiment of the present invention.

圖4為本發明一實施例的動態音效優化方法流程圖。 Figure 4 is a flow chart of a dynamic sound optimization method according to an embodiment of the present invention.

圖5為本發明一實施例的動態音效優化方法流程圖。 Figure 5 is a flow chart of a dynamic sound optimization method according to an embodiment of the present invention.

圖6為本發明一目標空間示意圖,用於說明依據最佳聆聽點的位置計算音訊調整量的實施例。 FIG6 is a schematic diagram of a target space of the present invention, used to illustrate an embodiment of calculating the audio adjustment amount based on the position of the best listening point.

圖7為本發明一目標空間示意圖,用於說明依據環境物件的吸收率計算音訊調整量的實施例。 FIG7 is a schematic diagram of a target space of the present invention, used to illustrate an embodiment of calculating the audio adjustment amount based on the absorption rate of environmental objects.

圖8為本發明一目標空間示意圖,用於說明依據環境物件的反射率計算音訊調整量的實施例。 FIG8 is a schematic diagram of a target space of the present invention, used to illustrate an embodiment of calculating the audio adjustment amount based on the reflectivity of environmental objects.

圖9為本發明一實施例的主機裝置辨識物件的流程圖。 Figure 9 is a flowchart of the host device identifying an object in an embodiment of the present invention.

圖10為本發明一實施例的音訊處理方法流程圖,說明依據環境物件的位置關係計算輸出補償值的實施例。 FIG10 is a flow chart of an audio processing method of an embodiment of the present invention, illustrating an embodiment of calculating the output compensation value based on the positional relationship of environmental objects.

圖11為本發明一目標空間示意圖,用於說明以物件基底補償運作優化音場的實施例。 FIG11 is a schematic diagram of a target space of the present invention, used to illustrate an embodiment of optimizing the sound field by object-based compensation operation.

圖12為本發明一目標空間示意圖,用於說明以物件基底補償運作優化音場的實施例。 FIG12 is a schematic diagram of a target space of the present invention, used to illustrate an embodiment of optimizing the sound field by object-based compensation operation.

圖13為本發明一實施例的物件基底補償運作流程圖。 Figure 13 is a flowchart of the object base compensation operation of an embodiment of the present invention.

以下將配合相關圖式來說明本發明的實施例。在圖式中,相同的標號表示相同或類似的元件或方法流程。 The following will be used in conjunction with relevant drawings to illustrate the embodiments of the present invention. In the drawings, the same reference numerals represent the same or similar elements or method flows.

圖1為本發明一實施例的音響系統100的功能方塊圖。 FIG1 is a functional block diagram of an audio system 100 according to an embodiment of the present invention.

音響系統100主要由一主機裝置130和多個喇叭構成。主機裝置130可控制多個喇叭而播放音訊。主機裝置130可以是電腦主機、準系統、嵌入式系統,或客製化的數位音訊處理設備。主機裝置130中包含一通信電路136,使主機裝置130可與一用戶設備150進行有線或無線連接,而做為音源訊號或資料的輸入管道。 The audio system 100 is mainly composed of a host device 130 and multiple speakers. The host device 130 can control multiple speakers to play audio. The host device 130 can be a computer host, a barebone, an embedded system, or a customized digital audio processing device. The host device 130 includes a communication circuit 136, which enables the host device 130 to be connected to a user device 150 by wire or wirelessly, and serves as an input channel for audio source signals or data.

用戶設備150可以是手機、電腦、電視棒,遊戲機,或其他的音訊源提供裝置,透過通信電路136提供音樂或聲音串流給主機裝置130。更進一步地說,音響系統100可利用通信電路136與用戶設備150或其他多媒體設備協同運作,而形成一套同時具有視頻功能和音頻功能的家庭劇院系統。舉例來說,目標空間170中還可包含一投影幕、螢幕或顯示器(未繪示),受到用戶設備150的控制而顯示畫面。又例如,用戶設備150可以是一頭戴式虛擬實境設備。使用者180可站在目標空間170中並透過用戶設備150看到畫面,而主機裝置130可受到用戶設備150的控制,而隨著畫面同步地播放音頻。本實施例中的通信電路136,可以是,但不限定於是高畫質多媒體介面(High Definition Multimedia Interface;HDMI)、數位傳輸介面(Sony/Philips Digital Interface Format;SPDIF)、無線區域網路模組,乙太網路模組,短波射頻收發器、或藍牙低功耗(Bluetooth Low Energy;BLE)第4版或第5版的演進應用、或通用序列埠(Universal Serial Bus)。 The user device 150 may be a mobile phone, a computer, a TV stick, a game console, or other audio source providing device, which provides music or sound streaming to the host device 130 through the communication circuit 136. Furthermore, the audio system 100 may utilize the communication circuit 136 to cooperate with the user device 150 or other multimedia devices to form a home theater system with both video and audio functions. For example, the target space 170 may also include a projection screen, a screen or a display (not shown), which is controlled by the user device 150 to display images. For another example, the user device 150 may be a head-mounted virtual reality device. The user 180 can stand in the target space 170 and see the screen through the user device 150, and the host device 130 can be controlled by the user device 150 to play the audio synchronously with the screen. The communication circuit 136 in this embodiment can be, but is not limited to, a high-definition multimedia interface (HDMI), a digital transmission interface (Sony/Philips Digital Interface Format; SPDIF), a wireless local area network module, an Ethernet module, a short-wave radio frequency transceiver, or an evolved application of Bluetooth Low Energy (BLE) version 4 or version 5, or a universal serial bus.

主機裝置130中還包含一音訊傳輸電路135,用於連接多個喇叭,並分別輸出多個聲道音訊使喇叭播放。主機裝置130透過音訊傳輸電路135控制多個喇叭的方式,可以是單向的數位或類比輸出,也可以是雙向的同步通信協議。音訊傳輸電路135和每一喇叭之間的連 結方式,可以是有線介面、無線介面或兩者的混合應用。有線介面可以是,但不限定是複合影音端子、數位傳輸介面,或高畫質多媒體介面。無線介面可以是,但不限定是無線區域網路、短波射頻收發器、或藍牙低功耗第4版或第5版的演進應用。在進一步衍生的實施例中,由於音訊傳輸電路135和通信電路136在功能定位上皆為與外部元件連接的介面,在衍生的實作中可以是整合在一起的多功能雙向傳輸介面模組。音訊傳輸電路135和通信電路136採用各種公開的標準傳輸技術來實現元件之間的連接和傳輸,可增加音響系統100的未來功能擴充性,並減少元件損壞時的替換成本。 The host device 130 also includes an audio transmission circuit 135 for connecting multiple speakers and outputting multiple channels of audio for the speakers to play. The host device 130 controls the multiple speakers through the audio transmission circuit 135 in a one-way digital or analog output or a two-way synchronous communication protocol. The connection between the audio transmission circuit 135 and each speaker can be a wired interface, a wireless interface, or a combination of the two. The wired interface can be, but is not limited to, a composite audio and video terminal, a digital transmission interface, or a high-definition multimedia interface. The wireless interface can be, but is not limited to, a wireless local area network, a short-wave radio frequency transceiver, or an evolved application of Bluetooth low energy version 4 or version 5. In a further derived embodiment, since the audio transmission circuit 135 and the communication circuit 136 are both functionally positioned as interfaces for connecting to external components, they can be integrated into a multifunctional bidirectional transmission interface module in the derived implementation. The audio transmission circuit 135 and the communication circuit 136 use various public standard transmission technologies to achieve connection and transmission between components, which can increase the future functional expansion of the audio system 100 and reduce the replacement cost when components are damaged.

圖1中的目標空間170可以理解為一個可供使用者180使用音響系統100的三維立體空間。每個喇叭可配置在目標空間170中的不同位置,對應地播放一個聲道音訊。多個喇叭的圍繞配置,可以在一目標空間170中創造一個環繞音場環境。喇叭的數量和配置方式存在多種標準規格。舉例來說,在一個5.1聲道的環繞音響系統中,包含了兩個前置喇叭、一個中置喇叭、兩個環繞聲道喇叭,以及一個重低音喇叭,以包圍一目標聆聽點的方式創造出一環繞音場空間,共同向該目標聆聽點播放聲音。在一個7.1聲道的環境音響系統中,進一步地在該目標聆聽點的後面多配置一對後環繞聲道喇叭,可提供更加立體的音場效果。近年來還出現5.1.2聲道和7.2.2聲道等新規格,包含了更多的喇叭數量和特定方向的聲道配置,可達到更逼真的「全景聲」、「天空音效」或「地板音效」等效果。為了方便說明本實施例的音響系統100的技術特徵,圖1中僅繪示第一喇叭110和第二喇叭120為代表。其中,第一喇叭110接收並播放由主機裝置130提供的第一聲道音訊112,而第二喇叭120接收並播放由主機裝置130提供的第二聲道音訊122。必須理解的是,在實作中,本實施例的音響系統100並不限定於只能應用兩個喇叭,而是可應用於2.1聲道、4.1聲道、5.1聲道、7.2聲道或更多聲道的規格配置。目標空間170中 的每個喇叭,可分別具有不同的音頻輸出規格。舉例來說,有的喇叭擅長輸出重低音,有的喇叭擅長輸出中高音。主機裝置130可依照不同喇叭規格而在目標空間170中規畫出各種不同特性的音場環境。 The target space 170 in FIG. 1 can be understood as a three-dimensional space in which the user 180 can use the audio system 100. Each speaker can be configured at a different position in the target space 170 to play a corresponding channel audio. The surround configuration of multiple speakers can create an ambient sound field environment in a target space 170. There are many standard specifications for the number and configuration of speakers. For example, in a 5.1-channel surround sound system, two front speakers, a center speaker, two surround channel speakers, and a subwoofer are included to create an ambient sound field space in a manner of surrounding a target listening point, and together play sound to the target listening point. In a 7.1-channel ambient sound system, further configuring a pair of rear surround channel speakers behind the target listening point can provide a more three-dimensional sound field effect. In recent years, new specifications such as 5.1.2 channels and 7.2.2 channels have also emerged, which include more speakers and channel configurations in specific directions, and can achieve more realistic "panoramic sound", "sky sound effects" or "floor sound effects" and other effects. In order to facilitate the description of the technical features of the sound system 100 of this embodiment, only the first speaker 110 and the second speaker 120 are shown in FIG1 as representatives. Among them, the first speaker 110 receives and plays the first channel audio 112 provided by the host device 130, and the second speaker 120 receives and plays the second channel audio 122 provided by the host device 130. It must be understood that, in practice, the audio system 100 of this embodiment is not limited to only two speakers, but can be applied to 2.1-channel, 4.1-channel, 5.1-channel, 7.2-channel or more channel configurations. Each speaker in the target space 170 may have different audio output specifications. For example, some speakers are good at outputting heavy bass, and some speakers are good at outputting mid-high frequencies. The host device 130 can plan various sound field environments with different characteristics in the target space 170 according to different speaker specifications.

在說明書及申請專利範圍中所指稱的「聲道」一詞,泛指各種實體聲道和邏輯聲道。邏輯聲道指的是在系統內部傳輸的音訊資料流,而實體聲道指的是每一喇叭藉以播放的訊號來源。在本實施例中,每個喇叭對應播放出來的第一聲道音訊112和第二聲道音訊122,屬於實體聲道,可以是一或多個邏輯聲道向下混音(down-mix)而產生的結果。舉例來說,一副耳機只有兩個喇叭,但可以同時聽見多個應用程式產生的音效。換句話說,多個應用程式的音效資料,可由系統向下混音為兩個實體聲道,並透過兩個喇叭播放為可聽聲音。因此,本實施例中的第一聲道音訊112和第二聲道音訊122,不限定為只包含單一邏輯聲道的音訊信號,也可以是多個邏輯聲道依據預定的比例混合產生的音訊信號。 The term "channel" referred to in the specification and patent application refers to various physical channels and logical channels. Logical channels refer to the audio data stream transmitted within the system, while physical channels refer to the signal source used by each speaker to play. In the present embodiment, the first channel audio 112 and the second channel audio 122 played by each speaker are physical channels, which can be the result of down-mixing one or more logical channels. For example, a pair of headphones has only two speakers, but the sound effects generated by multiple applications can be heard at the same time. In other words, the sound effect data of multiple applications can be down-mixed into two physical channels by the system and played as audible sound through two speakers. Therefore, the first channel audio 112 and the second channel audio 122 in this embodiment are not limited to audio signals containing only a single logical channel, but can also be audio signals generated by mixing multiple logical channels according to a predetermined ratio.

在圖1中,第一喇叭110和第二喇叭120配置在一目標空間170的兩側,對該目標空間170中的一目標聆聽點播放聲音。目標聆聽點可以理解為該音響系統100的播放效果最優化的位置。在一些音響系統中,又將目標聆聽點稱為聆聽甜蜜點(Listening Sweet Spot)。在大部份的情況下,目標聆聽點通常位於目標空間170的特定區域,例如中心點、軸線上、切平面上,或是多個喇叭的等效音量中心。在圖1中,以使用者180所在的第一位置171,來表示該目標空間170的目標聆聽點。當使用者180從第一位置171沿著移動軌跡173移動到第二位置172時,由於使用者180遠離了第一喇叭110而接近了第二喇叭120,使用者180所接收到的聆聽效果產生了偏差。傳統的音響系統無法追蹤使用者180的移動而對應地調整第二位置172收到的聆聽效果,而本實施例提議的解決方案將於後詳述。 In FIG. 1 , a first speaker 110 and a second speaker 120 are arranged on both sides of a target space 170 to play sound to a target listening point in the target space 170. The target listening point can be understood as the position where the playback effect of the audio system 100 is optimized. In some audio systems, the target listening point is also called the listening sweet spot. In most cases, the target listening point is usually located in a specific area of the target space 170, such as a center point, an axis, a tangent plane, or an equivalent volume center of multiple speakers. In FIG. 1 , the target listening point of the target space 170 is represented by a first position 171 where a user 180 is located. When the user 180 moves from the first position 171 to the second position 172 along the moving track 173, the listening effect received by the user 180 deviates because the user 180 moves away from the first speaker 110 and approaches the second speaker 120. The traditional audio system cannot track the movement of the user 180 and adjust the listening effect received by the second position 172 accordingly. The solution proposed in this embodiment will be described in detail later.

另一方面,目標空間170中通常會包含一些環境物件175,例如沙發、桌子、窗廉、牆壁、天花板、地板。這些環境物件175隨著材質、大小和位置的不同,會對第一喇叭110和第二喇叭120播放的聲音產生不同程度的干擾反應。舉例來說,布質沙發或窗廉會吸收聲音,大理石地板或牆壁會反射聲音。換句話說,環境物件175的存在,會影響目標聆聽點收到的第一聲道音訊112和第二聲道音訊122。傳統的音響系統不具備辨識目標空間170中的環境物件175的能力,也不具備依據環境物件175的大小、材質、位置而補償第一聲道音訊112和第二聲道音訊122的功能。本實施例的音響系統100可計算並消除目標空間170中所有的環境物件175對第一聲道音訊112和第二聲道音訊122的干擾。為了方便說明,本實施例的圖1中僅繪示一個環境物件175來解釋音響系統100的運作方式。然而,必須理解的是,圖1的目標空間170中並非用以限定只能有一個環境物件175。解決環境物件175干擾的方案將於後詳述。 On the other hand, the target space 170 usually includes some environmental objects 175, such as sofas, tables, curtains, walls, ceilings, and floors. These environmental objects 175 will produce different degrees of interference reactions on the sounds played by the first speaker 110 and the second speaker 120 depending on the material, size, and position. For example, a cloth sofa or curtain will absorb sound, and a marble floor or wall will reflect sound. In other words, the presence of environmental objects 175 will affect the first channel audio 112 and the second channel audio 122 received by the target listening point. Conventional audio systems do not have the ability to identify environmental objects 175 in the target space 170, nor do they have the function of compensating the first channel audio 112 and the second channel audio 122 according to the size, material, and position of the environmental objects 175. The audio system 100 of this embodiment can calculate and eliminate the interference of all environmental objects 175 in the target space 170 on the first channel audio 112 and the second channel audio 122. For the convenience of explanation, FIG. 1 of this embodiment only shows one environmental object 175 to explain the operation of the audio system 100. However, it must be understood that the target space 170 of FIG. 1 is not limited to only one environmental object 175. The solution to the interference of environmental object 175 will be described in detail later.

本實施例的主機裝置130中還包含一儲存電路131。儲存電路131可包含非揮發性記憶體,用於儲存主機裝置130運作所需的相關作業系統、應用軟體或韌體。儲存電路131中也可包含揮發性記憶體,用於做為控制電路132的運算記憶體。本實施例的主機裝置130中還包含一控制電路132。控制電路132可以是中央處理器、數位訊號處理器、或微控制器。控制電路132可從儲存電路131中讀取預存的作業系統、軟體或韌體而控制主機裝置130、第一喇叭110和第二喇叭120,以執行音訊播放運作。更進一步地說,本實施例的主機裝置130利用控制電路132進行一系列的音場補償運算,以動態地優化播放效果,解決傳統音響系統無法克服的缺點。 The host device 130 of the present embodiment further includes a storage circuit 131. The storage circuit 131 may include a non-volatile memory for storing the relevant operating system, application software or firmware required for the operation of the host device 130. The storage circuit 131 may also include a volatile memory for use as a computing memory for the control circuit 132. The host device 130 of the present embodiment further includes a control circuit 132. The control circuit 132 may be a central processing unit, a digital signal processor, or a microcontroller. The control circuit 132 may read the pre-stored operating system, software or firmware from the storage circuit 131 to control the host device 130, the first speaker 110 and the second speaker 120 to perform audio playback operations. Furthermore, the host device 130 of this embodiment uses the control circuit 132 to perform a series of sound field compensation operations to dynamically optimize the playback effect and solve the shortcomings that traditional audio systems cannot overcome.

為了動態地優化目標聆聽點上的播放效果,本實施例的音響系統100包含了一感測器電路140,設置為可動態地感測一目標空間170而產生一音場環境資訊。感測器電路140可以是位於主機裝置130外 部的元件,耦接至主機裝置130。感測器電路140可以是由攝影機610、紅外線感測器620、無線偵測器630其中之一或多者的搭配組合。感測器電路140所捕捉的音場環境資訊的型式,可隨著感測器電路140的實作方式而有不同組合。舉例來說,音場環境資訊可以是包含使用者和環境物件的影像、圖片、熱成像、無線電波造影其中之一或多者的搭配組合。在一實施例中,感測器電路140設置在目標空間170的周圍。可以理解的是,雖然圖1中只繪示了一個感測器電路140,但在實作時,音響系統100可包含多組感測器電路140,分別配置在目標空間170周圍的不同位置,以獲得更精準的音場環境資訊。 In order to dynamically optimize the playback effect at the target listening point, the audio system 100 of this embodiment includes a sensor circuit 140, which is configured to dynamically sense a target space 170 and generate sound field environment information. The sensor circuit 140 can be a component located outside the host device 130 and coupled to the host device 130. The sensor circuit 140 can be a combination of one or more of a camera 610, an infrared sensor 620, and a wireless detector 630. The type of sound field environment information captured by the sensor circuit 140 can have different combinations depending on the implementation method of the sensor circuit 140. For example, the sound field environment information may be a combination of one or more of images, pictures, thermal imaging, and radio wave imaging of the user and environmental objects. In one embodiment, the sensor circuit 140 is disposed around the target space 170. It is understood that although only one sensor circuit 140 is shown in FIG. 1 , in practice, the audio system 100 may include multiple sets of sensor circuits 140, which are respectively disposed at different positions around the target space 170 to obtain more accurate sound field environment information.

在本實施例的主機裝置130中,包含一辨識電路134,耦接該感測器電路140。辨識電路134可從該音場環境資訊中辨識出影響音場的關鍵資訊,使控制電路132據以動態地調整從第一喇叭110和第二喇叭120播放的第一聲道音訊112和第二聲道音訊122。舉例來說,辨識電路134可從該音場環境資訊中辨識出一使用者並判斷該使用者在該目標空間中的一使用者位置。由於感測器電路140提供的音場環境資訊可以有多種不同型式的組合,辨識電路134也可以對應地實作不同的辨識技術方案。舉例來說,當音場環境資訊是影像時,辨識電路134可採用人工智慧的辨識技術,來分辨影像中的使用者。透過人工智慧的應用,辨識電路134分析出影像中的使用者後,還可進一步地定位使用者頭部、臉部、甚至耳朵位置。若是感測器電路140可提供具有空間深度的三維影像、紅外線熱成像、或無線訊號等多元化資訊,將有助於辨識電路134獲得更精準的辨識結果。 In the host device 130 of the present embodiment, an identification circuit 134 is included, which is coupled to the sensor circuit 140. The identification circuit 134 can identify key information that affects the sound field from the sound field environment information, so that the control circuit 132 can dynamically adjust the first channel audio 112 and the second channel audio 122 played from the first speaker 110 and the second speaker 120. For example, the identification circuit 134 can identify a user from the sound field environment information and determine a user position of the user in the target space. Since the sound field environment information provided by the sensor circuit 140 can be a combination of multiple different types, the identification circuit 134 can also implement different identification technology solutions accordingly. For example, when the sound field environment information is an image, the recognition circuit 134 can use artificial intelligence recognition technology to identify the user in the image. Through the application of artificial intelligence, after the recognition circuit 134 analyzes the user in the image, it can further locate the user's head, face, and even ear position. If the sensor circuit 140 can provide diversified information such as three-dimensional images with spatial depth, infrared thermal imaging, or wireless signals, it will help the recognition circuit 134 obtain more accurate recognition results.

