TWI846727B - Two-step inter prediction - Google Patents
Two-step inter prediction Download PDFInfo
- Publication number
- TWI846727B TWI846727B TW108132320A TW108132320A TWI846727B TW I846727 B TWI846727 B TW I846727B TW 108132320 A TW108132320 A TW 108132320A TW 108132320 A TW108132320 A TW 108132320A TW I846727 B TWI846727 B TW I846727B
- Authority
- TW
- Taiwan
- Prior art keywords
- block
- motion
- motion vector
- current block
- prediction
- Prior art date
Links
- 230000033001 locomotion Effects 0.000 claims abstract description 827
- 238000000034 method Methods 0.000 claims abstract description 545
- 238000012545 processing Methods 0.000 claims abstract description 78
- 239000013598 vector Substances 0.000 claims description 463
- 230000002457 bidirectional effect Effects 0.000 claims description 74
- 230000008569 process Effects 0.000 claims description 72
- 230000002123 temporal effect Effects 0.000 claims description 63
- 230000003287 optical effect Effects 0.000 claims description 62
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 claims description 39
- 238000001914 filtration Methods 0.000 claims description 39
- 238000004590 computer program Methods 0.000 claims description 23
- 230000015654 memory Effects 0.000 claims description 20
- 230000011664 signaling Effects 0.000 claims description 19
- 238000003672 processing method Methods 0.000 claims description 13
- 230000004044 response Effects 0.000 claims description 7
- 230000009977 dual effect Effects 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 description 43
- 238000009795 derivation Methods 0.000 description 37
- 238000006243 chemical reaction Methods 0.000 description 36
- 241000023320 Luma <angiosperm> Species 0.000 description 33
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 33
- 230000002146 bilateral effect Effects 0.000 description 22
- 238000004422 calculation algorithm Methods 0.000 description 13
- 230000009466 transformation Effects 0.000 description 12
- 230000006870 function Effects 0.000 description 10
- 230000003044 adaptive effect Effects 0.000 description 8
- 238000005286 illumination Methods 0.000 description 8
- 230000006835 compression Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 101100537098 Mus musculus Alyref gene Proteins 0.000 description 6
- 101150095908 apex1 gene Proteins 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 6
- 238000013139 quantization Methods 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000013515 script Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
- H04N19/159—Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/523—Motion estimation or motion compensation with sub-pixel accuracy
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/109—Selection of coding mode or of prediction mode among a plurality of temporal predictive coding modes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/117—Filters, e.g. for pre-processing or post-processing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/119—Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/513—Processing of motion vectors
- H04N19/517—Processing of motion vectors by encoding
- H04N19/52—Processing of motion vectors by encoding by predictive encoding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/537—Motion estimation other than block-based
- H04N19/54—Motion estimation other than block-based using feature points or meshes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/577—Motion compensation with bidirectional frame interpolation, i.e. using B-pictures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/59—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/70—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
Description
本專利文件涉及視頻編解碼技術、設備和系統。 This patent document relates to video encoding and decoding technology, equipment and system.
根據適用的專利法和/或巴黎公約的規定,本申請及時要求於2018年9月6日提交的國際專利申請號PCT/CN2018/104301、2018年10月6日提交的國際專利申請號PCT/CN2018/109250的優先權和利益。將國際專利申請號PCT/CN2018/104301和PCT/CN2018/109250的全部公開以引用方式併入本文,作為本申請公開的一部分。 This application promptly claims the priority and benefits of International Patent Application No. PCT/CN2018/104301 filed on September 6, 2018 and International Patent Application No. PCT/CN2018/109250 filed on October 6, 2018, in accordance with applicable patent laws and/or the Paris Convention. The entire disclosure of International Patent Application No. PCT/CN2018/104301 and PCT/CN2018/109250 is incorporated herein by reference as part of the disclosure of this application.
儘管視頻壓縮有所進步,數位視頻在互聯網和其他數位通信網路上仍占最大的頻寬使用量。隨著能夠接收和顯示視頻的連接用戶設備的數量增加,預計數位視頻使用所需的頻寬將繼續增長。 Despite advances in video compression, digital video still accounts for the largest bandwidth usage on the Internet and other digital communications networks. The bandwidth required for digital video usage is expected to continue to grow as the number of connected user devices capable of receiving and displaying video increases.
信令通知描述了與數位視頻編解碼有關的設備、系統和 方法,並且具體地,描述了基於根據兩步幀間預測生成的更新的運動向量的運動細化。所描述的方法可以應用於現有視頻編解碼標準(例如,高效視頻編解碼(HEVC))和未來視頻編解碼標準或視頻編解碼器。 Signaling Notification describes apparatus, systems and methods related to digital video codecs, and in particular, describes motion refinement based on updated motion vectors generated according to two-step inter-frame prediction. The described methods can be applied to existing video codec standards (e.g., High Efficiency Video Codec (HEVC)) and future video codec standards or video codecs.
在一個代表性方面,提供了一種視頻處理方法,包括:確定當前塊的原始運動信息;將原始運動信息的原始運動向量和基於原始運動向量推導的推導運動向量縮放到相同的目標精度;從縮放的原始和推導的運動向量生成更新的運動向量;以及基於更新的運動向量,執行當前塊和包括當前塊的視頻的位元流表示之間的轉換。 In one representative aspect, a video processing method is provided, comprising: determining raw motion information of a current block; scaling raw motion vectors of the raw motion information and derived motion vectors derived based on the raw motion vectors to the same target accuracy; generating updated motion vectors from the scaled raw and derived motion vectors; and performing a conversion between the current block and a bitstream representation of a video including the current block based on the updated motion vectors.
在另一個代表性方面,提供了一種視頻處理方法,包括:確定當前塊的原始運動信息;基於細化方法更新當前塊的原始運動信息的原始運動向量;將更新的運動向量裁剪到一個範圍內;以及基於裁剪的更新的運動向量,執行當前塊和包括當前塊的視頻的位元流表示之間的轉換。 In another representative aspect, a video processing method is provided, including: determining raw motion information of a current block; updating a raw motion vector of the raw motion information of the current block based on a refinement method; clipping the updated motion vector to a range; and performing a conversion between a bitstream representation of the current block and a video including the current block based on the clipped updated motion vector.
在又一個代表性方面,提供了一種視頻處理方法,包括:確定與當前塊相關聯的原始運動信息;基於特定預測模式生成更新的運動信息;以及基於更新的運動信息,執行當前塊與包括當前塊的視頻數據的位元流表示之間的轉換,其中,特定預測模式包括雙向光流(BIO)細化、解碼器側運動向量細化(DMVR)、幀速率上轉換(FRUC)技術或模板匹配技術中的一個或多個。 In another representative aspect, a video processing method is provided, comprising: determining original motion information associated with a current block; generating updated motion information based on a specific prediction mode; and performing a conversion between the current block and a bitstream representation of video data including the current block based on the updated motion information, wherein the specific prediction mode comprises one or more of bidirectional optical flow (BIO) refinement, decoder-side motion vector refinement (DMVR), frame rate up-conversion (FRUC) technology, or template matching technology.
在又一個代表性方面,提供了一種視頻處理方法,包括: 從運動向量差(MVD)精度集確定用仿射模式處理的當前塊的MVD精度;基於所確定的MVD精度,執行當前塊與包括當前塊的視頻的位元流表示之間的轉換。 In yet another representative aspect, a video processing method is provided, comprising: Determining a motion vector difference (MVD) precision of a current block processed using an affine mode from a set of MVD precisions; performing a conversion between the current block and a bitstream representation of a video including the current block based on the determined MVD precision.
在又一個代表性方面,提供了一種視頻處理方法,包括:確定與當前塊相關聯的未更新的運動信息;基於多個解碼器側運動向量推導(DMVD)方法更新未更新的運動信息,以生成當前塊的更新的運動信息;以及基於更新的運動信息,執行當前塊與包括當前塊的視頻的位元流表示之間的轉換。 In yet another representative aspect, a video processing method is provided, comprising: determining unupdated motion information associated with a current block; updating the unupdated motion information based on multiple decoder-side motion vector derivation (DMVD) methods to generate updated motion information for the current block; and performing a conversion between the current block and a bitstream representation of a video including the current block based on the updated motion information.
在又一個代表性方面,提供了一種視頻處理方法,包括:基於與當前塊相關聯的第一運動信息,為當前塊生成中間預測;基於中間預測將第一運動信息更新為第二運動信息;以及基於第二運動信息生成當前塊的最終預測。 In another representative aspect, a video processing method is provided, comprising: generating an intermediate prediction for the current block based on first motion information associated with the current block; updating the first motion information to second motion information based on the intermediate prediction; and generating a final prediction for the current block based on the second motion information.
在又一個代表性方面,所公開的技術可以用於提供用於視頻編解碼的方法。該方法包括接收視頻數據的當前塊的位元流表示,分別基於第一縮放運動向量與第一和第二縮放參考運動向量的加權和來生成更新的第一和第二參考運動向量,其中,基於來自第一參考塊的第一參考運動向量和來自第二參考塊的第二參考運動向量推導第一運動向量,其中當前塊與第一和第二參考塊相關聯,其中通過將第一運動向量縮放到目標精度來生成第一縮放運動向量,並且其中通過分別將第一和第二參考運動向量縮放到目標精度來生成第一和第二縮放參考運動向量,以及基於更新的第一和第二參考運動向量處理位元流表示以生成當前塊。 In another representative aspect, the disclosed technology can be used to provide a method for video encoding and decoding. The method includes receiving a bitstream representation of a current block of video data, generating updated first and second reference motion vectors based on a weighted sum of a first scaled motion vector and first and second scaled reference motion vectors, respectively, wherein a first motion vector is derived based on a first reference motion vector from a first reference block and a second reference motion vector from a second reference block, wherein the current block is associated with the first and second reference blocks, wherein the first scaled motion vector is generated by scaling the first motion vector to a target precision, and wherein the first and second scaled reference motion vectors are generated by scaling the first and second reference motion vectors to a target precision, respectively, and processing the bitstream representation based on the updated first and second reference motion vectors to generate the current block.
在又一個代表性方面,所公開的技術可以用於提供用於視頻編解碼的方法。該方法包括基於與當前塊相關聯的第一運動信息為當前塊生成中間預測,將第一運動信息更新為第二運動信息,以及基於中間預測或第二運動信息生成當前塊的最終預測。 In another representative aspect, the disclosed technology can be used to provide a method for video encoding and decoding. The method includes generating an intermediate prediction for the current block based on first motion information associated with the current block, updating the first motion information to second motion information, and generating a final prediction for the current block based on the intermediate prediction or the second motion information.
在又一個代表性方面,所公開的技術可以用於提供用於視頻編解碼的方法。該方法包括接收視頻數據的當前塊的位元流表示,基於與當前塊相關聯的運動信息生成中間運動信息,分別基於第一和第二參考運動向量生成更新的第一和第二參考運動向量,其中,當前塊與第一和第二參考塊相關聯,並且其中第一和第二參考運動向量分別與第一和第二參考塊相關聯,以及基於中間運動信息或更新的第一和第二參考運動向量處理位元流表示以生成當前塊。 In another representative aspect, the disclosed technology can be used to provide a method for video encoding and decoding. The method includes receiving a bitstream representation of a current block of video data, generating intermediate motion information based on motion information associated with the current block, generating updated first and second reference motion vectors based on first and second reference motion vectors, respectively, wherein the current block is associated with the first and second reference blocks, and wherein the first and second reference motion vectors are associated with the first and second reference blocks, respectively, and processing the bitstream representation based on the intermediate motion information or the updated first and second reference motion vectors to generate the current block.
在又一個代表性方面,所公開的技術可以用於提供用於視頻編解碼的方法。該方法包括基於與當前塊相關聯的第一運動信息為當前塊生成中間預測,將第一運動信息更新為第二運動信息,以及基於中間預測或第二運動信息生成當前塊的最終預測。 In another representative aspect, the disclosed technology can be used to provide a method for video encoding and decoding. The method includes generating an intermediate prediction for the current block based on first motion information associated with the current block, updating the first motion information to second motion information, and generating a final prediction for the current block based on the intermediate prediction or the second motion information.
在又一個代表性方面,所公開的技術可以用於提供用於視頻編解碼的方法。該方法包括接收視頻數據的當前塊的位元流表示,基於與當前塊相關聯的運動信息生成中間運動信息,分別基於第一和第二參考運動向量生成更新的第一和第二參考運動向量,其中,當前塊與第一和第二參考塊相關聯,並且其中第一和第二參考運動向量分別與第一和第二參考塊相關聯,以及基於中 間運動信息或更新的第一和第二參考運動向量處理位元流表示以生成當前塊。 In another representative aspect, the disclosed technology can be used to provide a method for video encoding and decoding. The method includes receiving a bitstream representation of a current block of video data, generating intermediate motion information based on motion information associated with the current block, generating updated first and second reference motion vectors based on first and second reference motion vectors, respectively, wherein the current block is associated with the first and second reference blocks, and wherein the first and second reference motion vectors are associated with the first and second reference blocks, respectively, and processing the bitstream representation based on the intermediate motion information or the updated first and second reference motion vectors to generate the current block.
在又一個代表性方面,所公開的技術可以用於提供用於視頻編解碼的方法。該方法包括基於與當前塊相關聯的第一運動信息為當前塊生成中間預測,將第一運動信息更新為第二運動信息,以及基於中間預測或第二運動信息生成當前塊的最終預測。 In another representative aspect, the disclosed technology can be used to provide a method for video encoding and decoding. The method includes generating an intermediate prediction for the current block based on first motion information associated with the current block, updating the first motion information to second motion information, and generating a final prediction for the current block based on the intermediate prediction or the second motion information.
在又一個代表性方面,所公開的技術可以用於提供用於視頻編解碼的方法。該方法包括接收視頻數據的當前塊的位元流表示,基於與當前塊相關聯的運動信息生成中間運動信息,分別基於第一和第二參考運動向量生成更新的第一和第二參考運動向量,其中當前塊與第一和第二參考塊相關聯,並且其中第一和第二參考運動向量分別與第一和第二參考塊相關聯,並且基於中間運動信息或更新的第一和第二參考運動向量處理位元流表示以生成當前塊。 In another representative aspect, the disclosed technology can be used to provide a method for video encoding and decoding. The method includes receiving a bitstream representation of a current block of video data, generating intermediate motion information based on motion information associated with the current block, generating updated first and second reference motion vectors based on first and second reference motion vectors, respectively, wherein the current block is associated with the first and second reference blocks, and wherein the first and second reference motion vectors are associated with the first and second reference blocks, respectively, and processing the bitstream representation based on the intermediate motion information or the updated first and second reference motion vectors to generate the current block.
在又一個代表性方面,所公開的技術可以用於提供用於視頻編解碼的方法,該方法包括通過修改與當前塊相關聯的參考塊,對於當前塊的位元流表示生成更新的參考塊;基於更新的參考塊,計算用於雙向光流(BIO)運動細化的時間梯度;以及基於時間梯度,在位元流表示和當前塊之間執行包括BIO運動細化的轉換。 In another representative aspect, the disclosed technology can be used to provide a method for video encoding and decoding, the method comprising generating an updated reference block for a bitstream representation of a current block by modifying a reference block associated with the current block; calculating a temporal gradient for bidirectional optical flow (BIO) motion refinement based on the updated reference block; and performing a transformation including BIO motion refinement between the bitstream representation and the current block based on the temporal gradient.
在又一個代表性方面,所公開的技術可以用於提供用於視頻編解碼的方法,該方法包括對於當前塊的位元流表示,生成 用於雙向光流(BIO)運動細化的時間梯度;通過從時間梯度中減去第一均值和第二均值的差來生成更新的時間梯度,其中第一均值是第一參考塊的均值,其中第二均值是第二參考塊的均值,並且其中第一和第二參考塊與當前塊相關聯;以及基於更新的時間梯度,在位元流表示和當前塊之間執行包括BIO運動細化的轉換。 In another representative aspect, the disclosed technology can be used to provide a method for video encoding and decoding, the method comprising generating a temporal gradient for bidirectional optical flow (BIO) motion refinement for a bitstream representation of a current block; generating an updated temporal gradient by subtracting a difference between a first mean and a second mean from the temporal gradient, wherein the first mean is a mean of a first reference block, wherein the second mean is a mean of a second reference block, and wherein the first and second reference blocks are associated with the current block; and performing a transformation including BIO motion refinement between the bitstream representation and the current block based on the updated temporal gradient.
在又一代表性方面,上述方法以處理器可執行代碼的形式體現並儲存在電腦可讀程式介質中。 In another representative aspect, the above method is embodied in the form of processor executable code and stored in a computer readable program medium.
在又一代表性方面,公開了一種配置或可操作以執行上述方法的設備。該設備可以包括被編程為實現該方法的處理器。 In yet another representative aspect, a device configured or operable to perform the above method is disclosed. The device may include a processor programmed to implement the method.
在又一代表性方面,公開了一種視頻解碼器裝置,其可實現如本文中所描述的方法。 In yet another representative aspect, a video decoder device is disclosed that can implement the method as described herein.
在又一代表性方面,公開了一種視頻編碼器裝置,其可實現如本文中所描述的方法。 In yet another representative aspect, a video encoder device is disclosed that can implement the method as described herein.
在附圖、說明書和申請專利範圍中更詳細地描述了所公開技術的上述和其他方面和特徵。 The above and other aspects and features of the disclosed technology are described in more detail in the accompanying drawings, the specification and the patent application scope.
1000:CU 1000:CU
1001:子CU 1001: Sub-CU
1050、1810、1811:參考圖片 1050, 1810, 1811: Reference pictures
1051:對應塊 1051: Corresponding block
1100:CU 1100:CU
1101~1104:子CU 1101~1104: Sub-CU
1111~1114、1400、1500、1600、:塊 1111~1114, 1400, 1500, 1600, :block
1700、1800:當前CU 1700, 1800: Current CU
1701~1705、2200、A0、A1、B0、B1、B2:塊 1701~1705、2200、A 0 、A 1 、B 0 、B 1 、B 2 : Block
1801、1802、V0、V1、MV0、MV0’、MV1、MV1’:運動向 量 1801, 1802, V 0 , V 1 , MV 0 , MV0', MV1, MV1': motion vector
1803、1804:時間距離 1803, 1804: Time distance
1900:當前CU 1900: Current CU
1910:當前圖片 1910: Current picture
2000:單邊運動估計 2000: Unilateral motion estimation
2201:填充區域 2201: Filling area
2700、2800、2900、3000、3100、3300、3400、3500、3600、3800、3900、4000、4100、4200、4300:方法 2700, 2800, 2900, 3000, 3100, 3300, 3400, 3500, 3600, 3800, 3900, 4000, 4100, 4200, 4300: Methods
2710~2730、2810~2830、2910~2940、3010~3030、3110~3140、3310~3330、3410~3440、3510~3530、3610~3630、3810~3840、3910~3940、4010~4030、4110~4120、4210~4230、4310~4330:步驟 2710~2730, 2810~2830, 2910~2940, 3010~3030, 3110~3140, 3310~3330, 3410~3440, 3510~3530, 3610~3630, 3810~3840, 3910~3940, 4010~4030, 4110~4120, 4210~4230, 4310~4330: Steps
3700:視頻處理裝置 3700: Video processing device
3702:處理器 3702:Processor
3704:儲存器 3704: Storage
3706:視頻處理電路 3706: Video processing circuit
A、B、C、D、E:子塊 A, B, C, D, E: sub-blocks
C0、C1:位置 C 0 , C 1 : Position
tb、td:POC距離 tb, td: POC distance
圖1示出了建構Merge候選列表的示例。 Figure 1 shows an example of constructing a Merge candidate list.
圖2示出了空間候選的位置的示例。 Figure 2 shows examples of the locations of spatial candidates.
圖3示出了經受空間Merge候選的冗餘校驗的候選對的示 例。 Figure 3 shows an example of candidate pairs that undergo redundancy verification for spatial merge candidates.
圖4A和4B示出了基於當前塊的尺寸和形狀的第二預測單元(PU)的位置的示例。 Figures 4A and 4B show examples of the location of the second prediction unit (PU) based on the size and shape of the current block.
圖5示出了用於時間Merge候選的運動向量縮放的示例。 Figure 5 shows an example of motion vector scaling for temporal merge candidate selection.
圖6示出了時間Merge候選的候選位置的示例。 Figure 6 shows an example of candidate positions for temporal merge candidates.
圖7示出了生成組合的雙向預測Merge候選的示例。 Figure 7 shows an example of generating a combined bidirectional prediction Merge candidate.
圖8示出了建構運動向量預測候選的示例。 Figure 8 shows an example of constructing motion vector prediction candidates.
圖9示出了用於空間運動向量候選的運動向量縮放的示例。 Figure 9 shows an example of motion vector scaling for spatial motion vector candidates.
圖10示出了使用用於編解碼單元(CU)的可選時間運動向量預測(ATMVP)算法的運動預測的示例。 Figure 10 shows an example of motion prediction using the optional temporal motion vector prediction (ATMVP) algorithm for coding units (CUs).
圖11示出了具有由空間-時間運動向量預測(STMVP)算法使用的子塊和相鄰塊的編解碼單元(CU)的示例。 Figure 11 shows an example of a coding unit (CU) with sub-blocks and neighboring blocks used by the spatial-temporal motion vector prediction (STMVP) algorithm.
圖12A和12B示出了當使用重疊塊運動補償(OBMC)算法時子塊的示例快照。 Figures 12A and 12B show example snapshots of sub-blocks when using the Overlapping Block Motion Compensation (OBMC) algorithm.
圖13示出了用於推導局部照明補償(LIC)算法的參數的相鄰樣本的示例。 Figure 13 shows an example of neighboring samples used to derive parameters for the Local Illumination Compensation (LIC) algorithm.
圖14示出了簡化的仿射運動模型的示例。 Figure 14 shows an example of a simplified affine motion model.
圖15示出了每個子塊的仿射運動向量場(MVF)的示例。 Figure 15 shows an example of the affine motion vector field (MVF) for each sub-block.
圖16示出了AF_INTER仿射運動模式的運動向量預測(MVP)的示例。 Figure 16 shows an example of motion vector prediction (MVP) for the AF_INTER affine motion mode.
圖17A和17B示出了AF_MERGE仿射運動模式的示例候選。 Figures 17A and 17B show example candidates for the AF_MERGE affine motion mode.
圖18示出了模式匹配運動向量推導(PMMVD)模式中的雙邊匹配的示例,其是基於幀速率上轉換(FRUC)算法的特殊Merge模式。 Figure 18 shows an example of bilateral matching in the Pattern Matching Motion Vector Derivation (PMMVD) mode, which is a special Merge mode based on the Frame Rate Up-Conversion (FRUC) algorithm.
圖19示出了FRUC算法中的模板匹配的示例。 Figure 19 shows an example of template matching in the FRUC algorithm.
圖20示出了FRUC算法中的單邊運動估計的示例。 Figure 20 shows an example of unilateral motion estimation in the FRUC algorithm.
圖21示出了由雙向光流(BIO)算法使用的光流軌跡的示例。 Figure 21 shows an example of an optical flow trajectory used by the Bidirectional Optical Flow (BIO) algorithm.
圖22A和22B示出了使用沒有塊擴展的雙向光流(BIO)算法的示例快照。 Figures 22A and 22B show example snapshots using the Bidirectional Optical Flow (BIO) algorithm without block expansion.
圖23示出了基於雙邊模板匹配的解碼器側運動向量細化(DMVR)算法的示例。 Figure 23 shows an example of a decoder-side motion vector refinement (DMVR) algorithm based on bilateral template matching.
圖24示出了在變換係數上下文建模中使用的模板定義的示例。 Figure 24 shows an example of a template definition used in transformation coefficient context modeling.
圖25示出了運動向量縮放的不同示例。 Figure 25 shows different examples of motion vector scaling.
圖26A和26B示出PU/CU中的內部和邊界子塊的示例。 Figures 26A and 26B show examples of internal and boundary sub-blocks in a PU/CU.
圖27示出了根據當前公開的技術的用於視頻編解碼的示例方法的流程圖。 FIG27 shows a flow chart of an example method for video encoding and decoding according to the currently disclosed technology.
圖28示出了根據當前公開的技術的用於視頻編解碼的另一示例方法的流程圖。 FIG28 shows a flow chart of another example method for video encoding and decoding according to the currently disclosed technology.
圖29示出了根據當前公開的技術的用於視頻編解碼的另一示例方法的流程圖。 FIG29 shows a flow chart of another example method for video encoding and decoding according to the currently disclosed technology.
圖30示出了根據當前公開的技術的用於視頻編解碼的另一示例方法的流程圖。 FIG30 shows a flow chart of another example method for video encoding and decoding according to the currently disclosed technology.
圖31示出了根據當前公開的技術的用於視頻編解碼的另一示例方法的流程圖。 FIG31 shows a flow chart of another example method for video encoding and decoding according to the currently disclosed technology.
圖32示出了在基於雙向光流的視頻編碼中推導運動向量的示例。 Figure 32 shows an example of inferring motion vectors in bidirectional optical flow based video coding.
圖33示出了根據當前公開的技術的用於視頻編解碼的另一示例方法的流程圖。 FIG33 shows a flow chart of another example method for video encoding and decoding according to the currently disclosed technology.
圖34示出了根據當前公開的技術的用於視頻編解碼的另一示例方法的流程圖。 FIG34 shows a flow chart of another example method for video encoding and decoding according to the currently disclosed technology.
圖35示出了根據當前公開的技術的用於視頻編解碼的另一示例方法的流程圖。 FIG35 shows a flow chart of another example method for video encoding and decoding according to the currently disclosed technology.
圖36示出了根據當前公開的技術的用於視頻編解碼的另一示例方法的流程圖。 FIG36 shows a flow chart of another example method for video encoding and decoding according to the currently disclosed technology.
圖37是用於實現本文件中描述的視覺媒體解碼或視覺媒體編解碼技術的硬體平臺的示例的方塊圖。 Figure 37 is a block diagram of an example of a hardware platform for implementing the visual media decoding or visual media encoding and decoding techniques described in this document.
圖38示出了根據當前公開的技術的用於視頻處理的另一示例方法的流程圖。 FIG38 shows a flow chart of another example method for video processing according to the presently disclosed technology.
圖39示出了根據當前公開的技術的用於視頻處理的另一示例方法的流程圖。 FIG39 shows a flow chart of another example method for video processing according to the presently disclosed technology.
圖40示出了根據當前公開的技術的用於視頻處理的另一示例方法的流程圖。 FIG40 shows a flow chart of another example method for video processing according to the presently disclosed technology.
圖41示出了根據當前公開的技術的用於視頻處理的另一示例方法的流程圖。 FIG41 shows a flow chart of another example method for video processing according to the presently disclosed technology.
圖42示出了根據當前公開的技術的用於視頻處理的另一示例方法的流程圖。 FIG42 shows a flow chart of another example method for video processing according to the presently disclosed technology.
圖43示出了根據當前公開的技術的用於視頻處理的另一示例方法的流程圖。 FIG43 shows a flow chart of another example method for video processing according to the presently disclosed technology.
由於對更高解析度視頻的需求的增加,在現代技術中普遍存在視頻編解碼方法和技術。視頻編解碼器通常包括壓縮或解壓縮數位視頻的電子電路或軟體,並且不斷改進以提供更高的編解碼效率。視頻編解碼器將未壓縮視頻轉換為壓縮格式,反之亦然。視頻質量、用於表示視頻的數據量(由位元率確定)、編碼和解碼算法的複雜度、對數據去失和錯誤的敏感性、編輯的簡易性、隨機存取和端到端延遲(遲延)之間存在複雜的關係。壓縮格式通常符合標準視頻壓縮規範,例如,高效視頻編解碼(HEVC)標準(也稱為H.265或MPEG-H第2部分)、要完成的通用視頻編解碼標準、或其他當前和/或未來的視頻編解碼標準。 Video codec methods and techniques are ubiquitous in modern technology due to the increasing demand for higher resolution video. Video codecs typically include electronic circuits or software that compress or decompress digital video and are constantly being improved to provide higher codec efficiency. Video codecs convert uncompressed video to compressed formats and vice versa. There is a complex relationship between video quality, the amount of data used to represent the video (determined by the bit rate), the complexity of the encoding and decoding algorithms, sensitivity to data loss and errors, ease of editing, random access, and end-to-end delay (latency). The compression format typically complies with a standard video compression specification, such as the High Efficiency Video Codec (HEVC) standard (also known as H.265 or MPEG-H Part 2), the to-be-completed Universal Video Codec standard, or other current and/or future video codec standards.
所公開的技術的實施例可以應用於現有視頻編解碼標準(例如,HEVC、H.265)和未來標準以改進壓縮性能。在本文件中使用章節標題以提高描述的可讀性,並且不以任何方式將討論或實施例(和/或實現)限制於僅相應的部分。 Embodiments of the disclosed technology can be applied to existing video codec standards (e.g., HEVC, H.265) and future standards to improve compression performance. Section headings are used in this document to improve the readability of the description and do not in any way limit the discussion or embodiments (and/or implementations) to only the corresponding section.
1.HEVC/H.265中的幀間預測的示例 1. Example of inter-frame prediction in HEVC/H.265
多年來,視頻編解碼標準已經顯著改進,並且現在部分 地提供高編解碼效率和對更高解析度的支持。諸如HEVC和H.265的最新標準基於混合視頻編解碼結構,其中利用時間預測加變換編解碼。 Video codec standards have improved significantly over the years and now partially offer high codec efficiency and support for higher resolutions. The latest standards such as HEVC and H.265 are based on a hybrid video codec architecture that utilizes temporal prediction plus transform coding.
1.1.預測模型的示例 1.1. Example of prediction model
每個幀間預測的PU(預測單元)具有用於一個或兩個參考圖片列表的運動參數。在一些實施例中,運動參數包括運動向量和參考圖片索引。在其他實施例中,也可以使用inter_pred_idc來信令通知兩個參考圖片列表中的一個的使用。在又一其他實施例中,可以將運動向量明確地編解碼為相對於預測器的增量。 Each inter-frame predicted PU (prediction unit) has motion parameters for one or two reference picture lists. In some embodiments, the motion parameters include motion vectors and reference picture indices. In other embodiments, inter_pred_idc may also be used to signal the use of one of the two reference picture lists. In yet other embodiments, the motion vectors may be explicitly encoded and decoded as deltas relative to the predictor.
當用跳過模式對CU進行編解碼時,一個PU與CU相關聯,並且不存在顯著的殘差係數、沒有編解碼的運動向量增量或參考圖片索引。指定Merge模式,從而從相鄰PU獲得當前PU的運動參數,包括空間和時間候選。Merge模式可以應用於任何幀間預測的PU,而不僅應用於跳過模式。Merge模式的替代是運動參數的顯式傳輸,其中,對於每個PU,明確地用信令通知運動向量、每個參考圖片列表的對應參考圖片索引和參考圖片列表使用。 When a CU is encoded or decoded in skip mode, a PU is associated with the CU and there are no significant residual coefficients, no coded motion vector increments or reference picture indices. Specify Merge mode so that the motion parameters of the current PU are obtained from neighboring PUs, including spatial and temporal candidates. Merge mode can be applied to any inter-frame predicted PU, not just skip mode. An alternative to Merge mode is explicit transmission of motion parameters, where, for each PU, the motion vectors, the corresponding reference picture index for each reference picture list, and the reference picture list usage are explicitly signaled.
當信令指示將使用兩個參考圖片列表中的一個時,從一個樣本塊產生PU。這被稱為“單向預測(uni-prediction)”。單向預測可用於P條帶和B條帶兩者。 When the signaling indicates that one of the two reference picture lists will be used, a PU is generated from a sample block. This is called "uni-prediction". Uni-prediction can be used for both P and B slices.
當信令指示將使用兩個參考圖片列表時,從兩個樣本塊產生PU。這被稱為“雙向預測(bi-prediction)”。雙向預測僅適用 於B條帶。 When the signaling indicates that two reference picture lists will be used, the PU is generated from two sample blocks. This is called "bi-prediction". Bi-prediction is only applicable to B slices.
1.1.1.1 建構用於Merge模式的候選的實施例 1.1.1.1 Constructing candidate implementations for Merge mode
當使用Merge模式預測PU時,從位元流解析指向Merge候選列表中的條目的索引並將其用於檢索運動信息。該列表的建構(construction)可以根據以下步驟順序進行總結: When predicting PUs using Merge mode, the index pointing to the entry in the Merge candidate list is parsed from the bitstream and used to retrieve motion information. The construction of this list can be summarized according to the following sequence of steps:
步驟1:原始候選推導 Step 1: Original candidate derivation
甲、步驟1.1:空間候選推導 A. Step 1.1: Spatial candidate derivation
乙、步驟1.2:空間候選的冗餘校驗 B. Step 1.2: Redundant verification of spatial candidates
丙、步驟1.3:時間候選推導 C. Step 1.3: Time candidate derivation
步驟2:插入額外的候選 Step 2: Insert additional candidates
甲、步驟2.1:創建雙向預測候選 A. Step 2.1: Create two-way prediction candidates
乙、步驟2.2:插入零運動候選 B. Step 2.2: Insert zero motion candidates
圖1示出了基於上面總結的步驟序列建構Merge候選列表的示例。對於空間Merge候選推導,在位於五個不同位置的候選當中選擇最多四個Merge候選。對於時間Merge候選推導,在兩個候選當中選擇最多一個Merge候選。由於在解碼器處假設恆定數量的候選用於每個PU,因此當候選的數量未達到在條帶標頭中用信令通知的最大Merge候選數量(MaxNumMergeCand)時,生成額外的候選。由於候選的數量是恆定的,因此使用截斷的一元二值化(Truncated Unary binarization,TU)來編碼最佳Merge候選的索引。如果CU的尺寸等於8,則當前CU的所有PU共享單個Merge候選列表,其與2N×2N預測單元的Merge候選列表相 同。 Figure 1 shows an example of constructing a Merge candidate list based on the sequence of steps summarized above. For spatial Merge candidate derivation, up to four Merge candidates are selected from candidates located at five different positions. For temporal Merge candidate derivation, up to one Merge candidate is selected from two candidates. Since a constant number of candidates is assumed at the decoder for each PU, additional candidates are generated when the number of candidates does not reach the maximum number of Merge candidates (MaxNumMergeCand) signaled in the slice header. Since the number of candidates is constant, truncated unary binarization (TU) is used to encode the index of the best Merge candidate. If the size of the CU is equal to 8, all PUs of the current CU share a single Merge candidate list, which is the same as the Merge candidate list of the 2N×2N prediction unit.
1.1.2 建構空間Merge候選 1.1.2 Constructing spatial merge candidates
在空間Merge候選的推導中,在位於圖2描繪的位置的候選當中選擇最多四個Merge候選。推導的順序是A1、B1、B0、A0和B2。僅當位置A1、B1、B0、A0的任何PU不可用(例如,因為它屬另一條帶或區塊)或者是幀內編解碼時,才考慮位置B2。在添加位置A1處的候選之後,對剩餘候選的添加進行冗餘校驗,其確保具有相同運動信息的候選被排除在列表之外,使得編解碼效率提高。為了降低計算複雜度,在所提到的冗餘校驗中並未考慮所有可能的候選對。相反,僅考慮圖3中用箭頭連接的對,並且僅在用於冗餘校驗的對應候選具有不一樣的運動信息時,才將候選添加到列表。重複運動信息的另一來源是與不同於2N×2N的分區相關聯的“第二PU”。作為示例,圖4A和4B描繪了分別針對N×2N和2N×N的情況的第二PU。當當前PU被分區為N×2N時,位置A1處的候選不被考慮用於列表建構。在一些實施例中,通過添加該候選可能導致具有相同運動信息的兩個預測單元,這對於在編解碼單元中僅具有一個PU是多餘的。類似地,當當前PU被分區為2N×N時,不考慮位置B1。 In the derivation of spatial Merge candidates, up to four Merge candidates are selected from the candidates located at the positions depicted in Figure 2. The order of derivation is A1 , B1 , B0 , A0 , and B2 . Position B2 is considered only when any PU at positions A1 , B1 , B0 , A0 is unavailable (for example, because it belongs to another slice or block ) or is intra-frame coded. After adding the candidate at position A1 , a redundancy check is performed on the addition of the remaining candidates, which ensures that candidates with the same motion information are excluded from the list, thereby improving the coding efficiency. In order to reduce computational complexity, not all possible candidate pairs are considered in the mentioned redundancy check. Instead, only the pairs connected by arrows in FIG. 3 are considered, and a candidate is added to the list only if the corresponding candidate for redundancy checking has different motion information. Another source of duplicate motion information is a "second PU" associated with a partition different from 2N×2N. As an example, FIGS. 4A and 4B depict the second PU for the cases of N×2N and 2N×N, respectively. When the current PU is partitioned as N×2N, the candidate at position A 1 is not considered for list construction. In some embodiments, adding this candidate may result in two prediction units with the same motion information, which is redundant for having only one PU in the coding unit. Similarly, position B 1 is not considered when the current PU is partitioned as 2N×N.
1.1.1.3 建構時間Merge候選 1.1.1.3 Build time Merge candidates
在該步驟中,只有一個候選被添加到列表中。具體地,在該時間Merge候選的推導中,基於共同定位的PU來推導縮放的運動向量,該共同定位的PU屬給定參考圖片列表內與當前圖片具 有最小POC差的圖片。在條帶標頭中明確地用信令通知要用於推導共同定位的PU的參考圖片列表。 In this step, only one candidate is added to the list. Specifically, in the derivation of the temporal merge candidate, the scaled motion vector is derived based on the co-located PU that belongs to the picture with the smallest POC difference with the current picture in a given reference picture list. The reference picture list to be used for the derivation of the co-located PU is explicitly signaled in the slice header.
圖5示出了針對時間Merge候選(如虛線)的縮放運動向量的推導的示例,其是使用POC距離tb和td從共同定位的PU的運動向量縮放的,其中tb被定義為當前圖片的參考圖片與當前圖片之間的POC差,td被定義為是共同定位的圖片的參考圖片與共同定位的圖片之間的POC差。時間Merge候選的參考圖片索引被設置為等於零。對於B條帶,獲得兩個運動向量,一個用於參考圖片列表0,另一用於參考圖片列表1,並且結合該兩個運動向量以獲得雙向預測Merge候選。 Figure 5 shows an example of the derivation of a scaled motion vector for a temporal Merge candidate (as dashed line), which is scaled from the motion vector of the co-located PU using the POC distances tb and td, where tb is defined as the POC difference between the reference picture of the current picture and the current picture, and td is defined as the POC difference between the reference picture of the co-located picture and the co-located picture. The reference picture index of the temporal Merge candidate is set equal to zero. For B slices, two motion vectors are obtained, one for reference picture list 0 and the other for reference picture list 1, and the two motion vectors are combined to obtain a bidirectional prediction Merge candidate.
