TWI846579B - Wafer positioning device and method - Google Patents
Wafer positioning device and method Download PDFInfo
- Publication number
- TWI846579B TWI846579B TW112132562A TW112132562A TWI846579B TW I846579 B TWI846579 B TW I846579B TW 112132562 A TW112132562 A TW 112132562A TW 112132562 A TW112132562 A TW 112132562A TW I846579 B TWI846579 B TW I846579B
- Authority
- TW
- Taiwan
- Prior art keywords
- wafer
- positioning feature
- rotating platform
- positioning
- platform module
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 30
- 230000007246 mechanism Effects 0.000 claims description 43
- 238000004364 calculation method Methods 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 230000035945 sensitivity Effects 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 230000003213 activating effect Effects 0.000 claims 1
- 235000012431 wafers Nutrition 0.000 description 186
- 238000001514 detection method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical group Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
一種晶圓定位裝置,其控制器接收晶圓的外緣的影像資料,並透過影像資料的一階導數及二階導數配合多項式迴歸運算來算出晶圓的外緣的定位特徵的精確位置,將影像資料中的定位特徵除排後,根據排除定位特徵的影像資料計算出晶圓的中心偏移量,以及接著計算出補正角度與X-Y補正量。控制器接著依據補正角度控制驅動裝置控制旋轉平台模組旋轉以使定位特徵轉動到指定角度,以及依據X-Y補正量控制晶圓定位裝置的驅動裝置使晶圓於晶圓定位裝置之旋轉平台模組的水平平面進行移動使晶圓的圓心對準旋轉平台模組的指定位置。A wafer positioning device, wherein the controller receives image data of the outer edge of the wafer, and calculates the precise position of the positioning feature of the outer edge of the wafer through the first-order derivative and the second-order derivative of the image data in combination with a polynomial regression operation, and after eliminating the positioning feature in the image data, calculates the center offset of the wafer based on the image data excluding the positioning feature, and then calculates the correction angle and the X-Y correction amount. The controller then controls the driving device to control the rotation of the rotating platform module according to the correction angle so that the positioning feature rotates to a specified angle, and controls the driving device of the wafer positioning device according to the X-Y correction amount so that the wafer moves in the horizontal plane of the rotating platform module of the wafer positioning device so that the center of the wafer is aligned with the specified position of the rotating platform module.
Description
本發明係關於一種晶圓定位裝置與方法,且特別是一種可偵測非透明的矽晶圓與半透明的特殊材質之晶圓,並且能夠支援不同定位特徵判斷的晶圓定位裝置與方法。The present invention relates to a wafer positioning device and method, and in particular to a wafer positioning device and method that can detect non-transparent silicon wafers and semi-transparent wafers of special materials and can support the judgment of different positioning characteristics.
晶圓在進入半導體製造設備之前,需要先對晶圓進行定位,因此,晶圓的外緣會被設計有定位特徵,例如,缺口(notch)類型的定位特徵。進行晶圓定位的晶圓定位裝置又稱為晶圓尋邊器,且晶圓定位裝置主要用來尋找出晶圓外緣的定位特徵的位置(其為定位特徵的角度),並進行偏心校正(包括X-Y補正量(X-Y軸)的校正與補正角度(θ軸)的校正)。晶圓在進行校正後,其圓心會對準承載晶圓的旋轉平台的指定位置,且晶圓轉動到指定角度,且接著承載晶圓的旋轉平台將晶圓送到半導體製造設備進行後續的製程,其中指定位置通常是指旋轉平台的原位(home position),原位位置為一個不變的位置,以及晶圓預定進入到下一個製程時,定位特徵需要轉動至指定角度。Before the wafer enters the semiconductor manufacturing equipment, it needs to be positioned first. Therefore, the outer edge of the wafer will be designed with positioning features, such as notch-type positioning features. The wafer positioning device for wafer positioning is also called a wafer edge finder, and the wafer positioning device is mainly used to find the position of the positioning features on the outer edge of the wafer (which is the angle of the positioning features) and perform eccentricity correction (including correction of the X-Y compensation amount (X-Y axis) and correction of the compensation angle (θ axis)). After the wafer is calibrated, its center will be aligned with the specified position of the rotating platform carrying the wafer, and the wafer will be rotated to a specified angle. Then the rotating platform carrying the wafer will send the wafer to the semiconductor manufacturing equipment for subsequent processes. The specified position usually refers to the home position of the rotating platform. The home position is an unchanging position, and when the wafer is scheduled to enter the next process, the positioning feature needs to be rotated to a specified angle.
中華民國第TW I735315號核准專利提供一種偵測晶圓位置的方法和系統,其偵測的方式說明如下:首先,旋轉平台以較快的轉速在一個方向上旋轉,以帶動被放置在旋轉平台上且外緣包含定位特徵的晶圓旋轉,同時偵測器偵測晶圓的外緣,以產生偵測結果給控制器,每一偵測結果對應旋轉平台的一個旋轉角度;當定位特徵經過偵測器後,旋轉平台以較慢的轉速反向旋轉,以帶動晶圓反向旋轉,同時偵測器偵測反向旋轉的晶圓的外緣,以產生偵測結果給控制器;以及當晶圓的定位特徵再次經過偵測器時,旋轉平台停止旋轉,控制器根據累積的偵測結果和對應的旋轉角度,推估晶圓的偏心位置以及定位特徵的位置。The approved patent No. TW I735315 of the Republic of China provides a method and system for detecting the position of a wafer. The detection method is described as follows: first, a rotating platform rotates in one direction at a relatively fast speed to drive a wafer placed on the rotating platform and having a positioning feature on its outer edge to rotate, and at the same time, a detector detects the outer edge of the wafer to generate a detection result for a controller, and each detection result corresponds to a rotation angle of the rotating platform; When the positioning feature passes the detector, the rotating platform rotates in the opposite direction at a slower speed to drive the wafer to rotate in the opposite direction. At the same time, the detector detects the outer edge of the wafer rotating in the opposite direction to generate a detection result for the controller; and when the positioning feature of the wafer passes the detector again, the rotating platform stops rotating, and the controller estimates the eccentric position of the wafer and the position of the positioning feature based on the accumulated detection results and the corresponding rotation angle.
