TWI845557B - A high-throughput gene synthesis method based on chip primer surface extraction - Google Patents
A high-throughput gene synthesis method based on chip primer surface extraction Download PDFInfo
- Publication number
- TWI845557B TWI845557B TW108140278A TW108140278A TWI845557B TW I845557 B TWI845557 B TW I845557B TW 108140278 A TW108140278 A TW 108140278A TW 108140278 A TW108140278 A TW 108140278A TW I845557 B TWI845557 B TW I845557B
- Authority
- TW
- Taiwan
- Prior art keywords
- primer
- aforementioned
- chip
- primers
- cdata
- Prior art date
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 147
- 238000001308 synthesis method Methods 0.000 title claims abstract description 15
- 238000000605 extraction Methods 0.000 title claims abstract description 14
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 84
- 238000000034 method Methods 0.000 claims abstract description 78
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 64
- 238000006243 chemical reaction Methods 0.000 claims description 104
- 238000007098 aminolysis reaction Methods 0.000 claims description 75
- 239000012634 fragment Substances 0.000 claims description 56
- 239000002904 solvent Substances 0.000 claims description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 33
- 239000012153 distilled water Substances 0.000 claims description 31
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 27
- 239000007788 liquid Substances 0.000 claims description 27
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 claims description 26
- 230000001681 protective effect Effects 0.000 claims description 24
- 239000003795 chemical substances by application Substances 0.000 claims description 21
- 230000002194 synthesizing effect Effects 0.000 claims description 21
- 238000004090 dissolution Methods 0.000 claims description 18
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical group N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 14
- 238000005070 sampling Methods 0.000 claims description 12
- 125000001165 hydrophobic group Chemical group 0.000 claims description 8
- SXADIBFZNXBEGI-UHFFFAOYSA-N phosphoramidous acid Chemical group NP(O)O SXADIBFZNXBEGI-UHFFFAOYSA-N 0.000 claims description 8
- 229910021529 ammonia Inorganic materials 0.000 claims description 7
- 238000004140 cleaning Methods 0.000 claims description 7
- 239000007795 chemical reaction product Substances 0.000 claims description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 36
- 238000012864 cross contamination Methods 0.000 description 10
- 238000012163 sequencing technique Methods 0.000 description 8
- 230000035772 mutation Effects 0.000 description 7
- 238000005915 ammonolysis reaction Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- -1 succinyl hexylamine phosphoramidite Chemical compound 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 150000007523 nucleic acids Chemical group 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 241000519995 Stachys sylvatica Species 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000010307 cell transformation Effects 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000002493 microarray Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 101150063416 add gene Proteins 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 230000002186 photoactivation Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 125000002730 succinyl group Chemical group C(CCC(=O)*)(=O)* 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本發明提供一種基於晶片引物表面萃取的基因高通量合成方法,該方法將引物按群集分類後合成在晶片的固定區域並進行切割,隨後使用取樣機將不同群集的引物溶解並轉移至96孔盤中進行基因合成。 The present invention provides a high-throughput gene synthesis method based on chip primer surface extraction. The method classifies primers into clusters and synthesizes them in a fixed area of the chip and cuts them. Then, a sampler is used to dissolve the primers of different clusters and transfer them to a 96-well plate for gene synthesis.
Description
本發明關於基因合成領域,具體關於晶片引物合成以及基於該晶片引物的基因高通量自動化合成方法。 The present invention relates to the field of gene synthesis, specifically to chip primer synthesis and a high-throughput automated gene synthesis method based on the chip primer.
基因合成通常係基於聚合酶鏈式組裝(PCA)以及聚合酶鏈式反應(PCR),將預先設計好的引物序列按照兩兩首尾互補配對的方法拼接成目的基因序列。常規基因合成中的引物係藉由柱合成的方式,並將引物逐條混合。由於引物的合成規模(25nmol)遠大於基因合成時所需引物的量(50pmol),因此常規基因合成具有通量低、成本高、操作複雜等缺點。為克服上述缺點而發展出高通量基因合成方法,該方法依賴於高通量引物合成平台,該平台可將上萬條甚至上百萬條引物合成在面積僅為幾平方厘米至幾十平方厘米的晶片上,每條引物的合成規模在fmol级别,極大地降低引物的合成成本。隨後利用諸如特異性PCR等方式將引物分成若干個文庫,每個文庫中包含合成某一目的基因所需的所有引物序列,在利用諸如酶切的方式除去引物上的標簽序列後,將引物文庫逐個組裝成相應的目的基因(Nature,2004,1050-1054)。該高通量基因合成方法,雖然極大地提升通量及降低成本,仍然存在以下問題:1)整體操作流程較為複 雜,需要將引物先合併再分組,並經過繁瑣的酶切、純化等操作,自動化程度較低。2)引物利用率低,突變率高。由於需在每條引物兩端加上PCR結合位點及酶切位點等序列,因此用於基因合成的引物序列通常僅占引物全長的50%甚至更低,另一方面引物合成長度越長則突變率越高,導致最终基因合成的突變率較高。3)特異性低以及交叉污染風險。所有的引物在經過切割後均混在一起,不同PCR引物序列之間的特異性差别將會極大地影響PCR效率,因此存在較大的交叉污染的可能。 Gene synthesis is usually based on polymerase chain assembly (PCA) and polymerase chain reaction (PCR), and pre-designed primer sequences are spliced into the target gene sequence according to the method of head-to-tail complementary pairing. Primers in conventional gene synthesis are synthesized by column synthesis, and the primers are mixed one by one. Since the synthesis scale of primers (25nmol) is much larger than the amount of primers required for gene synthesis (50pmol), conventional gene synthesis has the disadvantages of low throughput, high cost, and complex operation. In order to overcome the above shortcomings, a high-throughput gene synthesis method has been developed. This method relies on a high-throughput primer synthesis platform, which can synthesize tens of thousands or even millions of primers on a chip with an area of only a few square centimeters to dozens of square centimeters. The synthesis scale of each primer is at the fmol level, which greatly reduces the cost of primer synthesis. The primers are then divided into several libraries using methods such as specific PCR, each library containing all the primer sequences required to synthesize a target gene. After removing the tag sequences on the primers using methods such as enzyme cutting, the primer libraries are assembled into the corresponding target genes one by one (Nature, 2004, 1050-1054). Although this high-throughput gene synthesis method greatly improves throughput and reduces costs, it still has the following problems: 1) The overall operation process is relatively complicated, requiring the primers to be merged and then grouped, and undergoing tedious enzyme cutting, purification and other operations, and the degree of automation is low. 2) The primer utilization rate is low and the mutation rate is high. Since PCR binding sites and enzyme cleavage sites need to be added to both ends of each primer, the primer sequence used for gene synthesis usually only accounts for 50% or even less of the total length of the primer. On the other hand, the longer the length of the primer synthesis, the higher the mutation rate, resulting in a higher mutation rate in the final gene synthesis. 3) Low specificity and cross-contamination risk. All primers are mixed together after cutting. The specificity differences between different PCR primer sequences will greatly affect the PCR efficiency, so there is a greater possibility of cross-contamination.
前述高通量基因合成方法,雖然極大地提升通量及降低成本,仍然存在以下問題:1)整體操作流程較為複雜,需要將引物先合併再分組,並經過繁瑣的酶切、純化等操作,自動化程度較低。2)引物利用率低,突變率高。由於需在每條引物兩端加上PCR結合位點及酶切位點等序列,因此用於基因合成的引物序列通常僅占引物全長的50%甚至更低,另一方面引物合成長度越長則突變率越高,導致最终基因合成的突變率較高。3)特異性低以及交叉污染風險。所有的引物在經過切割後均混在一起,不同PCR引物序列之間的特異性差别將會極大地影響PCR效率,因此存在較大的交叉污染的可能。 Although the aforementioned high-throughput gene synthesis method has greatly improved throughput and reduced costs, the following problems still exist: 1) The overall operation process is relatively complicated, requiring primers to be merged and then grouped, and undergoing tedious enzyme cutting, purification and other operations, and the degree of automation is low. 2) The primer utilization rate is low and the mutation rate is high. Since sequences such as PCR binding sites and enzyme cutting sites need to be added to both ends of each primer, the primer sequence used for gene synthesis usually only accounts for 50% or even less of the total length of the primer. On the other hand, the longer the primer synthesis length, the higher the mutation rate, resulting in a higher mutation rate in the final gene synthesis. 3) Low specificity and cross-contamination risk. All primers are mixed together after cutting. The specific differences between different PCR primer sequences will greatly affect the PCR efficiency, so there is a greater possibility of cross-contamination.
本發明一方面提供一種基於晶片引物表面萃取的基因高通 量合成方法,前述方法包含將引物按群集分類後合成在晶片的不同區域,氨解方法切割晶片上的引物群集,隨後使用液體轉移工作站將不同群集的引物溶解,並將溶解後的各引物群集分别轉移至適於基因合成的獨立的反應容器中,在適於基因合成的條件下進行基因合成反應,收獲合成的目的基因片段。 On one hand, the present invention provides a high-throughput gene synthesis method based on chip primer surface extraction, the aforementioned method comprises classifying primers into clusters and synthesizing them in different areas of the chip, cutting the primer clusters on the chip by aminolysis, then using a liquid transfer workstation to dissolve the primers of different clusters, and transferring each dissolved primer cluster to an independent reaction container suitable for gene synthesis, performing a gene synthesis reaction under conditions suitable for gene synthesis, and harvesting the synthesized target gene fragment.
在部分實施方案中,前述按群集分類的引物為編碼複數個目的基因片段的引物群集,其中每個引物群集包含編碼同一個目的基因片段的全部引物。在部分實施方案中,前述不同引物群集分别在晶片的不同區域內合成,前述不同區域之間留有空白區域。在部分實施方案中,前述空白區域上合成複數個疏水基團。 In some embodiments, the primers classified by cluster are primer clusters encoding multiple target gene fragments, wherein each primer cluster contains all primers encoding the same target gene fragment. In some embodiments, the different primer clusters are synthesized in different regions of the chip, and blank regions are left between the different regions. In some embodiments, multiple hydrophobic groups are synthesized on the blank regions.
在部分實施方案中,在晶片上合成引物時使每個引物的3’端額外添加至少1個可藉由氨解切割的連接臂及至少3個dT作為保護鹼基。在部分實施方案中,在前述晶片上合成引物時使引物的3’端額外添加2個、3個、4個或5個可藉由氨解切割的連接臂及3個、4個、5個或6個dT作為保護鹼基。在部分更理想的實施方案中,在前述晶片上合成引物時使引物的3’端額外添加2個可藉由氨解切割的連接臂及5個dT作為保護鹼基。前述連接臂選自任何氨解後可以使引物產生3’自由烴基的結構,理想為基於亞磷醯胺結構並能提供3’端自由羥基的結構,更理想為琥珀醯己胺亞磷醯胺。在部分實施方案中,前述氨解方法切割的引物含有3'自由羥基。 In some embodiments, at least one linker that can be cleaved by aminolysis and at least three dTs are additionally added to the 3' end of each primer as a protective base when the primers are synthesized on the chip. In some embodiments, 2, 3, 4 or 5 linkers that can be cleaved by aminolysis and 3, 4, 5 or 6 dTs are additionally added to the 3' end of the primer when the primers are synthesized on the chip. In some more desirable embodiments, 2 linkers that can be cleaved by aminolysis and 5 dTs are additionally added to the 3' end of the primer when the primers are synthesized on the chip as a protective base. The aforementioned linker arm is selected from any structure that can generate a 3' free hydrocarbon group in the primer after aminolysis, preferably a structure based on a phosphoramidite structure that can provide a 3' free hydroxyl group, and more preferably a succinyl hexylamine phosphoramidite. In some embodiments, the primer cut by the aforementioned aminolysis method contains a 3' free hydroxyl group.