在屬參考幀的共同定位的PU(Y)中,在候選C0和C1之間選擇時間候選的位置,如圖6所示。如果位置C0處的PU不可用、是幀內編解碼的、或者在當前CTU之外,則使用位置C1。否則,位置C0用於時間Merge候選的推導。 In the co-located PU (Y) belonging to the reference frame, the position of the temporal candidate is selected between candidates C 0 and C 1 , as shown in Figure 6. If the PU at position C 0 is not available, is intra-coded, or is outside the current CTU, position C 1 is used. Otherwise, position C 0 is used for the derivation of the temporal Merge candidate.
1.1.4 建構Merge候選的額外類型 1.1.4 Constructing additional types of Merge candidates
除了空-時Merge候選之外,還存在兩種額外類型的Merge候選:組合的雙向預測Merge候選和零Merge候選。通過利用空-時Merge候選來生成組合的雙向預測Merge候選。組合的雙向預測Merge候選僅用於B條帶。通過將原始候選的第一參考圖片列表運動參數與另一候選的第二參考圖片列表運動參數組合來生成組合的雙向預測候選。如果這兩個元組提供不同的運動假設,它們將形成一個新的雙向預測候選。 In addition to the space-time merge candidates, there are two additional types of merge candidates: combined bidirectional prediction merge candidates and zero merge candidates. Combined bidirectional prediction merge candidates are generated by utilizing space-time merge candidates. Combined bidirectional prediction merge candidates are only used for B slices. Combined bidirectional prediction candidates are generated by combining the first reference picture list motion parameters of the original candidate with the second reference picture list motion parameters of another candidate. If the two tuples provide different motion hypotheses, they will form a new bidirectional prediction candidate.
圖7示出了該過程的示例,其中原始列表中的兩個候選(左側的710)中具有mvL0和refIdxL0或mvL1和refIdxL1,其被用於創建添加到最終列表(右側)的組合的雙向預測Merge候選的情況。 Figure 7 shows an example of this process, where two candidates in the original list (710 on the left) have either mvL0 and refIdxL0 or mvL1 and refIdxL1, which are used to create a combined bidirectional prediction Merge candidate that is added to the final list (right).
插入零運動候選以填充Merge候選列表中的剩餘條目,從而達到MaxNumMergeCand容量。這些候選具有零空間位移和參考圖片索引,該參考圖片索引從零開始並且每當新的零運動候選被添加到列表時增加。這些候選使用的參考幀的數量是1和2,分別用於單向和雙向預測。在一些實施例中,不對這些候選執行冗餘校驗。 Zero-motion candidates are inserted to fill the remaining entries in the Merge candidate list up to the MaxNumMergeCand capacity. These candidates have zero spatial displacement and a reference picture index that starts at zero and increases each time a new zero-motion candidate is added to the list. The number of reference frames used by these candidates is 1 and 2, for unidirectional and bidirectional prediction, respectively. In some embodiments, redundancy checks are not performed on these candidates.
1.1.5 用於並行處理的運動估計區域的示例 1.1.5 Example of motion estimation regions for parallel processing
為了加速編解碼處理,可以並行執行運動估計,從而同時推導給定區域內的所有預測單元的運動向量。從空間鄰域推導Merge候選可能干擾並行處理,因為一個預測單元直到其相關聯的運動估計完成時才能從相鄰PU推導運動參數。為了減輕編解碼效率和處理等待時間之間的折衷,可以定義運動估計區域(Motion Estimation Region,MER),MER的尺寸在圖片參數集(PPS)中使用“log2_parallel_merge_level_minus2”語法元素信令通知。當定義MER時,落入同一區域的Merge候選被標記為不可用,因此在列表建構中不予考慮。 To speed up the encoding and decoding process, motion estimation can be performed in parallel, thereby deriving motion vectors for all prediction units within a given region at the same time. Deriving Merge candidates from spatial neighbors may interfere with parallel processing, because a prediction unit cannot derive motion parameters from neighboring PUs until its associated motion estimation is completed. To reduce the trade-off between encoding and decoding efficiency and processing latency, a Motion Estimation Region (MER) can be defined, and the size of the MER is signaled in the Picture Parameter Set (PPS) using the "log2_parallel_merge_level_minus2" syntax element. When a MER is defined, Merge candidates that fall into the same region are marked as unavailable and are therefore not considered in list construction.
1.2 高級運動向量預測(AMVP)的實施例 1.2 Implementation of Advanced Motion Vector Prediction (AMVP)
AMVP利用運動向量與相鄰PU的時空相關性,其用於 運動參數的顯式傳輸。其通過首先校驗在時間上相鄰的PU位置的上方,左側的可用性,移除冗餘候選並添加零向量以使候選列表為恆定長度來建構運動向量候選列表。然後,編碼器可以從候選列表中選擇最佳預測器,並發送指示所選候選的對應索引。與Merge索引信令類似,使用截斷的一元來編碼最佳運動向量候選的索引。在這種情況下要編碼的最大值是2(參見圖8)。在以下部分中,提供了關於運動向量預測候選的推導過程的細節。 AMVP exploits the spatiotemporal correlation of motion vectors with neighboring PUs for explicit transmission of motion parameters. It constructs a motion vector candidate list by first checking the availability of the top and left sides of the temporally neighboring PU positions, removing redundant candidates and adding zero vectors to make the candidate list a constant length. The encoder can then select the best predictor from the candidate list and send a corresponding index indicating the selected candidate. Similar to Merge index signaling, the index of the best motion vector candidate is encoded using truncated unary. The maximum value to be encoded in this case is 2 (see Figure 8). In the following section, details on the derivation process of motion vector prediction candidates are provided.
1.2.1 建構運動向量預測候選的示例 1.2.1 Example of constructing motion vector prediction candidates
圖8總結了運動向量預測候選的推導過程,並且可以針對每個參考圖片列表以索引作為輸入來實現。 Figure 8 summarizes the derivation process of motion vector prediction candidates and can be implemented for each reference picture list with an index as input.
在運動向量預測中,考慮兩種類型的運動向量候選:空間運動向量候選和時間運動向量候選。對於空間運動向量候選推導,最終基於位於先前在圖2中所示的五個不同位置的每個PU的運動向量推導兩個運動向量候選。 In motion vector prediction, two types of motion vector candidates are considered: spatial motion vector candidates and temporal motion vector candidates. For spatial motion vector candidate derivation, two motion vector candidates are ultimately derived based on the motion vectors of each PU located at the five different positions previously shown in FIG. 2.
對於時間運動向量候選推導,從兩個候選中選擇一個運動向量候選,其是基於兩個不同的共同定位的位置推導的。在產生時空候選的第一列表之後,移除列表中的重複的運動向量候選。如果潛在候選的數量大於2,則從列表中移除相關聯的參考圖片列表內的其參考圖片索引大於1的運動向量候選。如果空-時運動向量候選的數量小於2,則將額外的零運動向量候選添加到列表中。 For temporal motion vector candidate derivation, a motion vector candidate is selected from two candidates that are derived based on two different co-located positions. After generating the first list of spatio-temporal candidates, duplicate motion vector candidates in the list are removed. If the number of potential candidates is greater than 2, motion vector candidates whose reference picture index within the associated reference picture list is greater than 1 are removed from the list. If the number of spatio-temporal motion vector candidates is less than 2, additional zero motion vector candidates are added to the list.
1.2.2 建構空間運動向量候選 1.2.2 Constructing spatial motion vector candidates
在空間運動向量候選的推導中,在五個潛在候選當中考 慮最多兩個候選,其從位於如先前在圖2中所示的位置的PU中推導,那些位置與運動Merge的位置相同。將當前PU的左側的推導順序定義為A0、A1,以及縮放的A0、縮放的A1。將當前PU的上側的推導順序定義為B0、B1、B2,縮放的B0、縮放的B1、縮放的B2。因此,對於每一側,存在可以用作運動向量候選的四種情況,其中兩種情況不需要使用空間縮放,兩種情況使用空間縮放。四種不同的情況總結如下: In the derivation of the spatial motion vector candidate, a maximum of two candidates are considered among five potential candidates, which are derived from the PU located at the positions shown previously in Figure 2, which are the same as the positions of the motion merge. The derivation order for the left side of the current PU is defined as A 0 , A 1 , and scaled A 0 , scaled A 1. The derivation order for the top side of the current PU is defined as B 0 , B 1 , B 2 , scaled B 0 , scaled B 1 , scaled B 2. Therefore, for each side, there are four cases that can be used as motion vector candidates, two of which do not require the use of spatial scaling, and two use spatial scaling. The four different cases are summarized as follows:
沒有空間縮放 No room to zoom
- (1)相同的參考圖片列表,以及相同的參考圖片索引(相同的POC) - (1) Same reference image list, and same reference image index (same POC)
- (2)不同的參考圖片列表,但相同的參考圖片(相同的POC) - (2) Different reference image lists, but same reference images (same POC)
空間縮放 Spatial zoom
- (3)相同的參考圖片列表,但不同的參考圖片(不同的POC) - (3) Same reference image list, but different reference images (different POC)
- (4)不同的參考圖片列表,以及不同的參考圖片(不同的POC) - (4) Different reference image lists, and different reference images (different POCs)
首先校驗無空間縮放的情況,然後校驗空間縮放。當POC在相鄰PU的參考圖片與當前PU的參考圖片之間不同而不管參考圖片列表時,考慮空間縮放。如果左候選的所有PU都不可用或者是幀內編解碼的,則允許對上述運動向量進行縮放以幫助左和上MV候選的並行推導。否則,不允許對上述運動向量進行空間縮放。 First check the case without spatial scaling, then check spatial scaling. Spatial scaling is considered when the POC differs between the reference picture of the neighboring PU and the reference picture of the current PU regardless of the reference picture list. If all PUs of the left candidate are unavailable or intra-coded, scaling of the above motion vectors is allowed to help the parallel derivation of the left and top MV candidates. Otherwise, spatial scaling of the above motion vectors is not allowed.
如圖9的示例所示,對於空間縮放的情況,以與時間縮放類似的方式縮放相鄰PU的運動向量。一個區別是將參考圖片列 表和當前PU的索引作為輸入給出;實際縮放過程與時間縮放過程相同。 As shown in the example of Figure 9, in the case of spatial scaling, the motion vectors of neighboring PUs are scaled in a similar way to temporal scaling. One difference is that the reference picture list and the index of the current PU are given as input; the actual scaling process is the same as the temporal scaling process.
1.2.3 建構時間運動向量候選 1.2.3 Constructing temporal motion vector candidates
除了參考圖片索引推導之外,用於推導時間Merge候選的所有過程與用於推導空間運動向量候選的過程相同(如圖6的示例所示)。在一些實施例中,將參考圖片索引用信令通知給解碼器。 Except for the reference picture index derivation, all processes used to derive the temporal merge candidate are the same as those used to derive the spatial motion vector candidate (as shown in the example of FIG6 ). In some embodiments, the reference picture index is signaled to the decoder.
2.聯合探索模型(JEM)中的幀間預測方法示例 2. Example of inter-frame prediction method in Joint Exploration Model (JEM)
在一些實施例中,使用稱為聯合探索模型(JEM)的參考軟體來探索未來的視頻編解碼技術。在JEM中,在若干編解碼工具中採用基於子塊的預測,諸如仿射預測、可選時間運動向量預測(ATMVP)、空-時運動向量預測(STMVP)、雙向光流(BIO)、幀速率上轉換(FRUC、局部自適應運動向量解析度(LAMVR)、重疊塊運動補償(OBMC)、局部照明補償(LIC)和解碼器側運動向量細化(DMVR)。 In some embodiments, a reference software called the Joint Exploration Model (JEM) is used to explore future video codec techniques. In JEM, sub-block based prediction is adopted in several codec tools, such as affine prediction, optional temporal motion vector prediction (ATMVP), spatio-temporal motion vector prediction (STMVP), bidirectional optical flow (BIO), frame rate up-conversion (FRUC, local adaptive motion vector resolution (LAMVR), overlapping block motion compensation (OBMC), local illumination compensation (LIC), and decoder-side motion vector refinement (DMVR).
2.1 基於子CU的運動向量預測的示例 2.1 Example of sub-CU-based motion vector prediction
在具有四叉樹加二叉樹(QTBT)的JEM中,每個CU可以針對每個預測方向具有至多一組運動參數。在一些實施例中,通過將大CU劃分成子CU並且推導大CU的所有子CU的運動信息,在編碼器中考慮兩個子CU級運動向量預測方法。可選時間運動向量預測(Alternative Temporal Motion Vector Prediction,ATMVP)方法允許每個CU從比並置參考圖片中的當前CU小的 多個塊中提取多組運動信息。在空-時運動向量預測(Spatial-Temporal Motion Vector Prediction,STMVP)方法中,通過使用時間運動向量預測值和空間相鄰運動向量來遞迴地推導子CU的運動向量。在一些實施例中,為了保留用於子CU運動預測的更準確的運動場,可能禁用參考幀的運動壓縮。 In JEM with quadtree plus binary tree (QTBT), each CU can have at most one set of motion parameters for each prediction direction. In some embodiments, two sub-CU level motion vector prediction methods are considered in the encoder by dividing a large CU into sub-CUs and deriving motion information for all sub-CUs of the large CU. The Alternative Temporal Motion Vector Prediction (ATMVP) method allows each CU to extract multiple sets of motion information from multiple blocks smaller than the current CU in the collocated reference picture. In the Spatial-Temporal Motion Vector Prediction (STMVP) method, the motion vectors of the sub-CUs are recursively derived by using the temporal motion vector prediction values and spatially neighboring motion vectors. In some embodiments, in order to preserve a more accurate motion field for sub-CU motion prediction, motion compression of the reference frame may be disabled.
2.1.1 可選時間運動向量預測(ATMVP)的示例 2.1.1 Example of Optional Temporal Motion Vector Prediction (ATMVP)
在ATMVP方法中,通過從小於當前CU的塊中提取多組運動信息(包括運動向量和參考索引)來修改時間運動向量預測(TMVP)方法。 In the ATMVP method, the temporal motion vector prediction (TMVP) method is modified by extracting multiple sets of motion information (including motion vectors and reference indices) from blocks smaller than the current CU.
圖10示出了CU 1000的ATMVP運動預測過程的示例。該ATMVP 1000方法以兩個步驟預測CU 1000內的子CU 1001的運動向量。第一步是利用時間向量識別參考圖片1050中的對應塊1051。參考圖片1050也被稱為運動源圖片。第二步是將當前CU 1000劃分成子CU 1001,並從對應於每個子CU的塊中獲得運動向量以及每個子CU的參考索引。 FIG10 shows an example of the ATMVP motion prediction process for CU 1000. The ATMVP 1000 method predicts the motion vector of a sub-CU 1001 within CU 1000 in two steps. The first step is to identify the corresponding block 1051 in the reference picture 1050 using the time vector. The reference picture 1050 is also called a motion source picture. The second step is to divide the current CU 1000 into sub-CUs 1001 and obtain the motion vector and the reference index of each sub-CU from the block corresponding to each sub-CU.
在第一步驟中,由當前CU 1000的空間相鄰塊的運動信息確定參考圖片1050和對應塊。為了避免相鄰塊的重複掃描過程,使用當前CU 1000的Merge候選列表中的第一Merge候選。第一可用運動向量及其相關聯的參考索引被設置為時間向量和運動源圖片的索引。這樣,與TMVP相比,可以更準確地識別對應塊,其中對應塊(有時稱為並置塊)總是相對於當前CU位於右下或中心位置。 In the first step, the reference picture 1050 and the corresponding block are determined by the motion information of the spatial neighboring blocks of the current CU 1000. In order to avoid repeated scanning of neighboring blocks, the first Merge candidate in the Merge candidate list of the current CU 1000 is used. The first available motion vector and its associated reference index are set to the index of the temporal vector and the motion source picture. In this way, the corresponding block can be identified more accurately compared to TMVP, where the corresponding block (sometimes called a collocated block) is always located at the lower right or center position relative to the current CU.
在第二步驟中,通過向當前CU的坐標添加時間向量,通過運動源圖片1050中的時間向量來識別子CU 1051的對應塊。對於每個子CU,其對應塊(例如,覆蓋中心樣本的最小運動網格)的運動信息用於推導子CU的運動信息。在識別出對應的N×N塊的運動信息之後,以與HEVC的TMVP相同的方式將其轉換為當前子CU的參考索引和運動向量,其中運動縮放和其他過程也適用。例如,解碼器校驗是否滿足低延遲條件(例如,當前圖片的所有參考圖片的POC小於當前圖片的POC)並且可能使用運動向量MVx(例如,對應於參考圖片列表X的運動向量)來預測每個子CU的運動向量MVy(例如,其中X等於0或1並且Y等於1-X)。 In the second step, the corresponding block of the sub-CU 1051 is identified by the time vector in the motion source picture 1050 by adding the time vector to the coordinates of the current CU. For each sub-CU, the motion information of its corresponding block (e.g., the minimum motion grid covering the center sample) is used to derive the motion information of the sub-CU. After the motion information of the corresponding N×N block is identified, it is converted into a reference index and motion vector of the current sub-CU in the same way as the TMVP of HEVC, where motion scaling and other processes are also applicable. For example, the decoder checks whether the low latency condition is met (e.g., the POC of all reference pictures of the current picture is less than the POC of the current picture) and may use the motion vector MV x (e.g., the motion vector corresponding to reference picture list X) to predict the motion vector MV y of each sub-CU (e.g., where X is equal to 0 or 1 and Y is equal to 1-X).
2.1.2 空-時運動向量預測(STMVP)的示例 2.1.2 Example of Space-Temporal Motion Vector Prediction (STMVP)
在STMVP方法中,按照光柵掃描順序遞迴地推導子CU的運動向量。圖11示出了具有四個子塊和相鄰塊的一個CU的示例。考慮包含四個4×4子CU A(1101),B(1102),C(1103)和D(1104)的8×8 CU1100。當前幀中的相鄰4×4塊被標記為a(1111),b(1112),c(1113)和d(1114)。 In the STMVP method, the motion vectors of the sub-CU are recursively derived in the raster scanning order. Figure 11 shows an example of a CU with four sub-blocks and neighboring blocks. Consider an 8×8 CU1100 containing four 4×4 sub-CUs A(1101), B(1102), C(1103) and D(1104). The neighboring 4×4 blocks in the current frame are labeled as a(1111), b(1112), c(1113) and d(1114).
子CU A的運動推導通過識別其兩個空間鄰居開始。第一鄰居是子CU A 1101上方的N×N塊(塊c 1103)。如果該塊c(1113)不可用或者是幀內編解碼,則(從塊c 1113開始,從左到右)校驗子CU A(1101)上方的其他N×N個塊。第二鄰居是子CU A 1101左側的塊(塊b 1112)。如果塊b(1112)不可用或者是幀內編解碼,則(從塊b 1112開始,從上到下)校驗子CU A 1101左側的 其他塊。從每個列表的相鄰塊獲得的運動信息被縮放到給定列表的第一參考幀。接下來,通過遵循與HEVC中指定的TMVP推導相同的過程來推導子塊A 1101的時間運動向量預測(Temporal Motion Vector Predictor,TMVP)。提取D 1104處的並置塊的運動信息並對應地縮放。最後,在檢索和縮放運動信息之後,對於每個參考列表,所有可用的運動向量被分別平均。平均運動向量被指定為當前子CU的運動向量。 The motion derivation of sub-CU A starts by identifying its two spatial neighbors. The first neighbor is the N×N block above sub-CU A 1101 (block c 1103). If block c (1113) is not available or is intra-frame coded, then (starting from block c 1113, from left to right) check the other N×N blocks above sub-CU A (1101). The second neighbor is the block to the left of sub-CU A 1101 (block b 1112). If block b (1112) is not available or is intra-frame coded, then (starting from block b 1112, from top to bottom) check the other blocks to the left of sub-CU A 1101. The motion information obtained from the neighboring blocks of each list is scaled to the first reference frame of the given list. Next, the temporal motion vector predictor (TMVP) of sub-block A 1101 is derived by following the same process as the TMVP derivation specified in HEVC. The motion information of the collocated block at D 1104 is extracted and scaled accordingly. Finally, after retrieving and scaling the motion information, all available motion vectors are averaged separately for each reference list. The average motion vector is designated as the motion vector of the current sub-CU.
2.1.3 子CU運動預測模式信令的示例 2.1.3 Example of sub-CU motion prediction mode signaling
在一些實施例中,子CU模式被啟用為額外的Merge候選,並且不需要額外的語法元素來信令通知該模式。將兩個額外的Merge候選添加到每個CU的Merge候選列表以表示ATMVP模式和STMVP模式。在一些實施例中,如果序列參數集指示啟用了ATMVP和STMVP,則可以最多使用七個Merge候選。額外的Merge候選的編碼邏輯與HM中的Merge候選相同,這意味著,對於P或B條帶中的每個CU,兩個額外的Merge候選可能需要另外兩個RD校驗。在一些實施例中,例如,在JEM中,所有Merge索引的二進位(bin)都由CABAC(基於上下文的自適應二進制算術編解碼)進行上下文編解碼。在其他實施例中,例如,在HEVC中,僅第一個二進位是上下文編解碼的,而剩餘的二進位是上下文旁路編解碼的。 In some embodiments, sub-CU mode is enabled as an additional Merge candidate, and no additional syntax elements are required to signal the mode. Two additional Merge candidates are added to the Merge candidate list of each CU to represent the ATMVP mode and the STMVP mode. In some embodiments, if the sequence parameter set indicates that ATMVP and STMVP are enabled, up to seven Merge candidates can be used. The coding logic of the additional Merge candidates is the same as that of the Merge candidates in HM, which means that for each CU in a P or B slice, two additional Merge candidates may require an additional two RD checks. In some embodiments, for example, in JEM, all bins of the Merge index are context-coded by CABAC (context-based adaptive binary arithmetic coding and decoding). In other embodiments, for example, in HEVC, only the first binary is context coded, while the remaining bins are context bypass coded.
2.2 自適應運動向量差分解析度 2.2 Adaptive motion vector difference resolution
在一些實施例中,當條帶標頭中的use_integer_mv_flag 等於0時,以四分之一亮度樣本為單位信令通知(PU的運動向量和預測運動向量之間的)運動向量差(Motion Vector Difference,MVD)。在JEM中,引入了局部自適應運動向量解析度(Locally Adaptive Motion Vector Resolution,LAMVR)。在JEM中,MVD可以以四分之一亮度樣本、整數亮度樣本或四亮度樣本為單位進行編解碼。在編解碼單元(CU)級控制MVD解析度,並且對於具有至少一個非零MVD分量的每個CU有條件地信令通知MVD解析度標誌。 In some embodiments, when use_integer_mv_flag in the slice header is equal to 0, the motion vector difference (MVD) (between the PU's motion vector and the predicted motion vector) is signaled in units of quarter luma samples. In JEM, Locally Adaptive Motion Vector Resolution (LAMVR) is introduced. In JEM, MVD can be coded and decoded in units of quarter luma samples, integer luma samples, or four luma samples. The MVD resolution is controlled at the codec unit (CU) level, and the MVD resolution flag is conditionally signaled for each CU with at least one non-zero MVD component.
對於具有至少一個非零MVD分量的CU,信令通知第一標記以指示在CU中是否使用四分之一亮度樣本MV精度。當第一標誌(等於1)指示不使用四分之一亮度樣本MV精度時,信令通知另一標誌以指示是使用整數亮度樣本MV精度還是四亮度樣本MV精度。 For a CU with at least one non-zero MVD component, a first flag is signaled to indicate whether quarter luma sample MV precision is used in the CU. When the first flag (equal to 1) indicates that quarter luma sample MV precision is not used, another flag is signaled to indicate whether integer luma sample MV precision or four luma sample MV precision is used.
當CU的第一MVD解析度標誌為零或未針對CU編解碼(意味著CU中的所有MVD均為零)時,對於CU使用四分之一亮度樣本MV解析度。當CU使用整數亮度樣本MV精度或四亮度樣本MV精度時,CU的AMVP候選列表中的MVP被取整到對應的精度。 When the first MVD resolution flag of a CU is zero or not encoded for the CU (meaning all MVDs in the CU are zero), a quarter luma sample MV resolution is used for the CU. When the CU uses integer luma sample MV precision or quad luma sample MV precision, the MVP in the CU's AMVP candidate list is rounded to the corresponding precision.
在編碼器中,CU級RD校驗用於確定將哪個MVD解析度用於CU。即,對於每個MVD解析度,執行三次CU級RD校驗。為了加快編碼器速度,在JEM中應用以下編碼方案。 In the encoder, CU-level RD check is used to determine which MVD resolution is used for a CU. That is, for each MVD resolution, CU-level RD check is performed three times. To speed up the encoder, the following encoding scheme is applied in JEM.
在具有正常四分之一亮度樣本MVD解析度的CU的RD 校驗期間,儲存當前CU的運動信息(整數亮度樣本準確度)。儲存的運動信息(在取整之後)被用作在RD校驗期間針對具有整數亮度樣本和4亮度樣本MVD解析度的相同CU的進一步小範圍運動向量細化的起點,使得耗時的運動估計過程不重複三次。 During RD verification of a CU with normal quarter luma sample MVD resolution, the motion information (integer luma sample accuracy) of the current CU is stored. The stored motion information (after rounding) is used as a starting point for further small-range motion vector refinement during RD verification for the same CU with integer luma samples and 4 luma sample MVD resolution, so that the time-consuming motion estimation process is not repeated three times.
有條件地調用具有4亮度樣本MVD解析度的CU的RD校驗。對於CU,當RD成本整數亮度樣本MVD解析度遠大於四分之一亮度樣本MVD解析度時,跳過針對CU的4亮度樣本MVD解析度的RD校驗。 Conditionally call RD check for CUs with 4 luma samples MVD resolution. For a CU, when the RD cost integer luma sample MVD resolution is much larger than quarter luma sample MVD resolution, skip RD check for CU's 4 luma sample MVD resolution.
2.3 更高的運動向量儲存準確度的示例 2.3 Example of higher motion vector storage accuracy
在HEVC中,運動向量準確度是四分之一像素(4:2:0視頻的四分之一亮度樣本和八分之一彩度樣本)。在JEM中,內部運動向量儲存和Merge候選的準確度增加到1/16像素。更高的運動向量準確度(1/16像素)用於以跳過/Merge模式編解碼的CU的運動補償幀間預測。對於使用正常AMVP模式編解碼的CU,使用整數像素或四分之一像素運動。 In HEVC, the motion vector accuracy is quarter-pixel (one-quarter luma sample and one-eighth chroma sample for 4:2:0 video). In JEM, the accuracy of internal motion vector storage and Merge candidate selection is increased to 1/16 pixel. The higher motion vector accuracy (1/16 pixel) is used for motion compensated inter-frame prediction for CUs encoded or decoded in Skip/Merge mode. For CUs encoded or decoded using normal AMVP mode, integer pixel or quarter-pixel motion is used.
具有與HEVC運動補償插值濾波器相同的濾波器長度和歸一化因子的SHVC上採樣插值濾波器被用作額外的分數像素位置的運動補償插值濾波器。在JEM中彩度分量運動向量準確度是1/32樣本,通過使用兩個相鄰的1/16像素分數位置的濾波器的平均來推導1/32像素分數位置的額外的插值濾波器。 The SHVC upsampled interpolation filter with the same filter length and normalization factor as the HEVC motion compensation interpolation filter is used as the motion compensation interpolation filter for the additional fractional pixel positions. The chroma component motion vector accuracy in JEM is 1/32 samples, and the additional interpolation filter for the 1/32 pixel fractional position is derived by using the average of two adjacent 1/16 pixel fractional position filters.
2.4 重疊塊運動補償OBMC(Overlapped Block Motion Compensation)的示例 2.4 Example of Overlapped Block Motion Compensation OBMC (Overlapped Block Motion Compensation)
在JEM中,可以使用CU級的語法來打開和關閉OBMC。當在JEM中使用OBMC時,除了CU的右邊界和下邊界之外,對所有運動補償(Motion Compensation,MC)塊邊界執行OBMC。此外,它還應用於亮度和彩度分量。在JEM中,MC塊對應於編解碼塊。當用子CU模式(包括子CU Merge、仿射和FRUC模式)編解碼CU時,CU的每個子塊是MC塊。為了以統一的方式處理CU邊界,針對所有MC塊邊界以子塊級執行OBMC,其中子塊尺寸被設置為等於4×4,如圖12A和12B所示。 In JEM, OBMC can be turned on and off using CU-level syntax. When OBMC is used in JEM, OBMC is performed on all motion compensation (MC) block boundaries except the right and bottom boundaries of the CU. In addition, it is also applied to luma and chroma components. In JEM, MC blocks correspond to codec blocks. When a CU is encoded and decoded with sub-CU mode (including sub-CU Merge, affine, and FRUC modes), each sub-block of the CU is an MC block. In order to handle CU boundaries in a unified manner, OBMC is performed at the sub-block level for all MC block boundaries, where the sub-block size is set to be equal to 4×4, as shown in Figures 12A and 12B.
圖12A示出了CU/PU邊界處的子塊,陰影子塊是OBMC應用的位置。類似地,圖12B示出了ATMVP模式中的子塊。 Figure 12A shows sub-blocks at the CU/PU boundary, and the shaded sub-blocks are where OBMC is applied. Similarly, Figure 12B shows sub-blocks in ATMVP mode.
當OBMC應用於當前子塊時,除了當前運動向量之外,四個連接的相鄰子塊的運動向量(如果可用且與當前運動向量不同)也用於推導當前子塊的預測塊。組合基於多個運動向量的這些多個預測塊以生成當前子塊的最終預測信號。 When OBMC is applied to the current sub-block, in addition to the current motion vector, the motion vectors of the four connected neighboring sub-blocks (if available and different from the current motion vector) are also used to derive the prediction block for the current sub-block. These multiple prediction blocks based on multiple motion vectors are combined to generate the final prediction signal for the current sub-block.
將基於相鄰子塊的運動向量的預測塊表示為PN,其中N指示相鄰的上、下、左和右子塊的索引,並且將基於當前子塊的運動向量的預測塊表示為PC。當PN是基於包含與當前子塊相同的運動信息的相鄰子塊的運動信息時,不從PN執行OBMC。否則,將每個PN樣本添加到PC中的相同樣本中,即將PN的四行/列添加到PC。將加權因子{1/4,1/8,1/16,1/32}用於PN,並且將加權因子{3/4,7/8,15/16,31/32}用於PC。例外是小MC塊(即, 當編解碼塊的高度或寬度等於4或用子CU模式編解碼CU時),對其僅將PN的兩行/列添加到PC。在這種情況下,將加權因子{1/4,1/8}用於PN,並且將加權因子{3/4,7/8}用於PC。對於基於垂直(水平)相鄰子塊的運動向量生成的PN,將PN的相同行(列)中的樣本添加到具有相同加權因子的PC。 The prediction block based on the motion vector of the neighboring sub-block is denoted as PN , where N indicates the index of the neighboring upper, lower, left and right sub-blocks, and the prediction block based on the motion vector of the current sub-block is denoted as PC . When PN is based on the motion information of the neighboring sub-block containing the same motion information as the current sub-block, OBMC is not performed from PN . Otherwise, each PN sample is added to the same sample in PC , that is, four rows/columns of PN are added to PC . Weighting factors {1/4, 1/8, 1/16, 1/32} are used for PN , and weighting factors {3/4, 7/8, 15/16, 31/32} are used for PC. The exception is small MC blocks (i.e., when the height or width of the coded block is equal to 4 or the CU is coded in sub-CU mode), for which only two rows/columns of PN are added to PC . In this case, weighting factors {1/4, 1/8} are used for PN , and weighting factors {3/4, 7/8} are used for PC . For PN generated based on motion vectors of vertically (horizontally) adjacent sub-blocks, samples in the same row (column) of PN are added to PC with the same weighting factor.
在JEM中,對於尺寸小於或等於256個亮度樣本的CU,信令通知CU級標誌以指示是否對當前CU應用OBMC。對於尺寸超過256個亮度樣本或未使用AMVP模式進行編解碼的CU,默認應用OBMC。在編碼器處,當將OBMC應用於CU時,在運動估計階段期間考慮其影響。由OBMC使用上側相鄰塊和左側相鄰塊的運動信息形成的預測信號用於補償當前CU的原始信號的上邊界和左邊界,然後應用正常運動估計處理。 In JEM, for CUs with size less than or equal to 256 luma samples, a CU-level flag is signaled to indicate whether OBMC is applied to the current CU. For CUs with size greater than 256 luma samples or not encoded or decoded using AMVP mode, OBMC is applied by default. At the encoder, when OBMC is applied to a CU, its impact is considered during the motion estimation stage. The prediction signal formed by OBMC using the motion information of the upper and left neighboring blocks is used to compensate the upper and left boundaries of the original signal of the current CU, and then normal motion estimation processing is applied.
2.5 局部照明補償(LIC)的示例 2.5 Example of Local Lighting Compensation (LIC)
照明補償LIC是基於用於光照變化的線性模型,使用縮放因子a和偏移b。並且針對每個幀間模式編解碼的編解碼單元(CU)自適應地啟用或禁用它。 Illumination compensation LIC is based on a linear model for illumination variations, using a scaling factor a and an offset b. It is adaptively enabled or disabled for each inter-mode coded codec unit (CU).
當LIC應用於CU時,採用最小平方誤差方法來通過使用當前CU的相鄰樣本及其對應的參考樣本來推導參數a和b。圖13示出了用於推導IC算法的參數的相鄰樣本的示例。更具體地,如圖13所示,使用CU的子採樣(2:1子採樣)的相鄰樣本和參考圖片中的(由當前CU或子CU的運動信息識別的)對應樣本。推導IC參數並將其分別應用於每個預測方向。 When LIC is applied to a CU, the least square error method is used to derive parameters a and b by using neighboring samples of the current CU and their corresponding reference samples. FIG13 shows an example of neighboring samples used to derive parameters of the IC algorithm. More specifically, as shown in FIG13, neighboring samples of subsamples (2:1 subsamples) of the CU and corresponding samples in the reference picture (identified by motion information of the current CU or sub-CU) are used. IC parameters are derived and applied to each prediction direction separately.
當用Merge模式編解碼CU時,以類似於Merge模式中的運動信息複製的方式從相鄰塊複製LIC標誌;否則,向CU信令通知LIC標誌以指示是否應用LIC。 When encoding or decoding a CU in Merge mode, the LIC flag is copied from the neighboring block in a manner similar to the motion information copying in Merge mode; otherwise, the LIC flag is signaled to the CU to indicate whether LIC is applied.
當針對圖片啟用LIC時,需要額外的CU級RD校驗以確定是否將LIC應用於CU。當為CU啟用LIC時,分別針對整數像素運動搜索和分數像素運動搜索,使用去均值絕對差之和(Mean-Removed Sum Of Absolute Difference,MR-SAD)和去均值絕對哈達瑪變換差之和(Mean-Removed Sum Of Absolute Hadamard-Transformed Difference,MR-SATD),而不是SAD和SATD。 When LIC is enabled for a picture, an additional CU-level RD check is required to determine whether LIC is applied to the CU. When LIC is enabled for a CU, the Mean-Removed Sum Of Absolute Difference (MR-SAD) and Mean-Removed Sum Of Absolute Hadamard-Transformed Difference (MR-SATD) are used instead of SAD and SATD for integer pixel motion search and fractional pixel motion search, respectively.
為了降低編碼複雜度,在JEM中應用以下編碼方案。 In order to reduce the coding complexity, the following coding scheme is applied in JEM.
當當前圖片與其參考圖片之間沒有明顯的光照變化時,對於整個圖片禁用LIC。為了識別這種情況,在編碼器處計算當前圖片和當前圖片的每個參考圖片的直方圖。如果當前圖片與當前圖片的每個參考圖片之間的直方圖差小於給定閾值,則對當前圖片禁用LIC;否則,對當前圖片啟用LIC。 When there is no significant illumination change between the current picture and its reference pictures, LIC is disabled for the entire picture. To identify this situation, the histogram of the current picture and each of the reference pictures of the current picture is calculated at the encoder. If the histogram difference between the current picture and each of the reference pictures of the current picture is less than a given threshold, LIC is disabled for the current picture; otherwise, LIC is enabled for the current picture.
2.6 仿射運動補償預測的示例 2.6 Example of affine motion compensation prediction
在HEVC中,僅將平移運動模型應用於運動補償預測(Motion Compensation Prediction,MCP)。然而,相機和對象可能存在多種運動,例如放大/縮小、旋轉、透視運動和/或其他不規則運動。另一方面,在JEM中,應用簡化的仿射變換運動補償預測。圖14示出了塊1400的仿射運動場由兩個控制點運動向量V0
和V1描述的示例。塊1400的運動向量場(Motion Vector Field,MVF)由以下等式描述:
如圖14所示,(v0x,v0y)是左上角控制點的運動向量,(v1x,v1y)是右上角控制點的運動向量。 As shown in Figure 14, (v 0x ,v 0y ) is the motion vector of the upper left control point, and (v 1x ,v 1y ) is the motion vector of the upper right control point.
為了進一步簡化運動補償預測,可以應用基於子塊的仿射變換預測。子塊尺寸M×N如以下推導:
這裡,MvPre是運動向量分數準確度(例如,在JEM中是1/16),(v2x,v2y)是根據等式1計算的左下控制點的運動向量。如果需要,可以向下調整M和N,以使其分別為w和h的除數。 Here, MvPre is the motion vector fractional accuracy (e.g., 1/16 in JEM) and (v 2x ,v 2y ) is the motion vector of the lower left control point calculated according to Equation 1. If necessary, M and N can be adjusted down to make them divisors of w and h, respectively.
圖15示出了塊1500的每個子塊的仿射MVF的示例。為了推導每個M×N子塊的運動向量,根據等式1計算每個子塊的中心樣本的運動向量,並取整到運動向量分數準確度(例如,JEM中的1/16)。然後,應用運動補償插值濾波器,以利用所推導的運動向量生成每個子塊的預測。 FIG15 shows an example of an affine MVF for each sub-block of block 1500. To derive the motion vector for each M×N sub-block, the motion vector of the center sample of each sub-block is calculated according to Equation 1 and rounded to the motion vector fractional accuracy (e.g., 1/16 in JEM). Then, a motion compensation interpolation filter is applied to generate a prediction for each sub-block using the derived motion vector.
在MCP之後,對每個子塊的高準確度運動向量進行取整,並將其以與正常運動向量相同的準確度保存。 After MCP, the high-precision motion vectors of each sub-block are rounded and saved with the same accuracy as the normal motion vectors.
在JEM中,存在兩種仿射運動模式:AF_INTER模式和AF_MERGE模式。對於寬度和高度都大於8的CU,可以應用AF_INTER模式。在位元流中用信令通知CU級的仿射標誌以指示是否使用AF_INTER模式。在AF_INTER模式中,使用相鄰塊構造具有運動向量對{(v0,v1)|v0={vA,vB,vc},v1={vD,vE}}的候選列表。 In JEM, there are two affine motion modes: AF_INTER mode and AF_MERGE mode. For CUs with width and height greater than 8, AF_INTER mode can be applied. A CU-level affine flag is signaled in the bitstream to indicate whether AF_INTER mode is used. In AF_INTER mode, a candidate list with motion vector pairs {(v 0 ,v 1 ) | v 0 ={v A ,v B ,v c },v 1 ={v D ,v E }} is constructed using neighboring blocks.