然而,上述核准專利的偵測方式需要使旋轉平台旋轉兩次以上,且依照上述核准專利的詳細說明,上述核准專利中的晶圓無法是半透明材質的晶圓,且定位特徵得是缺口類型的定位特徵。因此,業界對於一種可以使旋轉平台旋轉次數較少以及能夠支援各類型晶圓、各類型定位特徵的晶圓定位裝置與方法仍有所需求。However, the detection method of the above-mentioned approved patent requires the rotating platform to rotate more than twice, and according to the detailed description of the above-mentioned approved patent, the wafer in the above-mentioned approved patent cannot be a wafer of a translucent material, and the positioning feature must be a notch-type positioning feature. Therefore, the industry still needs a wafer positioning device and method that can reduce the number of rotations of the rotating platform and support various types of wafers and various types of positioning features.
為了解決上述的技術問題,本發明提供一種晶圓定位裝置與方法,其主要是透過計算晶圓外緣的影像資料的一階導數與二階導數來找出晶圓外緣的定位特徵的概略位置,然後,透過多項式迴歸計算找定位特徵的精確位置(即,精確角度),之後,將影像資料中之定位特徵排除後,根據排除定位特徵之影像資料計算出晶圓的中心偏移量,根據定位特徵的精確位置與中心偏移量計算出補正角度,以及根據補正角度與中心偏移量計算出X-Y補正量,最後,根據計算出的補正角度與X-Y補正量控制旋轉平台的X軸移動機構、Y軸移動機構與θ軸轉動機構讓晶圓的圓心對準旋轉平台的指定位置以及讓晶圓的定位特徵轉動到指定角度。In order to solve the above technical problems, the present invention provides a wafer positioning device and method, which mainly calculates the first-order derivative and the second-order derivative of the image data of the wafer outer edge to find the approximate position of the positioning feature of the wafer outer edge, and then calculates the exact position (i.e., the exact angle) of the positioning feature through polynomial regression. After that, the positioning feature in the image data is excluded, and the positioning feature is calculated based on the image data without the positioning feature. The center offset of the wafer is used to calculate the correction angle based on the precise position of the positioning feature and the center offset, and the X-Y correction is calculated based on the correction angle and the center offset. Finally, the X-axis moving mechanism, Y-axis moving mechanism and θ-axis rotating mechanism of the rotating platform are controlled based on the calculated correction angle and the X-Y correction to align the center of the wafer with the specified position of the rotating platform and rotate the positioning feature of the wafer to the specified angle.
基於本發明的至少一個目的,本發明提供一種晶圓定位裝置,且此晶圓定位裝置包括旋轉平台模組、光源、影像擷取裝置、控制器與驅動裝置。旋轉平台模組用於承載晶圓,並用於旋轉以旋轉晶圓。光源設置於旋轉平台模組的外側,並用於發射光線,以照射晶圓的外緣。影像擷取裝置設置於轉平台模組的外側並面向光源,用於獲取晶圓的外緣的影像資料。控制器電性連接光源與影像擷取裝置,用於接收影像資料,並透過影像資料的一階導數及二階導數配合多項式迴歸運算來算出晶圓的外緣的定位特徵的精確位置,將影像資料中之定位特徵排除後,根據排除定位特徵之影像資料計算出晶圓的中心偏移量,根據定位特徵的精確位置與中心偏移量計算出補正角度,以及根據補正角度與中心偏移量計算出X-Y補正量。驅動裝置電性連接控制器,並且連接旋轉平台模組。控制器依據補正角度控制驅動裝置驅動旋轉平台模組旋轉以使定位特徵轉動到指定角度(晶圓要預訂進入到下一個製程時,定位特徵所需要轉動至指定角度),以及控制器依據X-Y補正量控制驅動裝置驅動旋轉平台模組使晶圓於旋轉平台模組的水平平面進行移動以使晶圓的圓心對準旋轉平台模組的指定位置(指定位置是指旋轉平台模組的原位位置(home position))。Based on at least one purpose of the present invention, the present invention provides a wafer positioning device, and the wafer positioning device includes a rotating platform module, a light source, an image capture device, a controller and a driving device. The rotating platform module is used to carry a wafer and rotate the wafer. The light source is arranged on the outer side of the rotating platform module and is used to emit light to illuminate the outer edge of the wafer. The image capture device is arranged on the outer side of the rotating platform module and faces the light source, and is used to obtain image data of the outer edge of the wafer. The controller is electrically connected to the light source and the image capture device, and is used to receive image data, and calculate the precise position of the positioning feature of the outer edge of the wafer through the first-order derivative and the second-order derivative of the image data in combination with a polynomial regression operation, and after excluding the positioning feature in the image data, the center offset of the wafer is calculated based on the image data excluding the positioning feature, and the correction angle is calculated based on the precise position of the positioning feature and the center offset, and the X-Y correction amount is calculated based on the correction angle and the center offset. The driving device is electrically connected to the controller and is also connected to the rotating platform module. The controller controls the driving device to drive the rotating platform module to rotate according to the correction angle so that the positioning feature rotates to a specified angle (when the wafer is scheduled to enter the next process, the positioning feature needs to rotate to a specified angle), and the controller controls the driving device to drive the rotating platform module according to the X-Y correction amount so that the wafer moves in the horizontal plane of the rotating platform module so that the center of the wafer is aligned with the specified position of the rotating platform module (the specified position refers to the home position of the rotating platform module).
可選地,於上述晶圓定位裝置的實施例中,控制器根據影像資料的一階導數與二階導數計算出定位特徵的概略位置,且接著根據概略位置利用多項式迴歸運算進行多次疊代計算,以算出定位特徵的精確位置,其中精確位置為定位特徵的精確角度。Optionally, in the above-mentioned embodiment of the wafer positioning device, the controller calculates the approximate position of the positioning feature based on the first-order derivative and the second-order derivative of the image data, and then performs multiple iterative calculations using polynomial regression operations based on the approximate position to calculate the precise position of the positioning feature, wherein the precise position is the precise angle of the positioning feature.
可選地,於上述晶圓定位裝置的實施例中,控制器將影像資料中之精確位置的定位特徵排除,並且根據排除定位特徵之影像資料找出對應的圓方程式,以藉此得到中心偏移量。Optionally, in the above-mentioned embodiment of the wafer positioning device, the controller excludes the positioning features of the precise position in the image data, and finds the corresponding circle equation based on the image data excluding the positioning features to obtain the center offset.
可選地,於上述晶圓定位裝置的實施例中,晶圓(WF)為非透明的矽晶圓或半透明材質的晶圓。Optionally, in the above-mentioned embodiment of the wafer positioning device, the wafer (WF) is a non-transparent silicon wafer or a wafer made of a semi-transparent material.
