TWI846008B - Controlled low strength backfill material - Google Patents

Controlled low strength backfill material Download PDF

Info

Publication number
TWI846008B
TWI846008B TW111130326A TW111130326A TWI846008B TW I846008 B TWI846008 B TW I846008B TW 111130326 A TW111130326 A TW 111130326A TW 111130326 A TW111130326 A TW 111130326A TW I846008 B TWI846008 B TW I846008B
Authority
TW
Taiwan
Prior art keywords
fly ash
controlled low
calcium oxide
component
water
Prior art date
Application number
TW111130326A
Other languages
Chinese (zh)
Other versions
TW202406875A (en
Inventor
陳映嘉
李英桐
Original Assignee
全興資源再生股份有限公司
Filing date
Publication date
Application filed by 全興資源再生股份有限公司 filed Critical 全興資源再生股份有限公司
Priority to TW111130326A priority Critical patent/TWI846008B/en
Publication of TW202406875A publication Critical patent/TW202406875A/en
Application granted granted Critical
Publication of TWI846008B publication Critical patent/TWI846008B/en

Links

Abstract

一種控制性低強度回填材料,包含碎化物及原料組分。該碎化物是由包含飛灰組分及水的反應組成物進行水合反應,直至放熱現象結束,然後,進行碎化處理所形成,且該飛灰組分包括具有50wt%以上的氧化鈣的飛灰。該原料組分包括水泥及水。透過將該具有50wt%以上的氧化鈣的飛灰與水進行水合反應,而能夠將該具有50wt%以上的氧化鈣的飛灰應用至控制性低強度回填材料,不僅能夠避免膨脹現象產生,而使該具有50wt%以上的氧化鈣的飛灰具有再利用價值,致使能夠減少對環境造成的二次汙染,同時,還賦予該控制性低強度回填材料具有初凝時間短而縮短施工工程進度的優點。A controlled low-strength backfill material comprises crushed material and raw material components. The crushed material is formed by hydrating a reaction component comprising a fly ash component and water until the exothermic phenomenon ends, and then crushing the fly ash component, and the fly ash component comprises fly ash containing more than 50 wt% of calcium oxide. The raw material component comprises cement and water. By hydrating the fly ash containing more than 50wt% of calcium oxide with water, the fly ash containing more than 50wt% of calcium oxide can be applied to the controlled low-strength backfill material, which can not only avoid the expansion phenomenon, but also make the fly ash containing more than 50wt% of calcium oxide have recycling value, thereby reducing the secondary pollution to the environment. At the same time, it also gives the controlled low-strength backfill material the advantage of a short initial setting time and shortening the construction project progress.

Description

控制性低強度回填材料Controlled low strength backfill material

本發明是有關於一種混凝土,特別是指一種控制性低強度回填材料。The present invention relates to a concrete, in particular to a controlled low-strength backfill material.

一般事業廢棄物,例如焚化處理後的灰渣(例如飛灰或底渣)或具有毒害性廢棄物等,因無再利用價值,常以掩埋方式處置。然而,該掩埋方式存在有掩埋土地成本高、場址難尋、土地資源浪費,及對環境造成二次污染等問題。因此,如何有效再利用事業廢棄物,尤其是飛灰,成為目前廣泛被研究的議題。General industrial waste, such as ash residue (such as fly ash or bottom ash) after incineration or toxic waste, is often disposed of by landfill because it has no recycling value. However, this landfill method has problems such as high land cost, difficulty in finding sites, waste of land resources, and secondary pollution to the environment. Therefore, how to effectively reuse industrial waste, especially fly ash, has become a widely studied issue.

由於飛灰具有卜作嵐反應活性,而被廣泛運用於混凝土工程中,並用來取代部分水泥。然而,由於有些燃料在燃燒的過程中,會產生大量對人體及環境造成危害的硫氧化物(例如SO 2),因此,為避免排放出大量硫氧化物,大多會在燃料中加入能夠吸收硫氧化物的石灰,但如此作法,致使所產生的飛灰中含有50wt%以上的氧化鈣,而如此的飛灰經本發明申請人研究發現直接應用於控制性低強度回填材料(controlled low strength materials,簡稱CLSM)中,會導致控制性低強度回填材料的體積膨脹而有不安定性的隱患產生。 Due to its catalytic activity, fly ash is widely used in concrete engineering and is used to replace part of cement. However, since some fuels will produce a large amount of sulfur oxides (such as SO 2 ) that are harmful to the human body and the environment during the combustion process, in order to avoid the emission of a large amount of sulfur oxides, lime that can absorb sulfur oxides is often added to the fuel. However, this practice causes the fly ash produced to contain more than 50wt% of calcium oxide. The applicant of the present invention has found through research that such fly ash can be directly used in controlled low strength materials (CLSM), which will cause the volume expansion of the controlled low strength materials and cause the potential risk of instability.