圖16示出了AF_INTER模式中的塊1600的運動向量預測(MVP)的示例。如圖16所示,從子塊A、B或C的運動向量中選擇v0。可以根據參考列表來縮放來自相鄰塊的運動向量。還可以根據用於相鄰塊的參考的圖片順序計數(POC)、用於當前CU的參考的POC和當前CU的POC之間的關係來縮放來自相鄰塊的運動向量。從相鄰子塊D和E中選擇v1的方法是類似的。如果候選列表的數量小於2,則可以由通過複製每個AMVP候選而組成的運動向量對來填充列表。當候選列表大於2時,可以首先根據相鄰運動向量(例如,基於候選對中的兩個運動向量的相似性)對候選進行排序。在一些實施例中,保留前兩個候選。在一些實施例中,用速率失真(RD)成本校驗來確定將哪個運動向量對候選選擇為當前CU的控制點運動向量預測(Control Point Motion Vector Prediction,CPMVP)。在位元流中可以用信令通知指示候選列表中的CPMVP的位置的索引。在確定當前仿射CU的CPMVP之後,應用仿射運動估計並找到控制點運動向量(Control Point Motion Vector,CPMV)。然後在位元流中用信令通知CPMV和 CPMVP的差。 Figure 16 shows an example of motion vector prediction (MVP) for block 1600 in AF_INTER mode. As shown in Figure 16, v0 is selected from the motion vectors of sub-blocks A, B, or C. The motion vectors from the neighboring blocks can be scaled according to the reference list. The motion vectors from the neighboring blocks can also be scaled according to the relationship between the picture order count (POC) used for the reference of the neighboring blocks, the POC used for the reference of the current CU, and the POC of the current CU. The method of selecting v1 from the neighboring sub-blocks D and E is similar. If the number of candidate lists is less than 2, the list can be filled by motion vector pairs composed by copying each AMVP candidate. When the candidate list is greater than 2, the candidates can be first sorted according to adjacent motion vectors (for example, based on the similarity of the two motion vectors in the candidate pair). In some embodiments, the first two candidates are retained. In some embodiments, a rate-distortion (RD) cost check is used to determine which motion vector pair candidate is selected as the control point motion vector prediction (CPMVP) of the current CU. An index indicating the position of the CPMVP in the candidate list can be signaled in the bitstream. After determining the CPMVP of the current affine CU, affine motion estimation is applied and the control point motion vector (CPMV) is found. The difference between the CPMV and the CPMVP is then signaled in the bitstream.
當在AF_MERGE模式中應用CU時,它從有效的相鄰重建塊獲得用仿射模式編解碼的第一個塊。圖17A示出了當前CU 1700的候選塊的選擇順序的示例。如圖17A所示,選擇順序可以是從當前CU 1700的左(1701)、上(1702)、右上(1703)、左下(1704)到左上(1705)。圖17B示出了AF_MERGE模式中的當前CU 1700的候選塊的另一示例。如果相鄰左下塊1701以仿射模式進行編解碼,如圖17B所示,推導包含塊A的CU的左上角、右上角和左下角的運動向量v2、v3和v4。並且根據v2、v3和v4計算當前CU 1700左上角的運動向量v0。可以相應地計算當前CU的右上方的運動向量v1。 When a CU is applied in AF_MERGE mode, it obtains the first block encoded or decoded in affine mode from a valid adjacent reconstructed block. FIG17A shows an example of a selection order of candidate blocks for the current CU 1700. As shown in FIG17A, the selection order may be from the left (1701), top (1702), top right (1703), bottom left (1704) to top left (1705) of the current CU 1700. FIG17B shows another example of candidate blocks for the current CU 1700 in AF_MERGE mode. If the adjacent bottom left block 1701 is encoded or decoded in affine mode, as shown in FIG17B, motion vectors v2 , v3 , and v4 of the top left, top right, and bottom left corners of the CU containing block A are derived. And the motion vector v 0 of the upper left corner of the current CU 1700 is calculated according to v 2 , v 3 and v 4. The motion vector v1 of the upper right corner of the current CU can be calculated accordingly.
在根據等式(1)中的仿射運動模型計算當前CU的CPMV v0和v1之後,可以生成當前CU的MVF。為了識別當前CU是否以AF_MERGE模式進行編解碼,當至少有一個相鄰塊以仿射模式進行編解碼時,可以在位元流中用信令通知仿射標誌。 After calculating the CPMV v0 and v1 of the current CU according to the affine motion model in equation (1), the MVF of the current CU can be generated. In order to identify whether the current CU is coded or decoded in AF_MERGE mode, an affine flag can be signaled in the bitstream when at least one neighboring block is coded or decoded in affine mode.
2.7 模式匹配的運動向量推導(PMMVD)的示例 2.7 Example of Pattern Matched Motion Vector Derivation (PMMVD)
PMMVD模式是基於幀速率上轉換(Frame-Rate Up Conversion,FRUC)方法的特殊Merge模式。利用該模式,在解碼器側推導塊的運動信息,而不是發信令通知塊的運動信息。 PMMVD mode is a special Merge mode based on the Frame-Rate Up Conversion (FRUC) method. In this mode, the motion information of the block is derived on the decoder side instead of signaling the motion information of the block.
當CU的Merge標誌為真時,可以向CU信令通知FRUC標誌。當FRUC標誌為假時,可以信令通知Merge索引並使用常 規Merge模式。當FRUC標誌為真時,可以信令通知額外的FRUC模式標誌以指示將使用哪種方法(例如,雙邊匹配或模板匹配)來推導該塊的運動信息。 When the Merge flag of a CU is true, the FRUC flag can be signaled to the CU. When the FRUC flag is false, the Merge index can be signaled and the normal Merge mode can be used. When the FRUC flag is true, an additional FRUC mode flag can be signaled to indicate which method (e.g., bilateral matching or template matching) will be used to derive the motion information of the block.
在編碼器側,關於是否對CU使用FRUC Merge模式的決定是基於對正常Merge候選所做的RD成本選擇。例如,通過使用RD成本選擇來校驗CU的多種匹配模式(例如,雙邊匹配和模板匹配)。引起最小成本的匹配模式與其他CU模式進一步比較。如果FRUC匹配模式是最有效的模式,則對於CU將FRUC標誌設置為真,並且使用相關的匹配模式。 On the encoder side, the decision on whether to use the FRUC Merge mode for a CU is based on the RD cost selection made for normal Merge candidates. For example, multiple matching modes (e.g., bilateral matching and template matching) for a CU are checked by using the RD cost selection. The matching mode that causes the minimum cost is further compared with other CU modes. If the FRUC matching mode is the most effective mode, the FRUC flag is set to true for the CU and the relevant matching mode is used.
典型地,FRUC Merge模式中的運動推導過程具有兩個步驟:首先執行CU級運動搜索,然後進行子CU級運動細化。在CU級,基於雙邊匹配或模板匹配,推導整個CU的原始運動向量。首先,生成MV候選列表,並且選擇引起最小匹配成本的候選作為進一步CU級細化的起點。然後,在起點附近執行基於的雙邊匹配或模板匹配的局部搜索。將最小匹配成本的MV結果作為整個CU的MV。隨後,以推導的CU運動向量作為起點,進一步在子CU級細化運動信息。 Typically, the motion inference process in FRUC Merge mode has two steps: first, a CU-level motion search is performed, and then a sub-CU-level motion refinement is performed. At the CU level, the original motion vector of the entire CU is derived based on bilateral matching or template matching. First, a list of MV candidates is generated, and the candidate that causes the minimum matching cost is selected as the starting point for further CU-level refinement. Then, a local search based on bilateral matching or template matching is performed near the starting point. The MV result with the minimum matching cost is used as the MV of the entire CU. Subsequently, the motion information is further refined at the sub-CU level with the derived CU motion vector as the starting point.
例如,對於W×H CU運動信息推導執行以下推導過程。在第一階段,推導整個W×H CU的MV。在第二階段,該CU進一步被劃分成M×M個子CU。M的值的計算方法如(3)所示,D是預定義的劃分深度,在JEM中默認設置為3。然後推導每個子CU的MV。 For example, the following derivation process is performed for W × H CU motion information derivation. In the first stage, the MV of the entire W × H CU is derived. In the second stage, the CU is further divided into M × M sub-CUs. The value of M is calculated as shown in (3), and D is a predefined partition depth, which is set to 3 by default in JEM. Then the MV of each sub-CU is derived.
圖18示出了在幀速率上轉換(FRUC)方法中使用的雙邊匹配的示例。通過在兩個不同參考圖片(1810,1811)中沿當前CU(1800)的運動軌跡找到兩個塊之間的最接近匹配,使用雙邊匹配來推導當前CU的運動信息。在連續運動軌跡的假設下,指向兩個參考塊的運動向量MV0(1801)和MV1(1802)與當前圖片和兩個參考圖片之間的時間距離(例如,TD0(1803)和TD1(1804))成比例。在一些實施例中,當當前圖片1800在時間上在兩個參考圖片(1810,1811)之間並且從當前圖片到兩個參考圖片的時間距離相同時,雙邊匹配成為基於鏡像的雙向MV。 FIG18 shows an example of bilateral matching used in the frame rate up conversion (FRUC) method. Bilateral matching is used to derive the motion information of the current CU by finding the closest match between two blocks along the motion trajectory of the current CU (1800) in two different reference pictures (1810, 1811). Under the assumption of continuous motion trajectories, the motion vectors MV0 (1801) and MV1 (1802) pointing to the two reference blocks are proportional to the temporal distance between the current picture and the two reference pictures (e.g., TD0 (1803) and TD1 (1804)). In some embodiments, when the current picture 1800 is temporally between two reference pictures (1810, 1811) and the temporal distances from the current picture to the two reference pictures are the same, the bilateral matching becomes a mirror-based bidirectional MV.
圖19示出了在幀速率上轉換(FRUC)方法中使用的模板匹配的示例。模板匹配用於通過找到當前圖片1910中的模板(當前CU的頂部和/或左側相鄰塊)與參考圖片中的塊(例如,與模板的尺寸相同)之間的最接近匹配來推導當前CU 1900的運動信息。除了上述FRUC Merge模式之外,模板匹配也可以應用於AMVP模式。在JEM和HEVC兩者中所做的那樣,AMVP有兩個候選。通過模板匹配方法,推導新的候選。如果由模板匹配新推導的候選與第一現有AMVP候選不同,則將其插入AMVP候選列表的最開始處,然後將列表尺寸設置為2(例如,通過移除第二現有AMVP候選)。當應用於AMVP模式時,僅應用CU級搜索。 FIG. 19 shows an example of template matching used in the frame rate up conversion (FRUC) method. Template matching is used to derive motion information of the current CU 1900 by finding the closest match between the template in the current picture 1910 (the top and/or left neighboring blocks of the current CU) and the blocks in the reference picture (e.g., the same size as the template). In addition to the above-mentioned FRUC Merge mode, template matching can also be applied to the AMVP mode. As done in both JEM and HEVC, there are two candidates for AMVP. Through the template matching method, a new candidate is derived. If the candidate newly derived by template matching is different from the first existing AMVP candidate, it is inserted at the very beginning of the AMVP candidate list, and then the list size is set to 2 (e.g., by removing the second existing AMVP candidate). When applied to the AMVP mode, only CU-level search is applied.
在CU級處設置的MV候選可以包括以下:(1)如果當前CU處於AMVP模式,則為原始AMVP候選,(2)所有Merge 候選,(3)插值MV場中的幾個MV(稍後描述),以及頂部和左側相鄰運動向量。 The MV candidates set at the CU level can include the following: (1) the original AMVP candidates if the current CU is in AMVP mode, (2) all Merge candidates, (3) several MVs in the interpolated MV field (described later), and the top and left neighboring motion vectors.
當使用雙邊匹配時,可以將Merge候選的每個有效MV用作輸入,以生成假設雙邊匹配的情況下的MV對。例如,在參考列表A中,Merge候選的一個有效MV是(MVa,refa)。然後,在其他參考列表B中找到其配對的雙邊MV的參考圖片refb,使得refa和refb在時間上位於當前圖片的不同側。如果這樣的refb在參考列表B中不可用,則refb被確定為與refa不同的參考,並且其到當前圖片的時間距離是列表B中的最小值。在確定refb之後,通過基於當前圖片refa和refb之間的時間距離來縮放MVa來推導MVb。 When bilateral matching is used, each valid MV of the Merge candidate can be used as input to generate MV pairs assuming bilateral matching. For example, in reference list A, one valid MV of the Merge candidate is (MVa, refa). Then, the reference image refb of its paired bilateral MV is found in other reference list B, so that refa and refb are on different sides of the current image in time. If such refb is not available in reference list B, refb is determined to be a reference different from refa, and its temporal distance to the current image is the minimum in list B. After refb is determined, MVb is derived by scaling MVa based on the temporal distance between the current image refa and refb.
在一些實施例中,來自插值MV場的四個MV也可以被添加到CU級候選列表。更具體地,添加當前CU的位置(0,0)、(W/2,0)、(0,H/2)和(W/2,H/2)處的插值MV。當FRUC應用於AMVP模式時,原始AMVP候選也被添加到CU級MV候選集。在一些實施例中,在CU級,對於AMVP CU,將15個MV添加到候選列表,對於MergeCU,將13個MV添加到候選列表。 In some embodiments, four MVs from the interpolated MV field can also be added to the CU-level candidate list. More specifically, the interpolated MVs at positions (0,0), (W/2,0), (0, H/2), and (W/2, H/2) of the current CU are added. When FRUC is applied to AMVP mode, the original AMVP candidates are also added to the CU-level MV candidate set. In some embodiments, at the CU level, 15 MVs are added to the candidate list for AMVP CU and 13 MVs are added to the candidate list for MergeCU.
在子CU級處設置的MV候選包括:(1)從CU級搜索確定的MV,(2)頂部、左側、左上角和右上角的相鄰MV,(3)來自參考圖片的並置MV的縮放版本,(4)一個或多個4個ATMVP候選(最多4個),(5)一個或多個STMVP候選(例如,最多4個)。來自參考圖片的縮放MV如下推導。遍歷兩個列表中的參考 圖片。參考圖片中的子CU的並置位置處的MV被縮放到起始CU級MV的參考。ATMVP和STMVP候選可以僅限於前四個。在子CU級,一個或多個MV(例如,最多17個)被添加到候選列表中。 The MV candidates set at the sub-CU level include: (1) MVs determined from CU-level searches, (2) neighboring MVs at the top, left, upper left, and upper right corners, (3) scaled versions of collocated MVs from reference pictures, (4) one or more 4 ATMVP candidates (up to 4), (5) one or more STMVP candidates (e.g., up to 4). The scaled MVs from the reference picture are derived as follows. Traverse the reference pictures in the two lists. The MVs at the collocated positions of the sub-CUs in the reference picture are scaled to the reference of the starting CU-level MVs. ATMVP and STMVP candidates may be limited to the first four. At the sub-CU level, one or more MVs (e.g., up to 17) are added to the candidate list.
插值MV場的生成。在對幀進行編解碼之前,基於單邊ME為整個圖片生成插值運動場。然後,運動場可以稍後用作CU級或子CU級MV候選。 Generation of interpolated MV fields. Before encoding or decoding the frame, an interpolated motion field is generated for the entire picture based on one-sided ME. The motion field can then be used later as a CU-level or sub-CU-level MV candidate.
在一些實施例中,兩個參考列表中的每個參考圖片的運動場以4×4塊級遍歷。圖20示出了FRUC方法中的單邊運動估計(ME)2000的示例。對於每個4×4塊,如果與塊相關聯的運動通過當前圖片中的4×4塊並且塊未被分配任何插值運動,則參考塊的運動根據時間距離TD0和TD1(以與HEVC中的TMVP的MV縮放的方式相同的方式)被縮放到當前圖片,並且將縮放的運動分配給當前幀中的塊。如果沒有縮放的MV被分配給4×4塊,則在插值運動場中將塊的運動標記為不可用。 In some embodiments, the motion field of each reference picture in the two reference lists is traversed at the 4×4 block level. FIG. 20 shows an example of unilateral motion estimation (ME) 2000 in the FRUC method. For each 4×4 block, if the motion associated with the block passes through a 4×4 block in the current picture and the block is not assigned any interpolated motion, the motion of the reference block is scaled to the current picture according to the temporal distances TD0 and TD1 (in the same way as the MV scaling of TMVP in HEVC), and the scaled motion is assigned to the block in the current frame. If no scaled MV is assigned to the 4×4 block, the motion of the block is marked as unavailable in the interpolated motion field.
插值和匹配成本。當運動向量指向分數樣本位置時,需要運動補償插值。為了降低複雜度,替代常規8抽頭HEVC插值,可以將雙線性插值用於雙邊匹配和模板匹配。 Interpolation and matching costs. When motion vectors point to fractional sample locations, motion compensation interpolation is required. To reduce complexity, bilinear interpolation can be used for bilateral matching and template matching instead of conventional 8-tap HEVC interpolation.
匹配成本的計算在不同步驟處有點不同。當從CU級的候選集中選擇候選時,匹配成本可以是雙邊匹配或模板匹配的絕對和差(Absolute Sum Difference,SAD)。在確定起始MV之後,子CU級搜索的雙邊匹配的匹配成本C計算如下:
這裡,w是加權因子。在一些實施例中,w可以設置為4。MV和MV s 分別指示當前MV和起始MV。SAD仍可以用作子CU級搜索的模板匹配的匹配成本。 Here, w is a weighting factor. In some embodiments, w can be set to 4. MV and MVs indicate the current MV and the starting MV , respectively. SAD can still be used as the matching cost of template matching for sub-CU level search.
在FRUC模式中,僅通過使用亮度樣本來推導MV。推導的運動將用於MC幀間預測的亮度和彩度兩者。在確定MV之後,使用用於亮度的8抽頭插值濾波器和用於彩度的4抽頭插值濾波器來執行最終MC。 In FRUC mode, MV is derived by using luma samples only. The derived motion will be used for MC frame-to-frame prediction for both luma and chroma. After the MV is determined, the final MC is performed using an 8-tap interpolation filter for luma and a 4-tap interpolation filter for chroma.
MV細化是基於模式的MV搜索,以雙邊匹配成本或模板匹配成本為標準。在JEM中,支持兩種搜索模式-無限制中心偏置菱形搜索(Unrestricted Center-Biased Diamond Search,UCBDS)和自適應交叉搜索,分別在CU級和子CU級進行MV細化。對於CU和子CU級MV細化兩者,以四分之一亮度樣本MV精度直接搜索MV,並且接著是八分之一亮度樣本MV細化。將用於CU和子CU步驟的MV細化的搜索範圍設置為等於8個亮度樣本。 MV refinement is a pattern-based MV search with bilateral matching cost or template matching cost as the criterion. In JEM, two search modes are supported - Unrestricted Center-Biased Diamond Search (UCBDS) and Adaptive Cross Search, which perform MV refinement at CU level and sub-CU level respectively. For both CU and sub-CU level MV refinement, MV is directly searched with quarter luma sample MV precision, and followed by one-eighth luma sample MV refinement. The search range for MV refinement for CU and sub-CU steps is set equal to 8 luma samples.
在雙邊匹配Merge模式中,應用雙向預測,因為CU的運動信息是基於在兩個不同的參考圖片中沿當前CU的運動軌跡的兩個塊之間的最近匹配推導的。在模板匹配Merge模式中,編碼器可以從列表0中的單向預測、列表1中的單向預測或雙向預測當中為CU選擇。可以選擇基於如下的模板匹配成本: In bilateral matching Merge mode, bidirectional prediction is applied because the motion information of the CU is derived based on the closest match between two blocks along the motion trajectory of the current CU in two different reference pictures. In template matching Merge mode, the encoder can choose from unidirectional prediction in list 0, unidirectional prediction in list 1, or bidirectional prediction for the CU. The choice can be based on the template matching cost as follows:
如果costBi<=factor*min(cost0,cost1) 則使用雙向預測;否則,如果cost0<=cost1則使用列表0中的單向預測;否則,使用列表1中的單向預測; If costBi<=factor*min(cost0,cost1) then use bidirectional prediction; otherwise, if cost0<=cost1, use the unidirectional prediction in list 0; otherwise, use the unidirectional prediction in list 1;
其中cost0是列表0模板匹配的SAD,cost1是列表1模板匹配的SAD,costBi是雙向預測模板匹配的SAD。例如,當factor的值等於1.25時,這意味著選擇過程偏向於雙向預測。幀間預測方向選擇可以應用於CU級模板匹配過程。 Where cost0 is the SAD of template matching in list 0, cost1 is the SAD of template matching in list 1, and costBi is the SAD of template matching with bidirectional prediction. For example, when the value of factor is equal to 1.25, it means that the selection process is biased towards bidirectional prediction. Inter-frame prediction direction selection can be applied to the CU-level template matching process.
2.8 雙向光流(BIO)的示例 2.8 Example of Bidirectional Optical Flow (BIO)
在BIO中,首先執行運動補償以生成當前塊的第一預測(在每個預測方向上)。第一預測用於推導塊內每個子塊/像素的空間梯度、時間梯度和光流,然後使用其生成第二預測,例如,子塊/像素的最終預測。細節描述如下。 In BIO, motion compensation is first performed to generate a first prediction of the current block (in each prediction direction). The first prediction is used to derive the spatial gradient, temporal gradient, and optical flow of each sub-block/pixel within the block, which is then used to generate a second prediction, e.g., the final prediction of the sub-block/pixel. The details are described below.
雙向光流(Bi-directional Optical flow,BIO)方法是樣本方式的運動細化,其在用於雙向預測的逐塊運動補償之上執行。在一些實施例中,樣本級運動細化不使用信令。 The bidirectional optical flow (BIO) method is a sample-wise motion refinement that is performed on top of block-wise motion compensation for bidirectional prediction. In some embodiments, sample-level motion refinement does not use signaling.
設I (k)為塊運動補償之後參考k(k=0,1)的亮度值,並且 / , / 分別為I (k)梯度的水平分量和垂直分量。假設光流是有效的,則運動向量場(v x ,v y )由下式給出:
將此光流等式與每個樣本運動軌跡的埃爾米特插值相結合,得到唯一的三階多項式,該三階多項式最後匹配函數值I (k)和其導數 / , / 兩者。該三階多項式在t=0時的值是BIO預測:
圖21示出了雙向光流(BIO)方法中的示例光流軌跡。這裡,τ0和τ1表示到參考幀的距離,如圖21所示。基於Ref0和Ref1的POC計算距離τ0和τ1:τ0=POC(當前)-POC(Ref0),τ1=POC(Ref1)-POC(當前)。如果兩個預測都來自相同的時間方向(兩者都來自過去或都來自未來),則sign是不同的即,τ0.τ1<0。在這種情況下,僅當預測不是來自相同的時刻(即,τ0≠τ1)時才應用BIO,兩個參考區域都具有非零運動(MVx 0 ,MVy 0 ,MVx 1 ,MVy 1≠0)並且塊運動向量與時間距離成比例(MVx 0 /MVx 1=MVy 0 /MVy 1=-τ0/τ1)。 FIG21 shows an example optical flow trajectory in the bidirectional optical flow (BIO) method. Here, τ 0 and τ 1 represent the distance to the reference frame, as shown in FIG21 . The distances τ 0 and τ 1 are calculated based on the POC of Ref0 and Ref1: τ 0 =POC(current)-POC(Ref0), τ 1 =POC(Ref1)-POC(current). If both predictions are from the same time direction (both from the past or both from the future), the signs are different, i.e., τ 0 · τ 1 <0. In this case, BIO is applied only when the predictions are not from the same time instant (i.e., τ 0 ≠τ 1 ), both reference regions have non-zero motion ( MVx 0 , MVy 0 , MVx 1 , MVy 1 ≠0) and the block motion vector is proportional to the temporal distance ( MVx 0 /MVx 1 = MVy 0 /MVy 1 = -τ 0 /τ 1 ).
通過最小化點A和B中的值之間的差△來確定運動向量場(v x ,v y )。圖9示出了運動軌跡和參考幀平面的交叉的示例。模型僅使用△的局部泰勒展開的第一線性項:
上述等式中的所有值都取決於樣本位置,表示為(i',j')。假設運動在局部周圍區域是一致的,在以當前預測點為中心的
(2M+1) x (2M+1)的方形窗口Ω內最小化△,其中M等於2:
對於該優化問題,JEM使用簡化方法,首先在垂直方向上進行最小化,然後在水平方向上進行最小化。由此產生以下:
其中,
為了避免除以零或非常小的值,在等式9和10中可以引入正則化參數r和m。 To avoid division by zero or very small values, regularization parameters r and m can be introduced in equations 9 and 10.
r=500.4 d-8 (12) r =500.4 d -8 (12)
m=700.4 d-8 (13) m = 700.4 d -8 (13)
這裡d是視頻樣本的位元深度。 Here d is the bit depth of the video samples.
為了使BIO的儲存器存取與常規雙向預測運動補償保持相同,僅針對當前塊內的位置計算所有預測和梯度值 I (k) ,/,/ 。圖22A示出了塊2200外部的存取位置的示例。如圖22A所示,在等式(9)中,以在預測塊的邊界上的當前預測點為中心的(2M+1) x (2M+1)方形窗口Ω需要存取塊外部的位置。在JEM中,將塊外部的I (k) ,/,/ 的值設置為等於塊內最近的可用值。例如,這可以實施為填充區域2201,如圖22B所示。 To keep the BIO memory accesses the same as for conventional bidirectional prediction motion compensation, all predictions and gradient values I ( k ) are calculated only for the position within the current block . / , / FIG. 22A shows an example of accessing locations outside of a block 2200. As shown in FIG. 22A, in equation (9), a (2M+1) x (2M+1) square window Ω centered at the current prediction point on the boundary of the prediction block needs to access locations outside the block. In JEM, I ( k ) outside the block is converted to / , / The value of is set equal to the nearest available value within the block. For example, this can be implemented as filling area 2201, as shown in Figure 22B.
利用BIO,可以針對每個樣本細化運動場。為了降低計算複雜度,在JEM中使用基於塊的BIO設計。可以基於4x4的塊計算運動細化。在基於塊的BIO中,可以聚合4x4的塊中的所有樣本的等式9中的sn的值,然後將sn的聚合值用於推導4x4塊的BIO運動向量偏移。更具體地,以下公式可以用於基於塊的BIO推導:
這裡bk表示屬預測塊的第k個4x4塊的樣本集。將等式9和10中的sn替換為((sn,bk)>>4),以推導相關聯的運動向量偏移。 Here bk denotes the set of samples belonging to the kth 4x4 block of the prediction block. Replace sn in Equations 9 and 10 with (( sn,bk )>>4) to derive the associated motion vector offset.
在一些情景下,由於噪音或不規則運動,BIO的MV團(MV regiment)可能不可靠。因此,在BIO中,MV團的尺寸被閾值裁剪。基於當前圖片的參考圖片是否都來自一個方向來確定閾值。例如,如果當前圖片的所有參考圖片都來自一個方向,則將閾值的值設置為12×214-d ;否則,將其設置為12×213-d 。 In some scenarios, the MV regiment of BIO may be unreliable due to noise or irregular motion. Therefore, in BIO, the size of the MV regiment is clipped by a threshold. The threshold is determined based on whether the reference images of the current image are all from one direction. For example, if all the reference images of the current image are from one direction, the value of the threshold is set to 12×2 14- d ; otherwise, it is set to 12×2 13- d .
可以利用使用與HEVC運動補償過程(例如,2D可分離有限脈衝響應(FIR))一致的操作的運動補償插值來同時計算BIO的梯度。在一些實施例中,根據塊運動向量的分數部分,該2D可分離FIR的輸入是與運動補償過程和分數位置(fracX,fracY)相同的參考幀樣本。對於水平梯度 / ,首先使用與具有去縮放偏移d-8的分數位置fracY相對應的BIOfilterS垂直插值信號。然後在水平方向上應用梯度濾波器BIOfilterG,該BIOfilterG與具有去縮放偏移18-d的分數位置fracX相對應。對於垂直梯度 / ,首先使用與具有去縮放偏移d-8的分數位置fracY相對應的BIOfilterG垂直應用梯度濾波器。然後在水平方向上使用BIOfilterS執行信號位移,該BIOfilterS與具有去縮放偏移18-d的分數位置fracX相對應。用於梯度計算的插值濾波器BIOfilterG和用於信號位移的插值濾波器BIOfilterS的長度可以較短(例如,6抽頭),以保持合理的複雜度。表1示出了可以用於BIO中塊運動向量的不同分數位置的梯度計算的濾波器的示例。表2示出了可以用於BIO中預測信號生成的插值濾波器的示例。 The gradient of the BIO may be simultaneously calculated using motion compensated interpolation using operations consistent with the HEVC motion compensation process (e.g., 2D separable finite impulse response (FIR)). In some embodiments, the input to the 2D separable FIR is the same reference frame samples as the motion compensation process and the fractional position (fracX, fracY) according to the fractional part of the block motion vector. For the horizontal gradient / , the signal is first interpolated vertically using BIOfilterS corresponding to fractional position fracY with descaling offset d-8. Then a gradient filter BIOfilterG is applied horizontally, which corresponds to fractional position fracX with descaling offset 18-d. For the vertical gradient / , first a gradient filter is applied vertically using BIOfilterG corresponding to fractional position fracY with descaling offset d-8. Then a signal shift is performed in the horizontal direction using BIOfilterS corresponding to fractional position fracX with descaling offset 18-d. The length of the interpolation filter BIOfilterG used for gradient calculation and the interpolation filter BIOfilterS used for signal shift can be short (e.g., 6 taps) to keep the complexity reasonable. Table 1 shows examples of filters that can be used for gradient calculation of different fractional positions of block motion vectors in BIO. Table 2 shows examples of interpolation filters that can be used for prediction signal generation in BIO.
表1:用於BIO中梯度計算的示例性濾波器
在JEM中,當兩個預測來自不同的參考圖片時,BIO可以應用於所有雙預測塊。當為CU啟用局部照明補償(LIC)時, 可以禁用BIO。 In JEM, BIO can be applied to all dual prediction blocks when the two predictions come from different reference images. BIO can be disabled when Local Illumination Compensation (LIC) is enabled for a CU.
在一些實施例中,OBMC在正常MC過程之後應用於塊。為了降低計算複雜性,在OBMC過程中可以不應用BIO。這意味著BIO僅在使用其自身的MV時才應用於塊的MC過程,並且在OBMC過程中使用相鄰塊的MV時不應用於MC過程。 In some embodiments, OBMC is applied to a block after the normal MC process. To reduce computational complexity, BIO may not be applied during the OBMC process. This means that BIO is applied to the MC process of a block only when its own MV is used, and is not applied to the MC process when the MV of a neighboring block is used during the OBMC process.
2.9 解碼器側運動向量細化(DMVR)的示例 2.9 Example of Decoder-side Motion Vector Refinement (DMVR)
在雙向預測操作中,對於一個塊區域的預測,將分別使用list0的運動向量(MV)和list1的MV形成的兩個預測塊進行組合以形成單個預測信號。在解碼器側運動向量細化(Decoder-Side Motion Vector Refinement,DMVR)方法中,通過雙邊模板匹配過程進一步細化雙向預測的兩個運動向量。雙邊模板匹配應用在解碼器中,以在雙邊模板和參考圖片中的重建樣本之間執行基於失真的搜索,以便獲得細化的MV而無需傳輸附加的運動信息。 In the bidirectional prediction operation, for the prediction of a block area, two prediction blocks formed by the motion vector (MV) of list0 and the MV of list1 are combined to form a single prediction signal. In the decoder-side motion vector refinement (DMVR) method, the two motion vectors of the bidirectional prediction are further refined by the bilateral template matching process. Bilateral template matching is applied in the decoder to perform a distortion-based search between the bilateral template and the reconstructed samples in the reference picture in order to obtain the refined MV without transmitting additional motion information.
在DMVR中,分別從列表0的原始MV0和列表1的MV1,將雙邊模板生成為兩個預測塊的加權組合(即平均),如圖23所示。模板匹配操作包括計算所生成的模板與參考圖片中的(在原始預測塊周圍的)樣本區域之間的成本度量。對於兩個參考圖片中的每個,將產生最小模板成本的MV考慮為該列表的更新MV以替換原始MV。在JEM中,對每個列表搜索九個MV候選。該九個MV候選包括原始MV和8個與原始MV在水平或垂直方向上或兩個方向上具有一個亮度樣本偏移的環繞的MV。最後,將兩 個新的MV,即如圖23中所示的MV0'和MV1',用於生成最終的雙向預測結果。將絕對差之和(SAD)用作成本度量。 In DMVR, a bilateral template is generated as a weighted combination (i.e., average) of two prediction blocks, from the original MV0 of list 0 and MV1 of list 1, respectively, as shown in Figure 23. The template matching operation includes calculating a cost metric between the generated template and the sample area (around the original prediction block) in the reference image. For each of the two reference images, the MV that produces the minimum template cost is considered as the updated MV of the list to replace the original MV. In JEM, nine MV candidates are searched for each list. The nine MV candidates include the original MV and 8 surrounding MVs that have a brightness sample offset in the horizontal or vertical direction or in both directions from the original MV. Finally, two new MVs, namely MV0' and MV1' as shown in Figure 23, are used to generate the final bilateral prediction result. The sum of absolute differences (SAD) is used as a cost metric.
將DMVR應用於雙向預測的Merge模式,其中一個MV來自過去的參考圖片,另一MV來自未來的參考圖片,而無需傳輸額外的語法元素。在JEM中,當對CU啟用LIC、仿射運動、FRUC或子CU Merge候選時,不應用DMVR。 Apply DMVR to the Merge mode of bidirectional prediction, where one MV comes from the past reference picture and the other MV comes from the future reference picture, without transmitting additional syntax elements. In JEM, DMVR is not applied when LIC, affine motion, FRUC, or sub-CU Merge candidate is enabled for a CU.
3 CABAC修改的示例 3 Examples of CABAC modifications
在JEM中,與HEVC中的設計相比,CABAC包含以下三個主要變化:用於變換係數的修改的上下文建模;具有依賴於上下文的更新速度的多假設概率估計;用於上下文模型的自適應原始化。 In JEM, CABAC includes the following three major changes compared to the design in HEVC: context modeling for the modification of transform coefficients; multi-hypothesis probability estimation with context-dependent update speed; adaptive initialization for the context model.
3.1 用於變換係數的上下文建模的示例 3.1 Example of context modeling for transformation coefficients
在HEVC中,使用非重疊係數組(CG)對編解碼塊的變換係數進行編解碼,並且每個CG包含編解碼塊的4×4塊的係數。編解碼塊內的CG和CG內的變換係數根據預定義的掃描順序進行編解碼。具有至少一個非零變換係數的CG的變換係數級的編解碼可以被分成多個掃描通道。在第一通道中,對第一個二進制符號(由bin0表示,也稱為significant_coeff_flag,其指示係數的尺寸大於0)進行編解碼。接下來,可以應用用於上下文編解碼第二/第三二進制符號(bin)的兩個掃描通道(分別由bin1和bin2表示,也稱為coeff_abs_greater1_flag和coeff_abs_greater2_flag)。 最後,如果需要,再調用多於兩次用於編解碼符號信息的掃描通道以及係數級的剩餘值(也稱為coeff_abs_level_remaining)。只有前三個掃描通道中的二進制符號以常規模式進行編解碼,並且這些二進制符號在下面的描述中稱為常規二進制符號。 In HEVC, the transform coefficients of a codec block are encoded and decoded using non-overlapping coefficient groups (CGs), and each CG contains a 4×4 block of coefficients of the codec block. The CGs within a codec block and the transform coefficients within the CGs are encoded and decoded according to a predefined scanning order. The encoding and decoding of the transform coefficient level of a CG with at least one non-zero transform coefficient can be divided into multiple scanning channels. In the first channel, the first binary symbol (represented by bin0, also called significant_coeff_flag, which indicates that the size of the coefficient is greater than 0) is encoded and decoded. Next, two passes for context encoding/decoding the second/third binary symbol (bin) can be applied (represented by bin1 and bin2, also called coeff_abs_greater1_flag and coeff_abs_greater2_flag, respectively). Finally, if necessary, two more passes for encoding/decoding symbol information and the residual value of the coefficient level (also called coeff_abs_level_remaining) are called. Only the binary symbols in the first three passes are encoded/decoded in the normal mode, and these binary symbols are called normal binary symbols in the following description.
在JEM中,改變常規二進制符號的上下文建模。當在第i掃描通道(i為0、1、2)中對二進制符號i進行編解碼時,上下文索引取決於由局部模板覆蓋的鄰域中的先前編解碼係數的第i個二進制符號的值。具體地,基於相鄰係數的第i個二進制符號的總和來確定上下文索引。 In JEM, the context modeling of conventional binary symbols is changed. When binary symbol i is encoded and decoded in the i-th scanning channel (i is 0, 1, 2), the context index depends on the value of the i-th binary symbol of the previous encoded and decoded coefficients in the neighborhood covered by the local template. Specifically, the context index is determined based on the sum of the i-th binary symbols of the neighboring coefficients.
如圖24所示,局部模板包含多達五個空間相鄰變換係數,其中x表示當前變換係數的位置,xi(i為0到4)指示其五個鄰居。為了捕獲不同頻率處的變換係數的特性,可以將一個編解碼塊劃分成多達三個區域,並且無論編解碼塊尺寸如何,劃分方法都是固定的。例如,當對亮度變換係數的bin0進行編解碼時,如圖24所示,將一個編解碼塊劃分成用不同顏色標記的三個區域,並列出分配給每個區域的上下文索引。亮度和彩度分量以類似的方式處理,但具有單獨的上下文模型集。此外,亮度分量的bin0(例如,有效標記)的上下文模型選擇還取決於變換尺寸。 As shown in Figure 24, the local template contains up to five spatially neighboring transform coefficients, where x represents the position of the current transform coefficient and xi (i is 0 to 4) indicates its five neighbors. In order to capture the characteristics of transform coefficients at different frequencies, a codec block can be divided into up to three regions, and the division method is fixed regardless of the codec block size. For example, when bin0 of the luma transform coefficient is encoded and decoded, as shown in Figure 24, a codec block is divided into three regions marked with different colors, and the context index assigned to each region is listed. Luma and chroma components are processed in a similar manner, but with separate context model sets. In addition, the context model selection for bin0 of the luma component (e.g., valid mark) also depends on the transform size.
3.2 多假設概率估計的示例 3.2 Example of multiple hypothesis probability estimation
二進制算術編解碼器基於與每個上下文模型相關聯的兩個概率估計P0和P1應用“多假設”概率更新模型,並且以不同的自適應速率獨立地更新如下:
其中和(j=0,1)分別表示解碼二元位之前和之後的概率。變量Mi(為4、5、6、7)是控制索引等於i的上下文模型的概率更新速度的參數;並且k表示概率的精度(這裡等於15)。 in and (j=0,1) represent the probabilities before and after the decoded binary bit, respectively. The variable Mi (4, 5, 6, 7) is a parameter that controls the probability update speed of the context model with index equal to i; and k represents the precision of the probability (here equal to 15).