在部分實施方案中,前述氨解方法係用不含水的胺化劑氨解;理想地,前述胺化劑選自氨氣、一甲胺,更理想為一甲胺。在部分實 施方案中,前述氨解在充滿胺化劑的高壓反應容器中進行。在部分實施方案中,前述氨解係在25℃~120℃以及20~120psi的條件下氨解15分鐘~4小時;理想地,前述氨解係在60℃~90℃以及20~60psi的條件下氨解1~4小時;更理想地,前述氨解係在80℃以及40psi的條件下氨解3小時。 In some embodiments, the aforementioned aminolysis method is aminolysis with a non-aqueous aminating agent; ideally, the aforementioned aminating agent is selected from ammonia, monomethylamine, and more ideally monomethylamine. In some embodiments, the aforementioned aminolysis is carried out in a high-pressure reaction vessel filled with an aminating agent. In some embodiments, the aforementioned aminolysis is carried out at 25°C to 120°C and 20 to 120 psi for 15 minutes to 4 hours; ideally, the aforementioned aminolysis is carried out at 60°C to 90°C and 20 to 60 psi for 1 to 4 hours; more ideally, the aforementioned aminolysis is carried out at 80°C and 40 psi for 3 hours.
在部分實施方案中,前述基因高通量合成方法中液體轉移工作站為取樣機。在部分實施方案中,前述液體轉移工作站為Biodot AD 1500取樣品台。在一個實施方案中,將氨解後的晶片置於取樣平台上,進行位置校正後,轉移溶解引物的溶劑。 In some embodiments, the liquid transfer workstation in the aforementioned high-throughput gene synthesis method is a sampler. In some embodiments, the aforementioned liquid transfer workstation is a Biodot AD 1500 sampling platform. In one embodiment, the aminolyzed chip is placed on the sampling platform, and after position correction, the solvent for dissolving the primer is transferred.
在部分實施方案中,引物溶解使用的溶劑選自可進行PCR反應的溶劑,理想為TE溶液或蒸餾水,更理想為蒸餾水。在部分實施方案中,前述引物溶解包含利用取樣機向每個引物群集中滴加10~1000nL的溶劑如蒸餾水,靜置0.5~3分鐘後使用針頭吹吸使其溶解。理想地,前述引物溶解包含利用取樣機向每個引物群集中滴加50nL的蒸餾水,靜置1分鐘後使用針頭吹吸使其溶解。 In some embodiments, the solvent used for primer dissolution is selected from solvents that can be used for PCR reaction, preferably TE solution or distilled water, more preferably distilled water. In some embodiments, the primer dissolution includes using a sampler to drop 10~1000nL of solvent such as distilled water into each primer cluster, standing for 0.5~3 minutes, and then using a needle to blow and aspirate to dissolve it. Ideally, the primer dissolution includes using a sampler to drop 50nL of distilled water into each primer cluster, standing for 1 minute, and then using a needle to blow and aspirate to dissolve it.
在部分實施方案中,前述適於基因合成的獨立的反應容器為多孔盤的孔,可選自96孔盤、24孔盤、384孔盤。在部分實施方案中,前述轉移至適於基因合成的獨立反應容器中的步驟包含將液體轉移工作站針頭高度調整至晶片表面並吸取晶片內溶解液轉移至多孔盤內。在部分實施方案中,在吸取晶片內溶解液轉移至多孔盤內之後,進一步藉由清洗程序對取樣針頭進行清洗,接著重複引物溶解及轉移步驟,直至所有引物群集被轉移完全。 In some embodiments, the aforementioned independent reaction container suitable for gene synthesis is a well of a multi-well plate, which can be selected from a 96-well plate, a 24-well plate, and a 384-well plate. In some embodiments, the aforementioned step of transferring to an independent reaction container suitable for gene synthesis includes adjusting the height of the needle of the liquid transfer workstation to the surface of the chip and aspirating the dissolved liquid in the chip and transferring it to the multi-well plate. In some embodiments, after aspirating the dissolved liquid in the chip and transferring it to the multi-well plate, the sampling needle is further cleaned by a cleaning procedure, and then the primer dissolution and transfer steps are repeated until all primer clusters are completely transferred.
在部分實施方案中,前述基因合成步驟包含向每個獨立反 應容器中加入基因合成反應液及/或目的基因片段的F/R引物,進行合成反應。在部分實施方案中,前述基因合成反應溶液選自PCA反應液及PCR反應液。在部分實施方案中,前述基因合成步驟包含,向每個反應容器中加入PCA反應液,使引物群集進行組裝反應,接著加入PCR反應液及目的基因片段的F/R引物,進行PCR反應。 In some embodiments, the aforementioned gene synthesis step includes adding a gene synthesis reaction solution and/or F/R primers of the target gene fragment to each independent reaction container to perform a synthesis reaction. In some embodiments, the aforementioned gene synthesis reaction solution is selected from a PCA reaction solution and a PCR reaction solution. In some embodiments, the aforementioned gene synthesis step includes adding a PCA reaction solution to each reaction container to cluster the primers for assembly reaction, and then adding a PCR reaction solution and F/R primers of the target gene fragment to perform a PCR reaction.
本發明的另一方面提供一種基於晶片引物表面萃取的基因高通量合成方法,包含以下步驟: Another aspect of the present invention provides a high-throughput gene synthesis method based on chip primer surface extraction, comprising the following steps:
1)在晶片上合成編碼複數個目的基因片段的引物群集,其中每個引物群集包含編碼同一個目的基因片段的全部引物,編碼不同目的基因片段的引物群集分别在晶片的不同區域合成; 1) Synthesize primer clusters encoding multiple target gene fragments on a chip, wherein each primer cluster contains all primers encoding the same target gene fragment, and primer clusters encoding different target gene fragments are synthesized in different regions of the chip;
2)將合成完成後的晶片進行氨解以將引物從晶片上切割下來,並使切割下來的引物含有3'自由羥基; 2) After the synthesis is completed, the chip is subjected to aminolysis to cut the primer from the chip, and the cut primer contains a 3' free hydroxyl group;
3)向每個引物群集滴加溶劑,使該引物群集中的引物充分溶解,收集每個溶解的引物群集並分别轉移至獨立的反應容器中; 3) Add solvent to each primer cluster to fully dissolve the primers in the primer cluster, collect each dissolved primer cluster and transfer them to independent reaction containers respectively;
4)向反應容器中加入基因合成反應液,進行基因合成; 4) Add gene synthesis reaction solution to the reaction container to perform gene synthesis;
5)回收反應產物,得到複數個目的基因片段。 5) Recover the reaction product to obtain multiple target gene fragments.
在部分實施方案中,前述步驟1)的前述不同區域之間留有空白區域。在另一實施方案中,在前述空白區域上合成複數個疏水基團。 In some embodiments, a blank area is left between the aforementioned different areas in the aforementioned step 1). In another embodiment, a plurality of hydrophobic groups are synthesized on the aforementioned blank area.
在部分實施方案中,前述步驟1)在晶片上合成引物時,各引物的3’端額外添加至少1個可藉由氨解切割的連接臂及至少3個dT作為保護鹼基。在部分實施方案中,使各引物的3’端額外添加2個、3 個、4個或5個可藉由氨解切割的連接臂及3個、4個、5個或6個dT作為保護鹼基。在部分實施方案中,在前述晶片上合成引物時使引物的3’端額外添加2個可藉由氨解切割的連接臂及5個dT作為保護鹼基。前述連接臂選自任何可以使引物產生3’自由羥基的基團,理想為基於亞磷醯胺結構並能提供3’端自由羥基的結構,更理想為琥珀醯己胺亞磷醯胺。在部分實施方案中,前述氨解方法切割的引物含有3'自由羥基。 In some embodiments, when the primers are synthesized on the chip in the aforementioned step 1), at least one linker that can be cleaved by aminolysis and at least three dTs are additionally added to the 3' end of each primer as a protective base. In some embodiments, 2, 3, 4 or 5 linkers that can be cleaved by aminolysis and 3, 4, 5 or 6 dTs are additionally added to the 3' end of each primer as a protective base. In some embodiments, when the primers are synthesized on the aforementioned chip, 2 linkers that can be cleaved by aminolysis and 5 dTs are additionally added to the 3' end of the primer as a protective base. The aforementioned linker is selected from any group that can generate a 3' free hydroxyl group in the primer, and is preferably a structure based on a phosphoramidite structure and capable of providing a 3' end free hydroxyl group, and more preferably a succinyl hexamethylene phosphoramidite. In some embodiments, the primer cleaved by the aforementioned aminolysis method contains a 3' free hydroxyl group.
在部分實施方案中,前述步驟2)包含用不含水的胺化劑氨解;理想地,前述胺化劑選自氨氣、一甲胺;更理想為一甲胺。在部分實施方案中,前述氨解在充滿胺化劑的高壓反應容器中進行。在部分實施方案中,前述氨解係在25℃~120℃以及20~120psi的條件下氨解15分鐘~4小時;理想地,前述氨解係在60℃~90℃以及20~60psi的條件下氨解1~4小時;更理想地,前述氨解係在80℃以及40psi的條件下氨解3小時。 In some embodiments, the aforementioned step 2) comprises aminolysis with a non-aqueous aminating agent; ideally, the aforementioned aminating agent is selected from ammonia, monomethylamine; more ideally, monomethylamine. In some embodiments, the aforementioned aminolysis is carried out in a high-pressure reaction vessel filled with an aminating agent. In some embodiments, the aforementioned aminolysis is carried out at 25°C to 120°C and 20 to 120 psi for 15 minutes to 4 hours; ideally, the aforementioned aminolysis is carried out at 60°C to 90°C and 20 to 60 psi for 1 to 4 hours; more ideally, the aforementioned aminolysis is carried out at 80°C and 40 psi for 3 hours.
在部分實施方案中,前述步驟3)中引物溶解的溶劑選自可進行PCR反應的溶劑;理想為TE溶液或蒸餾水;更理想為蒸餾水。在部分具體實施方案中,前述引物溶解包含利用取樣機向每個引物群集中滴加10~1000nL的蒸餾水,靜置0.5~3分鐘後使用針頭吹吸使其溶解。理想地,前述引物溶解包含利用取樣機向每個引物群集中滴加50nL的蒸餾水,靜置1分鐘後使用針頭吹吸使其溶解。 In some embodiments, the solvent for dissolving the primers in the aforementioned step 3) is selected from solvents that can be used for PCR reactions; ideally, it is TE solution or distilled water; more ideally, it is distilled water. In some specific embodiments, the aforementioned primer dissolution includes using a sampler to drop 10~1000nL of distilled water into each primer cluster, standing for 0.5~3 minutes, and then using a needle to blow and aspirate to dissolve it. Ideally, the aforementioned primer dissolution includes using a sampler to drop 50nL of distilled water into each primer cluster, standing for 1 minute, and then using a needle to blow and aspirate to dissolve it.
在部分實施方案中,前述步驟3)中獨立的反應容器為多孔盤的孔,多孔盤可選自96孔盤、24孔盤、384孔盤。在部分實施方案中,前述轉移至獨立的反應容器的步驟包含將液體轉移工作站如取樣機的 針頭高度調整至晶片表面並吸取晶片內溶解液轉移至多孔盤內。在部分實施方案中,在吸取晶片內溶解液轉移至多孔盤內之後,進一步包含使用清洗程序對取樣針頭進行清洗後重複步驟3)的操作直至所有引物群集被轉移完全。 In some embodiments, the independent reaction container in the above step 3) is a hole of a porous plate, and the porous plate can be selected from a 96-well plate, a 24-well plate, and a 384-well plate. In some embodiments, the above step of transferring to an independent reaction container includes adjusting the needle height of a liquid transfer workstation such as a sampler to the surface of the chip and sucking the dissolved liquid in the chip and transferring it to the porous plate. In some embodiments, after sucking the dissolved liquid in the chip and transferring it to the porous plate, it further includes using a cleaning procedure to clean the sampling needle and then repeating step 3) until all primer clusters are completely transferred.
在部分實施方案中,前述步驟4)中的基因合成反應液選自PCA反應液及PCR反應液。在部分實施方案中,選擇性地,前述步驟4)在加入基因反應液前將反應容器中的溶劑抽乾。在部分實施方案中,前述基因合成包含將反應容器中的溶劑抽乾,向每個反應容器中加入PCA反應液,使引物群集進行組裝反應,接著加入PCR反應液及目的基因片段的F/R引物,進行PCR反應。 In some embodiments, the gene synthesis reaction solution in the aforementioned step 4) is selected from PCA reaction solution and PCR reaction solution. In some embodiments, optionally, the aforementioned step 4) drains the solvent in the reaction container before adding the gene reaction solution. In some embodiments, the aforementioned gene synthesis includes draining the solvent in the reaction container, adding PCA reaction solution to each reaction container, allowing the primers to cluster for assembly reaction, and then adding PCR reaction solution and F/R primers of the target gene fragment to perform PCR reaction.