因此,如何有效地將具有50wt%以上的氧化鈣的飛灰應用於控制性低強度回填材料中,以減輕對環境造成的影響,是眾所期待亟需克服的困難。Therefore, how to effectively apply fly ash with more than 50wt% calcium oxide to controlled low-strength backfill materials to reduce the impact on the environment is a difficulty that is expected to be overcome.

因此,本發明的目的,即在提供一種控制性低強度回填材料。Therefore, the object of the present invention is to provide a controlled low-strength backfill material.

於是,本發明控制性低強度回填材料,包含碎化物及水泥組分。該碎化物是由包含飛灰組分及水的反應組成物進行水合反應,然後,進行碎化處理所形成,且該飛灰組分包括具有50wt%以上的氧化鈣的飛灰。該原料組分包括水泥及水。Therefore, the controlled low-strength backfill material of the present invention comprises crushed material and cement components. The crushed material is formed by hydrating a reaction component comprising a fly ash component and water, and then crushing the fly ash component, and the fly ash component comprises fly ash having more than 50wt% of calcium oxide. The raw material components comprise cement and water.

本發明的功效在於:透過將該具有50wt%以上的氧化鈣的飛灰與水進行水合反應,而能夠將該具有50wt%以上的氧化鈣的飛灰應用至控制性低強度回填材料,不僅能夠避免膨脹現象產生,而使該具有50wt%以上的氧化鈣的飛灰具有再利用價值,致使能夠減少對環境造成的二次汙染,同時,還賦予該控制性低強度回填材料具有初凝時間短而縮短施工工程進度的優點。The effect of the present invention is that by hydrating the fly ash containing more than 50wt% of calcium oxide with water, the fly ash containing more than 50wt% of calcium oxide can be applied to the controlled low-strength backfill material, which can not only avoid the expansion phenomenon, but also make the fly ash containing more than 50wt% of calcium oxide have recycling value, thereby reducing the secondary pollution to the environment, and at the same time, the controlled low-strength backfill material has the advantage of a short initial setting time and shortening the construction project progress.

本發明控制性低強度回填材料包含碎化物及原料組分。該碎化物是由包含飛灰組分及水的反應組成物進行水合反應,直至放熱現象結束,然後,進行碎化處理所形成,且該飛灰組分包括具有50wt%以上的氧化鈣的飛灰。該原料組分包括水泥及水。The controlled low-strength backfill material of the present invention comprises crushed material and raw material components. The crushed material is formed by hydrating a reaction component comprising a fly ash component and water until the exothermic phenomenon ends, and then crushing the fly ash component, and the fly ash component comprises fly ash having more than 50wt% of calcium oxide. The raw material component comprises cement and water.

以下對本發明進行詳細說明。The present invention is described in detail below.

該飛灰例如但不限於來自台灣汽電共生股份有限公司官田廠的飛灰。The fly ash may be, for example but not limited to, fly ash from the Guantian Plant of Taiwan Cogeneration Corporation.

在本發明的一些實施態樣中,該反應組成物中的該飛灰組分與水的重量比例範圍為0.9至1.1:1。In some embodiments of the present invention, the weight ratio of the fly ash component to water in the reaction composition ranges from 0.9 to 1.1:1.

在本發明的一些實施態樣中,該水合反應的溫度範圍為50℃至70℃,且時間範圍為30分鐘至40分鐘。在本發明中,透過使該飛灰組分進行水合反應,以將該飛灰中的氧化鈣反應為氫氧化鈣,致使與原料組分混合時,不易有大幅度的體積膨脹現象產生,從而賦予具有50wt%以上的氧化鈣的飛灰能夠再被利用的價值,致使能夠減少對環境造成的二次汙染的危害。In some embodiments of the present invention, the temperature of the hydration reaction is in the range of 50°C to 70°C, and the time is in the range of 30 minutes to 40 minutes. In the present invention, by subjecting the fly ash component to a hydration reaction, the calcium oxide in the fly ash is reacted into calcium hydroxide, so that when mixed with the raw material component, it is not easy to have a large volume expansion phenomenon, thereby giving the fly ash with more than 50wt% of calcium oxide the value of being able to be reused, so that the harm of secondary pollution caused to the environment can be reduced.

該碎化物的尺寸並無特別限制,只要能夠達到與該原料組分均勻地混合皆可。在本發明的一些實施態樣中,該碎化物的尺寸範圍為15mm至25mm。在本發明的一些實施態樣中,以該控制性低強度回填材料的總量為100wt%計,該碎化物的用量範圍為75wt%至88wt%。The size of the crushed material is not particularly limited, as long as it can be uniformly mixed with the raw material component. In some embodiments of the present invention, the size of the crushed material ranges from 15 mm to 25 mm. In some embodiments of the present invention, based on the total amount of the controlled low-strength backfill material as 100 wt%, the amount of the crushed material ranges from 75 wt% to 88 wt%.