用於二進制算術編解碼器中的區間細分的概率估計P是來自兩個假設的估計的均值:
在JEM中,如下分配控制每個上下文模型的概率更新速度的等式(15)中使用的參數Mi的值。 In JEM, the value of the parameter Mi used in equation (15) that controls the probability update speed of each context model is assigned as follows.
在編碼器側,記錄與每個上下文模型相關聯的編解碼二元位。在對一個條帶進行編解碼之後,對於每個索引等於i的上下文模型,計算使用不同的Mi值(為4,5,6,7)的速率成本,並選擇提供最小速率成本的一個。為簡單起見,僅在遇到條帶類型和條帶級量化參數的新組合時才執行該選擇過程。 On the encoder side, the codec binary associated with each context model is recorded. After encoding and decoding a slice, for each context model with index equal to i, the rate cost using different Mi values (4, 5, 6, 7) is calculated and the one that provides the minimum rate cost is selected. For simplicity, this selection process is performed only when a new combination of slice type and slice-level quantization parameter is encountered.
針對每個上下文模型i發信令通知1位元標記以指示Mi是否不同於默認值4。當標誌為1時,使用兩個位元來指示Mi是否等於5、6或7。 A 1-bit flag is signaled for each context model i to indicate whether Mi is different from the default value of 4. When the flag is 1, two bits are used to indicate whether Mi is equal to 5, 6 or 7.
3.3 上下文模型的初始化 3.3 Initialization of context model
代替在HEVC中使用固定表用於上下文模型初始化,可 以通過從先前編解碼的圖片複製狀態來初始化用於幀間編解碼的條帶的上下文模型的初始概率狀態。更具體地,在對每個圖片的中心定位的CTU進行編解碼之後,儲存所有上下文模型的概率狀態以用作後續圖片上的對應上下文模型的初始狀態。在JEM中,從具有與當前條帶相同的條帶類型和相同條帶級QP的先前編解碼圖片的儲存狀態中複製每個幀間編解碼條帶的初始狀態集。這缺乏損失魯棒性,但在當前的JEM方案中用於編解碼效率實驗目的。 Instead of using a fixed table for context model initialization in HEVC, the initial probability states of the context models for inter-coded slices can be initialized by copying the states from the previously coded pictures. More specifically, after coding the center-located CTU of each picture, the probability states of all context models are stored to be used as the initial states of the corresponding context models on subsequent pictures. In JEM, the initial set of states for each inter-coded slice is copied from the stored states of the previously coded picture with the same slice type and the same slice level QP as the current slice. This lacks loss robustness but is used in the current JEM scheme for codec efficiency experimentation purposes.
4 相關實施例和方法的示例 4 Examples of related embodiments and methods
與所公開的技術相關的方法包括擴展的LAMVR其中支持的運動向量解析度範圍從1/4像素到4像素(1/4像素、1/2像素、1-像素、2-像素和4像素)。當用信令通知MVD信息時,在CU級用信令通知關於運動向量解析度的信息。 Methods related to the disclosed technology include extended LAMVR in which the supported motion vector resolution ranges from 1/4 pixel to 4 pixels (1/4 pixel, 1/2 pixel, 1-pixel, 2-pixel, and 4 pixels). When MVD information is signaled, information about the motion vector resolution is signaled at the CU level.
取決於CU的解析度,調整CU的運動向量(MV)和運動向量預測(MVP)。如果應用的運動向量解析度表示為R(R可以是¼、½、1、2、4),則MV(MVx、MVy)和MVP(MVPx、MVPy)表示如下:(MVx,MVy)=(Round(MVx/(R * 4)) * (R * 4),Round(MVy/(R * 4)) * (R * 4)) (17) (MVPx,MVPy)=(Round(MVPx/(R * 4)) * (R * 4),Round(MVPy/(R * 4)) * (R * 4)) (18) Depending on the resolution of the CU, the motion vector (MV) and motion vector prediction (MVP) of the CU are adjusted. If the applied motion vector resolution is denoted as R (R can be ¼, ½, 1, 2, 4), the MV (MV x , MV y ) and MVP (MVP x , MVP y ) are expressed as follows: (MV x , MV y ) = (Round (MV x / (R * 4)) * (R * 4), Round (MV y / (R * 4)) * (R * 4)) (17) (MVP x , MVP y ) = (Round (MVP x / (R * 4)) * (R * 4), Round (MVP y / (R * 4)) * (R * 4)) (18)
由於運動向量預測和MV都通過自適應解析度調整,因 此MVD(MVDx、MVDy)也與解析度對準,並且根據解析度用信令通知如下:(MVDx,MVDy)=((MVx-MVPx)/(R * 4),(MVy-MVPy)/R * 4)) (19) Since both the motion vector prediction and the MV are adjusted by adaptive resolution, the MVD ( MVDx , MVDy ) is also aligned with the resolution and is signaled according to the resolution as follows: ( MVDx , MVDy ) = (( MVx - MVPx ) / (R*4), (MVy - MVPy ) / R*4)) (19)
在該提議中,運動向量解析度索引(MVR索引)指示MVP索引以及運動向量解析度。結果,所提出的方法沒有MVP索引信令。下表顯示了MVR索引的每個值所表示的內容。 In this proposal, the motion vector resolution index (MVR index) indicates the MVP index as well as the motion vector resolution. As a result, the proposed method has no MVP index signaling. The following table shows what each value of the MVR index represents.
在雙向預測的情況下,AMVR針對每種解析度具有3種模式。AMVR雙向索引(Bi-Index)指示是否發信令通知每個參考列表(列表0或列表1)的MVDx,MVDy。AMVR雙向索引的示例定義如下表。 In case of bidirectional prediction, AMVR has 3 modes for each resolution. AMVR Bi-Index indicates whether to signal MVDx, MVDy for each reference list (list 0 or list 1). An example definition of AMVR Bi-Index is shown in the following table.
5.現有實施方式的缺點 5. Disadvantages of existing implementation methods
在使用BIO的一個現有實施方式中,列表0中的參考塊/子塊(由refblk0表示)和列表1中的參考塊/子塊(refblk1)之間計算的MV,由(vx,vy)表示,僅用於當前塊/子塊的運動補償,而不用於未來編解碼塊的運動預測、去方塊、OBMC等,這可能是低效的。例如,可以為塊的每個子塊/像素生成(vx,vy),並且公式(7)可以用於生成子塊/像素的第二預測。然而,(vx,vy)不用於子塊/像素的運動補償,這可能也是低效的。 In one prior implementation using BIO, the MV calculated between the reference block/subblock in list 0 (denoted by refblk0) and the reference block/subblock in list 1 (refblk1), denoted by (v x , vy ), is only used for motion compensation of the current block/subblock, but not for motion prediction, deblocking, OBMC, etc. of future coded blocks, which may be inefficient. For example, (v x , vy ) may be generated for each subblock/pixel of the block, and formula (7) may be used to generate a second prediction of the subblock/pixel. However, (v x , vy ) is not used for motion compensation of the subblock/pixel, which may also be inefficient.
在將DMVR和BIO用於雙向預測PU的另一現有實施方式中,首先,執行DMVR。之後,更新PU的運動信息。然後,利用更新的運動信息執行BIO。也就是說,BIO的輸入取決於DMVR的輸出。 In another existing implementation method of using DMVR and BIO for bidirectional prediction of PU, first, DMVR is executed. After that, the motion information of PU is updated. Then, BIO is executed using the updated motion information. That is, the input of BIO depends on the output of DMVR.
在使用OBMC的又一現有實施方式中,對於AMVP模式,對於小塊(寬度*高度<=256),在編碼器處確定是否啟用OBMC,並且用信令通知解碼器。這增加了編碼器的複雜度。同時,對於給定的塊/子塊,當啟用OBMC時,它總是應用於亮度和彩度二者,這可能導致編解碼效率下降。 In another existing implementation using OBMC, for AMVP mode, for small blocks (width*height<=256), whether to enable OBMC is determined at the encoder and the decoder is notified by signaling. This increases the complexity of the encoder. At the same time, for a given block/subblock, when OBMC is enabled, it is always applied to both luminance and chrominance, which may lead to decreased encoding and decoding efficiency.
在使用AF_INTER模式的又一現有實施方式中,需要對MVD進行編解碼,然而,它只能以1/4像素精度進行編解碼,這可能是低效的。 In another existing implementation using AF_INTER mode, MVD needs to be encoded and decoded, however, it can only be encoded and decoded with 1/4 pixel accuracy, which may be inefficient.
6.用於視覺媒體編解碼的兩步幀間預測的示例方法 6. Example method for two-step inter-frame prediction for visual media encoding and decoding
當前公開的技術的實施例克服了現有實施方式的缺點, 並提供了附加解決方案,從而提供具有更高編解碼效率的視頻編解碼。基於所公開的技術,兩步幀間預測可以增強現有和未來的視頻編解碼標準,在以下針對各種實施方式所描述的示例中闡明。以下提供的所公開技術的示例解釋了一般概念,並不意味著被解釋為限制。在示例中,除非明確地指示為相反,否則可以組合這些示例中描述的各種特徵。 Embodiments of the presently disclosed technology overcome the shortcomings of existing implementations, and provide additional solutions to provide video codecs with higher codec efficiency. Based on the disclosed technology, two-step inter-frame prediction can enhance existing and future video codec standards, as illustrated in the examples described below for various implementations. The examples of the disclosed technology provided below illustrate the general concepts and are not meant to be interpreted as limiting. In the examples, the various features described in these examples can be combined unless explicitly indicated to the contrary.
關於術語,來自列表0和列表1的當前圖片的參考圖片分別表示為Ref0和Ref1。表示τ0=POC(當前)-POC(Ref0),τ1=POC(Ref1)-POC(當前),並將來自Ref0和Ref1的當前塊的參考塊分別表示為refblk0和refblk1。對於當前塊中的子塊,refblk0中指向refblk1的其對應子塊的原始MV表示為(vx,vy)。Ref0和Ref1中的子塊的MV分別由(mvL0x,mvL0y)和(mvL1x,mvL1y)表示。由(vx,vy)表示BIO中從原始MV推導的推導的MV。如本專利文件中所述,可以將用於運動預測的基於更新的運動向量的方法擴展到現有和未來的視頻編解碼標準。 Regarding terminology, the reference pictures of the current picture from list 0 and list 1 are denoted as Ref0 and Ref1, respectively. Denote τ 0 =POC(current)-POC(Ref0), τ 1 =POC(Ref1)-POC(current), and denote the reference blocks of the current block from Ref0 and Ref1 as refblk0 and refblk1, respectively. For a subblock in the current block, the original MV of its corresponding subblock in refblk0 pointing to refblk1 is denoted as (v x ,v y ). The MVs of the subblocks in Ref0 and Ref1 are denoted by (mvL0 x ,mvL0 y ) and (mvL1 x ,mvL1 y ), respectively. The derived MV derived from the original MV in BIO is denoted by (v x ,v y ). As described in this patent document, the updated motion vector based method for motion prediction can be extended to existing and future video coding standards.
示例1.MV(vx,vy)和MV(mvLXx,mvLXy),其中X=0或1,應在加法操作之前縮放到相同的精度,諸如在執行示例1(e)和/或示例2中的技術之前。 Example 1. MV(v x ,v y ) and MV(mvLX x ,mvLX y ), where X = 0 or 1, should be scaled to the same precision before the addition operation, such as before performing the techniques in Example 1(e) and/or Example 2.
(a)在一個示例中,將目標精度(要縮放到的)設置為MV(vx,vy)和MV(mvLXx,mvLXy)之間的較高(針對更好的性能)/較低(針對更低的複雜度)的精度。可替代地,無論這兩個MV的精度如何,都將目標精度(要縮放到的)設置為固定值(例如, 1/32像素精度)。 (a) In one example, the target precision (to be scaled to) is set to the higher (for better performance)/lower (for lower complexity) precision between MV(v x , vy ) and MV(mvLX x ,mvLX y ). Alternatively, the target precision (to be scaled to) is set to a fixed value (e.g., 1/32 pixel precision) regardless of the precision of the two MVs.
(b)在一個示例中,可以將原始MV(mvLXx,mvLXy)在加法操作之前縮放到更高的精度,例如,它可以從1/4像素精度縮放到1/16像素精度。在這種情況下,mvLXx=sign(mvLXx) * (abs(mvLXx)<<N),mvLXy=sign(mvLXy) * (abs(mvLXy)<<N),其中函數sign(.)返回輸入參數的符號(如下所示),並且函數abs(.)返回輸入參數的絕對值,並且N=log2(curr_mv_precision/targ_mv_precision),並且curr_mv_precision和targ_mv_precision分別是當前MV精度和目標MV精度。例如,如果將MV從1/4像素精度縮放到1/16像素精度,則N=log2((1/4)/(1/16))=2。 (b) In one example, the original MV (mvLX x , mvLX y ) can be scaled to a higher precision before the addition operation, for example, it can be scaled from 1/4 pixel precision to 1/16 pixel precision. In this case, mvLX x = sign(mvLX x ) * (abs(mvLX x )<<N), mvLX y = sign(mvLX y ) * (abs(mvLX y )<<N), where the function sign(.) returns the sign of the input parameter (as shown below), and the function abs(.) returns the absolute value of the input parameter, and N=log2(curr_mv_precision/targ_mv_precision), and curr_mv_precision and targ_mv_precision are the current MV precision and the target MV precision, respectively. For example, if the MV is scaled from 1/4 pixel precision to 1/16 pixel precision, then N=log2((1/4)/(1/16))=2.
(i)可替代地,mvLXx=mvLXx<<N,mvLXy=mvLXy<<N。 (i) Alternatively, mvLX x =mvLX x <<N, mvLX y =mvLX y <<N.
(ii)可替代地,mvLXx=mvLXx<<(N+K),mvLXy=mvLXy<<(N+K)。 (ii) Alternatively, mvLX x =mvLX x <<(N+K), mvLX y =mvLX y <<(N+K).
(iii)可替代地,mvLXx=sign(mvLXx) * (abs(mvLXx)<<(N+K)),mvLXy=sign(mvLXy) * (abs(mvLXy)<<(N+K))。 (iii) Alternatively, mvLX x =sign(mvLX x ) * (abs(mvLX x )<<(N+K)), mvLX y =sign(mvLX y ) * (abs(mvLX y )<<(N+K)).
(iv)類似地,如果需要將MV(vx,vy)縮放到較低精度,則可以應用如示例1(d)中所指定的縮放過程。 (iv) Similarly, if MV( vx , vy ) needs to be scaled to lower precision, the scaling process specified in Example 1(d) can be applied.
(c)在一個示例中,如果MV(vx,vy)的精度低於/高於MV(mvLXx,mvLXy)的精度,則應將MV(vx,vy)縮放到更精細/更 粗略的精度。例如,MV(mvLXx,mvLXy)具有1/16像素精度,則將MV(vx,vy)也縮放到1/16像素精度。 (c) In one example, if the precision of MV(v x ,v y ) is lower/higher than the precision of MV(mvLX x ,mvLX y ), then MV(v x ,v y ) should be scaled to a finer/coarser precision. For example, if MV(mvLX x ,mvLX y ) has 1/16 pixel precision, then MV(v x ,v y ) should also be scaled to 1/16 pixel precision.
(d)如果需要將(vx,vy)右移(即縮放到較低精度)N位以獲得與(mvLXx,mvLXy)相同的精度,則vx=(vx+offset)>>N,vy=(vy+offset)>>N,其中,例如,offset=1<<(N-1)。 (d) If (v x ,v y ) needs to be right shifted (i.e., scaled to lower precision) by N places to obtain the same precision as (mvLX x ,mvLX y ), then v x =(v x +offset)>>N, v y =(v y +offset)>>N, where, for example, offset=1<<(N-1).
(i)可替代地,vx=sign(vx) * ((abs(vx)+offset)>>N),vy=sign(vy) * ((abs(vy)+offset)>>N)。 (i) Alternatively, v x =sign(v x ) * ((abs(v x )+offset)>>N), vy =sign( vy ) * ((abs( vy )+offset)>>N).
(ii)類似地,如果需要將MV(mvLXx,mvLXy)縮放到較高的精度,則可以應用如示例1(b)中所指定的上述縮放過程。 (ii) Similarly, if MV(mvLX x ,mvLX y ) needs to be scaled to higher precision, the above scaling process as specified in Example 1(b) can be applied.
(e)在一個示例中,建議將在BIO中推導的MV(vx,vy)進行縮放並將其加到當前塊/子塊的原始MV(mvLXx,mvLXy)(X=0或1)上。更新的MV計算為:mvL0’x=-vx * (τ0/(τ0+τ1))+mvL0x,mvL0’y=-vy * (τ0/(τ0+τ1))+mvL0y,並且mvL1’x=vx * (τ1/(τ0+τ1))+mvL1x,mvL1’y=vy * (τ1/(τ0+τ1))+mvL1y。 (e) In one example, it is proposed to scale the MV ( vx , vy ) derived in the BIO and add it to the original MV ( mvLXx , mvLXy ) (X = 0 or 1) of the current block/subblock. The updated MVs are calculated as: mvL0'x = -vx * ( τ0 /( τ0 + τ1 ))+ mvL0x , mvL0'y = -vy * ( τ0 /( τ0 + τ1 ))+ mvL0y , and mvL1'x = vx * ( τ1 /( τ0 + τ1 ) ) + mvL1x , mvL1'y = vy * ( τ1 /( τ0 + τ1 ))+ mvL1y .
(i)在一個示例中,更新的MV用於未來運動預測(如在AMVP、Merge和仿射模式中)、去方塊、OBMC等。 (i) In one example, the updated MV is used for future motion prediction (such as in AMVP, Merge, and Affine modes), deblocking, OBMC, etc.
(ii)可替代地,更新的MV僅可以用於按照解碼順序其非緊隨的CU/PU的運動預測。 (ii) Alternatively, the updated MV can only be used for motion prediction of its non-immediately following CU/PU in decoding order.
(iii)可替代地,更新的MV僅可以在AMVP、Merge或仿射模式中用作TMVP。 (iii) Alternatively, the updated MV can only be used as TMVP in AMVP, Merge or Affine mode.
(f)如果需要將(vx,vy)右移(即縮放到較低精度)N位以獲得與(mvLXx,mvLXy)相同的精度,則vx=(vx+offset)>>(N+ K),vy=(vy+offset)>>(N+K),其中,例如,offset=1<<(N+K-1)。K是整數,例如,K等於1、2、3、-2、-1或0。 (f) If (v x ,v y ) needs to be right shifted (i.e., scaled to lower precision) by N places to obtain the same precision as (mvLX x ,mvLX y ), then v x =(v x +offset)>>(N+ K), v y =(v y +offset)>>(N+K), where, for example, offset=1<<(N+K-1). K is an integer, for example, K is equal to 1, 2, 3, -2, -1, or 0.
(i)可替代地,vx=sign(vx) * ((abs(vx)+offset)>>(N+K)),vy=sign(vy) * ((abs(vy)+offset)>>(N+K)),其中,例如,offset=1<<(N+K-1)。 (i) Alternatively, v x =sign(v x ) * ((abs(v x )+offset)>>(N+K)), vy =sign( vy ) * ((abs( vy )+offset)>>(N+K)), where, for example, offset=1<<(N+K-1).
示例2.代替於考慮POC距離(例如,在如上所述的τ0和τ1的計算中),可以簡化在BIO過程中調用的MV的縮放方法。 Example 2. Instead of considering the POC distance (e.g., in the calculation of τ 0 and τ 1 as described above), the scaling method of the MV called in the BIO process can be simplified.
(a)mvL0’x=-vx/S0+mvL0x,,mvL0’y=-vy/S0+mvL0y,和/或mvL1’x=vx/S1+mvL1x,mvL1’y=vy/S1+mvL1y。 在一個示例中,將S0和/或S1設置為2。在一個示例中,在某些條件下(諸如τ0>0且τ1>0)調用它。 (a) mvL0' x = -v x /S 0 +mvL0 x , mvL0' y = -v y /S 0 +mvL0 y , and/or mvL1' x = v x /S 1 +mvL1 x , mvL1' y = v y /S 1 +mvL1 y . In one example, S 0 and/or S 1 are set to 2. In one example, it is called under certain conditions (such as τ 0 >0 and τ 1 >0).
(i)可替代地,可以在分割過程期間添加偏移。例如,mvL0’x=(-vx+offset0)/S0+mvL0x,mvL0’y=-(vy+offset0)/S0+mvL0y,和/或mvL1’x=(vx+offset1)/S1+mvL1x,mvL1’y=(vy+offset1)/S1+mvL1y。在一個示例中,將offset0設置為S0/2並將offset1被設置為S1/2。 (i) Alternatively, an offset may be added during the segmentation process. For example, mvL0' x =(-v x +offset0)/S 0 +mvL0 x , mvL0' y =-(v y +offset0)/S 0 +mvL0 y , and/or mvL1' x =(v x +offset1)/S 1 +mvL1 x , mvL1' y =(v y +offset1)/S 1 +mvL1 y . In one example, offset0 is set to S 0 /2 and offset1 is set to S 1 /2.
(ii)在一個示例中,mvL0’x=((-vx+1)>>1)+mvL0x,mvL0’y=(-(vy+1)>>1)+mvL0y,和/或mvL1’x=((vx+1)>>1)+mvL1x,mvL1’y=((vy+1)>>1)+mvL1y。 (ii) In one example, mvL0' x =((-v x +1)>>1)+mvL0 x , mvL0' y =(-(v y +1)>>1)+mvL0 y , and/or mvL1' x =((v x +1)>>1)+mvL1 x , mvL1' y =((v y +1)>>1)+mvL1 y .
(b)mvL0’x=-SF0 * vx+mvL0x,mvL0’y=-vy * SF0+mvL0y,和/或mvL1’x=-SF1* vx+mvL1x,mvL1’y=-SF1*vy+mvL1y。在一個示例中,將SF0設置為2,和/或將SF1設置為1。 在一個示例中,在某些條件下(諸如τ0>0且τ1<0且τ0>|τ1|)調用它,如圖25(b)所示。 (b)mvL0' x =-SF 0 * v x +mvL0 x , mvL0' y =-v y * SF 0 +mvL0 y , and/or mvL1' x =-SF 1 * v x +mvL1 x , mvL1' y =-SF 1 *v y +mvL1 y . In one example, SF 0 is set to 2, and/or SF 1 is set to 1. In one example, it is called under certain conditions (such as τ 0 >0 and τ 1 <0 and τ 0 >|τ 1 |), as shown in Figure 25(b).
(c)mvL0’x=SFACT0*vx+mvL0x,mvL0’y=SFACT0*vy+mvL0y,和/或mvL1’x=SFACT1 *vx+mvL1x,mvL1’y=SFACT1 * vy+mvL1y。在一個示例中,將SFACT0設置為1,和/或將SFACT1設置為2。在一個示例中,在某些條件下(諸如τ0>0且τ1<0且τ0<|τ1|)調用它,如圖25(c)所示。 (c)mvL0' x =SFACT 0 *v x +mvL0 x , mvL0' y =SFACT 0 *v y +mvL0 y , and/or mvL1' x =SFACT 1 *v x +mvL1 x , mvL1' y =SFACT 1 *v y +mvL1 y . In one example, SFACT 0 is set to 1, and/or SFACT 1 is set to 2. In one example, it is called under certain conditions (such as τ 0 >0 and τ 1 <0 and τ 0 < |τ 1 |), as shown in Figure 25(c).
示例3.當τ0>0且τ1>0時,(vx,vy)的推導和(mvLXx,mvLXy)的更新可以一起完成以保持高精度。 Example 3. When τ 0 >0 and τ 1 >0, the derivation of (v x ,v y ) and the update of (mvLX x ,mvLX y ) can be done together to maintain high accuracy.
(a)在一個示例中,如果需要將(vx,vy)右移(即縮放到較低精度)N位以獲得與(mvLXx,mvLXy)相同的精度,則mvL0’x=((-vx+offset)>>(N+1))+mvL0x,mvL0’y=((-vy+offset)>>(N+1))+mvL0y,mvL1’x=((vx+offset)>>(N+1))+mvL1x,mvL1’y=((vy+offset)>>(N+1))+mvL1y,其中,例如,offset=1<<N. (a) In one example, if (v x ,v y ) needs to be right-shifted (i.e., scaled to lower precision) by N places to obtain the same precision as (mvLX x ,mvLX y ), then mvL0' x =((-v x +offset)>>(N+1))+mvL0 x , mvL0' y =((-v y +offset)>>(N+1))+mvL0 y , mvL1' x =((v x +offset)>>(N+1))+mvL1 x , mvL1' y =((v y +offset)>>(N+1))+mvL1 y , where, for example, offset=1<<N.
(b)在一個示例中,如果需要將(vx,vy)右移(即縮放到較低精度)N位以獲得與(mvLXx,mvLXy)相同的精度,則mvL0’x=((-vx+offset)>>(N+K+1))+mvL0x,mvL0’y=((-vy+offset)>>(N+K+1))+mvL0y,mvL1’x=((vx+offset)>>(N+K+1))+mvL1x,mvL1’y=((vy+offset)>>(N+K+1))+mvL1y,其中,例如,offset=1<<(N+K)。K是整數,例如,K等於1、2、3、-2、-1或0。 (b) In an example, if (v x ,v y ) needs to be right shifted (i.e., scaled to lower precision) by N bits to obtain the same precision as (mvLX x ,mvLX y ), then mvL0' x =((-v x +offset)>>(N+K+1))+mvL0 x , mvL0' y =((-v y +offset)>>(N+K+1))+mvL0 y , mvL1' x =((v x +offset)>>(N+K+1))+mvL1 x , mvL1' y =((v y +offset)>>(N+K+1))+mvL1 y , where, for example, offset=1<<(N+K). K is an integer, for example, K is equal to 1, 2, 3, -2, -1, or 0.
(c)可替代地,mvL0’x=-sign(vx) * ((abs(vx)+offset) >>(N+1))+mvL0x,mvL0’y=-sign(vy) * ((abs(vy)+offset)>>(N+1))+mvL0y,mvL1’x=sign(vx) * ((abs(vx)+offset)>>(N+1))+mvL1x,mvL1’y=sign(vy) * ((abs(vy)+offset)>>(N+1))+mvL1y。 (c) Alternatively, mvL0' x = -sign(v x ) * ((abs(v x )+offset) >> (N+1))+mvL0 x , mvL0' y = -sign(v y ) * ((abs(v y )+offset) >> (N+1))+mvL0 y , mvL1' x = sign(v x ) * ((abs(v x )+offset) >> (N+1))+mvL1 x , mvL1' y = sign(v y ) * ((abs(v y )+offset) >> (N+1))+mvL1 y .
(d)可替代地,mvL0’x=-sign(vx) * ((abs(vx)+offset)>>(N+K+1))+mvL0x,mvL0’y=-sign(vy) * ((abs(vy)+offset)>>(N+K+1))+mvL0y,mvL1’x=sign(vx) * ((abs(vx)+offset)>>(N+K+1))+mvL1x,mvL1’y=sign(vy) * ((abs(vy)+offset)>>(N+K+1))+mvL1y,其中,例如,offset=1<<(N+K)。K是整數,例如,K等於1、2、3、-2、-1或0。 (d) Alternatively, mvL0' x =-sign(v x ) * ((abs(v x )+offset)>>(N+K+1))+mvL0 x , mvL0' y =-sign(v y ) * ((abs(v y )+offset)>>(N+K+1))+mvL0 y , mvL1' x =sign(v x ) * ((abs(v x )+offset)>>(N+K+1))+mvL1 x , mvL1' y =sign(v y ) * ((abs(v y )+offset)>>(N+K+1))+mvL1 y , where, for example, offset=1<<(N+K). K is an integer, for example, K is equal to 1, 2, 3, -2, -1 or 0.
示例4.裁剪操作可以進一步應用於BIO和/或DMVR中採用的更新的MV或可能需要更新MV的其他種類的編解碼方法。 Example 4. The cropping operation can be further applied to updated MVs adopted in BIO and/or DMVR or other types of coding and decoding methods that may require updating MVs.
(a)在一個示例中,以其他傳統MV相同的方式裁剪更新的MV,例如裁剪在與圖片邊界相比的特定範圍內。 (a) In one example, the updated MV is cropped in the same way as other traditional MVs, such as cropping to a specific range compared to the image boundaries.
(b)可替代地,與MC過程中使用的MV相比,更新的MV被裁剪在特定範圍(或針對不同子塊的多個範圍)內。也就是說,MC中使用的MV與更新的MV之間的差異被裁剪在一定範圍(或針對不同子塊的多個範圍)內。 (b) Alternatively, the updated MV is clipped within a certain range (or multiple ranges for different sub-blocks) compared to the MV used in the MC process. That is, the difference between the MV used in the MC and the updated MV is clipped within a certain range (or multiple ranges for different sub-blocks).
示例5.可以約束在BIO和/或可能需要更新MV的其他種類的編解碼方法中調用的更新的MV的使用。 Example 5. The use of updated MVs called in BIOs and/or other types of codec methods that may require updating MVs can be constrained.
(a)在一個示例中,更新的MV用於未來運動預測(如 在AMVP、Merge和/或仿射模式中)、去方塊、OBMC等。可替代地,更新的MV可以用於第一模塊,而原始的MV可以用於第二模塊。例如,第一模塊是運動預測,且第二模塊是去方塊。 (a) In one example, the updated MV is used for future motion prediction (such as in AMVP, Merge and/or Affine modes), deblocking, OBMC, etc. Alternatively, the updated MV can be used in a first module and the original MV can be used in a second module. For example, the first module is motion prediction and the second module is deblocking.
(i)在一個示例中,未來運動預測指的是在當前圖片或條帶中的當前塊之後要被編碼/解碼的塊中的運動預測。 (i) In one example, future motion prediction refers to motion prediction in blocks to be encoded/decoded after the current block in the current picture or slice.
(ii)可替代地,未來運動預測指的是在當前圖片或條帶之後要被編碼/解碼的圖片或條帶中的運動預測。 (ii) Alternatively, future motion prediction refers to the prediction of motion in pictures or slices to be encoded/decoded after the current picture or slice.
(b)可替代地,更新的MV僅可以用於按照解碼順序其非緊隨的CU/PU的運動預測。 (b) Alternatively, the updated MV can only be used for motion prediction of its non-immediately following CU/PU in decoding order.
(c)更新的MV不應用於按照解碼順序其下一CU/PU的運動預測。 (c) The updated MV should not be used for motion prediction of the next CU/PU in decoding order.
(d)可替代地,更新的MV僅可以用作用於對後續圖片/片/條帶進行編解碼的預測器,諸如AMVP中的TMVP,和/或Merge和/或仿射模式。 (d) Alternatively, the updated MV may be used only as a predictor for encoding and decoding subsequent pictures/slices/strips, such as TMVP in AMVP, and/or Merge and/or Affine modes.
(e)可替代地,更新的MV僅可以用作用於對後續圖片/片/條帶進行編解碼的預測器,例如ATMVP和/或STMVP等。 (e) Alternatively, the updated MV may only be used as a predictor for encoding and decoding subsequent pictures/slices/strips, such as ATMVP and/or STMVP, etc.
示例6.在一個示例中,提出了兩步幀間預測過程,其中執行第一步驟以基於與當前塊相關聯的用信令通知/推導的運動信息來生成一些中間預測(第一預測),並且執行第二步驟以基於可能依賴於中間預測的更新的運動信息來推導當前塊的最終預測(第二預測)。 Example 6. In one example, a two-step inter-frame prediction process is proposed, in which a first step is performed to generate some intermediate predictions (first predictions) based on signaled/derived motion information associated with the current block, and a second step is performed to derive a final prediction (second prediction) for the current block based on updated motion information that may depend on the intermediate predictions.
(a)在一個示例中,BIO過程(即,使用用信令通知/ 推導的運動信息,其用於生成第一預測和塊內的每個子塊/像素的空間梯度、時間梯度和光流)僅用於推導如示例1中所指定的更新的MV(並且不應用公式(7)來生成第二預測),然後使用更新的MV來執行運動補償並生成塊內的每個子塊/像素的第二預測(即最終預測)。 (a) In one example, the BIO process (i.e., using the signaled/derived motion information used to generate the first prediction and the spatial gradient, temporal gradient, and optical flow for each sub-block/pixel within the block) is only used to derive the updated MV as specified in Example 1 (and formula (7) is not applied to generate the second prediction), and then the updated MV is used to perform motion compensation and generate the second prediction (i.e., the final prediction) for each sub-block/pixel within the block.
(b)在一個示例中,可以在第一或/和第二步驟中使用與不用這種方法進行編解碼的幀間編解碼塊的插值濾波器不同的插值濾波器來減小儲存器頻寬。 (b) In one example, an interpolation filter different from the interpolation filter used for inter-frame coded blocks that are not coded in this way may be used in the first or/and second steps to reduce the memory bandwidth.
(i)在一個示例中,可以使用較短抽頭濾波器(如6抽頭濾波器,4抽頭濾波器或雙線性濾波器)。 (i) In one example, a shorter tap filter (such as a 6-tap filter, a 4-tap filter, or a bilinear filter) may be used.
(ii)可替代地,可以預定義在第一/第二步驟中利用的濾波器(諸如濾波器抽頭,濾波器係數)。 (ii) Alternatively, the filters utilized in the first/second step may be predefined (e.g. filter taps, filter coefficients).
(iii)可替代地,此外,為第一和/或第二步驟所選擇的濾波器抽頭可取決於編解碼信息,例如塊尺寸/塊形狀(正方形,非正方形等)/條帶類型/預測方向(單向或雙向預測或多假設,向前或向後)。 (iii) Alternatively, in addition, the filter taps selected for the first and/or second step may depend on codec information such as block size/block shape (square, non-square, etc.)/strip type/prediction direction (unidirectional or bidirectional prediction or multiple hypotheses, forward or backward).
(iv)可替代地,此外,不同的塊可以為第一/第二步驟選擇不同的濾波器。在一個示例中,可以預定義或用信令通知多個濾波器的一個或多個候選集。塊可以從候選集中進行選擇。所選擇的濾波器可以由用信令通知的索引指示,或者可以在不用信令通知的情況下即時推導。 (iv) Alternatively, furthermore, different blocks may select different filters for the first/second step. In one example, one or more candidate sets of multiple filters may be predefined or signaled. The block may select from the candidate set. The selected filter may be indicated by a signaled index or may be derived on the fly without signaling.
(c)在一個示例中,當生成第一預測時僅使用整數MV, 並且在第一步驟中不應用插值濾波過程。 (c) In one example, only integer MVs are used when generating the first prediction, and no interpolation filtering process is applied in the first step.
(i)在一個示例中,將分數MV舍入到最接近的整數MV。 (i) In one example, a fractional MV is rounded to the nearest integer MV.
(1)如果存在多於一個的最接近的整數MV,則將分數MV舍入到較小的最接近的整數MV。 (1) If there is more than one nearest integer MV, the fractional MV is rounded to the smaller nearest integer MV.
(2)如果存在多於一個的最接近的整數MV,則將分數MV舍入到較大的最接近的整數MV。 (2) If there is more than one nearest integer MV, the fractional MV is rounded to the larger nearest integer MV.
(3)如果存在多於一個的最接近的整數MV,則將分數MV舍入到更接近零的最接近的MV。 (3) If there is more than one nearest integer MV, the fractional MV is rounded to the nearest MV that is closer to zero.
(ii)在一個示例中,將分數MV舍入到不小於分數MV的最接近的整數MV。 (ii) In one example, a fractional MV is rounded to the nearest integer MV that is not less than the fractional MV.
(iii)在一個示例中,將分數MV舍入到不大於分數MV的最接近的整數MV。 (iii) In one example, a fractional MV is rounded to the nearest integer MV that is not greater than the fractional MV.
(d)可以在SPS、PPS、條帶標頭、CTU或CU或CTU組中用信令通知這種方法的使用。 (d) The use of this method can be signaled in the SPS, PPS, slice header, CTU or CU or CTU group.
(e)這種方法的使用還可以取決於編解碼信息,諸如塊尺寸/塊形狀(正方形,非正方形等)/條帶類型/預測方向(單向或雙向預測或多假設,向前或向後)。 (e) The use of this method may also depend on codec information such as block size/block shape (square, non-square, etc.)/strip type/prediction direction (unidirectional or bidirectional prediction or multiple hypotheses, forward or backward).
(i)在一個示例中,可以在某些條件下自動禁止這種方法,例如,當用仿射模式對當前塊進行編解碼時,可以禁用這種方法。 (i) In one example, this method can be automatically disabled under certain conditions, for example, when the current block is encoded or decoded in affine mode, this method can be disabled.
(ii)在一個示例中,可以在某些條件下自動應用這種 方法,諸如當用雙預測對塊進行編解碼並且塊尺寸大於閾值(例如,多於16個樣本)時。 (ii) In one example, this method can be automatically applied under certain conditions, such as when a block is encoded or decoded with bi-prediction and the block size is larger than a threshold (e.g., more than 16 samples).
示例7.在一個示例中,提出在計算BIO中的時間梯度之前,可以首先修改參考塊(或預測塊),並且時間梯度的計算基於修改的參考塊。 Example 7. In one example, it is proposed that before calculating the time gradient in BIO, the reference block (or prediction block) can be modified first, and the calculation of the time gradient is based on the modified reference block.
(a)在一個示例中,對於所有參考塊移除均值。 (a) In one example, the mean is removed for all reference bins.
(i)例如,對於參考塊X(X=0或1),首先,對塊計算均值(由MeanX表示),然後將參考塊中的每個像素減去MeanX。 (i) For example, for a reference block X (X=0 or 1), first, the mean (denoted by MeanX) is calculated for the block, and then MeanX is subtracted from each pixel in the reference block.
(ii)可替代地,對於不同的參考圖片列表,可以決定是否移除均值。例如,對於一個參考塊/子塊,在計算時間梯度之前移除均值,而對於另一個參考塊/子塊,不移除均值。 (ii) Alternatively, for different reference image lists, one can decide whether to remove the mean or not. For example, for one reference block/subblock, the mean is removed before computing the temporal gradient, while for another reference block/subblock, the mean is not removed.
(iii)可替代地,不同的參考塊(例如,在多假設預測中利用的3或4個參考塊)可以選擇是否先進行修改。 (iii) Alternatively, different reference blocks (e.g., 3 or 4 reference blocks utilized in multi-hypothesis prediction) can choose whether to be modified first.
(b)在一個示例中,均值定義為參考塊中所選擇的樣本的平均。 (b) In one example, the mean is defined as the average of the samples selected in the reference block.
(c)在一個示例中,參考塊X或參考塊X的子塊中的所有像素用於計算MeanX。 (c) In one example, all pixels in reference block X or a sub-block of reference block X are used to calculate MeanX.
(d)在一個示例中,參考塊X或參考塊的子塊中的僅部分像素用於計算MeanX。例如,僅使用每第二行/列的像素。 (d) In one example, only some of the pixels in the reference block X or a sub-block of the reference block are used to calculate MeanX. For example, only every second row/column of pixels are used.