本發明另一方面提供一種用於基因高通量合成的引物群集的合成方法,前述方法包含將引物按群集分類,將不同引物群集合成在晶片的不同區域,氨解方法切割晶片上的引物群集,隨後使用液體轉移工作站將不同群集的引物溶解,收集每個溶解的引物群集。 On the other hand, the present invention provides a method for synthesizing primer clusters for high-throughput gene synthesis. The method comprises classifying primers by clusters, synthesizing different primer clusters in different areas of a chip, cutting the primer clusters on the chip by an aminolysis method, and then using a liquid transfer workstation to dissolve the primers of different clusters and collect each dissolved primer cluster.
在部分實施方案中,前述每個引物群集包含編碼同一個目的基因片段的全部引物,前述晶片上包含合成編碼複數個目的基因片段的引物群集,編碼不同目的基因片段的引物群集分别在晶片的不同區域合成,前述不同區域之間留有空白區域。理想地,在前述空白區域上合成複數個疏水基團。 In some embodiments, each of the aforementioned primer clusters includes all primers encoding the same target gene fragment, the aforementioned chip includes primer clusters synthesized to encode multiple target gene fragments, and primer clusters encoding different target gene fragments are synthesized in different regions of the chip, respectively, with blank regions left between the aforementioned different regions. Ideally, multiple hydrophobic groups are synthesized in the aforementioned blank regions.
在部分實施方案中,在晶片上合成引物時使各引物的3’端額外添加至少1個可藉由氨解切割的連接臂及至少3個dT作為保護鹼基。在部分實施方案中,使各引物的3’端額外添加2個、3個、4個或5 個可藉由氨解切割的連接臂及3個、4個、5個或6個dT作為保護鹼基。在部分實施方案中,在前述晶片上合成引物時使引物的3’端額外添加2個可藉由氨解切割的連接臂及5個dT作為保護鹼基。前述連接臂選自任何可以使引物產生3’自由羥基的結構,理想為基於亞磷醯胺結構並能提供3’端自由羥基的結構,更理想為琥珀醯己胺亞磷醯胺。在部分實施方案中,前述氨解方法切割的引物含有3'自由羥基。 In some embodiments, at least one linker that can be cleaved by aminolysis and at least three dTs are added to the 3' end of each primer as a protective base when the primers are synthesized on the chip. In some embodiments, two, three, four or five linkers that can be cleaved by aminolysis and three, four, five or six dTs are added to the 3' end of each primer as a protective base. In some embodiments, two linkers that can be cleaved by aminolysis and five dTs are added to the 3' end of the primer as a protective base when the primers are synthesized on the chip. The linker is selected from any structure that can generate a 3' free hydroxyl group in the primer, preferably a structure based on a phosphoramidite structure and capable of providing a 3' end free hydroxyl group, and more preferably a succinyl hexamethylene phosphoramidite. In some embodiments, the primer cleaved by the aforementioned aminolysis method contains a 3' free hydroxyl group.
在部分實施方案中,氨解方法包含用不含水的胺化劑氨解;理想地,前述胺化劑選自氨氣、一甲胺;更理想為一甲胺。在部分實施方案中,前述氨解在充滿胺化劑的高壓反應容器中進行。在部分實施方案中,前述氨解係在25℃~120℃以及20~120psi的條件下氨解15分鐘~4小時;理想地,前述氨解係在60℃~90℃以及20~60psi的條件下氨解1~4小時;更理想地,前述氨解係在80℃以及40psi的條件下氨解3小時。 In some embodiments, the aminolysis method comprises aminolysis with a non-aqueous aminating agent; ideally, the aforementioned aminating agent is selected from ammonia, monomethylamine; more ideally, monomethylamine. In some embodiments, the aforementioned aminolysis is carried out in a high-pressure reaction vessel filled with the aminating agent. In some embodiments, the aforementioned aminolysis is carried out at 25°C to 120°C and 20 to 120 psi for 15 minutes to 4 hours; ideally, the aforementioned aminolysis is carried out at 60°C to 90°C and 20 to 60 psi for 1 to 4 hours; more ideally, the aforementioned aminolysis is carried out at 80°C and 40 psi for 3 hours.
在部分實施方案中,前述合成引物群集的方法中前述液體轉移工作站為取樣機。在部分實施方案中,液體轉移工作站為Biodot AD 1500取樣品台。在部分實施方案中,將氨解後的晶片置於Biodot AD 1500平台,進行位置校正後,轉移溶解引物的溶劑。 In some embodiments, the liquid transfer workstation in the aforementioned method of synthesizing primer clusters is a sampler. In some embodiments, the liquid transfer workstation is a Biodot AD 1500 sample station. In some embodiments, the aminolyzed chip is placed on the Biodot AD 1500 platform, and after position correction, the solvent for dissolving the primers is transferred.
在部分實施方案中,前述合成引物群集的方法中,前述引物溶解的溶劑為選自可進行PCR反應的溶劑;理想為TE溶液或蒸餾水;更理想為蒸餾水。在部分具體實施方案中,前述引物溶解包含利用取樣機向每個引物群集中滴加10~1000nL的的蒸餾水,靜置0.5~3分鐘後使用針頭吹吸使其溶解。理想地,前述引物溶解包含利用取樣機向每個引物群集中滴加50nL的蒸餾水,靜置1分鐘後使用針頭吹吸使其溶解。 In some embodiments, in the method for synthesizing primer clusters, the solvent for dissolving the primers is selected from solvents that can perform PCR reactions; ideally, it is TE solution or distilled water; more ideally, it is distilled water. In some specific embodiments, the primer dissolution includes using a sampler to drop 10-1000nL of distilled water into each primer cluster, standing for 0.5-3 minutes, and then using a needle to blow and aspirate to dissolve it. Ideally, the primer dissolution includes using a sampler to drop 50nL of distilled water into each primer cluster, standing for 1 minute, and then using a needle to blow and aspirate to dissolve it.
在部分實施方案中,前述合成引物群集的方法進一步包含將每個溶解的引物群集轉移至獨立的反應容器內,前述獨立的反應容器為多孔盤的孔,多孔盤可選自96孔盤、24孔盤、384孔盤。在部分實施方案中,轉移至獨立的反應容器的步驟包含將取樣機針頭高度調整至晶片表面並吸取晶片內溶解液轉移至多孔盤內。在部分實施方案中,前述轉移至獨立的反應容器步驟進一步包含使用清洗程序對取樣針頭進行清洗後重複引物溶解及轉移操作直至所有引物群集被轉移完全。 In some embodiments, the method for synthesizing primer clusters further comprises transferring each dissolved primer cluster to an independent reaction container, wherein the independent reaction container is a hole of a multi-well plate, and the multi-well plate can be selected from a 96-well plate, a 24-well plate, and a 384-well plate. In some embodiments, the step of transferring to an independent reaction container comprises adjusting the height of the sampler needle to the surface of the chip and transferring the dissolved liquid in the chip to the multi-well plate. In some embodiments, the step of transferring to an independent reaction container further comprises using a cleaning procedure to clean the sampler needle and then repeating the primer dissolution and transfer operations until all primer clusters are completely transferred.
本發明提供一種用於基因高通量合成的引物群集的合成方法,包含如下步驟: The present invention provides a method for synthesizing a primer cluster for high-throughput gene synthesis, comprising the following steps:
1)在晶片上合成編碼複數個目的基因片段的引物群集,其中編碼每個目的基因片段的引物群集包含編碼該目的基因片段的全部引物,編碼不同目的基因片段的引物群集分别在晶片的不同固定區域合成,前述不同區域之間留有空白區域; 1) Synthesize primer clusters encoding multiple target gene fragments on a chip, wherein the primer cluster encoding each target gene fragment includes all primers encoding the target gene fragment, and the primer clusters encoding different target gene fragments are synthesized in different fixed areas of the chip, leaving blank areas between the aforementioned different areas;
2)將合成完成後的晶片進行氨解以將引物從晶片上切割下來,並使切割下來的引物含有3'自由羥基; 2) After the synthesis is completed, the chip is subjected to aminolysis to cut the primer from the chip, and the cut primer contains a 3' free hydroxyl group;
3)向每個引物群集滴加溶劑,使該引物群集中的引物充分溶解,收集每個溶解的引物群集。 3) Add solvent to each primer cluster to fully dissolve the primers in the primer cluster, and collect each dissolved primer cluster.
在部分實施方案中,前述步驟1)在晶片上合成引物時使引物的3’端額外添加至少1個可藉由氨解切割的連接臂及至少3個dT作為保護鹼基。在部分實施方案中,使各引物的3’端額外添加2個、3個、4個或5個可藉由氨解切割的連接臂及3個、4個、5個或6個dT作為保護鹼基。在部分實施方案中,在前述晶片上合成引物時使引物的3’端額外添 加2個可藉由氨解切割的連接臂及5個dT作為保護鹼基。前述連接臂選自任何可以使引物產生3’自由羥基的結構,理想為基於亞磷醯胺結構並能提供3’端自由羥基的結構;更理想為琥珀醯己胺亞磷醯胺。 In some embodiments, in the aforementioned step 1), at least one linker cleavable by aminolysis and at least three dTs are additionally added to the 3' end of the primer as a protective base when the primer is synthesized on the chip. In some embodiments, two, three, four or five linkers cleavable by aminolysis and three, four, five or six dTs are additionally added to the 3' end of each primer as a protective base. In some embodiments, two linkers cleavable by aminolysis and five dTs are additionally added to the 3' end of the primer as a protective base when the primer is synthesized on the chip. The aforementioned linker arm can be selected from any structure that can generate a 3' free hydroxyl group in the primer, preferably a structure based on a phosphoramidite structure that can provide a 3' end free hydroxyl group; more preferably, succinylated phosphoramidite.
在部分實施方案中,前述步驟2)包含用不含水的胺化劑氨解;理想地,前述胺化劑選自氨氣、一甲胺;更理想為一甲胺。在部分實施方案中,前述氨解在充滿胺化劑的高壓反應容器中進行。在部分實施方案中,前述氨解係在25℃~120℃以及20~120psi的條件下氨解15分鐘~4小時;理想地,前述氨解係在60℃~90℃以及20~60psi的條件下氨解1~4小時;更理想地,前述氨解係在80℃以及40psi的條件下氨解3小時。 In some embodiments, the aforementioned step 2) comprises aminolysis with a non-aqueous aminating agent; ideally, the aforementioned aminating agent is selected from ammonia, monomethylamine; more ideally, monomethylamine. In some embodiments, the aforementioned aminolysis is carried out in a high-pressure reaction vessel filled with an aminating agent. In some embodiments, the aforementioned aminolysis is carried out at 25°C to 120°C and 20 to 120 psi for 15 minutes to 4 hours; ideally, the aforementioned aminolysis is carried out at 60°C to 90°C and 20 to 60 psi for 1 to 4 hours; more ideally, the aforementioned aminolysis is carried out at 80°C and 40 psi for 3 hours.
在部分實施方案中,前述步驟3)的溶劑選自可進行PCR反應的溶劑;理想為TE溶液或蒸餾水;更理想為蒸餾水。在部分具體實施方案中,前述引物溶解包含利用取樣機向每個引物群集中滴加10~1000nL的蒸餾水,靜置0.5~3分鐘後使用針頭吹吸使其溶解。理想地,前述引物溶解包含利用取樣機向每個引物群集中滴加50nL的蒸餾水,靜置1分鐘後使用針頭吹吸使其溶解。 In some embodiments, the solvent in the aforementioned step 3) is selected from solvents that can perform PCR reactions; ideally, it is TE solution or distilled water; more ideally, it is distilled water. In some specific embodiments, the aforementioned primer dissolution includes using a sampler to drop 10~1000nL of distilled water into each primer cluster, standing for 0.5~3 minutes, and then using a needle to blow and aspirate to dissolve it. Ideally, the aforementioned primer dissolution includes using a sampler to drop 50nL of distilled water into each primer cluster, standing for 1 minute, and then using a needle to blow and aspirate to dissolve it.
