TWI844671B - Radiation-resistant inorganic materials and their fibers - Google Patents

Radiation-resistant inorganic materials and their fibers Download PDF

Info

Publication number
TWI844671B
TWI844671B TW109113728A TW109113728A TWI844671B TW I844671 B TWI844671 B TW I844671B TW 109113728 A TW109113728 A TW 109113728A TW 109113728 A TW109113728 A TW 109113728A TW I844671 B TWI844671 B TW I844671B
Authority
TW
Taiwan
Prior art keywords
mass
radiation
al2o3
fiber
content
Prior art date
Application number
TW109113728A
Other languages
Chinese (zh)
Other versions
TW202104125A (en
Inventor
深澤裕
Original Assignee
日商新日本纖維股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2019/039911 external-priority patent/WO2020217568A1/en
Application filed by 日商新日本纖維股份有限公司 filed Critical 日商新日本纖維股份有限公司
Publication of TW202104125A publication Critical patent/TW202104125A/en
Application granted granted Critical
Publication of TWI844671B publication Critical patent/TWI844671B/en

Links

Abstract

本發明之課題在於提供一種抗放射線性優異、且熔融紡絲性優異之無機材料。 於包含SiO2 、Al2 O3 、CaO及Fe2 O3 作為成分之無機材料中,藉由使該無機材料中之上述成分以氧化物換算之質量百分率為以下範圍,可製成熔融紡絲性優異、且抗放射線性優異之無機材料,上述範圍係指: i)SiO2 及Al2 O3 之合計含量為40質量%以上且70質量%以下; ii)Al2 O3 /(SiO2 +Al2 O3 )(質量比)於0.15~0.40之範圍內; iii)Fe2 O3 之含量為16質量%以上且25質量%以下; iv)CaO之含量為5~30質量%。The subject of the present invention is to provide an inorganic material having excellent radiation resistance and excellent melt-spinning properties. In an inorganic material containing SiO 2 , Al 2 O 3 , CaO and Fe 2 O 3 as components, an inorganic material having excellent melt-spinning property and excellent radiation resistance can be produced by making the mass percentage of the above components in the inorganic material as oxides within the following ranges, wherein: i) the total content of SiO 2 and Al 2 O 3 is 40 mass % or more and 70 mass % or less; ii) Al 2 O 3 /(SiO 2 +Al 2 O 3 ) (mass ratio) is within the range of 0.15 to 0.40; iii) the content of Fe 2 O 3 is 16 mass % or more and 25 mass % or less; iv) the content of CaO is 5 to 30 mass %.

Description

抗放射線性無機材料及其纖維Radiation-resistant inorganic materials and their fibers

本發明係關於一種抗放射線性優異之新穎之無機材料及其纖維。更詳細而言,係關於一種熔融紡絲性優異之抗放射線性無機材料及其纖維。The present invention relates to a novel inorganic material having excellent radiation resistance and its fiber. More specifically, it relates to a radiation resistance inorganic material having excellent melt-spinning property and its fiber.

因2011年3月襲擊日本東部之大地震(東日本大地震),核能發電廠受災,不得已投入極大勞力、資源進行廢爐處理、放射性廢棄物處理。Due to the Great East Japan Earthquake that struck eastern Japan in March 2011, nuclear power plants were damaged and a huge amount of manpower and resources had to be invested in decommissioning furnaces and handling radioactive waste.

另一方面,東日本大地震之後,強化了對於核反應爐之安全限制,其結果是很多核能發電廠被終止,火力發電之比率增加。作為火力發電之燃料,煤被大量使用,但此舉會產生大量飛灰。以往,飛灰係作為廢棄物而被處置,但近年來逐步作為混凝土混合材料而利用,其結果是廢棄量減少。然而,擔心該利用大部分依賴於水泥領域,若水泥需求停滯則被廢棄處置之飛灰會轉而再次增加。因此,開拓飛灰之新穎之用途成為緊迫之課題。再者,飛灰之組成因原料之煤、產生地(發電廠、國家)而存在差異。On the other hand, after the Great East Japan Earthquake, safety restrictions on nuclear reactors were strengthened, resulting in the closure of many nuclear power plants and an increase in the proportion of thermal power generation. Coal is used in large quantities as a fuel for thermal power generation, but this produces a large amount of fly ash. In the past, fly ash was disposed of as waste, but in recent years it has gradually been used as a concrete admixture, resulting in a decrease in waste. However, there are concerns that most of this utilization depends on the cement field, and if the demand for cement stagnates, the amount of fly ash that is disposed of will increase again. Therefore, exploring new uses for fly ash has become an urgent issue. Furthermore, the composition of fly ash varies depending on the raw material coal and the place of production (power plant, country).

作為飛灰之高度利用之示例,例如日本特開平6-316815(以下稱為專利文獻1)中揭示有一種飛灰纖維,其特徵在於:含有20~40%之Al2 O3 、35~50%之SiO2 、15~35%之CaO、3~12%之Fe2 O3 及2~5%之MgO。同文獻中記載:「飛灰纖維中亦含有之Fe2 O3 含量為3~12%。該含量較理想為儘可能少。又,若Fe2 O3 含量增加,則飛灰纖維之著色程度提高而不佳。由此,Fe2 O3 含量為12%以上時,存在較多問題,必須避免」(同文獻,段落[0054])。 除飛灰纖維以外,例如關於礦物纖維,日本特表2018-531204(以下稱為專利文獻2)中揭示有一種礦物纖維,其係包含Al2 O3 、SiO2 、CaO、MgO及Fe2 O3 作為成分之礦物纖維,其特徵在於Fe2 O3 含量為5~15%。同文獻中記載:「鐵含量之增加存在使礦物纖維著色之傾向,尤其是於礦物纖維保持可見狀態之用途中較不理想」(同文獻,段落[0005])。 專利文獻1及專利文獻2於均以Al2 O3 、SiO2 、CaO及Fe2 O3 作為必須組成之方面有共通點,且均敍述有必須將Fe2 O3 之含量限制為規定量以下(專利文獻1中為12%以下,專利文獻2中為15%以下)之意旨。 此外,日本特開昭60-231440(以下稱為專利文獻3)、日本特開平10-167754(以下稱為專利文獻4)中揭示有一種玻璃、玻璃化材料,其中上述玻璃之特徵在於以Al2 O3 、SiO2 、CaO及Fe2 O3 作為必須組成,且各氧化物成分之含量處於特定範圍中。 此外,材料研究通報[Materials Research Bulletin]36(2001)1513-1520(以下稱為非專利文獻2)中記載有一種以針鐵礦(goethite,FeOOH)產業廢棄物作為試樣之氧化鐵(Fe2 O3 )含量與磁性之關係。 再者,專利文獻1、2、3、4及非專利文獻2中之任一者均未提及抗放射線性。 此處,如上所述,於受災核能發電設備之處理、及放射線污染廢棄物或放射線污染殘土之處理、或放射性廢棄物處理中,抗放射線性材料不可或缺。 作為抗放射線性材料,以玄武岩(Basalt)作為原料之玄武岩纖維受到關注,但據發明人所知,還未見論述其組成與抗放射線性關係之文獻。再者,理科年表(以下稱為非專利文獻1)中介紹了玄武岩之種類及組成如下(表1)。As an example of high utilization of fly ash, Japanese Patent Application Laid-Open No. 6-316815 (hereinafter referred to as Patent Document 1) discloses a fly ash fiber characterized by containing 20-40% Al 2 O 3 , 35-50% SiO 2 , 15-35% CaO, 3-12% Fe 2 O 3 and 2-5% MgO. The same document states: "The content of Fe 2 O 3 also contained in the fly ash fiber is 3-12%. The content is preferably as small as possible. In addition, if the Fe 2 O 3 content increases, the coloring degree of the fly ash fiber increases and is not good. Therefore, when the Fe 2 O 3 content is 12% or more, there are many problems and it must be avoided" (the same document, paragraph [0054]). In addition to fly ash fibers, for example, regarding mineral fibers, Japanese Patent Publication No. 2018-531204 (hereinafter referred to as Patent Document 2) discloses a mineral fiber comprising Al 2 O 3 , SiO 2 , CaO, MgO, and Fe 2 O 3 as components, and characterized in that the Fe 2 O 3 content is 5 to 15%. The same document states: "The increase in iron content tends to color the mineral fiber, which is particularly undesirable in applications where the mineral fiber is kept visible" (the same document, paragraph [0005]). Patent Document 1 and Patent Document 2 have in common that they both have Al 2 O 3 , SiO 2 , CaO and Fe 2 O 3 as essential components, and both state that the content of Fe 2 O 3 must be limited to a specified amount or less (12% or less in Patent Document 1, 15% or less in Patent Document 2). In addition, Japanese Patent Application Laid-Open No. 60-231440 (hereinafter referred to as Patent Document 3) and Japanese Patent Application Laid-Open No. 10-167754 (hereinafter referred to as Patent Document 4) disclose a glass and a vitrified material, wherein the glass is characterized in that it has Al 2 O 3 , SiO 2 , CaO and Fe 2 O 3 as essential components, and the content of each oxide component is within a specific range. In addition, Materials Research Bulletin 36 (2001) 1513-1520 (hereinafter referred to as non-patent document 2) describes the relationship between the iron oxide (Fe 2 O 3 ) content and magnetic properties of goethite (FeOOH) industrial waste as a sample. Furthermore, none of Patent Documents 1, 2, 3, 4 and Non-Patent Document 2 mentions radiation resistance. Here, as mentioned above, radiation-resistant materials are indispensable in the treatment of damaged nuclear power generation facilities, the treatment of radioactive waste or radioactive soil, or the treatment of radioactive waste. As a radiation-resistant material, basalt fiber made of basalt has attracted attention, but as far as the inventor knows, there is no literature discussing the relationship between its composition and radiation resistance. In addition, the scientific chronology (hereinafter referred to as non-patent document 1) introduces the types and composition of basalt as follows (Table 1).