主機裝置130為了計算環境物件175對音場環境造成的干擾程度,需要環境物件175的空間配置資訊和聲學屬性資訊。空間配置資訊可以包含環境物件175的大小、位置、形狀、以及各種外型特徵。聲學屬性資訊可包含對聲音的吸收率、反射率、及共振頻率等材質相 關特徵。在一實施例中,辨識電路134可在辨識音場環境資訊時,進一步從音場環境資訊中辨識出目標空間170中的環境物件175的空間配置資訊,並查找聲學屬性資訊。為了辨識環境物件,需要物件資料庫。在一實施例中,主機裝置130中的儲存電路131還可用來儲存一物件資料庫。物件資料庫可包含用於辨識環境物件的各種外型特徵資訊,以及每個環境物件對應的各種聲學屬性資訊。例如,當主機裝置130需要計算一環境物件175對音場環境造成的干擾程度時,可先透過辨識電路134分析出環境物件175的物件名稱,再由主機裝置130讀取儲存電路131而查找該環境物件175對應的吸收率及反射率。 In order to calculate the degree of interference caused by the environmental object 175 to the sound field environment, the host device 130 needs the spatial configuration information and acoustic property information of the environmental object 175. The spatial configuration information may include the size, position, shape, and various appearance characteristics of the environmental object 175. The acoustic property information may include material-related characteristics such as the absorption rate, reflectivity, and resonance frequency of sound. In one embodiment, when recognizing the sound field environment information, the recognition circuit 134 may further recognize the spatial configuration information of the environmental object 175 in the target space 170 from the sound field environment information and search for the acoustic property information. In order to recognize the environmental object, an object database is required. In one embodiment, the storage circuit 131 in the host device 130 can also be used to store an object database. The object database may include various appearance feature information for identifying environmental objects, as well as various acoustic property information corresponding to each environmental object. For example, when the host device 130 needs to calculate the degree of interference caused by an environmental object 175 to the sound field environment, the object name of the environmental object 175 can be analyzed through the identification circuit 134 first, and then the host device 130 reads the storage circuit 131 to find the corresponding absorption rate and reflectivity of the environmental object 175.

在實作中,辨識電路134可以是客製作的處理器晶片,搭配儲存電路131中既存的作業系統、軟體或韌體而執行人工智慧的辨識功能。辨識電路134也可以是控制電路132的其中一個核心或執行緒電路,執行儲存電路131中既存人工智慧軟體產品而實現辨識功能。辨識電路134也可以是特定人工智慧軟體產品的記憶體模塊,受到控制電路132的執行而完成辨識的功能。 In practice, the identification circuit 134 can be a custom-made processor chip, which is used in conjunction with the existing operating system, software or firmware in the storage circuit 131 to perform the artificial intelligence identification function. The identification circuit 134 can also be one of the cores or thread circuits of the control circuit 132, which executes the existing artificial intelligence software product in the storage circuit 131 to realize the identification function. The identification circuit 134 can also be a memory module of a specific artificial intelligence software product, which is executed by the control circuit 132 to complete the identification function.

主機裝置130中的人機介面電路133,可供使用者控制主機裝置130的運作。人機介面電路133可包含顯示屏幕、按鍵、轉盤、或觸控屏,可供使用者進行基本的音響系統100控制功能,例如調整音量、播放、及快進倒退等。在一實施例中,控制電路132也可透過人機介面電路133執行一配置程序,以供使用者設定各種音場情境,或將目標空間170中的環境物件175空間配置資訊告訴主機裝置130。舉例來說,在該配置程序中,控制電路132利用人機介面電路133接收使用者輸入的物件配置資料,例如一或多個環境物件175的物件名稱、類型、大小和位置。在控制電路132獲得這些空間配置資訊後,再從儲存於儲存電路131中的物件資料庫中查找對應的吸收率和反射率,以便後續的音場補償運作。在進一步衍生的實施例中, 人機介面電路133也可以是由用戶設備150提供。使用者可利用用戶設備150操作該配置程序,最後用戶設備150透過通信電路136將設置結果傳送給控制電路132。 The human-machine interface circuit 133 in the host device 130 allows the user to control the operation of the host device 130. The human-machine interface circuit 133 may include a display screen, buttons, a turntable, or a touch screen, which allows the user to perform basic control functions of the audio system 100, such as adjusting the volume, playing, fast forwarding and rewinding, etc. In one embodiment, the control circuit 132 may also execute a configuration program through the human-machine interface circuit 133 to allow the user to set various sound field scenarios, or tell the host device 130 the spatial configuration information of the environmental objects 175 in the target space 170. For example, in the configuration program, the control circuit 132 uses the human-machine interface circuit 133 to receive object configuration data input by the user, such as the object name, type, size and position of one or more environmental objects 175. After the control circuit 132 obtains the spatial configuration information, it searches the object database stored in the storage circuit 131 for the corresponding absorptivity and reflectivity for subsequent sound field compensation operations. In a further derived embodiment, the human-machine interface circuit 133 may also be provided by the user device 150. The user may use the user device 150 to operate the configuration program, and finally the user device 150 transmits the setting result to the control circuit 132 via the communication circuit 136.

主機裝置130還可透過通信電路136連接至一遠端資料庫160。在進一步的實施例中,原本利用儲存電路131儲存的物件資料庫,也可以透過遠端資料庫160來儲存。當主機裝置130需要計算一環境物件175對音場環境造成的干擾程度時,可先透過辨識電路134分析音場環境資訊而獲得一物件特徵值,再利用通信電路136接入遠端資料庫160,查找出符合該物件特徵值的一環境物件175,並獲得該環境物件175的音場屬性資訊。遠端資料庫160可以是位於雲端或其他系統中的服務器,與主機裝置130之間通過有線或無線的雙向網路通信技術而連線。遠端資料庫160除了可提供查找功能,也可以接受更新資料的上傳,以持續擴充資料庫內容。舉例來說,主機裝置130可利用結構式查詢語法(Structured Query Language;SQL)與遠端資料庫160溝通。 The host device 130 can also be connected to a remote database 160 via the communication circuit 136. In a further embodiment, the object database originally stored by the storage circuit 131 can also be stored via the remote database 160. When the host device 130 needs to calculate the degree of interference caused by an environmental object 175 to the sound field environment, it can first analyze the sound field environment information through the recognition circuit 134 to obtain an object feature value, and then use the communication circuit 136 to access the remote database 160 to find an environmental object 175 that meets the object feature value, and obtain the sound field attribute information of the environmental object 175. The remote database 160 may be a server located in the cloud or other systems, and is connected to the host device 130 via a wired or wireless two-way network communication technology. In addition to providing a search function, the remote database 160 may also accept the upload of updated data to continuously expand the database content. For example, the host device 130 may communicate with the remote database 160 using Structured Query Language (SQL).

基於圖1的系統架構,本申請所提出的音響系統100可實現至少下列技術效果。首先,音響系統100可動態追蹤使用者位置,做為目標聆聽點。音響系統100還可動態地獲取環境物件的空間配置資訊,做為優化音場效果的依據。最後,音響系統100動態地根據使用者位置和環境物件的空間配置資訊,補償喇叭輸出,以消除物件干擾,優化目標聆聽點上的聆聽效果。動態追蹤使用者位置的實施方式可採用攝影機、紅外線感測器、或無線定位等多元技術方案。獲取環境物件的空間配置資訊的實施方式可以是自動進行或手動進行。舉例來說,音響系統100可利用攝影機捕捉影像並進行人工智慧辨識、或透過一配置程序讓使用者手動輸入現場的環境狀況。補償喇叭輸出的實施方式可以基於幾種不同演算法。舉例來說,本說明書介紹了通道基底(Channel Base)算法和物件基底(Object Base)算法。 Based on the system architecture of Figure 1, the audio system 100 proposed in this application can achieve at least the following technical effects. First, the audio system 100 can dynamically track the user's position as a target listening point. The audio system 100 can also dynamically obtain the spatial configuration information of environmental objects as a basis for optimizing the sound field effect. Finally, the audio system 100 dynamically compensates the speaker output based on the user's position and the spatial configuration information of environmental objects to eliminate object interference and optimize the listening effect at the target listening point. The implementation method of dynamically tracking the user's position can adopt multiple technical solutions such as cameras, infrared sensors, or wireless positioning. The implementation method of obtaining the spatial configuration information of environmental objects can be automatic or manual. For example, the audio system 100 can use a camera to capture images and perform artificial intelligence recognition, or allow the user to manually input the on-site environmental conditions through a configuration program. The implementation method of compensating the speaker output can be based on several different algorithms. For example, this manual introduces the channel base algorithm and the object base algorithm.

以下以圖2說明音響系統100動態追蹤使用者位置,利用攝影機獲取音場環境配置,並以通道基底補償運作補償喇叭輸出的實施例。 The following is an example of an audio system 100 dynamically tracking the user's position, using a camera to obtain the sound field environment configuration, and using channel floor compensation to compensate the speaker output using FIG. 2.

圖2為本發明一實施例的動態音效優化方法流程圖。 Figure 2 is a flow chart of a dynamic sound optimization method according to an embodiment of the present invention.

在圖2的流程圖中,位於一特定裝置所屬欄位中的流程,即代表由該特定裝置所進行的流程。例如,標記在「感測器電路」欄位中的部分,是由感測器電路140所進行的流程;標記在「主機裝置」欄位中的部分,是由主機裝置130所進行的流程;標記在「喇叭」欄位中的部分,則是由第一喇叭110和/或第二喇叭120所進行的流程;其餘依此類推。前述的邏輯也適用於後續的其他流程圖中。 In the flowchart of FIG. 2, the process in the column belonging to a specific device represents the process performed by the specific device. For example, the part marked in the "sensor circuit" column is the process performed by the sensor circuit 140; the part marked in the "host device" column is the process performed by the host device 130; the part marked in the "speaker" column is the process performed by the first speaker 110 and/or the second speaker 120; and so on. The aforementioned logic is also applicable to other subsequent flowcharts.

在流程202中,由感測器電路140動態地感測目標空間而產生音場環境資訊。在本實施例中,音場環境資訊可以是目標空間170中的光學、熱學、或電磁波資訊。舉例來說,感測器電路140可以包含一攝影機,以錄影的方式持續拍攝目標空間170的視頻,或是以拍照的方式週期性捕捉目標空間170的靜態照片。在另一實施例中,該感測器電路140還可包含一紅外線感測器,設置為可捕捉該目標空間中的一熱成像資料。紅外線感測器所產生的熱成像資料,除了包含空間深度的資訊,對溫度變化也極為敏感,因此特別適合用來追蹤使用者位置。在另一實施例中,該感測器電路140還可包含一無線偵測器,設置在該目標空間中,並偵測一電子裝置的無線訊號。當一使用者手持著一個電子裝置時,無線偵測器可偵測該電子裝置的信標時間差或無線訊號強弱,做為追蹤使用者位置的輔助手段。該電子裝置可以是使用者自己的手機,特製的信標產生器,頭戴式虛擬實境設備、遊戲手把、或音響系統100的遙控器。可以理解的是,本實施例並不限定感測器電路140的數量,也不限定一次只能使用一種感測方案。舉例來說,本實施例的音響系統100可採用多個感測器電路140從不同的位置協同運作,或是同時採用一或多個 攝影機、紅外線感測器和無線偵測器。藉此,主機裝置130可以獲得更完整的音場環境資訊,並在後續程序中獲得更精準的辨識結果。 In process 202, the sensor circuit 140 dynamically senses the target space to generate sound field environment information. In this embodiment, the sound field environment information can be optical, thermal, or electromagnetic wave information in the target space 170. For example, the sensor circuit 140 can include a camera that continuously shoots video of the target space 170 in a video recording manner, or periodically captures still photos of the target space 170 in a photo taking manner. In another embodiment, the sensor circuit 140 may also include an infrared sensor that is configured to capture thermal imaging data in the target space. The thermal imaging data generated by the infrared sensor, in addition to containing information about the depth of the space, is also extremely sensitive to temperature changes, and is therefore particularly suitable for tracking the user's position. In another embodiment, the sensor circuit 140 may also include a wireless detector, which is set in the target space and detects the wireless signal of an electronic device. When a user holds an electronic device, the wireless detector can detect the beacon time difference or wireless signal strength of the electronic device as an auxiliary means to track the user's location. The electronic device can be the user's own mobile phone, a specially made beacon generator, a head-mounted virtual reality device, a game controller, or a remote control of the audio system 100. It can be understood that this embodiment does not limit the number of sensor circuits 140, nor does it limit the use of only one sensing scheme at a time. For example, the audio system 100 of this embodiment can use multiple sensor circuits 140 to work together from different locations, or use one or more cameras, infrared sensors, and wireless detectors at the same time. In this way, the host device 130 can obtain more complete sound field environment information and obtain more accurate recognition results in subsequent procedures.

在流程204中,感測器電路140將感測到的音場環境資訊傳送給主機裝置130。感測器電路140可以是持續性的傳送資料,例如視頻,或是週期性的回傳靜態資料。感測器電路140傳送資料的頻率可依據音場環境資訊的信息量、追蹤精確度要求、和主機裝置130的計算能力而自適應地決定。感測器電路140和主機裝置130之間,可以是透過專屬線路連接,或是透過通信電路136連線。在進一步衍生的實施例中,感測器電路140可與喇叭共用音訊傳輸電路135,藉以透過音訊傳輸電路135傳送音場環境資訊給主機裝置130。 In process 204, the sensor circuit 140 transmits the sensed sound field environment information to the host device 130. The sensor circuit 140 can continuously transmit data, such as video, or periodically return static data. The frequency of the sensor circuit 140 transmitting data can be adaptively determined based on the amount of information in the sound field environment information, the tracking accuracy requirements, and the computing power of the host device 130. The sensor circuit 140 and the host device 130 can be connected through a dedicated line or through a communication circuit 136. In a further derived embodiment, the sensor circuit 140 can share the audio transmission circuit 135 with the speaker, so as to transmit the sound field environment information to the host device 130 through the audio transmission circuit 135.

在流程206中,主機裝置130依據從感測器電路140收到的音場環境資訊判斷使用者位置。主機裝置130中的辨識電路134可對音場環境資訊執行辨識程序,例如應用人工智慧。隨著感測器電路140的感測方案不同,辨識電路134的辨識演算法也對應地的不同。可以理解的是,目標空間170和使用者位置可以二維空間或三維空間來表示。若是音響系統100中只實作了單一感測器電路140,至少可以感知二維空間的位置信息。若是音響系統100在實作中增加感測器電路140的數量或混合多元感測方案,可獲得三維空間的深度資訊而更精確的判斷使用者位置或使用者頭部位置。在一實施例中,辨識電路134可依據攝影機捕捉的音場環境影像,動態地辨識該使用者的頭部位置、臉部方向、或耳朵位置。在另一實施例中,辨識電路134可分析紅外線感測器產生的熱成像資料的移動軌跡,以動態地判斷使用者180的位置。又例如,辨識電路134可依據無線偵測器偵測到的無線訊號的特徵,動態地定位電子裝置在目標空間170中的一座標值。藉著該座標值,控制電路132可進一步地推測使用者耳朵位置。 In process 206, the host device 130 determines the user's position based on the sound field environment information received from the sensor circuit 140. The recognition circuit 134 in the host device 130 can perform a recognition program on the sound field environment information, such as applying artificial intelligence. As the sensing scheme of the sensor circuit 140 is different, the recognition algorithm of the recognition circuit 134 is also correspondingly different. It can be understood that the target space 170 and the user's position can be represented in two-dimensional space or three-dimensional space. If only a single sensor circuit 140 is implemented in the audio system 100, at least the position information in two-dimensional space can be perceived. If the number of sensor circuits 140 is increased or a mixed multi-sensing scheme is used in the implementation of the audio system 100, depth information in three-dimensional space can be obtained to more accurately determine the user's position or the user's head position. In one embodiment, the recognition circuit 134 can dynamically identify the user's head position, facial direction, or ear position based on the sound field environment image captured by the camera. In another embodiment, the recognition circuit 134 can analyze the movement trajectory of the thermal imaging data generated by the infrared sensor to dynamically determine the position of the user 180. For another example, the recognition circuit 134 can dynamically locate the coordinate value of the electronic device in the target space 170 based on the characteristics of the wireless signal detected by the wireless detector. By using the coordinate value, the control circuit 132 can further estimate the user's ear position.

在流程208中,主機裝置130中的辨識電路134分析出使用者位置後,主機裝置130中的控制電路132動態地將使用者位置指派為目標聆聽點。為了便於描述後續的實施例,在此將目標空間170描述為一個二維座標空間或三維座標空間,而目標聆聽點可以表示為目標空間170中的一座標值。隨著多個喇叭的布局方式不同,目標聆聽點的範圍可以不止是單一點,也可以是一個面、或具有長寬高的立體區域範圍。舉例來說,在辨識電路134分析出使用者頭部位置或耳朵位置後,控制電路132可將使用頭部位置或耳朵位置指派為目標聆聽點。控制電路132會透過後續的補償運作,使目標聆聽點獲得的播放效果不受使用者移動的影響。在實作中,控制電路132是透過調整第一聲道音訊112和第二聲道音訊122來補償目標聆聽獲得的聆聽效果。可以理解的是,流程208可能是隨著使用者位置的改變而動態的執行。因此,流程208並不限定是照著圖2所繪示的順序執行。換句話說,目標聆聽點可隨著使用者位置改變而即時更新。具體的調整運算將於後述。 In process 208, after the recognition circuit 134 in the host device 130 analyzes the user's position, the control circuit 132 in the host device 130 dynamically assigns the user's position as a target listening point. For the convenience of describing subsequent embodiments, the target space 170 is described as a two-dimensional coordinate space or a three-dimensional coordinate space, and the target listening point can be represented as a coordinate value in the target space 170. Depending on the layout of multiple speakers, the range of the target listening point can be more than a single point, but can also be a surface, or a three-dimensional area with length, width, and height. For example, after the recognition circuit 134 analyzes the user's head position or ear position, the control circuit 132 can assign the head position or ear position as the target listening point. The control circuit 132 will perform subsequent compensation operations so that the playback effect obtained by the target listening point is not affected by the user's movement. In practice, the control circuit 132 compensates the listening effect obtained by the target listening by adjusting the first channel audio 112 and the second channel audio 122. It can be understood that the process 208 may be executed dynamically as the user's position changes. Therefore, the process 208 is not limited to being executed in the order shown in Figure 2. In other words, the target listening point can be updated in real time as the user's position changes. The specific adjustment operation will be described later.

在流程210中,主機裝置130中的辨識電路134還對感測器電路140提供的音場環境資訊進行進一步的辨識,而獲取目標空間170中的環境物件的空間配置資訊。換句話說,感測器電路140提供的音場環境資訊,不止是可用來判斷使用者位置,也可用來判斷目標空間170中存在的各種環境物件175。在一實施例中,該感測器電路140中的攝影機捕捉該目標空間170的一音場環境影像後,該辨識電路134分析該音場環境影像,從該目標空間170中辨識出一或多個環境物件175,以及這些環境物件175的空間配置資訊。空間配置資訊包含環境物件175的大小、位置、形狀、外觀特徵。辨識電路134還可透過人工智慧的演算或資料庫的檢索而判斷每一環境物件175的聲學屬性資訊,例如對聲音的吸收率和反射率。在進一步衍生的實施例中,辨識電路134還可根據音場環境影像判斷目標空間170的應用 場景類別。應用場景類別可以包含劇院、客廳、浴室、戶外等。如果主機裝置130知道目標空間170的應用場景類別,可以更快速地辨識目標空間170中的環境物件175而減少誤判。相關實施例將在圖9中說明。 In process 210, the recognition circuit 134 in the host device 130 further recognizes the sound field environment information provided by the sensor circuit 140, and obtains the spatial configuration information of the environmental objects in the target space 170. In other words, the sound field environment information provided by the sensor circuit 140 can be used not only to determine the user's position, but also to determine the various environmental objects 175 in the target space 170. In one embodiment, after the camera in the sensor circuit 140 captures a sound field environment image of the target space 170, the recognition circuit 134 analyzes the sound field environment image and recognizes one or more environmental objects 175 and the spatial configuration information of these environmental objects 175 from the target space 170. The spatial configuration information includes the size, position, shape, and appearance characteristics of the environmental objects 175. The recognition circuit 134 can also determine the acoustic property information of each environmental object 175, such as the absorption rate and reflectivity of sound, through artificial intelligence calculation or database retrieval. In a further derived embodiment, the recognition circuit 134 can also determine the application scene category of the target space 170 based on the sound field environment image. The application scene category can include theater, living room, bathroom, outdoor, etc. If the host device 130 knows the application scene category of the target space 170, it can more quickly identify the environmental objects 175 in the target space 170 and reduce misjudgment. The relevant embodiment will be described in Figure 9.