可選地,於上述晶圓定位裝置的實施例中,晶圓(WF)的定位特徵為缺口類型定位特徵、雙平邊類型定位特徵或單平邊類型定位特徵。Optionally, in the above-mentioned embodiment of the wafer positioning device, the positioning feature of the wafer (WF) is a notch type positioning feature, a double flat edge type positioning feature or a single flat edge type positioning feature.
可選地,於上述晶圓定位裝置的實施例中,控制器控制驅動裝置驅動旋轉平台模組旋轉至少360度,且影像擷取裝置擷取的影像資料是晶圓的外緣旋轉至少360度的影像資料。Optionally, in the above-mentioned embodiment of the wafer positioning device, the controller controls the driving device to drive the rotating platform module to rotate at least 360 degrees, and the image data captured by the image capturing device is the image data of the outer edge of the wafer rotated at least 360 degrees.
可選地,於上述晶圓定位裝置的實施例中,控制器根據操作者輸入的指令設定光源的亮度與影像擷取裝置的靈敏度,其中操作者依照晶圓的類型決定輸入的指令。Optionally, in the above-mentioned embodiment of the wafer positioning device, the controller sets the brightness of the light source and the sensitivity of the image capture device according to the instructions input by the operator, wherein the operator determines the input instructions according to the type of wafer.
可選地,於上述晶圓定位裝置的實施例中,旋轉平台模組包括θ軸轉動機構、Y軸移動機構與X軸移動機構,其中θ軸轉動機構用於驅動裝置驅動以使旋轉平台模組旋轉,且Y軸移動機構與X軸移動機構用於被驅動裝置驅動以使晶圓於旋轉平台模組的水平平面移動。Optionally, in the above-mentioned embodiment of the wafer positioning device, the rotating platform module includes a θ-axis rotating mechanism, a Y-axis moving mechanism and an X-axis moving mechanism, wherein the θ-axis rotating mechanism is used to be driven by a driving device to rotate the rotating platform module, and the Y-axis moving mechanism and the X-axis moving mechanism are used to be driven by the driving device to move the wafer in the horizontal plane of the rotating platform module.
基於本發明的至少一個目的,本發明提供一種晶圓定位方法,此晶圓定位方法包括以下步驟:啟動光源與影像擷取模組,其中光源與影像擷取模組彼此相對設置並面向旋轉平台模組承載的晶圓的外緣,且位於旋轉平台模組的外側;使用控制器控制驅動裝置驅動旋轉平台模組旋轉至少360度,以帶動旋轉平台模組承載的晶圓旋轉至少360度;使用影像擷取裝置獲取晶圓的外緣的影像資料;使用控制器根據影像資料的一階導數與二階導數計算出定位特徵的概略位置,且接著根據概略位置利用多項式迴歸運算進行多次疊代計算,以算出定位特徵的精確位置,其中精確位置為定位特徵的精確角度;使用控制器將影像資料中之精確位置的定位特徵排除,並且根據排除定位特徵之影像資料找出對應的圓方程式,以得到晶圓的中心偏移量;使用控制器根據定位特徵的精確位置與中心偏移量計算出補正角度,以及根據中心偏移量與補正角度計算出X-Y補正量;以及使用控制器依據補正角度控制驅動裝置驅動旋轉平台模組旋轉以使定位特徵轉動到指定角度,以及使用控制器依據X-Y補正量控制驅動裝置驅動旋轉平台模組使晶圓於旋轉平台模組的水平平面進行移動以使晶圓的圓心對準旋轉平台模組的指定位置。Based on at least one purpose of the present invention, the present invention provides a wafer positioning method, which includes the following steps: starting a light source and an image capture module, wherein the light source and the image capture module are arranged opposite to each other and face the outer edge of a wafer carried by a rotating platform module, and are located on the outer side of the rotating platform module; using a controller to control a driving device to drive the rotating platform module to rotate at least 360 degrees, so as to drive the wafer carried by the rotating platform module to rotate at least 360 degrees; using an image capture device to obtain image data of the outer edge of the wafer; using a controller to calculate the approximate position of a positioning feature according to the first-order derivative and the second-order derivative of the image data, and then using a polynomial regression operation to perform multiple iterations of calculations according to the approximate position to calculate the precise position of the positioning feature. The invention relates to a method for determining a position of a wafer having a wafer center offset of the wafer and a precise position of the wafer. The method comprises: determining a position of the wafer having a precise position in the image data, wherein the precise position is the precise angle of the positioning feature; excluding the positioning feature at the precise position in the image data by using a controller, and finding a corresponding circle equation according to the image data excluding the positioning feature to obtain a center offset of the wafer; calculating a correction angle according to the precise position of the positioning feature and the center offset, and calculating an X-Y correction according to the center offset and the correction angle; controlling a driving device according to the controller to drive a rotating platform module to rotate according to the correction angle so that the positioning feature rotates to a specified angle, and controlling a driving device according to the controller to drive the rotating platform module to move the wafer in a horizontal plane of the rotating platform module so that the center of the wafer is aligned with the specified position of the rotating platform module.
可選地,於上述晶圓定位方法的實施例中,晶圓為非透明的矽晶圓或半透明材質的晶圓,以及晶圓的定位特徵為缺口類型定位特徵、雙平邊類型定位特徵或單平邊類型定位特徵。Optionally, in the above-mentioned embodiment of the wafer positioning method, the wafer is a non-transparent silicon wafer or a wafer made of a translucent material, and the positioning feature of the wafer is a notch type positioning feature, a double flat edge type positioning feature or a single flat edge type positioning feature.
綜上所述,相較於先前技術的做法,本發明的晶圓定位裝置與方法可以使旋轉平台旋轉次數較少以及能夠支援各類型晶圓、各類型定位特徵。In summary, compared with the prior art, the wafer positioning device and method of the present invention can reduce the number of rotations of the rotating platform and can support various types of wafers and various types of positioning features.