在部分實施方案中,前述合成引物群集的方法進一步包含將每個溶解的引物群集轉移至獨立的反應容器內,前述獨立的反應容器為多孔盤的孔,多孔盤可選自96孔盤、24孔盤、384孔盤。在部分實施方案中,前述轉移至獨立的反應容器的步驟包含將取樣機針頭高度調整至晶片表面並吸取晶片內溶解液轉移至多孔盤內。在部分實施方案中,前述轉移至獨立的反應容器步驟進一步包含使用清洗程序對取樣針頭進行清洗後 重複溶解及轉移操作直至所有引物群集被轉移完全。 In some embodiments, the method for synthesizing primer clusters further comprises transferring each dissolved primer cluster to an independent reaction container, wherein the independent reaction container is a hole of a multi-well plate, and the multi-well plate can be selected from a 96-well plate, a 24-well plate, and a 384-well plate. In some embodiments, the step of transferring to an independent reaction container comprises adjusting the height of the sampler needle to the surface of the chip and transferring the dissolved liquid in the chip to the multi-well plate. In some embodiments, the step of transferring to an independent reaction container further comprises using a cleaning procedure to clean the sampler needle and then repeating the dissolution and transfer operations until all primer clusters are completely transferred.
上述方法合成的引物群集可用於基因的高通量合成,包含將合成的引物群集轉移至獨立的反應容器,在適於基因合成的條件下進行基因合成,收獲合成的基因片段。 The primer cluster synthesized by the above method can be used for high-throughput gene synthesis, including transferring the synthesized primer cluster to an independent reaction container, performing gene synthesis under conditions suitable for gene synthesis, and obtaining synthesized gene fragments.
本發明之功效在於: The effects of this invention are:
首先,由於整體策略的改進,本發明可以極大地縮短所需合成的晶片引物的長度,這一方面縮短基因合成的週期,另一方面也降低基因合成的突變率。其次,本發明徹底改變基於晶片引物的基因高通量合成中先混合再分組的方案,簡化流程並提升自動化的可行性。最後,藉由避免使用PCR進行分組的方式,本發明提升特異性,降低交叉污染的可能。 First, due to the improvement of the overall strategy, the present invention can greatly shorten the length of the chip primers required for synthesis, which shortens the cycle of gene synthesis on the one hand, and reduces the mutation rate of gene synthesis on the other hand. Secondly, the present invention completely changes the scheme of mixing first and then grouping in the high-throughput gene synthesis based on chip primers, simplifies the process and improves the feasibility of automation. Finally, by avoiding the use of PCR for grouping, the present invention improves specificity and reduces the possibility of cross contamination.
藉由以下詳細的描述並結合圖式將更充分地理解本發明,其中相似的元件以相似的方式編號。 The present invention will be more fully understood from the following detailed description in conjunction with the drawings, in which like elements are numbered in a similar manner.
【圖1】表示晶片合成區域引物排佈示意圖。 【Figure 1】A schematic diagram showing the layout of primers in the chip synthesis area.
【圖2】表示晶片表面引物萃取示意圖。 【Figure 2】Schematic diagram of primer extraction on chip surface.
【圖3】晶片排佈及其放大圖。 【Figure 3】Chip layout and its enlarged view.
【圖4】Gene_Frag 4定序結果圖。 【Figure 4】Gene_Frag 4 sequencing results.
【圖5】Gene_Frag 13定序結果圖。 【Figure 5】Gene_Frag 13 sequencing results.
【圖6】表示基因合成後目的基因電泳膠圖。 【Figure 6】Shows the electrophoresis gel of the target gene after gene synthesis.
本發明在所有引物的3’端加上可切割的連接臂以及保護鹼基以確保經過氨解後的引物有3’自由羥基。並將按目的基因分組後的引物合成在晶片上的特定區域,區域之間留有一定空白區域以避免萃取時產生交叉污染(如圖1)。為了進一步降低產生交叉污染的可能,可在空白區域合成一系列疏水基團以提高表面能。合成好的晶片需使用氣體氨解的方式,將引物從晶片表面切割下來,並保留在相應的合成位置。隨後使用取樣機往各區域的引物群集滴加適量的蒸餾水以溶解引物(如圖2),並將溶解有引物的蒸餾水轉移至96孔盤中進行相應的基因合成。為了提高引物轉移效率,可在萃取時使用反覆吹吸的方式增強溶解效果。在不同引物群集轉移的間隔中需對轉移針頭進行清洗以避免交叉污染。 The present invention adds a cleavable linker arm and a protective base to the 3' end of all primers to ensure that the primers have a 3' free hydroxyl group after aminolysis. The primers grouped according to the target gene are synthesized in specific areas on the chip, and a certain blank area is left between the areas to avoid cross contamination during extraction (as shown in Figure 1). In order to further reduce the possibility of cross contamination, a series of hydrophobic groups can be synthesized in the blank area to increase the surface energy. The synthesized chip needs to use gas aminolysis to cut the primers from the chip surface and retain them in the corresponding synthesis position. Then use a sampler to drop an appropriate amount of distilled water to the primer clusters in each area to dissolve the primers (as shown in Figure 2), and transfer the distilled water dissolved with the primers to a 96-well plate for corresponding gene synthesis. In order to improve the efficiency of primer transfer, repeated blowing and suction can be used during extraction to enhance the dissolution effect. The transfer needle needs to be cleaned between transfers of different primer clusters to avoid cross contamination.
在晶片上合成引物的方法係本領域已知的,例如可採用噴墨打印法或光活化的方法。 Methods for synthesizing primers on a chip are known in the art, such as inkjet printing or photoactivation.
本發明中,引物群集係指編碼同一個目的基因片段的全部引物的集合,不同的引物群集編碼不同的目的基因片段。此處的引物也可以被稱為短核酸片段,係指彼此之間部分重疊並覆蓋整個目的基因片段的單鏈短核酸片段,此等短核酸片段互為引物及模板,在存在聚合酶的條件下可以藉由多輪變性、退火、延伸循環,最终獲得目的基因。本發明中,一個引物群集中的全部引物例如可以藉由聚合酶鏈式組裝(PCA)合成目的基因片段。 In the present invention, a primer cluster refers to a collection of all primers encoding the same target gene fragment, and different primer clusters encode different target gene fragments. The primers here can also be called short nucleic acid fragments, which refer to single-stranded short nucleic acid fragments that partially overlap each other and cover the entire target gene fragment. These short nucleic acid fragments serve as primers and templates for each other, and can be subjected to multiple rounds of denaturation, annealing, and extension cycles in the presence of polymerase to ultimately obtain the target gene. In the present invention, all primers in a primer cluster can, for example, synthesize the target gene fragment by polymerase chain assembly (PCA).
在進行引物合成時,每條引物可以在其所屬的區域中被合 成多遍,例如被合成3~8遍。對於一條引物而言,「被合成多遍」的含義係指在該區域中的複數個位置上均合成該條引物。 When performing primer synthesis, each primer can be synthesized multiple times in the region to which it belongs, for example, 3 to 8 times. For a primer, "synthesized multiple times" means that the primer is synthesized at multiple positions in the region.
本發明中,目的基因片段可以係為任何目的合成的基因片段。例如,前述目的基因片段可以係一個長度為幾百bp的完整的短基因。前述目的基因片段亦可以係一個較長基因的一部分,例如,對於長基因,在合成時,可以將其拆分為複數個短基因片段,此等短基因片段即可以係本發明的目的基因片段,將每一個短基因片段再拆分為複數個引物,利用本發明的方法合成每一個短基因片段,接著再把此等短基因片段組裝成完整的長基因。 In the present invention, the target gene fragment can be any target synthesized gene fragment. For example, the aforementioned target gene fragment can be a complete short gene with a length of several hundred bp. The aforementioned target gene fragment can also be a part of a longer gene. For example, for a long gene, it can be split into multiple short gene fragments during synthesis. These short gene fragments can be the target gene fragments of the present invention. Each short gene fragment is further split into multiple primers, and each short gene fragment is synthesized using the method of the present invention, and then these short gene fragments are assembled into a complete long gene.
本發明中,不同的引物群集在晶片的不同區域合成。晶片的不同區域可以藉由任何適當的方式劃分,例如可以確定每個區域的行及列。各區域的形狀及大小可以根據具體需要確定。各區域之間可以留出空白區域,目的在於避免在萃取時產生交叉污染,空白區域的大小可由所屬技術領域中具有通常知識者根據情况確定。空白區域上亦可以合成一系列疏水基團以提高表面能,從而進一步避免在萃取時產生交叉污染。 In the present invention, different primer clusters are synthesized in different regions of the chip. Different regions of the chip can be divided in any appropriate manner, for example, the rows and columns of each region can be determined. The shape and size of each region can be determined according to specific needs. A blank area can be left between each region to avoid cross contamination during extraction. The size of the blank area can be determined by a person with ordinary knowledge in the relevant technical field according to the situation. A series of hydrophobic groups can also be synthesized on the blank area to increase the surface energy, thereby further avoiding cross contamination during extraction.
本發明中,為了進行後續的基因合成,需要使引物群集在從晶片上被切割下來以後具有3'自由羥基,可以藉由各種可能的方法並使切割下來的引物含有3'自由羥基,部分這樣的方式係本領域已知的,例如可以藉由氨解的方式。理想地,可以在合成時使引物的3'端額外添加至少1個可藉由氨解切割的連接臂及至少3個dT作為保護鹼基,當進行氨解時可將連接臂及dT切割下來,在引物3'端形成自由羥基。在部分實施方案中,使引物的3'端額外添加2個、3個、4個或5個可藉由氨解切割的連 接臂及3個、4個、5個或6個dT作為保護鹼基。在部分實施方案中,使引物的3'端額外添加2個可藉由氨解切割的連接臂及5個dT作為保護鹼基。前述連接臂可以係任何可以在氨解後使引物產生3'自由羥基的結構,理想為基於亞磷醯胺結構並可以提供3’端自由羥基的結構,如琥珀醯己胺亞磷醯胺。本發明中,前述的「連接臂」的目的係用於藉由氨解在引物3’形成自由羥基。引物的3’端在連接臂外額外添加至少3個dT的目的係作為保護鹼基。 In the present invention, in order to perform subsequent gene synthesis, it is necessary to make the primer cluster have a 3' free hydroxyl group after being cut off from the chip. Various possible methods can be used to make the cut primer contain a 3' free hydroxyl group. Some of these methods are known in the art, such as by aminolysis. Ideally, at least one linker that can be cut by aminolysis and at least 3 dTs as protective bases can be added to the 3' end of the primer during synthesis. When aminolysis is performed, the linker and dT can be cut off to form a free hydroxyl group at the 3' end of the primer. In some embodiments, 2, 3, 4 or 5 linkers that can be cut by aminolysis and 3, 4, 5 or 6 dTs as protective bases are added to the 3' end of the primer. In some embodiments, two additional linkers that can be cleaved by aminolysis and five dTs are added to the 3' end of the primer as protective bases. The aforementioned linker can be any structure that can generate a 3' free hydroxyl group in the primer after aminolysis, and is ideally a structure based on a phosphoramidite structure that can provide a 3' free hydroxyl group, such as succinyl hexamethylenetetramidite. In the present invention, the purpose of the aforementioned "linker" is to form a free hydroxyl group at the 3' end of the primer by aminolysis. The purpose of adding at least three dTs to the 3' end of the primer outside the linker is to serve as a protective base.
本發明中,氨解的方法係本領域習知的,特别適用於本發明的例如可以係不含水的胺化劑,例如氨氣、一甲胺等。氨解例如可以在充滿胺化劑的高壓反應容器中進行。在部分實施方案中,氨解係在25℃~120℃以及20~120psi的條件下氨解15分鐘~4小時;理想地,前述氨解係在60℃~90℃以及20~60psi的條件下氨解1~4小時;更理想地,前述氨解係在80℃以及40psi的條件下氨解3小時。 In the present invention, the method of aminolysis is known in the art, and the aminating agent that is particularly suitable for the present invention may be, for example, a non-aqueous aminating agent, such as ammonia, monomethylamine, etc. The aminolysis may be carried out, for example, in a high-pressure reaction vessel filled with the aminating agent. In some embodiments, the aminolysis is carried out at 25°C to 120°C and 20 to 120 psi for 15 minutes to 4 hours; ideally, the aforementioned aminolysis is carried out at 60°C to 90°C and 20 to 60 psi for 1 to 4 hours; more ideally, the aforementioned aminolysis is carried out at 80°C and 40 psi for 3 hours.
psi係本領域習知的壓力單位,根據本領域的習知技術,1psi=6.895kPa。 Psi is a unit of pressure known in this field. According to the known technology in this field, 1psi=6.895kPa.