在流程212中,主機裝置130中的控制電路132可計算喇叭對目標聆聽點的播放效果受環境物件影響的程度。一喇叭對目標聆聽點的播放效果,可以定義為該目標聆聽點上從該喇叭所接收到的等效音量(Equal loudness)或聲壓值(Sound Pressure Level;SPL)。在ISO226標準中定義了一個等響曲線(Fletcher-Munson Curve),說明使用者在不同的子頻帶下感知到的等效音量,其實對應的是不同的聲壓值。在一實施例中,控制電路132可採用等響曲線做為播放效果的標準參考基準,計算各種情況對目標聆聽點所接收到的聲壓值。控制電路132可利用環境物件175的空間配置資訊和聲學屬性資訊來評估環境物件175對目標聆聽點造成的干擾,以便進一步計算消除干擾的方法。環境物件175的空間配置資訊和屬性資訊的影響包含許多種情境。舉例來說,環境物件175體積越大,對目標聆聽點的干擾係數可能越大。環境物件175的位置是否阻擋使用者180和喇叭,也決定了喇叭受影響的程度。環境物件175隨著材質不同,可能會吸收聲音或反彈聲音。因此控制電路132需要針對不同的聲學屬性選用對應的參數或公式來計算喇叭受影響的程度。 In process 212, the control circuit 132 in the host device 130 can calculate the degree to which the playback effect of the speaker on the target listening point is affected by environmental objects. The playback effect of a speaker on the target listening point can be defined as the equivalent volume (Equal loudness) or sound pressure level (SPL) received from the speaker at the target listening point. The ISO226 standard defines an equal sound curve (Fletcher-Munson Curve), which explains that the equivalent volume perceived by the user in different sub-bands actually corresponds to different sound pressure values. In one embodiment, the control circuit 132 can use the equal sound curve as a standard reference benchmark for the playback effect to calculate the sound pressure values received by the target listening point in various situations. The control circuit 132 can use the spatial configuration information and acoustic property information of the environmental object 175 to evaluate the interference caused by the environmental object 175 to the target listening point, so as to further calculate the method of eliminating the interference. The impact of the spatial configuration information and property information of the environmental object 175 includes many scenarios. For example, the larger the volume of the environmental object 175, the greater the interference coefficient on the target listening point may be. Whether the position of the environmental object 175 blocks the user 180 and the speaker also determines the degree of influence on the speaker. Depending on the material, the environmental object 175 may absorb sound or bounce sound. Therefore, the control circuit 132 needs to select corresponding parameters or formulas for different acoustic properties to calculate the degree of influence on the speaker.

在流程214中,主機裝置130中的控制電路132採用通道基底補償運作,分別計算每一喇叭的聲道音訊需要的輸出補償值。通道基底補償運作在判斷對目標聆聽點的播放效果時,是以每一聲道音訊為單位分開計算的。以多個喇叭中的一第一喇叭110所播放的一第一聲道音訊112為例,在第一聲道音訊112透過空氣傳送到目標聆聽點之前,可能受到一環境物件175干擾而損失能量。目標聆聽點的位置改變,也會影響到第一聲道音訊112在目標聆聽點上產生的聲壓值。 通過通道基底補償運作,控制電路132可算出第一聲道音訊112在目標聆聽點上的聲壓值改變量。本實施例的控制電路132為第一聲道音訊112加入輸出補償值,以抵消所述的聲壓值改變量,使目標聆聽點收到的第一聲道音訊112還原至受到影響之前的狀態。換句話說,輸出補償值具有與聲壓值改變量相同的數值,但是相反的正負極性。 In process 214, the control circuit 132 in the host device 130 uses a channel floor compensation operation to calculate the output compensation value required for the channel audio of each speaker. The channel floor compensation operation is calculated separately for each channel audio when judging the playback effect on the target listening point. For example, a first channel audio 112 played by a first speaker 110 among multiple speakers may be interfered by an environmental object 175 and lose energy before the first channel audio 112 is transmitted to the target listening point through the air. Changes in the position of the target listening point will also affect the sound pressure value generated by the first channel audio 112 at the target listening point. Through the channel floor compensation operation, the control circuit 132 can calculate the sound pressure value change of the first channel audio 112 at the target listening point. The control circuit 132 of this embodiment adds an output compensation value to the first channel audio 112 to offset the sound pressure value change, so that the first channel audio 112 received by the target listening point is restored to the state before being affected. In other words, the output compensation value has the same value as the sound pressure value change, but the opposite positive and negative polarity.

在流程216中,控制電路132依據輸出補償值調整並輸出聲道音訊給喇叭。由於調整後的聲道音訊已抵消使用者180在目標空間170中的位移影響和環境物件175造成的干擾,使用者180感受到的聆聽效果保持一致。以目標空間170中的第一喇叭110和第二喇叭120為例,控制電路132計算並調整第一聲道音訊112和第二聲道音訊122中的不同子頻帶的聲壓值,藉此抵消使用者180因移動感受到的等效音量偏差。另一方面,該控制電路(132)依據環境物件175的位置、大小、及聲學屬性資訊對該目標聆聽點造成的聲壓值改變量,對應地補償第一聲道音訊112和第二聲道音訊122。 In process 216, the control circuit 132 adjusts and outputs the channel audio to the speaker according to the output compensation value. Since the adjusted channel audio has offset the displacement effect of the user 180 in the target space 170 and the interference caused by the environmental objects 175, the listening effect felt by the user 180 remains consistent. Taking the first speaker 110 and the second speaker 120 in the target space 170 as an example, the control circuit 132 calculates and adjusts the sound pressure values of different sub-bands in the first channel audio 112 and the second channel audio 122, thereby offsetting the equivalent volume deviation felt by the user 180 due to movement. On the other hand, the control circuit (132) compensates the first channel audio 112 and the second channel audio 122 accordingly according to the change in the sound pressure value caused by the position, size, and acoustic property information of the environmental object 175 at the target listening point.

在流程218中,由每一喇叭透過音訊傳輸電路135對應地從主機裝置130接收聲道音訊。以目標空間170中的第一喇叭110和第二喇叭120為例,控制電路132透過音訊傳輸電路135分別地輸出第一聲道音訊112和第二聲道音訊122至對應的第一喇叭110和第二喇叭120。於是,第一喇叭110和第二喇叭120對應地播放調整後的第一聲道音訊112和第二聲道音訊122,使使用者180所在的目標聆聽點獲得優化的聆聽效果。為便於說明,圖1的目標空間170的實施例中僅繪示了兩個喇叭和一個環境物件175。然而,可以理解的是,在實作中,主機裝置130中可包含不止兩個喇叭,而環境物件175的數量也不限於一個。在進一步衍生的實施例中,每一喇叭擅長輸出的音頻範圍可能是不同的。例如有的喇叭是中高音喇叭,有的喇叭是重低音喇叭。 控制電路132在調整聲道音訊的時候,還可進一步的根據不同喇叭的特性而調整對應輸出的第一聲道音訊112和第二聲道音訊122。 In process 218, each speaker receives the channel audio from the host device 130 via the audio transmission circuit 135. Taking the first speaker 110 and the second speaker 120 in the target space 170 as an example, the control circuit 132 outputs the first channel audio 112 and the second channel audio 122 to the corresponding first speaker 110 and the second speaker 120 via the audio transmission circuit 135. Therefore, the first speaker 110 and the second speaker 120 play the adjusted first channel audio 112 and the second channel audio 122 correspondingly, so that the target listening point where the user 180 is located obtains an optimized listening effect. For ease of explanation, only two speakers and one environmental object 175 are shown in the embodiment of the target space 170 in FIG. 1. However, it is understood that in practice, the host device 130 may include more than two speakers, and the number of environmental objects 175 is not limited to one. In further derived embodiments, the audio range that each speaker is good at outputting may be different. For example, some speakers are mid-high speakers, and some speakers are subwoofers. When adjusting the channel audio, the control circuit 132 can further adjust the corresponding output first channel audio 112 and second channel audio 122 according to the characteristics of different speakers.

以下以圖3說明音響系統100動態追蹤使用者位置,利用攝影機獲取音場環境配置,並以物件基底補償運作補償喇叭輸出的實施例。 FIG. 3 below illustrates an example of an audio system 100 dynamically tracking the user's position, using a camera to obtain the sound field environment configuration, and using object-based compensation to compensate the speaker output.

圖3為本發明一實施例的動態音效優化方法流程圖。 Figure 3 is a flow chart of a dynamic sound optimization method according to an embodiment of the present invention.

在圖3的流程圖中,位於一特定裝置所屬欄位中的流程,即代表由該特定裝置所進行的流程。例如,標記在「感測器電路」欄位中的部分,是由感測器電路140所進行的流程;標記在「主機裝置」欄位中的部分,是由主機裝置130所進行的流程;標記在「喇叭」欄位中的部分,則是由第一喇叭110和/或第二喇叭120所進行的流程;其餘依此類推。前述的邏輯也適用於後續的其他流程圖中。 In the flowchart of FIG. 3, the process in the column belonging to a specific device represents the process performed by the specific device. For example, the part marked in the "sensor circuit" column is the process performed by the sensor circuit 140; the part marked in the "host device" column is the process performed by the host device 130; the part marked in the "speaker" column is the process performed by the first speaker 110 and/or the second speaker 120; and so on. The aforementioned logic is also applicable to other subsequent flowcharts.

圖3中的流程202、204、206、208及210與前實施例相同,為節省篇幅,不再重複說明。 The processes 202, 204, 206, 208 and 210 in FIG. 3 are the same as those in the previous embodiment and will not be repeated for the sake of space saving.

在本實施例的音響系統100完成流程210時,控制電路132已追蹤使用者180的位置並指派為目標聆聽點,並且也獲得了目標空間170中的一或多個環境物件175的空間配置資訊。接著以後續流程說明物件基底補償運作,來調整每一喇叭的聲道音訊。 When the audio system 100 of the present embodiment completes process 210, the control circuit 132 has tracked the position of the user 180 and assigned it as the target listening point, and has also obtained the spatial configuration information of one or more environmental objects 175 in the target space 170. The subsequent process then describes the object-based compensation operation to adjust the channel audio of each speaker.

物件基底(Object Based)聲學系統起源於虛擬實境的混音技術,能利用有限數量的實體喇叭模擬出音源物件移動的效果。現存的一些軟體產品,例如杜比音場產品(Dolby Atmos)、空間音訊工作站(Spatial Audio Workstation)、或數位空間實境(DSpatial Reality)等都屬於物件基底的聲學系統。使用者可透過一人機介面在一虛擬空間中定義音源物件的移動軌跡。而物件基底系統可利用實體喇叭模擬出該虛擬空間中的音源物件的聲音效果。位於目標聆聽點的使用者,藉此可真實地感受到音源物件在空間中移動。 The object-based acoustic system originated from the mixing technology of virtual reality, which can use a limited number of physical speakers to simulate the effect of the movement of the sound source object. Some existing software products, such as Dolby Atmos, Spatial Audio Workstation, or Digital Spatial Reality, are all object-based acoustic systems. Users can define the movement trajectory of the sound source object in a virtual space through a human-computer interface. The object-based system can use physical speakers to simulate the sound effects of the sound source object in the virtual space. Users at the target listening point can truly feel the sound source object moving in the space.

物件基底聲學系統是建立在大量聲學參數的陣列運算上。每一音源物件具有一中繼資料,用於描述該音源物件的類型、位置、大小 (長寬高)、發散度(divergence)等。經過物件基底的陣列運算後,一音源物件所代表的聲音將會被指派至一或多個喇叭而共同播放,每一喇叭相對播放該音源件的一部份的聲音。換句話說,物件基底的陣列運算可利用多個喇叭來模擬一個音源物件的空間效果。圖3的實施例提出基於物件基底聲學系統的一物件基底補償運作,來解決傳統的播放效果問題。 The object-based acoustic system is based on array operations of a large number of acoustic parameters. Each sound source object has a metadata that describes the type, position, size (length, width and height), divergence, etc. of the sound source object. After the object-based array operation, the sound represented by a sound source object will be assigned to one or more speakers to play together, and each speaker plays a part of the sound of the sound source object. In other words, the object-based array operation can use multiple speakers to simulate the spatial effect of a sound source object. The embodiment of Figure 3 proposes an object-based compensation operation based on the object-based acoustic system to solve the traditional playback effect problem.

在流程312中,主機裝置130中的控制電路132依據環境物件175建立物件基底的補償音源物件。在實作中,該控制電路132會先將目標空間170對應至虛擬實境的一物件基底空間中,再依據環境物件175對應地在該物件基底空間中建立一補償音源物件,用於產生抵消該環境物件175的音源效果。對位於目標聆聽點上的使用者180而言,環境物件175的存在也可以類比為一個音源物件。在實際應用場合中,環境物件175可能將一喇叭發出的聲音反射至該目標聆聽點。環境物件175也可能阻擋或吸收一部份聲音,使一喇叭對該目標聆聽點發出的聲音受到衰減。換句話說,本實施例的控制電路132將環境物件175類比為音源物件後,就能對應地在該物件基底空間中建立具有相反音源效果的負音源物件,做為抵消干擾的手段。在本實施例所述的音源效果,可以是針對目標聆聽點產生的聲壓值、等效音量,或增益值。 In process 312, the control circuit 132 in the host device 130 establishes an object-based compensating sound source object according to the environmental object 175. In practice, the control circuit 132 first maps the target space 170 to an object-based space in the virtual reality, and then establishes a compensating sound source object in the object-based space according to the environmental object 175 to produce a sound source effect that offsets the environmental object 175. For the user 180 at the target listening point, the existence of the environmental object 175 can also be analogized to a sound source object. In actual application scenarios, the environmental object 175 may reflect the sound emitted by a speaker to the target listening point. Environmental object 175 may also block or absorb part of the sound, causing the sound emitted by a speaker to the target listening point to be attenuated. In other words, after the control circuit 132 of this embodiment compares the environmental object 175 to a sound source object, it can correspondingly establish a negative sound source object with an opposite sound source effect in the base space of the object as a means of offsetting interference. The sound source effect described in this embodiment can be the sound pressure value, equivalent volume, or gain value generated for the target listening point.

在流程314中,主機裝置130將補償音源物件代入物件基底補償運作而產生聲道音訊。物件基底補償運作可利用現有的物件基底聲學產品中的物件基底陣列運算模組,依據音源物件的中繼資料,進行大量與聲學交互作用相關的陣列運算。舉例來說,該補償音源物件的一中繼資料包含:該環境物件175的座標位置、大小,以及對聲音的反射率和吸收率。控制電路132依據該目標聆聽點和該中繼資料進行一物件基底補償運作,抵消環境物件175對該目標聆聽點的干 擾而產生對該目標聆聽點優化的第一聲道音訊112和第二聲道音訊122。 In process 314, the host device 130 substitutes the compensation sound source object into the object-based compensation operation to generate channel audio. The object-based compensation operation can utilize the object-based array operation module in the existing object-based acoustic product to perform a large number of array operations related to acoustic interaction based on the metadata of the sound source object. For example, a metadata of the compensation sound source object includes: the coordinate position, size, and reflectivity and absorption rate of the environmental object 175 to sound. The control circuit 132 performs an object-based compensation operation based on the target listening point and the metadata to offset the interference of the environmental object 175 on the target listening point and generate the first channel audio 112 and the second channel audio 122 optimized for the target listening point.

在一實施例中,物件基底補償運作是分別在多個子頻帶上進行的。由於聲音傳遞的特性,每一子頻帶上的聲壓值對等效音量的影響是不同的。以第一喇叭110產生的第一聲道音訊112對環境物件175的影響為例,本實施例的控制電路132可依據環境物件175的座標位置、大小,以及對聲音的反射率和吸收率,分別在多個子頻帶上計算環境物件175受第一聲道音訊112影響而被動產生的一音源效果。接著控制電路132依據該音源效果建立該補償音源物件。在本實施例中,補償音源物件是依據環境物件175而對應建立,其中繼資料具有與該環境物件175相同的座標位置、大小,以及對聲音的反射率和吸收率,但是產生的音源效果的正負號與環境物件175的相反。 In one embodiment, the object base compensation operation is performed on multiple sub-bands. Due to the characteristics of sound transmission, the sound pressure value on each sub-band has different effects on the equivalent volume. Taking the effect of the first channel audio 112 generated by the first speaker 110 on the environmental object 175 as an example, the control circuit 132 of this embodiment can calculate a sound source effect generated by the environmental object 175 being activated by the first channel audio 112 on multiple sub-bands according to the coordinate position, size, and reflectivity and absorption rate of the environmental object 175. Then the control circuit 132 establishes the compensation sound source object according to the sound source effect. In this embodiment, the compensation sound source object is established in correspondence with the environment object 175, wherein the metadata has the same coordinate position, size, and sound reflectivity and absorption rate as the environment object 175, but the positive and negative signs of the sound source effect generated are opposite to those of the environment object 175.

已知人耳可聽範圍在20赫茲(Hz)到20000Hz之間。本實施例可將人耳可聽範圍切成多個子頻帶區間而分別補償。每個子頻帶的區間大小,可以是指數區間。例如,以10為底的指數區間,可將聲音訊號區分為10Hz到100Hz、100Hz到1000Hz、1000Hz到10000Hz等多個子頻帶範圍。在其他的實施例中,也可以依據播放品質的精細度的需求,以2為底或4為底來切分指數區間。在音訊處理領域的等化器(Equalizer)中已存在切割多個子頻帶的處理技術,在此不再深入解釋。 It is known that the audible range of human ears is between 20 Hz and 20000 Hz. This embodiment can divide the audible range of human ears into multiple sub-band intervals and compensate them separately. The interval size of each sub-band can be an exponential interval. For example, the exponential interval with a base of 10 can divide the sound signal into multiple sub-band ranges such as 10Hz to 100Hz, 100Hz to 1000Hz, and 1000Hz to 10000Hz. In other embodiments, the exponential interval can also be divided with a base of 2 or 4 according to the requirements of the precision of the playback quality. In the equalizer in the field of audio processing, there is already a processing technology for cutting multiple sub-bands, which will not be explained in depth here.

在控制電路132獲得該補償音源物件的該負音源效果後,運行一物件基底補償運作,將該負音源效果按照該混音運作結果決定的比例,對應地混入第一聲道音訊112和第二聲道音訊122中,而藉此抵消環境物件175對該目標聆聽點的干擾。關於物件基底補償運作,將於圖11至圖13的實施例中詳述。 After the control circuit 132 obtains the negative sound source effect of the compensation sound source object, an object base compensation operation is performed to mix the negative sound source effect into the first channel audio 112 and the second channel audio 122 in a proportion determined by the mixing operation result, thereby offsetting the interference of the environmental object 175 on the target listening point. The object base compensation operation will be described in detail in the embodiments of Figures 11 to 13.

在流程316中,主機裝置130依照流程314的運算結果,將第一聲道音訊112和第二聲道音訊122對應地輸出給第一喇叭110和第二喇叭 120。圖3的流程316與圖2實施例的流程216不同。圖2是針對既有的聲道音訊計算補償值,而去調整既有的聲道音訊。圖控制電路132在進行物件基底補償運作時,直接依照所有的中繼資料而一次計算出每一喇叭對應的聲道音訊。物件基底補償運作,將需要被抵消或補償的干擾成份,以補償音源的型式混入聲道音訊中。換句話說,因為聲道音訊中包含了補償音源物件發出的補償音源,使用者180在目標聆聽點上感受不到環境物件175的存在所造成的影響。 In process 316, the host device 130 outputs the first channel audio 112 and the second channel audio 122 to the first speaker 110 and the second speaker 120 in accordance with the calculation result of process 314. Process 316 of FIG. 3 is different from process 216 of the embodiment of FIG. 2. FIG. 2 calculates the compensation value for the existing channel audio to adjust the existing channel audio. When the control circuit 132 performs the object base compensation operation, it directly calculates the channel audio corresponding to each speaker at once according to all the metadata. The object base compensation operation mixes the interference component that needs to be offset or compensated into the channel audio in the form of a compensation sound source. In other words, because the channel audio includes the compensation sound source emitted by the compensation sound source object, the user 180 cannot feel the influence caused by the existence of the environmental object 175 at the target listening point.

由流程316可知,物件基底補償運作將目標聆聽點和環境物件轉譯為物件基底聲學系統的中繼資料,並建立補償音源物件,簡化了消除干擾及優化播放效果的運算過程。需要理解的是,本實施例的音響系統100可利用感測器電路140即時或週期性地追蹤使用者180的位置而動態地更新目標聆聽點。控制電路132所進行的物件基底補償運作,也可隨著目標聆聽點的改變而同步更新目標空間170中所有和該目標聆聽點的相對位置有關的中繼資料。 As can be seen from process 316, the object-based compensation operation converts the target listening point and environmental objects into the metadata of the object-based acoustic system and establishes the compensation sound source object, which simplifies the calculation process of eliminating interference and optimizing the playback effect. It should be understood that the audio system 100 of this embodiment can use the sensor circuit 140 to track the position of the user 180 in real time or periodically to dynamically update the target listening point. The object-based compensation operation performed by the control circuit 132 can also synchronously update all the metadata related to the relative position of the target listening point in the target space 170 as the target listening point changes.

圖3中的流程218,與前實施例相同,為節省篇幅,不再重複說明。 The process 218 in FIG. 3 is the same as that in the previous embodiment, and will not be repeated for the sake of saving space.

以下以圖4說明音響系統100動態追蹤使用者位置,運行配置程序獲取音場環境配置,並以通道基底補償運作補償喇叭輸出的實施例。 The following is an example of how the audio system 100 dynamically tracks the user's position, runs a configuration program to obtain the sound field environment configuration, and uses a channel floor compensation operation to compensate the speaker output.