為利貴審查員瞭解本發明之技術特徵、內容與優點及其所能達成之功效,茲將本發明配合附圖,並以實施例之表達形式詳細說明如下,而其中所使用之圖式,其主旨僅為示意及輔助說明書之用,未必為本發明實施後之真實比例與精準配置,故不應就所附之圖式的比例與配置關係解讀、侷限本發明於實際實施上的權利範圍,合先敘明。In order to help the examiner understand the technical features, contents and advantages of the present invention and the effects that can be achieved, the present invention is described in detail as follows with the accompanying drawings and in the form of embodiments. The drawings used therein are only for illustration and auxiliary description, and may not be the true proportions and precise configurations after the implementation of the present invention. Therefore, it should not be interpreted based on the proportions and configurations of the attached drawings to limit the scope of rights of the present invention in actual implementation.
請參照圖1,圖1是本發明實施例的晶圓定位裝置的示意圖。晶圓定位裝置1包括旋轉平台模組11、光源12、影像擷取裝置13、控制器14與驅動裝置15。旋轉平台模組11除了可轉動並用於承載晶圓WF的平台之外,更包括了θ軸轉動機構111、Y軸移動機構112與X軸移動機構113。控制器14電性連接光源12、影像擷取裝置13與驅動裝置15,以及θ軸轉動機構111、Y軸移動機構112與X軸移動機構113連接驅動裝置15。Please refer to FIG. 1 , which is a schematic diagram of a wafer positioning device of an embodiment of the present invention. The wafer positioning device 1 includes a rotating platform module 11, a light source 12, an image capture device 13, a controller 14, and a driving device 15. In addition to being a rotatable platform for carrying a wafer WF, the rotating platform module 11 further includes a θ-axis rotating mechanism 111, a Y-axis moving mechanism 112, and an X-axis moving mechanism 113. The controller 14 is electrically connected to the light source 12, the image capture device 13, and the driving device 15, and the θ-axis rotating mechanism 111, the Y-axis moving mechanism 112, and the X-axis moving mechanism 113 are connected to the driving device 15.
光源12設置在旋轉平台模組11的外側下方,影像擷取裝置13設置在旋轉平台模組11的外側上方,且光源12與影像擷取裝置13彼此對應設置。在晶圓WF放置在旋轉平台模組11時,光源12發射的光線會射向晶圓WF的外緣,而影像擷取裝置13則會晶圓WF的外緣的影像資料。光源12可以是雷射二極體或其他的指向性光源,例如,透過發光二極體與凸透鏡形成的指向性光源。影像擷取裝置13可以是電荷耦合元件(CCD)取像裝置或其他類型的取像裝置。另外,本發明並不限制光源12與影像擷取裝置13的類型。The light source 12 is disposed below the outer side of the rotating platform module 11, and the image capture device 13 is disposed above the outer side of the rotating platform module 11, and the light source 12 and the image capture device 13 are disposed corresponding to each other. When the wafer WF is placed on the rotating platform module 11, the light emitted by the light source 12 will be directed to the outer edge of the wafer WF, and the image capture device 13 will capture the image data of the outer edge of the wafer WF. The light source 12 can be a laser diode or other directional light source, for example, a directional light source formed by a light-emitting diode and a convex lens. The image capture device 13 can be a charge coupled device (CCD) imaging device or other types of imaging devices. In addition, the present invention does not limit the types of the light source 12 and the image capture device 13.
控制器14可以透過對驅動裝置15(例如,驅動馬達或其他類型的致動器)的控制使θ軸轉動機構111轉動,從而帶動旋轉平台模組11的平台轉動,使得旋轉平台模組11承載的晶圓WF也跟著轉動。另外,控制器14還可以透過對驅動裝置15的控制使Y軸移動機構112與X軸移動機構113使旋轉平台模組11承載的晶圓WF在平台的水平面(X-Y軸平面)移動。Y軸移動機構112與X軸移動機構113可以例如是使平台及晶圓WF進行水平面(X-Y軸平面)移動,以及θ軸轉動機構111可以是設置在平台下方且連接平台的中心旋轉軸件,但本發明並不限制θ軸轉動機構111、Y軸移動機構112與X軸移動機構113的實現方式。The controller 14 can rotate the θ-axis rotating mechanism 111 by controlling the driving device 15 (e.g., a driving motor or other types of actuators), thereby driving the platform of the rotating platform module 11 to rotate, so that the wafer WF carried by the rotating platform module 11 also rotates. In addition, the controller 14 can also control the driving device 15 to make the Y-axis moving mechanism 112 and the X-axis moving mechanism 113 move the wafer WF carried by the rotating platform module 11 on the horizontal plane (X-Y axis plane) of the platform. The Y-axis moving mechanism 112 and the X-axis moving mechanism 113 can, for example, enable the platform and the wafer WF to move in a horizontal plane (X-Y axis plane), and the θ-axis rotating mechanism 111 can be a central rotating shaft disposed under the platform and connected to the platform, but the present invention does not limit the implementation method of the θ-axis rotating mechanism 111, the Y-axis moving mechanism 112, and the X-axis moving mechanism 113.
再者,控制器14還可以用來設定光源12的強度與影像擷取裝置13的靈敏度。如此,針對不同類型的晶圓WF,本發明的晶圓定位裝置1可以具有更精準的定位準確率。在此請注意,由於本發明的晶圓定位裝置1是主要是透過晶圓外緣的影像資料的一階導數與二階導數配合多項式回歸運算來算出晶圓WF的定位特徵的精確位置(即,定位特徵的精確角度),因此,控制器14用來設定光源12的強度與影像擷取裝置13的靈敏度的作法只是用來更進一步提升定位準確率,且此作法並非本發明的必要限制。Furthermore, the controller 14 can also be used to set the intensity of the light source 12 and the sensitivity of the image capture device 13. In this way, the wafer positioning device 1 of the present invention can have a more precise positioning accuracy for different types of wafers WF. Please note that since the wafer positioning device 1 of the present invention mainly calculates the precise position of the positioning feature of the wafer WF (i.e., the precise angle of the positioning feature) through the first-order derivative and the second-order derivative of the image data of the outer edge of the wafer in combination with a polynomial regression operation, the controller 14 is used to set the intensity of the light source 12 and the sensitivity of the image capture device 13 only to further improve the positioning accuracy, and this practice is not a necessary limitation of the present invention.