[表1] <玄武岩之種類及組成  出處:理科年表> 成分 鹼性玄武岩 洪流玄武岩 洋島玄武岩 海底玄武岩 島弧玄武岩 SiO2 45.4 50.01 50.51 50.68 51.9 Al2 O3 14.7 17.08 13.45 15.6 16 Fe2 O3 4.1 - 1.78 - - FeO 9.2 10.01 9.59 9.85 9.56 CaO 10.5 11.01 11.18 11.44 11.8 MnO - 0.14 0.17 - 0.17 MgO 7.8 7.84 7.41 7.69 6.77 TiO2 3 1 2.63 1.49 0.8 Na2 O 3 2.44 2.28 2.66 2.42 K2 O 1 0.27 0.49 0.17 0.44 P2 O5 - 0.19 0.28 0.12 0.11 合計 98.7 99.99 99.77 99.7 100 此外,玄武岩纖維之評論性文章(國際科學期刊[International Journal of Textile Science]2012,1(4):19-28,非專利文獻3)中,作為玄武岩之代表組成,記載有SiO2 :52.8%,Al2 O3 :17.5,Fe2 O3 :10.3,CaO:8.59%。 [先前技術文獻] [專利文獻][Table 1] <Types and composition of basalt Source: Chronology of science> Element Alkaline basalt Flood basalt Oceanic island basalt Seafloor basalt Island arc basalt SiO 2 45.4 50.01 50.51 50.68 51.9 Al 2 O 3 14.7 17.08 13.45 15.6 16 Fe2O3 4.1 - 1.78 - - FeO 9.2 10.01 9.59 9.85 9.56 CaO 10.5 11.01 11.18 11.44 11.8 MnO - 0.14 0.17 - 0.17 MgO 7.8 7.84 7.41 7.69 6.77 TiO2 3 1 2.63 1.49 0.8 Na2O 3 2.44 2.28 2.66 2.42 K2O 1 0.27 0.49 0.17 0.44 P2O5 - 0.19 0.28 0.12 0.11 Total 98.7 99.99 99.77 99.7 100 In addition, a review article on basalt fiber (International Journal of Textile Science 2012, 1 (4): 19-28, non-patent document 3) records SiO 2 : 52.8%, Al 2 O 3 : 17.5, Fe 2 O 3 : 10.3, CaO: 8.59% as the representative composition of basalt. [Prior Art Document] [Patent Document]

[專利文獻1]日本特開平6-316815 [專利文獻2]日本特表2018-531204 [專利文獻3]日本特開昭60-231440 [專利文獻4]日本特開平10-167754 [非專利文獻][Patent document 1] Japanese Patent Publication No. 6-316815 [Patent document 2] Japanese Patent Publication No. 2018-531204 [Patent document 3] Japanese Patent Publication No. 60-231440 [Patent document 4] Japanese Patent Publication No. 10-167754 [Non-patent document]

[非專利文獻1]理科年表2019年版(國立天文台編) [非專利文獻2]材料研究通報[Materials Research Bulletin]36(2001)1513-1520 [非專利文獻3]國際科學期刊[International Journal of Textile Science]2012,1(4):19-28[Non-patent document 1] Chronology of Science 2019 Edition (Edited by National Astronomical Observatory of Japan) [Non-patent document 2] Materials Research Bulletin 36 (2001) 1513-1520 [Non-patent document 3] International Journal of Textile Science 2012, 1 (4): 19-28

[發明所欲解決之課題][The problem that the invention wants to solve]

如上所述,據本發明人所知,尚未發現以提升抗放射線性為目的之對包含SiO2 、Al2 O3 及Fe2 O3 作為主要成分之無機材料之研究。 因此,本發明人以提升抗放射線性為目的,致力於包含SiO2 、Al2 O3 及Fe2 O3 作為主要成分之無機材料之抗放射線性之改良,尤其致力於熔融紡絲性優異之抗放射線性無機材料之開發。 [解決課題之技術手段]As described above, to the best of the knowledge of the inventors, there has been no research on inorganic materials containing SiO 2 , Al 2 O 3 and Fe 2 O 3 as main components for the purpose of improving radiation resistance. Therefore, the inventors have been committed to improving the radiation resistance of inorganic materials containing SiO 2 , Al 2 O 3 and Fe 2 O 3 as main components, and in particular, have been committed to developing radiation-resistant inorganic materials with excellent melt-spinnability. [Technical means for solving the problem]

結果發現,於以SiO2 及Al2 O3 作為主要成分之無機材料中,SiO2 及Al2 O3 之合計於特定範圍內,SiO2 及Al2 O3 之合計中Al2 O3 所占之比率於特定範圍內,進而以特定量各別含有Fe2 O3 及CaO時抗放射線性及熔融紡絲性優異,結果,完成了適宜用於放射線被照射部之材料。 即,本發明係一種適宜用於放射線被照射部之無機材料,其係包含SiO2 、Al2 O3 、CaO及Fe2 O3 作為成分之無機材料,且 該無機材料中之各成分以氧化物換算之質量百分率為: i)SiO2 及Al2 O3 之合計含量為40質量%以上且70質量%以下; ii)SiO2 及Al2 O3 之合計中Al2 O3 所占之比率(質量比)於0.15~0.40之範圍內; iii)Fe2 O3 之含量為16質量%以上且25質量%以下; iv)CaO之含量為5質量%以上且30質量%以下。 之後,上述i)~iv)有時會簡寫為「關於組成之本發明之4要件」。 採用本發明之無機材料之放射線被照射部之具體例如下所述。As a result, it was found that in an inorganic material with SiO2 and Al2O3 as the main components, when the total of SiO2 and Al2O3 is within a specific range, the ratio of Al2O3 to the total of SiO2 and Al2O3 is within a specific range, and when Fe2O3 and CaO are contained in specific amounts respectively, the radiation resistance and melt-spinning properties are excellent. As a result, a material suitable for use in radiation-irradiated areas was completed. That is, the present invention is an inorganic material suitable for use in a radiation irradiated part, which is an inorganic material containing SiO 2 , Al 2 O 3 , CaO and Fe 2 O 3 as components, and the mass percentage of each component in the inorganic material in terms of oxide conversion is: i) the total content of SiO 2 and Al 2 O 3 is 40 mass % or more and 70 mass % or less; ii) the ratio (mass ratio) of Al 2 O 3 in the total of SiO 2 and Al 2 O 3 is in the range of 0.15 to 0.40; iii) the content of Fe 2 O 3 is 16 mass % or more and 25 mass % or less; iv) the content of CaO is 5 mass % or more and 30 mass % or less. Hereinafter, the above i) to iv) may be abbreviated as "the four requirements of the present invention regarding the composition". Specific examples of the radiation irradiated portion using the inorganic material of the present invention are as follows.

再者,於本發明中,各原料之摻合混合物中之成分比與將該混合物熔融後之材料中之成分比未見實質性差。因此,可將摻合混合物中之成分比作為材料成分比。 本發明之無機材料係以成分中之SiO2 、Al2 O3 、Fe2 O3 及CaO之比率處於上述範圍內之方式調整原料之摻合比率後,經熔融而成為最終之無機材料。 如下所述,若以使原料處於上述範圍內之方式進行摻合,則由於原料於不過高之溫度下會熔融,且熔融物具有適度之黏性,故熔融紡絲性優異。又,所獲得之無機材料成為抗放射線性非常優異者。Furthermore, in the present invention, there is no substantial difference between the component ratio in the blended mixture of each raw material and the component ratio in the material after the mixture is melted . Therefore, the component ratio in the blended mixture can be used as the material component ratio. The inorganic material of the present invention is obtained by adjusting the blending ratio of the raw materials in such a way that the ratio of SiO2 , Al2O3 , Fe2O3 and CaO in the components is within the above range, and then melting to form the final inorganic material. As described below, if the raw materials are blended in such a way that they are within the above range, the raw materials will melt at a temperature that is not too high, and the melt has a moderate viscosity, so the melt-spinning property is excellent. In addition, the obtained inorganic material becomes one with very excellent radiation resistance.

本發明之無機材料中之SiO2 及Al2 O3 之合計含量為40質量%以上且70質量%以下。再者,於以下說明中,SiO2 有時簡稱為S成分,SiO2 之含量有時表示為[S]。同樣,Al2 O3 有時簡稱為A成分,Al2 O3 之含量有時表示為[A]。於[S]及[A]之合計處於上述範圍外,即處於未達40質量%、或超過70質量%中之任一情形時,材料之熔融溫度變高,或其熔融物之黏度變高或相反熔融黏度變得過低,而成為熔融紡絲性較差者。The total content of SiO 2 and Al 2 O 3 in the inorganic material of the present invention is 40 mass % or more and 70 mass % or less. In the following description, SiO 2 is sometimes referred to as the S component, and the content of SiO 2 is sometimes represented as [S]. Similarly, Al 2 O 3 is sometimes referred to as the A component, and the content of Al 2 O 3 is sometimes represented as [A]. When the total of [S] and [A] is outside the above range, that is, it is less than 40 mass % or exceeds 70 mass %, the melting temperature of the material becomes higher, or the viscosity of its melt becomes higher, or conversely, the melt viscosity becomes too low, and the melt spinnability becomes poor.