該水泥例如但不限於台灣水泥公司製的卜特蘭水泥(portland cement)。該卜特蘭水泥例如但不限於卜特蘭水泥第I型。The cement is, for example but not limited to, Portland cement produced by Taiwan Cement Co., Ltd. The Portland cement is, for example but not limited to, Portland cement Type I.

該水的量依據該控制性低強度回填材料所需的特性及現場施工操作條件進行調整。The amount of water is adjusted according to the desired properties of the controlled low-strength backfill material and the on-site construction operating conditions.

在本發明的一些實施態樣中,該原料組分還包括骨材。該骨材例如但不限於砂或石等。該骨材的量依據該控制性低強度回填材料所需的特性及現場施工操作條件進行調整。In some embodiments of the present invention, the raw material component further includes aggregates. The aggregates are, for example but not limited to, sand or stone. The amount of the aggregates is adjusted according to the required properties of the controlled low-strength backfill material and the on-site construction operation conditions.

在本發明的一些實施態樣中,該原料組分還包括水泥系處理劑。該水泥系處理劑例如地質改良劑。該水泥系處理劑例如但不限於廠牌為中聯資源公司且型號為HSC301的水泥系地質改良劑。In some embodiments of the present invention, the raw material component further includes a cement-based treatment agent, such as a soil improver, such as but not limited to a cement-based soil improver with a brand of China United Resources Company and a model of HSC301.

本發明將就以下實施例來作進一步說明,但應瞭解的是,該等實施例僅為例示說明之用,而不應被解釋為本發明實施之限制。The present invention will be further described with respect to the following embodiments, but it should be understood that these embodiments are only for illustrative purposes and should not be interpreted as limitations on the implementation of the present invention.

實施例1Embodiment 1

將5712克的飛灰(來源:台灣汽電共生股份有限公司官田廠;包含50wt%的氧化鈣)與5712克的水混合並於50℃的條件下進行40分鐘的水合反應,獲得混合物(包含53wt%的氫氧化鈣)。然後,將該混合物進行碎化處理,獲得6148克且粒徑為19mm的碎化物。將該碎化物與原料組分進行攪拌混合,獲得控制性低強度回填材料,其中,該原料組分包括212克的卜特蘭水泥第I型(來源:環球水泥)、530克的水泥系地質改良劑(廠牌:中聯資源公司;型號:HSC301),及1133克的水。5712 grams of fly ash (source: Guantian Plant of Taiwan Cogeneration Co., Ltd.; containing 50 wt% of calcium oxide) was mixed with 5712 grams of water and subjected to a hydration reaction at 50°C for 40 minutes to obtain a mixture (containing 53 wt% of calcium hydroxide). Then, the mixture was crushed to obtain 6148 grams of crushed material with a particle size of 19 mm. The crushed material was mixed with raw material components to obtain a controlled low-strength backfill material, wherein the raw material components included 212 grams of Portland cement type I (source: Global Cement), 530 grams of cement-based soil conditioner (brand: China United Resources Corporation; model: HSC301), and 1133 grams of water.

實施例2Embodiment 2

將4368克的飛灰(來源:台灣汽電共生股份有限公司官田廠;成分:50wt%的氧化鈣)與1092克的氧化鈣混合,獲得飛灰組分。將5460克的飛灰組分與5460克的水混合,並於57℃的條件下進行40分鐘的水合反應,獲得混合物(包含64wt%的氫氧化鈣)。然後,將該混合物進行碎化處理,獲得6150克且粒徑為19mm的碎化物。將該碎化物與原料組分進行攪拌混合,獲得控制性低強度回填材料,其中,該原料組分包括212克的卜特蘭水泥第I型(來源:環球水泥)、530克的水泥系地質改良劑(廠牌:中聯資源公司;型號:HSC301),及1133克的水。4368 grams of fly ash (source: Guantian Plant of Taiwan Cogeneration Co., Ltd.; composition: 50 wt% calcium oxide) was mixed with 1092 grams of calcium oxide to obtain a fly ash component. 5460 grams of the fly ash component was mixed with 5460 grams of water and subjected to a hydration reaction at 57°C for 40 minutes to obtain a mixture (containing 64 wt% calcium hydroxide). Then, the mixture was crushed to obtain 6150 grams of crushed material with a particle size of 19 mm. The crushed material is mixed with a raw material component to obtain a controlled low-strength backfill material, wherein the raw material component includes 212 grams of Portland cement type I (source: Universal Cement), 530 grams of cement-based soil conditioner (brand: China United Resources Company; model: HSC301), and 1133 grams of water.

實施例3至8Examples 3 to 8

實施例3至8的製備方法與實施例2大致相同,主要差異在於:改變飛灰、水及碎化物的用量,及水合反應的條件。The preparation methods of Examples 3 to 8 are substantially the same as those of Example 2, with the main differences being that the amounts of fly ash, water and crushed materials, and the conditions of the hydration reaction are changed.