本發明中,可以使用任何可溶解並轉移晶片上合成的引物的液體轉移工作站,例如可以使用取樣機。在部分實施方案中,前述液體轉移工作站為Biodot AD 1500取樣品台。在部分實施方案中,可以將前述氨解後的晶片置於取樣平台上,進行位置校正後,轉移用於溶解引物的溶劑。 In the present invention, any liquid transfer workstation that can dissolve and transfer the primers synthesized on the chip can be used, for example, a sampler can be used. In some embodiments, the aforementioned liquid transfer workstation is a Biodot AD 1500 sample station. In some embodiments, the aforementioned aminolyzed chip can be placed on the sampling platform, and after position correction, the solvent used to dissolve the primer can be transferred.
本發明中,用於溶解引物的溶劑可以係任何可用於進行PCR反應的溶劑,例如TE溶液或蒸餾水,理想蒸餾水。在部分實施方案 中,溶解引物的過程包含利用液體轉移工作站(例如取樣機)向每個引物群集中滴加10~1000nL的溶劑(例如蒸餾水),靜置0.5~3分鐘後使用針頭吹吸使其溶解。理想地,向每個引物群集中滴加50nL的蒸餾水,靜置1分鐘後使用針頭吹吸使其溶解。 In the present invention, the solvent used to dissolve the primers can be any solvent that can be used for PCR reaction, such as TE solution or distilled water, preferably distilled water. In some embodiments, the process of dissolving the primers includes using a liquid transfer workstation (such as a sampler) to drop 10-1000nL of solvent (such as distilled water) into each primer cluster, standing for 0.5-3 minutes, and then using a needle to blow and aspirate to dissolve it. Ideally, 50nL of distilled water is added to each primer cluster, standing for 1 minute, and then using a needle to blow and aspirate to dissolve it.
可以藉由本領域習知的方法使晶片上的引物充分溶解,例如使用針頭吹吸1~3次(例如2次)使引物充分溶解。在部分實施方案中,例如可使用Biodot取樣機向每個引物群集加入蒸餾水後靜置一段時間(例如1分鐘),接著用針頭吹吸1~3次(例如2次)。
The primers on the chip can be fully dissolved by methods known in the art, such as using a needle to blow and
本發明中,適於基因合成的獨立的反應容器可以係多孔盤的孔或其他任何適合的獨立反應容器。多孔盤可選自96孔盤、24孔盤、384孔盤。在部分體實施方案中,將溶解的引物群集轉移至獨立的反應容器的步驟包含將液體轉移工作站針頭高度調整至晶片表面並吸取晶片內溶解液轉移至多孔盤的孔內。在部分實施方案中,可以先轉移部分引物群集,隨後清洗取樣針頭後重複轉移其餘的引物群集,例如可以先轉移部分引物群集,接著使用清洗程序對取樣針頭進行清洗後重複轉移操作直至所有引物群集被轉移完全。 In the present invention, the independent reaction container suitable for gene synthesis can be a hole of a porous plate or any other suitable independent reaction container. The porous plate can be selected from a 96-well plate, a 24-well plate, and a 384-well plate. In some embodiments, the step of transferring the dissolved primer cluster to an independent reaction container includes adjusting the needle height of the liquid transfer workstation to the surface of the chip and aspirating the dissolved liquid in the chip and transferring it to the hole of the porous plate. In some embodiments, part of the primer cluster can be transferred first, and then the sampling needle is cleaned and the remaining primer clusters are repeatedly transferred. For example, part of the primer cluster can be transferred first, and then the sampling needle is cleaned using a cleaning program and the transfer operation is repeated until all primer clusters are completely transferred.
本發明中,基因合成反應可以包含向每個孔中加入基因合成反應液及/或目的基因片段的F/R引物,進行PCR反應。基因合成反應溶液可以選自PCA反應液及PCR反應液。例如可以先加入PCA反應液,使引物群集進行組裝反應,接著再加入PCR反應液及目的基因片段的F/R引物,進行PCR反應。在進行基因合成反應之前,可以先將反應容器中的溶劑抽乾,接著加入基因合成反應液及/或目的基因片段的F/R引物,或者 也可以直接向反應容器中加入基因合成反應液及/或目的基因片段的F/R引物。本發明中,聚合酶鏈式組裝(polymerase chain assembly,PCA)係一種基於聚合酶鏈式反應(polymerase chain reaction,PCR)原理的方法,係指使彼此之間部分重疊並覆蓋整個目的基因的單鏈寡核苷酸互為引物及模板,在存在聚合酶的條件下藉由多輪變性、退火、延伸循環,最终獲得目的基因。在部分情况下,藉由聚合酶鏈式組裝獲得的產物可以使用能與該產物序列兩端相結合的引物進行擴增,例如藉由PCR反應進行擴增。 In the present invention, the gene synthesis reaction may include adding a gene synthesis reaction solution and/or F/R primers of the target gene fragment to each well to perform a PCR reaction. The gene synthesis reaction solution may be selected from a PCA reaction solution and a PCR reaction solution. For example, the PCA reaction solution may be added first to cluster the primers for assembly reaction, and then the PCR reaction solution and F/R primers of the target gene fragment may be added to perform a PCR reaction. Before performing the gene synthesis reaction, the solvent in the reaction container may be drained, and then the gene synthesis reaction solution and/or F/R primers of the target gene fragment may be added, or the gene synthesis reaction solution and/or F/R primers of the target gene fragment may be directly added to the reaction container. In the present invention, polymerase chain assembly (PCA) is a method based on the principle of polymerase chain reaction (PCR), which refers to making single-stranded oligonucleotides that partially overlap each other and cover the entire target gene serve as primers and templates for each other, and finally obtain the target gene through multiple rounds of denaturation, annealing, and extension cycles in the presence of polymerase. In some cases, the product obtained by polymerase chain assembly can be amplified using primers that can bind to both ends of the product sequence, for example, by PCR reaction.
本發明中,目的基因片段的F/R引物係指用於擴增整個目的基因片段的正向及反向引物。 In the present invention, the F/R primers of the target gene fragment refer to the forward and reverse primers used to amplify the entire target gene fragment.
本發明中,「抽乾」係指去除反應容器中的溶劑,同時保留溶質即引物群集的操作。可以藉由本領域熟知的各種方式實現抽乾溶劑,例如可以藉由減壓乾燥將反應容器中的溶劑抽乾。 In the present invention, "drying" refers to the operation of removing the solvent in the reaction container while retaining the solute, i.e., the primer cluster. The solvent can be dried by various methods known in the art, for example, the solvent in the reaction container can be dried by reduced pressure drying.
以下藉由實施例,並結合圖式,對本發明的技術手段作進一步詳細的說明,但本發明不限於以下的實施例。 The following is a further detailed description of the technical means of the present invention through embodiments and combined with drawings, but the present invention is not limited to the following embodiments.
實施例1 19個目的基因的合成Example 1 Synthesis of 19 target genes
本實施例將利用該平台進行19個目的基因的合成,其長度如下表1所示: This embodiment will use this platform to synthesize 19 target genes, the lengths of which are shown in Table 1 below:
以其中兩個片段Gene_Frag 4、Gene_Frag 13為例進行詳細說明。 Two fragments, Gene_Frag 4 and Gene_Frag 13, are used as examples for detailed explanation.
Gene_Frag 4目的基因的合成Synthesis of target gene of Gene_Frag 4
Gene_Frag 4的目的基因序列(SEQ ID NO.1)如下: The target gene sequence of Gene_Frag 4 (SEQ ID NO.1) is as follows:
將其拆分成相應的引物,並在3’端加上可切割連接臂以及dT保護鹼基後的引物序列如表2所示(其中W代表可切割連接臂,為琥珀醯己胺亞磷醯胺,其中Gene_Frag 4_F以及Gene_Frag 4_R係使用25nmol合成柱合成的常規引物): It was split into corresponding primers, and the primer sequences after adding a cleavable linker and a dT protective base at the 3' end were shown in Table 2 (W represents the cleavable linker, which is succinyl hexylamine phosphoramidite, and Gene_Frag 4_F and Gene_Frag 4_R are conventional primers synthesized using a 25nmol synthesis column):
使用CustomArray公司的B3P合成儀,按預設位置在晶片上進行Gene_Frag 4_1至Gene_Frag 4_16的引物合成。晶片的排佈見圖3中的放大圖,對應於microarray scanner(8*11)上合成的引物排佈如表3所示。 Using CustomArray's B3P synthesizer, primers from Gene_Frag 4_1 to Gene_Frag 4_16 were synthesized on the chip according to the preset positions. The arrangement of the chip is shown in the enlarged view in Figure 3, and the arrangement of primers synthesized on the microarray scanner (8*11) is shown in Table 3.
待合成結束後,將晶片置於高壓氣相氨解儀中,使用一甲胺作為氨解氣體,在80℃以及40psi的條件下氨解3小時,待晶片冷卻後將其取出並轉移至Biodot AD 1500取樣機標準玻片支架。 After the synthesis is completed, the chip is placed in a high-pressure gas phase ammonolysis apparatus, using monomethylamine as the ammonolysis gas, and ammonolysis is carried out at 80°C and 40psi for 3 hours. After the chip is cooled, it is taken out and transferred to the standard glass slide holder of the Biodot AD 1500 sampler.
利用Biodot取樣機向每個引物群集滴加50nL蒸餾水,靜置一分鐘後將Biodot取樣機針頭高度調整至晶片表面並吸取60nL體積後轉移至96孔盤內,滴加1μL蒸餾水。使用清洗程序對取樣針頭進行清洗後重複上述操作直至所有引物群集被轉移完全。 Use the Biodot sampler to add 50nL of distilled water to each primer cluster. After standing for one minute, adjust the height of the Biodot sampler needle to the chip surface and absorb 60nL of volume and transfer it to the 96-well plate, then add 1μL of distilled water. Use the cleaning program to clean the sampling needle and repeat the above steps until all primer clusters are completely transferred.
配製PCA反應體系:5*HF buffer 10μL,dNTPs 1μL,NEB-Phusion 0.5μL,BSA(20mg/mL)5μL,H2O 33.5μL。以及PCR反應體系:5*HF buffer 2μL,dNTPs 0.2μL,NEB-Phusion 0.1μL,BSA(20mg/mL)1μL,Gene_Frag 4_F(10μM)以及Gene_Frag 4_R(10μM)各0.3μL,H2O 3.6μL。 Prepare PCA reaction system: 5*HF buffer 10μL, dNTPs 1μL, NEB-Phusion 0.5μL, BSA (20mg/mL) 5μL, H2O 33.5μL. And PCR reaction system: 5*HF buffer 2μL, dNTPs 0.2μL, NEB-Phusion 0.1μL, BSA (20mg/mL) 1μL, Gene_Frag 4_F (10μM) and Gene_Frag 4_R (10μM) 0.3μL each, H2O 3.6μL.
將96孔盤內的樣品中溶劑藉由真空離心濃縮儀(Concentrator plus,廠家eppendorf)減壓抽乾後,向每個含有引物群集的孔中加入2.5μL PCA反應混合液並轉移至384孔中進行PCA反應,反應條件為:98℃ 3min,35個循環(98℃ 10s,58℃ 10s,72℃ 20s),72℃ 5min。隨後將2.5μLPCA產物轉移至7.5μL PCR反應體系內進行PCR反應,反應條件為:98℃ 3min,40個循環(98℃ 10s,64℃ 10s,72℃ 35s),72℃ 5min。 After the solvent in the sample in the 96-well plate was depressurized and dried by a vacuum centrifuge concentrator (Concentrator plus, eppendorf), 2.5μL PCA reaction mixture was added to each well containing the primer cluster and transferred to the 384-well for PCA reaction. The reaction conditions were: 98℃ 3min, 35 cycles (98℃ 10s, 58℃ 10s, 72℃ 20s), 72℃ 5min. Then, 2.5μL PCA product was transferred to 7.5μL PCR reaction system for PCR reaction. The reaction conditions were: 98℃ 3min, 40 cycles (98℃ 10s, 64℃ 10s, 72℃ 35s), 72℃ 5min.