於本發明之無機材料中,SiO2 及Al2 O3 之合計中Al2 O3 所占之比率([A]/([A]+[S]))(質量比)必須處於0.15~0.40之範圍內。於本要件處於上述範圍外,即於未達0.15、或超過0.40中之任一情形時,材料亦會成為熔融紡絲性較差者。In the inorganic material of the present invention, the ratio of Al 2 O 3 to the total of SiO 2 and Al 2 O 3 ([A]/([A]+[S])) (mass ratio) must be in the range of 0.15 to 0.40. If this requirement is outside the above range, that is, if it is less than 0.15 or exceeds 0.40, the material will also become poor in melt spinnability.

於本發明之無機材料中,Fe2 O3 之含量必須為16質量%以上且25質量%以下。若Fe2 O3 之含量未達16質量%,則材料之抗放射線性變差。另一方面,若其含量超過25質量%,則熔融物之黏性會過低而無法形成纖維。之後,Fe2 O3 有時簡稱為F成分,Fe2 O3 之含量有時表示為[F]。In the inorganic material of the present invention, the content of Fe 2 O 3 must be 16 mass % or more and 25 mass % or less. If the content of Fe 2 O 3 is less than 16 mass %, the radiation resistance of the material will deteriorate. On the other hand, if the content exceeds 25 mass %, the viscosity of the melt will be too low to form fibers. Hereinafter, Fe 2 O 3 is sometimes referred to as the F component, and the content of Fe 2 O 3 is sometimes expressed as [F].

於本發明之無機材料中,CaO之含量較佳為5質量%以上且30質量%以下。 若CaO之含量未達5質量%,則材料之熔融起始溫度會變高,就節能之觀點而言不佳。CaO之含量較佳為10質量%以上。另一方面,若其含量超過30質量%,則熔融物之黏性會過低而不易形成纖維。之後,CaO有時簡稱為C成分,CaO之含量有時表示為[C]。In the inorganic material of the present invention, the content of CaO is preferably 5% by mass or more and 30% by mass or less. If the content of CaO is less than 5% by mass, the melting start temperature of the material will be high, which is not good from the perspective of energy saving. The content of CaO is preferably 10% by mass or more. On the other hand, if the content exceeds 30% by mass, the viscosity of the melt will be too low to form fibers. Hereinafter, CaO is sometimes referred to as component C, and the content of CaO is sometimes expressed as [C].

於獲得本發明之無機材料時,只要SiO2 、Al2 O3 、Fe2 O3 及CaO之比率處於上述範圍內,原料則無制約。 故而,可調製SiO2 、Al2 O3 、Fe2 O3 及CaO各自之化合物作為起始原料,但就原料成本方面而言,較佳為摻合SiO2 含量豐富之二氧化矽源、Al2 O3 含量豐富之氧化鋁源、Fe2 O3 含量豐富之氧化鐵源、CaO含量豐富之氧化鈣源作為起始原料。 作為二氧化矽源,可列舉:非晶質二氧化矽、矽砂、薰製二氧化矽、火山灰,但並不限定於該等。 作為氧化鋁源,除氧化鋁以外,還可列舉莫來石及其他礦石,但並不限定於該等。 作為可成為二氧化矽源且可成為氧化鋁源(矽鋁源)者,可列舉:高嶺石、蒙脫石、長石、沸石,但並不限定於該等。 作為氧化鐵源,可列舉:氧化鐵、氫氧化鐵、鐵礦石,但並不限定於該等。 作為氧化鈣源,除碳酸鈣以外,可列舉方解石、白雲石及其他礦石,但並不限定於該等。When obtaining the inorganic material of the present invention, as long as the ratio of SiO 2 , Al 2 O 3 , Fe 2 O 3 and CaO is within the above range, the raw materials are not restricted. Therefore, compounds of SiO 2 , Al 2 O 3 , Fe 2 O 3 and CaO can be prepared as the starting raw materials, but in terms of raw material cost, it is preferred to use a silicon dioxide source rich in SiO 2 , an aluminum oxide source rich in Al 2 O 3 , an iron oxide source rich in Fe 2 O 3 , and a calcium oxide source rich in CaO as the starting raw materials. As the silicon dioxide source, there can be listed: amorphous silicon dioxide, silica sand, fumed silicon dioxide, volcanic ash, but it is not limited to them. As an aluminum oxide source, in addition to aluminum oxide, mullite and other minerals can be listed, but it is not limited to them. As a source of silicon dioxide and an aluminum oxide source (silicon aluminum source), kaolinite, montmorillonite, feldspar, and zeolite can be listed, but it is not limited to them. As an iron oxide source, iron oxide, iron hydroxide, and iron ore can be listed, but it is not limited to them. As a calcium oxide source, in addition to calcium carbonate, calcite, dolomite, and other minerals can be listed, but it is not limited to them.

另外,火力發電廢棄物或金屬精煉廢棄物亦可有效用作二氧化矽源、氧化鋁源、氧化鐵源、或氧化鈣源之一。 作為上述火力發電廢棄物,可使用飛灰或煤灰。由於飛灰或煤灰富含SiO2 、Al2 O3 ,故適宜作為矽鋁源。可是,由於飛灰、煤灰中Fe2 O3 含量較少,故難以僅憑此而獲得本發明之無機材料。然而,可藉由追加摻合適量之氧化鐵源而以低成本獲得本發明之無機材料。再者,由於作為煤氣化複合發電(IGCC,Integrated coal Gasification Combined Cycle)之廢棄物而產生之煤氣化熔渣(CGS:Coal Gasification Slag)亦與飛灰為大致同等之化學組成,故可成為矽鋁源。由於煤氣化熔渣為顆粒狀,故具有操作性優異之優點。 作為以上所列舉之金屬精煉廢棄物,可列舉:鋼鐵熔渣或銅熔渣。 由於鋼鐵熔渣之CaO含量較高,故可作為氧化鈣源來使用。鋼鐵熔渣中包含高爐熔渣、轉爐熔渣、還原熔渣。 由於銅熔渣之Fe2 O3 含量較高,故可作為氧化鐵源來使用。 因而,可適當使用飛灰、煤熔渣、或煤氣化熔渣作為矽鋁源,使用銅熔渣作為氧化鐵源,使用鋼鐵熔渣作為氧化鈣源。於較佳態樣中,可由產業廢棄物來提供矽鋁源、氧化鐵源及氧化鈣源之大部分。 另外,亦可利用玄武岩、安山岩所代表之火山岩作為矽鋁源。In addition, thermal power generation waste or metal refining waste can also be effectively used as one of the silicon dioxide sources, aluminum oxide sources, iron oxide sources, or calcium oxide sources. As the above-mentioned thermal power generation waste, fly ash or coal ash can be used. Since fly ash or coal ash is rich in SiO2 and Al2O3 , it is suitable as a silicon aluminum source. However, since the Fe2O3 content in fly ash and coal ash is relatively small, it is difficult to obtain the inorganic material of the present invention only by this. However, the inorganic material of the present invention can be obtained at a low cost by adding an appropriate amount of iron oxide source. Furthermore, since coal gasification slag (CGS) produced as a waste of coal gasification combined cycle (IGCC) has a chemical composition roughly equivalent to that of fly ash, it can be a source of silicon and aluminum. Since coal gasification slag is granular, it has the advantage of excellent operability. As the metal refining waste listed above, steel slag or copper slag can be listed. Since the CaO content of steel slag is relatively high, it can be used as a calcium oxide source. Steel slag includes blast furnace slag, converter slag, and reduction slag. Since copper slag has a high Fe2O3 content, it can be used as an iron oxide source. Therefore, fly ash, coal slag, or coal gasification slag can be appropriately used as a silicon aluminum source, copper slag can be used as an iron oxide source, and steel slag can be used as a calcium oxide source. In a preferred embodiment, most of the silicon aluminum source, iron oxide source, and calcium oxide source can be provided by industrial waste. In addition, volcanic rocks represented by basalt and andesite can also be used as a silicon aluminum source.

本發明之無機材料並不排除原料中所包含之不可避免之雜質之混入。作為此種雜質,可例示:MgO、Na2 O、K2 O、TiO2 、CrO2 等。The inorganic material of the present invention does not exclude the inclusion of inevitable impurities contained in the raw materials. Examples of such impurities include MgO, Na2O , K2O , TiO2 , CrO2 , and the like.