請接著參圖1~圖3,圖2是本發明實施例的晶圓定位方法的流程示意圖,以及圖3是本發明實施例的晶圓定位方法的尋找晶圓定位特徵的步驟及計算晶圓的之定位特徵的精確位置與中心偏移量的步驟的細節流程示意圖。控制器14通常是能夠被寫入韌體程式的微控制器單元(但本發明不以此為限制,也可以是利用純硬體電路實現),且本發明的晶圓定位方法主要是被控制器14所執行。Please refer to Figures 1 to 3. Figure 2 is a schematic flow chart of the wafer positioning method of the embodiment of the present invention, and Figure 3 is a detailed flow chart of the steps of finding the wafer positioning feature and calculating the precise position and center offset of the wafer positioning feature of the wafer. The controller 14 is usually a microcontroller unit that can be written into a firmware program (but the present invention is not limited to this, and can also be implemented using a pure hardware circuit), and the wafer positioning method of the present invention is mainly executed by the controller 14.
在步驟S21中,啟動光源12與影像擷取裝置13。本發明的晶圓定位裝置1可以支援不同類型的晶圓WF。晶圓WF可以是非透明的矽晶圓半透明的特殊材質之晶圓,為了提升定位的準確率,故在步驟S21中,操作人員還可以根據晶圓WF的類型將指令輸入到控制器14,以藉此設定光源12的強度與影像擷取裝置13的靈敏度。接著,在步驟S22中,治具會將晶圓WF放在旋轉平台模組11的平台上,此時晶圓WF的圓心可能會偏離旋轉平台模組11的指定位置(通常指原位位置(home position)),且定位特徵也未轉到進入到下一製程時所在的指定角度,故需要定位裝置4對晶圓WF偵測,以將晶圓WF進行定位。In step S21, the light source 12 and the image capture device 13 are activated. The wafer positioning device 1 of the present invention can support different types of wafers WF. The wafer WF can be a non-transparent silicon wafer or a semi-transparent wafer made of a special material. In order to improve the accuracy of positioning, in step S21, the operator can also input instructions to the controller 14 according to the type of wafer WF to set the intensity of the light source 12 and the sensitivity of the image capture device 13. Next, in step S22, the fixture places the wafer WF on the platform of the rotating platform module 11. At this time, the center of the wafer WF may deviate from the specified position of the rotating platform module 11 (usually referred to as the home position), and the positioning feature has not turned to the specified angle when entering the next process. Therefore, the positioning device 4 is required to detect the wafer WF to position the wafer WF.
在步驟S23中,控制器14控制驅動裝置15驅動θ軸轉動機構111轉動旋轉平台模組11的平台360度至720度,以藉此讓影像擷取裝置13在步驟S24中取得晶圓WF外緣的影像資料。接著,在步驟S25中,控制器14依據取得的晶圓WF外緣的影像資料來尋找晶圓WF的定位特徵的概略位置,其中尋找晶圓WF的定位特徵的概略位置的作法是先計算晶圓WF外緣的影像資料的一階導數與二階導數,以藉此排除中心偏移量(即,X-Y偏移),並透過一階導數與二階導數的變化率來找出晶圓WF外緣的定位特徵的概略位置,然後,且接著根據概略位置利用多項式迴歸運算進行多次疊代計算出定位特徵的精確位置,其中定位特徵的精確位置為定位特徵的角度,其中定位特徵不限定是缺口類型的定位特徵,更可以是單平邊、雙平邊或其他類型的定位特徵。在步驟S25中,控制器14將影像資料中之精確位置的定位特徵排除,並且根據排除定位特徵之影像資料找出中心偏移量。In step S23, the controller 14 controls the driving device 15 to drive the θ-axis rotating mechanism 111 to rotate the platform of the rotating platform module 11 by 360 degrees to 720 degrees, so that the image capturing device 13 can obtain the image data of the outer edge of the wafer WF in step S24. Next, in step S25, the controller 14 searches for the approximate position of the positioning feature of the wafer WF based on the image data of the outer edge of the wafer WF obtained, wherein the method of searching for the approximate position of the positioning feature of the wafer WF is to first calculate the first-order derivative and the second-order derivative of the image data of the outer edge of the wafer WF to eliminate the center offset (i.e., X-Y offset), and find the approximate position of the positioning feature of the outer edge of the wafer WF through the rate of change of the first-order derivative and the second-order derivative, and then, and then, according to the approximate position, use polynomial regression operation to perform multiple iterations to calculate the precise position of the positioning feature, wherein the precise position of the positioning feature is the angle of the positioning feature, wherein the positioning feature is not limited to a notch-type positioning feature, and can also be a single flat edge, double flat edges or other types of positioning features. In step S25, the controller 14 excludes the positioning features of the precise position in the image data, and finds the center offset based on the image data without the positioning features.
之後,在步驟S26中,控制器14根據定位特徵的精確位置與中心偏移量計算晶圓WF的補正角度,以及根據補正角度與中心偏移量計算出X-Y補正量。最後,在步驟S27中,控制器14經由X軸移動機構113、Y軸移動機構112與θ軸轉動機構111補正晶圓的偏移。詳細地說,控制器14根據出的計算晶圓WF的補正角度控制驅動裝置15驅動θ軸轉動機構111使平台旋轉,從而讓晶圓WF的定位特徵轉動到指定角度,以及控制器14根據計算出的X-Y補正量控制驅動裝置15驅動Y軸移動機構112與X軸移動機構113使晶圓WF於水平平面移動,從而讓晶圓WF的圓心對準平台的指定位置。Then, in step S26, the controller 14 calculates the compensation angle of the wafer WF according to the precise position of the positioning feature and the center offset, and calculates the X-Y compensation amount according to the compensation angle and the center offset. Finally, in step S27, the controller 14 compensates for the offset of the wafer via the X-axis moving mechanism 113, the Y-axis moving mechanism 112 and the θ-axis rotating mechanism 111. Specifically, the controller 14 controls the drive device 15 to drive the θ-axis rotation mechanism 111 to rotate the platform according to the calculated correction angle of the wafer WF, so that the positioning feature of the wafer WF rotates to the specified angle, and the controller 14 controls the drive device 15 to drive the Y-axis movement mechanism 112 and the X-axis movement mechanism 113 to move the wafer WF in the horizontal plane according to the calculated X-Y correction amount, so that the center of the wafer WF is aligned with the specified position of the platform.