圖4為本發明一實施例的動態音效優化方法流程圖。 Figure 4 is a flow chart of a dynamic sound optimization method according to an embodiment of the present invention.

在圖4的流程圖中,位於一特定裝置所屬欄位中的流程,即代表由該特定裝置所進行的流程。例如,標記在「感測器電路」欄位中的部分,是由感測器電路140所進行的流程;標記在「主機裝置」欄位中的部分,是由主機裝置130所進行的流程;標記在「喇叭」欄位中的部分,則是由第一喇叭110和/或第二喇叭120所進行的流程;其餘依此類推。前述的邏輯也適用於後續的其他流程圖中。 In the flowchart of FIG. 4 , the process in the column belonging to a specific device represents the process performed by the specific device. For example, the part marked in the "sensor circuit" column is the process performed by the sensor circuit 140; the part marked in the "host device" column is the process performed by the host device 130; the part marked in the "speaker" column is the process performed by the first speaker 110 and/or the second speaker 120; and so on. The aforementioned logic is also applicable to other subsequent flowcharts.

圖4中的流程202、204、206、及208與前實施例相同,為節省篇幅,不再重複說明。 Processes 202, 204, 206, and 208 in FIG. 4 are the same as those in the previous embodiment, and will not be repeated for the sake of space saving.

在本實施例的音響系統100完成流程210時,控制電路132已追蹤使用者180的位置並指派為目標聆聽點,並且也獲得了目標空間170中的一或多個環境物件175的空間配置資訊。接著要進行流程的是,使用物件基底演算法來調整每一喇叭的聲道音訊。 When the audio system 100 of the present embodiment completes process 210, the control circuit 132 has tracked the position of the user 180 and assigned it as the target listening point, and has also obtained the spatial configuration information of one or more environmental objects 175 in the target space 170. The next process to be performed is to use the object-based algorithm to adjust the channel audio of each speaker.

為了消除音場環境中的干擾,音響系統100需要取得目標空間170中各種環境物件175的空間配置資訊。 In order to eliminate interference in the sound field environment, the audio system 100 needs to obtain the spatial configuration information of various environmental objects 175 in the target space 170.

在流程410中,主機裝置130中的控制電路132可運行一配置程序而獲取目標空間170中的一或多個環境物件175的空間配置資訊。前實施例中,主機裝置130採用感測器電路140捕捉的音場環境資訊而自動辨識出環境物件175的空間配置資訊。在運行配置程序時,主機裝置130可利用一人機介面電路133與使用者互動,允許使用者手動輸入環境物件175的空間配置資訊。人機介面電路133可以提供一個畫面和一種輸入方式,讓使用者將目標空間170中各種物件的空間配置資訊定義在一個二維平面圖或三維立體圖中。環境物件175的空間配置資訊,可以包含環境物件175在目標空間170中的相對位置、大小、名稱、和材質種類。在進一步衍生的實施例中,使用者180可透過人機介面電路133告訴主機裝置130當下的目標空間170所屬的應用場景類別。在不同的應用場景中,例如開闊的室外空間、劇院空間、或浴室等,常見的環境物件175類型也不盡相同,使用者感受到的音場氛圍也不同。針對應用場景的不同而優化音場,也是音響系統100的重要功能之一。 In process 410, the control circuit 132 in the host device 130 can run a configuration program to obtain the spatial configuration information of one or more environmental objects 175 in the target space 170. In the previous embodiment, the host device 130 uses the sound field environment information captured by the sensor circuit 140 to automatically identify the spatial configuration information of the environmental object 175. When running the configuration program, the host device 130 can use a human-machine interface circuit 133 to interact with the user, allowing the user to manually input the spatial configuration information of the environmental object 175. The human-machine interface circuit 133 can provide a screen and an input method, allowing the user to define the spatial configuration information of various objects in the target space 170 in a two-dimensional plane or a three-dimensional stereogram. The spatial configuration information of the environmental object 175 may include the relative position, size, name, and material type of the environmental object 175 in the target space 170. In a further derived embodiment, the user 180 may inform the host device 130 of the application scene category to which the current target space 170 belongs through the human-machine interface circuit 133. In different application scenes, such as open outdoor spaces, theater spaces, or bathrooms, the common types of environmental objects 175 are also different, and the sound field atmosphere felt by the user is also different. Optimizing the sound field for different application scenes is also one of the important functions of the audio system 100.

不同的材質種類,具有不同的聲學屬性。主機裝置130運行該配置程序時,還進一步地依據使用者輸入的物件名稱或材質種類,查詢一物件資料庫而獲得環境物件175的聲學屬性資訊,例如對聲音的吸收率或反射率。藉此,主機裝置130可在後續的流程212中,依據前述空間配置資訊和聲學屬性資訊,計算每一喇叭對目標聆聽點的播放效果受環境物件175影響的程度。在進一步衍生的實施例中, 主機裝置130可依據目標空間170的應用場景類別,優先使用對應的物件資料庫而更快速地辨識目標空間170中的環境物件175。相關實施例將在圖9中說明。 Different types of materials have different acoustic properties. When the host device 130 runs the configuration program, it further queries an object database based on the object name or material type input by the user to obtain acoustic property information of the environmental object 175, such as the absorption rate or reflectivity of sound. In this way, the host device 130 can calculate the degree to which the playback effect of each speaker on the target listening point is affected by the environmental object 175 based on the aforementioned spatial configuration information and acoustic property information in the subsequent process 212. In a further derived embodiment, the host device 130 can use the corresponding object database preferentially based on the application scene category of the target space 170 to more quickly identify the environmental object 175 in the target space 170. The relevant embodiment will be illustrated in Figure 9.

圖4中的流程212,214,216及218與前實施例相同,為節省篇幅,不再重複說明。 Processes 212, 214, 216 and 218 in FIG. 4 are the same as those in the previous embodiment and will not be repeated for the sake of space saving.

圖4的實施例說明了音響系統100除了可動態追蹤使用者位置,還允許使用者180透過一配置程序而設定目標空間170中的環境物件175的空間配置資訊。該配置程序提供了手動輸入的管道,以彌補辨識功能不足之處。使用者除了透過主動輸入來協助主機裝置130進行更準確的判斷,還有機會可依據自己的偏好,刻意指定不同的應用場景類別,或是刻意設置想像中的虛擬音源物件來改變播放效果。主機裝置130會以通道基底補償運作,依據目標空間170中的環境物件175的空間配置資訊,計算每一喇叭對應的輸出補償值。 The embodiment of FIG. 4 illustrates that the audio system 100 can not only dynamically track the user's position, but also allow the user 180 to set the spatial configuration information of the environmental object 175 in the target space 170 through a configuration program. The configuration program provides a channel for manual input to make up for the lack of recognition function. In addition to assisting the host device 130 to make more accurate judgments through active input, the user also has the opportunity to deliberately specify different application scene categories according to his or her preferences, or deliberately set up imaginary virtual sound source objects to change the playback effect. The host device 130 will operate with channel base compensation, and calculate the output compensation value corresponding to each speaker according to the spatial configuration information of the environmental object 175 in the target space 170.

以下以圖5說明音響系統100動態追蹤使用者位置,運行配置程序獲取音場環境配置,並以物件基底補償運作補償喇叭輸出的實施例。 The following is an example of how the audio system 100 dynamically tracks the user's position, runs a configuration program to obtain the sound field environment configuration, and uses object-based compensation to compensate for the speaker output.

圖5為本發明一實施例的動態音效優化方法流程圖。 Figure 5 is a flow chart of a dynamic sound optimization method according to an embodiment of the present invention.

在圖5的流程圖中,位於一特定裝置所屬欄位中的流程,即代表由該特定裝置所進行的流程。例如,標記在「感測器電路」欄位中的部分,是由感測器電路140所進行的流程;標記在「主機裝置」欄位中的部分,是由主機裝置130所進行的流程;標記在「喇叭」欄位中的部分,則是由第一喇叭110和/或第二喇叭120所進行的流程;其餘依此類推。前述的邏輯也適用於後續的其他流程圖中。 In the flowchart of FIG. 5 , the process in the column belonging to a specific device represents the process performed by the specific device. For example, the part marked in the "sensor circuit" column is the process performed by the sensor circuit 140; the part marked in the "host device" column is the process performed by the host device 130; the part marked in the "speaker" column is the process performed by the first speaker 110 and/or the second speaker 120; and so on. The aforementioned logic is also applicable to other subsequent flowcharts.

圖5中的流程202、204、206、208及210與前實施例相同,為節省篇幅,不再重複說明。 The processes 202, 204, 206, 208 and 210 in FIG. 5 are the same as those in the previous embodiment and will not be repeated for the sake of space saving.

與圖4的實施例類似,圖5的實施例為了消除音場環境中的干擾,運行了與圖4相同的流程410。 Similar to the embodiment of FIG. 4 , the embodiment of FIG. 5 runs the same process 410 as FIG. 4 in order to eliminate interference in the sound field environment.

在流程410中,主機裝置130運行配置程序而獲取目標空間170中的一或多個環境物件175的空間配置資訊。在圖4的實施例中,說明了主機裝置130可透過一人機介面電路133,接收使用者手動輸入環境物件175的空間配置資訊。在進一步的衍生實施例中,主機裝置130也可利用通信電路136接收用戶設備150或其他裝置傳送而來的空間配置資訊。舉例來說,用戶設備150可以是一手機,運行有一應用程式,用以提供類似人機介面電路133的功能。該應用程式允許使用者定義目標空間170的範圍和大小、各喇叭相對該目標空間170的位置、各種環境物件175的位置、大小、名稱和類型,至是使用者180本身所在的位置。該應用程式還可透過通信電路136與控制電路132溝通,而進行各種播放運作,例如播放、暫停、快轉、調整音量等。此外,使用者可透過人機介面電路133設定目標空間170的應用場景類別,使主機裝置130對目標空間170產生多元化的播放效果。 In process 410, the host device 130 runs a configuration program to obtain spatial configuration information of one or more environmental objects 175 in the target space 170. In the embodiment of FIG. 4 , it is illustrated that the host device 130 can receive spatial configuration information of the environmental objects 175 manually input by the user through the human-machine interface circuit 133. In a further derivative embodiment, the host device 130 can also use the communication circuit 136 to receive spatial configuration information transmitted from the user equipment 150 or other devices. For example, the user equipment 150 can be a mobile phone running an application to provide functions similar to the human-machine interface circuit 133. The application allows the user to define the scope and size of the target space 170, the position of each speaker relative to the target space 170, the position, size, name and type of various environmental objects 175, and even the position of the user 180 himself. The application can also communicate with the control circuit 132 through the communication circuit 136 to perform various playback operations, such as play, pause, fast forward, adjust the volume, etc. In addition, the user can set the application scene category of the target space 170 through the human-machine interface circuit 133, so that the host device 130 produces a diversified playback effect on the target space 170.

在進一步衍生的實施例中,主機裝置130所連接的用戶設備150可能是一個虛擬實境裝置或遊戲機。用戶設備150產生音源訊號而使主機裝置130播放。而該音源訊號中可能包含在一虛擬實境空間中游走移動的虛擬物件,例如飛機或噴火龍。用戶設備150可將這些虛擬物件的中繼資料傳送至主機裝置130中,成為目標空間170的環境物件空間配置資訊的一部份。換句話說,主機裝置130可採用物件基底的聲學系統一視同仁地處理虛擬物件和實體物件。透過物件基底補償運作,主機裝置130可讓使用者感受到目標空間170中存在一虛擬物件,也可讓使用者感受不到目標空間170存在一實體物件的干擾。關於物件基底補償運作的實作,在圖11至13的實施例中有進一步的說明。 In a further derived embodiment, the user device 150 connected to the host device 130 may be a virtual reality device or a game console. The user device 150 generates an audio source signal for the host device 130 to play. The audio source signal may include virtual objects moving in a virtual reality space, such as an airplane or a fire-breathing dragon. The user device 150 can transmit the metadata of these virtual objects to the host device 130, which becomes part of the environmental object space configuration information of the target space 170. In other words, the host device 130 can use the object-based acoustic system to process virtual objects and physical objects equally. Through the object base compensation operation, the host device 130 can make the user feel that there is a virtual object in the target space 170, and can also make the user not feel the interference of a physical object in the target space 170. The implementation of the object base compensation operation is further described in the embodiments of Figures 11 to 13.

在本實施例的音響系統100完成流程410時,控制電路132已追蹤使用者180的位置並指派為目標聆聽點,並且也獲得了目標空間170中的一或多個環境物件175的空間配置資訊。接著在流程312至316中, 主機裝置130使用物件基底演算法來調整每一喇叭的聲道音訊。由於流程312至316,以及流程218,與前實施例相同,為節省篇幅,不再重複說明。 When the audio system 100 of the present embodiment completes process 410, the control circuit 132 has tracked the position of the user 180 and assigned it as the target listening point, and has also obtained the spatial configuration information of one or more environmental objects 175 in the target space 170. Then in processes 312 to 316, the host device 130 uses the object-based algorithm to adjust the channel audio of each speaker. Since processes 312 to 316, as well as process 218, are the same as the previous embodiment, they will not be repeated for the sake of saving space.

圖5的實施例說明了音響系統100除了可動態追蹤使用者位置,還允許使用者180透過一配置程序而設定目標空間170中的環境物件175的空間配置資訊。該配置程序可與既有的虛擬實境技術整合,接收虛擬物件的空間配置資訊。音響系統100將實體的環境物件和虛擬物件轉換為格式一致的中繼資料,再將所有中繼資料套用至既有的物件基底聲學系統的物件基底陣列運算模組中,以進行物件基底補償運作。藉此,控制電路132不需要為不同物件額外開發運算模組,可降低成本,提高執行效率。 The embodiment of FIG. 5 illustrates that in addition to dynamically tracking the user's position, the audio system 100 also allows the user 180 to set the spatial configuration information of the environmental object 175 in the target space 170 through a configuration program. The configuration program can be integrated with the existing virtual reality technology to receive the spatial configuration information of the virtual object. The audio system 100 converts the physical environmental objects and virtual objects into metadata with the same format, and then applies all the metadata to the object base array operation module of the existing object base acoustic system to perform object base compensation operations. In this way, the control circuit 132 does not need to develop additional operation modules for different objects, which can reduce costs and improve execution efficiency.

以下以圖6說明感測器電路的幾種實施態樣,並說明通道基底的補償算法。 The following uses Figure 6 to illustrate several implementations of the sensor circuit and the compensation algorithm for the channel base.

圖6為本發明一目標空間600示意圖,用於說明依據最佳聆聽點的位置計算音訊調整量的實施例。 FIG6 is a schematic diagram of a target space 600 of the present invention, used to illustrate an embodiment of calculating the audio adjustment amount based on the position of the best listening point.

本申請的音響系統100採用感測器電路140動態地感測目標空間600而產生音場環境資訊。音場環境資訊主要包含使用者180的位置,也可包含環境物件的空間配置資訊。動態感測的技術方案可以有多種選項。舉例來說,感測器電路140可以是由攝影機610、紅外線感測器620、無線偵測器630其中之一或多者的搭配組合,分別配置在目標空間600周圍的不同位置,提供具有空間深度的音場環境資訊以助於主機裝置130中的辨識電路134和控制電路132更有效率地追蹤使用者180位置。藉此,辨識電路134利用感測器電路140提供的音場環境資訊,不止是可以辨識出使用者180位置,還可辨識出臉部面對方向、耳朵位置,甚至手勢或身體姿態。可應用於調整音場的控制因素,因此而變得更加豐富。例如,專注偵測、睡眠偵測、手勢控制等。 The audio system 100 of the present application uses a sensor circuit 140 to dynamically sense the target space 600 to generate sound field environment information. The sound field environment information mainly includes the position of the user 180, and may also include the spatial configuration information of environmental objects. There are many options for the technical solution of dynamic sensing. For example, the sensor circuit 140 can be a combination of one or more of a camera 610, an infrared sensor 620, and a wireless detector 630, which are respectively configured at different positions around the target space 600, providing sound field environment information with spatial depth to help the recognition circuit 134 and the control circuit 132 in the host device 130 to track the position of the user 180 more efficiently. Thus, the recognition circuit 134 utilizes the sound field environment information provided by the sensor circuit 140 to not only recognize the user's 180 position, but also the direction of the face, the position of the ears, and even the gestures or body postures. The control factors that can be applied to adjust the sound field become richer. For example, focus detection, sleep detection, gesture control, etc.

在圖6的目標空間600中,配置有一第一喇叭110和一第二喇叭120。通道基底補償運作可分別針對每一喇叭而計算輸出補償值。在預設的情況下,目標聆聽點位於目標空間600的中心,即圖6中的第一位置601。第一位置601與第一喇叭110和第二喇叭120的距離同樣為R1。這時的第一喇叭110和第一聲道音訊112所播放的第一聲道音訊112和第二聲道音訊122也是處於預設狀態,不需要針對位置進行任何補償處理。 In the target space 600 of FIG. 6 , a first speaker 110 and a second speaker 120 are configured. The channel base compensation operation can calculate the output compensation value for each speaker separately. Under the default situation, the target listening point is located at the center of the target space 600, that is, the first position 601 in FIG. 6 . The distance between the first position 601 and the first speaker 110 and the second speaker 120 is also R1. At this time, the first channel audio 112 and the second channel audio 122 played by the first speaker 110 and the first channel audio 112 are also in the default state, and no compensation processing is required for the position.

當使用者180從第一位置601沿著移動軌跡173移動到第二位置602時,感測器電路140偵測到使用者180的新位置,而將音響系統100的目標聆聽點指派為第二位置602。這時使用者180與第一喇叭110的距離改變為R2,而使用者180與第二喇叭120的距離改變為R2’。對使用者180而言,第一喇叭110變遠了,所以接收到的第一聲道音訊112因距離而衰減。相對的,第二喇叭120變近了,接收到的第二聲道音訊122增強了。換句話說,第二位置602上接收到的第一聲道音訊112和第二聲道音訊122的強度已經失去平衡。本實施例利用通道基底的算法,使第二位置602接收到的聆聽效果還原至與第一位置601相同的預設狀態。換句話說,控制電路132透過補償第一喇叭110和第二喇叭120所輸出的第一聲道音訊112和第二聲道音訊122,以抵消使用者180因移動而產生的聆聽效果偏差。圖6顯示的目標空間600並不限定於只適用於水平配置的多喇叭環境。在配置有上喇叭和下喇叭的三維音場環境中,也同樣會出現距離偏差的問題。舉例來說,如果使用者從站姿變成坐姿,就會遠離上喇叭,而接近下喇叭。 When the user 180 moves from the first position 601 to the second position 602 along the moving trajectory 173, the sensor circuit 140 detects the new position of the user 180 and assigns the target listening point of the audio system 100 to the second position 602. At this time, the distance between the user 180 and the first speaker 110 changes to R2, and the distance between the user 180 and the second speaker 120 changes to R2'. For the user 180, the first speaker 110 becomes farther away, so the received first channel audio 112 is attenuated due to the distance. In contrast, the second speaker 120 becomes closer, and the received second channel audio 122 is enhanced. In other words, the strength of the first channel audio 112 and the second channel audio 122 received at the second position 602 has lost balance. This embodiment uses a channel-based algorithm to restore the listening effect received by the second position 602 to the same default state as the first position 601. In other words, the control circuit 132 compensates the first channel audio 112 and the second channel audio 122 output by the first speaker 110 and the second speaker 120 to offset the listening effect deviation caused by the movement of the user 180. The target space 600 shown in FIG. 6 is not limited to a multi-speaker environment configured horizontally. In a three-dimensional sound field environment configured with upper and lower speakers, the problem of distance deviation also occurs. For example, if the user changes from a standing position to a sitting position, he will move away from the upper speaker and closer to the lower speaker.

為了獲得較佳的補償效果,本實施例採用等效音量(Equal Loudness)做為計算標準。例如,本實施例可依據ISO226;2003協議所定義的等響曲線,計算目標聆聽點上需要補償的聲壓值。每一聲道音訊是切分成多個子頻帶分別處理。此外,隨著使用者180和喇叭的距離 不同,採用的音場公式也不同。由於等響曲線中定義的是等效音量與聲壓值的線性關係,而等效音量的和以「分貝」為單位的「增益值」又有線性對應關係。因此本實施例中不限定是以等效音量、聲壓值、或增益值其中任一者為單位而進行調整。 In order to obtain a better compensation effect, this embodiment uses equivalent loudness as the calculation standard. For example, this embodiment can calculate the sound pressure value that needs to be compensated at the target listening point according to the equal sound curve defined by the ISO226; 2003 protocol. Each channel audio is divided into multiple sub-bands and processed separately. In addition, as the distance between the user and the speaker is different, the sound field formula used is also different. Since the equal sound curve defines a linear relationship between equivalent volume and sound pressure value, and the equivalent volume and the "gain value" in "decibels" have a linear corresponding relationship. Therefore, this embodiment is not limited to adjusting in any of the units of equivalent volume, sound pressure value, or gain value.