由於本發明之無機材料富有非晶性,故於經熔融紡絲加工之纖維中,基本不會因結晶相/非晶質相界面剝離引起強度降低,可獲得高強度之纖維。 此處,作為非晶性之標尺之非晶化度可藉由X射線繞射(XRD)頻譜,利用下述數式(1)而算出。 非晶化度(%)=[Ia/(Ic+Ia)]×100 (1) (數式(1)中,Ic係對上述無機材料進行X射線繞射分析時之結晶質波峰之散射強度之積分值之和,Ia係非晶質暈環之散射強度之積分值之和)。 本發明之無機材料之非晶化度雖亦取決於其組成,但通常顯示出90%以上之值。於非晶化度較高之情形時,亦可達到95%以上,於最高之情形時,纖維成為實質上僅以非晶質相構成者。此處,實質上僅以非晶質相構成係指於X射線繞射頻譜中僅可看到非晶質暈環,無法看見結晶相之波峰。Since the inorganic material of the present invention is rich in amorphous properties, in the melt-spinning fiber, there is basically no strength reduction caused by the peeling of the crystalline phase/amorphous phase interface, and a high-strength fiber can be obtained. Here, the amorphous degree as a measure of amorphous properties can be calculated by the following formula (1) through the X-ray diffraction (XRD) spectrum. Amorphous degree (%) = [Ia/(Ic+Ia)]×100 (1) (In formula (1), Ic is the sum of the integrated values of the scattering intensity of the crystalline peak when performing X-ray diffraction analysis on the above-mentioned inorganic material, and Ia is the sum of the integrated values of the scattering intensity of the amorphous halo). The degree of amorphization of the inorganic material of the present invention also depends on its composition, but generally shows a value of more than 90%. In the case of a higher degree of amorphization, it can also reach more than 95%. In the highest case, the fiber becomes substantially composed of only amorphous phase. Here, substantially composed of only amorphous phase means that only amorphous halo can be seen in the X-ray diffraction spectrum, and no peak of the crystalline phase can be seen.

由本發明之無機材料所構成之材料之抗放射線性可藉由比較該材料之放射線照射前後之維氏硬度而得知。此外,藉由比較放射線照射前後之拉伸強度、材料內孔隙率亦可進行抗放射線性之評價。可採用正子互毀法測定材料內孔隙率。 [發明之效果]The radiation resistance of the material composed of the inorganic material of the present invention can be known by comparing the Vickers hardness of the material before and after radiation irradiation. In addition, the radiation resistance can also be evaluated by comparing the tensile strength and the porosity of the material before and after radiation irradiation. The porosity of the material can be measured by the positron mutual destruction method. [Effects of the invention]

相較於包含SiO2 、Al2 O3 、CaO及Fe2 O3 作為成分之既有之無機材料,由於本發明之無機材料中SiO2 及Al2 O3 之合計、SiO2 及Al2 O3 之合計中Al2 O3 所占之比率、Fe2 O3 之含量及CaO之含量處於特定之範圍內,故本發明之無機材料之抗放射線性優異,且熔融紡絲性優異。Compared to existing inorganic materials containing SiO2 , Al2O3 , CaO and Fe2O3 as components, the inorganic material of the present invention has excellent radiation resistance and excellent melt-spinnability because the total of SiO2 and Al2O3 , the ratio of Al2O3 to the total of SiO2 and Al2O3 , the content of Fe2O3 and the content of CaO are within specific ranges.

以下藉由試驗例對本發明之內容進行具體說明。 再者,於以下之試驗例(實施例、比較例)中,使用下述作為二氧化矽源、氧化鋁源、矽鋁源、氧化鐵源、氧化鈣源。 <二氧化矽源> ·二氧化矽:試劑(於下表6~9中表示為SiO2 (試劑)) <氧化鋁源> ·氧化鋁:試劑(於下表6~9中表示為Al2 O3 (試劑)) <氧化鐵源> ·氧化鐵(III):試劑(於下表6~9中表示為Fe2 O3 (試劑)) ·銅熔渣:日本國內之銅精煉所生產之銅熔渣(於下述表3中表示為FA(10)) <氧化鈣源> ·氧化鈣:試劑(於下表6~9中表示為CaO(試劑))) ·高爐熔渣:日本國內之製鐵所生產之高爐熔渣(於下述表3中表示為FA(13)) ·還原熔渣:日本國內之製鐵所生產之還原熔渣(於下述表3中表示為FA(14)) <矽鋁源> ·飛灰:自日本國內之火力發電所排出之樣本12種(於下述表2及3中表示為FA(1)至FA(9)、FA(12)) ·煤氣化熔渣:自日本國內之煤氣化複合發電廠排出之樣本(於下述表3中表示為FA(11)) ·火山岩:采自秋田縣及福井縣之氧化鐵含量特別高之玄武岩系岩石(於下述表4中表示為BA(1)、BA(2))The content of the present invention is specifically described below by means of test examples. In the following test examples (Example, Comparative Example), the following were used as a silicon dioxide source, an aluminum oxide source, a silicon aluminum source, an iron oxide source, and a calcium oxide source. <Silicon dioxide source> ·Silicon dioxide: Test agent (expressed as SiO 2 (test agent) in Tables 6 to 9 below) <Alumina source> ·Alumina: Test agent (expressed as Al 2 O 3 (test agent) in Tables 6 to 9 below) <Iron oxide source> ·Iron (III) oxide: Test agent (expressed as Fe 2 O 3 (test agent) in Tables 6 to 9 below) ·Copper slag: Copper slag produced by a copper refinery in Japan (expressed as FA (10) in Table 3 below) <Calcium oxide source> ·Calcium oxide: Test agent (expressed as CaO (test agent) in Tables 6 to 9 below) · Blast furnace slag: Blast furnace slag produced by steel mills in Japan (indicated as FA(13) in Table 3 below) · Reduced slag: Reduced slag produced by steel mills in Japan (indicated as FA(14) in Table 3 below) <Silicon aluminum source> · Fly ash: 12 samples discharged from thermal power plants in Japan (indicated as FA(1) to FA(9), FA(12) in Tables 2 and 3 below) · Coal gasification slag: Samples discharged from coal gasification combined power plants in Japan (indicated as FA(11) in Table 3 below) · Volcanic rock: Basaltic rock with a particularly high iron oxide content mined from Akita Prefecture and Fukui Prefecture (indicated as BA(1), BA(2) in Table 4 below)

將上述FA(1)至FA(14)、BA(1)、BA(2)之組成示於表2、3、4中。再者,依據螢光X射線分析法進行成分分析。The compositions of FA(1) to FA(14), BA(1) and BA(2) are shown in Tables 2, 3 and 4. Furthermore, component analysis was performed by fluorescent X-ray analysis.

[表2] <飛灰組成,單位:質量%> 成分 FA(1) FA(2) FA(3) FA(4) FA(5) FA(6) Fe2 O3 [F] 10 5 5 9 10 14 SiO2 [S] 53 61 57 72 51 59 Al2 O3 [A] 13 25 18 11 18 25 CaO[C] 17 0 3 3 12 1 其他 7 9 17 5 9 1 [Table 2] <Fly ash composition, unit: mass %> Element FA (1) FA (2) FA (3) FA (4) FA (5) FA (6) Fe 2 O 3 [F] 10 5 5 9 10 14 SiO 2 [S] 53 61 57 72 51 59 Al 2 O 3 [A] 13 25 18 11 18 25 CaO[C] 17 0 3 3 12 1 other 7 9 17 5 9 1

[表3] <飛灰、熔渣組成,單位:質量%> 成分 FA(7) FA(8) FA(9) FA(10) FA(11) FA(12) FA(13) FA(14) Fe2 O3 [F] 9 13 15 55 9 1 0 1 SiO2 [S] 62 60 59 35 54 73 34 19 Al2 O3 [A] 18 15 15 5 11 22 13 17 CaO[C] 3 5 3 2 17 0 42 55 其他 8 7 8 3 9 4 11 8 備註          銅熔渣 煤氣化熔渣    高爐熔渣 還原熔渣 [Table 3] <Fly ash and slag composition, unit: mass %> Element FA (7) FA (8) FA (9) FA (10) FA (11) FA (12) FA (13) FA (14) Fe 2 O 3 [F] 9 13 15 55 9 1 0 1 SiO 2 [S] 62 60 59 35 54 73 34 19 Al 2 O 3 [A] 18 15 15 5 11 twenty two 13 17 CaO[C] 3 5 3 2 17 0 42 55 other 8 7 8 3 9 4 11 8 Remarks Copper slag Coal gasification slag Blast furnace slag Reduced slag

[表4] <火山岩組成,單位:質量%> 成分 BA(1) BA(2) Fe2 O3 [F] 19 18 SiO2 [S] 46 25 Al2 O3 [A] 11 10 CaO[C] 17 3 其他 7 44 [Table 4] <Volcanic rock composition, unit: mass %> Element BA (1) BA (2) Fe 2 O 3 [F] 19 18 SiO 2 [S] 46 25 Al 2 O 3 [A] 11 10 CaO[C] 17 3 other 7 44

<粉末原料之調整> 於以下試驗例中,將二氧化矽源、氧化鋁源、氧化鐵源、氧化鈣源各自粉碎,以SiO2 、Al2 O3 、Fe2 O3 及CaO成為規定之比率之方式進行調製,以供試驗。<Preparation of Powder Raw Materials> In the following test examples, a silicon dioxide source, an aluminum oxide source, an iron oxide source, and a calcium oxide source were pulverized and prepared so that SiO 2 , Al 2 O 3 , Fe 2 O 3 and CaO were in a predetermined ratio for testing.