在步驟S24中,控制器14還會檢查影像資料的索引是否連續,以及檢查晶圓WF旋轉前後之間的角度差異。如果影像資料的索引並非連續(因為如果旋轉速度過快,影像資料可能會有缺少,故需要做檢查)或晶圓WF旋轉前後之間的角度差異不足360度(因為可能操作上錯誤或其他因素,導致旋轉平台模組11的平台未旋轉360度以上),則需要再次地進行步驟S23與S24,重新取得有效之晶圓WF外緣的影像資料。In step S24, the controller 14 will also check whether the index of the image data is continuous and check the angle difference between the wafer WF before and after rotation. If the index of the image data is not continuous (because if the rotation speed is too fast, the image data may be missing, so it is necessary to check) or the angle difference between the wafer WF before and after rotation is less than 360 degrees (because there may be an operational error or other factors that cause the platform of the rotating platform module 11 to not rotate more than 360 degrees), it is necessary to perform steps S23 and S24 again to re-acquire valid image data of the outer edge of the wafer WF.
進一步地,如圖3,步驟S25包括了步驟S251~S256。在步驟S251中,控制器14對影像資料進行了移動平均運算處理(moving average process),以濾除影像資料中大部分的雜訊。在此請注意,步驟S251並非必要步驟,但因為多數情況下,為了增加定位準確率,勢必地會執行步驟S251。接著,在步驟S252中,控制器14計算影像資料的一階導數與二階導數。影像資料的一階導數就是影像資料的斜率函數,斜率函數為0處,可能就是極值發生處,也就是定位特徵的可能位置。影像資料的二階導數則是可以用於判斷斜率變化最大的地方,通常定位特徵的位置的發生處會是斜率變化最大的地方。另外,在進行步驟S252之前,控制器14可以先檢查光源12的亮度設定、影像擷取裝置13的靈敏度設定與平台旋轉前後的角度差異是否正確,以避免進行不必要的計算。Furthermore, as shown in FIG3 , step S25 includes steps S251 to S256. In step S251, the controller 14 performs a moving average process on the image data to filter out most of the noise in the image data. Please note that step S251 is not a necessary step, but in most cases, in order to increase the positioning accuracy, step S251 will inevitably be executed. Then, in step S252, the controller 14 calculates the first-order derivative and the second-order derivative of the image data. The first-order derivative of the image data is the slope function of the image data. Where the slope function is 0, it may be where the extreme value occurs, which is the possible position of the positioning feature. The second-order derivative of the image data can be used to determine where the slope changes the most. Usually, the location of the positioning feature is where the slope changes the most. In addition, before performing step S252, the controller 14 can first check whether the brightness setting of the light source 12, the sensitivity setting of the image capture device 13, and the angle difference before and after the platform rotates are correct to avoid unnecessary calculations.
在步驟S253中,控制器14找出影像資料的一階導數的最大值與最小值。在步驟S253中,控制器14還會判斷一階導數的最大值與最小值最大值與最小值所對應的兩者旋轉角度是否相近,即一階導數的最大值與最小值發生的兩個發生位置之間的差異值是否小於特定門檻值。如果一階導數的最大值與最小值所對應的兩者旋轉角度接近,才會進一步地進行之後的運算。在步驟S253中,控制器14還會檢查影像資料的最大值與最小值是否超出範圍,如果超出範圍,則不進行後續的運算。In step S253, the controller 14 finds the maximum and minimum values of the first-order derivative of the image data. In step S253, the controller 14 also determines whether the rotation angles corresponding to the maximum and minimum values of the first-order derivative are close, that is, whether the difference between the two occurrence positions of the maximum and minimum values of the first-order derivative is less than a specific threshold value. If the rotation angles corresponding to the maximum and minimum values of the first-order derivative are close, the subsequent calculations will be further performed. In step S253, the controller 14 also checks whether the maximum and minimum values of the image data are out of range. If they are out of range, the subsequent calculations will not be performed.
然後,在步驟S254中,控制器14利用影像資料的二階導數與一階導數找出定位特徵的概略位置。進一步地,先前找出的一階導數的最大值與最小值可能就是影像資料的最大變化位置,因此可以利用一階導數的最大值與最小值的發生位置來縮小尋找定位特徵的範圍。簡單地說,控制器14利用影像資料的一階導數縮小尋找定位特徵的範圍,接著利用影像資料的二階導數在上述縮小的範圍中尋找定位特徵的概略位置。Then, in step S254, the controller 14 uses the second-order derivative and the first-order derivative of the image data to find the approximate position of the positioning feature. Furthermore, the maximum and minimum values of the first-order derivative previously found may be the positions of the maximum change of the image data, so the positions of the maximum and minimum values of the first-order derivative can be used to narrow the range of finding the positioning feature. In short, the controller 14 uses the first-order derivative of the image data to narrow the range of finding the positioning feature, and then uses the second-order derivative of the image data to find the approximate position of the positioning feature in the above-mentioned narrowed range.
接著,在步驟S255中,控制器14根據定位特徵的概略位置利用多項式迴歸運算進行多次疊代計算,以算出定位特徵的精確位置(包括定位特徵的角度)。然後在步驟S256中,控制器14根據將影像資料中之精確位置的定位特徵的部分排除,並且根據排除定位特徵之影像資料找出對應的圓方程式,以得到晶圓WF的中心偏移量。Next, in step S255, the controller 14 uses polynomial regression operations to perform multiple iterations of calculations based on the approximate position of the positioning feature to calculate the precise position of the positioning feature (including the angle of the positioning feature). Then in step S256, the controller 14 excludes the portion of the positioning feature at the precise position in the image data, and finds the corresponding circle equation based on the image data excluding the positioning feature to obtain the center offset of the wafer WF.
在步驟S255中的多項式迴歸運算說明如下。透過影像資料的一階導數與二階導數計算可以獲得定位特徵的概略位置θ coarse,而影像資料中概略位置附近最大值與最小值的差異量Diff也可以被計算出來,再者,在定位特徵落在概略位置θ coarse時,晶圓WF中心點與指定位置(原位位置)的概略中心偏移量D coarse則是已知,定位特徵的概略位置θ coarse的影像數值ccd也是已知,以及晶圓WF的半徑R也是已知,故帶入下面的運算式:ccd=Diff+D coarse*cos(θ O)-[R 2-D coarse 2*sin 2(θ O)] 1/2,並求取定位特徵的精確位置θ O。在本發明中,疊代次數為1000次,但本發明不以為限制。接著,計算出定位特徵的精確位置θ O後,控制器14便可以將影像資料中之精確位置的定位特徵排除,並且根據排除定位特徵之影像資料找出對應的圓方程式,並求取中心偏移量D。 The polynomial regression operation in step S255 is explained as follows. The approximate position θ coarse of the positioning feature can be obtained by calculating the first-order derivative and the second-order derivative of the image data, and the difference Diff between the maximum value and the minimum value near the approximate position in the image data can also be calculated. Furthermore, when the positioning feature falls on the approximate position θ coarse , the approximate center offset D coarse between the center point of the wafer WF and the specified position (original position) is known, the image value ccd of the approximate position θ coarse of the positioning feature is also known, and the radius R of the wafer WF is also known, so the following operation formula is used: ccd=Diff+D coarse *cos(θ O )-[R 2 -D coarse 2 *sin 2 (θ O )] 1/2 , and the precise position θ O of the positioning feature is obtained. In the present invention, the number of iterations is 1000, but the present invention is not limited thereto. Then, after calculating the precise position θ O of the positioning feature, the controller 14 can exclude the positioning feature of the precise position in the image data, and find the corresponding circle equation based on the image data excluding the positioning feature, and obtain the center offset D.