比較例1Comparison Example 1

將6148克的飛灰(來源:台灣汽電共生股份有限公司官田廠;成分:50wt%的氧化鈣)與原料組分進行攪拌混合,獲得混凝土,其中,該原料組分包括212克的卜特蘭水泥第I型(來源:環球水泥)、530克的水泥系地質改良劑(廠牌:中聯資源公司;型號:HSC301),及1133克的水。6148 grams of fly ash (source: Guantian Plant of Taiwan Cogeneration Corporation; composition: 50 wt% calcium oxide) was mixed with raw material components to obtain concrete, wherein the raw material components included 212 grams of Portland cement Type I (source: Universal Cement), 530 grams of cement-based soil conditioner (brand: China United Resources Corporation; model: HSC301), and 1133 grams of water.

比較例2Comparison Example 2

將4921克的飛灰(來源:台灣汽電共生股份有限公司官田廠;成分:50wt%的氧化鈣)與1230克的氧化鈣混合,獲得飛灰組分。將該飛灰組分與原料組分進行攪拌混合,獲得混凝土,其中,該原料組分包括212克的卜特蘭水泥第I型(來源:環球水泥)、530克的水泥系地質改良劑(廠牌:中聯資源公司;型號:HSC301),及1133克的水。4921 grams of fly ash (source: Guantian Plant of Taiwan Cogeneration Co., Ltd.; composition: 50 wt% calcium oxide) was mixed with 1230 grams of calcium oxide to obtain a fly ash component. The fly ash component was mixed with a raw material component to obtain concrete, wherein the raw material component included 212 grams of Portland cement type I (source: Universal Cement), 530 grams of cement-based soil conditioner (brand: China United Resources Corporation; model: HSC301), and 1133 grams of water.

比較例3Comparison Example 3

比較例3的製備方法與比較例2大致相同,主要差異在於:改變飛灰、氧化鈣及骨材的用量。The preparation method of Comparative Example 3 is substantially the same as that of Comparative Example 2, with the main difference being that the amounts of fly ash, calcium oxide and aggregate are changed.

評價項目Evaluation items

為能夠清楚描述量測過程,以下以實施例1的控制性低強度回填材料進行說明,而其餘實施例的控制性低強度回填材料及比較例的混凝土皆依照該過程進行量測。In order to clearly describe the measurement process, the controlled low-strength backfill material of Example 1 is used for illustration below, and the controlled low-strength backfill materials of the other embodiments and the concrete of the comparative example are measured according to the process.

落沉強度試驗:參照ASTM D6024的以落沉球判定控制性低強度回填材料之可加載重時機試驗法,將試驗半球的兩端支架固定於平板上,然後,提起重球至高度約11.4公分,接著,使該重球自由落下,撞擊於檢測板,並重複五次,然後,利用游標尺量測撞擊後該檢測板產生的凹痕的直徑,其中,參照ASTM D6024中揭示的樣品製作章節,將實施例1的控制性低強度回填材料製成15cm x 15cm x 53cm的檢測板。Drop strength test: Referring to the ASTM D6024 method for determining the load-bearing time of controlled low-strength backfill materials by using a drop ball, the two end brackets of the test hemisphere are fixed on a flat plate, and then the heavy ball is lifted to a height of about 11.4 cm. Then, the heavy ball is allowed to fall freely and hit the test plate, and this is repeated five times. Then, the diameter of the dent produced on the test plate after the impact is measured using a vernier ruler. In particular, referring to the sample preparation section disclosed in ASTM D6024, the controlled low-strength backfill material of Example 1 is made into a test plate of 15 cm x 15 cm x 53 cm.

抗壓強度量測:參照中華民國國家標準之CNS 1230的試驗室混凝土試體製作及養護法,將實施例1的控制性低強度回填材料進行試體製作及養護,獲得試體。接著,參照美國材料和試驗協會之ASTM D4832的控制性低強度材料圓柱試體之製備及試驗法,並利用抗壓試驗機(廠牌:ELE ;型號:AUTO2000),對該試體進行抗壓強度量測。Compressive strength measurement: Referring to the laboratory concrete specimen preparation and curing method of CNS 1230 of the National Standard of the Republic of China, the controlled low-strength backfill material of Example 1 was subjected to specimen preparation and curing to obtain a specimen. Then, referring to the preparation and testing method of controlled low-strength material cylindrical specimens of ASTM D4832 of the American Society for Materials and Testing, and using a compression testing machine (brand: ELE; model: AUTO2000), the compressive strength of the specimen was measured.