<熔融紡絲性之評價> 又,摻合物之熔融紡絲性之評價係依據使用電爐之熔融紡絲試驗。將試驗之概略示於圖1中。於圖1中,電爐(1)之高度(H)為60 cm,外徑(D)為50 cm,其中央具備直徑(d)10 cm之開口部(4)。另一方面,向內徑(ϕ)2.1 cm、長度10 cm之塔曼管(2)中添加摻合物30 g。再者,於塔曼管(2)之底部中央開有直徑2 mm之孔。於熔融試驗中,塔曼管(2)藉由吊桿(3)保持於電爐之開口部(4)內之規定位置上。 若藉由加熱而使摻合物熔融,則摻合物會因自重而自塔曼管之底部流動掉落,接觸外部大氣而固化,成為纖維。 電爐藉由規定之升溫程式而升溫,爐內溫度之最高到達溫度已預先設定為1350℃。此時,預先確認塔曼管內部(熔融物)之溫度以比爐內溫度大致低50℃之溫度追隨。 於本發明中,作為熔融紡絲性之評價之指標,將爐內溫度達到1350℃之前熔融物流動掉落而形成絲,亦即試樣之熔融溫度為1300℃以下且熔融物具有適於形成絲之熔融黏性這一指標設為容許水準。將試樣之熔融舉動大致區分為下述A至D所表示之組。 <評價等級> A:形成絲。 B:雖熔融軟化之試樣將要自塔曼管底部流出,但黏度較高,僅憑自重不至於落下,並未形成絲。 C:由於試樣之熔融並未開始,或熔融不充分,故絲毫無熔融物自塔曼管底部流出。 D:試樣熔融,但熔融物之熔融黏度過低,只會成為液滴滴下而並未形成纖維。 <耐熱性試驗> 由本發明之材料所構成之無機纖維之耐熱性亦優異。為了進行耐熱性之評價而進行了示差熱分析(DTA)。<Evaluation of melt-spinnability> In addition, the evaluation of the melt-spinnability of the blend is based on a melt-spinning test using an electric furnace. The outline of the test is shown in Figure 1. In Figure 1, the height (H) of the electric furnace (1) is 60 cm, the outer diameter (D) is 50 cm, and it has an opening (4) with a diameter (d) of 10 cm in the center. On the other hand, 30 g of the blend is added to a Tamman tube (2) with an inner diameter (φ) of 2.1 cm and a length of 10 cm. Furthermore, a hole with a diameter of 2 mm is opened in the center of the bottom of the Tamman tube (2). In the melt test, the Tamman tube (2) is held at a specified position in the opening (4) of the electric furnace by a hanger (3). If the dope is melted by heating, the dope will flow and fall from the bottom of the Tamman tube due to its own weight, and solidify when it contacts the outside atmosphere to become fiber. The electric furnace is heated according to a prescribed heating program, and the maximum temperature reached in the furnace is preset to 1350°C. At this time, it is confirmed in advance that the temperature inside the Tamman tube (melt) follows a temperature that is approximately 50°C lower than the temperature in the furnace. In the present invention, as an indicator for evaluating melt-spinnability, the melt flows and falls to form a yarn before the temperature in the furnace reaches 1350°C, that is, the melting temperature of the sample is below 1300°C and the melt has a melt viscosity suitable for forming a yarn. This indicator is set as an allowable level. The melting behavior of the sample is roughly divided into the groups represented by A to D below. <Evaluation level> A: Fibers are formed. B: Although the melted and softened sample is about to flow out from the bottom of the Tamman tube, the viscosity is high and it does not fall down by its own weight, and no filaments are formed. C: Since the melting of the sample has not started or the melting is insufficient, no filaments flow out from the bottom of the Tamman tube. D: The sample melts, but the melt viscosity of the melt is too low, and it only becomes droplets and does not form fibers. <Heat resistance test> The inorganic fiber composed of the material of the present invention also has excellent heat resistance. Differential thermal analysis (DTA) was performed to evaluate the heat resistance.

[先前試驗] 適當摻合二氧化矽源、氧化鋁源、氧化鐵源、氧化鈣源後,調製SiO2 、Al2 O3 、Fe2 O3 、CaO含量不同之4種試樣,以供熔融紡絲試驗。試樣3、4滿足所有如上所述之本發明之要件,但試樣1、2係缺少關於Fe2 O3 含量之要件iii)者(表5)。 任一試樣均示出良好之熔融紡絲性。以鈷60作為放射源,於γ射線照射量50 kGy之條件下對所獲得之纖維試樣進行放射線照射試驗,測定照射前後之拉伸強度,求出其保持率。將結果示於表5中。圖3係對試樣中之氧化鐵(Fe2 O3 )含量與放射線照射後之纖維強度保持率之關係進行繪製者。據此可明確:若材料中之氧化鐵(Fe2 O3 )含量為15%以上,則放射線照射後之拉伸強度之保持率會顯著變高。[Previous test] After appropriately mixing a silicon dioxide source, an aluminum oxide source, an iron oxide source, and a calcium oxide source, four samples with different contents of SiO 2 , Al 2 O 3 , Fe 2 O 3 , and CaO were prepared for melt spinning tests. Samples 3 and 4 met all the requirements of the present invention as described above, but samples 1 and 2 lacked the requirement iii) regarding the Fe 2 O 3 content (Table 5). All samples showed good melt spinning properties. Using cobalt 60 as a radiation source, the obtained fiber samples were subjected to a radiation irradiation test under the condition of a gamma ray irradiation dose of 50 kGy, and the tensile strength before and after irradiation was measured to determine its retention rate. The results are shown in Table 5. Figure 3 plots the relationship between the iron oxide (Fe 2 O 3 ) content in the sample and the fiber strength retention rate after radiation exposure. It can be clearly seen that if the iron oxide (Fe 2 O 3 ) content in the material is above 15%, the retention rate of tensile strength after radiation exposure will be significantly increased.

[表5] 試樣中之成分 試樣1 試樣2 試樣3 試樣4 Fe2 O3 [F] 3 11 16 19 SiO2 [S] 51 52 48 42 Al2 O3 [A] 12 18 12 14 CaO[C] 20 9 17 13 其他 14 10 7 12 [S]+[A] 63 70 60 56 [A]/([S]+[A]) 0.19 0.26 0.20 0.25 [F] 3 11 16 19 [C] 20 9 17 13 放射線照射後之纖維強度之保持率(%) 30 58 99 99 熔融紡絲性 A A A A [table 5] Ingredients in the sample Sample 1 Sample 2 Sample 3 Sample 4 Fe 2 O 3 [F] 3 11 16 19 SiO 2 [S] 51 52 48 42 Al 2 O 3 [A] 12 18 12 14 CaO[C] 20 9 17 13 other 14 10 7 12 [S]+[A] 63 70 60 56 [A]/([S]+[A]) 0.19 0.26 0.20 0.25 [F] 3 11 16 19 [C] 20 9 17 13 Fiber strength retention after radiation exposure (%) 30 58 99 99 Melt spinnability A A A A

[實施例1] 摻合FA(1)30質量份、BA(1)70質量份。本試樣係與上述先前試驗中所使用之試樣3為同一組成者。本試樣之成分比為:[S]+[A]:60質量%,[A]/([S]+[A]):0.20,[F]:16質量%,[C]:17質量%(表6)。 熔融紡絲試驗之結果是於爐內溫度達到1350℃後之5小時以內可獲得直徑50 μm以下之極細之纖維(礦物纖維)。所獲得之纖維具備以手進行拉伸亦不易斷開之強度。使本纖維試樣於下述條件下進行放射線照射。 <高放射線照射試驗> 使用設置於比利時莫耳研究所之核反應爐(熱中子反應爐,BR2),對上述纖維試樣實施超高射線量之放射線照射試驗。γ射線照射量為5.85 GGy。該照射量相當於一般之高水準放射性廢棄物於約1000年間所發射之放射線量。[Example 1] 30 parts by mass of FA (1) and 70 parts by mass of BA (1) were mixed. This sample has the same composition as Sample 3 used in the above-mentioned previous test. The component ratios of this sample are: [S] + [A]: 60% by mass, [A]/([S] + [A]): 0.20, [F]: 16% by mass, [C]: 17% by mass (Table 6). The results of the melt spinning test showed that within 5 hours after the furnace temperature reached 1350°C, extremely fine fibers (mineral fibers) with a diameter of less than 50 μm could be obtained. The obtained fibers have a strength that is not easily broken even when stretched by hand. The fiber sample was irradiated under the following conditions. <High-radiation irradiation test> Using the nuclear reactor (thermal neutron reactor, BR2) installed at the More Institute in Belgium, the fiber samples were subjected to ultra-high-dose radiation irradiation tests. The gamma-ray irradiation dose was 5.85 GGy. This dose is equivalent to the radiation dose emitted by general high-level radioactive waste in about 1,000 years.

對放射線照射後之纖維試樣、及未經放射線照射之纖維試樣實施下述XRD解析及維氏硬度試驗。 <XRD解析> 將放射線照射前及後之纖維試樣之XRD頻譜示於圖2中(照射前:左圖,照射後:右圖,縱軸以任意單位(arbitrary unit,a.u.)表示繞射強度)。再者,由於放射線照射後之樣本可發射放射線,故僅於此種情形下,於試樣支持台上設置有限制了開口部之半球型防護蓋。其原因在於放射線照射後樣本之頻譜資料(圖2右圖)之測定入射角之範圍變窄。 放射線照射前之纖維試樣及放射線照射後之纖維試樣之XRD頻譜均僅可看到非晶質暈環,無法看見結晶相之波峰。即,可知:放射線照射前後均實質上僅由非晶質相構成,即便經放射線照射亦可維持非晶性。The following XRD analysis and Vickers hardness test were performed on the fiber samples after irradiation and the fiber samples without irradiation. <XRD analysis> The XRD spectra of the fiber samples before and after irradiation are shown in Figure 2 (before irradiation: left figure, after irradiation: right figure, the vertical axis represents the diffraction intensity in arbitrary units (a.u.)). In addition, since the sample after irradiation can emit radiation, a hemispherical protective cover with a limited opening is set on the sample support only in this case. The reason is that the range of the measured incident angle of the spectrum data of the sample after irradiation (right figure of Figure 2) becomes narrower. In the XRD spectra of the fiber samples before and after irradiation, only amorphous haloes can be seen, and no peaks of the crystalline phase can be seen. In other words, it can be seen that: before and after irradiation, it is essentially composed of only amorphous phases, and amorphous properties can be maintained even after irradiation.