在計算出定位特徵的精確位置θ O與中心偏移量D,在步驟S26中計算補正角度θ以及X-Y補正量D x、D y的細節說明如下,補充說明,D x是補正量D的X軸補正分量,D y是補正量D的Y軸補正分量。請參照圖4與圖5,晶圓WF的半徑R、中心偏移量D、定位特徵的精確位置θ O(精確角度)、定位特徵相較於晶圓WF中心點水平軸的目標角度θ t及定位特徵的方向角度θ n為已知,故可以計算出θ a=θ O-θ n、d=D*sin(θ a)以及θ e=θ b=sin -1(d/R),在不考慮缺口類型的定位特徵帶來的誤差,最後可以算出補正角度θ=θ t-θ n+θ e。接著,請參照圖6,接著根據補正角度θ與中心偏移量可以算出X-Y補正量D x=D*cos(θ+θ O)以及D y=D*sin(θ+θ O)。圖4~圖6的計算是針對缺口類型的定位特徵,但本發明不限定位特徵的類型。請參照圖7,單平邊類型的定位特徵的補正角度θ與X-Y補正量D x、D y的計算方式與缺口類型的定位特徵的補正角度θ與X-Y補正量D x、D y的計算方同,但是θ e會等於0,故補正角度θ=θ t-θ n。 After calculating the precise position θ O and the center offset D of the positioning feature, the correction angle θ and the XY correction values D x and D y are calculated in step S26 as follows. To be added, D x is the X-axis correction component of the correction value D, and D y is the Y-axis correction component of the correction value D. Please refer to Figures 4 and 5. The radius R of the wafer WF, the center offset D, the precise position θ O (precise angle) of the positioning feature, the target angle θ t of the positioning feature relative to the horizontal axis of the wafer WF center point, and the direction angle θ n of the positioning feature are known. Therefore, θ a =θ O -θ n , d = D*sin(θ a ) and θ e =θ b = sin -1 (d/R) can be calculated. Without considering the error caused by the notch type positioning feature, the correction angle θ = θ t -θ n +θ e can be calculated. Then, please refer to Figure 6. Then, according to the correction angle θ and the center offset, the XY correction amount D x = D*cos(θ+θ O ) and D y = D*sin(θ+θ O ) can be calculated. The calculations in Figures 4 to 6 are for notch-type positioning features, but the present invention is not limited to the type of positioning features. Please refer to Figure 7, the calculation method of the correction angle θ and the XY correction amount D x , D y of the single flat edge type positioning feature is the same as the calculation method of the correction angle θ and the XY correction amount D x , D y of the notch type positioning feature, but θ e will be equal to 0, so the correction angle θ=θ t -θ n .
總而言之,由於本發明提供的晶圓定位裝置與方法其找出定位特徵的方式主要是透過晶圓外緣的影像資料的一階導數與二階導數配合多項式迴歸運算,因此不需要使旋轉平台有兩次以上的旋轉次數,且晶圓的類型與定位特徵的類型也不會有所限制。換言之,相較於先前技術的做法,本發明的晶圓定位裝置與方法可以使旋轉平台旋轉次數較少以及能夠支援各類型晶圓、各類型定位特徵。In summary, since the wafer positioning device and method provided by the present invention mainly finds the positioning features through the first-order derivative and the second-order derivative of the image data of the wafer periphery in combination with a polynomial regression operation, it is not necessary to rotate the rotating platform more than twice, and the type of wafer and the type of positioning features are not limited. In other words, compared with the prior art, the wafer positioning device and method of the present invention can make the rotating platform rotate less times and can support various types of wafers and various types of positioning features.
以上所述之實施例僅係為說明本發明之技術思想及特點,其目的在使熟習此項技藝之人士能夠瞭解本發明之內容並據以實施,當不能以之限定本發明之專利範圍,即大凡依本發明所揭示之精神所作之均等變化或修飾,仍應涵蓋在本發明之專利範圍內。The embodiments described above are only for illustrating the technical ideas and features of the present invention, and their purpose is to enable people familiar with this technology to understand the content of the present invention and implement it accordingly. They cannot be used to limit the patent scope of the present invention. In other words, all equivalent changes or modifications made according to the spirit disclosed by the present invention should still be included in the patent scope of the present invention.
1:晶圓定位裝置 11:旋轉平台模組 111:θ軸轉動機構 112:Y軸移動機構 113:X軸移動機構 12:光源 13:影像擷取裝置 14:控制器 15:驅動裝置 S21~S27、S251~S256:步驟 θ:補正角度 θ a、θ e、θ b:角度 d:三角形高度 D:中心偏移量 R:半徑 θ O:精確位置 θ t:目標角度 θ n:方向角度 WF:晶圓 1: Wafer positioning device 11: Rotating platform module 111: θ axis rotation mechanism 112: Y axis movement mechanism 113: X axis movement mechanism 12: Light source 13: Image capture device 14: Controller 15: Driving device S21~S27, S251~S256: Step θ: Correction angle θa , θe , θb : Angle d: Triangle height D: Center offset R: Radius θO : Accurate position θt : Target angle θn : Direction angle WF: Wafer
提供的附圖用以使本發明所屬技術領域具有通常知識者可以進一步理解本發明,並且被併入與構成本發明之說明書的一部分。附圖示出了本發明的示範實施例,並且用以與本發明之說明書一起用於解釋本發明的原理。The accompanying drawings are provided to enable a person with ordinary knowledge in the art to which the present invention belongs to further understand the present invention, and are incorporated into and constitute a part of the specification of the present invention. The accompanying drawings show exemplary embodiments of the present invention, and are used together with the specification of the present invention to explain the principles of the present invention.