在音響系統100中,因空氣振動而傳遞聲音的空間稱為音場。由於反射作用存在,聲音在密閉的房間內,音場可區分為多種類型。 (1)近音場(Near Field):當使用者180位於相對接近音源的位置,該音源的物理影響(如壓力、位移、振動)會使聲音增強作用。 (2)反射音場(Reverberant Field):聲音經過物體反射後而造成波疊加效果。(3)自由音場(Free Field):不受到前述近音場和反射音場干擾的音場。以上反射音場及自由音場又可統稱為遠音場(Far Field)。 In the audio system 100, the space where sound is transmitted due to air vibration is called the sound field. Due to the existence of reflection, the sound field in a closed room can be divided into multiple types. (1) Near Field: When the user is 180 degrees closer to the sound source, the physical influence of the sound source (such as pressure, displacement, vibration) will enhance the sound. (2) Reflected Field: The sound is reflected by an object and causes a wave superposition effect. (3) Free Field: The sound field is not disturbed by the aforementioned near field and reflected field. The above reflected field and free field can be collectively referred to as the far field.

在現今的許多音響系統中,近音場和遠音場的定義方式各有不同。 舉例來說,假設R是喇叭和使用者180的距離(米),L是喇叭的面寬(米),λ是一子頻帶訊號的代表波長(米),則遠音場的滿足條件包含下列幾種類型:R>>λ/2π (1) In many current audio systems, the near and far sound fields are defined differently. For example, assuming that R is the distance between the speaker and the user (meters), L is the width of the speaker (meters), and λ is the representative wavelength of a sub-band signal (meters), the conditions for satisfying the far sound field include the following types: R>>λ/2π (1)

R>>L (2) R>>L (2)

R>>πL2/2λ (3) R>>πL 2 /2λ (3)

以圖1的第一喇叭110為例。當該目標聆聽點與該第一喇叭110的距離大於該子頻帶訊號的波長或該第一喇叭110的大小的一特定比例以上時,音響系統100判斷該音場類型為一遠音場。當該目標聆聽點與該第一喇叭110的距離小於該子頻帶訊號的波長或該第一喇叭110的大小的該特定比例時,判斷該音場類型為一近音場。在一較簡易的實作中,音響系統100可將一子頻帶訊號的中央頻率所對應的波長的兩倍值(2λ),定義為該子頻帶訊號的遠音場和近音場的分界點。 Take the first speaker 110 in FIG. 1 as an example. When the distance between the target listening point and the first speaker 110 is greater than a specific ratio of the wavelength of the sub-band signal or the size of the first speaker 110, the audio system 100 determines that the sound field type is a far sound field. When the distance between the target listening point and the first speaker 110 is less than the wavelength of the sub-band signal or the specific ratio of the size of the first speaker 110, the sound field type is determined to be a near sound field. In a simpler implementation, the audio system 100 can define twice the value (2λ) of the wavelength corresponding to the central frequency of a sub-band signal as the dividing point between the far sound field and the near sound field of the sub-band signal.

在遠音場中,使用者180從喇叭接收到的一子頻帶訊號的聲壓值變化與距離變化的關係如下:SPL2=SPL1-20 log10(R2/R1) (4) In the far-field sound field, the relationship between the change in sound pressure value of a sub-band signal received by the user 180 from the speaker and the change in distance is as follows: SPL2 = SPL1-20 log 10 (R2/R1) (4)

其中,SPL2是新位置所收到的該子頻帶訊號的聲壓值,SPL1是原位置所收到的該子頻帶訊號的聲壓值,R2是新位置與喇叭的距離,R1是原位置與喇叭的距離。 Among them, SPL2 is the sound pressure value of the sub-band signal received at the new position, SPL1 is the sound pressure value of the sub-band signal received at the original position, R2 is the distance between the new position and the speaker, and R1 is the distance between the original position and the speaker.

從公式(4)可知,SPL1和SPL2的差值就是該喇叭需要被補償回來的部份。 From formula (4), we can see that the difference between SPL1 and SPL2 is the part that needs to be compensated for the speaker.

SPL2’=SPL2+20 log10(R2/R1)=SPL1 (5) SPL2'=SPL2+20 log 10 (R2/R1)=SPL1 (5)

其中,SPL2’是補償後的新位置所收到的該子頻帶訊號的聲壓值。由公式(5)可知本實施例是將改變的部份補償回來。 Among them, SPL2' is the sound pressure value of the sub-band signal received at the new position after compensation. From formula (5), it can be seen that this embodiment compensates the changed part.

在近音場中,使用者180從喇叭接收到的該子頻帶訊號的聲壓值變與距離變化的關係如下:SPL2=SPL1-10 log10(R2/R1) (6) In the near sound field, the relationship between the sound pressure value change of the sub-band signal received by the user 180 from the speaker and the distance change is as follows: SPL2 = SPL1-10 log 10 (R2/R1) (6)

SPL2’=SPL2+20 log10(R2/R1)=SPL1 (7) SPL2'=SPL2+20 log 10 (R2/R1)=SPL1 (7)

由公式(6)和(7)可知,近音場的聲音衰減變化率較遠音場緩和,而其他計算邏輯相同。 From formulas (6) and (7), we can see that the sound attenuation change rate in the near sound field is gentler than that in the far sound field, while the other calculation logics are the same.

可以理解的是,上述公式遇到一些特殊情況時可能會有例外。舉例來說,當使用者180從第一位置601移動至第二位置602而貼近第二喇叭120,使用者180與第二喇叭120的距離從R1變小為R2’,可能會使公式(7)的計算結果變成負值。但是第二喇叭120輸出的子頻帶訊號不可能是負值,最小只能降為人耳最低可聽值。例如,使第二喇叭120輸出的該子頻帶訊號的聲壓值為零。另一方面,當使用者180從第一位置601移動到第二位置602而遠離第一喇叭110時,使用者180與第一喇叭110的距離從R1拉大為R2。第一喇叭110的最大輸出極限有可能沒辦法滿足公式(5)。這時,可由音響系統100對使用者180發出超限提示。 It is understandable that the above formula may have exceptions when encountering some special circumstances. For example, when the user 180 moves from the first position 601 to the second position 602 and approaches the second speaker 120, the distance between the user 180 and the second speaker 120 decreases from R1 to R2', which may make the calculation result of formula (7) become a negative value. However, the sub-band signal output by the second speaker 120 cannot be a negative value, and the minimum can only be reduced to the lowest audible value of the human ear. For example, the sound pressure value of the sub-band signal output by the second speaker 120 is made zero. On the other hand, when the user 180 moves from the first position 601 to the second position 602 and moves away from the first speaker 110, the distance between the user 180 and the first speaker 110 increases from R1 to R2. The maximum output limit of the first speaker 110 may not be able to satisfy formula (5). At this time, the audio system 100 may issue an over-limit reminder to the user 180.

圖6的實施例突顯了下列的優點。透過通道基底的補償算法,使用者的最佳聆聽點不受到移動的影響。通道基底的計算方式簡易且效率高,在大部份的目標空間600中皆可適用。 The embodiment of FIG. 6 highlights the following advantages. Through the compensation algorithm of the channel basis, the user's best listening point is not affected by movement. The calculation method of the channel basis is simple and efficient, and can be applied in most target spaces 600.

圖6已說明了依據使用者180移動的聲音補償方式。以下以圖7說明依據環境物件175的聲音補償方式。環境物件175的聲學屬性資訊包含對聲音的反射率和吸收率。本實施例依據環境物件175的空間配置資訊而對應地使用適當的計算方式來計算環境物件的聲學影響。 FIG6 has already explained the sound compensation method based on the movement of the user 180. FIG7 is used below to explain the sound compensation method based on the environmental object 175. The acoustic property information of the environmental object 175 includes the reflectivity and absorptivity of the sound. This embodiment uses an appropriate calculation method to calculate the acoustic impact of the environmental object according to the spatial configuration information of the environmental object 175.

圖7為本發明一目標空間700示意圖,用於說明依據環境物件的吸收率計算音訊調整量的實施例。 FIG. 7 is a schematic diagram of a target space 700 of the present invention, used to illustrate an embodiment of calculating the audio adjustment amount based on the absorption rate of environmental objects.

圖7顯示了在一目標空間700中,一環境物件175位於一第一喇叭110和一使用者180的中間。舉例來說,環境物件175可以是沙發或柱子。這種情況下,環境物件175可能因遮擋而造成使用者180的聆聽效果衰減。換句話說,使用者180從第一喇叭110收到的聲壓值會被遮擋或吸收。當控制電路132透過空間配置資訊而解讀出這種布局狀況時,就採用該環境物件175的吸收率來計算該第一喇叭110在目標聆聽點(使用者180的位置)上的播放效果受到環境物件175影響的程度,以決定該第一聲道音訊112需要輸出的等效音量、聲壓值或增益值。 FIG. 7 shows that in a target space 700, an environmental object 175 is located between a first speaker 110 and a user 180. For example, the environmental object 175 may be a sofa or a pillar. In this case, the environmental object 175 may cause the user 180's listening effect to be attenuated due to shielding. In other words, the sound pressure value received by the user 180 from the first speaker 110 will be shielded or absorbed. When the control circuit 132 interprets this layout condition through the spatial configuration information, it uses the absorption rate of the environmental object 175 to calculate the extent to which the playback effect of the first speaker 110 at the target listening point (the position of the user 180) is affected by the environmental object 175, so as to determine the equivalent volume, sound pressure value or gain value that the first channel audio 112 needs to output.

在一實施例中,可依據環境物件175從第一喇叭110所接收到的聲壓值來計算環境物件175吸收掉的聲音耗損:At[n]=R[n]*SPLt (8) In one embodiment, the sound loss absorbed by the environmental object 175 can be calculated based on the sound pressure value received by the environmental object 175 from the first speaker 110: At [n]=R[n]* SPLt (8)

其中,n代表子頻帶的編號。即,第一喇叭110輸出的第一聲道音訊112可切割成多個子頻帶分別計算。At[n]代表在時間點t上偵測到的第n個子頻帶的增益值。R[n]代表第n個子頻帶的吸收率。SPLt代表環境物件175在第t個時間點所受到的來自第一喇叭110的聲壓值。時間點t可代表聲音從第一喇叭110傳送到環境物件175的時間差。 Wherein, n represents the number of the sub-band. That is, the first channel audio 112 output by the first speaker 110 can be cut into multiple sub-bands for calculation respectively. At [n] represents the gain value of the nth sub-band detected at the time point t. R [n] represents the absorption rate of the nth sub-band. SPL t represents the sound pressure value from the first speaker 110 to the environmental object 175 at the tth time point. The time point t can represent the time difference of the sound being transmitted from the first speaker 110 to the environmental object 175.

由公式(8)可知,At[n]代表一第一聲道音訊112在第n個子頻帶上被環境物件175吸收掉的增益值,也代表該第一聲道音訊112的第n個子頻帶所需要的輸出補償值。因此,控制電路132在透過第一喇叭110產生第一聲道音訊112時,使第一聲道音訊112的第n個子頻帶增益值增加該增益值At[n]。 As can be seen from formula (8), At [n] represents the gain value of the first channel audio 112 absorbed by the environmental object 175 in the nth sub-band, and also represents the output compensation value required for the nth sub-band of the first channel audio 112. Therefore, when the control circuit 132 generates the first channel audio 112 through the first speaker 110, the gain value of the nth sub-band of the first channel audio 112 is increased by the gain value At [n].

環境物件175位於第一喇叭110和使用者180的中間情況可能存在多種情境。本實施例以第一喇叭110和使用者180的可視線是否被遮擋為主要依據,或是進一步以第一喇叭110和使用者180的耳朵的可視線為判斷標準。可以理解的是,SPLt本身是一個和環境物件175與第一喇叭110的距離和時間相關的函數,而計算出來的At[n]對使用者180造成的影響程度是一個和環境物件175與使用者180的距離和時間相關的函數。在加上不同角度的排列狀況和遠近關係的考量後,牽涉多樣化的非線性關聯性。本申請不限定公式(8)的衍生變化,例如視實作情況而加入其他的權重係數、參數、及偏移修正值。舉例來說,使用者180和第一喇叭110之間可能放置有沙發。雖然沙發沒有遮擋可視線,但還是有可能影響使用者180從第一喇叭110接收到的聲壓值。控制電路132可依據公式(8)搭配內插法或其他修正公式使補償結果更符合需求。 There may be multiple scenarios when the environmental object 175 is located between the first speaker 110 and the user 180. In this embodiment, whether the visual line between the first speaker 110 and the user 180 is blocked is the main basis, or the visual line between the first speaker 110 and the ear of the user 180 is further used as the judgment standard. It can be understood that SPL t itself is a function related to the distance and time between the environmental object 175 and the first speaker 110, and the influence of the calculated At [n] on the user 180 is a function related to the distance and time between the environmental object 175 and the user 180. After considering the arrangement conditions at different angles and the distance relationship, various nonlinear correlations are involved. The present application does not limit the derivative changes of formula (8), for example, other weight coefficients, parameters, and offset correction values may be added according to the implementation. For example, a sofa may be placed between the user 180 and the first speaker 110. Although the sofa does not block the line of sight, it may still affect the sound pressure value received by the user 180 from the first speaker 110. The control circuit 132 can use the interpolation method or other correction formulas according to formula (8) to make the compensation result more in line with the requirements.

圖8為本發明一目標空間800示意圖,用於說明依據環境物件的反射率計算音訊調整量的實施例。 FIG8 is a schematic diagram of a target space 800 of the present invention, used to illustrate an embodiment of calculating the audio adjustment amount based on the reflectivity of environmental objects.

圖8顯示了在一目標空間800中,一使用者180位於一第一喇叭110和一環境物件175的中間。環境物件175可能是一面牆壁、天花板或地板。這種情況下,環境物件175會反彈第一喇叭110輸出的第一聲道音訊112給使用者180。換句話說,使用者180從第一喇叭110收到的聲壓值會被疊加或干擾。當控制電路132透過空間配置資訊而解讀出這種布局狀況時,就採用該環境物件175的反射率來計算該第一喇叭110在目標聆聽點(使用者180的位置)上的播放效果受到環境 物件175影響的程度,以決定該第一聲道音訊112需要輸出的等效音量、聲壓值或增益值。 FIG8 shows a user 180 located between a first speaker 110 and an environmental object 175 in a target space 800. The environmental object 175 may be a wall, a ceiling, or a floor. In this case, the environmental object 175 will bounce the first channel audio 112 output by the first speaker 110 to the user 180. In other words, the sound pressure value received by the user 180 from the first speaker 110 will be superimposed or interfered. When the control circuit 132 interprets this layout condition through the spatial configuration information, it uses the reflectivity of the environmental object 175 to calculate the extent to which the playback effect of the first speaker 110 at the target listening point (the position of the user 180) is affected by the environmental object 175, so as to determine the equivalent volume, sound pressure value or gain value that the first channel audio 112 needs to output.

在本實施例中,同樣可依據公式(8)計算環境物件175造成的影響,但將R[n]改為代表該環境物件175在第n個子頻帶上的反射率。 In this embodiment, the impact of the environmental object 175 can also be calculated according to formula (8), but R[n] is changed to represent the reflectivity of the environmental object 175 in the nth sub-band.

公式(8)的運算結果At[n]可代表一第一聲道音訊112在第n個子頻帶上被環境物件175反射給使用者180的成份。因此,控制電路132在透過第一喇叭110產生第一聲道音訊112時,可適當地減少第一聲道音訊112的增益值,使使用者180從第一喇叭110和環境物件175接收的總聲壓值維持在預設的位準值。 The calculation result At [n] of formula (8) may represent the component of the first channel audio 112 reflected by the environmental object 175 to the user 180 in the nth sub-band. Therefore, when the control circuit 132 generates the first channel audio 112 through the first speaker 110, it may appropriately reduce the gain value of the first channel audio 112, so that the total sound pressure value received by the user 180 from the first speaker 110 and the environmental object 175 is maintained at a preset level.

與圖7的實施例類似,圖8中的使用者180位於第一喇叭110和環境物件175的中間情況可能存在多種變化情境。本實施例以第一喇叭110和環境物件175的可視線是否被使用者180遮擋為主要依據。然而,在實作中,牆壁、天花板、地板不論是位於任何角度都具有反射作用。因此本實施例的運算公式不限定於公式(8),還可能依據的排列狀況和遠近關係進一步衍生其他非線性的補償計算方式。舉例來說,目標空間800因為牆壁、天花板、地板材質和房間大小形狀格局等特徵,可被分類為不同的應用場景,例如客廳、書房、浴室、劇院、或戶外等。主機裝置130可先將目標空間800所屬的應用場景進行分類,再分別採用對應的參數或公式。 Similar to the embodiment of FIG. 7 , there may be multiple variations of the situation in which the user 180 in FIG. 8 is located between the first speaker 110 and the environmental object 175 . This embodiment is mainly based on whether the visual line of sight between the first speaker 110 and the environmental object 175 is blocked by the user 180 . However, in practice, the walls, ceilings, and floors have a reflective effect regardless of their angles. Therefore, the calculation formula of this embodiment is not limited to formula (8), and other nonlinear compensation calculation methods may be further derived based on the arrangement and proximity relationship. For example, the target space 800 can be classified into different application scenarios, such as a living room, a study, a bathroom, a theater, or outdoors, due to the characteristics of the walls, ceilings, floor materials, and the size, shape, and layout of the room. The host device 130 may first classify the application scenarios to which the target space 800 belongs, and then respectively adopt corresponding parameters or formulas.

圖7和圖8的實施例突顯了下列的優點。透過通道基底補償運作,抵消環境物件175對使用者180的聆聽效果造成的影響。通道基底補償運作可依據環境物件的配置狀況而靈活套用不同的物件聲學屬性,可有效應付多種複雜環境的優化問題。 The embodiments of FIG. 7 and FIG. 8 highlight the following advantages. Through the channel floor compensation operation, the influence of the environmental object 175 on the listening effect of the user 180 is offset. The channel floor compensation operation can flexibly apply different object acoustic properties according to the configuration of the environmental objects, and can effectively deal with the optimization problems of various complex environments.

綜上所述,辨識電路134可接收感測器電路140的資料而辨識出目標空間170中的使用者180位置,為由控制電路132動態地將使用者180的位置指派為目標聆聽點。控制電路132針對目標聆聽點移動所做出的補償,已在圖6的實施例和公式(4)至(7)中說明。控制電 路132針對環境物件175的干擾所做出的補償,已在圖7至8和公式(8)中說明。這兩種補償運算可以是分別進行並施加於聲道音訊上。換句話說,最終輸出的優化聲道音訊包含針對目標聆聽點移動所做出的補償值,也包含針對環境物件175的干擾所做出的補償。 In summary, the identification circuit 134 can receive data from the sensor circuit 140 and identify the position of the user 180 in the target space 170, so that the control circuit 132 dynamically assigns the position of the user 180 as the target listening point. The compensation made by the control circuit 132 for the movement of the target listening point has been described in the embodiment of FIG6 and formulas (4) to (7). The compensation made by the control circuit 132 for the interference of the environmental object 175 has been described in FIGS. 7 to 8 and formula (8). These two compensation operations can be performed separately and applied to the channel audio. In other words, the optimized channel audio finally output includes the compensation value made for the movement of the target listening point and also includes the compensation made for the interference of the environmental object 175.

辨識電路134依據感測器電路140捕捉的音場環境資訊,進行使用者180的位置辨識。辨識的過程還可包含對應用場景的辨識,以助於加速控制電路132的後續運算。以下以圖9說明主機裝置130依據應用場景類別而辨識物件的過程。 The recognition circuit 134 recognizes the position of the user 180 based on the sound field environment information captured by the sensor circuit 140. The recognition process may also include the recognition of the application scene to help accelerate the subsequent operation of the control circuit 132. The following is a description of the process of the host device 130 recognizing objects based on the application scene category with FIG. 9.

圖9為本發明一實施例的主機裝置130辨識物件的流程圖。在不同的應用場景中出現的環境物件,其聲學屬性通常有顯著的族群關聯性,周圍環境材質或房間大小造成的音場反射係數也不同。因此,事先區別應用場景類別,有助於音響系統100提升音場優化的效率。可以理解的是,圖9中的每一流程是主機裝置130執行,但不限定是其中的單一電路或模塊所執行,也可以是多個電路的協同運作。 FIG9 is a flowchart of the host device 130 identifying an object in an embodiment of the present invention. The acoustic properties of environmental objects appearing in different application scenarios usually have significant group correlations, and the sound field reflection coefficients caused by the surrounding environmental materials or room sizes are also different. Therefore, distinguishing the application scene categories in advance helps the audio system 100 improve the efficiency of sound field optimization. It can be understood that each process in FIG9 is executed by the host device 130, but it is not limited to being executed by a single circuit or module therein, and can also be the coordinated operation of multiple circuits.

在流程902中,主機裝置130獲取目標空間170的應用場景類別。主機裝置130可透過幾種不同的方式獲取應用場景類別。在一實施例中,主機裝置130中的辨識電路134可在辨識感測器電路140提供的音場環境資訊時,依據該音場環境資訊而判斷適用的一應用場景類別。在另一實施例中,主機裝置130中的控制電路132在透過人機介面電路133運行一配置程序而獲得環境物件的空間配置資訊時,還同時透過該配置程序獲得由使用者180定義的應用場景類別。在進一步衍生的實施例中,主機裝置130中的控制電路132,可透過通信電路136而從一用戶裝置150獲得該應用場景類別的相關信息。 In process 902, the host device 130 obtains the application scene category of the target space 170. The host device 130 can obtain the application scene category in several different ways. In one embodiment, the recognition circuit 134 in the host device 130 can determine an applicable application scene category based on the sound field environment information provided by the sensor circuit 140 when recognizing the sound field environment information. In another embodiment, the control circuit 132 in the host device 130 obtains the spatial configuration information of the environmental object by running a configuration program through the human-machine interface circuit 133, and also obtains the application scene category defined by the user 180 through the configuration program. In a further derived embodiment, the control circuit 132 in the host device 130 can obtain relevant information of the application scenario category from a user device 150 through the communication circuit 136.