<維氏硬度試驗> 對放射線照射前之纖維試樣及放射線照射後之纖維試樣進行維氏硬度試驗。 使用試驗機器係Reichert-Jung Microduromat 4000E及Leica Telatom 3光學顯微鏡。考慮到纖維試樣之寬度為20 μm左右,將施加於試樣表面之力設為10 gF(0.098 N)。 對放射線照射前後之各個試樣進行17點測定之結果是放射線照射前為723±24 kgF/mm2 ,放射線照射後為647±19 kgF/mm2 。若考慮到照射後之維氏硬度保持率變成89%,γ射線照射量為5.85 GGy,則可以說上述為極高之值。如上所述,材料之抗放射線性非常優異。為了比較,將本試驗之保持率(89%)之值繪製於上述示出之圖3。雖然強度保持率之測定方法不同,但氧化鐵含量16%之試樣即便於如上所述之先前試驗之大約為10萬倍之超高射線量之照射下,亦保持接近90%之強度保持率,這一點值得關注。<Vickers hardness test> Vickers hardness test was conducted on fiber samples before and after irradiation. The test equipment used was Reichert-Jung Microduromat 4000E and Leica Telatom 3 optical microscope. Considering that the width of the fiber sample is about 20 μm, the force applied to the sample surface was set to 10 gF (0.098 N). The results of 17-point measurement of each sample before and after irradiation were 723±24 kgF/mm 2 before irradiation and 647±19 kgF/mm 2 after irradiation. Considering that the Vickers hardness retention rate after irradiation became 89% and the gamma ray irradiation dose was 5.85 GGy, it can be said that the above values are extremely high. As mentioned above, the material has excellent radiation resistance. For comparison, the retention rate (89%) of this test is plotted in Figure 3 shown above. Although the determination method of strength retention is different, it is worth noting that the sample with 16% iron oxide content maintains a strength retention rate of nearly 90% even when irradiated with an ultra-high radiation dose of about 100,000 times that of the previous test mentioned above.

[實施例2] 根據表6中作為實施例2示出之原料摻合比調整試樣。本試樣之成分比為:[S]+[A]:60質量%,[A]/([S]+[A]):0.25,[F]:19質量%,[C]:13質量%(表6)。 熔融紡絲試驗之結果是,於爐內溫度達到1350℃後之5小時以內,試樣熔融落下,可獲得直徑50 μm以下之極細之纖維(礦物纖維)。 所獲得之纖維試樣與實施例1同樣,實質上僅以非晶質相構成,以手進行拉伸亦不易斷開。繼而,經放射線照射亦可保持其非晶性,維氏硬度保持率亦與實施例1為相同水準。如上所述,本材料之抗放射線性非常優異。[Example 2] The sample was adjusted according to the raw material blending ratio shown as Example 2 in Table 6. The component ratio of this sample is: [S] + [A]: 60 mass%, [A]/([S] + [A]): 0.25, [F]: 19 mass%, [C]: 13 mass% (Table 6). The result of the melt spinning test is that within 5 hours after the furnace temperature reaches 1350°C, the sample melts and falls, and an extremely fine fiber (mineral fiber) with a diameter of less than 50 μm can be obtained. The obtained fiber sample is the same as Example 1, and is essentially composed of only an amorphous phase, and is not easily broken even when stretched by hand. Furthermore, the amorphous property can be maintained even after irradiation, and the Vickers hardness retention rate is also at the same level as that of Example 1. As described above, the radiation resistance of this material is very excellent.

[實施例3] 根據表6中作為實施例3示出之原料摻合比調整試樣。本試樣之成分比為:[S]+[A]:56質量%,[A]/([S]+[A]):0.20,[F]:18質量%,[C]:25質量%(表6)。 熔融紡絲試驗之結果是於爐內溫度達到1350℃後之5小時以內,試樣熔融落下,可獲得直徑50 μm以下之極細之纖維(礦物纖維)。 所獲得之纖維試樣與實施例1同樣,實質上僅以非晶質相構成,以手進行拉伸亦不易斷開。經放射線照射亦可保持其非晶性,維氏硬度保持率亦與實施例1為相同水準。如上所述,本材料之抗放射線性非常優異。[Example 3] The sample was adjusted according to the raw material blending ratio shown in Table 6 as Example 3. The composition ratio of this sample is: [S] + [A]: 56 mass%, [A]/([S] + [A]): 0.20, [F]: 18 mass%, [C]: 25 mass% (Table 6). The result of the melt spinning test is that within 5 hours after the furnace temperature reaches 1350°C, the sample melts and falls, and an extremely fine fiber (mineral fiber) with a diameter of less than 50 μm can be obtained. The obtained fiber sample is the same as Example 1, and is essentially composed of only an amorphous phase, and is not easily broken even when stretched by hand. The amorphous property can be maintained even after irradiation, and the Vickers hardness retention rate is at the same level as that of Example 1. As described above, the radiation resistance of this material is very excellent.

[比較例1~比較例8] 根據表6中作為比較例1~8示出之原料摻合比調整試樣。均為缺少「與組成相關之本發明之4要件」中之任一個者。 結果是任一試樣均未於爐內溫度達到1350℃後之5小時以內纖維化(表6)。[Comparative Example 1 to Comparative Example 8] The samples were adjusted according to the raw material blending ratios shown in Table 6 as Comparative Examples 1 to 8. All of them lacked any one of the "four requirements of the present invention related to the composition". The result was that none of the samples was fiberized within 5 hours after the furnace temperature reached 1350°C (Table 6).

[表6]       單位 實施例1 實施例2 實施例3 比較例1 比較例2 比較例3 比較例4 比較例5 比較例6 比較例7 比較例8 原料摻合比 FA(1) 質量% 30 - - - - - 17 - - - - FA(2) - - - - - - - - 53 11 - FA(3) - - - - 70 - - - - - - FA(4) - - 62 - - - - 67 - - - FA(5) - 46 - - - - - - - - 40 FA(6) - - - 100 - - - - - - - BA(1) 70 46 - - - - - - - - 10 BA(2) - - - - - 100 - - - - - SiO2 (試劑) - - - - - - 67 17 - 33 - Al2 O3 (試劑) - 2 4 - - - - - 27 33 10 Fe2 O3 (試劑) - 6 12 - 30 - 17 17 20 22 15 CaO(試劑) - - 23 - - - - - - - 25 組成物成分比 [S]+[A] 質量% 60 60 56 84 53 35 78 72 73 76 43 [A]/([S]+[A]) 質量比 0.20 0.25 0.20 0.30 0.24 0.29 0.02 0.10 0.55 0.47 0.42 [F] 質量% 16 19 18 14 34 18 19 23 23 23 21 [C] 17 13 25 1 2 3 3 2 0 0 32 評價項目 抗放射線性    非常優異 非常優異 非常優異 較差                      熔融紡絲性    A A A C C C B C C C C [Table 6] Unit Embodiment 1 Embodiment 2 Embodiment 3 Comparison Example 1 Comparison Example 2 Comparison Example 3 Comparison Example 4 Comparison Example 5 Comparative Example 6 Comparative Example 7 Comparative Example 8 Raw material blending ratio FA (1) Quality% 30 - - - - - 17 - - - - FA (2) - - - - - - - - 53 11 - FA (3) - - - - 70 - - - - - - FA (4) - - 62 - - - - 67 - - - FA (5) - 46 - - - - - - - - 40 FA (6) - - - 100 - - - - - - - BA (1) 70 46 - - - - - - - - 10 BA (2) - - - - - 100 - - - - - SiO 2 (reagent) - - - - - - 67 17 - 33 - Al 2 O 3 (reagent) - 2 4 - - - - - 27 33 10 Fe 2 O 3 (reagent) - 6 12 - 30 - 17 17 20 twenty two 15 CaO (reagent) - - twenty three - - - - - - - 25 Composition ratio [S]+[A] Quality% 60 60 56 84 53 35 78 72 73 76 43 [A]/([S]+[A]) Quality Ratio 0.20 0.25 0.20 0.30 0.24 0.29 0.02 0.10 0.55 0.47 0.42 [F] Quality% 16 19 18 14 34 18 19 twenty three twenty three twenty three twenty one [C] 17 13 25 1 2 3 3 2 0 0 32 Evaluation items Radiation resistance Very good Very good Very good Poor Melt spinnability A A A C C C B C C C C