將上述反應液(即PCR產物)轉化至Top10感受態細胞,按照化學感受態細胞轉化步驟進行操作。復甦後取100μL菌液塗布在Kan抗性顯色平板上。放置37℃培養箱培養過夜。 Transform the above reaction solution (i.e. PCR product) into Top10 competent cells and follow the chemical competent cell transformation steps. After recovery, take 100μL of bacterial solution and spread it on Kan resistance color plate. Place it in a 37℃ incubator and culture it overnight.
利用菌檢引物對顯色平板上的白斑進行菌檢,挑取陽性選殖10個進行定序並分析定序結果,Gene_Frag 4定序結果如圖4所示。 The white spots on the color-developing plate were tested with bacterial detection primers, and 10 positive clones were selected for sequencing and the sequencing results were analyzed. The sequencing results of Gene_Frag 4 are shown in Figure 4.
Gene_Frag 13目的基因合成Gene_Frag 13 target gene synthesis
Gene_Frag 13的目的基因序列(SEQ ID NO.20)如下: The target gene sequence of Gene_Frag 13 (SEQ ID NO.20) is as follows:
將其拆分成相應的引物,並在3’端加上可切割連接臂以及dT保護鹼基後的引物序列如表4所示(其中W代表可切割連接臂,為琥珀醯己胺亞磷醯胺,其中Gene_Frag 13_F以及Gene_Frag 13_R係使用25nmol合成柱合成的常規引物): It was split into corresponding primers, and the primer sequences after adding a cleavable linker and a dT protective base at the 3' end are shown in Table 4 (W represents the cleavable linker, which is succinyl hexylamine phosphoramidite, and Gene_Frag 13_F and Gene_Frag 13_R are conventional primers synthesized using a 25nmol synthesis column):
使用CustomArray公司的B3P合成儀,按預設位置在晶片上進行Gene_Frag 13_1至Gene_Frag 13_12的引物序列合成。晶片的排佈 見圖3中的放大圖,對應於microarray scanner(8*11)上合成的引物排佈如表5所示。 Using CustomArray's B3P synthesizer, the primer sequences from Gene_Frag 13_1 to Gene_Frag 13_12 were synthesized on the chip according to the preset positions. Chip arrangement See the enlarged image in Figure 3, and the arrangement of primers synthesized on the microarray scanner (8*11) is shown in Table 5.
待合成結束後,將晶片置於高壓氣相氨解儀中,使用一甲胺作為氨解氣體,在80℃以及40psi的條件下氨解3小時,待晶片冷卻後將其取出並轉移至Biodot AD 1500取樣機標準玻片支架上。 After the synthesis is completed, the chip is placed in a high-pressure gas phase ammonolysis apparatus, using monomethylamine as the ammonolysis gas, and ammonolysis is carried out at 80°C and 40psi for 3 hours. After the chip is cooled, it is taken out and transferred to the standard glass slide holder of the Biodot AD 1500 sampler.
利用Biodot取樣機向每個引物群集滴加50nL蒸餾水,靜置一分鐘後將Biodot取樣機針頭高度調整至晶片表面並吸取60nL體積後轉移至96孔盤內,滴加1μL蒸餾水。使用清洗程序對取樣針頭進行清洗後重複上述操作直至所有引物群集被轉移完全。 Use the Biodot sampler to add 50nL of distilled water to each primer cluster. After standing for one minute, adjust the height of the Biodot sampler needle to the chip surface and absorb 60nL of volume and transfer it to the 96-well plate, then add 1μL of distilled water. Use the cleaning program to clean the sampling needle and repeat the above steps until all primer clusters are completely transferred.
配製PCA反應體系:5*HF buffer 10μL,dNTPs 1μL,NEB- Phusion 0.5μL,BSA(20mg/mL)5μL,H2O 33.5μL。以及PCR反應體系:5*HF buffer 2μL,dNTPs 0.2μL,NEB-Phusion 0.1μL,BSA(20mg/mL)1μL,Gene_Frag 13_F(10μM)以及Gene_Frag 13_R(10μM)各0.3μL,H2O 3.6μL。 Prepare PCA reaction system: 5*HF buffer 10μL, dNTPs 1μL, NEB-Phusion 0.5μL, BSA (20mg/mL) 5μL, H 2 O 33.5μL. And PCR reaction system: 5*HF buffer 2μL, dNTPs 0.2μL, NEB-Phusion 0.1μL, BSA (20mg/mL) 1μL, Gene_Frag 13_F (10μM) and Gene_Frag 13_R (10μM) 0.3μL each, H 2 O 3.6μL.
將96孔盤內的樣品中溶劑藉由真空離心濃縮儀(Concentrator plus,廠家eppendorf)減壓抽乾後,向每個含有引物群集的孔中加入2.5μL PCA反應混合液並轉移至384孔中進行PCA反應,反應條件為:98℃ 3min,35個循環(98℃ 10s,58℃ 10s,72℃ 20s),72℃ 5min。隨後將2.5μLPCA產物轉移至7.5μL PCR反應體系內進行PCR反應,反應條件為:98℃ 3min,40個循環(98℃ 10s,64℃ 10s,72℃ 35s),72℃ 5min。 After the solvent in the sample in the 96-well plate was depressurized and dried by a vacuum centrifuge concentrator (Concentrator plus, eppendorf), 2.5μL PCA reaction mixture was added to each well containing the primer cluster and transferred to the 384-well for PCA reaction. The reaction conditions were: 98℃ 3min, 35 cycles (98℃ 10s, 58℃ 10s, 72℃ 20s), 72℃ 5min. Then, 2.5μL PCA product was transferred to 7.5μL PCR reaction system for PCR reaction. The reaction conditions were: 98℃ 3min, 40 cycles (98℃ 10s, 64℃ 10s, 72℃ 35s), 72℃ 5min.
將上述反應液(即PCR產物)轉化至Top10感受態細胞,按照化學感受態細胞轉化步驟進行操作。復甦後取100μL菌液塗布在Kan抗性顯色平板上。放置37℃培養箱培養過夜。 Transform the above reaction solution (i.e. PCR product) into Top10 competent cells and follow the chemical competent cell transformation steps. After recovery, take 100μL of bacterial solution and spread it on Kan resistance color plate. Place it in a 37℃ incubator and culture it overnight.
利用菌檢引物對顯色平板上的白斑進行菌檢,挑取陽性選殖10個進行定序並分析定序結果,Gene_Frag 13定序結果如圖5所示。 The white spots on the color-developing plate were tested with bacterial detection primers, and 10 positive clones were selected for sequencing and the sequencing results were analyzed. The sequencing results of Gene_Frag 13 are shown in Figure 5.
所有19個目的基因合成後進行電泳,電泳圖見圖6。 All 19 target genes were synthesized and subjected to electrophoresis. The electrophoresis diagram is shown in Figure 6.
實施例2 晶片引物表面萃取基因合成方法與傳統方法的比較Example 2 Comparison of the Chip Primer Surface Extraction Gene Synthesis Method with the Traditional Method
傳統方法利用CustomArray合成儀進行高通量基因合成,參考Eroshenko N,Kosuri S,Marblestone AH,Gene Assembly from Chip-Synthesized Oligonucleotides.Curr Protoc Chem Biol.4:1-17,March 2012中 的基因合成方法,在合成步驟、氨解及純化步驟、萃取步驟、擴增步驟上比較傳統方法與實施例1方法的具體步驟的時間,如表6所示: The traditional method uses the CustomArray synthesizer for high-throughput gene synthesis, referring to the gene synthesis method in Eroshenko N, Kosuri S, Marblestone AH, Gene Assembly from Chip-Synthesized Oligonucleotides. Curr Protoc Chem Biol. 4: 1-17, March 2012, and compares the time of the specific steps of the traditional method and the method of Example 1 in the synthesis step, aminolysis and purification step, extraction step, and expansion step, as shown in Table 6:
本發明的實施方式並不限於上述實施例所記載,在不偏離本發明的精神及範圍的情况下,所屬技術領域中具有通常知識者可以在形式及細節上對本發明做出各種改變及改進,而這些均被認為落入本發明的保護範圍。 The implementation of the present invention is not limited to the above-mentioned embodiments. Without departing from the spirit and scope of the present invention, a person with ordinary knowledge in the relevant technical field can make various changes and improvements to the present invention in form and details, and these are considered to fall within the scope of protection of the present invention.
SEQUENCE LISTING
<![CDATA[<110> 大陸商南京金斯瑞生物科技有限公司 (Nanjingjinsirui Science & Technology Biology Corp.)]]>
<![CDATA[<120> 一種基於晶片引物表面萃取的基因高通量合成方法]]>
<![CDATA[<130> 1]]>
<![CDATA[<150> CN 201811313909.7]]>
<![CDATA[<151> 2018-11-06]]>
<![CDATA[<160> 34 ]]>
<![CDATA[<170> PatentIn version 3.5]]>
<![CDATA[<210> 1]]>
<![CDATA[<211> 732]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4]]>
<![CDATA[<400> 1]]>
atgaggagcc ggaagctcac aggtgcagtg cggtcttcag cgcgcttgaa agcacgaagt 60
tgttcggcag ccaggttggc ctctgcccag gaagttgctg gttccacgtc tgccaagaca 120
gcatgtctga cttcctcatc ccacaaagcc acagacacgc gaacgtccaa gaagttcaaa 180
tgtgacaaag gacatcttgt gaagtcagaa ttacagaagc ttgtccctaa gaatgacagc 240
gcttctttgc caaaagtgac acctgagacc ccttgtgaaa atgagtttgc tgaaggcagt 300
gccttgcttc caggcagcga ggctggcgtt tctgtgcagc agggggctgc aagtcttcct 360
ctcggtggct gcagagttgt gagtgactct cgcttagcaa agactagaga tggcctgtcc 420
gtgccaaaac acagtgccgg gtccggagca gaagaatcca acagcagctc cactgtgcag 480
aagcagaatg agccagggct acagacagag gatgtgcaga agccaccact tcagatggac 540
aacagcgtct ttctagatga cgacagcaat cagccaatgc ccgtgagccg gttctttgga 600
aacgttgagc tcatgcagga cctcccacct gcgtcttcat cttgtccttc aatgagcaga 660
cgagagttca gaaaaatgca tttcagagcc aaagatgatg atgatgacga cgacgatgat 720
gcagaaatgt ag 732
<![CDATA[<210> 2]]>
<![CDATA[<211> 72]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_1]]>
<![CDATA[<400> 2]]>
atgaggagcc ggaagctcac aggtgcagtg cggtcttcag cgcgcttgaa agcacgaagt 60
tgttcwwttt tt 72
<![CDATA[<210> 3]]>
<![CDATA[<211> 71]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_2]]>
<![CDATA[<400> 3]]>
acgtggaacc agcaacttcc tgggcagagg ccaacctggc tgccgaacaa cttcgtgctt 60
tcaawwtttt t 71
<![CDATA[<210> 4]]>
<![CDATA[<211> 67]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_3]]>
<![CDATA[<400> 4]]>
gttgctggtt ccacgtctgc caagacagca tgtctgactt cctcatccca caaagccaca 60
wwttttt 67
<![CDATA[<210> 5]]>
<![CDATA[<211> 71]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_4]]>
<![CDATA[<400> 5]]>
acaagatgtc ctttgtcaca tttgaacttc ttggacgttc gcgtgtctgt ggctttgtgg 60
gatgwwtttt t 71
<![CDATA[<210> 6]]>
<![CDATA[<211> 68]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_5]]>
<![CDATA[<400> 6]]>
tgtgacaaag gacatcttgt gaagtcagaa ttacagaagc ttgtccctaa gaatgacagc 60
gwwttttt 68
<![CDATA[<210> 7]]>
<![CDATA[<211> 62]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_6]]>
<![CDATA[<400> 7]]>
cacaaggggt ctcaggtgtc acttttggca aagaagcgct gtcattctta gggacwwttt 60
tt 62
<![CDATA[<210> 8]]>
<![CDATA[<211> 70]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_7]]>
<![CDATA[<400> 8]]>
acctgagacc ccttgtgaaa atgagtttgc tgaaggcagt gccttgcttc caggcagcga 60
ggcwwttttt 70
<![CDATA[<210> 9]]>
<![CDATA[<211> 72]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_9]]>
<![CDATA[<400> 9]]>
gcagccaccg agaggaagac ttgcagcccc ctgctgcaca gaaacgccag cctcgctgcc 60
tggaawwttt tt 72
<![CDATA[<210> 10]]>
<![CDATA[<211> 72]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_9]]>
<![CDATA[<400> 10]]>
tcctctcggt ggctgcagag ttgtgagtga ctctcgctta gcaaagacta gagatggcct 60
gtccgwwttt tt 72
<![CDATA[<210> 11]]>
<![CDATA[<211> 62]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_10]]>
<![CDATA[<400> 11]]>
tggattcttc tgctccggac ccggcactgt gttttggcac ggacaggcca tctctwwttt 60
tt 62
<![CDATA[<210> 12]]>
<![CDATA[<211> 69]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_11]]>