在流程904中,為了加速環境物件的查詢並提升正確性,主機裝置130依據應用場景類別優先選用相關的物件資料庫。物件資料庫通常是事先建立好的資料集合,可由多種不同的管道提供。舉例來說,主機裝置130中的儲存電路131可預先儲存一或多個對應不同應用場 景的物件資料庫。在另一實施例中,主機裝置130可利用通信電路136連接至一遠端資料庫160。遠端資料庫160中可包含對應不同應用場景的多個物件資料庫。每個物件資料庫中,包含多個環境物件的外型特徵資訊,以及聲學屬性資訊。 In process 904, in order to speed up the query of environmental objects and improve accuracy, the host device 130 preferentially selects relevant object databases according to the application scenario category. The object database is usually a pre-established data set, which can be provided by a variety of different channels. For example, the storage circuit 131 in the host device 130 can pre-store one or more object databases corresponding to different application scenarios. In another embodiment, the host device 130 can be connected to a remote database 160 using the communication circuit 136. The remote database 160 can include multiple object databases corresponding to different application scenarios. Each object database contains appearance feature information and acoustic attribute information of multiple environmental objects.

當主機裝置130在流程902中獲得應用場景類別後,可優先從儲存電路131中或遠端資料庫160中選擇使用與該應用場景類別相關的一物件資料庫,用於後續環境物件的辨識。在一實施例中,辨識電路134分析感測器電路140提供的音場環境資訊而獲得一或多個物件外型特徵資訊,並依據該物件外型特徵資訊檢索該物件資料庫,便可辨識出符合該物件外型特徵資訊的環境物件,包含名稱,吸收率和反射率。在另一實施例中,控制電路132執行配置程序,利用人機介面電路133而獲得一環境物件的名稱。控制電路132依據該環境物件175的名稱查找該物件資料庫,以獲得該環境物件對應的吸收率和反射率。 After the host device 130 obtains the application scene category in process 902, it can preferentially select and use an object database related to the application scene category from the storage circuit 131 or the remote database 160 for subsequent environmental object recognition. In one embodiment, the recognition circuit 134 analyzes the sound field environment information provided by the sensor circuit 140 to obtain one or more object appearance feature information, and searches the object database based on the object appearance feature information to recognize the environmental object that meets the object appearance feature information, including the name, absorptivity and reflectivity. In another embodiment, the control circuit 132 executes a configuration program and uses the human-machine interface circuit 133 to obtain the name of an environmental object. The control circuit 132 searches the object database according to the name of the environmental object 175 to obtain the absorptivity and reflectivity corresponding to the environmental object.

在進一步衍生的實施例中,查找的過程所使用的參數可以多元組合。例如,辨識電路134在分析音場環境資訊的過程中,可獲得環境物件175的材質、大小、形狀等外在特徵。辨識電路134將這些外在特徵資訊傳送至物件資料庫進行多條件交叉比對,而獲得依照媒合分數排序的一候選物件列表。若是在查找物件資料庫的過程中,搭配應用場景類別的資訊做為查找條件,將有助於縮小可能範圍,加速辨識,並提高正確性。 In a further derived embodiment, the parameters used in the search process can be multi-combined. For example, in the process of analyzing the sound field environment information, the recognition circuit 134 can obtain the external characteristics of the environmental object 175, such as material, size, shape, etc. The recognition circuit 134 transmits these external characteristic information to the object database for multi-condition cross-comparison, and obtains a list of candidate objects sorted according to the matching score. If the information of the application scene category is used as the search condition in the process of searching the object database, it will help to narrow the possible range, speed up the recognition, and improve the accuracy.

在流程906中,控制電路132從流程904中選用的物件資料庫查找環境物件的吸收率和反射率。在實作中,物件資料庫中儲存的環境物件的聲學屬性資訊,不限定是分割成多個獨立的物件資料庫而儲存。物件資料庫可以是關聯式資料庫,包含多種欄位以相關係數的方式連接在一起。舉例來說,物件資料庫的欄位可包含物件名稱、應用場景類別、材質、吸收率、反射率、甚至是形狀、顏色、光澤等外 在特徵。而每一個環境物件對應的欄位值並不限定是一對一的關係,而可以是一對多、或多對一。每一欄位中儲存的數值也未必是絕對的數值,而是範圍值或機率值。在進一步衍生的實施中,物件資料庫可以是一個可機器學習而不斷迭代修正的自適應資料庫。使用者180可透過人機介面電路133回饋偏好的設定值而訓練物件資料庫。 In process 906, the control circuit 132 searches the object database selected in process 904 for the absorptivity and reflectivity of the environmental object. In practice, the acoustic property information of the environmental object stored in the object database is not limited to being divided into multiple independent object databases for storage. The object database can be a relational database, including multiple fields connected together in the form of correlation coefficients. For example, the fields of the object database can include object name, application scene category, material, absorptivity, reflectivity, and even external features such as shape, color, and gloss. The field value corresponding to each environmental object is not limited to a one-to-one relationship, but can be one-to-many or many-to-one. The value stored in each field is not necessarily an absolute value, but a range value or a probability value. In a further derivative implementation, the object database can be an adaptive database that can be machine-learned and continuously iterated and corrected. The user 180 can train the object database by feeding back the preferred setting value through the human-machine interface circuit 133.

在流程908中,控制電路132依據環境物件的查找結果和配置狀況,在多個子頻帶中分別調整聲道音訊。環境物件175的聲學屬性,在不同的頻帶上可能有顯著的差異。舉例來說,沙發可能吸收大量高頻訊號,但是不影響低頻訊號的穿透。因此,從物件資料庫中查找出來的吸收率或反射率,可以是對應多個子頻帶的陣列值,或是一頻率響應曲線。關於子頻帶的區間大小或區隔方式,可隨設計需求而定,在本實施例中並未限定。控制電路132在多個子頻帶中分別調整聲道音訊的增益值,在實作上可類比為等化器或濾波器的概念。換句話說,控制電路132可為音響系統100中的每一喇叭實作一等化器,並依據前述實施例計算的輸出補償值客製化該等化器,使對應的聲道音訊受到調整。關於計算輸出補償值的進一步實施例,將在圖10中說明。 In process 908, the control circuit 132 adjusts the channel audio in multiple sub-bands according to the search results and configuration status of the environmental objects. The acoustic properties of the environmental objects 175 may have significant differences in different frequency bands. For example, a sofa may absorb a large amount of high-frequency signals but does not affect the penetration of low-frequency signals. Therefore, the absorption rate or reflectivity found from the object database can be an array value corresponding to multiple sub-bands, or a frequency response curve. The interval size or segmentation method of the sub-bands can be determined according to design requirements and is not limited in this embodiment. The control circuit 132 adjusts the gain values of the channel audio signals in multiple sub-bands respectively, which can be compared to the concept of an equalizer or a filter in practice. In other words, the control circuit 132 can implement an equalizer for each speaker in the audio system 100, and customize the equalizer according to the output compensation value calculated in the above embodiment, so that the corresponding channel audio signals are adjusted. A further embodiment of calculating the output compensation value will be described in FIG. 10.

在流程910中,控制電路132將調整後的聲道音訊透過音訊傳輸電路135輸出至對應喇叭。關於音訊傳輸電路135的實施方式已於圖1中介紹,在此不再贅述。 In process 910, the control circuit 132 outputs the adjusted channel audio to the corresponding speaker through the audio transmission circuit 135. The implementation of the audio transmission circuit 135 has been introduced in FIG. 1 and will not be described in detail here.

圖9的實施例突顯了下列的優點。物件辨識的運作可參照應用場景類別(自動辨識或手動輸入)以增加辨識效率。物件資料庫採用具有擴充性的架構,在雲端大數據服務和機器學習的回饋下而持續長期地增強辨識能力。音響系統100可應用等化器的概念將聲道音訊分為多個子頻帶分別處理,使最終合成的音質有效提升。 The embodiment of FIG. 9 highlights the following advantages. The operation of object recognition can refer to the application scene category (automatic recognition or manual input) to increase recognition efficiency. The object database adopts an extensible architecture, and the recognition capability is continuously enhanced in the long term with the feedback of cloud big data services and machine learning. The audio system 100 can apply the concept of equalizer to divide the channel audio into multiple sub-bands for separate processing, so that the final synthesized sound quality is effectively improved.

下列以圖10進一步說明控制電路132如何根據環境物件175的空間配置資訊而計算每個聲道的輸出補償值。 The following FIG. 10 further illustrates how the control circuit 132 calculates the output compensation value of each channel based on the spatial configuration information of the environmental object 175.

圖10為本發明一實施例的音訊處理方法流程圖,說明依據環境物件的位置關係計算輸出補償值的實施例。圖10的流程主要由主機裝置130中的控制電路132所執行。 FIG10 is a flow chart of an audio processing method of an embodiment of the present invention, illustrating an embodiment of calculating an output compensation value based on the position relationship of environmental objects. The process of FIG10 is mainly executed by the control circuit 132 in the host device 130.

在流程1002中,控制電路132判斷環境物件、目標聆聽點與喇叭的相對位置關係。目標空間170中的多個喇叭和多個環境物件175,可與目標聆聽點排列組合出多組位置關係。每一組位置關係包含一喇叭、一環境物件175,與目標聆聽點。控制電路132為目標空間170中的每一位置關係組合進行檢查判斷並計算對應的輸出補償值。以下以音響系統100中的其中一組位置關係為例,說明控制電路132針對一環境物件175對一喇叭在目標聆聽點造成的干擾所做出的補償方式。 In process 1002, the control circuit 132 determines the relative positional relationship between the environmental objects, the target listening point, and the speaker. Multiple speakers and multiple environmental objects 175 in the target space 170 can be arranged and combined with the target listening point to form multiple sets of positional relationships. Each set of positional relationships includes a speaker, an environmental object 175, and the target listening point. The control circuit 132 checks and determines each positional relationship combination in the target space 170 and calculates the corresponding output compensation value. The following takes one set of positional relationships in the audio system 100 as an example to explain the compensation method of the control circuit 132 for the interference caused by an environmental object 175 to a speaker at the target listening point.

在流程1004中,控制電路132判斷環境物件175是否在目標聆聽點與喇叭中間。目標空間170中的環境物件175的位置也可由辨識電路134獲得,或是由人機介面電路133經過一配置程序而取得。控制電路132綜合上述資訊後可判斷每一環境物件175、目標聆聽點、與每一喇叭的相對位置關係,並針對每一喇叭分別進行對應的補償運算。流程1004所要判斷的情況就是如圖7所示的狀況。如果情況符合,則進行流程1008。如果情況不符合,則進行流程1006。 In process 1004, the control circuit 132 determines whether the environmental object 175 is between the target listening point and the speaker. The position of the environmental object 175 in the target space 170 can also be obtained by the identification circuit 134, or by the human-machine interface circuit 133 through a configuration program. After integrating the above information, the control circuit 132 can determine the relative position relationship between each environmental object 175, the target listening point, and each speaker, and perform corresponding compensation operations for each speaker. The situation to be determined by process 1004 is the situation shown in Figure 7. If the situation meets the requirements, process 1008 is performed. If the situation does not meet the requirements, process 1006 is performed.

在流程1006中,控制電路132判斷目標聆聽點是否位於環境物件175與喇叭中間。流程1006所要判斷的情況就是如圖8所示的狀況。如果情況符合,則進行流程1010。如果情況不符合,則進行流程1012。 In process 1006, the control circuit 132 determines whether the target listening point is located between the environmental object 175 and the speaker. The situation to be determined in process 1006 is the situation shown in FIG8. If the situation meets the requirements, process 1010 is performed. If the situation does not meet the requirements, process 1012 is performed.

在流程1008中,控制電路132使用環境物件175的吸收率計算聲道音訊的輸出補償值。在一較佳的實施例中,該喇叭的聲道音訊的輸出補償值是分為多個子頻帶分別計算的。詳細的計算可參考圖7的目標空間700和公式(8)。控制電路132可從物件資料庫中查找環境物件175的吸收率,並代入公式(8)中而求得輸出補償值。 In process 1008, the control circuit 132 uses the absorption rate of the environmental object 175 to calculate the output compensation value of the channel audio. In a preferred embodiment, the output compensation value of the channel audio of the speaker is calculated separately for multiple sub-bands. For detailed calculations, please refer to the target space 700 and formula (8) in Figure 7. The control circuit 132 can search the absorption rate of the environmental object 175 from the object database and substitute it into formula (8) to obtain the output compensation value.

在流程1010中,控制電路132使用環境物件175的反射率計算聲道音訊的輸出補償值。參考圖8的目標空間800和公式(8),控制電路132可從物件資料庫中查找環境物件175的反射率,並代入公式(8)中而求得輸出補償值。 In process 1010, the control circuit 132 uses the reflectivity of the environmental object 175 to calculate the output compensation value of the channel audio. Referring to the target space 800 of FIG8 and formula (8), the control circuit 132 can search the reflectivity of the environmental object 175 from the object database and substitute it into formula (8) to obtain the output compensation value.

可以理解的是,依據環境物件175的吸收率計算出來的輸出補償值,可能使調整後的聲道音訊的增益值、聲壓值、或等效音量放大,來彌補被吸收掉的能量。相對地,依據環境物件175的反射率計算出來的輸出補償值,可能使調整後的聲道音訊的增益值、聲壓值、或等效音量降低,來平衡被反射回來的能量。換句話說,依據吸收率和反射率所計算的輸出補償值,其正負號通常是彼此相反的。 It can be understood that the output compensation value calculated based on the absorptivity of the environmental object 175 may amplify the gain value, sound pressure value, or equivalent volume of the adjusted channel audio to compensate for the absorbed energy. Conversely, the output compensation value calculated based on the reflectivity of the environmental object 175 may reduce the gain value, sound pressure value, or equivalent volume of the adjusted channel audio to balance the reflected energy. In other words, the output compensation values calculated based on the absorptivity and reflectivity are usually opposite in sign.

在流程1012中,如果環境物件175不符合流程1004的條件,也不符合流程1006的條件,則控制電路132可判斷環境物件175位在一個不會影響到該喇叭對目標聆聽點播放的位置。在這種情況下,控制電路132可不為該組位置關係計算該環境物件175對該喇叭和目標聆聽點造成的影響。然而,需要理解的是,一目標空間170中通常包含多個喇叭。環境物件175不會影響到其中一個喇叭對目標聆聽點的播放,但還是可能會影響到其他喇叭對目標聆聽點的播放。換句話說,控制電路132需要為目標空間170中每一組位置關係分別進行圖10的流程。 In process 1012, if the environmental object 175 does not meet the conditions of process 1004 or process 1006, the control circuit 132 may determine that the environmental object 175 is located at a position that will not affect the speaker's playback of the target listening point. In this case, the control circuit 132 may not calculate the impact of the environmental object 175 on the speaker and the target listening point for the set of positional relationships. However, it should be understood that a target space 170 usually includes multiple speakers. The environmental object 175 will not affect the playback of one of the speakers to the target listening point, but it may still affect the playback of other speakers to the target listening point. In other words, the control circuit 132 needs to perform the process of Figure 10 for each set of positional relationships in the target space 170.

在一些特定的情況下,環境物件175的存在可被直接忽略。舉例來說,如果環境物件175對聲音的反射率或吸收率小於一特定閾值,表示其在目標空間170中的存在可以忽略。另一方面,如果控制電路132判斷環境物件175的體積小於一特定大小,也可忽略環境物件175的存在。 In some specific cases, the existence of the environmental object 175 can be directly ignored. For example, if the reflectivity or absorptivity of the environmental object 175 to sound is less than a specific threshold, it means that its existence in the target space 170 can be ignored. On the other hand, if the control circuit 132 determines that the volume of the environmental object 175 is less than a specific size, the existence of the environmental object 175 can also be ignored.

在進一步衍生的實施例中,如果目標空間170中偵測到一個以上的使用者,則目標聆聽點的判斷,可依據多個使用者的位置中心點,也可以選擇性地依據其中一個使用者的位置。至於未被選擇為目標 聆聽點的使用者,主機裝置130可將其類比為環境物件,依照圖7至圖8的實施例式處理。 In a further derived embodiment, if more than one user is detected in the target space 170, the determination of the target listening point may be based on the position center point of multiple users, or may be selectively based on the position of one of the users. As for the users who are not selected as the target listening point, the host device 130 may analogize them to environmental objects and process them according to the embodiments of Figures 7 and 8.

圖10的實施例突顯了下列的優點。圖10的實施例延續圖7和圖8的處理方式,將複雜環境問題簡化為多個線性關係的問題而分別解決。針對特定情況的環境物件175,還可忽略不計以簡化計算的複雜度。 The embodiment of FIG. 10 highlights the following advantages. The embodiment of FIG. 10 continues the processing method of FIG. 7 and FIG. 8, simplifying the complex environmental problem into multiple linear relationship problems and solving them separately. For the environmental object 175 in a specific case, the complexity of the simplified calculation can also be ignored.

圖11為本發明一目標空間1100示意圖,用於說明以物件基底補償運作優化音場的實施例。 FIG11 is a schematic diagram of a target space 1100 of the present invention, used to illustrate an embodiment of optimizing the sound field by object-based compensation operation.

在目標空間1100中,包含多個喇叭,例如第一喇叭1110、第二喇叭1120、第三喇叭1130和第四喇叭1140。在音響系統100是基於物件基底補償運作而運作的情況下,控制電路132在邏輯上將目標空間1100視為一個空間標座系統。該空間標座可以是二維平面座標或三維平面座標。為了便於說明,圖11以包含一X軸和一Y軸的二維平面座標的方式繪示說明。 In the target space 1100, a plurality of speakers are included, such as a first speaker 1110, a second speaker 1120, a third speaker 1130, and a fourth speaker 1140. When the sound system 100 operates based on object base compensation, the control circuit 132 logically regards the target space 1100 as a spatial coordinate system. The spatial coordinate can be a two-dimensional plane coordinate or a three-dimensional plane coordinate. For ease of explanation, FIG. 11 illustrates the two-dimensional plane coordinate including an X-axis and a Y-axis.

在目標空間1100中,使用者180位於原點P0。控制電路132將使用者180指派為目標聆聽點。如圖3的實施例所述,物件基底聲學系統是建立在大量聲學參數的陣列運算上。每一音源物件具有一中繼資料,用於描述該音源物件的類型、位置、大小(長寬高)、發散度(divergence)等。經過物件基底運算後,一音源物件所代表的聲音將會被指派至一或多個喇叭而共同播放,每一喇叭相對播放該音源件的一部份的聲音。換句話說,物件基底聲學系統可利用多個喇叭來模擬一個音源物件的實體存在感。舉例來說,透過物件基底補償運作,在目標聆聽點上的使用者180,可聽到一虛擬音源物件1105沿著移動軌跡1103從第一位置P1移動到新第一位置P1’。 In the target space 1100, the user 180 is located at the origin P0. The control circuit 132 assigns the user 180 as the target listening point. As described in the embodiment of FIG. 3 , the object-based acoustic system is based on array operations of a large number of acoustic parameters. Each sound source object has metadata that describes the type, position, size (length, width, and height), divergence, etc. of the sound source object. After object-based operations, the sound represented by a sound source object will be assigned to one or more speakers and played together, with each speaker playing a portion of the sound of the sound source object. In other words, the object-based acoustic system can use multiple speakers to simulate the physical presence of a sound source object. For example, through the object-based compensation operation, the user 180 at the target listening point can hear a virtual sound source object 1105 moving from the first position P1 to the new first position P1' along the moving trajectory 1103.

本實施例的物件基底補償運作可使所有喇叭輸出的聲道音訊針對目標聆聽點優化。物件基底補償運作利用既有物件基底聲學系統中的陣列運算模組,將各種距離因素和音場類別參數化,並可進行類似公式(4)到(7)的運算。對音響系統100而言,主機裝置130只需 要將使用者180的位置資訊套用至物件基底補償運作中,就能使所有喇叭輸出的聲道音訊針對目標聆聽點優化。 The object-based compensation operation of this embodiment can optimize the channel audio output by all speakers for the target listening point. The object-based compensation operation uses the array operation module in the existing object-based acoustic system to parameterize various distance factors and sound field categories, and can perform operations similar to formulas (4) to (7). For the audio system 100, the host device 130 only needs to apply the position information of the user 180 to the object-based compensation operation to optimize the channel audio output by all speakers for the target listening point.

在一實施例中,控制電路132可將目標聆聽點定義為整個空間座標系統的原點。當使用者180移動時,整個空間座標系統隨著原點而移動。換句話說,虛擬音源物件1105相對原點的位置保持不變。控制電路132透過物件基底補償運作而播放虛擬音源物件1105的效果時,使用者180感受到的虛擬音源物件1105的相對位置不會隨著使用者180的移動而改變。 In one embodiment, the control circuit 132 may define the target listening point as the origin of the entire spatial coordinate system. When the user 180 moves, the entire spatial coordinate system moves with the origin. In other words, the position of the virtual sound source object 1105 relative to the origin remains unchanged. When the control circuit 132 plays the effect of the virtual sound source object 1105 through the object base compensation operation, the relative position of the virtual sound source object 1105 felt by the user 180 will not change with the movement of the user 180.