(i)可替代地,在示例中,僅使用每第四行/列的像素來計算MeanX。 (i) Alternatively, in the example, only every fourth row/column of pixels is used to calculate MeanX.
(ii)可替代地,僅使用四個角像素來計算MeanX。 (ii) Alternatively, use only the four corner pixels to compute MeanX.
(iii)可替代地,僅使用四個角像素和中心像素,例如,位置(W/2,H/2)處的像素(其中W×H是參考塊尺寸),來計算MeanX。 (iii) Alternatively, only the four corner pixels and the center pixel, e.g., the pixel at position (W/2, H/2) (where W×H is the reference block size), are used to compute MeanX.
(e)在一個示例中,可以在用於推導時間梯度之前首先對參考塊進行濾波。 (e) In one example, the reference block can be first filtered before being used to derive the temporal gradient.
(i)在一個示例中,可以首先對參考塊應用平滑濾波方法。 (i) In one example, a smoothing filtering method may be first applied to the reference block.
(ii)在一個示例中,首先對塊邊界處的像素進行濾波。 (ii) In one example, pixels at block boundaries are first filtered.
(iii)在一個示例中,在推導時間梯度之前首先應用重疊塊運動補償(OBMC)。 (iii) In one example, overlapping block motion compensation (OBMC) is first applied before deriving the temporal gradient.
(iv)在一個示例中,在推導時間梯度之前首先應用光照補償(IC)。 (iv) In one example, illumination compensation (IC) is first applied before deriving the temporal gradient.
(v)在一個示例中,在推導時間梯度之前首先應用加權預測。 (v) In one example, weighted predictions are first applied before deriving temporal gradients.
(f)在一個示例中,首先計算時間梯度然後被修改。例如,進一步將時間梯度減去Mean0和Mean1之間的差。 (f) In one example, the temporal gradient is first calculated and then modified. For example, the temporal gradient is further subtracted by the difference between Mean0 and Mean1.
示例8.在一個示例中,可以諸如在視頻參數集(VPS)、序列參數集(SPS)、圖片參數集(PPS)、條帶、CTU或CU中從編碼器向解碼器發信令通知是否更新用於BIO編解碼塊的MV和/或使用更新的MV用於未來運動預測和/或如何將更新的MV用於未來運動預測。 Example 8. In one example, signaling can be sent from an encoder to a decoder, such as in a video parameter set (VPS), a sequence parameter set (SPS), a picture parameter set (PPS), a slice, a CTU, or a CU, to inform whether to update the MV used for a BIO codec block and/or to use the updated MV for future motion prediction and/or how to use the updated MV for future motion prediction.
示例9.在一個示例中,提出對BIO過程中利用的運動向量添加約束。 Example 9. In one example, it is proposed to add constraints to the motion vectors used in the BIO process.
(a)在一個示例中,將(vx,vy)約束到給定範圍,-Mx<vx<Nx,和/或-My<vy<Ny,其中Mx,Nx,My,Ny為非負整數,並且例如可以等於32。 (a) In one example, (v x , vy ) is constrained to a given range, -M x <v x <N x , and/or -M y < vy <N y , where M x ,N x ,My y ,N y are non-negative integers and may be equal to 32, for example.
(b)在一個示例中,將BIO編解碼子塊/BIO編解碼塊的更新的MV約束到給定範圍,諸如-ML0x<mvL0’x<NL0x和/或-ML1x<mvL1’x<NL1x,-ML0y<mvL0’y<NL0y和/或-ML1y<mvL1’y<NL1y,其中ML0x,NL0x,ML1x,NL1x,ML0y,NL0y,ML1y,NL1y是非負整數,並且例如可以等於1024、2048等。 (b) In one example, the updated MV of the BIO codec sub-block/BIO codec block is constrained to a given range, such as -M L0x <mvL0' x <N L0x and/or -M L1x <mvL1' x <N L1x ,-M L0y <mvL0' y <N L0y and/or -M L1y <mvL1' y <N L1y , where M L0x ,N L0x ,M L1x ,N L1x ,M L0y ,N L0y ,M L1y ,N L1y are non-negative integers and may be, for example, equal to 1024, 2048, etc.
示例10.提出對於BIO、DMVR、FRUC、模板匹配或需要從位元流中推導的內容更新MV(或包括MV和/或參考圖片的運動信息)的其他方法,更新的運動信息的使用可能受到約束。 Example 10. It is proposed that for BIO, DMVR, FRUC, template matching, or other methods that require content update MV (or motion information including MV and/or reference picture) derived from the bitstream, the use of updated motion information may be subject to constraints.
(a)在一個示例中,即使在塊級更新運動信息,也可以針對不同的子塊不同地儲存更新的和未更新的運動信息。在一個示例中,可以儲存一些子塊的更新的運動信息,並且對於其他剩餘的子塊,儲存未更新的運動信息。 (a) In one example, even if the motion information is updated at the block level, the updated and non-updated motion information may be stored differently for different sub-blocks. In one example, the updated motion information of some sub-blocks may be stored, and for the other remaining sub-blocks, the non-updated motion information may be stored.
(b)在一個示例中,如果在子塊/塊級更新MV(或運動信息),則僅針對內部子塊(即不在PU/CU/CTU邊界處的子塊)儲存更新的MV,並且然後,如圖26A和26B所示,將其用於運動預測、去方塊、OBMC等。可替代地,僅針對邊界子塊儲存更新的MV。 (b) In one example, if MV (or motion information) is updated at the sub-block/block level, the updated MV is stored only for the internal sub-blocks (i.e., the sub-blocks not at the PU/CU/CTU boundary), and then, as shown in Figures 26A and 26B, used for motion prediction, deblocking, OBMC, etc. Alternatively, the updated MV is stored only for the boundary sub-blocks.
(c)在一個示例中,如果相鄰塊和當前塊不在相同的CTU或具有諸如64×64或32×32的尺寸的相同區域中,則不使用來自相鄰塊的更新的運動信息。 (c) In one example, if the neighboring block and the current block are not in the same CTU or the same region with a size such as 64×64 or 32×32, the updated motion information from the neighboring block is not used.
(i)在一個示例中,如果相鄰塊和當前塊不在相同的CTU或具有諸如64×64或32×32的尺寸的相同區域中,則將相鄰塊視為“不可用”。 (i) In one example, if the neighboring block and the current block are not in the same CTU or the same region with a size such as 64×64 or 32×32, the neighboring block is considered "unavailable".
(ii)可替代地,如果相鄰塊和當前塊不在相同的CTU或具有諸如64×64或32×32的尺寸的相同區域中,則當前塊使用沒有更新過程的運動信息。 (ii) Alternatively, if the neighboring block and the current block are not in the same CTU or the same region with a size such as 64×64 or 32×32, the current block uses motion information without an update process.
(d)在一個示例中,如果相鄰塊和當前塊不在相同的CTU列或具有諸如64×64或32×32的尺寸的區域的相同列中,則不使用來自相鄰塊的更新的MV。 (d) In one example, if the neighboring block and the current block are not in the same CTU column or the same column of a region having a size such as 64×64 or 32×32, the updated MV from the neighboring block is not used.
(i)在一個示例中,如果相鄰塊和當前塊不在相同的CTU列或具有諸如64×64或32×32的尺寸的區域的相同列中,則將相鄰塊視為“不可用”。 (i) In one example, if the neighboring block and the current block are not in the same CTU column or the same column of a region having a size such as 64×64 or 32×32, the neighboring block is considered "unavailable".
(ii)可替代地,如果相鄰塊和當前塊不在相同的CTU列或具有諸如64×64或32×32的尺寸的區域的相同列中,則當前塊使用沒有更新過程的運動信息。 (ii) Alternatively, if the neighboring block and the current block are not in the same CTU column or the same column of a region having a size such as 64×64 or 32×32, the current block uses motion information without an update process.
(e)在一個示例中,如果塊的最底列是CTU或者具有諸如64×64或32×32的尺寸的區域的最底列,則不更新塊的運動信息。 (e) In one example, if the bottommost column of a block is a CTU or a bottommost column of a region having a size such as 64×64 or 32×32, the motion information of the block is not updated.
(f)在一個示例中,如果塊的最右行是CTU或者具有 諸如64×64或32×32的尺寸的區域的最右行,則不更新塊的運動信息。 (f) In one example, if the rightmost row of a block is a CTU or the rightmost row of a region having a size such as 64×64 or 32×32, the motion information of the block is not updated.
(g)在一個示例中,將來自一些相鄰CTU或區域的細化的運動信息用於當前CTU,並且將來自其他相鄰CTU或區域的未細化的運動信息用於當前CTU。 (g) In one example, refined motion information from some neighboring CTUs or regions is used for the current CTU, and unrefined motion information from other neighboring CTUs or regions is used for the current CTU.
(i)在一個示例中,將來自左CTU或左區域的細化的運動信息用於當前CTU。 (i) In one example, refined motion information from the left CTU or left region is used for the current CTU.
(ii)可替代地,另外,將來自左上CTU或左上區域的細化的運動信息用於當前CTU。 (ii) Alternatively, additionally, refined motion information from the upper left CTU or upper left region is used for the current CTU.
(iii)可替代地,另外,將來自上CTU或上區域的細化的運動信息用於當前CTU。 (iii) Alternatively, additionally, refined motion information from the upper CTU or upper region is used for the current CTU.
(iv)可替代地,另外,將來自右上CTU或右上區域的細化的運動信息用於當前CTU。 (iv) Alternatively, in addition, refined motion information from the upper right CTU or upper right region is used for the current CTU.
(v)在一個示例中,區域具有諸如64×64或32×32的尺寸。 (v) In one example, the region has a size such as 64×64 or 32×32.
示例11.在一個示例中,提出可以在AF_INTER模式中使用不同的MVD精度,並且可以用信令通知語法元素以指示每個塊/CU/PU的MVD精度。允許包括構成等比序列的多個不同的MVD精度的精度集。 Example 11. In one example, it is proposed that different MVD precisions can be used in AF_INTER mode, and syntax elements can be signaled to indicate the MVD precision for each block/CU/PU. Precision sets including multiple different MVD precisions forming a geometric sequence are allowed.
(a)在一個示例中,允許{1/4,1,4}像素MVD精度。 (a) In one example, {1/4,1,4} pixel MVD accuracy is allowed.
(b)在一個示例中,允許{1/4,1/2,1,2,4}像素MVD精度。 (b) In one example, {1/4,1/2,1,2,4} pixel MVD accuracy is allowed.
(c)在一個示例中,允許{1/16,1/8,1/4}像素MVD精度。 (c) In one example, {1/16, 1/8, 1/4} pixel MVD accuracy is allowed.
(d)語法元素在諸如當存在塊/CU/PU的非零MVD分量時的進一步的條件下存在。 (d) The syntax element is present under further conditions such as when there is a non-zero MVD component of the block/CU/PU.
(e)在一個示例中,不管是否存在任何非零MVD分量,總是用信令通知MVD精度信息。 (e) In one example, MVD accuracy information is always signaled regardless of whether there are any non-zero MVD components.
(f)可替代地,對於4/6參數AF_INTER模式,其中2/3MVD被編解碼的,可以將不同的MVD精度用於2/3 MVD(單向預測中每個控制點1個MVD,雙向預測中每個控制點2個MVD,即每個預測方向上每個控制點1個MVD),並且2/3個控制點與不同的MVD精度相關聯。在這種情況下,此外,可以用信令通知2/3語法元素以指示MVD精度。 (f) Alternatively, for 4/6 parameter AF_INTER mode, where 2/3MVD is encoded or decoded, different MVD precisions may be used for 2/3 MVD (1 MVD per control point in unidirectional prediction, 2 MVDs per control point in bidirectional prediction, i.e. 1 MVD per control point in each prediction direction), and the 2/3 control points are associated with different MVD precisions. In this case, in addition, the 2/3 syntax element may be signaled to indicate the MVD precision.
(g)在一個示例中,PCT/CN2018/091792中描述的方法可以用於在AF_INTER模式中對MVD精度進行編解碼。 (g) In one example, the method described in PCT/CN2018/091792 can be used to encode and decode MVD precision in AF_INTER mode.
示例12.在一個示例中,提出如果對塊(例如PU)執行多於一個DMVD方法,則如BIO、DMVR、FRUC和模板匹配等的不同的解碼器側運動向量推導(DMVD)方法獨立地工作,即DMVD方法的輸入不取決於另一DMVD方法的輸出。 Example 12. In one example, it is proposed that if more than one DMVD method is executed on a block (e.g., PU), different decoder-side motion vector derivation (DMVD) methods such as BIO, DMVR, FRUC, and template matching work independently, i.e., the input of a DMVD method does not depend on the output of another DMVD method.
(a)在一個示例中,此外,從由多個DMVD方法推導的組運動信息生成一個預測塊和/或一組更新的運動信息(例如,每個預測方向的運動向量和參考圖片)。 (a) In one example, in addition, a prediction block and/or a set of updated motion information (e.g., motion vectors and reference pictures for each prediction direction) is generated from the set motion information derived by multiple DMVD methods.
(b)在一個示例中,使用每個DMVD方法的推導的運 動信息來執行運動補償,並且對它們進行平均或加權平均或濾波(如通過中值濾波器)以生成最終預測。 (b) In one example, motion compensation is performed using the derived motion information from each DMVD method, and they are averaged or weighted averaged or filtered (e.g., through a median filter) to generate a final prediction.
(c)在一個示例中,對所有DMVD方法推導的運動信息進行平均或加權平均或濾波(如通過中值濾波器)以生成最終運動信息。可替代地,將不同的優先級分配給不同的DMVD方法,並且選擇具有最高優先級的方法推導的運動信息作為最終運動信息。例如,當對PU執行BIO和DMVR時,則由DMVR生成的運動信息被用作最終運動信息。 (c) In one example, the motion information derived by all DMVD methods is averaged or weighted averaged or filtered (such as through a median filter) to generate the final motion information. Alternatively, different priorities are assigned to different DMVD methods, and the motion information derived by the method with the highest priority is selected as the final motion information. For example, when BIO and DMVR are performed on a PU, the motion information generated by DMVR is used as the final motion information.
(d)在一個示例中,對於PU,允許不超過N個DMVD方法,其中N>=1。 (d) In one example, for a PU, no more than N DMVD methods are allowed, where N>=1.
(i)將不同的優先級分配給不同的DMVD方法,並且執行有效且具有最高的N個優先級的方法。 (i) Assign different priorities to different DMVD methods, and execute the effective methods with the highest N priorities.
(e)DMVD方法以同時的方式執行。一個DMVD方法的更新的MV不作為下一個DMVD方法的起點輸入。對於所有DMVD方法,輸入未更新的MV作為搜索起點。可替代地,DMVD方法以級聯方式執行。一個DMVD方法的更新的MV作為下一個DMVD方法的搜索起點輸入。 (e) The DMVD methods are executed in a simultaneous manner. The updated MV of one DMVD method is not input as the starting point of the next DMVD method. For all DMVD methods, the non-updated MV is input as the search starting point. Alternatively, the DMVD methods are executed in a cascaded manner. The updated MV of one DMVD method is input as the search starting point of the next DMVD method.
其他實施方案 Other implementation options
該部分描述了MV細化並且儲存用於BIO編解碼塊的進一步使用的方法。經細化的MV可用於當前條帶/CTU列/片內的後續塊的運動向量預測、和/或用於位於不同圖片處的塊的濾波處理(例如,去方塊濾波器處理)和/或運動向量預測。 This section describes a method for refining MVs and storing them for further use in BIO-encoded blocks. The refined MVs can be used for motion vector prediction of subsequent blocks within the current slice/CTU row/slice, and/or for filtering (e.g., deblocking filter processing) and/or motion vector prediction of blocks located at different pictures.
如圖32所示,從參考塊0中的子塊指向參考塊1中的子塊(由(DMVx,DMVy)表示)的推導的運動向量用於進一步改進當前子塊的預測。 As shown in FIG. 32 , the derived motion vector pointing from the sub-block in reference block 0 to the sub-block in reference block 1 (denoted by (DMV x ,DMV y )) is used to further improve the prediction of the current sub-block.
建議通過使用BIO中的推導的運動向量來進一步細化每個子塊的運動向量。將LX參考圖片與當前圖片之間的POC距離(例如,絕對POC差)表示為deltaPOCX,並且將(MVLXx,MVLXy)和(MVLXx’,MVLXy’)表示為當前子塊的信令通知的和細化的運動向量,其中X=0或1。然後(MVLXx’,MVLXy’)計算如下:
然而,在上述等式中需要乘法和除法。為了解決這個問題,細化的運動向量的推導簡化如下:
在一些實施例中,僅當從前一圖片和後一圖片預測當前CU時才採用該方法,因此其僅在隨機接入(RA)配置中操作。 In some embodiments, this method is only used when the current CU is predicted from the previous and next pictures, so it only operates in a random access (RA) configuration.
示例13.可以在某些條件下應用所提出的方法,諸如塊尺寸、條帶/圖片/片類型。 Example 13. The proposed method can be applied under certain conditions, such as block size, stripe/picture/slice type.
(a)在一個示例中,當塊尺寸包含小於M*H的樣本,例如16或32或64個亮度樣本時,不允許上述方法。 (a) In one example, when the block size contains samples smaller than M*H, such as 16 or 32 or 64 luma samples, the above method is not allowed.
(b)可替代地,當塊的寬度或高度的最小尺寸小於或不大於X時,不允許上述方法。在一個示例中,將X設置為8。 (b) Alternatively, when the minimum dimension of the width or height of the block is less than or not greater than X, the above method is not allowed. In one example, X is set to 8.
(c)可替代地,當塊的寬度>th1或>=th1和/或塊的高度>th2或>=th2時,不允許上述方法。在一個示例中,將X設置為8。 (c) Alternatively, when the width of the block is >th1 or >=th1 and/or the height of the block is >th2 or >=th2, the above method is not allowed. In one example, X is set to 8.
(d)可替代地,當塊的寬度<th1或<=th1和/或塊的高度<th2或<=th2時,不允許上述方法。在一個示例中,將X設置為8。 (d) Alternatively, when the width of the block is <th1 or <=th1 and/or the height of the block is <th2 or <=th2, the above method is not allowed. In one example, X is set to 8.
示例14.可以在子塊級應用上述方法。 Example 14. The above method can be applied at the sub-block level.
(a)在一個示例中,可以針對每個子塊調用BIO更新過程、或兩步幀間預測過程或示例7中描述的時間梯度推導方法。 (a) In one example, the BIO update process, or the two-step frame-to-frame prediction process, or the temporal gradient derivation method described in Example 7 may be called for each sub-block.
(b)在一個示例中,當塊的寬度或高度或寬度和高度兩者都大於(或等於)閾值L時,可以將塊分割為多個子塊。以與具有子塊尺寸的正常編解碼塊相同的方式處理每個子塊。 (b) In one example, when the width or height or both the width and height of a block are greater than (or equal to) a threshold value L, the block may be split into multiple sub-blocks. Each sub-block is processed in the same manner as a normal codec block with sub-block size.
示例15.可以以SPS/PPS/圖片/條帶/片級預定義或用信令通知閾值。 Example 15. The threshold can be predefined or signaled at SPS/PPS/picture/slice/slice level.
(a)可替代地,閾值可以取決於某些編解碼信息,諸如塊尺寸、圖片類型,時間層索引等。 (a) Alternatively, the threshold may depend on some codec information, such as block size, picture type, temporal layer index, etc.
以上描述的示例可以結合在下面描述的方法的上下文中,例如,方法2700-3100、3300-3600和3800-4200,其可以在 視頻解碼器處實現。 The examples described above may be combined in the context of the methods described below, e.g., methods 2700-3100, 3300-3600, and 3800-4200, which may be implemented at a video decoder.
圖27示出了用於視頻解碼的示例方法的流程圖。方法2700包括,在步驟2710,接收視頻數據的當前塊的位元流表示。 FIG27 illustrates a flow chart of an example method for video decoding. Method 2700 includes, at step 2710, receiving a bitstream representation of a current block of video data.
方法2700包括,在步驟2720,分別基於第一縮放運動向量與第一和第二縮放參考運動向量的加權和來生成更新的第一和第二參考運動向量。在一些實施例中,通過將第一運動向量縮放到目標精度來生成第一縮放運動向量,並且其中通過分別將第一和第二參考運動向量縮放到目標精度來生成第一和第二縮放參考運動向量。在一些實施例中,基於來自第一參考塊的第一參考運動向量和來自第二參考塊的第二參考運動向量來推導第一運動向量,並且其中當前塊與第一和第二參考塊相關聯。 The method 2700 includes, at step 2720, generating updated first and second reference motion vectors based on a weighted sum of the first scaled motion vector and the first and second scaled reference motion vectors, respectively. In some embodiments, the first scaled motion vector is generated by scaling the first motion vector to a target precision, and wherein the first and second scaled reference motion vectors are generated by scaling the first and second reference motion vectors to the target precision, respectively. In some embodiments, the first motion vector is derived based on a first reference motion vector from a first reference block and a second reference motion vector from a second reference block, and wherein the current block is associated with the first and second reference blocks.
在一些實施例中,在視頻參數集(VPS)、序列參數集(SPS)、圖片參數集(PPS)、條帶標頭、編解碼樹單元(CTU)或編解碼單元(CU)中用信令通知目標精度的指示。 In some embodiments, an indication of the target accuracy is signaled in a video parameter set (VPS), a sequence parameter set (SPS), a picture parameter set (PPS), a slice header, a codec tree unit (CTU), or a codec unit (CU).
在一些實施例中,第一運動向量具有第一精度,並且第一和第二參考運動向量具有參考精度。在其他實施例中,第一精度可以高於或低於參考精度。在其他實施例中,可以將目標精度設置為第一精度、參考精度或與第一精度和參考精度無關的固定(或預定)精度。 In some embodiments, the first motion vector has a first precision, and the first and second reference motion vectors have a reference precision. In other embodiments, the first precision may be higher or lower than the reference precision. In other embodiments, the target precision may be set to the first precision, the reference precision, or a fixed (or predetermined) precision that is independent of the first precision and the reference precision.
在一些實施例中,基於使用第一和第二參考運動向量的雙向光流(BIO)細化來推導第一運動向量。 In some embodiments, the first motion vector is derived based on bidirectional optical flow (BIO) refinement using the first and second reference motion vectors.
方法2700包括,在步驟2730,基於更新的第一和第二 參考運動向量處理位元流表示以生成當前塊。在一些實施例中,處理基於雙向光流(BIO)細化或解碼器側運動向量細化(DMVR),並且其中在處理之前對更新的第一和第二參考運動向量進行裁剪。 The method 2700 includes, at step 2730, processing the bitstream representation based on the updated first and second reference motion vectors to generate the current block. In some embodiments, the processing is based on bidirectional optical flow (BIO) refinement or decoder-side motion vector refinement (DMVR), and wherein the updated first and second reference motion vectors are clipped prior to processing.
在一些實施例中,處理基於雙向光流(BIO)細化,並且在處理之前將更新的第一和第二參考運動向量約束到預定值範圍。 In some embodiments, processing is based on bidirectional optical flow (BIO) refinement, and the updated first and second reference motion vectors are constrained to a predetermined value range prior to processing.
在一些實施例中,處理基於雙向光流(BIO)細化、解碼器側運動向量細化(DMVR)、幀速率上轉換(FRUC)技術或模板匹配技術。在一個示例中,針對不在當前塊的邊界上的內部子塊生成更新的第一和第二參考運動向量。在另一示例中,針對當前塊的子塊的子集生成更新的第一和第二參考運動向量。 In some embodiments, the processing is based on bidirectional optical flow (BIO) refinement, decoder-side motion vector refinement (DMVR), frame rate up-conversion (FRUC) techniques, or template matching techniques. In one example, updated first and second reference motion vectors are generated for internal sub-blocks that are not on the boundary of the current block. In another example, updated first and second reference motion vectors are generated for a subset of sub-blocks of the current block.
在一些實施例中,該處理基於至少兩種技術,其可以包括雙向光流(BIO)細化、解碼器側運動向量細化(DMVR)、幀速率上轉換(FRUC)技術或模板匹配技術。在一個示例中,針對至少兩種技術中的每一種執行處理以生成多個結果集,可以對該多個結果集進行平均或濾波以生成當前塊。在另一示例中,針對至少兩種技術中的每一種以級聯方式執行處理以生成當前塊。 In some embodiments, the processing is based on at least two techniques, which may include bidirectional optical flow (BIO) refinement, decoder-side motion vector refinement (DMVR), frame rate up-conversion (FRUC) techniques, or template matching techniques. In one example, processing is performed for each of the at least two techniques to generate multiple result sets, which may be averaged or filtered to generate the current block. In another example, processing is performed in a cascaded manner for each of the at least two techniques to generate the current block.
圖28示出了用於視頻解碼的示例方法的流程圖。方法2800包括,在步驟2810,基於與當前塊相關聯的第一運動信息,為當前塊生成中間預測。在一些實施例中,生成中間預測包括第一插值濾波過程。在一些實施例中,生成中間預測還基於序列參 數集(SPS)、圖片參數集(PPS)、編解碼樹單元(CTU)、條帶標頭、編解碼單元(CU)或CTU組中的信令。 FIG28 shows a flow chart of an example method for video decoding. The method 2800 includes, at step 2810, generating an intermediate prediction for the current block based on first motion information associated with the current block. In some embodiments, generating the intermediate prediction includes a first interpolation filtering process. In some embodiments, generating the intermediate prediction is also based on signaling in a sequence parameter set (SPS), a picture parameter set (PPS), a codec tree unit (CTU), a slice header, a codec unit (CU), or a CTU group.
方法2800包括,在步驟2820,將第一運動信息更新為第二運動信息。在一些實施例中,更新第一運動信息包括使用雙向光流(BIO)細化。 Method 2800 includes, at step 2820, updating the first motion information to the second motion information. In some embodiments, updating the first motion information includes using bidirectional optical flow (BIO) refinement.
方法2800包括,在步驟2830,基於中間預測或第二運動信息生成當前塊的最終預測。在一些實施例中,生成最終預測包括第二插值濾波過程。 Method 2800 includes, at step 2830, generating a final prediction for the current block based on the intermediate prediction or the second motion information. In some embodiments, generating the final prediction includes a second interpolation filtering process.
在一些實施例中,第一插值濾波過程使用第一濾波器集,其不同於第二插值濾波過程所使用的第二濾波器集。在一些實施例中,第一或第二插值濾波過程的至少一個濾波器抽頭基於當前塊的維度、預測方向或預測類型。 In some embodiments, the first interpolation filtering process uses a first filter set that is different from a second filter set used by the second interpolation filtering process. In some embodiments, at least one filter tap of the first or second interpolation filtering process is based on the dimension, prediction direction, or prediction type of the current block.
圖29示出了用於視頻解碼的另一示例方法的流程圖。該示例包括與圖28所示並且如上所述類似的一些特徵和/或步驟。這些特徵和/或組件的至少一些可以不在該部分中單獨描述。 FIG29 shows a flow chart of another example method for video decoding. The example includes some features and/or steps similar to those shown in FIG28 and described above. At least some of these features and/or components may not be described separately in this section.
方法2900包括,在步驟2910,接收視頻數據的當前塊的位元流表示。在一些實施例中,步驟2910包括從視頻編碼器或解碼器中的儲存器位置或緩衝器接收位元流表示。在其他實施例中,步驟2910包括在視頻解碼器處通過無線或有線信道接收位元流表示。在其他實施例中,步驟2910包括從不同的模塊、單元或處理器接收位元流表示,其可以實現如在本文件中的實施例中描述的一個或多個方法,但不限於此。 Method 2900 includes, at step 2910, receiving a bitstream representation of a current block of video data. In some embodiments, step 2910 includes receiving the bitstream representation from a memory location or buffer in a video encoder or decoder. In other embodiments, step 2910 includes receiving the bitstream representation at the video decoder via a wireless or wired channel. In other embodiments, step 2910 includes receiving the bitstream representation from a different module, unit, or processor, which may implement one or more methods as described in the embodiments in this document, but is not limited thereto.
方法2900包括,在步驟2920,基於與當前塊相關聯的運動信息生成中間運動信息。 Method 2900 includes, at step 2920, generating intermediate motion information based on motion information associated with the current block.
方法2900包括,在步驟2930,分別基於第一和第二參考運動向量生成更新的第一和第二參考運動向量。在一些實施例中,當前塊與第一和第二參考塊相關聯。在一些實施例中,第一和第二參考運動向量分別與第一和第二參考塊相關聯。 Method 2900 includes, at step 2930, generating updated first and second reference motion vectors based on the first and second reference motion vectors, respectively. In some embodiments, the current block is associated with the first and second reference blocks. In some embodiments, the first and second reference motion vectors are associated with the first and second reference blocks, respectively.
方法2900包括,在步驟2940,基於中間運動信息或更新的第一和第二參考運動向量處理位元流表示以生成當前塊。 Method 2900 includes, at step 2940, processing the bitstream representation based on the intermediate motion information or the updated first and second reference motion vectors to generate a current block.
在方法2900的一些實施例中,生成更新的第一和第二參考運動向量分別基於第一縮放運動向量與第一和第二縮放參考運動向量的加權和。在一些實施例中,基於第一參考運動向量和第二參考運動向量來推導第一運動向量,通過將第一運動向量縮放到目標精度來生成第一縮放運動向量,並且通過將第一和第二參考運動向量分別縮放到目標精度來生成第一和第二縮放參考運動向量。 In some embodiments of method 2900, generating updated first and second reference motion vectors is based on the weighted sum of the first scaled motion vector and the first and second scaled reference motion vectors, respectively. In some embodiments, the first motion vector is derived based on the first reference motion vector and the second reference motion vector, the first scaled motion vector is generated by scaling the first motion vector to a target precision, and the first and second scaled reference motion vectors are generated by scaling the first and second reference motion vectors to the target precision, respectively.
在一些實施例中,在視頻參數集(VPS)、序列參數集(SPS)、圖片參數集(PPS)、條帶標頭、編解碼樹單元(CTU)或編解碼單元(CU)中用信令通知目標精度的指示。 In some embodiments, an indication of the target accuracy is signaled in a video parameter set (VPS), a sequence parameter set (SPS), a picture parameter set (PPS), a slice header, a codec tree unit (CTU), or a codec unit (CU).
在一些實施例中,第一運動向量具有第一精度,並且第一和第二參考運動向量具有參考精度。在其他實施例中,第一精度可以高於或低於參考精度。在其他實施例中,可以將目標精度設置為第一精度、參考精度或與第一精度和參考精度無關的固定 (或預定)精度。 In some embodiments, the first motion vector has a first precision, and the first and second reference motion vectors have a reference precision. In other embodiments, the first precision can be higher or lower than the reference precision. In other embodiments, the target precision can be set to the first precision, the reference precision, or a fixed (or predetermined) precision that is independent of the first precision and the reference precision.
在一些實施例中,基於使用第一和第二參考運動向量的雙向光流(BIO)細化來推導第一運動向量。 In some embodiments, the first motion vector is derived based on bidirectional optical flow (BIO) refinement using the first and second reference motion vectors.
在一些實施例中,處理基於雙向光流(BIO)細化,並且在處理之前將更新的第一和第二參考運動向量約束到預定值範圍。 In some embodiments, processing is based on bidirectional optical flow (BIO) refinement, and the updated first and second reference motion vectors are constrained to a predetermined value range prior to processing.
在一些實施例中,處理基於雙向光流(BIO)細化或解碼器側運動向量細化(DMVR),並且其中在處理之前對更新的第一和第二參考運動向量進行裁剪。 In some embodiments, the processing is based on bidirectional optical flow (BIO) refinement or decoder-side motion vector refinement (DMVR), and wherein the updated first and second reference motion vectors are clipped prior to processing.
在一些實施例中,處理基於雙向光流(BIO)細化、解碼器側運動向量細化(DMVR)、幀速率上轉換(FRUC)技術或模板匹配技術。在一個示例中,針對不在當前塊的邊界上的內部子塊生成更新的第一和第二參考運動向量。在另一示例中,針對當前塊的子塊的子集生成更新的第一和第二參考運動向量。 In some embodiments, the processing is based on bidirectional optical flow (BIO) refinement, decoder-side motion vector refinement (DMVR), frame rate up-conversion (FRUC) techniques, or template matching techniques. In one example, updated first and second reference motion vectors are generated for internal sub-blocks that are not on the boundary of the current block. In another example, updated first and second reference motion vectors are generated for a subset of sub-blocks of the current block.
在一些實施例中,處理基於至少兩種技術,其可以包括雙向光流(BIO)細化、解碼器側運動向量細化(DMVR)、幀速率上轉換(FRUC)技術或模板匹配技術。在一個示例中,針對至少兩種技術中的每一種執行處理以生成多個結果集,可以對該多個結果集進行平均或濾波以生成當前塊。在另一示例中,針對至少兩種技術中的每一種以級聯方式執行處理以生成當前塊。 In some embodiments, the processing is based on at least two techniques, which may include bidirectional optical flow (BIO) refinement, decoder-side motion vector refinement (DMVR), frame rate up-conversion (FRUC) techniques, or template matching techniques. In one example, processing is performed for each of the at least two techniques to generate multiple result sets, which may be averaged or filtered to generate the current block. In another example, processing is performed in a cascaded manner for each of the at least two techniques to generate the current block.
圖30示出了用於視頻解碼的示例方法的流程圖。方法3000包括,在步驟3010,基於與當前塊相關聯的第一運動信息, 為當前塊生成中間預測。在一些實施例中,生成中間預測包括第一插值濾波過程。在一些實施例中,生成中間預測還基於序列參數集(SPS)、圖片參數集(PPS)、編解碼樹單元(CTU)、條帶標頭、編解碼單元(CU)或CTU組中的信令。 FIG30 shows a flow chart of an example method for video decoding. The method 3000 includes, at step 3010, based on first motion information associated with the current block, generating an intermediate prediction for the current block. In some embodiments, generating the intermediate prediction includes a first interpolation filtering process. In some embodiments, generating the intermediate prediction is also based on signaling in a sequence parameter set (SPS), a picture parameter set (PPS), a codec tree unit (CTU), a slice header, a codec unit (CU), or a CTU group.
方法3000包括,在步驟3020,將第一運動信息更新為第二運動信息。在一些實施例中,更新第一運動信息包括使用雙向光流(BIO)細化。 Method 3000 includes, at step 3020, updating the first motion information to the second motion information. In some embodiments, updating the first motion information includes using bidirectional optical flow (BIO) refinement.
方法3000包括,在步驟3030,基於中間預測或第二運動信息生成當前塊的最終預測。在一些實施例中,生成最終預測包括第二插值濾波過程。 Method 3000 includes, at step 3030, generating a final prediction of the current block based on the intermediate prediction or the second motion information. In some embodiments, generating the final prediction includes a second interpolation filtering process.
在一些實施例中,第一插值濾波過程使用第一濾波器集,其不同於第二插值濾波過程所使用的第二濾波器集。在一些實施例中,第一或第二插值濾波過程的至少一個濾波器抽頭基於當前塊的維度、預測方向或預測類型。 In some embodiments, the first interpolation filtering process uses a first filter set that is different from a second filter set used by the second interpolation filtering process. In some embodiments, at least one filter tap of the first or second interpolation filtering process is based on the dimension, prediction direction, or prediction type of the current block.
圖31示出了用於視頻解碼的另一示例方法的流程圖。該示例包括與上述圖30中所示的特徵和/或步驟類似的一些特徵和/或步驟。本節中可能未單獨描述這些特徵和/或組件中的至少一些。 FIG31 shows a flow chart of another example method for video decoding. The example includes some features and/or steps similar to those shown in FIG30 above. At least some of these features and/or components may not be described separately in this section.
方法3100包括,在步驟3110,接收視頻數據的當前塊的位元流表示。在一些實施例中,步驟3110包括從視頻編碼器或解碼器中的儲存器位置或緩衝器接收位元流表示。在其他實施例中,步驟3110包括在視頻解碼器處通過無線或有線信道接收位元 流表示。在其他實施例中,步驟3110包括從不同的模塊、單元或處理器接收位元流表示,該模塊、單元或處理器可以實現如在本文中的實施例中描述的一個或多個方法,但不限於此。 Method 3100 includes, at step 3110, receiving a bitstream representation of a current block of video data. In some embodiments, step 3110 includes receiving the bitstream representation from a memory location or buffer in a video encoder or decoder. In other embodiments, step 3110 includes receiving the bitstream representation at the video decoder via a wireless or wired channel. In other embodiments, step 3110 includes receiving the bitstream representation from a different module, unit, or processor, which module, unit, or processor may implement one or more methods as described in the embodiments herein, but is not limited thereto.
方法3100包括,在步驟3120,基於與當前塊相關聯的運動信息生成中間運動信息。 Method 3100 includes, at step 3120, generating intermediate motion information based on motion information associated with the current block.
方法3100包括,在步驟3130,分別基於第一和第二參考運動向量生成更新的第一和第二參考運動向量。在一些實施例中,當前塊與第一和第二參考塊相關聯。在一些實施例中,第一和第二參考運動向量分別與第一和第二參考塊相關聯。 The method 3100 includes, at step 3130, generating updated first and second reference motion vectors based on the first and second reference motion vectors, respectively. In some embodiments, the current block is associated with the first and second reference blocks. In some embodiments, the first and second reference motion vectors are associated with the first and second reference blocks, respectively.
方法3100包括,在步驟3140,基於中間運動信息或更新的第一和第二參考運動向量處理位元流表示以生成當前塊。 The method 3100 includes, at step 3140, processing the bitstream representation based on the intermediate motion information or the updated first and second reference motion vectors to generate a current block.
在方法3100的一些實施例中,生成更新的第一和第二參考運動向量分別基於第一縮放運動向量與第一和第二縮放參考運動向量的加權和。在一些實施例中,基於第一參考運動向量和第二參考運動向量來推導第一運動向量,通過將第一運動向量縮放到目標精度來生成第一縮放運動向量,並且通過分別將第一和第二參考運動向量分別縮放到目標精度來生成第一和第二縮放參考運動向量。 In some embodiments of method 3100, generating updated first and second reference motion vectors is based on a weighted sum of the first scaled motion vector and the first and second scaled reference motion vectors, respectively. In some embodiments, the first motion vector is derived based on the first reference motion vector and the second reference motion vector, the first scaled motion vector is generated by scaling the first motion vector to a target precision, and the first and second scaled reference motion vectors are generated by scaling the first and second reference motion vectors to the target precision, respectively.
在一些實施例中,在視頻參數集(VPS)、序列參數集(SPS)、圖片參數集(PPS)、條帶標頭、編解碼樹單元(CTU)或編解碼單元(CU)中用信令通知目標精度的指示。 In some embodiments, an indication of the target accuracy is signaled in a video parameter set (VPS), a sequence parameter set (SPS), a picture parameter set (PPS), a slice header, a codec tree unit (CTU), or a codec unit (CU).