<![CDATA[<400> 12]]>
ccggagcaga agaatccaac agcagctcca ctgtgcagaa gcagaatgag ccagggctac 60
agwwttttt 69
<![CDATA[<210> 13]]>
<![CDATA[<211> 67]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_12]]>
<![CDATA[<400> 13]]>
acgctgttgt ccatctgaag tggtggcttc tgcacatcct ctgtctgtag ccctggctca 60
wwttttt 67
<![CDATA[<210> 14]]>
<![CDATA[<211> 71]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_13]]>
<![CDATA[<400> 14]]>
cagatggaca acagcgtctt tctagatgac gacagcaatc agccaatgcc cgtgagccgg 60
ttctwwtttt t 71
<![CDATA[<210> 15]]>
<![CDATA[<211> 69]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_14]]>
<![CDATA[<400> 15]]>
gatgaagacg caggtgggag gtcctgcatg agctcaacgt ttccaaagaa ccggctcacg 60
ggwwttttt 69
<![CDATA[<210> 16]]>
<![CDATA[<211> 72]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_15]]>
<![CDATA[<400> 16]]>
ccacctgcgt cttcatcttg tccttcaatg agcagacgag agttcagaaa aatgcatttc 60
agagcwwttt tt 72
<![CDATA[<210> 17]]>
<![CDATA[<211> 71]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_16]]>
<![CDATA[<400> 17]]>
ctacatttct gcatcatcgt cgtcgtcatc atcatcatct ttggctctga aatgcatttt 60
tctgwwtttt t 71
<![CDATA[<210> 18]]>
<![CDATA[<211> 65]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_F]]>
<![CDATA[<400> 18]]>
atgaggagcc ggaagctcac aggtgcagtg cggtcttcag cgcgcttgaa agcacgaagt 60
tgttc 65
<![CDATA[<210> 19]]>
<![CDATA[<211> 64]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_R]]>
<![CDATA[<400> 19]]>
ctacatttct gcatcatcgt cgtcgtcatc atcatcatct ttggctctga aatgcatttt 60
tctg 64
<![CDATA[<210> 20]]>
<![CDATA[<211> 500]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13]]>
<![CDATA[<400> 20]]>
ccgagctcgg atccgccacc atatgggcat ggagggtctt ctccagaact ccactaactt 60
cgtcctcaca ggcctcatca cccatcctgc cttccccggg cttctctttg caatagtctt 120
ctccatcttt gtggtggcta taacagccaa cttggtcatg attctgctca tccacatgga 180
ctcccgcctc cacacaccca tgtacttctt gctcagccag ctctccatca tggataccat 240
ctacatctgt atcactgtcc ccaagatgct ccaggacctc ctgtccaagg acaagaccat 300
ttccttcctg ggctgtgcag ttcagatctt cctctacctg accctgattg gaggggaatt 360
cttcctgctg ggtctcatgg cctatgaccg ctatgtggct gtgtgcaacc ctctacggta 420
ccctctcctc atgaaccgca gggtttgctt attcatggtg gtcggctcct gggttggtgg 480
ttccttggat gggttcatgc 500
<![CDATA[<210> 21]]>
<![CDATA[<211> 72]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_1]]>
<![CDATA[<400> 21]]>
ccgagctcgg atccgccacc atatgggcat ggagggtctt ctccagaact ccactaactt 60
cgtccwwttt tt 72
<![CDATA[<210> 22]]>
<![CDATA[<211> 66]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_2]]>
<![CDATA[<400> 22]]>
gaagcccggg gaaggcagga tgggtgatga ggcctgtgag gacgaagtta gtggagttcw 60
wttttt 66
<![CDATA[<210> 23]]>
<![CDATA[<211> 66]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_3]]>
<![CDATA[<400> 23]]>
gccttccccg ggcttctctt tgcaatagtc ttctccatct ttgtggtggc tataacagcw 60
wttttt 66
<![CDATA[<210> 24]]>
<![CDATA[<211> 64]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_4]]>
<![CDATA[<400> 24]]>
cgggagtcca tgtggatgag cagaatcatg accaagttgg ctgttatagc caccacawwt 60
tttt 64
<![CDATA[<210> 25]]>
<![CDATA[<211> 62]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_5]]>
<![CDATA[<400> 25]]>
tccacatgga ctcccgcctc cacacaccca tgtacttctt gctcagccag ctctcwwttt 60
tt 62
<![CDATA[<210> 26]]>
<![CDATA[<211> 67]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_6]]>
<![CDATA[<400> 26]]>
gcatcttggg gacagtgata cagatgtaga tggtatccat gatggagagc tggctgagca 60
wwttttt 67
<![CDATA[<210> 27]]>
<![CDATA[<211> 62]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_7]]>
<![CDATA[<400> 27]]>
cactgtcccc aagatgctcc aggacctcct gtccaaggac aagaccattt ccttcwwttt 60
tt 62
<![CDATA[<210> 28]]>
<![CDATA[<211> 66]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_8]]>
<![CDATA[<400> 28]]>
cagggtcagg tagaggaaga tctgaactgc acagcccagg aaggaaatgg tcttgtcctw 60
wttttt 66
<![CDATA[<210> 29]]>
<![CDATA[<211> 62]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_9]]>
<![CDATA[<400> 29]]>
ttcctctacc tgaccctgat tggaggggaa ttcttcctgc tgggtctcat ggcctwwttt 60
tt 62
<![CDATA[<210> 30]]>
<![CDATA[<211> 63]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_10]]>
<![CDATA[<400> 30]]>
gggtaccgta gagggttgca cacagccaca tagcggtcat aggccatgag acccagwwtt 60
ttt 63
<![CDATA[<210> 31]]>
<![CDATA[<211> 65]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_11]]>
<![CDATA[<400> 31]]>
aaccctctac ggtaccctct cctcatgaac cgcagggttt gcttattcat ggtggtcgww 60
ttttt 65
<![CDATA[<210> 32]]>
<![CDATA[<211> 62]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_12]]>
<![CDATA[<400> 32]]>
gcatgaaccc atccaaggaa ccaccaaccc aggagccgac caccatgaat aagcawwttt 60
tt 62
<![CDATA[<210> 33]]>
<![CDATA[<211> 65]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_F]]>
<![CDATA[<400> 33]]>
ccgagctcgg atccgccacc atatgggcat ggagggtctt ctccagaact ccactaactt 60
cgtcc 65
<![CDATA[<210> 34]]>
<![CDATA[<211> 55]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> 人工序列]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_R]]>
<![CDATA[<400> 34]]>
gcatgaaccc atccaaggaa ccaccaaccc aggagccgac caccatgaat aagca 55
SEQUENCE LISTING
<![CDATA[<110> Nanjing Jinsirui Science & Technology Biology Corp., a Chinese company]]>
<![CDATA[<120> A high-throughput gene synthesis method based on surface extraction of primers on a chip]]>
<![CDATA[<130> 1]]>
<![CDATA[<150> CN 201811313909.7]]>
<![CDATA[<151> 2018-11-06]]>
<![CDATA[<160> 34 ]]>
<![CDATA[<170> PatentIn version 3.5]]>
<![CDATA[<210> 1]]>
<![CDATA[<211> 732]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4]]>
<![CDATA[<400> 1]]>
atgaggagcc ggaagctcac aggtgcagtg cggtcttcag cgcgcttgaa agcacgaagt 60
tgttcggcag ccaggttggc ctctgcccag gaagttgctg gttccacgtc tgccaagaca 120
gcatgtctga cttcctcatc ccacaaagcc acagacacgc gaacgtccaa gaagttcaaa 180
tgtgacaaag gacatcttgt gaagtcagaa ttacagaagc ttgtccctaa gaatgacagc 240
gcttctttgc caaaagtgac acctgagacc ccttgtgaaa atgagtttgc tgaaggcagt 300
gccttgcttc caggcagcga ggctggcgtt tctgtgcagc agggggctgc aagtcttcct 360
ctcggtggct gcagagttgt gagtgactct cgcttagcaa agactagaga tggcctgtcc 420
gtgccaaaac acagtgccgg gtccggagca gaagaatcca acagcagctc cactgtgcag 480
aagcagaatg agccagggct acagacagag gatgtgcaga agccaccact tcagatggac 540
aacagcgtct ttctagatga cgacagcaat cagccaatgc ccgtgagccg gttctttgga 600
aacgttgagc tcatgcagga cctcccacct gcgtcttcat cttgtccttc aatgagcaga 660
cgagagttca gaaaaatgca tttcagagcc aaagatgatg atgatgacga cgacgatgat 720
gcagaaatgt ag 732
<![CDATA[<210> 2]]>
<![CDATA[<211> 72]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_1]]>
<![CDATA[<400> 2]]>
atgaggagcc ggaagctcac aggtgcagtg cggtcttcag cgcgcttgaa agcacgaagt 60
tgttcwwttt tt 72
<![CDATA[<210> 3]]>
<![CDATA[<211> 71]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_2]]>
<![CDATA[<400> 3]]>
acgtggaacc agcaacttcc tgggcagagg ccaacctggc tgccgaacaa cttcgtgctt 60
tcaawwtttt t 71
<![CDATA[<210> 4]]>
<![CDATA[<211> 67]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_3]]>
<![CDATA[<400> 4]]>
gttgctggtt ccacgtctgc caagacagca tgtctgactt cctcatccca caaagccaca 60
wwttttt 67
<![CDATA[<210> 5]]>
<![CDATA[<211> 71]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_4]]>
<![CDATA[<400> 5]]>
acaagatgtc ctttgtcaca tttgaacttc ttggacgttc gcgtgtctgt ggctttgtgg 60
gatgwwtttt t 71
<![CDATA[<210> 6]]>
<![CDATA[<211> 68]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_5]]>
<![CDATA[<400> 6]]>
tgtgacaaag gacatcttgt gaagtcagaa ttacagaagc ttgtccctaa gaatgacagc 60
gwwttttt 68
<![CDATA[<210> 7]]>
<![CDATA[<211> 62]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_6]]>
<![CDATA[<400> 7]]>
cacaaggggt ctcaggtgtc acttttggca aagaagcgct gtcattctta gggacwwttt 60
tt 62
<![CDATA[<210> 8]]>
<![CDATA[<211> 70]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_7]]>
<![CDATA[<400> 8]]>
acctgagacc ccttgtgaaa atgagtttgc tgaaggcagt gccttgcttc caggcagcga 60
ggcwwttttt 70
<![CDATA[<210> 9]]>
<![CDATA[<211> 72]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_9]]>
<![CDATA[<400> 9]]>
gcagccaccg agaggaagac ttgcagcccc ctgctgcaca gaaacgccag cctcgctgcc 60
tggaawwttt tt 72
<![CDATA[<210> 10]]>
<![CDATA[<211> 72]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_9]]>
<![CDATA[<400> 10]]>
tcctctcggt ggctgcagag ttgtgagtga ctctcgctta gcaaagacta gagatggcct 60
gtccgwwttt tt 72
<![CDATA[<210> 11]]>
<![CDATA[<211> 62]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_10]]>
<![CDATA[<400> 11]]>
tggattcttc tgctccggac ccggcactgt gttttggcac ggacaggcca tctctwwttt 60
tt 62
<![CDATA[<210> 12]]>
<![CDATA[<211> 69]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_11]]>
<![CDATA[<400> 12]]>
ccggagcaga agaatccaac agcagctcca ctgtgcagaa gcagaatgag ccagggctac 60
agwwttttt 69
<![CDATA[<210> 13]]>
<![CDATA[<211> 67]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_12]]>
<![CDATA[<400> 13]]>
acgctgttgt ccatctgaag tggtggcttc tgcacatcct ctgtctgtag ccctggctca 60
wwttttt 67
<![CDATA[<210> 14]]>
<![CDATA[<211> 71]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_13]]>
<![CDATA[<400> 14]]>
cagatggaca acagcgtctt tctagatgac gacagcaatc agccaatgcc cgtgagccgg 60
ttctwwtttt t 71
<![CDATA[<210> 15]]>
<![CDATA[<211> 69]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_14]]>
<![CDATA[<400> 15]]>
gatgaagacg caggtgggag gtcctgcatg agctcaacgt ttccaaagaa ccggctcacg 60
ggwwttttt 69
<![CDATA[<210> 16]]>
<![CDATA[<211> 72]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_15]]>
<![CDATA[<400> 16]]>
ccacctgcgt cttcatcttg tccttcaatg agcagacgag agttcagaaa aatgcatttc 60
agagcwwttt tt 72
<![CDATA[<210> 17]]>
<![CDATA[<211> 71]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_16]]>
<![CDATA[<400> 17]]>
ctacatttct gcatcatcgt cgtcgtcatc atcatcatct ttggctctga aatgcatttt 60