在本實施例的目標空間1100中,可能會存在有環境物件175,會對使用者180的聆聽效果造成實質影響。控制電路132可透過圖9的流程902而獲得目標空間1100中的環境物件的空間配置資訊,而得知環境物件175位在第二位置P2上。當使用者180移動時,整個空間座標系統的原點隨著使用者180而改變。環境物件175雖然沒有移動,但是與原點的相對位置改變了。因此可以理解的是,在移動後的空間座標系統中,是環境物件175的座標值往反方向移動了。 In the target space 1100 of this embodiment, there may be an environmental object 175, which will have a substantial impact on the listening effect of the user 180. The control circuit 132 can obtain the spatial configuration information of the environmental objects in the target space 1100 through the process 902 of Figure 9, and know that the environmental object 175 is located at the second position P2. When the user 180 moves, the origin of the entire spatial coordinate system changes with the user 180. Although the environmental object 175 does not move, its relative position to the origin changes. Therefore, it can be understood that in the spatial coordinate system after the movement, the coordinate value of the environmental object 175 moves in the opposite direction.

為了抵消該環境物件175對使用者180產生的干擾,本實施例的控制電路132依據環境物件175建立物件基底的補償音源物件。該補償音源物件的中繼資料包含:該環境物件175的座標位置、大小,以及對聲音的反射率和吸收率。環境物件175對聲音的反射率和吸收率,可以是由圖9的流程906所獲得。補償音源物件會被視為環境物件175的負音源物件而被套用至物件基底補償運作中,成為可抵消環境物件175的虛擬音源。 In order to offset the interference of the environmental object 175 to the user 180, the control circuit 132 of the present embodiment establishes a compensation sound source object of the object base according to the environmental object 175. The metadata of the compensation sound source object includes: the coordinate position, size, and reflectivity and absorptivity of the environmental object 175 to sound. The reflectivity and absorptivity of the environmental object 175 to sound can be obtained by the process 906 of Figure 9. The compensation sound source object will be regarded as a negative sound source object of the environmental object 175 and applied to the object base compensation operation, becoming a virtual sound source that can offset the environmental object 175.

可以理解的是,補償音源物件的本質是環境物件175對應的負音源物件,其所在的位置與環境物件175重疊,因此在圖11中不另標示。另外,目標空間1100的四喇叭配置只是示例。在音響系統100的實際應用中,喇叭配置數量可以更多,甚至包含上喇叭和下喇叭的立體配置。本說明不限定其他可能的配置方式。 It is understandable that the essence of the compensating sound source object is the negative sound source object corresponding to the environmental object 175, and its location overlaps with the environmental object 175, so it is not marked separately in Figure 11. In addition, the four-speaker configuration of the target space 1100 is only an example. In the actual application of the audio system 100, the number of speakers can be more, even including a stereo configuration of upper and lower speakers. This description does not limit other possible configurations.

圖11的實施例說明了物件基底補償運作的優點。控制電路132將目標空間1100的資訊轉換為空間座標系統的形式,可將複雜的多物件互動運算簡化為中繼資料的陣列運算。將移動中的使用者180的位置設定為空間座標系統的原點,使虛擬物件的處理完全不受使用者180的移動的影響,而簡化了運算流程。本實施例還提出了補償音源物件的概念,直接套用物件基底補償運作來抵消環境物件干擾,免去了複雜的多通道交互運算。 The embodiment of FIG11 illustrates the advantages of the object-based compensation operation. The control circuit 132 converts the information of the target space 1100 into the form of a spatial coordinate system, which can simplify the complex multi-object interaction operation into an array operation of metadata. The position of the moving user 180 is set as the origin of the spatial coordinate system, so that the processing of the virtual object is completely unaffected by the movement of the user 180, thereby simplifying the operation process. This embodiment also proposes the concept of compensating the sound source object, directly applying the object-based compensation operation to offset the interference of environmental objects, eliminating the complex multi-channel interaction operation.

以下以圖12說明物件基底補償運作的簡便之處和可能的衍生應用。 The following uses Figure 12 to illustrate the simplicity of object-based compensation operation and possible derivative applications.

圖12為本發明一目標空間1200示意圖,用於說明以物件基底補償運作優化音場的實施例。 FIG. 12 is a schematic diagram of a target space 1200 of the present invention, used to illustrate an embodiment of optimizing the sound field by object-based compensation operation.

目標空間1200中可能包含多個喇叭,例如第一喇叭1210、第二喇叭1220、第三喇叭1230、第四喇叭1240、第五喇叭1250和第六喇叭1260,排列為一個長條形音場。每個喇叭對應一個ID。當使用者180位於第一位置P1時,一個虛擬音源物件(未繪示)的中繼資料映射至第一喇叭1210和第二喇叭1220的ID。控制電路132進行物件基底補償運作後,就會使第一喇叭1210和第二喇叭1220播放第一聲道輸出1212和第二聲道輸出1222,讓使用者180感受到該虛擬音源物件的存在。當使用者180沿著移動軌跡1203移動到第二位置P2時,控制電路132經過目標聆聽點的重新計算,將該虛擬音源物件的中繼資料映射至第五喇叭1250和第六喇叭1260。控制電路132進行物件基底補償運作後,就會使第五喇叭1250和第五喇叭1250播放第五聲道輸出1252和第六聲道輸出1262,讓使用者180感受到該虛擬音源物件依然存在於使用者180的左右,不隨著使用者180的移動而離開。 The target space 1200 may include a plurality of speakers, such as a first speaker 1210, a second speaker 1220, a third speaker 1230, a fourth speaker 1240, a fifth speaker 1250, and a sixth speaker 1260, arranged in a long strip sound field. Each speaker corresponds to an ID. When the user 180 is located at the first position P1, the metadata of a virtual sound source object (not shown) is mapped to the IDs of the first speaker 1210 and the second speaker 1220. After the control circuit 132 performs the object base compensation operation, the first speaker 1210 and the second speaker 1220 will play the first channel output 1212 and the second channel output 1222, so that the user 180 can feel the existence of the virtual sound source object. When the user 180 moves to the second position P2 along the moving trajectory 1203, the control circuit 132 recalculates the target listening point and maps the metadata of the virtual sound source object to the fifth speaker 1250 and the sixth speaker 1260. After the control circuit 132 performs the object base compensation operation, the fifth speaker 1250 and the fifth speaker 1250 play the fifth channel output 1252 and the sixth channel output 1262, so that the user 180 feels that the virtual sound source object still exists around the user 180 and does not leave with the movement of the user 180.

本實施例主要說明,物件基底補償運作的彈性應用以及簡便之處。在許多特殊的情況下,只需要進行少量的運算,就能完成音場的優化。例如,如果使用者180位於一個球體狀的音場中,則控制電路 132只需要進行旋轉座標的運算,就能讓使用者180面對各種方向時,感受一致的音場效果。 This embodiment mainly illustrates the flexible application and simplicity of object base compensation operation. In many special cases, only a small amount of calculation is required to optimize the sound field. For example, if the user 180 is in a spherical sound field, the control circuit 132 only needs to perform rotation coordinate calculations to allow the user 180 to experience a consistent sound field effect when facing various directions.

以下以圖13總結控制電路132在執行物件基底補償運作時的基本邏輯。 The following is a summary of the basic logic of the control circuit 132 when performing object base compensation operation with FIG. 13.

圖13為本發明一實施例的物件基底補償運作流程圖,說明建立補償音源物件的概念。 FIG13 is a flowchart of the object-based compensation operation of an embodiment of the present invention, illustrating the concept of establishing a compensation sound source object.

在流程1304中,控制電路132依據環境物件175建立對應的補償音源物件。對位於目標聆聽點上的使用者180而言,環境物件175的存在是一個實體音源。環境物件175可能將一喇叭發出的聲音反射至該目標聆聽點。環境物件175也可能阻擋或吸收一部份聲音,使一喇叭對該目標聆聽點發出的聲音受到衰減。補償音源物件即為針對環境物件175建立的負音源物件.在主機裝置130將補償音源物件代入物件基底補償運作而產生聲道音訊時,可將環境物件175的存在感消除。物件基底運算本身的具體細節,可延用現有的物件基底聲學產品的計算方式,利用音源物件的中繼資料進行大量相關的陣列運算。舉例來說,該補償音源物件的一中繼資料包含:該環境物件175的座標位置、大小,以及對聲音的反射率和吸收率。 In process 1304, the control circuit 132 establishes a corresponding compensation sound source object according to the environmental object 175. For the user 180 located at the target listening point, the existence of the environmental object 175 is a physical sound source. The environmental object 175 may reflect the sound emitted by a speaker to the target listening point. The environmental object 175 may also block or absorb part of the sound, causing the sound emitted by a speaker to the target listening point to be attenuated. The compensation sound source object is a negative sound source object established for the environmental object 175. When the host device 130 substitutes the compensation sound source object into the object base compensation operation to generate a channel audio, the presence of the environmental object 175 can be eliminated. The specific details of the object-based calculation itself can continue to use the calculation method of the existing object-based acoustic products, using the metadata of the sound source object to perform a large number of related array operations. For example, a metadata of the compensation sound source object includes: the coordinate position, size, and reflectivity and absorption rate of the environmental object 175 to the sound.

在流程1306中,控制電路132計算補償音源物件的音源效果。在本實施例中,補償音源物件是依據環境物件175而對應建立,其中繼資料具有與該環境物件175相同的座標位置、大小,以及對聲音的反射率和吸收率,但是產生的音源效果是環境物件175的反增益值。 In process 1306, the control circuit 132 calculates the sound source effect of the compensation sound source object. In this embodiment, the compensation sound source object is established in correspondence with the environment object 175, wherein the metadata has the same coordinate position, size, and reflectivity and absorption rate of the sound as the environment object 175, but the sound source effect generated is the inverse gain value of the environment object 175.

圖13的實施例,也可參照類似圖7和圖8的計算。公式(8)可衍生為公式(9),依據環境物件175從第一喇叭110所接收到的聲壓值來計算環境物件175被動產生的增益值:At[m][n]=R[n]*SPLt[m] (9) The embodiment of FIG. 13 can also refer to the calculation similar to that of FIG. 7 and FIG. 8. Formula (8) can be derived into Formula (9), which calculates the gain value passively generated by the environmental object 175 according to the sound pressure value received by the environmental object 175 from the first speaker 110: At [m][n] = R [n] * SPL t [m] (9)

其中,m代表喇叭編號,n代表子頻帶的編號。At[m][n]代表第n個子頻帶受到第m個喇叭影響而產生的增益值。R[n]代表第n個子頻帶的 吸收率。SPLt[m]代表環境物件175在第t個時間點所受到的來自第m個喇叭的聲壓值。時間點t可代表聲音從喇叭傳送到環境物件175的時間差。如果時間差大於一不可忽略的範圍,則表示目標空間170中存在有回音的狀況。 Wherein, m represents the speaker number, and n represents the sub-band number. At [m] [n] represents the gain value generated by the n-th sub-band being affected by the m-th speaker. R [n] represents the absorption rate of the n-th sub-band. SPL t [m] represents the sound pressure value from the m-th speaker received by the environmental object 175 at the t-th time point. The time point t may represent the time difference of the sound being transmitted from the speaker to the environmental object 175. If the time difference is greater than a non-negligible range, it indicates that there is an echo in the target space 170.

由公式(9)可知,每一環境物件對應的計算結果,包含多個喇叭及多個子頻帶在一時間點上的一增益值陣列。而補償音源物件的音源效果,就是該增益值陣列的負數值。換句話說,基於公式(9)而進行的物件基底補償運作,包含多個維度的參數交互排列組合的陣列運算。以下為便於說明起見,以其中一喇叭及其中一子頻帶於一時間點上對應的增益值來說明。 From formula (9), we can see that the calculation result corresponding to each environmental object includes a gain value array of multiple speakers and multiple sub-bands at a time point. The sound source effect of the compensation sound source object is the negative value of the gain value array. In other words, the object-based compensation operation based on formula (9) includes an array operation of interactively arranged and combined parameters of multiple dimensions. For the sake of convenience, the following is an explanation of the gain value corresponding to one speaker and one sub-band at a time point.

圖13的實施例與圖7和圖8的實施例類似的是,本實施例可依據環境物件175的空間配置資訊而對應地使用適當的計算方式來計算環境物件的聲學影響。例如,如果該目標聆聽點位於一喇叭和環境物件175的可視線之間時,控制電路132依據環境物件175的反射率計算補償音源物件的音源效果。相對的,如果環境物件175位於該目標聆聽點和該喇叭的可視線之間時,控制電路132依據環境物件175的吸收率計算補償音源物件的音源效果。 The embodiment of FIG. 13 is similar to the embodiments of FIG. 7 and FIG. 8 in that the present embodiment can use appropriate calculation methods to calculate the acoustic impact of the environmental object according to the spatial configuration information of the environmental object 175. For example, if the target listening point is between a speaker and the line of sight of the environmental object 175, the control circuit 132 calculates the sound source effect of the compensation sound source object according to the reflectivity of the environmental object 175. Conversely, if the environmental object 175 is between the target listening point and the line of sight of the speaker, the control circuit 132 calculates the sound source effect of the compensation sound source object according to the absorption rate of the environmental object 175.

舉例來說,當一環境物件175吸收了一喇叭發出的聲音,使得目標聆聽點收到的音量效果減少。這時控制電路132在環境物件175的座標位置上建立一個會產生對應音量效果的虛擬音源物件做為補償。相對地,如果一環境物件175反射了一喇叭的聲音,使目標聆聽點收到過多音量。這時控制電路132在環境物件175的座標位置上建立一個具有負增益值的虛擬音源物件。 For example, when an environmental object 175 absorbs the sound from a speaker, the volume effect received by the target listening point is reduced. At this time, the control circuit 132 creates a virtual sound source object that will produce a corresponding volume effect at the coordinate position of the environmental object 175 as compensation. Conversely, if an environmental object 175 reflects the sound of a speaker, the target listening point receives too much volume. At this time, the control circuit 132 creates a virtual sound source object with a negative gain value at the coordinate position of the environmental object 175.

可以理解的是,可視線定義為兩個物件在空間中的直線連線。由於物件具有一定的體積和面積,體積可能很大,而可視線被遮擋的情況可能包含部份遮擋和完全遮擋。本實施例可依據公式(9)為基礎,再視各種情境而乘上不同的權重係數或加上不同的偏移修正量。 It is understandable that the visible line is defined as a straight line connecting two objects in space. Since objects have a certain volume and area, the volume may be very large, and the situation where the visible line is blocked may include partial blockage and complete blockage. This embodiment can be based on formula (9), and then multiplied by different weight coefficients or added with different offset corrections depending on various scenarios.

在流程1308中,控制電路132將補償音源物件的音源效果混入聲道音訊,使對應的喇叭播放。控制電路132執行物件基底補償運作時可處理複雜的物件對應陣列運算,將每一喇叭被分配播放的多個音源訊號混合成對應的一聲道音訊。在套用物件基底補償運作之後,目標聆聽點上收到的音量效果會包含補償音源物件產生的音源效果。藉此,環境物件175造成的干擾可有效地被補償音源物件抵消。 In process 1308, the control circuit 132 mixes the sound source effect of the compensation sound source object into the channel audio so that the corresponding speaker plays. When the control circuit 132 performs the object base compensation operation, it can process complex object corresponding array operations to mix the multiple sound source signals assigned to each speaker into the corresponding one-channel audio. After applying the object base compensation operation, the volume effect received at the target listening point will include the sound source effect generated by the compensation sound source object. In this way, the interference caused by the environmental object 175 can be effectively offset by the compensation sound source object.

在流程1310中,控制電路132判斷目標聆聽點是否移動至新位置。如流程208所述,音響系統100可持續追蹤使用者180的移動而更新目標聆聽點。如果目標聆聽點移動了,則進行流程1312。反之則持續流程1308的播放運作。 In process 1310, the control circuit 132 determines whether the target listening point has moved to a new position. As described in process 208, the audio system 100 can continuously track the movement of the user 180 and update the target listening point. If the target listening point has moved, process 1312 is performed. Otherwise, the playback operation of process 1308 is continued.

在流程1312中,控制電路132更新補償音源物件的中繼資料。在本實施例中,控制電路132會以目標聆聽點為一座標原點而建立物件基底空間。如果目標聆聽點移動至一新位置,控制電路132將該新位置指派為物件基底空間的新座標原點。該新座標原點和原座標原點位置差,可表示為一移動向量。環境物件175相對於目標聆聽點的空間座標值也會隨著該移動向量而反向改變。控制電路132於是依據該移動向量更新環境物件175對應的補償音源物件的中繼資料。在進一步的實施例中,物件基底空間中所有喇叭也可視為一種物件,具有對應的ID、中繼資料和座標值。 In process 1312, the control circuit 132 updates the metadata of the compensation sound source object. In the present embodiment, the control circuit 132 establishes the object base space with the target listening point as a coordinate origin. If the target listening point moves to a new position, the control circuit 132 assigns the new position as the new coordinate origin of the object base space. The position difference between the new coordinate origin and the original coordinate origin can be represented as a movement vector. The spatial coordinate value of the environmental object 175 relative to the target listening point will also change inversely with the movement vector. The control circuit 132 then updates the metadata of the compensation sound source object corresponding to the environmental object 175 according to the movement vector. In a further embodiment, all speakers in the object base space can also be regarded as a kind of object, with corresponding ID, metadata and coordinate values.

在另一實施例中,音響系統100不限定要以目標聆聽點為座標原點。音響系統100也可以採用一固定參考點為物件基底空間的原點。當物件基底空間中的音源物件出現相對位置的變化時,控制電路132對應地更新音源物件的中繼資料中的座標值。 In another embodiment, the sound system 100 is not limited to using the target listening point as the coordinate origin. The sound system 100 can also use a fixed reference point as the origin of the object base space. When the relative position of the sound source object in the object base space changes, the control circuit 132 updates the coordinate value in the metadata of the sound source object accordingly.

當流程1312完成後,控制電路132重複流程1308。 When process 1312 is completed, control circuit 132 repeats process 1308.

圖13的實施例說明了物件基底補償運作的優點。控制電路132將目標空間1100的資訊轉換為空間座標系統的形式,可將複雜的多物件互動運算簡化為中繼資料的陣列運算。將移動中的使用者180的位 置設定為空間座標系統的原點,使虛擬物件的處理完全不受使用者180的移動的影響,而簡化了運算流程。本實施例還提出了補償音源物件的概念,直接套用物件基底補償運作來抵消環境物件干擾,免去了複雜的多通道交互運算。 The embodiment of FIG. 13 illustrates the advantages of the object-based compensation operation. The control circuit 132 converts the information of the target space 1100 into the form of a spatial coordinate system, which can simplify the complex multi-object interaction operation into an array operation of metadata. The position of the moving user 180 is set as the origin of the spatial coordinate system, so that the processing of the virtual object is completely unaffected by the movement of the user 180, thereby simplifying the operation process. This embodiment also proposes the concept of compensating the sound source object, directly applying the object-based compensation operation to offset the interference of environmental objects, eliminating the complex multi-channel interaction operation.

在進一步衍生的實施例中,如果主機裝置130本身不具備物件基底的混音運算能力,控制電路132可透過執行軟件的方式提供通道映射(Channel mapping)的功能,使物件基底的運算結果能夠正確地對應至每個喇叭。 In a further derived embodiment, if the host device 130 itself does not have the object-based mixing computing capability, the control circuit 132 can provide a channel mapping function by executing software so that the object-based computing result can be correctly mapped to each speaker.

綜上所述,本申請提出了一種音響系統100,可動態追蹤使用者位置而優化音場,也可智能地消除環境物件造成的干擾。追蹤使用者位置的手段,可以是攝影機、紅外線、或無線偵測器等多種方式的各別運用或組合運用。目標空間170中的環境物件175的空間配置資訊可以是由攝影機捕捉的影像經過辨識後獲得,也可以是透過使用者手動輸入。優化音場的方式可以是通道基底補償運作或物件基底補償運作。計算環境物件175對目標聆聽點的影響時,還可考慮環境物件175和喇叭、和目標聆聽點的相對位置關係,而採用不同的計算方式。使用物件基底補償運作時,控制電路132為每個環境物件175建立對應的補償音源物件,使得最後混音產生的聲道音訊,消除了環境物件175對目標聆聽點造成的干擾。 In summary, the present application proposes an audio system 100 that can dynamically track the user's position to optimize the sound field, and can also intelligently eliminate interference caused by environmental objects. The means of tracking the user's position can be the individual use or combined use of a variety of methods such as cameras, infrared, or wireless detectors. The spatial configuration information of the environmental objects 175 in the target space 170 can be obtained by identifying the images captured by the camera, or can be manually input by the user. The way to optimize the sound field can be a channel-based compensation operation or an object-based compensation operation. When calculating the impact of the environmental object 175 on the target listening point, the relative position relationship between the environmental object 175 and the speaker and the target listening point can also be considered, and different calculation methods can be adopted. When using the object-based compensation operation, the control circuit 132 establishes a corresponding compensation sound source object for each environmental object 175, so that the channel audio generated by the final mix eliminates the interference caused by the environmental object 175 on the target listening point.