坍流度量測:參照中華民國國家標準之CNS 14842之高流動性混凝土坍流度試驗法進行量測。將坍度錐以清水濕潤並置於鋼鈑上,然後,用雙腳踩著該坍度錐,以使該坍度錐固定於該鋼板上。將實施例1的控制性低強度回填材料分三層填入該坍度錐內並搗實,接著,以刮刀將凸出於該坍度錐的頂部的實施例1的控制性低強度回填材料刮除,然後,將該坍度錐在5秒內垂直提起,實施例1的控制性低強度回填材料開始坍流,待坍流動作結束,測量實施例1的控制性低強度回填材料至該坍度錐的三角圓錐頂部的垂直距離的高度,並記錄該高度(即為坍度),且測量該實施例1的控制性低強度回填材料在地面攤開往四周擴散至停止後之近似圓的直徑,並記錄該直徑(即為坍流度)。Slump flow measurement: The measurement is carried out in accordance with the slump flow test method for high-flow concrete in the Republic of China National Standard CNS 14842. Wet the slump cone with clean water and place it on the steel plate. Then, step on the slump cone with both feet to fix the slump cone on the steel plate. The controlled low-strength backfill material of Example 1 is filled into the slump cone in three layers and compacted. Then, the controlled low-strength backfill material of Example 1 protruding from the top of the slump cone is scraped off with a scraper. Then, the slump cone is lifted vertically within 5 seconds, and the controlled low-strength backfill material of Example 1 begins to slump. After the slump action is completed, the vertical distance from the controlled low-strength backfill material of Example 1 to the top of the triangular cone of the slump cone is measured, and the height (i.e., the slump) is recorded. In addition, the diameter of the approximate circle of the controlled low-strength backfill material of Example 1 after it spreads on the ground and diffuses to all sides until it stops is measured, and the diameter (i.e., the slump flow) is recorded.

表1   比較例 實施例 1 2 3 1 2 3 4 飛灰組分 飛灰(克,50wt%的氧化鈣) 6148 4921 3690 5712 4368 3180 2076 氧化鈣(克) 0 1230 2460 0 1092 2120 3114 氧化鈣的含量(wt%) 50 60 80 50 60 70 80 總量(克) 6148 6151 6150 5712 5460 5300 5190 水的用量(克) 0 0 0 5712 5460 5300 5190 水合反應 溫度(℃) -- -- -- 50 57 65 70 時間 (分鐘) -- -- -- 40 40 30 30 混合物中的氫氧化鈣(wt%) 0 0 0 53 64 75 85 碎化物 產量(克) 0 0 0 6148 6150 6148 6140 粒徑(mm) -- -- -- 19 19 19 19 原料組分 卜特蘭水泥第I型(克) 212 212 212 212 212 212 212 水泥系地質改良劑 (克) 530 530 530 530 530 530 530 水(克) 1133 1133 1133 1133 1133 1133 1133 落沉強度試驗 凹痕直徑(mm) 未量測 72 72 71 71 凹痕直徑小於76mm所需時間(hr) 未量測 20 20 19 19 28天抗壓強度(kgf/cm 2) 未量測 60 65 63 67 坍度(cm) 未量測 51 50 51 50 坍流度(cm) 未量測 55 54 55 49 Table 1 Comparison Example Embodiment 1 2 3 1 2 3 4 Fly ash components Fly ash (g, 50wt% calcium oxide) 6148 4921 3690 5712 4368 3180 2076 Calcium oxide (g) 0 1230 2460 0 1092 2120 3114 Calcium oxide content (wt%) 50 60 80 50 60 70 80 Total amount (g) 6148 6151 6150 5712 5460 5300 5190 Amount of water (g) 0 0 0 5712 5460 5300 5190 Hydration reaction Temperature(℃) -- -- -- 50 57 65 70 Time(minutes) -- -- -- 40 40 30 30 Calcium hydroxide in the mixture (wt%) 0 0 0 53 64 75 85 Crushed matter Yield (g) 0 0 0 6148 6150 6148 6140 Particle size (mm) -- -- -- 19 19 19 19 Raw material components Portland Cement Type I (g) 212 212 212 212 212 212 212 Cement-based soil conditioner (g) 530 530 530 530 530 530 530 Water (g) 1133 1133 1133 1133 1133 1133 1133 Drop strength test Dent diameter (mm) Not measured 72 72 71 71 Time required for dent diameter less than 76mm (hr) Not measured 20 20 19 19 28-day compressive strength (kgf/cm 2 ) Not measured 60 65 63 67 Slump(cm) Not measured 51 50 51 50 Slump flow (cm) Not measured 55 54 55 49