圖1是本發明實施例的晶圓定位裝置的示意圖。FIG. 1 is a schematic diagram of a wafer positioning device according to an embodiment of the present invention.
圖2是本發明實施例的晶圓定位方法的流程示意圖。FIG. 2 is a schematic flow chart of a wafer positioning method according to an embodiment of the present invention.
圖3是本發明實施例的晶圓定位方法的尋找晶圓定位特徵的步驟及計算晶圓的精確位置與中心偏移量的步驟的細節流程示意圖。FIG. 3 is a detailed flow chart of the steps of finding wafer positioning features and calculating the precise position and center offset of the wafer in the wafer positioning method according to an embodiment of the present invention.
圖4是本發明實施例的晶圓定位方法中晶圓的補正角度的示意圖。FIG. 4 is a schematic diagram of the correction angle of the wafer in the wafer positioning method according to an embodiment of the present invention.
圖5是本發明實施例的晶圓定位方法中晶圓的補正角度的另一示意圖。FIG. 5 is another schematic diagram of the correction angle of the wafer in the wafer positioning method according to the embodiment of the present invention.
圖6是本發明實施例的晶圓定位方法中晶圓的中X-Y補正量的示意圖。FIG6 is a schematic diagram of the X-Y correction amount of the wafer in the wafer positioning method according to an embodiment of the present invention.
圖7是本發明實施例的晶圓定位方法中另一種晶圓的X-Y補正量的示意圖。FIG. 7 is a schematic diagram of the X-Y correction amount of another wafer in the wafer positioning method of the embodiment of the present invention.
1:晶圓定位裝置 1: Wafer positioning device
11:旋轉平台模組 11: Rotating platform module
111:θ軸轉動機構 111: θ-axis rotation mechanism
112:Y軸移動機構 112: Y-axis moving mechanism
113:X軸移動機構 113: X-axis moving mechanism
12:光源 12: Light source
13:影像擷取裝置 13: Image capture device
14:控制器 14: Controller
15:驅動裝置 15: Drive device
WF:晶圓 WF: Wafer
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112132562A TWI846579B (en) | 2023-08-29 | 2023-08-29 | Wafer positioning device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112132562A TWI846579B (en) | 2023-08-29 | 2023-08-29 | Wafer positioning device and method |
Publications (1)
Publication Number | Publication Date |
---|---|
TWI846579B true TWI846579B (en) | 2024-06-21 |
Family
ID=92541853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112132562A TWI846579B (en) | 2023-08-29 | 2023-08-29 | Wafer positioning device and method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI846579B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200609483A (en) * | 2004-05-28 | 2006-03-16 | Nikon Corp | Method of adjusting optical imaging system, imaging device, positional deviation detecting device, mark identifying device and edge position detecting device |
EP1791169A1 (en) * | 2004-08-31 | 2007-05-30 | Nikon Corporation | Aligning method, processing system, substrate loading repeatability measuring method, position measuring method, exposure method, substrate processing apparatus, measuring method and measuring apparatus |
EP3288063A1 (en) * | 2015-04-24 | 2018-02-28 | Shanghai Micro Electronics Equipment (Group) Co., Ltd. | Pre-alignment device and method for wafer |
TWI735315B (en) * | 2020-08-21 | 2021-08-01 | 上銀科技股份有限公司 | Method and apparatus for detecting positions of wafers |
US20220208618A1 (en) * | 2020-12-30 | 2022-06-30 | Chroma Ate Inc. | Optical inspection apparatus in semiconductor process system |
-
2023
- 2023-08-29 TW TW112132562A patent/TWI846579B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200609483A (en) * | 2004-05-28 | 2006-03-16 | Nikon Corp | Method of adjusting optical imaging system, imaging device, positional deviation detecting device, mark identifying device and edge position detecting device |
EP1791169A1 (en) * | 2004-08-31 | 2007-05-30 | Nikon Corporation | Aligning method, processing system, substrate loading repeatability measuring method, position measuring method, exposure method, substrate processing apparatus, measuring method and measuring apparatus |
EP3288063A1 (en) * | 2015-04-24 | 2018-02-28 | Shanghai Micro Electronics Equipment (Group) Co., Ltd. | Pre-alignment device and method for wafer |
TWI735315B (en) * | 2020-08-21 | 2021-08-01 | 上銀科技股份有限公司 | Method and apparatus for detecting positions of wafers |
US20220208618A1 (en) * | 2020-12-30 | 2022-06-30 | Chroma Ate Inc. | Optical inspection apparatus in semiconductor process system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100257279B1 (en) | Apparatus and method for exposing periphery | |
JP5132904B2 (en) | Substrate positioning method, substrate position detection method, substrate recovery method, and substrate position deviation correction apparatus | |
US7315373B2 (en) | Wafer positioning method and device, wafer process system, and wafer seat rotation axis positioning method for wafer positioning device | |
TWI651512B (en) | Substrate processing device and displacement detecting method | |
JP4656440B2 (en) | Substrate position detecting device and image pickup means position adjusting method | |
KR100670344B1 (en) | Apparatus for aligning substrate and mask and method of aligning substrate and mask | |
JP4545412B2 (en) | Board inspection equipment | |
JPH0618215A (en) | Method and apparatus for loading component | |
US9607389B2 (en) | Alignment apparatus | |
WO2008029608A1 (en) | Substrate transfer device, substrate processing device, and method of transferring substrate | |
KR20150072347A (en) | Detection system and detection method | |
JP2004288792A (en) | Alignment device and alignment method | |
JPS61196532A (en) | Exposure device | |
WO2023070283A1 (en) | Wafer bonding device and method | |
JP2013069986A5 (en) | ||
TWI823237B (en) | Alignment device and alignment method | |
TWI846579B (en) | Wafer positioning device and method | |
JP2007059640A (en) | Visual inspection equipment | |
KR102452730B1 (en) | Method and system for detecting positions of wafers | |
JP4975200B1 (en) | Adjustment device and optical component mounting device | |
JP2002280440A (en) | Method for automatically controlling positional correction of rotary stage in inspection instrument | |
US20080164410A1 (en) | Emission detecting analysis system and method of detecting emission on object | |
JP4869425B2 (en) | Scanning exposure apparatus and device manufacturing method | |
JP3439932B2 (en) | Peripheral exposure equipment | |
JP2007027302A (en) | Inspection apparatus and positioning method thereby |