[實施例4~11] 選擇飛灰FA(7)作為矽鋁源,以滿足「關於組成之本發明之4要件」之方式,根據需要追加摻合試劑SiO2 (S)、Al2 O3 (A)、Fe2 O3 (F)、CaO(C),進行試驗(表7,實施例4至11)。熔融紡絲性均優異。抗放射線性亦與實施例1同樣為非常優異者。 [表7]       單位 實施例4 實施例5 實施例6 實施例7 實施例8 實施例9 實施例10 實施例11 原料摻合比 FA(7) 質量% 44 72 53 64 62 57 72 53 FA(8) - - - - - - - - FA(9) - - - - - - - - FA(10) - - - - - - - - FA(11) - - - - - - - - FA(12) - - - - - - - - BA(1) - - - - - - - - BA(2) - - - - - - - - SiO2 (試劑) 6 9 14 - 8 7 9 7 Al2 O3 (試劑) - - - 5 - - - - Fe2 O3 (試劑) 15 12 14 13 12 18 13 11 CaO(試劑) 15 5 15 15 15 15 4 26 組成物成分比 [S]+[A] 質量% 42 68 58 58 59 54 68 50 [A]/([S]+[A]) 質量比 0.20 0.20 0.17 0.30 0.20 0.20 0.20 0.20 [F] 質量% 19 18 19 19 18 23 19 16 [C] 17 7 17 17 17 17 7 28 評價項目 抗放射線性    非常優異 非常優異 非常優異 非常優異 非常優異 非常優異 非常優異 非常優異 熔融紡絲性    A A A A A A A A [Examples 4 to 11] Fly ash FA (7) was selected as the silicon aluminum source, and the "four requirements of the present invention regarding the composition" were met. As required, additional doping reagents SiO 2 (S), Al 2 O 3 (A), Fe 2 O 3 (F), and CaO (C) were added to conduct tests (Table 7, Examples 4 to 11). The melt spinning properties were excellent. The radiation resistance was also very excellent as in Example 1. [Table 7] Unit Embodiment 4 Embodiment 5 Embodiment 6 Embodiment 7 Embodiment 8 Embodiment 9 Embodiment 10 Embodiment 11 Raw material blending ratio FA (7) Quality% 44 72 53 64 62 57 72 53 FA (8) - - - - - - - - FA (9) - - - - - - - - FA (10) - - - - - - - - FA (11) - - - - - - - - FA (12) - - - - - - - - BA (1) - - - - - - - - BA (2) - - - - - - - - SiO 2 (reagent) 6 9 14 - 8 7 9 7 Al 2 O 3 (reagent) - - - 5 - - - - Fe 2 O 3 (reagent) 15 12 14 13 12 18 13 11 CaO (reagent) 15 5 15 15 15 15 4 26 Composition ratio [S]+[A] Quality% 42 68 58 58 59 54 68 50 [A]/([S]+[A]) Quality Ratio 0.20 0.20 0.17 0.30 0.20 0.20 0.20 0.20 [F] Quality% 19 18 19 19 18 twenty three 19 16 [C] 17 7 17 17 17 17 7 28 Evaluation items Radiation resistance Very good Very good Very good Very good Very good Very good Very good Very good Melt spinnability A A A A A A A A

選擇飛灰FA(7)作為矽鋁源,追加摻合試劑SiO2 (S)、Al2 O3 (A)、Fe2 O3 (F)、CaO(C),進行試驗(表8,比較例9~16)。比較例9~16均為缺少「與組成相關之本發明之4要件」中之任一個者。 若[S]+[A]之值未達要件i)之下限,則熔融物之黏性過低,結果是無法形成絲(比較例9)。另一方面,由於若[S]+[A]之值超過要件i)之上限,則熔融物之黏性過高,故並未出現作為絲形成之前提條件之因重力產生之落下舉動,無法形成纖維(比較例10)。 於[A]/([S]+[A])之值未達要件ii)之下限之情形時,熔融物之黏性亦過低,結果是無法形成絲(比較例11)。另一方面,因於[A]/([S]+[A])之值超過要件ii)之上限之情形時,熔融物之黏性亦過高,故並未示出作為絲形成之前提條件之因重力產生之落下舉動(比較例12)。X射線繞射(XRD)頻譜之結果是,於比較例12中,看到認為是源於富Al2 O3 相之結晶相之形成(圖4)。 於[F]之值未達要件iii)之下限之情形時,抗放射線性較差(比較例13)。另一方面,若[F]之值超過要件iii)之上限,則熔融物之黏性過低,結果是無法形成纖維(比較例14)。 於[C]之值未達要件iv)之下限之情形時,熔融物之黏性過低,結果是無法形成纖維(比較例15)。另一方面,由於若[C]之值超過要件iv)之上限,則熔融物之黏性過高,故無法形成纖維(比較例16)。Fly ash FA (7) was selected as a silicon-aluminum source, and additional doping reagents SiO 2 (S), Al 2 O 3 (A), Fe 2 O 3 (F), and CaO (C) were added to conduct experiments (Table 8, Comparative Examples 9 to 16). Comparative Examples 9 to 16 all lacked any one of the "four requirements of the present invention related to the composition". If the value of [S] + [A] does not reach the lower limit of requirement i), the viscosity of the melt is too low, and as a result, filaments cannot be formed (Comparative Example 9). On the other hand, if the value of [S] + [A] exceeds the upper limit of requirement i), the viscosity of the melt is too high, so the falling action caused by gravity, which is a prerequisite for filament formation, does not occur, and fibers cannot be formed (Comparative Example 10). When the value of [A]/([S]+[A]) does not reach the lower limit of requirement ii), the viscosity of the melt is too low, and as a result, filaments cannot be formed (Comparative Example 11). On the other hand, when the value of [A]/([S]+[A]) exceeds the upper limit of requirement ii), the viscosity of the melt is too high, so the falling motion caused by gravity, which is a prerequisite for filament formation, does not appear (Comparative Example 12). The result of X-ray diffraction (XRD) spectrum is that in Comparative Example 12, the formation of a crystalline phase believed to be derived from an Al2O3 - rich phase is observed (Figure 4). When the value of [F] does not reach the lower limit of requirement iii), the radiation resistance is poor (Comparative Example 13). On the other hand, if the value of [F] exceeds the upper limit of requirement iii), the viscosity of the melt is too low, and as a result, fibers cannot be formed (Comparative Example 14). When the value of [C] does not reach the lower limit of requirement iv), the viscosity of the melt is too low, and as a result, fibers cannot be formed (Comparative Example 15). On the other hand, if the value of [C] exceeds the upper limit of requirement iv), the viscosity of the melt is too high, and fibers cannot be formed (Comparative Example 16).

[表8]       單位 比較例9 比較例10 比較例11 比較例12 比較例13 比較例14 比較例15 比較例16 原料摻合比 FA(7) 質量% 40 76 32 53 66 53 74 49 FA(8) - - - - - - - - FA(9) - - - - - - - - FA(10) - - - - - - - - FA(11) - - - - - - - - FA(12) - - - - - - - - BA(1) - - - - - - - - BA(2) - - - - - - - - SiO2 (試劑) 5 10 19 - 9 7 10 6 Al2 O3 (試劑) - - - 14 - - - - Fe2 O3 (試劑) 15 9 20 14 8 22 12 12 CaO (試劑) 15 3 25 15 15 15 0 30 組成物成分比 [S]+[A] 質量% 38 72 44 58 63 50 70 46 [A]/([S]+[A]) 質量比 0.20 0.20 0.13 0.42 0.20 0.20 0.20 0.20 [F] 質量% 19 16 23 19 14 27 19 16 [C] 17 5 26 17 17 17 3 32 評價項目 抗放射線性                較差          熔融紡絲性    D B D B A D B D [Table 8] Unit Comparative Example 9 Comparative Example 10 Comparative Example 11 Comparative Example 12 Comparative Example 13 Comparative Example 14 Comparative Example 15 Comparative Example 16 Raw material blending ratio FA (7) Quality% 40 76 32 53 66 53 74 49 FA (8) - - - - - - - - FA (9) - - - - - - - - FA (10) - - - - - - - - FA (11) - - - - - - - - FA (12) - - - - - - - - BA (1) - - - - - - - - BA (2) - - - - - - - - SiO 2 (reagent) 5 10 19 - 9 7 10 6 Al 2 O 3 (reagent) - - - 14 - - - - Fe 2 O 3 (reagent) 15 9 20 14 8 twenty two 12 12 CaO (reagent) 15 3 25 15 15 15 0 30 Composition ratio [S]+[A] Quality% 38 72 44 58 63 50 70 46 [A]/([S]+[A]) Quality Ratio 0.20 0.20 0.13 0.42 0.20 0.20 0.20 0.20 [F] Quality% 19 16 twenty three 19 14 27 19 16 [C] 17 5 26 17 17 17 3 32 Evaluation items Radiation resistance Poor Melt spinnability D B D B A D B D

繼而,嘗試了矽鋁源、氧化鐵源及氧化鈣源之大部分由火力發電廢棄物(飛灰、煤灰)或金屬精煉廢棄物(鋼鐵熔渣、銅熔渣)、或作為天然資源之火山岩構成之配方(表9,實施例12~18)。 均滿足「與組成相關之本發明之4要件」,熔融紡絲性優異。抗放射線性亦非常優異。Next, we tried formulas in which the silicon aluminum source, iron oxide source, and calcium oxide source are mostly composed of thermal power generation waste (fly ash, coal ash) or metal refining waste (steel slag, copper slag), or volcanic rocks as natural resources (Table 9, Examples 12 to 18). All of them meet the "four requirements of the present invention related to the composition" and have excellent melt spinning properties. The radiation resistance is also very excellent.