表2   實施例 5 6 7 8 飛灰組分 飛灰(克,50wt%的氧化鈣) 6854 10282 12338 2491 氧化鈣(克) 0 0 0 3737 氧化鈣的含量(wt%) 50 50 50 80 總量(克) 6854 10282 12338 6228 水的用量(克) 6854 10282 12338 6228 水合反應 溫度(℃) 50 51 50 70 時間(分鐘) 40 40 40 30 混合物中的氫氧化鈣(wt%) 53 53 53 84 碎化物 產量(克) 7380 11070 13284 8122 粒徑(mm) 19 19 19 19 原料組分 卜特蘭水泥第I型 212 212 212 212 水泥系地質改良劑(克) 530 530 530 530 水(克) 1133 1133 1133 1133 落沉強度試驗 凹痕直徑(mm) 72 72 72 71 凹痕直徑小於76mm所需時間(hr) 20 20 20 21 28天抗壓強度(kgf/cm 2) 62 63 65 63 坍度(cm) 49 55 51 50 坍流度(cm) 50 50 49 47 Table 2 Embodiment 5 6 7 8 Fly ash components Fly ash (g, 50wt% calcium oxide) 6854 10282 12338 2491 Calcium oxide (g) 0 0 0 3737 Calcium oxide content (wt%) 50 50 50 80 Total amount (g) 6854 10282 12338 6228 Amount of water (g) 6854 10282 12338 6228 Hydration reaction Temperature(℃) 50 51 50 70 Time(minutes) 40 40 40 30 Calcium hydroxide in the mixture (wt%) 53 53 53 84 Crushed matter Yield (g) 7380 11070 13284 8122 Particle size (mm) 19 19 19 19 Raw material components Portland Cement Type I 212 212 212 212 Cement-based soil conditioner (g) 530 530 530 530 Water (g) 1133 1133 1133 1133 Drop strength test Dent diameter (mm) 72 72 72 71 Time required for dent diameter less than 76mm (hr) 20 20 20 twenty one 28-day compressive strength (kgf/cm 2 ) 62 63 65 63 Slump(cm) 49 55 51 50 Slump flow (cm) 50 50 49 47

由表1及表2的落沉強度試驗可知,在實施例1至8中,是將具有50wt%以上的氧化鈣的飛灰進行水合反應後應用至控制性低強度回填材料,致使壓紋直徑小於76mm所需時間為19小時至21小時,此表示將具有50wt%以上的氧化鈣的飛灰進行水合反應後再加以利用的設計確實能夠降低控制性低強度回填材料的初凝時間,而有助於縮短施工工程進度。It can be seen from the sinking strength test in Table 1 and Table 2 that in Examples 1 to 8, the fly ash having more than 50 wt% of calcium oxide is hydrated and then applied to the controlled low-strength backfill material, so that the time required for the embossing diameter to be less than 76 mm is 19 hours to 21 hours. This indicates that the design of hydrating the fly ash having more than 50 wt% of calcium oxide and then using it can indeed reduce the initial setting time of the controlled low-strength backfill material, thereby helping to shorten the construction project progress.

再者,參閱圖1至圖3,在比較例1至3中,直接將具有50wt%以上的氧化鈣的飛灰組分與包括水及水泥的原料組分混合,產生膨化反應,導致所形成的混擬土的體積大幅度地膨脹,而在如此的狀態,並無法作為控制性低強度回填材料,以至於未進行後續的各項量測。參閱圖4至圖11,本發明的實施例1至8的控制性低強度回填材料不會有膨脹現象產生,由此可知,透過將該具有50wt%以上的氧化鈣的飛灰與水進行水合反應所形成的碎化物,確實能夠賦予控制性低強度回填材料具有體積安定性。Furthermore, referring to Figures 1 to 3, in Comparative Examples 1 to 3, the fly ash component containing more than 50 wt% of calcium oxide is directly mixed with the raw material components including water and cement to produce an expansion reaction, resulting in a large expansion of the volume of the formed concrete. In such a state, it cannot be used as a controlled low-strength backfill material, so that subsequent measurements are not performed. Referring to Figures 4 to 11, the controlled low-strength backfill material of Examples 1 to 8 of the present invention does not have an expansion phenomenon. It can be seen that the crushed product formed by the hydration reaction of the fly ash containing more than 50 wt% of calcium oxide with water can indeed give the controlled low-strength backfill material volume stability.

綜上所述,透過將該具有50wt%以上的氧化鈣的飛灰與水進行水合反應,而能夠將該具有50wt%以上的氧化鈣的飛灰應用至控制性低強度回填材料,不僅能夠避免膨脹現象產生,而使該具有50wt%以上的氧化鈣的飛灰具有再利用價值,致使能夠減少對環境造成的二次汙染,同時,還賦予該控制性低強度回填材料具有初凝時間短而縮短施工工程進度的優點,故確實能達成本發明的目的。In summary, by hydrating the fly ash containing more than 50wt% of calcium oxide with water, the fly ash containing more than 50wt% of calcium oxide can be applied to the controlled low-strength backfill material, which can not only avoid the expansion phenomenon, but also make the fly ash containing more than 50wt% of calcium oxide have recycling value, thereby reducing the secondary pollution to the environment. At the same time, the controlled low-strength backfill material is endowed with the advantage of a short initial setting time and shortened construction progress, so the purpose of the present invention can be achieved.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above is only an embodiment of the present invention and should not be used to limit the scope of implementation of the present invention. All simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the patent specification are still within the scope of the present patent.