在一些實施例中,第一運動向量具有第一精度,並且第 一和第二參考運動向量具有參考精度。在其他實施例中,第一精度可以高於或低於參考精度。在其他實施例中,可以將目標精度設置為第一精度、參考精度或與第一精度和參考精度無關的固定(或預定)精度。 In some embodiments, the first motion vector has a first precision, and the first and second reference motion vectors have a reference precision. In other embodiments, the first precision may be higher or lower than the reference precision. In other embodiments, the target precision may be set to the first precision, the reference precision, or a fixed (or predetermined) precision that is independent of the first precision and the reference precision.
在一些實施例中,基於使用第一和第二參考運動向量的雙向光流(BIO)細化來推導第一運動向量。 In some embodiments, the first motion vector is derived based on bidirectional optical flow (BIO) refinement using the first and second reference motion vectors.
在一些實施例中,處理基於雙向光流(BIO)細化,並且在處理之前將更新的第一和第二參考運動向量約束到預定值範圍。 In some embodiments, processing is based on bidirectional optical flow (BIO) refinement, and the updated first and second reference motion vectors are constrained to a predetermined value range prior to processing.
在一些實施例中,處理基於雙向光流(BIO)細化或解碼器側運動向量細化(DMVR),並且其中在處理之前對更新的第一和第二參考運動向量進行裁剪。 In some embodiments, the processing is based on bidirectional optical flow (BIO) refinement or decoder-side motion vector refinement (DMVR), and wherein the updated first and second reference motion vectors are clipped prior to processing.
在一些實施例中,處理基於雙向光流(BIO)細化、解碼器側運動向量細化(DMVR)、幀速率上轉換(FRUC)技術或模板匹配技術。在一個示例中,針對不在當前塊的邊界上的內部子塊生成更新的第一和第二參考運動向量。在另一示例中,針對當前塊的子塊的子集生成更新的第一和第二參考運動向量。 In some embodiments, the processing is based on bidirectional optical flow (BIO) refinement, decoder-side motion vector refinement (DMVR), frame rate up-conversion (FRUC) techniques, or template matching techniques. In one example, updated first and second reference motion vectors are generated for internal sub-blocks that are not on the boundary of the current block. In another example, updated first and second reference motion vectors are generated for a subset of sub-blocks of the current block.
在一些實施例中,處理基於至少兩種技術,其可以包括雙向光流(BIO)細化、解碼器側運動向量細化(DMVR)、幀速率上轉換(FRUC)技術或模板匹配技術。在一個示例中,針對至少兩種技術中的每一種執行處理以生成多個結果集,可以對該多個結果集進行平均或濾波以生成當前塊。在另一示例中,針對至 少兩種技術中的每一種以級聯方式執行處理以生成當前塊。 In some embodiments, the processing is based on at least two techniques, which may include bidirectional optical flow (BIO) refinement, decoder-side motion vector refinement (DMVR), frame rate up-conversion (FRUC) techniques, or template matching techniques. In one example, processing is performed for each of the at least two techniques to generate multiple result sets, which may be averaged or filtered to generate the current block. In another example, processing is performed in a cascaded manner for each of the at least two techniques to generate the current block.
圖33示出了用於視頻解碼的示例方法的流程圖。方法3300包括,在步驟3310,基於與當前塊相關聯的第一運動信息,為當前塊生成中間預測。在一些實施例中,生成中間預測包括第一內插濾波過程。在一些實施例中,生成中間預測還基於序列參數集(SPS)、圖片參數集(PPS)、編解碼樹單元(CTU)、條帶標頭、編解碼單元(CU)或CTU組中的信令。 FIG33 shows a flow chart of an example method for video decoding. The method 3300 includes, at step 3310, generating an intermediate prediction for the current block based on first motion information associated with the current block. In some embodiments, generating the intermediate prediction includes a first interpolation filtering process. In some embodiments, generating the intermediate prediction is also based on signaling in a sequence parameter set (SPS), a picture parameter set (PPS), a codec tree unit (CTU), a slice header, a codec unit (CU), or a CTU group.
方法3300包括,在步驟3320,將第一運動信息更新為第二運動信息。在一些實施例中,更新第一運動信息包括使用雙向光流(BIO)細化。 Method 3300 includes, at step 3320, updating the first motion information to the second motion information. In some embodiments, updating the first motion information includes using bidirectional optical flow (BIO) refinement.
方法3300包括,在步驟3330,基於中間預測或第二運動信息生成當前塊的最終預測。在一些實施例中,生成最終預測包括第二插值濾波過程。 Method 3300 includes, at step 3330, generating a final prediction of the current block based on the intermediate prediction or the second motion information. In some embodiments, generating the final prediction includes a second interpolation filtering process.
在一些實施例中,第一插值濾波過程使用第一濾波器集,其不同於第二插值濾波過程所使用的第二濾波器集。在一些實施例中,第一或第二插值濾波過程的至少一個濾波器抽頭基於當前塊的維度、預測方向或預測類型。 In some embodiments, the first interpolation filtering process uses a first filter set that is different from a second filter set used by the second interpolation filtering process. In some embodiments, at least one filter tap of the first or second interpolation filtering process is based on the dimension, prediction direction, or prediction type of the current block.
圖34示出了用於視頻解碼的另一示例方法的流程圖。該示例包括與如上所述圖33中所示的特徵和/或步驟類似的一些特徵和/或步驟。本部分中可能未單獨描述這些特徵和/或組件中的至少一些。 FIG34 shows a flow chart of another example method for video decoding. The example includes some features and/or steps similar to those shown in FIG33 as described above. At least some of these features and/or components may not be described separately in this section.
方法3400包括,在步驟3410,接收視頻數據的當前塊 的位元流表示。在一些實施例中,步驟3410包括從視頻編碼器或解碼器中的儲存器位置或緩衝器接收位元流表示。在其他實施例中,步驟3410包括在視頻解碼器處通過無線或有線信道接收位元流表示。在其他實施例中,步驟3410包括從不同的模塊,單元或處理器接收位元流表示,其可以實現如在本文件中的實施例中描述的一個或多個方法,但不限於此。 Method 3400 includes, at step 3410, receiving a bitstream representation of a current block of video data. In some embodiments, step 3410 includes receiving the bitstream representation from a memory location or buffer in a video encoder or decoder. In other embodiments, step 3410 includes receiving the bitstream representation at the video decoder via a wireless or wired channel. In other embodiments, step 3410 includes receiving the bitstream representation from a different module, unit, or processor, which may implement one or more methods as described in the embodiments in this document, but is not limited thereto.
方法3400包括,在步驟3420,基於與當前塊相關聯的運動信息生成中間運動信息。 Method 3400 includes, at step 3420, generating intermediate motion information based on motion information associated with the current block.
方法3400包括,在步驟3430,分別基於第一和第二參考運動向量生成更新的第一和第二參考運動向量。在一些實施例中,當前塊與第一和第二參考塊相關聯。在一些實施例中,第一和第二參考運動向量分別與第一和第二參考塊相關聯。 Method 3400 includes, at step 3430, generating updated first and second reference motion vectors based on the first and second reference motion vectors, respectively. In some embodiments, the current block is associated with the first and second reference blocks. In some embodiments, the first and second reference motion vectors are associated with the first and second reference blocks, respectively.
方法3400包括,在步驟3440,基於中間運動信息或更新的第一和第二參考運動向量處理位元流表示以生成當前塊。 Method 3400 includes, at step 3440, processing the bitstream representation based on the intermediate motion information or the updated first and second reference motion vectors to generate a current block.
在方法3400的一些實施例中,生成更新的第一和第二參考運動向量分別基於第一縮放運動向量與第一和第二縮放參考運動向量的加權和。在一些實施例中,基於第一參考運動向量和第二參考運動向量來推導第一運動向量,通過將第一運動向量縮放到目標精度來生成第一縮放運動向量,並且通過將第一和第二參考運動向量分別縮放到目標精度來生成第一和第二縮放參考運動向量。 In some embodiments of method 3400, generating updated first and second reference motion vectors is based on the weighted sum of the first scaled motion vector and the first and second scaled reference motion vectors, respectively. In some embodiments, the first motion vector is derived based on the first reference motion vector and the second reference motion vector, the first scaled motion vector is generated by scaling the first motion vector to a target precision, and the first and second scaled reference motion vectors are generated by scaling the first and second reference motion vectors to the target precision, respectively.
在一些實施例中,在視頻參數集(VPS)、序列參數集 (SPS)、圖片參數集(PPS)、條帶標頭、編解碼樹單元(CTU)或編解碼單元(CU)中用信令通知目標精度的指示。 In some embodiments, an indication of the target accuracy is signaled in a video parameter set (VPS), a sequence parameter set (SPS), a picture parameter set (PPS), a slice header, a codec tree unit (CTU), or a codec unit (CU).
在一些實施例中,第一運動向量具有第一精度,並且第一和第二參考運動向量具有參考精度。在其他實施例中,第一精度可以高於或低於參考精度。在其他實施例中,可以將目標精度設置為第一精度、參考精度或與第一精度和參考精度無關的固定(或預定)精度。 In some embodiments, the first motion vector has a first precision, and the first and second reference motion vectors have a reference precision. In other embodiments, the first precision may be higher or lower than the reference precision. In other embodiments, the target precision may be set to the first precision, the reference precision, or a fixed (or predetermined) precision that is independent of the first precision and the reference precision.
在一些實施例中,基於使用第一和第二參考運動向量的雙向光流(BIO)細化來推導第一運動向量。 In some embodiments, the first motion vector is derived based on bidirectional optical flow (BIO) refinement using the first and second reference motion vectors.
在一些實施例中,處理基於雙向光流(BIO)細化,並且在處理之前將更新的第一和第二參考運動向量約束到預定值範圍。 In some embodiments, processing is based on bidirectional optical flow (BIO) refinement, and the updated first and second reference motion vectors are constrained to a predetermined value range prior to processing.
在一些實施例中,處理基於雙向光流(BIO)細化或解碼器側運動向量細化(DMVR),並且其中在處理之前對更新的第一和第二參考運動向量進行裁剪。 In some embodiments, the processing is based on bidirectional optical flow (BIO) refinement or decoder-side motion vector refinement (DMVR), and wherein the updated first and second reference motion vectors are clipped prior to processing.
在一些實施例中,處理基於雙向光流(BIO)細化、解碼器側運動向量細化(DMVR)、幀速率上轉換(FRUC)技術或模板匹配技術。在一個示例中,針對不在當前塊的邊界上的內部子塊生成更新的第一和第二參考運動向量。在另一示例中,針對當前塊的子塊的子集生成更新的第一和第二參考運動向量。 In some embodiments, the processing is based on bidirectional optical flow (BIO) refinement, decoder-side motion vector refinement (DMVR), frame rate up-conversion (FRUC) techniques, or template matching techniques. In one example, updated first and second reference motion vectors are generated for internal sub-blocks that are not on the boundary of the current block. In another example, updated first and second reference motion vectors are generated for a subset of sub-blocks of the current block.
在一些實施例中,處理基於至少兩種技術,其可以包括雙向光流(BIO)細化、解碼器側運動向量細化(DMVR)、幀速 率上轉換(FRUC)技術或模板匹配技術。在一個示例中,針對至少兩種技術中的每一種執行處理以生成多個結果集,可以對該多個結果集進行平均或濾波以生成當前塊。在另一示例中,針對至少兩種技術中的每一種以級聯方式執行處理以生成當前塊。 In some embodiments, the processing is based on at least two techniques, which may include bidirectional optical flow (BIO) refinement, decoder-side motion vector refinement (DMVR), frame rate up-conversion (FRUC) techniques, or template matching techniques. In one example, processing is performed for each of the at least two techniques to generate multiple result sets, which may be averaged or filtered to generate the current block. In another example, processing is performed in a cascaded manner for each of the at least two techniques to generate the current block.
圖35示出了用於視頻解碼的示例方法的流程圖。方法3500包括,在步驟3510,通過修改與當前塊相關聯的參考塊,對於當前塊的位元流表示生成更新的參考塊。 FIG35 shows a flow chart of an example method for video decoding. Method 3500 includes, at step 3510, generating an updated reference block for a bitstream representation of a current block by modifying a reference block associated with the current block.
在一些實施例中,方法3500還包括使用平滑濾波器對參考塊進行濾波的步驟。 In some embodiments, method 3500 further includes the step of filtering the reference block using a smoothing filter.
在一些實施例中,方法3500還包括對參考塊的塊邊界處的像素進行濾波的步驟。 In some embodiments, method 3500 further includes the step of filtering pixels at block boundaries of the reference block.
在一些實施例中,方法3500還包括對參考塊應用重疊塊運動補償(OBMC)的步驟。 In some embodiments, method 3500 further includes the step of applying overlapping block motion compensation (OBMC) to the reference block.
在一些實施例中,方法3500還包括對參考塊應用照明補償(IC)的步驟。 In some embodiments, method 3500 further includes the step of applying illumination compensation (IC) to the reference block.
在一些實施例中,方法3500還包括對參考塊應用加權預測的步驟。 In some embodiments, method 3500 further includes the step of applying a weighted prediction to the reference block.
方法3500包括,在步驟3520,基於更新的參考塊,計算用於雙向光流(BIO)運動細化的時間梯度。 Method 3500 includes, at step 3520, computing temporal gradients for bidirectional optical flow (BIO) motion refinement based on the updated reference block.
方法3500包括,在步驟3530,基於時間梯度在位元流表示和當前塊之間執行包括BIO運動細化的轉換。在一些實施例中,轉換從位元流表示生成當前塊(例如,可以在視頻解碼器中 實現)。在其他實施例中,轉換從當前塊生成位元流表示(例如,可以在視頻編碼器中實現)。 Method 3500 includes, at step 3530, performing a transformation including BIO motion refinement between a bitstream representation and a current block based on a temporal gradient. In some embodiments, the transformation generates the current block from the bitstream representation (e.g., as may be implemented in a video decoder). In other embodiments, the transformation generates the bitstream representation from the current block (e.g., as may be implemented in a video encoder).
在一些實施例中,方法3500還包括計算參考塊的均值;以及從參考塊的每個像素中減去均值的步驟。在一個示例中,計算均值基於參考塊的所有像素。在另一示例中,計算均值基於參考塊的子塊中的所有像素。 In some embodiments, method 3500 further includes calculating a mean of the reference block; and subtracting the mean from each pixel of the reference block. In one example, calculating the mean is based on all pixels of the reference block. In another example, calculating the mean is based on all pixels in a sub-block of the reference block.
在一些實施例中,計算均值是基於參考塊的像素(換句話說,不是所有像素)的子集。在一個示例中,像素子集包括參考塊的每第四行或列中的像素。在另一示例中,像素子集包括四個角像素。在又一示例中,像素子集包括四個角像素和中心像素。 In some embodiments, the mean is calculated based on a subset of pixels (in other words, not all pixels) of the reference block. In one example, the subset of pixels includes pixels in every fourth row or column of the reference block. In another example, the subset of pixels includes four corner pixels. In yet another example, the subset of pixels includes four corner pixels and a center pixel.
圖36示出了用於視頻解碼的另一示例方法的流程圖。該示例包括與如上所述的圖35中所示的特徵和/或步驟類似的一些特徵和/或步驟。本部分中可能未單獨描述這些特徵和/或組件中的至少一些。 FIG36 shows a flow chart of another example method for video decoding. The example includes some features and/or steps similar to those shown in FIG35 as described above. At least some of these features and/or components may not be described separately in this section.
方法3600包括,在步驟3610,對於當前塊的位元流表示,生成用於雙向光流(BIO)運動細化的時間梯度。 Method 3600 includes, at step 3610, generating a temporal gradient for bidirectional optical flow (BIO) motion refinement for a bitstream representation of the current block.
方法3600包括,在步驟3620,通過從時間梯度中減去第一均值和第二均值的差來生成更新的時間梯度,其中第一均值是第一參考塊的均值,第二均值是第二參考塊的均值,並且第一和第二參考塊與當前塊相關聯。 Method 3600 includes, at step 3620, generating an updated temporal gradient by subtracting a difference between a first mean and a second mean from the temporal gradient, wherein the first mean is a mean of a first reference block, the second mean is a mean of a second reference block, and the first and second reference blocks are associated with the current block.
在一些實施例中,均值基於對應參考塊的所有像素(例如,第一均值被計算為第一參考塊的所有像素的均值)。在另一示 例中,基於對應參考塊的子塊中的所有像素計算均值。 In some embodiments, the mean is based on all pixels of the corresponding reference block (e.g., the first mean is calculated as the mean of all pixels of the first reference block). In another example, the mean is calculated based on all pixels in a sub-block of the corresponding reference block.
在一些實施例中,均值基於對應參考塊的像素(換句話說,不是所有像素)的子集。在一個示例中,像素子集包括對應參考塊的每第四行或列中的像素。在另一示例中,像素子集包括四個角像素。在又一示例中,像素子集包括四個角像素和中心像素。 In some embodiments, the mean is based on a subset of pixels (in other words, not all pixels) of the corresponding reference block. In one example, the subset of pixels includes pixels in every fourth row or column of the corresponding reference block. In another example, the subset of pixels includes four corner pixels. In yet another example, the subset of pixels includes four corner pixels and a center pixel.
方法3600包括,在步驟3630,基於更新的時間梯度在位元流表示和當前塊之間執行包括BIO運動細化的轉換。在一些實施例中,轉換從位元流表示生成當前塊(例如,可以在視頻解碼器中實現)。在其他實施例中,轉換從當前塊生成位元流表示(例如,可以在視頻編碼器中實現)。 Method 3600 includes, at step 3630, performing a transformation including BIO motion refinement between the bitstream representation and the current block based on the updated temporal gradient. In some embodiments, the transformation generates the current block from the bitstream representation (e.g., as may be implemented in a video decoder). In other embodiments, the transformation generates the bitstream representation from the current block (e.g., as may be implemented in a video encoder).
圖38示出了用於視頻處理的示例方法的流程圖。該方法3800包括:在步驟3810,確定當前塊的原始運動信息;在步驟3820,將原始運動信息的原始運動向量和基於原始運動向量推導的推導運動向量縮放到相同的目標精度;在步驟3830,從縮放的原始和推導的運動向量生成更新的運動向量;以及在步驟3840,基於更新的運動向量,執行當前塊和包括當前塊的視頻的位元流表示之間的轉換。 FIG38 shows a flow chart of an example method for video processing. The method 3800 includes: determining raw motion information of a current block at step 3810; scaling raw motion vectors of the raw motion information and derived motion vectors derived based on the raw motion vectors to the same target accuracy at step 3820; generating updated motion vectors from the scaled raw and derived motion vectors at step 3830; and performing conversion between the current block and a bitstream representation of a video including the current block based on the updated motion vectors at step 3840.
圖39示出了用於視頻處理的示例方法的流程圖。該方法3900包括:在步驟3910,確定當前塊的原始運動信息;在步驟3920,基於細化方法更新當前塊的原始運動信息的原始運動向量;在步驟3930,將更新的運動向量裁剪到一個範圍內;以及在步驟 3940,基於裁剪的更新的運動向量,執行當前塊和包括當前塊的視頻的位元流表示之間的轉換。 FIG39 shows a flow chart of an example method for video processing. The method 3900 includes: at step 3910, determining raw motion information of a current block; at step 3920, updating a raw motion vector of the raw motion information of the current block based on a refinement method; at step 3930, clipping the updated motion vector to a range; and at step 3940, performing a conversion between the current block and a bitstream representation of a video including the current block based on the clipped updated motion vector.
圖40示出了用於視頻處理的示例方法的流程圖。該方法4000包括:在步驟4010,確定與當前塊相關聯的原始運動信息;在步驟4020,基於特定預測模式生成更新的運動信息;以及在步驟4030,基於更新的運動信息,執行當前塊與包括當前塊的視頻數據的位元流表示之間的轉換,其中,特定預測模式包括雙向光流(BIO)細化、解碼器側運動向量細化(DMVR)、幀速率上轉換(FRUC)技術或模板匹配技術中的一個或多個。 FIG40 shows a flow chart of an example method for video processing. The method 4000 includes: at step 4010, determining original motion information associated with a current block; at step 4020, generating updated motion information based on a specific prediction mode; and at step 4030, performing a conversion between the current block and a bitstream representation of video data including the current block based on the updated motion information, wherein the specific prediction mode includes one or more of bidirectional optical flow (BIO) refinement, decoder-side motion vector refinement (DMVR), frame rate up-conversion (FRUC) technology, or template matching technology.
圖41示出了用於視頻處理的示例方法的流程圖。該方法4100包括:在步驟4110,從運動向量差(MVD)精度集確定用仿射模式處理的當前塊的MVD精度;在步驟4120,基於所確定的MVD精度,執行當前塊與包括當前塊的視頻的位元流表示之間的轉換。 FIG41 shows a flow chart of an example method for video processing. The method 4100 includes: at step 4110, determining a motion vector difference (MVD) precision of a current block processed using an affine mode from a set of MVD precisions; at step 4120, performing a conversion between the current block and a bitstream representation of a video including the current block based on the determined MVD precision.
圖42示出了用於視頻處理的示例方法的流程圖。該方法4200包括:在步驟4210,確定與當前塊相關聯的未更新的運動信息;在步驟4220,基於多個解碼器側運動向量推導(DMVD)方法更新未更新的運動信息,以生成當前塊的更新的運動信息;以及在步驟4230,基於更新的運動信息,執行當前塊與包括當前塊的視頻的位元流表示之間的轉換。 FIG42 shows a flow chart of an example method for video processing. The method 4200 includes: at step 4210, determining unupdated motion information associated with a current block; at step 4220, updating the unupdated motion information based on multiple decoder-side motion vector derivation (DMVD) methods to generate updated motion information for the current block; and at step 4230, performing a conversion between the current block and a bitstream representation of a video including the current block based on the updated motion information.
圖43示出了用於視頻處理的示例方法的流程圖。該方法4300包括:在步驟4310,基於與當前塊相關聯的第一運動信息, 為當前塊生成中間預測;在步驟4320,基於中間預測將第一運動信息更新為第二運動信息;以及在步驟4330,基於第二運動信息生成當前塊的最終預測。 FIG43 shows a flow chart of an example method for video processing. The method 4300 includes: at step 4310, based on first motion information associated with the current block, generating an intermediate prediction for the current block; at step 4320, updating the first motion information to second motion information based on the intermediate prediction; and at step 4330, generating a final prediction for the current block based on the second motion information.
7.所公開技術的示例實現 7. Example implementation of the disclosed technology
圖37是視頻處理裝置3700的方塊圖。裝置3700可用於實現這裡描述的一個或多個方法。裝置3700可以體現在智能手機、平板電腦、電腦、物聯網(IoT)接收器等中。裝置3700可以包括一個或多個處理器3702、一個或多個儲存器3704和視頻處理硬體3706。處理器3702可以被配置為實現在本文中描述的一種或多種方法(包括但不限於方法27003100、3300-3600和3800-4200)。(一個或多個)儲存器3704可以用於儲存用於實現這裡描述的方法和技術的數據和代碼。視頻處理硬體3706可用於在硬體電路中實現本文件中描述的一些技術。 FIG. 37 is a block diagram of a video processing device 3700. Device 3700 may be used to implement one or more methods described herein. Device 3700 may be embodied in a smartphone, a tablet, a computer, an Internet of Things (IoT) receiver, etc. Device 3700 may include one or more processors 3702, one or more memories 3704, and video processing hardware 3706. Processor 3702 may be configured to implement one or more methods described herein (including but not limited to methods 27003100, 3300-3600, and 3800-4200). (One or more) memories 3704 may be used to store data and code used to implement the methods and techniques described herein. Video Processing Hardware 3706 can be used to implement some of the techniques described in this document in hardware circuits.
在一些實施例中,視頻編解碼方法可以使用如關於圖37所描述的在硬體平臺上實現的裝置來實現。 In some embodiments, the video encoding and decoding method can be implemented using a device implemented on a hardware platform as described with respect to FIG. 37 .
可以使用以下基於條款的格式來描述貫穿本文件描述的各種實施例和技術。 The following clause-based format may be used to describe various embodiments and techniques described throughout this document.
1.1 一種視頻處理方法,包括:確定當前塊的原始運動信息;將原始運動信息的原始運動向量和基於原始運動向量推導的推導運動向量縮放到相同的目標精度;從縮放的原始和推導的運動向量生成更新的運動向量; 以及基於更新的運動向量,執行當前塊和包括當前塊的視頻的位元流表示之間的轉換。 1.1 A video processing method, comprising: determining raw motion information of a current block; scaling raw motion vectors of the raw motion information and derived motion vectors derived based on the raw motion vectors to the same target accuracy; generating updated motion vectors from the scaled raw and derived motion vectors; and performing a conversion between a bitstream representation of the current block and a video including the current block based on the updated motion vectors.
1.2.如示例1.1的方法,其中,原始運動向量具有第一精度,推導的運動向量具有與第一精度不同的第二精度,並且目標精度被設置為在第一精度和第二個精度中的更高精度或更低精度。 1.2. A method as in Example 1.1, wherein the original motion vector has a first precision, the derived motion vector has a second precision different from the first precision, and the target precision is set to a higher precision or a lower precision between the first precision and the second precision.
1.3.如示例1.1的方法,其中,目標精度被設置為固定精度。 1.3. The method of Example 1.1, wherein the target accuracy is set to a fixed accuracy.
1.4.如示例1.1的方法,其中,目標精度高於原始運動向量的精度。 1.4. The method of Example 1.1, wherein the target accuracy is higher than the accuracy of the original motion vector.
1.5.如示例1.4的方法,其中,將原始運動向量縮放為:mvLX’x=sign(mvLXx) * (abs(mvLXx)<<N),mvLX’y=sign(mvLXy) * (abs(mvLXy)<<N),其中(mvLXx,mvLXy)是原始運動向量,(mvLX’x,mvLX’y)是縮放的原始運動向量,函數sign(.)返回輸入參數的符號,函數abs(.)返回輸入參數的絕對值,N=log2(curr_mv_precision/targ_mv_precision),並且其中curr_mv_precision是原始運動向量的精度,並且targ_mv_precision是推導的運動向量的精度,其被作為目標精度。 1.5. The method of Example 1.4, wherein the original motion vector is scaled to: mvLX' x =sign(mvLX x ) * (abs(mvLX x )<<N), mvLX' y =sign(mvLX y ) * (abs(mvLX y )<<N), where (mvLX x ,mvLX y ) is the original motion vector, (mvLX' x ,mvLX' y ) is the scaled original motion vector, the function sign(.) returns the sign of the input parameter, the function abs(.) returns the absolute value of the input parameter, N=log2(curr_mv_precision/targ_mv_precision), and where curr_mv_precision is the precision of the original motion vector, and targ_mv_precision is the precision of the derived motion vector, which is taken as the target precision.
1.6.如示例1.1的方法,其中,目標精度與原始運動向量的精度相同。 1.6. The method of Example 1.1, wherein the target precision is the same as the precision of the original motion vector.
1.7.如示例1.1的方法,其中,原始運動向量具有第一精度,推導的運動向量具有與第一精度不同的第二精度,並且目標精度被設置為第一精度。 1.7. A method as in Example 1.1, wherein the original motion vector has a first precision, the derived motion vector has a second precision different from the first precision, and the target precision is set to the first precision.
1.8.如示例1.7的方法,其中,當推導的運動向量被右移N以實現目標精度時,推導的運動向量被縮放為:v’x=(vx+offset)>>N,v’y=(vy+offset)>>N;或v’x=sign(vx) * ((abs(vx)+offset)>>N),v’y=sign(vy) * ((abs(vy)+offset)>>N) 1.8. The method of Example 1.7, wherein when the derived motion vector is right-shifted by N to achieve the target accuracy, the derived motion vector is scaled as: v' x =(v x +offset)>>N,v' y =(v y +offset)>>N; or v' x =sign(v x ) * ((abs(v x )+offset)>>N),v' y =sign(v y ) * ((abs(v y )+offset)>>N)
其中(vx,vy)是推導的運動向量,(v’x,v’y)是縮放的推導運動向量,offset是應用於推導運動向量以實現目標精度的偏移,函數sign(.)返回輸入參數的符號,函數abs(.)返回輸入參數的絕對值,N=log2(curr_mv_precision/targ_mv_precision),其中curr_mv_precision是第一精度,targ_mv_precision是第二精度。 Where (v x ,v y ) is the derived motion vector, (v' x ,v' y ) is the scaled derived motion vector, offset is the offset applied to the derived motion vector to achieve the target precision, the function sign(.) returns the sign of the input parameter, the function abs(.) returns the absolute value of the input parameter, N=log2(curr_mv_precision/targ_mv_precision), where curr_mv_precision is the first precision and targ_mv_precision is the second precision.
1.9.如示例1.1的方法,其中,所述縮放和更新的運動向量的生成被執行為:mvL0’x=-vx/S0+mvL0x,mvL0’y=-vy/S0+mvL0y;和/或mvL1’x=vx/S1+mvL1x,mvL1’y=vy/S1+mvL1y 1.9. The method of Example 1.1, wherein the generation of the scaled and updated motion vectors is performed as follows: mvL0' x = -v x /S 0 +mvL0 x , mvL0' y = -v y /S 0 +mvL0 y ; and/or mvL1' x = v x /S 1 +mvL1 x , mvL1' y = v y /S 1 +mvL1 y
其中,(mvL0x,mvL0y)和(mvL1x,mvL1y)是原始運動向量,(mvL0’x,mvL0’y)和(mvL1’x,mvL1’y)是更新的運動向 量,(vx,vy)是推導的運動向量,以及S0和S1是縮放因子。 Where (mvL0 x ,mvL0 y ) and (mvL1 x ,mvL1 y ) are the original motion vectors, (mvL0' x ,mvL0' y ) and (mvL1' x ,mvL1' y ) are the updated motion vectors, (v x ,v y ) are the derived motion vectors, and S 0 and S 1 are the scaling factors.
1.10.如示例1.1的方法,其中,所述縮放和更新的運動向量的生成被執行為:mvL0’x=(-vx+offset0)/S0+mvL0x,mvL0’y=-(vy+offset0)/S0+mvL0y,和/或mvL1’x=(vx+offset1)/S1+mvL1x,mvL1’y=(vy+offset1)/S1+mvL1y 1.10. The method of Example 1.1, wherein the generation of the scaled and updated motion vectors is performed as follows: mvL0' x = (-v x + offset0) / S 0 + mvL0 x , mvL0' y = - (v y + offset0) / S 0 + mvL0 y , and/or mvL1'x = (vx + offset1) / S1 + mvL1x , mvL1'y = (vy + offset1) / S1 + mvL1y
其中,(mvL0x,mvL0y)和(mvL1x,mvL1y)是原始運動向量,(mvL0’x,mvL0’y)和(mvL1’x,mvL1’y)是更新的運動向量,(vx,vy)是推導的運動向量,offset0和offset1是偏移,並且S0和S1是縮放因子。 Where (mvL0 x ,mvL0 y ) and (mvL1 x ,mvL1 y ) are the original motion vectors, (mvL0' x ,mvL0' y ) and (mvL1' x ,mvL1' y ) are the updated motion vectors, (v x ,v y ) are the derived motion vectors, offset0 and offset1 are the offsets, and S 0 and S 1 are the scaling factors.
1.11.如示例1.1的方法,其中,所述縮放和更新的運動向量的生成被執行為:mvL0’x=((-vx+1)>>1)+mvL0x,mvL0’y=(-(vy+1)>>1)+mvL0y;和/或mvL1’x=((vx+1)>>1)+mvL1x,mvL1’y=((vy+1)>>1)+mvL1y 1.11. The method of Example 1.1, wherein the generation of the scaled and updated motion vectors is performed as follows: mvL0' x =((-v x +1)>>1)+mvL0 x , mvL0' y =(-(v y +1)>>1)+mvL0 y ; and/or mvL1' x =((v x +1)>>1)+mvL1 x , mvL1' y =((v y +1)>>1)+mvL1 y
其中,(mvL0x,mvL0y)和(mvL1x,mvL1y)是原始運動向量,(mvL0’x,mvL0’y)和(mvL1’x,mvL1’y)是更新的運動向量,並且(vx,vy)是推導的運動向量。 Among them, (mvL0 x ,mvL0 y ) and (mvL1 x ,mvL1 y ) are the original motion vectors, (mvL0' x ,mvL0' y ) and (mvL1' x ,mvL1' y ) are the updated motion vectors, and (v x ,v y ) is the derived motion vector.
1.12.如示例1.9-1.11中任一個的方法,其中,當τ0>0且τ1>0時執行所述縮放和更新的運動向量的生成,其中, τ0=POC(當前)-POC(Ref0),τ1=POC(Ref1)-POC(當前),並且其中POC(當前)、POC(Ref0)和POC(Ref1)分別是當前塊、第一參考塊和第二參考塊的圖片順序計數。 1.12. A method as in any of Examples 1.9-1.11, wherein the generation of the scaled and updated motion vectors is performed when τ 0 >0 and τ 1 >0, wherein τ 0 =POC(current)-POC(Ref 0 ), τ 1 =POC(Ref 1 )-POC(current), and wherein POC(current), POC(Ref 0 ) and POC(Ref 1 ) are the picture order counts of the current block, the first reference block and the second reference block, respectively.
1.13.如示例1.1的方法,其中,所述縮放和更新的運動向量的生成被執行為:mvL0’x=-SF0 * vx+mvL0x,mvL0’y=-vy * SF0+mvL0y;和/或mvL1’x=-SF1* vx+mvL1x,mvL1’y=-SF1*vy+mvL1y 1.13. The method of Example 1.1, wherein the generation of the scaled and updated motion vectors is performed as follows: mvL0' x = -SF0 * vx + mvL0x , mvL0' y = -vy * SF0 + mvL0y ; and/or mvL1'x = -SF1*vx + mvL1x, mvL1'y = -SF1*vy + mvL1y
其中,(mvL0x,mvL0y)和(mvL1x,mvL1y)是原始運動向量,(mvL0’x,mvL0’y)和(mvL1’x,mvL1’y)是更新的運動向量,(vx,vy)是推導的運動向量,以及SF0和SF1是縮放因子。 Wherein, (mvL0 x ,mvL0 y ) and (mvL1 x ,mvL1 y ) are the original motion vectors, (mvL0' x ,mvL0' y ) and (mvL1' x ,mvL1' y ) are the updated motion vectors, (v x ,v y ) are the derived motion vectors, and SF 0 and SF 1 are the scaling factors.
1.14.如示例1.13的方法,其中,當τ0>0、τ1<0且τ0>|τ1|時,執行所述縮放和更新的運動向量的生成,其中τ0=POC(當前)-POC(Ref0),τ1=POC(Ref1)-POC(當前),並且其中POC(當前)、POC(Ref0)和POC(Ref1)分別是當前塊、第一參考塊和第二參考塊的圖片順序計數。 1.14. A method as in Example 1.13, wherein the generation of the scaled and updated motion vectors is performed when τ 0 >0, τ 1 <0 and τ 0 > |τ 1 |, wherein τ 0 =POC(current)-POC(Ref 0 ), τ 1 =POC(Ref 1 )-POC(current), and wherein POC(current), POC(Ref 0 ) and POC(Ref 1 ) are the picture order counts of the current block, the first reference block and the second reference block, respectively.
1.15.如示例1.1的方法,其中,所述縮放和更新的運動向量的生成被執行為:mvL0’x=SFACT0*vx+mvL0x,mvL0’y=SFACT0*vy+mvL0y,和/或mvL1’x=SFACT1 *vx+mvL1x,mvL1’y=SFACT1 * vy+ mvL1y 1.15. The method of Example 1.1, wherein the generation of the scaled and updated motion vectors is performed as follows: mvL0' x = SFACT 0 * v x + mvL0 x , mvL0' y = SFACT 0 * v y + mvL0 y , and/or mvL1' x = SFACT 1 * v x + mvL1 x , mvL1' y = SFACT 1 * v y + mvL1 y
其中,(mvL0x,mvL0y)和(mvL1x,mvL1y)是原始運動向量,(mvL0’x,mvL0’y)和(mvL1’x,mvL1’y)是更新的運動向量,(vx,vy)是推導的運動向量,以及SFACT0和SFACT1是縮放因子。 Where (mvL0 x ,mvL0 y ) and (mvL1 x ,mvL1 y ) are the original motion vectors, (mvL0' x ,mvL0' y ) and (mvL1' x ,mvL1' y ) are the updated motion vectors, (v x ,v y ) are the derived motion vectors, and SFACT 0 and SFACT 1 are the scaling factors.
1.16.如示例1.15的方法,其中,當τ0>0、τ1<0且τ0<|τ1|時,執行所述縮放和更新的運動向量的生成,其中τ0=POC(當前)-POC(Ref0),τ1=POC(Ref1)-POC(當前),並且其中POC(當前)、POC(Ref0)和POC(Ref1)分別是當前塊、第一參考塊和第二參考塊的圖片順序計數。 1.16. A method as in Example 1.15, wherein the scaling and updating of the motion vector generation is performed when τ 0 >0, τ 1 <0 and τ 0 <|τ 1 |, wherein τ 0 =POC(current)-POC(Ref 0 ), τ 1 =POC(Ref 1 )-POC(current), and wherein POC(current), POC(Ref 0 ) and POC(Ref 1 ) are the picture order counts of the current block, the first reference block and the second reference block, respectively.
1.17.如示例1.1的方法,其中,當τ0>0、τ1>0且τ0>|τ1|時,一起執行推導的運動向量的推導和更新的運動向量的生成,其中,τ0=POC(當前)-POC(Ref0),τ1=POC(Ref1)-POC(當前),並且其中POC(當前)、POC(Ref0)和POC(Ref1)分別是當前塊、第一參考塊和第二參考塊的圖片順序計數。 1.17. A method as in Example 1.1, wherein, when τ 0 >0, τ 1 >0 and τ 0 > |τ 1 |, the derivation of the derived motion vector and the generation of the updated motion vector are performed together, wherein τ 0 =POC(current)-POC(Ref 0 ), τ 1 =POC(Ref 1 )-POC(current), and wherein POC(current), POC(Ref 0 ) and POC(Ref 1 ) are the picture order counts of the current block, the first reference block and the second reference block, respectively.
1.18.如示例1.17的方法,其中,當推導的運動向量被右移N以實現目標精度時,所述縮放和更新的運動向量的生成被執行為:mvL0’x=((-vx+offset)>>(N+1))+mvL0x,mvL0’y=((-vy+offset1)>>(N+1))+mvL0y,mvL1’x=((vx+offset)>>(N+1))+mvL1x,mvL1’y=((vy+offset2)>>(N+1))+mvL1y,其中,(mvL0x,mvL0y)和(mvL1x,mvL1y)是原始運 動向量,(mvL0’x,mvL0’y)和(mvL1’x,mvL1’y)是更新的運動向量,(vx,vy)是推導的運動向量,offset1和offset2是偏移,N=log2(curr_mv_precision/targ_mv_precision),並且其中curr_mv_precision是原始運動向量的精度,並且targ_mv_precision是推導的運動向量的精度。 1.18. The method of Example 1.17, wherein when the derived motion vector is right-shifted by N to achieve a target accuracy, the generation of the scaled and updated motion vector is performed as follows: mvL0' x =((-v x +offset)>>(N+1))+mvL0 x ,mvL0' y =((-v y +offset1)>>(N+1))+mvL0 y ,mvL1' x =((v x +offset)>>(N+1))+mvL1 x ,mvL1' y =((v y +offset2)>>(N+1))+mvL1 y , wherein (mvL0 x ,mvL0 y ) and (mvL1 x ,mvL1 y ) are the original motion vectors, and (mvL0' x ,mvL0' y ) and (mvL1' x ,mvL1' y ) are the updated motion vectors, (v x ,v y ) are the derived motion vectors, offset1 and offset2 are offsets, N=log2(curr_mv_precision/targ_mv_precision), and where curr_mv_precision is the precision of the original motion vector and targ_mv_precision is the precision of the derived motion vector.