在說明書及申請專利範圍中使用了某些詞彙來指稱特定的元件,而本領域內的技術人員可能會用不同的名詞來稱呼同樣的元件。本說明書及申請專利範圍並不以名稱的差異來做為區分元件的方式,而是以元件在功能上的差異來做為區分的基準。在說明書及申請專利範圍中所提及的「包含」為開放式的用語,應解釋成「包含但不限定於」。另外,「耦接」一詞在此包含任何直接及間接的連接手段。因此,若文中描述第一元件耦接於第二元件,則代表第一元件可通過電性連接或無線傳輸、光學傳輸等信號連接方式而直接地連接於 第二元件,或通過其它元件或連接手段間接地電性或信號連接至第二元件。 Certain terms are used in the specification and patent application to refer to specific components, and technicians in the field may use different terms to refer to the same components. This specification and patent application do not use differences in names as a way to distinguish components, but use differences in components' functions as the basis for distinction. The term "including" mentioned in the specification and patent application is an open term and should be interpreted as "including but not limited to". In addition, the term "coupled" includes any direct and indirect connection means. Therefore, if the text describes that a first component is coupled to a second component, it means that the first component can be directly connected to the second component through electrical connection or wireless transmission, optical transmission and other signal connection methods, or indirectly connected to the second component electrically or by signal through other components or connection means.

在說明書中所使用的「和/或」的描述方式,包含所列舉的其中一個項目或多個項目的任意組合。另外,除非說明書中特別指明,否則任何單數格的用語都同時包含複數格的含義。 The description method of "and/or" used in the manual includes any combination of one or more of the listed items. In addition, unless otherwise specified in the manual, any singular term also includes the plural meaning.

以上僅為本發明的較佳實施例,凡依本發明請求項所做的等效變化與修改,皆應屬本發明的涵蓋範圍。 The above are only the preferred embodiments of the present invention. All equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.

100:音響系統 100: Audio system

110:第一喇叭 110: First Speaker

112:第一聲道音訊 112: First channel audio

120:第二喇叭 120: Second speaker

122:第二聲道音訊 122: Second channel audio

130:主機裝置 130: Host device

131:儲存電路 131: Storage circuit

132:控制電路 132: Control circuit

133:人機介面電路 133: Human-machine interface circuit

134:辨識電路 134: Identify circuits

135:音訊傳輸電路 135: Audio transmission circuit

136:通信電路 136: Communication circuit

140:感測器電路 140:Sensor circuit

150:用戶設備 150: User equipment

160:遠端資料庫 160: Remote database

170:目標空間 170: Target space

171:第一位置 171: First position

172:第二位置 172: Second position

173:移動軌跡 173:Moving track

175:環境物件 175: Environmental objects

180:使用者 180:User

Claims (8)

一種音響系統(100),可動態地依據使用者位置優化播放效果,包含:一感測器電路(140),設置為可動態地感測一目標空間(170)而產生一音場環境資訊,其中,該音場環境資訊包含一使用者在該目標空間(170)中的一使用者位置;一第一喇叭(110)和一第二喇叭(120),設置為可播放音訊;一主機裝置(130),耦接該感測器電路(140)、該第一喇叭(110)和該第二喇叭(120),包含:一辨識電路(134),設置為可從該音場環境資訊中辨識出該使用者在該目標空間中的該使用者位置;一控制電路(132),耦接該辨識電路(134),設置為可將該使用者位置動態地指派為一目標聆聽點;一音訊傳輸電路(135),耦接該控制電路(132)、該第一喇叭(110)和該第二喇叭(120),設置為可傳輸音訊;以及一人機介面電路(133),耦接該控制電路(132),設置為可受該控制電路(132)控制而運行一配置程序,而獲取該目標空間(170)中一環境物件的空間配置資訊和聲學屬性資訊,其中,該環境物件的聲學屬性資訊包含對聲音的吸收率、對聲音的反射率、及共振頻率的至少其中之一;其中,該控制電路(132)依據該目標聆聽點,及該環境物件的空間配置資訊及聲學屬性資訊,運行一通道基底補償運作,以產生對該目標聆聽點優化的一第一聲道音訊(112)和一第二聲道音訊(122); 其中,該控制電路(132)透過該音訊傳輸電路(135)分別地輸出該第一聲道音訊(112)和該第二聲道音訊(122)至對應的該第一喇叭(110)和該第二喇叭(120);其中,該通道基底補償運作包含:將該第一喇叭(110)發出的該第一聲道音訊(112)拆成多個子頻帶訊號;依據該多個子頻帶訊號中的一子頻帶訊號的波長和該目標聆聽點與該第一喇叭(110)的距離,判斷該子頻帶訊號在該目標聆聽點上產生的一音場類型屬於一近音場或一遠音場;當該目標聆聽點與該第一喇叭(110)的距離大於該子頻帶訊號的波長或該第一喇叭(110)的大小的一特定比例以上時,判斷該音場類型為一遠音場;當該目標聆聽點與該第一喇叭(110)的距離小於該子頻帶訊號的波長或該第一喇叭(110)的大小的該特定比例時,判斷該音場類型為一近音場;當該控制電路(132)判斷該目標聆聽點的位置與該第一喇叭(110)的距離從一第一距離(R1)改變為一第二距離(R2),且該音場類型屬於該遠音場時,使用一遠音場公式計算該子頻帶訊號的聲壓值;其中,該遠音場公式包含:SPL’=SPL+20 log10(R2/R1)其中,SPL是調整前的該子頻帶訊號的聲壓值,SPL’是調整後的該子頻帶訊號的聲壓值,R1是該第一距離,R2是該第二距離;以及其中,如果調整後的該子頻帶訊號的聲壓值小於零,該控制電路(132)使調整後的該子頻帶訊號的聲壓值為零。 A sound system (100) is capable of dynamically optimizing a playback effect according to a user's position, comprising: a sensor circuit (140) configured to dynamically sense a target space (170) to generate sound field environment information, wherein the sound field environment information includes a user's position in the target space (170); a first speaker (110) and a second speaker (120) configured to play audio; A host device (130) coupled to the sensor circuit (140), the first speaker (110) and the second speaker (120), comprising: an identification circuit (134) configured to identify the user's position in the target space from the sound field environment information; and a control circuit (132) coupled to the identification circuit (134) configured to dynamically assign the user's position as a target listening point. an audio transmission circuit (135), coupled to the control circuit (132), the first speaker (110) and the second speaker (120), configured to transmit audio; and a human-machine interface circuit (133), coupled to the control circuit (132), configured to be controlled by the control circuit (132) to run a configuration program to obtain spatial configuration information and acoustic properties of an environmental object in the target space (170). The control circuit (132) is configured to generate a first channel audio signal (112) and a second channel audio signal (122) optimized for the target listening point based on the target listening point, the spatial configuration information and the acoustic property information of the environmental object. The control circuit (132) outputs the first channel audio (112) and the second channel audio (122) to the corresponding first speaker (110) and the second speaker (120) respectively through the audio transmission circuit (135); wherein the channel base compensation operation includes: splitting the first channel audio (112) emitted by the first speaker (110) into a plurality of sub-band signals; judging whether a sound field type generated by the sub-band signal at the target listening point belongs to a near sound field or a far sound field according to the wavelength of a sub-band signal among the plurality of sub-band signals and the distance between the target listening point and the first speaker (110); and judging whether a sound field type generated by the sub-band signal at the target listening point belongs to a near sound field or a far sound field when the distance between the target listening point and the first speaker (110) is greater than the wavelength of a sub-band signal among the plurality of sub-band signals and the distance between the target listening point and the first speaker (110). When the distance between the target listening point and the first speaker (110) is greater than a specific ratio of the wavelength of the sub-band signal or the size of the first speaker (110), the sound field type is determined to be a far sound field; when the distance between the target listening point and the first speaker (110) is less than the specific ratio of the wavelength of the sub-band signal or the size of the first speaker (110), the sound field type is determined to be a near sound field; when the control circuit (132) determines that the distance between the position of the target listening point and the first speaker (110) changes from a first distance (R1) to a second distance (R2), and the sound field type belongs to the far sound field, a far sound field formula is used to calculate the sound pressure value of the sub-band signal; wherein the far sound field formula includes: SPL'=SPL+20 log 10 (R2/R1) wherein SPL is the sound pressure value of the sub-band signal before adjustment, SPL' is the sound pressure value of the sub-band signal after adjustment, R1 is the first distance, and R2 is the second distance; and wherein, if the sound pressure value of the sub-band signal after adjustment is less than zero, the control circuit (132) makes the sound pressure value of the sub-band signal after adjustment zero. 如請求項1所述的音響系統(100),其中,該通道基底補償運作 還包含,當該控制電路(132)判斷該目標聆聽點的位置與該第一喇叭(110)的距離從該第一距離(R1)改變為該第二距離(R2),且該音場類型屬於該近音場時,使用一近音場公式計算該子頻帶訊號的聲壓值;其中,該近音場公式包含:SPL’=SPL+10 log10(R2/R1)其中,SPL是調整前的該子頻帶訊號的聲壓值,SPL’是調整後的該子頻帶訊號的聲壓值,R1是該第一距離,R2是該第二距離;以及其中,如果調整後的該子頻帶訊號的聲壓值小於零,該控制電路(132)使調整後的該子頻帶訊號的聲壓值為零。 The audio system (100) as claimed in claim 1, wherein the channel floor compensation operation further comprises, when the control circuit (132) determines that the distance between the position of the target listening point and the first speaker (110) changes from the first distance (R1) to the second distance (R2), and the sound field type belongs to the near sound field, using a near sound field formula to calculate the sound pressure value of the sub-band signal; wherein the near sound field formula comprises: SPL'=SPL+10 log 10 (R2/R1) wherein SPL is the sound pressure value of the sub-band signal before adjustment, SPL' is the sound pressure value of the sub-band signal after adjustment, R1 is the first distance, and R2 is the second distance; and wherein, if the sound pressure value of the sub-band signal after adjustment is less than zero, the control circuit (132) makes the sound pressure value of the sub-band signal after adjustment zero. 如請求項1所述的音響系統(100),其中,該環境物件的空間配置資訊包含該環境物件的位置、大小及外觀特徵,該環境物件的聲學屬性資訊包含對聲音的反射率和吸收率;其中,當該控制電路(132)產生該第一聲道音訊時,如果該目標聆聽點位於該第一喇叭(110)和該環境物件的可視線之間時,該控制電路(132)依據該環境物件的反射率計算該第一喇叭(110)在該目標聆聽點上的播放效果受到該環境物件影響的程度,以決定該第一聲道音訊的聲壓值;以及其中,當該控制電路(132)產生該第一聲道音訊時,如果該環境物件位於該目標聆聽點和該第一喇叭(110)的可視線之間時,該控制電路(132)依據該環境物件的吸收率計算該第一喇叭(110)在該目標聆聽點上的播放效果受到該環境物件影響的程度,以決定該第一聲道音訊的聲壓值。 The audio system (100) as described in claim 1, wherein the spatial configuration information of the environmental object includes the position, size and appearance characteristics of the environmental object, and the acoustic property information of the environmental object includes the reflectivity and absorptivity of the sound; wherein when the control circuit (132) generates the first channel audio, if the target listening point is located between the first speaker (110) and the line of sight of the environmental object, the control circuit (132) calculates the first speaker (110) at the target listening point according to the reflectivity of the environmental object. The control circuit (132) is used to calculate the degree to which the playing effect at the target listening point is affected by the environmental object, so as to determine the sound pressure value of the first channel audio signal; and wherein, when the control circuit (132) generates the first channel audio signal, if the environmental object is located between the target listening point and the visual line of the first speaker (110), the control circuit (132) calculates the degree to which the playing effect of the first speaker (110) at the target listening point is affected by the environmental object according to the absorption rate of the environmental object, so as to determine the sound pressure value of the first channel audio signal. 如請求項1所述的音響系統(100),其中,該感測器電路(140)包含一攝影機(610),設置為可捕捉該目標空間(170)的一音場環境影像; 其中,該辨識電路(134)依據該攝影機(610)捕捉的該音場環境影像,動態地辨識該使用者的頭部位置、臉部方向、或耳朵位置,以判斷該使用者位置。 The audio system (100) as described in claim 1, wherein the sensor circuit (140) includes a camera (610) configured to capture a sound field environment image of the target space (170); wherein the recognition circuit (134) dynamically recognizes the head position, face direction, or ear position of the user based on the sound field environment image captured by the camera (610) to determine the user's position. 如請求項1所述的音響系統(100),其中,該感測器電路(140)還包含一紅外線感測器(620),設置為可捕捉該目標空間中的一熱成像資料;其中,該辨識電路(134)分析該熱成像資料的移動軌跡以動態地判斷該使用者位置。 The audio system (100) as described in claim 1, wherein the sensor circuit (140) further comprises an infrared sensor (620) configured to capture thermal imaging data in the target space; wherein the recognition circuit (134) analyzes the movement trajectory of the thermal imaging data to dynamically determine the user's position. 如請求項1所述的音響系統(100),其中,該感測器電路(140)還包含一無線偵測器(630),設置在該目標空間中,並偵測一電子裝置的無線訊號;其中,該辨識電路(134)依據該無線偵測器(630)偵測到的無線訊號的特徵,動態地定位該電子裝置的位置;以及其中,該辨識電路(134)依據該電子裝置的位置動態地判斷該使用者位置。 The audio system (100) as described in claim 1, wherein the sensor circuit (140) further comprises a wireless detector (630) disposed in the target space and detecting a wireless signal of an electronic device; wherein the identification circuit (134) dynamically locates the position of the electronic device according to the characteristics of the wireless signal detected by the wireless detector (630); and wherein the identification circuit (134) dynamically determines the user's position according to the position of the electronic device. 如請求項1所述的音響系統(100),其中,該主機裝置(130)還包含一儲存電路(131),耦接該控制電路(132),配置為儲存一或多個物件資料庫,其中每一物件資料庫對應一種應用場景類別,包含多個環境物件的外型特徵資訊和聲學屬性資訊;其中,該人機介面電路(133)受該控制電路(132)控制而運行該配置程序時,還獲取該目標空間(170)的一應用場景類別;以及其中,該控制電路(132)依據該應用場景類別,優先從該儲存電路(131)中選擇使用與該應用場景類別相關的一物件資料庫,來辨識該環境物件並查找該環境物件的聲學屬性資訊。 The audio system (100) as claimed in claim 1, wherein the host device (130) further comprises a storage circuit (131) coupled to the control circuit (132) and configured to store one or more object databases, wherein each object database corresponds to an application scene category and comprises appearance feature information and acoustic property information of a plurality of environmental objects; wherein the human-machine interface circuit (133) When the configuration program is run under the control of the control circuit (132), an application scene category of the target space (170) is also obtained; and wherein the control circuit (132) preferentially selects and uses an object database related to the application scene category from the storage circuit (131) according to the application scene category to identify the environmental object and search for the acoustic property information of the environmental object. 如請求項1所述的音響系統(100),其中,該主機裝置(130)還包含一通信電路(136),耦接該控制電路(132),配置為可受 該控制電路(132)的控制而連接至對應於該應用場景類別的一遠端資料庫(160);該遠端資料庫(160)配置為儲存一或多個物件資料庫,其中每一物件資料庫對應一種應用場景類別,包含多個環境物件的外型特徵資訊和聲學屬性資訊;其中,該人機介面電路(133)受該控制電路(132)控制而運行該配置程序時,還獲取該目標空間(170)的一應用場景類別;以及其中,該控制電路(132)依據該應用場景類別,優先從該遠端資料庫(160)中選擇使用與該應用場景類別相關的一物件資料庫,來辨識該環境物件並查找該環境物件的聲學屬性資訊。 The audio system (100) as claimed in claim 1, wherein the host device (130) further comprises a communication circuit (136) coupled to the control circuit (132) and configured to be controlled by the control circuit (132) to connect to a remote database (160) corresponding to the application scenario category; the remote database (160) is configured to store one or more object databases, wherein each object database corresponds to an application scenario category and includes external information of multiple environmental objects. The human-machine interface circuit (133) is controlled by the control circuit (132) to run the configuration program, and also obtains an application scene category of the target space (170); and the control circuit (132) preferentially selects an object database related to the application scene category from the remote database (160) according to the application scene category to identify the environmental object and search for the acoustic property information of the environmental object.
TW111130514A 2021-12-10 2022-08-13 Audio system with dynamic target listening spot and ambient object interference cancelation TWI847219B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/993,348 US20230188921A1 (en) 2021-12-10 2022-11-23 Audio system with dynamic target listening spot and ambient object interference cancelation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163287986P 2021-12-10 2021-12-10
US63/287,986 2021-12-10
US202263321770P 2022-03-20 2022-03-20
US63/321,770 2022-03-20

Publications (2)

Publication Number Publication Date
TW202324374A TW202324374A (en) 2023-06-16
TWI847219B true TWI847219B (en) 2024-07-01

Family

ID=86679820

Family Applications (4)

Application Number Title Priority Date Filing Date
TW111130514A TWI847219B (en) 2021-12-10 2022-08-13 Audio system with dynamic target listening spot and ambient object interference cancelation
TW111130513A TWI842056B (en) 2021-12-10 2022-08-13 Audio system with dynamic target listening spot and ambient object interference cancelation
TW111130512A TWI842055B (en) 2021-12-10 2022-08-13 Audio system with dynamic target listening spot and ambient object interference cancelation
TW111130515A TWI847220B (en) 2021-12-10 2022-08-13 Audio system with dynamic target listening spot and ambient object interference cancelation

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW111130513A TWI842056B (en) 2021-12-10 2022-08-13 Audio system with dynamic target listening spot and ambient object interference cancelation
TW111130512A TWI842055B (en) 2021-12-10 2022-08-13 Audio system with dynamic target listening spot and ambient object interference cancelation
TW111130515A TWI847220B (en) 2021-12-10 2022-08-13 Audio system with dynamic target listening spot and ambient object interference cancelation

Country Status (2)

Country Link
CN (4) CN116261093A (en)
TW (4) TWI847219B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117440309B (en) * 2023-10-15 2024-08-02 广东优创合影文化传播股份有限公司 Automatic dolby audio adaptation and adjustment method and system based on environmental parameters

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW491991B (en) * 1999-08-31 2002-06-21 Andersen Consulting Llp System, method, and article of manufacture for a voice recognition system for navigating on the internet utilizing audible information
US20150208188A1 (en) * 2014-01-20 2015-07-23 Sony Corporation Distributed wireless speaker system with automatic configuration determination when new speakers are added
US20160262608A1 (en) * 2014-07-08 2016-09-15 Krueger Wesley W O Systems and methods using virtual reality or augmented reality environments for the measurement and/or improvement of human vestibulo-ocular performance
CN106105271A (en) * 2014-03-17 2016-11-09 搜诺思公司 Playback apparatus configuration based on proximity detection
CN111050269A (en) * 2018-10-15 2020-04-21 华为技术有限公司 Audio processing method and electronic equipment
CN111148271A (en) * 2018-11-05 2020-05-12 华为终端有限公司 Method and terminal for controlling hearing aid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140180629A1 (en) * 2012-12-22 2014-06-26 Ecole Polytechnique Federale De Lausanne Epfl Method and a system for determining the geometry and/or the localization of an object

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW491991B (en) * 1999-08-31 2002-06-21 Andersen Consulting Llp System, method, and article of manufacture for a voice recognition system for navigating on the internet utilizing audible information
US20150208188A1 (en) * 2014-01-20 2015-07-23 Sony Corporation Distributed wireless speaker system with automatic configuration determination when new speakers are added
CN106105271A (en) * 2014-03-17 2016-11-09 搜诺思公司 Playback apparatus configuration based on proximity detection
US20160262608A1 (en) * 2014-07-08 2016-09-15 Krueger Wesley W O Systems and methods using virtual reality or augmented reality environments for the measurement and/or improvement of human vestibulo-ocular performance
CN111050269A (en) * 2018-10-15 2020-04-21 华为技术有限公司 Audio processing method and electronic equipment
CN111148271A (en) * 2018-11-05 2020-05-12 华为终端有限公司 Method and terminal for controlling hearing aid

Also Published As

Publication number Publication date
TW202324372A (en) 2023-06-16
TWI842055B (en) 2024-05-11
TW202324375A (en) 2023-06-16
TW202324373A (en) 2023-06-16
CN116261095A (en) 2023-06-13
CN116261093A (en) 2023-06-13
TWI847220B (en) 2024-07-01
TWI842056B (en) 2024-05-11
CN116261094A (en) 2023-06-13
CN116261096A (en) 2023-06-13
TW202324374A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
US11061643B2 (en) Devices with enhanced audio
JP7275227B2 (en) Recording virtual and real objects in mixed reality devices
US10123140B2 (en) Dynamic calibration of an audio system
WO2018149275A1 (en) Method and apparatus for adjusting audio output by speaker
KR102670118B1 (en) Manage multiple audio stream playback through multiple speakers
CN114208209B (en) Audio processing system, method and medium
US20230188921A1 (en) Audio system with dynamic target listening spot and ambient object interference cancelation
US12003673B2 (en) Acoustic echo cancellation control for distributed audio devices
US20230199422A1 (en) Audio system with dynamic target listening spot and ambient object interference cancelation
TWI847219B (en) Audio system with dynamic target listening spot and ambient object interference cancelation
US20230188923A1 (en) Audio system with dynamic target listening spot and ambient object interference cancelation
US12096203B2 (en) Audio system with dynamic target listening spot and ambient object interference cancelation
US20240284136A1 (en) Adaptable spatial audio playback
WO2023025695A1 (en) Method of calculating an audio calibration profile
CN118216163A (en) Loudspeaker orientation based rendering