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一外觀照片,說明在比較例1中,將具有50wt%的氧化鈣的飛灰直接與原料組分混合時,所獲得的混凝土產生膨脹現象而露出於容器外; 圖2是一外觀照片,說明在比較例2中,將具有60wt%的氧化鈣的飛灰組分與原料組分混合時,所獲得的混凝土產生膨脹現象而露出於容器外且產生大量龜裂; 圖3是一外觀照片,說明在比較例3中,將具有80wt%的氧化鈣的飛灰組分與原料組分混合時,所獲得的混凝土產生大幅度的膨脹現象而露出於容器外; 圖4是一外觀照片,說明在實施例1中,將碎化物與原料組分混合時,本發明控制性低強度回填材料不會產生膨脹現象而露出於容器外:及 圖5是一外觀照片,說明在實施例2中,將碎化物與原料組分混合時,本發明控制性低強度回填材料不會產生膨脹現象而露出於容器外; 圖6是一外觀照片,說明在實施例3中,將碎化物與原料組分混合時,本發明控制性低強度回填材料不會產生膨脹現象而露出於容器外; 圖7是一外觀照片,說明在實施例4中,將碎化物與原料組分混合時,本發明控制性低強度回填材料不會產生膨脹現象而露出於容器外; 圖8是一外觀照片,說明在實施例5中,將碎化物與原料組分混合時,本發明控制性低強度回填材料不會產生膨脹現象而露出於容器外; 圖9是一外觀照片,說明在實施例6中,將碎化物與原料組分混合時,本發明控制性低強度回填材料不會產生膨脹現象而露出於容器外; 圖10是一外觀照片,說明在實施例7中,將碎化物與原料組分混合時,本發明控制性低強度回填材料不會產生膨脹現象而露出於容器外; 圖11是一外觀照片,說明在實施例8中,將碎化物與原料組分混合時,本發明控制性低強度回填材料不會產生膨脹現象而露出於容器外。 Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, wherein: FIG. 1 is an appearance photograph, illustrating that in Comparative Example 1, when fly ash with 50 wt% of calcium oxide is directly mixed with the raw material component, the obtained concrete expands and is exposed outside the container; FIG. 2 is an appearance photograph, illustrating that in Comparative Example 2, when fly ash component with 60 wt% of calcium oxide is mixed with the raw material component, the obtained concrete expands and is exposed outside the container and produces a large number of cracks; FIG. 3 is an appearance photograph, illustrating that in Comparative Example 3, when fly ash component with 80 wt% of calcium oxide is mixed with the raw material component, the obtained concrete expands significantly and is exposed outside the container; Figure 4 is an appearance photograph, which shows that in Example 1, when the crushed material is mixed with the raw material component, the controlled low-strength backfill material of the present invention will not expand and be exposed outside the container: and Figure 5 is an appearance photograph, which shows that in Example 2, when the crushed material is mixed with the raw material component, the controlled low-strength backfill material of the present invention will not expand and be exposed outside the container; Figure 6 is an appearance photograph, which shows that in Example 3, when the crushed material is mixed with the raw material component, the controlled low-strength backfill material of the present invention will not expand and be exposed outside the container; Figure 7 is an appearance photograph, which shows that in Example 4, when the crushed material is mixed with the raw material component, the controlled low-strength backfill material of the present invention will not expand and be exposed outside the container; FIG8 is an appearance photograph, which shows that in Example 5, when the crushed material is mixed with the raw material component, the controlled low-strength backfill material of the present invention will not expand and be exposed outside the container; FIG9 is an appearance photograph, which shows that in Example 6, when the crushed material is mixed with the raw material component, the controlled low-strength backfill material of the present invention will not expand and be exposed outside the container; FIG10 is an appearance photograph, which shows that in Example 7, when the crushed material is mixed with the raw material component, the controlled low-strength backfill material of the present invention will not expand and be exposed outside the container; FIG11 is an appearance photograph, which shows that in Example 8, when the crushed material is mixed with the raw material component, the controlled low-strength backfill material of the present invention will not expand and be exposed outside the container.

無。without.