1.19.如示例1.17的方法,其中,原始運動向量具有第一精度,推導的運動向量具有與第一精度不同的第二精度,並且原始運動向量被左移N以實現目標精度作為第二精度。 1.19. A method as in Example 1.17, wherein the original motion vector has a first precision, the derived motion vector has a second precision different from the first precision, and the original motion vector is left-shifted by N to achieve a target precision as the second precision.
1.20.如示例1.17的方法,其中,將原始運動向量左移K,並且將推導的運動向量右移N-K,以實現目標精度。 1.20. A method as in Example 1.17, wherein the original motion vector is shifted left by K and the derived motion vector is shifted right by N-K to achieve the target accuracy.
1.21.如示例1.17的方法,其中,所述縮放和更新的運動向量的生成被執行為:mvL0’x=-sign(vx) * ((abs(vx)+offset0)>>(N+1))+mvL0x,mvL0’y=-sign(vy) * ((abs(vy)+offset0)>>(N+1))+mvL0y,mvL1’x=sign(vx) * ((abs(vx)+offset1)>>(N+1))+mvL1x,mvL1’y=sign(vy) * ((abs(vy)+offset1)>>(N+1))+mvL1y 1.21. The method of Example 1.17, wherein the generation of the scaled and updated motion vectors is performed as follows: mvL0' x = -sign(v x ) * ((abs(v x )+offset0)>>(N+1))+mvL0 x , mvL0' y = -sign(v y ) * ((abs(v y )+offset0)>>(N+1))+mvL0 y , mvL1' x = sign(v x ) * ((abs(v x )+offset1)>>(N+1))+mvL1 x , mvL1' y = sign(v y ) * ((abs(v y )+offset1)>>(N+1))+mvL1 y
其中,(mvL0x,mvL0y)和(mvL1x,mvL1y)是原始運動向量,(mvL0’x,mvL0’y)和(mvL1’x,mvL1’y)是更新的運動向 量,(vx,vy)是推導的運動向量,offset0和offset1是偏移,函數sign(.)返回輸入參數的符號,函數abs(.)返回輸入參數的絕對值,N=log2(curr_mv_precision/targ_mv_precision),curr_mv_precision是原始運動向量的精度,並且targ_mv_precision是推導的運動向量的精度。 Where, (mvL0 x ,mvL0 y ) and (mvL1 x ,mvL1 y ) are the original motion vectors, (mvL0' x ,mvL0' y ) and (mvL1' x ,mvL1' y ) are the updated motion vectors, (v x ,v y ) are the derived motion vectors, offset0 and offset1 are offsets, the function sign(.) returns the sign of the input parameter, the function abs(.) returns the absolute value of the input parameter, N=log2(curr_mv_precision/targ_mv_precision), curr_mv_precision is the precision of the original motion vector, and targ_mv_precision is the precision of the derived motion vector.
1.22.如示例1.1的方法,其中,第一和第二參考運動向量的更新包括使用雙向光流(BIO)細化。 1.22. A method as in Example 1.1, wherein updating the first and second reference motion vectors includes using bidirectional optical flow (BIO) refinement.
1.23.如示例1.1-1.22中任一個的方法,其中,在當前塊滿足特定條件的情況下不應用方法。 1.23. A method as in any of Examples 1.1-1.22, wherein the method is not applied if the current block satisfies a certain condition.
1.24.如示例1.23的方法,其中,特定條件規定以下中的至少一個:當前塊的尺寸、當前塊的條帶類型、當前塊的圖片類型和當前塊的片類型。 1.24. The method of Example 1.23, wherein the specific condition specifies at least one of the following: the size of the current block, the slice type of the current block, the picture type of the current block, and the slice type of the current block.
1.25.如示例1.23的方法,其中,特定條件規定當前塊包含的樣本數小於第一閾值。 1.25. A method as in Example 1.23, wherein the specific condition stipulates that the number of samples contained in the current block is less than a first threshold.
1.26.如示例1.23的方法,其中,特定條件規定當前塊的寬度和高度的最小尺寸小於或不大於第二閾值。 1.26. The method of Example 1.23, wherein the specific condition stipulates that the minimum dimension of the width and height of the current block is less than or not greater than the second threshold.
1.27.如示例1.23的方法,其中,特定條件規定當前塊的寬度小於或不大於第三閾值,和/或當前塊的高度小於或不大於第四閾值。 1.27. A method as in Example 1.23, wherein the specific condition stipulates that the width of the current block is less than or not greater than a third threshold, and/or the height of the current block is less than or not greater than a fourth threshold.
1.28.如示例1.23的方法,其中,特定條件規定當前塊的寬度大於或不小於第三閾值,和/或當前塊的高度大於或不小於第四閾值。 1.28. A method as in Example 1.23, wherein the specific condition stipulates that the width of the current block is greater than or not less than a third threshold, and/or the height of the current block is greater than or not less than a fourth threshold.
1.29.如示例1.23的方法,其中,在子塊所屬的塊的寬度和/或高度等於或大於第五閾值的情況下,以子塊級應用方法。 1.29. A method as in Example 1.23, wherein the method is applied at the sub-block level when the width and/or height of the block to which the sub-block belongs is equal to or greater than the fifth threshold.
1.30.如示例1.29的方法,其中,將當前塊分割為多個子塊,並且多個子塊中的每一個進一步以與具有等於子塊尺寸的尺寸的普通編解碼塊相同的方式經歷雙向光流(BIO)過程。 1.30. A method as in Example 1.29, wherein the current block is split into a plurality of sub-blocks, and each of the plurality of sub-blocks is further subjected to a bidirectional optical flow (BIO) process in the same manner as a normal encoding/decoding block having a size equal to the sub-block size.
1.31.如示例1.25-1.29中任一個的方法,其中,在序列參數集(SPS)級、或圖片參數集(PPS)級、或圖片級、或條帶級、或片級中預定義或用信號通知所述第一至第五閾值中的每一個。 1.31. A method as in any of Examples 1.25-1.29, wherein each of the first to fifth thresholds is predefined or signaled at a sequence parameter set (SPS) level, or a picture parameter set (PPS) level, or a picture level, or a slice level, or a slice level.
1.32.如示例1.31的方法,其中,根據包括塊尺寸、圖片類型和時間層索引中的至少一個的編解碼信息來定義第一至第五閾值中的每一個。 1.32. A method as in Example 1.31, wherein each of the first to fifth thresholds is defined based on codec information including at least one of a block size, a picture type, and a temporal layer index.
1.33.一種視頻系統中的裝置,包括處理器和其上具有指令的非暫時性儲存器,其中指令在由處理器運行時使處理器實現示例1.1至1.32中任一個的方法。 1.33. An apparatus in a video system, comprising a processor and a non-transitory memory having instructions thereon, wherein the instructions, when executed by the processor, cause the processor to implement the method of any one of Examples 1.1 to 1.32.
1.34.一種儲存在非暫時性電腦可讀介質上的電腦程式產品,電腦程式產品包括用於進行如示例1.1至1.32中任一個的方法的程式代碼。 1.34. A computer program product stored on a non-transitory computer-readable medium, the computer program product comprising program code for performing a method as described in any one of Examples 1.1 to 1.32.
2.1.一種視頻處理方法,包括:確定當前塊的原始運動信息;基於細化方法更新所述當前塊的所述原始運動信息的原始運動向量; 將更新的運動向量裁剪到一個範圍內;以及基於裁剪的更新的運動向量,執行所述當前塊和包括所述當前塊的視頻的所述位元流表示之間的轉換。 2.1. A video processing method, comprising: determining original motion information of a current block; updating an original motion vector of the original motion information of the current block based on a refinement method; clipping the updated motion vector to a range; and performing a conversion between the current block and the bitstream representation of a video including the current block based on the clipped updated motion vector.
2.2.如示例2.1所述的方法,其中,所述細化方法包括雙向光流BIO細化、解碼器側運動向量細化DMVR、幀速率上轉換FRUC或模板匹配。 2.2. The method as described in Example 2.1, wherein the refinement method includes bidirectional optical flow BIO refinement, decoder-side motion vector refinement DMVR, frame rate up-conversion FRUC or template matching.
2.3.如示例2.1所述的方法,其中,將所述更新的運動向量裁剪到與所述原始運動向量允許的範圍相同的範圍內。 2.3. The method of Example 2.1, wherein the updated motion vector is clipped to the same range as the range allowed by the original motion vector.
2.4.如示例2.1所述的方法,其中,將所述更新的運動向量和所述原始運動向量之間的差裁剪到相同範圍或對不同子塊剪裁到不同範圍內。 2.4. The method as described in Example 2.1, wherein the difference between the updated motion vector and the original motion vector is clipped to the same range or to different ranges for different sub-blocks.
2.5.如示例2.1所述的方法,其中,所述細化方法包括雙向光流BIO細化,並且將在所述BIO細化中從所述原始運動向量推導的運動向量約束到第一範圍,如下:-Mx<vx<Nx,和/或-My<vy<Ny,其中(vx,vy)是推導的運動向量,並且Mx、Nx、My、Ny是非負整數。 2.5. A method as described in Example 2.1, wherein the refinement method includes bidirectional optical flow BIO refinement, and the motion vector derived from the original motion vector in the BIO refinement is constrained to a first range as follows: -M x <v x <N x , and/or -M y < vy <N y , where (v x , vy ) is the derived motion vector, and M x , N x , My , N y are non-negative integers.
2.6.如示例2.1的方法,其中細化方法包括雙向光流(BIO)細化,並且將更新的運動向量約束到第二範圍,如下:-ML0x<mvL0’x<NL0x,和/或-ML2.1x<mvL2.1’x<NL2.1x,和/或-ML0x<mvL0’x<NL0x,和/或 -ML2.1y<mvL2.1’y<NL2.1y 2.6. The method of Example 2.1, wherein the refinement method comprises bidirectional optical flow (BIO) refinement, and the updated motion vector is constrained to a second range as follows: -M L0x <mvL0' x <N L0x , and/or -M L2.1x <mvL2.1' x <N L2.1x , and/or -M L0x <mvL0' x <N L0x , and/or -M L2.1y <mvL2.1' y <N L2.1y
其中(mvL0’x,mvL0’y)和(mvL2.1’x,mvL2.1’y)是不同參考列表的更新的運動向量,並且ML0x、NL0x、ML2.1x、NL2.1x、ML0y、NL0y、ML2.1y、NL2.1y是非負的整數。 Wherein (mvL0' x ,mvL0' y ) and (mvL2.1' x ,mvL2.1' y ) are updated motion vectors of different reference lists, and M L0x , N L0x , M L2.1x , N L2.1x , M L0y , N L0y , M L2.1y , N L2.1y are non-negative integers.
2.7.如示例2.1-2.6中任一項所述的方法,其中在所述當前塊滿足特定條件的情況下不應用所述方法。 2.7. A method as described in any of Examples 2.1-2.6, wherein the method is not applied if the current block satisfies a specific condition.
2.8.如示例2.7所述的方法,其中,所述特定條件規定以下中的至少一個:所述當前塊的尺寸、所述當前塊的條帶類型、所述當前塊的圖片類型和所述當前塊的片類型。 2.8. The method of Example 2.7, wherein the specific condition specifies at least one of the following: the size of the current block, the slice type of the current block, the picture type of the current block, and the slice type of the current block.
2.9.如示例2.7所述的方法,其中,所述特定條件規定所述當前塊包含的樣本數小於第一閾值。 2.9. The method as described in Example 2.7, wherein the specific condition stipulates that the number of samples contained in the current block is less than a first threshold.
2.10.如示例2.7所述的方法,其中,所述特定條件規定所述當前塊的寬度和高度的最小尺寸小於或不大於第二閾值。 2.10. The method as described in Example 2.7, wherein the specific condition stipulates that the minimum size of the width and height of the current block is less than or not greater than the second threshold.
2.11.如示例2.7所述的方法,其中,所述特定條件規定所述當前塊的寬度小於或不大於第三閾值,和/或所述當前塊的高度小於或不大於第四閾值。 2.11. The method as described in Example 2.7, wherein the specific condition stipulates that the width of the current block is less than or not greater than a third threshold, and/or the height of the current block is less than or not greater than a fourth threshold.
2.12.如示例2.7所述的方法,其中,所述特定條件指定所述當前塊的寬度大於或不小於第三閾值,和/或所述當前塊的高度大於或不小於第四閾值。 2.12. The method as described in Example 2.7, wherein the specific condition specifies that the width of the current block is greater than or not less than a third threshold, and/or the height of the current block is greater than or not less than a fourth threshold.
2.13.如示例2.7所述的方法,其中,在所述子塊所屬的塊的寬度和/或高度等於或大於第五閾值的情況下,以子塊級應用所述方法。 2.13. The method as described in Example 2.7, wherein the method is applied at the sub-block level when the width and/or height of the block to which the sub-block belongs is equal to or greater than the fifth threshold.
2.14.如示例2.13所述的方法,其中,將所述當前塊分割為多個子塊,並且所述多個子塊中的每一個進一步以與具有等於所述子塊尺寸的尺寸的普通編解碼塊相同的方式經歷雙向光流BIO過程。 2.14. The method of Example 2.13, wherein the current block is divided into a plurality of sub-blocks, and each of the plurality of sub-blocks is further subjected to a bidirectional optical flow BIO process in the same manner as a normal codec block having a size equal to the size of the sub-block.
2.15.如示例2.9-2.13中任一項所述的方法,其中,在序列參數集SPS級、或圖片參數集PPS級、或圖片級、或條帶級或片級預定義或用信號通知所述第一至第五閾值中的每一個。 2.15. A method as described in any of Examples 2.9-2.13, wherein each of the first to fifth thresholds is predefined or signaled at a sequence parameter set (SPS) level, or a picture parameter set (PPS) level, or a picture level, or a slice level, or a slice level.
2.16.如示例2.15所述的方法,其中,根據包括塊尺寸、圖片類型和時域層索引中的至少一個的編解碼的信息來定義所述第一至第五閾值中的每個。 2.16. The method of Example 2.15, wherein each of the first to fifth thresholds is defined based on codec information including at least one of a block size, a picture type, and a temporal layer index.
2.17.一種視頻系統中的裝置,包括處理器和其上具有指令的非暫時性儲存器,其中所述指令在由所述處理器運行時使所述處理器實現示例2.1至2.16中任一項所述的方法。 2.17. A device in a video system, comprising a processor and a non-transitory memory having instructions thereon, wherein the instructions, when executed by the processor, cause the processor to implement the method described in any one of Examples 2.1 to 2.16.
2.18.一種儲存在非暫時性電腦可讀介質上的電腦程式產品,所述電腦程式產品包括用於進行如示例2.1至2.16中任一項所述的方法的程式代碼。 2.18. A computer program product stored on a non-transitory computer-readable medium, the computer program product comprising program code for performing a method as described in any one of Examples 2.1 to 2.16.
3.1.一種視頻處理方法,包括:確定與當前塊相關聯的原始運動信息;基於特定預測模式生成更新的運動信息;以及基於所述更新的運動信息,執行所述當前塊與包括所述當前塊的視頻數據的位元流表示之間的轉換,其中,所述特定預測模式包括雙向光流(BIO)細化、解碼器側運動向量細化(DMVR)、 幀速率上轉換(FRUC)技術或模板匹配技術中的一個或多個。 3.1. A video processing method, comprising: determining original motion information associated with a current block; generating updated motion information based on a specific prediction mode; and performing conversion between the current block and a bit stream representation of video data including the current block based on the updated motion information, wherein the specific prediction mode comprises one or more of bidirectional optical flow (BIO) refinement, decoder-side motion vector refinement (DMVR), frame rate up-conversion (FRUC) technology, or template matching technology.
3.2.如示例3.1所述的方法,其中,所述更新的運動信息包括更新的運動向量。 3.2. The method of Example 3.1, wherein the updated motion information includes an updated motion vector.
3.3.如示例3.1所述的方法,其中,所述更新的運動向量用於運動預測,以用於對後續視頻塊進行編解碼;或者所述更新的運動向量用於濾波或重疊塊運動補償(OBMC)。 3.3. The method of Example 3.1, wherein the updated motion vector is used for motion prediction for encoding and decoding subsequent video blocks; or the updated motion vector is used for filtering or overlapping block motion compensation (OBMC).
3.4.如示例3.3所述的方法,其中,所述更新的運動向量用於高級運動向量預測(AMVP)模式、Merge模式和/或仿射模式中的運動預測。 3.4. The method of Example 3.3, wherein the updated motion vector is used for motion prediction in Advanced Motion Vector Prediction (AMVP) mode, Merge mode and/or Affine mode.
3.5.如示例3.3所述的方法,其中,所述濾波包括去方塊濾波。 3.5. The method of Example 3.3, wherein the filtering includes deblocking filtering.
3.6.如示例3.1-3.5中任一項所述的方法,其中,所述更新的運動信息用於第一模塊,並且原始運動信息用於第二模塊。 3.6. A method as described in any one of Examples 3.1-3.5, wherein the updated motion information is used for the first module and the original motion information is used for the second module.
3.7.如示例3.6所述的方法,其中,所述第一模塊是運動預測模塊,並且所述第二模塊是去方塊模塊。 3.7. The method of Example 3.6, wherein the first module is a motion prediction module and the second module is a deblocking module.
3.8.如示例3.2-3.7中任一項所述的方法,其中,所述運動預測用於處理當前圖片或條帶中的所述當前塊之後的塊。 3.8. A method as described in any of Examples 3.2-3.7, wherein the motion prediction is used to process blocks following the current block in the current picture or strip.
3.9.如示例3.2-3.7中任一項所述的方法,其中,所述運動預測用於處理在包括所述當前塊的當前圖片或條帶之後要處理的圖片或條帶。 3.9. A method as described in any of Examples 3.2-3.7, wherein the motion prediction is used to process a picture or strip to be processed after the current picture or strip including the current block.
3.10.如示例3.1-3.9中任一項所述的方法,其中,所述更新的運動向量僅用於按處理順序不緊隨在所述當前塊之後的編 解碼單元(CU)或預測單元(PU)的運動信息預測。 3.10. A method as described in any one of Examples 3.1-3.9, wherein the updated motion vector is used only for motion information prediction of a coding unit (CU) or prediction unit (PU) that does not immediately follow the current block in processing order.
3.11.如示例3.1至3.10中任一項所述的方法,其中,所述更新的運動向量不用於按處理順序緊隨所述當前塊的CU/PU的運動預測。 3.11. A method as described in any one of Examples 3.1 to 3.10, wherein the updated motion vector is not used for motion prediction of a CU/PU that follows the current block in processing order.
3.12.如示例3.1-3.11中任一項所述的方法,其中,所述更新的運動向量僅用作用於處理後續圖片/片/條帶的預測器。 3.12. A method as described in any one of Examples 3.1-3.11, wherein the updated motion vector is used only as a predictor for processing subsequent pictures/slices/strips.
3.13.如示例3.12所述的方法,其中,所述更新的運動向量用作高級運動向量預測(AMVP)模式、Merge模式或仿射模式中的時域運動向量預測(TMVP)。 3.13. The method of Example 3.12, wherein the updated motion vector is used as a temporal motion vector prediction (TMVP) in an advanced motion vector prediction (AMVP) mode, a merge mode, or an affine mode.
3.14.如示例3.12所述的方法,其中,所述更新的運動向量僅用作用於在可選時間運動向量預測(ATMVP)模式和/或空-時運動向量預測(STMVP)模式中處理後續圖片/片/條帶的預測器。 3.14. A method as described in Example 3.12, wherein the updated motion vector is used only for predictors that process subsequent pictures/slices/strips in an optional temporal motion vector prediction (ATMVP) mode and/or a spatio-temporal motion vector prediction (STMVP) mode.
3.15.如示例3.1-3.14中任一項所述的方法,其中,從編碼器用信號向解碼器通知包括是否更新用於BIO編解碼塊的MV和/或是否將所述更新的MV用於運動預測和/或如何將所述更新的MV用於運動預測的信息。 3.15. A method as described in any one of Examples 3.1-3.14, wherein the encoder notifies the decoder with a signal including information including whether to update the MV used for the BIO codec block and/or whether to use the updated MV for motion prediction and/or how to use the updated MV for motion prediction.
3.16.如示例3.15所述的方法,還包括:在視頻參數集(VPS)、序列參數集(SPS)、圖片參數集(PPS)、條帶標頭、編解碼樹單元(CTU)或CU中信令通知所述信息。 3.16. The method as described in Example 3.15 further includes: signaling the information in a video parameter set (VPS), a sequence parameter set (SPS), a picture parameter set (PPS), a slice header, a coding tree unit (CTU) or a CU.
3.17.如示例3.1所述的方法,還包括:更新運動信息,其包括在塊級更新每個預測方向的運動向量和參考圖片。 3.17. The method as described in Example 3.1 further includes: updating motion information, which includes updating the motion vector and reference picture of each predicted direction at the block level.
3.18.如示例3.1或3.17所述的方法,其中,在一個塊內,對於一些子塊,儲存所述更新的運動信息,並且對於其他剩餘的子塊,儲存未更新的運動信息。 3.18. The method as described in Example 3.1 or 3.17, wherein, within a block, for some sub-blocks, the updated motion information is stored, and for the remaining sub-blocks, the unupdated motion information is stored.
3.19.如示例3.1或3.17所述的方法,僅針對不在PU/CU/CTU邊界處的內部子塊儲存所述更新的運動向量 3.19. As described in Example 3.1 or 3.17, the updated motion vector is stored only for internal sub-blocks that are not at the PU/CU/CTU boundary
3.20.如示例3.19所述的方法,還包括:將內部子塊的所述更新的運動向量用於運動預測、去方塊或OBMC。 3.20. The method as described in Example 3.19 further includes: using the updated motion vector of the internal sub-block for motion prediction, deblocking or OBMC.
3.21.如示例3.1或3.17所述的方法,僅針對在PU/CU/CTU邊界處的邊界子塊儲存所述更新的運動向量。 3.21. As described in Example 3.1 or 3.17, the updated motion vector is stored only for the boundary sub-block at the boundary of PU/CU/CTU.
3.22.如示例3.1或3.17所述的方法,其中,如果相鄰塊和所述當前塊不在相同的CTU中或具有64×64或32×32尺寸的相同區域中,則不使用來自所述相鄰塊的更新的運動信息。 3.22. A method as described in Example 3.1 or 3.17, wherein if the neighboring block and the current block are not in the same CTU or in the same region with a size of 64×64 or 32×32, the updated motion information from the neighboring block is not used.
3.23.如示例3.22所述的方法,其中,如果所述相鄰塊和所述當前塊不在相同的CTU中或具有64×64或32×32尺寸的相同區域中,則將所述相鄰塊標記為不可用。 3.23. The method of Example 3.22, wherein if the neighboring block and the current block are not in the same CTU or in the same region having a size of 64×64 or 32×32, the neighboring block is marked as unavailable.
3.24.如示例3.22所述的方法,其中,如果所述相鄰塊和所述當前塊不在相同的CTU中或具有64×64或32×32尺寸的相同區域中,則所述當前塊使用未更新的運動信息。 3.24. The method of Example 3.22, wherein if the neighboring block and the current block are not in the same CTU or in the same region having a size of 64×64 or 32×32, the current block uses unupdated motion information.
3.25.如示例3.17所述的方法,其中,如果相鄰塊和所述當前塊不在相同的CTU列中或具有64×64或32×32尺寸的區域的相同列中,則不使用來自所述相鄰塊的更新的運動向量。 3.25. The method of Example 3.17, wherein if the neighboring block and the current block are not in the same CTU column or in the same column of a region having a size of 64×64 or 32×32, the updated motion vector from the neighboring block is not used.
3.26.如示例3.25所述的方法,其中,如果所述相鄰塊和 所述當前塊不在相同的CTU列中或具有64×64或32×32尺寸的區域的相同列中,則將所述相鄰塊標記為不可用。 3.26. The method of Example 3.25, wherein if the neighboring block and the current block are not in the same CTU column or in the same column of a region having a size of 64×64 or 32×32, the neighboring block is marked as unavailable.
3.27.如示例3.25所述的方法,其中,如果所述相鄰塊和所述當前塊不在相同的CTU列中或具有64×64或32×32尺寸的區域的相同列中,則所述當前塊使用來自所述相鄰塊的未更新的運動信息。 3.27. The method of Example 3.25, wherein if the neighboring block and the current block are not in the same CTU column or in the same column of a region having a size of 64×64 or 32×32, the current block uses the unupdated motion information from the neighboring block.
3.28.如示例3.17所述的方法,其中,如果塊的最底列是CTU或者具有64×64或32×32尺寸的區域的最底列,則不更新所述塊的運動信息。 3.28. The method of Example 3.17, wherein if the bottommost column of the block is a CTU or a bottommost column of a region having a size of 64×64 or 32×32, the motion information of the block is not updated.
3.29.如示例3.17所述的方法,其中,如果塊的最右列是CTU或者具有64×64或32×32尺寸的區域的最右列,則不更新所述塊的運動信息。 3.29. The method of Example 3.17, wherein if the rightmost column of the block is a CTU or the rightmost column of a region having a size of 64×64 or 32×32, the motion information of the block is not updated.
3.30.如示例3.1或3.17所述的方法,還包括基於相鄰CTU或區域的更新的運動信息或未更新運動信息來預測當前CTU內的塊/CU的運動信息。 3.30. The method as described in Example 3.1 or 3.17 further includes predicting the motion information of the block/CU in the current CTU based on the updated motion information or the unupdated motion information of the adjacent CTU or region.
3.31.如示例3.30所述的方法,其中,將來自左CTU或左區域的所述更新的運動信息用於所述當前CTU。 3.31. A method as described in Example 3.30, wherein the updated motion information from the left CTU or left region is used for the current CTU.
3.32.如示例3.30或3.31所述的方法,其中,將來自左上CTU或左上區域的所述更新的運動信息用於所述當前CTU。 3.32. A method as described in Example 3.30 or 3.31, wherein the updated motion information from the upper left CTU or upper left region is used for the current CTU.
3.33.如示例3.30-3.32中任一項所述的方法,其中,將來自上CTU或上區域的所述更新的運動信息用於所述當前CTU。 3.33. A method as described in any one of Examples 3.30-3.32, wherein the updated motion information from the upper CTU or upper region is used for the current CTU.
3.34.如示例3.30-3.33中任一項所述的方法,其中,將 來自右上CTU或右上區域的所述更新的運動信息用於所述當前CTU。 3.34. A method as described in any of Examples 3.30-3.33, wherein the updated motion information from the upper right CTU or upper right region is used for the current CTU.
3.35.如示例3.30-3.34中任一項所述的方法,其中,一個或多個區域中的每一個具有64×64或32×32的尺寸。 3.35. A method as described in any of Examples 3.30-3.34, wherein each of the one or more regions has a size of 64×64 or 32×32.
3.36.如示例3.1-3.35中任一項所述的方法,其中,在所述當前塊滿足特定條件的情況下,不應用所述方法。 3.36. A method as described in any of Examples 3.1-3.35, wherein the method is not applied if the current block satisfies a specific condition.
3.37.如示例3.36所述的方法,其中,所述特定條件規定以下中的至少一方面:所述當前塊的尺寸、所述當前塊的條帶類型、所述當前塊的圖片類型和所述當前塊的片類型。 3.37. The method of Example 3.36, wherein the specific condition specifies at least one of the following: the size of the current block, the slice type of the current block, the picture type of the current block, and the slice type of the current block.
3.38.如示例3.36所述的方法,其中,所述特定條件規定所述當前塊包含的樣本數小於第一閾值。 3.38. The method as described in Example 3.36, wherein the specific condition stipulates that the number of samples contained in the current block is less than a first threshold.
3.39.如示例3.36所述的方法,其中,所述特定條件規定所述當前塊的寬度和高度的最小尺寸小於或不大於第二閾值。 3.39. The method as described in Example 3.36, wherein the specific condition stipulates that the minimum dimension of the width and height of the current block is less than or not greater than the second threshold.
3.40.如示例3.36所述的方法,其中,所述特定條件規定所述當前塊的寬度小於或不大於第三閾值,和/或所述當前塊的高度小於或不大於第四閾值。 3.40. The method of Example 3.36, wherein the specific condition stipulates that the width of the current block is less than or not greater than a third threshold, and/or the height of the current block is less than or not greater than a fourth threshold.
3.41.如示例3.36所述的方法,其中,所述特定條件規定所述當前塊的寬度大於或不小於第三閾值,和/或所述當前塊的高度大於或不小於第四閾值。 3.41. The method as described in Example 3.36, wherein the specific condition stipulates that the width of the current block is greater than or not less than a third threshold, and/or the height of the current block is greater than or not less than a fourth threshold.
3.42.如示例3.36所述的方法,其中,在子塊所屬的塊的寬度和/或高度等於或大於第五閾值的情況下,所述方法被應用到子塊級。 3.42. The method of Example 3.36, wherein the method is applied to the sub-block level when the width and/or height of the block to which the sub-block belongs is equal to or greater than the fifth threshold.
3.43.如示例3.42所述的方法,其中,將所述當前塊分割為多個子塊,並且所述多個子塊中的每一個進一步以與具有與所述子塊尺寸相等尺寸的正常編解碼塊相同的方式進行雙向光流(BIO)處理。 3.43. The method of Example 3.42, wherein the current block is divided into a plurality of sub-blocks, and each of the plurality of sub-blocks is further subjected to bidirectional optical flow (BIO) processing in the same manner as a normal codec block having a size equal to the size of the sub-block.
3.44.如示例3.38-3.42中任一項所述的方法,其中,所述第一至第五閾值中的每一個在序列參數集(SPS)級、或圖片參數集(PPS)級、或圖片級、或條帶級或片級中預定義或信令通知。 3.44. A method as described in any of Examples 3.38-3.42, wherein each of the first to fifth thresholds is predefined or signaled at a sequence parameter set (SPS) level, or a picture parameter set (PPS) level, or a picture level, or a slice level, or a slice level.
3.45.如示例3.44所述的方法,其中,根據包括塊尺寸、圖片類型和時域層索引中的至少一個的編解碼的信息來定義所述第一至第五閾值中的每一個。 3.45. The method of Example 3.44, wherein each of the first to fifth thresholds is defined based on codec information including at least one of a block size, a picture type, and a temporal layer index.
3.46.一種視頻系統中的裝置,包括處理器和其上具有指令的非揮發性儲存器,其中,所述指令在由所述處理器運行時使所述處理器實現示例3.1至3.45中任一項所述的方法。 3.46. An apparatus in a video system, comprising a processor and a non-volatile memory having instructions thereon, wherein the instructions, when executed by the processor, cause the processor to implement the method described in any one of Examples 3.1 to 3.45.
3.47.一種儲存在非暫時性電腦可讀介質上的電腦程式產品,所述電腦程式產品包括用於執行示例3.1至3.45中任一項所述的方法的程式代碼。 3.47. A computer program product stored on a non-transitory computer-readable medium, the computer program product comprising program code for executing the method described in any one of Examples 3.1 to 3.45.
4.1.一種視頻處理方法,包括:從運動向量差(MVD)精度集確定用於以仿射模式處理的當前塊的MVD精度;基於所確定的MVD精度,執行所述當前塊與包括所述當前塊的視頻的位元流表示之間的轉換。 4.1. A video processing method, comprising: determining a motion vector difference (MVD) precision for a current block processed in an affine mode from a motion vector difference (MVD) precision set; performing a conversion between the current block and a bitstream representation of a video including the current block based on the determined MVD precision.
4.2.如示例4.1所述的方法,其中,所述MVD表示預測 運動向量和在運動補償處理期間使用的實際運動向量之間的差。 4.2. A method as described in Example 4.1, wherein the MVD represents the difference between the predicted motion vector and the actual motion vector used during the motion compensation process.
4.3.如示例4.2所述的方法,其中,所述MVD精度集包括構成等比序列的多個不同的MVD精度。 4.3. The method as described in Example 4.2, wherein the MVD accuracy set includes multiple different MVD accuracy constituting a geometric sequence.
4.4.如示例4.3所述的方法,其中,所述MVD精度集包括1/4、1和4像素MVD精度。 4.4. The method of Example 4.3, wherein the MVD precision set includes 1/4, 1, and 4 pixel MVD precisions.
4.5.如示例4.3所述的方法,其中,所述MVD精度集包括1/4、1/2、1、2和4像素MVD精度。 4.5. The method as described in Example 4.3, wherein the MVD precision set includes 1/4, 1/2, 1, 2, and 4 pixel MVD precisions.
4.6.如示例4.3所述的方法,其中,所述MVD精度集包括1/16、1/8和1/4像素MVD精度。 4.6. The method as described in Example 4.3, wherein the MVD precision set includes 1/16, 1/8 and 1/4 pixel MVD precisions.
4.7.如示例4.1所述的方法,其中,所述當前塊是編解碼單元或預測單元。 4.7. The method of Example 4.1, wherein the current block is a coding unit or a prediction unit.
4.8.如示例4.1-4.7中任一項所述的方法,其中確定所述MVD精度還包括:基於指示所述MVD精度的語法元素確定所述當前塊的MVD精度。 4.8. The method as described in any one of Examples 4.1-4.7, wherein determining the MVD precision further comprises: determining the MVD precision of the current block based on a syntax element indicating the MVD precision.
4.9.如示例4.8所述的方法,其中,當存在所述當前塊的非零MVD分量時,存在所述語法元素。 4.9. The method of Example 4.8, wherein the syntax element is present when there is a non-zero MVD component of the current block.
4.10.如示例4.8所述的方法,其中,當不存在所述當前塊的非零MVD分量時,不存在所述語法元素。 4.10. The method of Example 4.8, wherein the syntax element is absent when there is no non-zero MVD component of the current block.
4.11.如示例4.8所述的方法,其中,無論是否存在所述當前塊的任何非零MVD分量,都存在所述語法元素。 4.11. A method as described in Example 4.8, wherein the syntax element is present regardless of whether there are any non-zero MVD components of the current block.
4.12.如示例4.1所述的方法,其中,利用仿射幀間模式 或仿射高級運動向量預測(AMVP)模式處理所述當前塊。 4.12. The method of Example 4.1, wherein the current block is processed using an affine inter-frame mode or an affine advanced motion vector prediction (AMVP) mode.
4.13.如示例4.12所述的方法,其中,所述當前塊的不同MVD與不同的MVD精度相關聯。 4.13. A method as described in Example 4.12, wherein different MVDs of the current block are associated with different MVD precisions.
4.14.如示例4.13所述的方法,其中,所述仿射幀間模式是具有2個控制點的4參數仿射幀間模式,並且對每個預測方向上的每個控制點使用一個MVD。 4.14. The method of Example 4.13, wherein the affine inter-frame pattern is a 4-parameter affine inter-frame pattern with 2 control points, and one MVD is used for each control point in each prediction direction.
4.15.如示例4.14所述的方法,其中,所述2個控制點與不同的MVD精度相關聯。 4.15. The method of Example 4.14, wherein the two control points are associated with different MVD accuracies.
4.16.如示例4.13所述的方法,其中,所述仿射幀間模式是具有3個控制點的6參數仿射幀間模式,並且對每個預測方向上的每個控制點使用一個MVD。 4.16. The method of Example 4.13, wherein the affine inter-frame pattern is a 6-parameter affine inter-frame pattern with 3 control points, and one MVD is used for each control point in each prediction direction.
4.17.如示例4.16所述的方法,其中,所述3個控制點與不同的MVD精度相關聯。 4.17. The method of Example 4.16, wherein the three control points are associated with different MVD accuracies.
4.18.如示例4.15所述的方法,其中存在兩個語法元素以指示所述2個控制點的不同MVD精度。 4.18. A method as described in Example 4.15, wherein there are two syntax elements to indicate different MVD precisions of the two control points.
4.19.如示例4.17所述的方法,其中存在三個語法元素以指示所述3個控制點的不同MVD精度。 4.19. A method as described in Example 4.17, wherein there are three syntax elements to indicate different MVD precisions of the three control points.
4.20.如示例4.1所述的方法,其中,基於所述當前塊的編解碼信息確定所述MVD精度集。 4.20. The method of Example 4.1, wherein the MVD precision set is determined based on the encoding and decoding information of the current block.
4.21.如示例4.20所述的方法,其中,所述編解碼信息包括所述當前塊的量化級。 4.21. The method of Example 4.20, wherein the encoding and decoding information includes the quantization level of the current block.
4.22.如示例4.21所述的方法,其中,為較大的量化級選 擇較粗略的MVD精度集。 4.22. The method of Example 4.21, wherein a coarser set of MVD precisions is selected for larger quantization levels.
4.23.如示例4.21所述的方法,其中,為較小的量化級選擇較精細的MVD精度集。 4.23. The method of Example 4.21, wherein a finer set of MVD precisions is selected for smaller quantization levels.
4.24.如示例4.1-4.23中任一項所述的方法,其中,在所述當前塊滿足特定條件的情況下不應用所述方法。 4.24. A method as described in any of Examples 4.1-4.23, wherein the method is not applied if the current block satisfies a specific condition.
4.25.如示例4.24所述的方法,其中,所述特定條件指定以下中的至少一個:所述當前塊的尺寸、所述當前塊的條帶類型、所述當前塊的圖片類型和所述當前塊的片類型。 4.25. The method of Example 4.24, wherein the specific condition specifies at least one of: the size of the current block, the slice type of the current block, the picture type of the current block, and the slice type of the current block.
4.26.如示例4.24所述的方法,其中,所述特定條件指定所述當前塊包含的樣本數小於第一閾值。 4.26. The method as described in Example 4.24, wherein the specific condition specifies that the number of samples contained in the current block is less than a first threshold.
4.27.如示例4.24所述的方法,其中,所述特定條件指定所述當前塊的寬度和高度的最小尺寸小於或不大於第二閾值。 4.27. The method of Example 4.24, wherein the specific condition specifies that the minimum dimension of the width and height of the current block is less than or not greater than a second threshold.
4.28.如示例4.24所述的方法,其中,所述特定條件指定所述當前塊的寬度小於或不大於第三閾值,和/或所述當前塊的高度小於或不大於第四閾值。 4.28. The method of Example 4.24, wherein the specific condition specifies that the width of the current block is less than or not greater than a third threshold, and/or the height of the current block is less than or not greater than a fourth threshold.