tctgwwtttt t 71
<![CDATA[<210> 18]]>
<![CDATA[<211> 65]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_F]]>
<![CDATA[<400> 18]]>
atgaggagcc ggaagctcac aggtgcagtg cggtcttcag cgcgcttgaa agcacgaagt 60
tgttc 65
<![CDATA[<210> 19]]>
<![CDATA[<211> 64]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 4_R]]>
<![CDATA[<400> 19]]>
ctacatttct gcatcatcgt cgtcgtcatc atcatcatct ttggctctga aatgcatttt 60
tctg 64
<![CDATA[<210> 20]]>
<![CDATA[<211> 500]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13]]>
<![CDATA[<400> 20]]>
ccgagctcgg atccgccacc atatgggcat ggagggtctt ctccagaact ccactaactt 60
cgtcctcaca ggcctcatca cccatcctgc cttccccggg cttctctttg caatagtctt 120
ctccatcttt gtggtggcta taacagccaa cttggtcatg attctgctca tccacatgga 180
ctcccgcctc cacacaccca tgtacttctt gctcagccag ctctccatca tggataccat 240
ctacatctgt atcactgtcc ccaagatgct ccaggacctc ctgtccaagg acaagaccat 300
ttccttcctg ggctgtgcag ttcagatctt cctctacctg accctgattg gaggggaatt 360
cttcctgctg ggtctcatgg cctatgaccg ctatgtggct gtgtgcaacc ctctacggta 420
ccctctcctc atgaaccgca gggtttgctt attcatggtg gtcggctcct gggttggtgg 480
ttccttggat gggttcatgc 500
<![CDATA[<210> 21]]>
<![CDATA[<211> 72]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_1]]>
<![CDATA[<400> 21]]>
ccgagctcgg atccgccacc atatgggcat ggagggtctt ctccagaact ccactaactt 60
cgtccwwttt tt 72
<![CDATA[<210> 22]]>
<![CDATA[<211> 66]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_2]]>
<![CDATA[<400> 22]]>
gaagcccggg gaaggcagga tgggtgatga ggcctgtgag gacgaagtta gtggagttcw 60
wttttt 66
<![CDATA[<210> 23]]>
<![CDATA[<211> 66]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_3]]>
<![CDATA[<400> 23]]>
gccttccccg ggcttctctt tgcaatagtc ttctccatct ttgtggtggc tataacagcw 60
wttttt 66
<![CDATA[<210> 24]]>
<![CDATA[<211> 64]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_4]]>
<![CDATA[<400> 24]]>
cgggagtcca tgtggatgag cagaatcatg accaagttgg ctgttatagc caccacawwt 60
tttt 64
<![CDATA[<210> 25]]>
<![CDATA[<211> 62]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_5]]>
<![CDATA[<400> 25]]>
tccacatgga ctcccgcctc cacacaccca tgtacttctt gctcagccag ctctcwwttt 60
tt 62
<![CDATA[<210> 26]]>
<![CDATA[<211> 67]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_6]]>
<![CDATA[<400> 26]]>
gcatcttggg gacagtgata cagatgtaga tggtatccat gatggagagc tggctgagca 60
wwttttt 67
<![CDATA[<210> 27]]>
<![CDATA[<211> 62]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_7]]>
<![CDATA[<400> 27]]>
cactgtcccc aagatgctcc aggacctcct gtccaaggac aagaccattt ccttcwwttt 60
tt 62
<![CDATA[<210> 28]]>
<![CDATA[<211> 66]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_8]]>
<![CDATA[<400> 28]]>
cagggtcagg tagaggaaga tctgaactgc acagcccagg aaggaaatgg tcttgtcctw 60
wttttt 66
<![CDATA[<210> 29]]>
<![CDATA[<211> 62]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_9]]>
<![CDATA[<400> 29]]>
ttcctctacc tgaccctgat tggaggggaa ttcttcctgc tgggtctcat ggcctwwttt 60
tt 62
<![CDATA[<210> 30]]>
<![CDATA[<211> 63]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_10]]>
<![CDATA[<400> 30]]>
gggtaccgta gagggttgca cacagccaca tagcggtcat aggccatgag acccagwwtt 60
ttt 63
<![CDATA[<210> 31]]>
<![CDATA[<211> 65]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_11]]>
<![CDATA[<400> 31]]>
aaccctctac ggtaccctct cctcatgaac cgcagggttt gcttattcat ggtggtcgww 60
ttttt 65
<![CDATA[<210> 32]]>
<![CDATA[<211> 62]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_12]]>
<![CDATA[<400> 32]]>
gcatgaaccc atccaaggaa ccaccaaccc aggagccgac caccatgaat aagcawwttt 60
tt 62
<![CDATA[<210> 33]]>
<![CDATA[<211> 65]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_F]]>
<![CDATA[<400> 33]]>
ccgagctcgg atccgccacc atatgggcat ggagggtctt ctccagaact ccactaactt 60
cgtcc 65
<![CDATA[<210> 34]]>
<![CDATA[<211> 55]]>
<![CDATA[<212> DNA]]>
<![CDATA[<213> Artificial sequence]]>
<![CDATA[<220>]]>
<![CDATA[<223> Gene_Frag 13_R]]>
<![CDATA[<400> 34]]>
gcatgaaccc atccaaggaa ccaccaaccc aggagccgac caccatgaat aagca 55
Claims (43)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811313909.7 | 2018-11-06 | ||
CN201811313909 | 2018-11-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202045732A TW202045732A (en) | 2020-12-16 |
TWI845557B true TWI845557B (en) | 2024-06-21 |
Family
ID=70612187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108140278A TWI845557B (en) | 2018-11-06 | 2019-11-06 | A high-throughput gene synthesis method based on chip primer surface extraction |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN113166803B (en) |
TW (1) | TWI845557B (en) |
WO (1) | WO2020094040A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013096839A1 (en) | 2011-12-22 | 2013-06-27 | Somagenics, Inc. | Methods of constructing small rna libraries and their use for expression profiling of target rnas |
EP3394292B1 (en) | 2015-12-21 | 2021-04-28 | RealSeq Biosciences, Inc. | Methods of library construction for polynucleotide sequencing |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200911987A (en) * | 2007-08-13 | 2009-03-16 | Network Biosystems Inc | Methods for rapid multiplexed amplification of target nucleic acids |
CN101657548A (en) * | 2006-12-13 | 2010-02-24 | 卢米耐克斯公司 | The system and method that is used for multiplex analysis of PCR in real time |
CN101906476A (en) * | 2010-07-30 | 2010-12-08 | 中国科学院苏州纳米技术与纳米仿生研究所 | Suspension chip-based multiple solid phase amplification detection method |
CN102971437A (en) * | 2010-05-07 | 2013-03-13 | 基因矩阵公司 | Primer composition for amplifying a gene region having diverse variations in a target gene |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101870717B (en) * | 2010-05-28 | 2012-09-05 | 中国人民解放军军事医学科学院放射与辐射医学研究所 | Oligonucleotide direct condensation method reagent and application thereof |
CN106674283A (en) * | 2016-12-15 | 2017-05-17 | 中国科学院北京基因组研究所 | Reversible terminal termination functional nucleotide capable of completely removing scars and application of reversible terminal termination functional nucleotide |
CN108395462B (en) * | 2017-12-13 | 2021-10-01 | 通用生物系统(安徽)有限公司 | Novel DNA probe synthesis method for Y-STR locus detection |
-
2019
- 2019-11-06 CN CN201980072942.1A patent/CN113166803B/en active Active
- 2019-11-06 TW TW108140278A patent/TWI845557B/en active
- 2019-11-06 WO PCT/CN2019/115911 patent/WO2020094040A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101657548A (en) * | 2006-12-13 | 2010-02-24 | 卢米耐克斯公司 | The system and method that is used for multiplex analysis of PCR in real time |
TW200911987A (en) * | 2007-08-13 | 2009-03-16 | Network Biosystems Inc | Methods for rapid multiplexed amplification of target nucleic acids |
CN102971437A (en) * | 2010-05-07 | 2013-03-13 | 基因矩阵公司 | Primer composition for amplifying a gene region having diverse variations in a target gene |
CN101906476A (en) * | 2010-07-30 | 2010-12-08 | 中国科学院苏州纳米技术与纳米仿生研究所 | Suspension chip-based multiple solid phase amplification detection method |
Non-Patent Citations (1)
Title |
---|
期刊 EROSHENKO N. ET AL "Gene Assembly from Chip-Synthesized Oligonucleotides" CURR PROTOC CHEM BIOL. vol. 4 Mar 2012 pages 1 - 17 * |
Also Published As
Publication number | Publication date |
---|---|
TW202045732A (en) | 2020-12-16 |
CN113166803B (en) | 2024-04-30 |
CN113166803A (en) | 2021-07-23 |
WO2020094040A1 (en) | 2020-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220333096A1 (en) | Methods for the production of long length clonal sequence verified nucleic acid constructs | |
US20210139888A1 (en) | Methods for sorting nucleic acids and multiplexed preparative in vitro cloning | |
Matzas et al. | High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing | |
JP5196846B2 (en) | Probe set, probe carrier, test method and DNA detection kit | |
JP5196847B2 (en) | Probe set, probe carrier and inspection method | |
JP5196857B2 (en) | Probe set, probe carrier and inspection method | |
JP5196855B2 (en) | Probe set, probe carrier and inspection method | |
JP5196867B2 (en) | Probe set, probe carrier and inspection method | |
JP2008278860A (en) | Probe, probe set, probe carrier and method for testing | |
JP2008278848A (en) | Probe, probe set, probe carrier and method for testing | |
JP2008278869A (en) | Probe, probe set, probe carrier and method for testing | |
JP2008278861A (en) | Probe, probe set, probe carrier and examination method | |
JP2008278859A (en) | Probe, probe set, probe carrier and examination method | |
JP2008278845A (en) | Probe, probe set, probe carrier and method for testing | |
JP2008278843A (en) | Probe, probe set, probe carrier and examination method | |
JP2008278866A (en) | Probe, probe set, probe carrier and examination method | |
JP2008278867A (en) | Probe, probe set, probe carrier and examination method | |
JP2008278844A (en) | Probe, probe set, probe carrier and method for testing | |
TWI845557B (en) | A high-throughput gene synthesis method based on chip primer surface extraction | |
CN106566828A (en) | Efficient whole-genome chromosome conformation capture technology (eHi-C) | |
JP2008278852A (en) | Probe, probe set, probe carrier and examination method | |
AU2009200805A1 (en) | Methods to identify evolutionary significant changes in polynucleotides and polypeptide sequences in domesticated plants and animals | |
US7252966B2 (en) | EG307 polynucleotides and uses thereof | |
CN110846434A (en) | Primer and kit for identifying tea tree varieties and identification method thereof | |
Matzas et al. | Next Generation Gene Synthesis by targeted retrieval of bead-immobilized, sequence verified DNA clones from a high throughput pyrosequencing device |