Claims (2)

一種控制性低強度回填材料,包含:碎化物,是由飛灰組分及水所構成的反應組成物進行水合反應,直至放熱現象結束,然後,進行碎化處理所形成,且該飛灰組分包括具有50wt%以上的氧化鈣的飛灰;及原料組分,包括水泥、水及水泥系地質改良劑;其中,水泥:水泥系地質改良劑:原料組分中的水:碎化物的重量用量比例為1:2.5:5.34:X,而該X為28.96、29.00、29.01、34.81、38.31、52.22或62.66,且對應該X,該飛灰組分中的氧化鈣的含量依序為80wt%、Y、60wt%、50wt%、80wt%、50wt%及50wt%,而該Y為70wt%或50wt%,該反應組成物中的飛灰組分與水的重量比例範圍為0.9至1.1:1;以該控制性低強度回填材料的總量為100wt%計,該碎化物的用量範圍為75wt%至88wt%。 A controlled low-strength backfill material comprises: a crushed material, which is formed by a reaction composition consisting of a fly ash component and water undergoing a hydration reaction until the exothermic phenomenon ends, and then undergoing a crushing treatment, wherein the fly ash component comprises fly ash having more than 50 wt% of calcium oxide; and a raw material component, which comprises cement, water, and a cement-based soil conditioner; wherein the weight ratio of cement: cement-based soil conditioner: water in the raw material component: crushed material is 1:2.5:5.34:X, and X is 28.96, 29.0 ... 1, 34.81, 38.31, 52.22 or 62.66, and corresponding to X, the content of calcium oxide in the fly ash component is 80wt%, Y, 60wt%, 50wt%, 80wt%, 50wt% and 50wt% in sequence, and Y is 70wt% or 50wt%, and the weight ratio of the fly ash component to water in the reaction composition ranges from 0.9 to 1.1:1; based on the total amount of the controlled low-strength backfill material as 100wt%, the amount of the crushed material ranges from 75wt% to 88wt%. 如請求項1所述的控制性低強度回填材料,其中,該水合反應的溫度範圍為50℃至70℃,且時間範圍為30分鐘至40分鐘。 The controlled low-strength backfill material as described in claim 1, wherein the temperature range of the hydration reaction is 50°C to 70°C, and the time range is 30 minutes to 40 minutes.
TW111130326A 2022-08-12 Controlled low strength backfill material TWI846008B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111130326A TWI846008B (en) 2022-08-12 Controlled low strength backfill material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111130326A TWI846008B (en) 2022-08-12 Controlled low strength backfill material

Publications (2)

Publication Number Publication Date
TW202406875A TW202406875A (en) 2024-02-16
TWI846008B true TWI846008B (en) 2024-06-21

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108298839A (en) 2018-01-11 2018-07-20 中国恩菲工程技术有限公司 Cement cementitious material and its method for preparing cement cementitious material using flying dust

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108298839A (en) 2018-01-11 2018-07-20 中国恩菲工程技术有限公司 Cement cementitious material and its method for preparing cement cementitious material using flying dust

Similar Documents

Publication Publication Date Title
Jindal et al. Behavioural study of pavement quality concrete containing construction, industrial and agricultural wastes
Zaidi et al. Utilisation of glass powder in high strength copper slag concrete
TWI846008B (en) Controlled low strength backfill material
Mahakhud et al. Utilization of ground granulated blast-furnace slag powder in brick industry: A new generation building material
Cahyono et al. Artificial Aggregate Lightweight Structural.
CN115974477A (en) Ultra-high performance concrete containing rare earth polishing powder waste and preparation method thereof
TW202406875A (en) Controlled low-strength backfill material wherein the controlled low-strength backfill material is composed of fragmented materials and raw material components and can reduce environmental pollution and shorten construction time
CN114835455A (en) Low-carbon concrete and cementing material
Kumar et al. Studies on production of greener concrete using agro-industrial waste
Kurbetci et al. Durability properties of mortars with fly ash containing recycled aggregates
Gopinath Manufacturing of bricks using eco sand and foundry sand
Osman et al. The Properties of Concrete Containing Palm Oil Fuel Ash and Expanded Polystyrene Beads
Naik et al. Mechanical characterization based on partial replacement analysis of Portland Pozzolana cement with Industrial waste in M30 grade concrete
Boughamsa et al. Optimizing Sand Concrete Properties Through Partial Substitution of Natural Sand with Cement Kiln Dust.
Priastiwi et al. The effect of white soil on geopolymer mortar porosity
Adekunle Characteristics of earth bricks produced with partial replacement of laterite with plastic, ceramic tiles and glass for sustainable management of the environment
Hurtado-Figueroa et al. Influence of water/cement ratio on mechanical strength of concrete with partial addition of fly ash and hydrated lime
Hossain et al. The effectiveness of nominal dosage of ordinary cement on strength and permeability of clayey soil
Yusra et al. The Comparison of Compressive Strength of Normal Concrete with Artificial Lightweight Aggregate Concrete
Reiman Utilization of recycled fine aggregate in controlled low strength material
Iqbal et al. Performance evaluation of self-compacting concrete using bagasse ash and granite as partial replacement of cement and sand
Kiran et al. Strengthening of concrete by partial replacement of cement with flyash and metakaoline mix
Moussa et al. UTILIZATION OF BAGASSE AND BY-PASS CEMENT IN PRODUCTION OF BRICKS
Kumar et al. Partially Replacement of Cement by Rice Husk Ash and Saw Dust Ash in Concrete
Deboucha et al. Treated Soil by Cement to Produce Non-Fired Roof