4.29.如示例4.24所述的方法,其中,所述特定條件指定所述當前塊的寬度大於或不小於第三閾值,和/或所述當前塊的高度大於或不小於第四閾值。 4.29. The method of Example 4.24, wherein the specific condition specifies that the width of the current block is greater than or not less than a third threshold, and/or the height of the current block is greater than or not less than a fourth threshold.
4.30.如示例4.24所述的方法,其中,在子塊所屬的塊的寬度和/或高度等於或大於第五閾值的情況下,在子塊級應用所述方法。 4.30. A method as described in Example 4.24, wherein the method is applied at the sub-block level when the width and/or height of the block to which the sub-block belongs is equal to or greater than the fifth threshold.
4.31.如示例4.30所述的方法,其中,將所述當前塊分割 為多個子塊,並且所述多個子塊中的每個子塊進一步以與具有等於所述子塊尺寸的尺寸的普通編解碼塊相同的方式經歷雙向光流(BIO)過程。 4.31. A method as described in Example 4.30, wherein the current block is divided into a plurality of sub-blocks, and each of the plurality of sub-blocks is further subjected to a bidirectional optical flow (BIO) process in the same manner as a normal codec block having a size equal to the size of the sub-block.
4.32.如示例4.26-4.30中任一項所述的方法,其中,所述第一至第五閾值中的每一個在序列參數集(SPS)級、或圖片參數集(PPS)級、或圖片級、或條帶級或片級中預定義或用信號通知。 4.32. A method as described in any of Examples 4.26-4.30, wherein each of the first to fifth thresholds is predefined or signaled at a sequence parameter set (SPS) level, or a picture parameter set (PPS) level, or a picture level, or a slice level, or a slice level.
4.33.如示例4.32所述的方法,其中,根據包括塊尺寸、圖片類型和時域層索引中的至少一個的編解碼信息來定義所述第一至第五閾值中的每一個。 4.33. The method of Example 4.32, wherein each of the first to fifth thresholds is defined based on coding information including at least one of a block size, a picture type, and a temporal layer index.
4.34.一種視頻系統中的裝置,包括處理器和其上具有指令的非暫時性儲存器,其中所述指令在由所述處理器運行時使所述處理器實現示例4.1至4.33中任一項所述的方法。 4.34. An apparatus in a video system, comprising a processor and a non-transitory memory having instructions thereon, wherein the instructions, when executed by the processor, cause the processor to implement the method described in any one of Examples 4.1 to 4.33.
4.35.一種儲存在非暫時性電腦可讀介質上的電腦程式產品,所述電腦程式產品包括用於進行示例4.1至4.33中任一項所述的方法的程式代碼。 4.35. A computer program product stored on a non-transitory computer-readable medium, the computer program product comprising program code for performing the method described in any one of Examples 4.1 to 4.33.
5.1.一種視頻處理方法,包括:確定與當前塊相關聯的未更新的運動信息;基於多個解碼器側運動向量推導(DMVD)方法更新所述未更新的運動信息,以生成所述當前塊的更新的運動信息;以及基於所述更新的運動信息,執行所述當前塊與包括所述 當前塊的視頻的位元流表示之間的轉換。 5.1. A video processing method, comprising: determining unupdated motion information associated with a current block; updating the unupdated motion information based on multiple decoder-side motion vector derivation (DMVD) methods to generate updated motion information for the current block; and performing a conversion between the current block and a bitstream representation of a video including the current block based on the updated motion information.
5.2.如示例5.1所述的方法,其中所述多個DMVD方法包括以下中的至少兩個:雙向光流(BIO)細化、解碼器側運動向量細化(DMVR)、幀速率上轉換(FRUC)技術、和模板匹配技術。 5.2. The method of Example 5.1, wherein the plurality of DMVD methods include at least two of the following: bidirectional optical flow (BIO) refinement, decoder-side motion vector refinement (DMVR), frame rate up-conversion (FRUC) technology, and template matching technology.
5.3.如示例5.2所述的方法,其中,以同時的方式對所述當前塊的所述未更新的運動信息執行所述多個DMVD方法,並且輸入所述未更新的運動信息的未更新的運動向量作為所述多個DMVD方法中每一個的搜索起點。 5.3. The method as described in Example 5.2, wherein the multiple DMVD methods are executed on the unupdated motion information of the current block in a simultaneous manner, and the unupdated motion vector of the unupdated motion information is input as a search starting point for each of the multiple DMVD methods.
5.4.如示例5.2所述的方法,其中,以級聯方式對所述當前塊的所述未更新的運動信息執行所述多個DMVD方法,並且輸入由一個DMVD方法生成的更新的運動信息的更新的運動向量作為下一個DMVD方法的搜索起點。 5.4. The method as described in Example 5.2, wherein the multiple DMVD methods are executed in a cascade manner on the unupdated motion information of the current block, and the updated motion vector of the updated motion information generated by one DMVD method is input as the search starting point of the next DMVD method.
5.5.如示例5.4所述的方法,其中,所述一個DMVD方法是DMVR,並且所述下一個DMVD方法是BIO,其中,對所述當前塊的所述未更新的運動信息執行DMVR以生成所述更新的運動信息,並且輸入所述更新的運動信息的所述更新的運動向量作為BIO的搜索起點。 5.5. The method as described in Example 5.4, wherein the one DMVD method is DMVR, and the next DMVD method is BIO, wherein DMVR is performed on the unupdated motion information of the current block to generate the updated motion information, and the updated motion vector of the updated motion information is input as the search starting point of BIO.
5.6.如示例5.1至5.5中任一項所述的方法,其中,所述基於多個解碼器側運動向量推導(DMVD)方法更新所述未更新的運動信息,以生成所述當前塊的更新的運動信息還包括:通過所述多個DMVD方法推導多組更新的運動信息, 從所述多組更新的運動信息生成最終組的更新的運動信息。 5.6. The method of any one of Examples 5.1 to 5.5, wherein the updating of the non-updated motion information based on multiple decoder-side motion vector derivation (DMVD) methods to generate updated motion information of the current block further comprises: deriving multiple sets of updated motion information by the multiple DMVD methods, generating a final set of updated motion information from the multiple sets of updated motion information.
5.7.如示例5.6所述的方法,其中,所述從所述多組更新的運動信息生成最終組的更新的運動信息還包括:基於所述多組更新的運動信息的平均或加權平均生成最終組的更新的運動信息。 5.7. The method as described in Example 5.6, wherein generating the final set of updated motion information from the multiple sets of updated motion information further comprises: generating the final set of updated motion information based on the average or weighted average of the multiple sets of updated motion information.
5.8.如示例5.6所述的方法,其中,所述從所述多組更新的運動信息生成最終組的更新的運動信息還包括:通過使用中值濾波器對所述多組更新的運動信息進行濾波來生成所述最終組的更新的運動信息。 5.8. The method of Example 5.6, wherein generating the final set of updated motion information from the multiple sets of updated motion information further comprises: generating the final set of updated motion information by filtering the multiple sets of updated motion information using a median filter.
5.9.如示例5.6所述的方法,其中,所述從所述多組更新的運動信息生成最終組的更新的運動信息還包括:為所述多個DMVD方法分配不同的優先級,選擇由具有最高優先級的DMVD方法推導的一組更新的運動信息作為最終組的更新的運動信息。 5.9. The method as described in Example 5.6, wherein generating the final set of updated motion information from the multiple sets of updated motion information further comprises: assigning different priorities to the multiple DMVD methods, and selecting a set of updated motion information derived by the DMVD method with the highest priority as the final set of updated motion information.
5.10.如示例5.9所述的方法,其中,為所述解碼器側運動向量細化(DMVR)分配所述最高優先級。 5.10. The method of Example 5.9, wherein the highest priority is assigned to the decoder-side motion vector refinement (DMVR).
5.11.如示例5.1至5.5中任一項所述的方法,其中,所述基於所述更新的運動信息,執行所述當前塊與包括所述當前塊的視頻的位元流表示之間的轉換進一步包括:使用由所述多個DMVD方法推導的多組更新的運動信息分別執行運動補償,以獲得多組運動補償結果, 基於所述多組運動補償結果的平均或加權平均生成所述當前塊。 5.11. The method as described in any one of Examples 5.1 to 5.5, wherein the conversion between the current block and the bitstream representation of the video including the current block based on the updated motion information further includes: performing motion compensation respectively using multiple sets of updated motion information derived by the multiple DMVD methods to obtain multiple sets of motion compensation results, and generating the current block based on the average or weighted average of the multiple sets of motion compensation results.
5.12.如示例5.1至5.5中任一項所述的方法,其中,所述基於所述更新的運動信息,執行所述當前塊與包括所述當前塊的視頻的位元流表示之間的轉換進一步包括:使用由所述多個DMVD方法推導的多組更新的運動信息分別執行運動補償,以獲得多組運動補償結果,通過使用中值濾波器對所述多組運動補償結果進行濾波來生成所述當前塊。 5.12. The method as described in any one of Examples 5.1 to 5.5, wherein the conversion between the current block and the bitstream representation of the video including the current block based on the updated motion information further includes: performing motion compensation respectively using multiple sets of updated motion information derived by the multiple DMVD methods to obtain multiple sets of motion compensation results, and generating the current block by filtering the multiple sets of motion compensation results using a median filter.
5.13.如示例5.1至5.5中任一項所述的方法,其中,所述基於多個解碼器側運動向量推導(DMVD)方法更新所述未更新的運動信息,以生成所述當前塊的更新的運動信息還包括:為所述多個DMVD方法分配不同的優先級,從所述多個DMVD方法中選擇具有最高N個優先級、並且有效的DMVD方法,N是整數且N>=1,基於N個DMVD方法為所述當前塊生成更新的運動信息。 5.13. The method as described in any one of Examples 5.1 to 5.5, wherein the updating of the non-updated motion information based on multiple decoder-side motion vector derivation (DMVD) methods to generate updated motion information of the current block further includes: assigning different priorities to the multiple DMVD methods, selecting a valid DMVD method with the highest N priorities from the multiple DMVD methods, N is an integer and N>=1, and generating updated motion information for the current block based on the N DMVD methods.
5.14.如示例5.1至5.13中任一項所述的方法,其中,所述當前塊是預測單元。 5.14. A method as described in any one of Examples 5.1 to 5.13, wherein the current block is a prediction unit.
5.15.如示例5.1至5.14中任一項所述的方法,其中,所述未更新的運動信息包括針對每個預測方向的未更新的運動向量和參考圖片。 5.15. A method as described in any one of Examples 5.1 to 5.14, wherein the unupdated motion information includes an unupdated motion vector and a reference picture for each predicted direction.
5.16.如示例5.1-5.15中任一項所述的方法,其中,在所述當前塊滿足特定條件的情況下不應用所述方法。 5.16. A method as described in any one of Examples 5.1-5.15, wherein the method is not applied if the current block satisfies a specific condition.
5.17.如示例5.16所述的方法,其中,所述特定條件指定以下中的至少一個:所述當前塊的尺寸、所述當前塊的條帶類型、所述當前塊的圖片類型和所述當前塊的片類型。 5.17. The method of Example 5.16, wherein the specific condition specifies at least one of: the size of the current block, the slice type of the current block, the picture type of the current block, and the slice type of the current block.
5.18.如示例5.16所述的方法,其中,所述特定條件指定所述當前塊包含的樣本數小於第一閾值。 5.18. The method as described in Example 5.16, wherein the specific condition specifies that the number of samples contained in the current block is less than a first threshold.
5.19.如示例5.16所述的方法,其中,所述特定條件指定所述當前塊的寬度和高度的最小尺寸小於或不大於第二閾值。 5.19. The method of Example 5.16, wherein the specific condition specifies that the minimum dimension of the width and height of the current block is less than or not greater than a second threshold.
5.20.如示例5.16所述的方法,其中,所述特定條件指定所述當前塊的寬度小於或不大於第三閾值,和/或所述當前塊的高度小於或不大於第四閾值。 5.20. The method of Example 5.16, wherein the specific condition specifies that the width of the current block is less than or not greater than a third threshold, and/or the height of the current block is less than or not greater than a fourth threshold.
5.21.如示例5.16所述的方法,其中,所述特定條件指定所述當前塊的寬度大於或不小於第三閾值,和/或所述當前塊的高度大於或不小於第四閾值。 5.21. The method as described in Example 5.16, wherein the specific condition specifies that the width of the current block is greater than or not less than a third threshold, and/or the height of the current block is greater than or not less than a fourth threshold.
5.22.如示例5.16所述的方法,其中,在子塊所屬的塊的寬度和/或高度等於或大於第五閾值的情況下,在子塊級應用所述方法。 5.22. A method as described in Example 5.16, wherein the method is applied at the sub-block level when the width and/or height of the block to which the sub-block belongs is equal to or greater than the fifth threshold.
5.23.如示例5.22所述的方法,其中,將所述當前塊分割為多個子塊,並且所述多個子塊中的每一個進一步以與具有等於所述子塊尺寸的尺寸的普通編解碼塊相同的方式經歷雙向光流(BIO)過程。 5.23. The method of Example 5.22, wherein the current block is divided into a plurality of sub-blocks, and each of the plurality of sub-blocks is further subjected to a bidirectional optical flow (BIO) process in the same manner as a normal codec block having a size equal to the size of the sub-block.
5.24.如示例5.18-5.22中任一項所述的方法,其中,所述第一至第五閾值中的每一個在序列參數集(SPS)級、或圖片參數集(PPS)級、或圖片級、或條帶級或片級中預定義或用信號通知。 5.24. A method as described in any of Examples 5.18-5.22, wherein each of the first to fifth thresholds is predefined or signaled at a sequence parameter set (SPS) level, or a picture parameter set (PPS) level, or a picture level, or a slice level, or a slice level.
5.25.如示例5.24所述的方法,其中,根據包括塊尺寸、圖片類型和時域層索引中的至少一個的編解碼的信息來定義所述第一至第五閾值中的每一個。 5.25. The method of Example 5.24, wherein each of the first to fifth thresholds is defined based on codec information including at least one of a block size, a picture type, and a temporal layer index.
5.26.一種視頻系統中的裝置,包括處理器和其上具有指令的非暫時性儲存器,其中所述指令在由所述處理器運行時使所述處理器實現示例5.1至5.25中任一項所述的方法。 5.26. A device in a video system, comprising a processor and a non-transitory memory having instructions thereon, wherein the instructions, when executed by the processor, cause the processor to implement the method described in any one of Examples 5.1 to 5.25.
5.27.一種儲存在非暫時性電腦可讀介質上的電腦程式產品,所述電腦程式產品包括用於進行示例5.1至5.25中任一項所述的方法的程式代碼。 5.27. A computer program product stored on a non-transitory computer-readable medium, the computer program product comprising program code for performing the method described in any one of Examples 5.1 to 5.25.
6.1.一種視頻處理方法,包括:基於與當前塊相關聯的第一運動信息,為當前塊生成中間預測;基於中間預測將第一運動信息更新為第二運動信息;以及基於第二運動信息生成當前塊的最終預測。 6.1. A video processing method, comprising: generating an intermediate prediction for the current block based on first motion information associated with the current block; updating the first motion information to second motion information based on the intermediate prediction; and generating a final prediction for the current block based on the second motion information.
6.2.如示例6.1的方法,其中,使用從包括當前塊的位元流表示解碼的信息獲得第一運動信息。 6.2. A method as in Example 6.1, wherein the first motion information is obtained using information decoded from a bitstream representation including the current block.
6.3.如示例6.1或6.2的方法,其中,更新第一運動信息包括使用基於光流的細化。 6.3. A method as in Example 6.1 or 6.2, wherein updating the first motion information includes using optical flow-based refinement.
6.4.如示例6.3的方法,其中,使用基於光流的細化包括 使用通過使用第一運動信息生成的預測塊內的每個子塊/像素的第一運動信息、空間梯度、時間梯度和光流中的至少一個,以將第一運動信息更新為第二運動信息。 6.4. The method of Example 6.3, wherein the use of optical flow-based refinement includes using at least one of the first motion information, spatial gradient, temporal gradient, and optical flow of each sub-block/pixel within the prediction block generated by using the first motion information to update the first motion information to the second motion information.
6.5.如示例6.4的方法,其中,第二運動信息至少用於執行運動補償並生成當前塊內的每個子塊/像素的最終預測。 6.5. A method as in Example 6.4, wherein the second motion information is used at least to perform motion compensation and generate a final prediction for each sub-block/pixel within the current block.
6.6.如示例6.1或6.2的方法,其中,生成中間預測包括第一插值濾波處理,並且生成最終預測包括第二插值濾波處理,並且其中第一插值濾波處理使用不同於第二插值濾波處理使用的第二濾波器。 6.6. The method of Example 6.1 or 6.2, wherein generating the intermediate prediction includes a first interpolation filtering process, and generating the final prediction includes a second interpolation filtering process, and wherein the first interpolation filtering process uses a second filter different from the second interpolation filtering process.
6.7.如示例6.6的方法,其中,第一或第二插值濾波處理可以使用4抽頭濾波器,或6抽頭濾波器或雙線性濾波器。 6.7. The method of Example 6.6, wherein the first or second interpolation filter processing may use a 4-tap filter, or a 6-tap filter or a bilinear filter.
6.8.如示例6.6至6.7中任一個的方法,其中,在插值濾波處理中使用的濾波器抽頭或濾波器係數是預定義的。 6.8. A method as in any of Examples 6.6 to 6.7, wherein the filter taps or filter coefficients used in the interpolation filtering process are predefined.
6.9.如示例6.8的方法,其中,在插值濾波處理中使用的濾波器抽頭或濾波器係數是基於編解碼信息。 6.9. A method as in Example 6.8, wherein the filter taps or filter coefficients used in the interpolation filtering process are based on codec information.
6.10.如示例6.9的方法,其中,編解碼信息包括以下中的至少一個:當前塊的尺寸、當前塊的形狀、預測方向和條帶類型。 6.10. The method of Example 6.9, wherein the encoding and decoding information includes at least one of the following: the size of the current block, the shape of the current block, the predicted direction, and the slice type.
6.11.如示例6.6-6.10中任一個的方法,其中,為不同的塊選擇不同的濾波器。 6.11. A method as in any of Examples 6.6-6.10, wherein different filters are selected for different blocks.
6.12.如示例6.6-6.11中任一個的方法,其中,預定義多個濾波器的一個或多個候選集,並且從所述預定義的多個濾波器 的一個或多個候選集中為當前塊選擇濾波器。 6.12. A method as in any of Examples 6.6-6.11, wherein one or more candidate sets of multiple filters are predefined, and a filter is selected for the current block from one or more candidate sets of the predefined multiple filters.
6.13.如示例6.11的方法,其中,為所述當前塊選擇的濾波器由信令通知的索引指示或者在沒有信令通知的情況下動態推導。 6.13. A method as in Example 6.11, wherein the filter selected for the current block is indicated by a signaled index or is dynamically derived without signaling.
6.14.如示例6.1-6.13中任一個的方法,其中,使用整數運動向量生成中間預測,並且在中間預測的生成過程中不應用插值濾波處理。 6.14. A method as in any of Examples 6.1-6.13, wherein the intermediate prediction is generated using integer motion vectors and no interpolation filtering is applied in the generation of the intermediate prediction.
6.15.如示例6.14的方法,其中,將分數運動向量取整為最接近的整數運動向量。 6.15. A method as in Example 6.14, wherein the fractional motion vector is rounded to the nearest integer motion vector.
6.16.如示例6.15的方法,其中,響應於對於分數運動向量存在多於一個的最接近的整數運動向量,將分數運動向量取整為最接近的整數運動向量中的最小的一個。 6.16. The method of Example 6.15, wherein, in response to there being more than one nearest integer motion vector for a fractional motion vector, the fractional motion vector is rounded to the smallest of the nearest integer motion vectors.
6.17.如示例6.15的方法,其中,響應於對於分數運動向量存在多於一個的最接近的整數運動向量,將分數運動向量取整為最接近的整數運動向量中的最大一個。 6.17. A method as in Example 6.15, wherein, in response to there being more than one nearest integer motion vector for a fractional motion vector, the fractional motion vector is rounded to the largest of the nearest integer motion vectors.
6.18.如示例6.15的方法,其中,響應於對於分數運動向量存在多於一個的最接近的整數運動向量,將分數運動向量取整為最接近的整數運動向量中的最接近零的一個。 6.18. The method of Example 6.15, wherein, in response to there being more than one nearest integer motion vector for the fractional motion vector, the fractional motion vector is rounded to the nearest integer motion vector that is closest to zero.
6.19.如示例6.15的方法,其中,分數運動向量被取整為最接近的整數運動向量中的不小於所述分數運動向量的一個。 6.19. The method of Example 6.15, wherein the fractional motion vector is rounded to the nearest integer motion vector that is not less than the fractional motion vector.
6.20.如示例6.15的方法,其中,分數運動向量被取整為最接近的整數運動向量中的不大於所述分數運動向量的一個。 6.20. A method as in Example 6.15, wherein the fractional motion vector is rounded to the nearest integer motion vector that is not greater than the fractional motion vector.
6.21.如示例6.1-6.20中任一個的方法,其中,在序列參數集(SPS)、圖片參數集(PPS)、條帶標頭、編解碼樹單元(CTU)、編解碼單元(CU)或CTU組中用信號通知方法的使用。 6.21. A method as in any of Examples 6.1-6.20, wherein use of the method is signaled in a sequence parameter set (SPS), a picture parameter set (PPS), a slice header, a codec tree unit (CTU), a codec unit (CU), or a CTU group.
6.22.如示例6.1-6.21中任一個的方法,其中,是否應用方法取決於編解碼信息。 6.22. A method as in any of Examples 6.1-6.21, wherein whether the method is applied depends on the codec information.
6.23.如示例6.22的方法,其中,編解碼信息包括以下中的至少一個:當前塊的尺寸、當前塊的形狀、預測方向和條帶類型。 6.23. The method of Example 6.22, wherein the encoding and decoding information includes at least one of the following: the size of the current block, the shape of the current block, the predicted direction, and the slice type.
6.24.如示例6.22的方法,其中,當滿足第一條件時,不自動應用方法。 6.24. A method as in Example 6.22, wherein the method is not automatically applied when the first condition is met.
6.25.如示例6.24的方法,其中,第一條件至少指定利用仿射模式對當前塊進行編解碼。 6.25. The method of Example 6.24, wherein the first condition at least specifies encoding and decoding the current block using an affine mode.
6.26.如示例6.22的方法,其中,當滿足第二條件時,自動應用方法。 6.26. A method as in Example 6.22, wherein the method is automatically applied when the second condition is met.
6.27.如示例6.26的方法,其中,第二條件至少指定利用雙預測對塊進行編解碼,並且塊尺寸大於預定閾值。 6.27. A method as in Example 6.26, wherein the second condition at least specifies that the block is encoded and decoded using bi-prediction and the block size is greater than a predetermined threshold.
6.28.如方法6.24的方法,其中,第一條件指定以下中的至少一個:當前塊的尺寸、當前塊的條帶類型、當前塊的圖片類型和當前塊的片類型。 6.28. A method as in method 6.24, wherein the first condition specifies at least one of: a size of the current block, a slice type of the current block, a picture type of the current block, and a slice type of the current block.
6.29.如方法6.24的方法,其中,第一條件指定當前塊包含的樣本數小於第一閾值。 6.29. A method as in method 6.24, wherein the first condition specifies that the number of samples contained in the current block is less than a first threshold.
6.30.如方法6.24的方法,其中,第一條件指定當前塊的 寬度和高度的最小尺寸小於或不大於第二閾值。 6.30. A method as in method 6.24, wherein the first condition specifies that the minimum dimension of the width and height of the current block is less than or not greater than the second threshold.
6.31.如方法6.24的方法,其中,第一條件指定當前塊的寬度小於或不大於第三閾值,和/或當前塊的高度小於或不大於第四閾值。 6.31. A method as in method 6.24, wherein the first condition specifies that the width of the current block is less than or not greater than a third threshold, and/or the height of the current block is less than or not greater than a fourth threshold.
6.32.如方法6.24的方法,其中,第一條件指定當前塊的寬度大於或不小於第三閾值,和/或當前塊的高度大於或不小於第四閾值。 6.32. A method as in method 6.24, wherein the first condition specifies that the width of the current block is greater than or not less than a third threshold, and/or the height of the current block is greater than or not less than a fourth threshold.
6.33.如方法6.24的方法,其中,在子塊所屬的塊的寬度和/或高度等於或大於第五閾值的情況下,以子塊級應用方法。 6.33. A method as in method 6.24, wherein the method is applied at the sub-block level when the width and/or height of the block to which the sub-block belongs is equal to or greater than the fifth threshold.
6.34.如方法6.33的方法,其中,將當前塊分割為多個子塊,並且多個子塊中的每一個進一步以與具有等於子塊尺寸的尺寸的正常編解碼塊相同的方式經歷雙向光流(BIO)處理。 6.34. A method as in method 6.33, wherein the current block is partitioned into a plurality of sub-blocks, and each of the plurality of sub-blocks is further subjected to bidirectional optical flow (BIO) processing in the same manner as a normal codec block having a size equal to the sub-block size.
6.35.如方法6.24-6.33中任一個的方法,其中,第一至第五閾值中的每一個在序列參數集(SPS)級、或圖片參數集(PPS)級、或圖片級、或條帶級或片級預定義或用信號通知。 6.35. A method as in any of methods 6.24-6.33, wherein each of the first to fifth thresholds is predefined or signaled at a sequence parameter set (SPS) level, or a picture parameter set (PPS) level, or a picture level, or a slice level, or a slice level.
6.36.如方法6.35的方法,其中,根據包括塊尺寸、圖片類型和時域層索引中的至少一個的編解碼的信息來定義第一至第五閾值中的每個。 6.36. A method as in method 6.35, wherein each of the first to fifth thresholds is defined based on codec information including at least one of a block size, a picture type, and a temporal layer index.
6.37.一種視頻系統中的裝置,包括處理器和非暫時性儲存器,所述非暫時性儲存器上儲存有指令,其中指令在由處理器運行時使處理器實現示例6.1至6.36中任一個的方法。 6.37. A device in a video system, comprising a processor and a non-transitory memory, wherein the non-transitory memory stores instructions, wherein the instructions, when executed by the processor, cause the processor to implement any of the methods of Examples 6.1 to 6.36.
6.38.一種儲存在非暫時性電腦可讀介質上的電腦程式 產品,電腦程式產品包括用於執行如示例6.1至6.36中任一個的方法的程式代碼。 6.38. A computer program product stored on a non-transitory computer-readable medium, the computer program product comprising program code for performing a method as in any of Examples 6.1 to 6.36.
6.39.一種視頻解碼裝置,包括:處理器,其被配置為實現示例6.1至6.36中任一個的方法。 6.39. A video decoding device, comprising: a processor configured to implement any method of Examples 6.1 to 6.36.
6.40.一種視頻編碼裝置,包括:處理器,其被配置為實現示例6.1至6.36中任一個的方法。 6.40. A video encoding device, comprising: a processor configured to implement the method of any one of Examples 6.1 to 6.36.
在本文件中,術語“視頻處理”可以指視頻編碼、視頻解碼、視頻壓縮或視頻解壓縮。例如,視頻壓縮算法可以在從視頻的像素表示到對應的位元流表示的轉換期間應用,反之亦然。 In this document, the term "video processing" may refer to video encoding, video decoding, video compression, or video decompression. For example, a video compression algorithm may be applied during the conversion from a pixel representation of a video to a corresponding bitstream representation, or vice versa.
從前述內容可以理解,本文已經出於說明的目的描述了當前所公開的技術的具體實施例,但是在不脫離本發明的範圍的情況下可以做出各種修改。因此,除了所附申請專利範圍之外,當前所公開的技術不受限制。 It can be understood from the foregoing that this article has described specific embodiments of the currently disclosed technology for illustrative purposes, but various modifications can be made without departing from the scope of the present invention. Therefore, the currently disclosed technology is not limited except for the scope of the attached patent application.
本專利文件中描述的主題的實現方式和功能性操作可以在各種系統、數位電子電路中實施,或者在電腦軟體、韌體或硬體中實施,包括本說明書中公開的結構及其結構等同物,或者以他們的一個或多個的組合實施。本說明書中描述的主題的視線方式可以被實施為一個或多個電腦程式產品,即,在電腦可讀介質上編解碼的一個或多個暫時性和非暫時性電腦程式指令模塊,用於由數據處理裝置運行或控制數據處理裝置的操作。電腦可讀介質可以是機器可讀儲存設備、機器可讀儲存基板、儲存器設備、影響機器可讀傳播信號的物質的合成、或者它們中的一個或多個 的組合。術語“數據處理單元”和“數據處理裝置”包括用於處理數據的所有裝置、設備和機器,包括例如可編程處理器、電腦或者多個處理器或電腦。除了硬體之外,裝置可以包括為所討論的電腦程式創建運行環境的代碼,例如,構成處理器韌體、協議棧、數據庫管理系統、操作系統及其一個或多個的組合的代碼。 The implementation and functional operation of the subject matter described in this patent document can be implemented in various systems, digital electronic circuits, or in computer software, firmware or hardware, including the structures disclosed in this specification and their structural equivalents, or in one or more combinations thereof. The subject matter described in this specification can be implemented as one or more computer program products, that is, one or more temporary and non-temporary computer program instruction modules encoded and decoded on a computer-readable medium, for being run by a data processing device or controlling the operation of a data processing device. The computer-readable medium may be a machine-readable storage device, a machine-readable storage substrate, a storage device, a composition of matter that affects a machine-readable propagated signal, or a combination of one or more thereof. The terms "data processing unit" and "data processing apparatus" include all devices, equipment, and machines for processing data, including, for example, a programmable processor, a computer, or multiple processors or computers. In addition to hardware, the apparatus may include code that creates an operating environment for the computer program in question, for example, code that constitutes processor firmware, a protocol stack, a database management system, an operating system, and a combination of one or more thereof.
電腦程式(也稱為程式、軟體、軟體應用、腳本或代碼)可以用任何形式的編程語言(包括編譯語言或解釋語言)編寫,並且可以以任何形式部署,包括作為獨立程式或作為模塊、組件、子程式或其他適合在計算環境中使用的單元。電腦程式不一定與文件系統中的文件相對應。程式可以儲存在保存其他程式或數據的文件的部分中(例如,儲存在標記語言文件中的一個或多個腳本)、專用於所討論的程式的單個文件中、或多個協調文件(例如,儲存一個或多個模塊、子程式或部分代碼的文件)中。電腦程式可以部署在一台或多台電腦上來執行,這些電腦位於一個站點或分佈在多個站點並通過通信網路互連。 A computer program (also called a program, software, software application, script, or code) may be written in any form of programming language (including compiled or interpreted languages) and may be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program does not necessarily correspond to a file in a file system. A program may be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language file), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, subroutines, or portions of code). Computer programs can be deployed and executed on one or more computers, which are located at one site or distributed across multiple sites and interconnected by a communications network.
本說明書中描述的處理和邏輯流可以由一個或多個可編程處理器執行,該一個或多個處理器運行一個或多個電腦程式,通過對輸入數據進行操作並生成輸出來執行功能。處理和邏輯流也可以由專用邏輯電路來執行,並且裝置也可以實施為專用邏輯電路,例如,FPGA(現場可編程門陣列)或ASIC(專用積體電路)。 The processing and logic flows described in this specification may be performed by one or more programmable processors running one or more computer programs to perform functions by operating on input data and generating output. The processing and logic flows may also be performed by, and the apparatus may also be implemented as, dedicated logic circuits, such as an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit).
例如,適用於運行電腦程式的處理器包括通用和專用微 處理器、以及任何類型的數位電腦的任何一個或多個處理器。通常,處理器將從只讀儲存器或隨機存取儲存器或兩者接收指令和數據。電腦的基本元件是執行指令的處理器和儲存指令和數據的一個或多個儲存設備。通常,電腦還將包括一個或多個用於儲存數據的大容量儲存設備,例如,磁盤、磁光盤或光盤,或可操作地耦合到一個或多個大容量儲存設備,以從其接收數據或向其傳送數據,或兩者兼有。然而,電腦不一定需要具有這樣的設備。適用於儲存電腦程式指令和數據的電腦可讀介質包括所有形式的非揮發性儲存器、介質和儲存器設備,包括例如半導體儲存器設備,例如EPROM、EEPROM和快閃記憶體。處理器和儲存器可以由專用邏輯電路來補充,或合併到專用邏輯電路中。 For example, processors suitable for running computer programs include general-purpose and special-purpose microprocessors, and any one or more processors of any type of digital computer. Typically, the processor will receive instructions and data from read-only memory or random access memory, or both. The basic elements of a computer are a processor that executes instructions and one or more storage devices that store instructions and data. Typically, a computer will also include one or more mass storage devices for storing data, such as magnetic disks, magneto-optical disks, or optical disks, or be operatively coupled to one or more mass storage devices to receive data from them or transfer data to them, or both. However, a computer need not necessarily have such a device. Computer-readable media suitable for storing computer program instructions and data include all forms of nonvolatile memory, media, and storage devices, including, for example, semiconductor storage devices such as EPROM, EEPROM, and flash memory. The processor and memory may be supplemented by, or incorporated into, dedicated logic circuitry.
旨在將說明書與附圖一起僅視為示例性的,其中示例性意味著示例。如這裡所使用的,單數形式“一”、“一個”和“該”旨在也包括複數形式,除非上下文另有明確說明。另外,除非上下文另有明確說明,否則“或”的使用旨在包括“和/或”。 It is intended that the description together with the drawings be regarded as exemplary only, wherein exemplary means example. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. In addition, the use of "or" is intended to include "and/or" unless the context clearly indicates otherwise.
雖然本專利文件包含許多細節,但不應將其解釋為對任何發明或要求保護的範圍的限制,而應解釋為特定於特定發明的特定實施例的特徵的描述。本專利文件在分離的實施例的上下文描述的某些特徵也可以在單個實施例中組合實施。相反,在單個實施例的上下文中描述的各種功能也可以在多個實施例中單獨地實施,或在任何合適的子組合中實施。此外,雖然特徵可以被描述為在某些組合中起作用,甚至最初這樣要求保護,但在某些情 況下,可以從要求保護的組合中刪除組合中的一個或多個特徵,並且要求保護的組合可以指向子組合或子組合的變體。 Although this patent document contains many details, they should not be construed as limitations on the scope of any invention or claim, but rather as descriptions of features specific to particular embodiments of particular inventions. Certain features described in this patent document in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features described in the context of a single embodiment may also be implemented separately in multiple embodiments, or in any suitable subcombination. Furthermore, although features may be described as functioning in certain combinations, or even initially claimed as such, in some cases one or more features in a combination may be deleted from the claimed combination, and the claimed combination may be directed to subcombinations or variations of subcombinations.
同樣,儘管在附圖中以特定順序描述了操作,但這不應理解為要獲得期望的結果必須按照所示的特定順序或次序順序來執行這些操作,或執行所有示出的操作。此外,本專利文件所述實施例中的各種系統組件的分離不應理解為在所有實施例中都需要這樣的分離。 Similarly, although operations are described in a particular order in the accompanying drawings, this should not be understood as requiring that the operations be performed in the particular order or sequential order shown, or that all of the operations shown be performed, in order to achieve the desired results. In addition, the separation of various system components in the embodiments described in this patent document should not be understood as requiring such separation in all embodiments.
僅描述了一些實施方式和示例,其他實施方式、增強和變體可以基於本專利文件中描述和說明的內容做出。 Only some embodiments and examples are described, and other embodiments, enhancements and variations can be made based on what is described and illustrated in this patent document.
4300:方法 4300:Methods
4310~4330:步驟 4310~4330: Steps
Claims (30)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2018104301 | 2018-09-06 | ||
WOPCT/CN2018/104301 | 2018-09-06 | ||
WOPCT/CN2018/109250 | 2018-10-06 | ||
CN2018109250 | 2018-10-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202025743A TW202025743A (en) | 2020-07-01 |
TWI846727B true TWI846727B (en) | 2024-07-01 |
Family
ID=68165648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108132320A TWI846727B (en) | 2018-09-06 | 2019-09-06 | Two-step inter prediction |
Country Status (3)
Country | Link |
---|---|
CN (2) | CN110881124B (en) |
TW (1) | TWI846727B (en) |
WO (1) | WO2020049512A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114026870A (en) * | 2019-06-27 | 2022-02-08 | 三星电子株式会社 | Method and apparatus for decoding video and method and apparatus for encoding video |
CN115665409A (en) * | 2020-06-03 | 2023-01-31 | 北京达佳互联信息技术有限公司 | Method and apparatus for encoding video data |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3264768A1 (en) * | 2016-06-30 | 2018-01-03 | Thomson Licensing | Method and apparatus for video coding with adaptive motion information refinement |
US20180199057A1 (en) * | 2017-01-12 | 2018-07-12 | Mediatek Inc. | Method and Apparatus of Candidate Skipping for Predictor Refinement in Video Coding |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3264769A1 (en) * | 2016-06-30 | 2018-01-03 | Thomson Licensing | Method and apparatus for video coding with automatic motion information refinement |
US10911761B2 (en) * | 2016-12-27 | 2021-02-02 | Mediatek Inc. | Method and apparatus of bilateral template MV refinement for video coding |
-
2019
- 2019-09-06 CN CN201910842747.4A patent/CN110881124B/en active Active
- 2019-09-06 CN CN202310822766.7A patent/CN116634155A/en active Pending
- 2019-09-06 WO PCT/IB2019/057520 patent/WO2020049512A1/en active Application Filing
- 2019-09-06 TW TW108132320A patent/TWI846727B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3264768A1 (en) * | 2016-06-30 | 2018-01-03 | Thomson Licensing | Method and apparatus for video coding with adaptive motion information refinement |
US20180199057A1 (en) * | 2017-01-12 | 2018-07-12 | Mediatek Inc. | Method and Apparatus of Candidate Skipping for Predictor Refinement in Video Coding |
Non-Patent Citations (1)
Title |
---|
網路文獻 Jianle Chen, Elena Alshina, Gary J. Sullivan, Jens-Rainer Ohm, Jill Boyce, Algorithm Description of Joint Exploration Test Model 7 (JEM 7), Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JVET-G1001-v1, 7th Meeting: Torino, IT, 13–21 July 2017, http://phenix.int-evry.fr/jvet/, * |
Also Published As
Publication number | Publication date |
---|---|
WO2020049512A1 (en) | 2020-03-12 |
CN110881124B (en) | 2023-07-25 |
CN110881124A (en) | 2020-03-13 |
CN116634155A (en) | 2023-08-22 |
TW202025743A (en) | 2020-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI750494B (en) | Constraints for usage of updated motion information | |
CN111010569B (en) | Improvement of temporal gradient calculation in BIO | |
TW202025736A (en) | Syntax reuse for affine mode with adaptive motion vector resolution | |
TWI709332B (en) | Motion prediction based on updated motion vectors | |
JP2023071804A (en) | Context for Coding Affine Mode Adaptive Motion Vector Resolution | |
TWI753280B (en) | Mv precision in bio | |
TWI846727B (en) | Two-step inter prediction |