[表9]       單位 實施例12 實施例13 實施例14 實施例15 實施例16 實施例17 實施例18 原料摻合比      FA(7) 質量% - - 50 - - 30 45 FA(8) 50 - - - - - - FA(9) - 33 - - - - - FA(10) - - 30 - 40 30 25 FA(11) - - - 33 - - - FA(12) - - - - 50 - - FA(13) - - - - - 18 - FA(14) - - - - - - 10 BA(1) 50 67 7.5 67 2.5 22 20 BA(2) - - - - - - - SiO2 (試劑) - - - - - - - Al2 O3 (試劑) - - - - - - - Fe2 O3 (試劑) - - - - - - - CaO(試劑) - - 12.5 - 7.5 - - 組成物成分比 [S]+[A] 質量% 62 61 56 48 65 56 61 [A]/([S]+[A]) 質量比 0.20 0.20 0.20 0.19 0.21 0.21 0.22 [F] 質量% 16 18 22 17 23 21 22 [C] 14 14 16 17 9 16 11 評價項目 抗放射線性    非常優秀 非常優秀 非常優秀 非常優秀 非常優秀 非常優秀 非常優秀 熔融紡絲性    A A A A A A A [Table 9] Unit Embodiment 12 Embodiment 13 Embodiment 14 Embodiment 15 Embodiment 16 Embodiment 17 Embodiment 18 Raw material blending ratio FA (7) Quality% - - 50 - - 30 45 FA (8) 50 - - - - - - FA (9) - 33 - - - - - FA (10) - - 30 - 40 30 25 FA (11) - - - 33 - - - FA (12) - - - - 50 - - FA (13) - - - - - 18 - FA (14) - - - - - - 10 BA (1) 50 67 7.5 67 2.5 twenty two 20 BA (2) - - - - - - - SiO 2 (reagent) - - - - - - - Al 2 O 3 (reagent) - - - - - - - Fe 2 O 3 (reagent) - - - - - - - CaO (reagent) - - 12.5 - 7.5 - - Composition ratio [S]+[A] Quality% 62 61 56 48 65 56 61 [A]/([S]+[A]) Quality Ratio 0.20 0.20 0.20 0.19 0.21 0.21 0.22 [F] Quality% 16 18 twenty two 17 twenty three twenty one twenty two [C] 14 14 16 17 9 16 11 Evaluation items Radiation resistance Very good Very good Very good Very good Very good Very good Very good Melt spinnability A A A A A A A

於圖4中示出一系列之熔融試樣之XRD頻譜。 [A]/([S]+[A])之值未超過本發明之要件ii)之上限之試樣(比較例11、實施例6)係非晶質,但於超過要件之上限之比較例12中,看到認為是源於富Al2 O3 相之結晶相之形成。 又,[F]之值變化至本發明之要件iii)之上限附近之範圍時,材料亦為非晶質(比較例13、實施例8、9、比較例14)。 於圖5中示出一系列之試驗中所獲得之無機纖維之示差熱分析之熱譜(DTA曲線)。 本發明之無機纖維直至約800℃(至少為接近700℃之溫度)時,熱特性亦穩定,熔融溫度為1200℃以上。 [產業上之可利用性]FIG4 shows the XRD spectra of a series of melt samples. Samples whose values of [A]/([S]+[A]) do not exceed the upper limit of requirement ii) of the present invention (Comparative Example 11, Example 6) are amorphous, but in Comparative Example 12, which exceeds the upper limit of the requirement, the formation of a crystalline phase believed to be derived from an Al2O3 - rich phase is observed. In addition, when the value of [F] changes to a range near the upper limit of requirement iii) of the present invention, the material is also amorphous (Comparative Example 13, Examples 8, 9, Comparative Example 14). FIG5 shows the thermograms (DTA curves) of the differential thermal analysis of the inorganic fibers obtained in a series of experiments. The inorganic fiber of the present invention has stable thermal properties up to about 800°C (at least close to 700°C), and its melting temperature is above 1200°C. [Industrial Applicability]

由於本發明之無機材料之抗放射線性優異,故可利用於核能領域、太空航空領域、醫療領域中。藉由使用於該等領域中之設備、機器、構件之放射線被照射部,可抑制該放射線被照射部之放射線劣化。 作為核能領域之設備、機器、構件,可列舉: ·用於核能發電之設備、機器、構件; ·鈾礦石之開採、處理用之設備、機器、構件; ·用於核燃料之二次加工處理(包括同燃料之轉換、濃縮、再轉換、成形加工、MOX製造)之設備、機器、構件; ·用於儲存、處理、再處理使用過之核燃料之設備、機器、構件; ·用於儲存、處理、處置放射線廢棄物之設備、機器、構件; ·鈾礦石、核燃料二次加工品、使用過之核燃料、或放射線廢棄物之運輸機器、構件; ·其他核相關之設備、機器、構件。 作為上述核能發電用之設備、機器、構件之更為具體之例,可列舉:核反應爐建築物(包括研究爐及試驗爐)、核反應爐收納容器、核反應爐設施內配管、廢爐處理用機器人。 作為太空航空領域之設備、機器、構件,可列舉: ·太空基地建築物、太空站、人造衛星、行星探測衛星、太空服等。 作為醫療領域之設備、機器、構件,可列舉: ·利用粒子射線之醫療裝置。 由於本發明之無機材料之熔融紡絲性優異,故適合用於纖維強化複合材料用無機纖維。根據用途,進而可加工為粗紗、切股、梭織物、預浸料、不織布等。作為上述複合材料之基體材料(經纖維強化之材料),可列舉:樹脂、水泥。作為樹脂,可使用公知之熱塑性樹脂、熱固性樹脂。 作為本發明之無機材料之其他使用例,係作為立體印刷用材料之使用。即,若使用本發明之無機材料之粉末與蠟、樹脂及其他載體之混練物作為立體印刷用材料,則可製成抗放射線性優異之構件而並不受形狀之制約。 以上之使用例係以表現出本發明之有用性為目的所例示者,並非是制約本發明之範圍者。Since the inorganic material of the present invention has excellent radiation resistance, it can be used in the fields of nuclear energy, aerospace, and medicine. By using it in the radiation-irradiated parts of equipment, machines, and components in these fields, the radiation degradation of the radiation-irradiated parts can be suppressed. As equipment, machines and components in the field of nuclear energy, the following can be listed: · Equipment, machines and components used for nuclear power generation; · Equipment, machines and components used for mining and processing of uranium ore; · Equipment, machines and components used for secondary processing of nuclear fuel (including conversion, concentration, reconversion, forming and MOX manufacturing of the same fuel); · Equipment, machines and components used for storing, processing and reprocessing used nuclear fuel; · Equipment, machines and components used for storing, processing and disposing of radioactive waste; · Machines and components for transporting uranium ore, secondary processed nuclear fuel, used nuclear fuel or radioactive waste; · Other nuclear-related equipment, machines and components. As more specific examples of the equipment, machines, and components for the above-mentioned nuclear power generation, there can be listed: nuclear reactor buildings (including research furnaces and test furnaces), nuclear reactor storage containers, nuclear reactor facility internal piping, and waste furnace treatment robots. As equipment, machines, and components in the field of aerospace, there can be listed: · Space base buildings, space stations, artificial satellites, planetary exploration satellites, space suits, etc. As equipment, machines, and components in the field of medicine, there can be listed: · Medical devices using particle rays. Since the inorganic material of the present invention has excellent melt-spinning properties, it is suitable for use in inorganic fibers for fiber-reinforced composites. Depending on the purpose, it can be processed into coarse yarn, chopped strands, woven fabrics, prepregs, non-woven fabrics, etc. As the base material (fiber-reinforced material) of the above-mentioned composite material, there can be listed: resin, cement. As the resin, well-known thermoplastic resins and thermosetting resins can be used. Another example of the use of the inorganic material of the present invention is the use as a material for three-dimensional printing. That is, if the powder of the inorganic material of the present invention is mixed with wax, resin and other carriers as a material for three-dimensional printing, it can be made into a component with excellent radiation resistance without being restricted by the shape. The above examples of use are exemplified for the purpose of showing the usefulness of the present invention, and are not intended to limit the scope of the present invention.

1:電爐 2:塔曼管 3:吊桿 4:開口部 5:纖維 D:電爐外徑 H:電爐高度 d:電爐開口部徑1: Electric furnace 2: Tamman tube 3: Hanging rod 4: Opening 5: Fiber D: Electric furnace outer diameter H: Electric furnace height d: Electric furnace opening diameter

[圖1]係同時顯示本發明之無機材料之熔融紡絲性之評價試驗之概要、及熔融紡絲纖維之放大圖之概略說明圖。 [圖2]係實施例1之無機材料之熔融紡絲纖維於放射線照射前後之各XRD頻譜。 [圖3]係表示無機材料中之氧化鐵含量與抗放射線性之關係之圖。 [圖4]係表示實施例、比較例之無機纖維之XRD頻譜之數例之圖。 [圖5]係表示根據實施例、比較例之無機纖維之示差熱分析之DTA曲線之數例之圖。[Figure 1] is a schematic diagram showing the outline of the evaluation test of the melt-spinnability of the inorganic material of the present invention and an enlarged view of the melt-spun fiber. [Figure 2] is the XRD spectrum of the melt-spun fiber of the inorganic material of Example 1 before and after radiation irradiation. [Figure 3] is a diagram showing the relationship between the iron oxide content in the inorganic material and the radiation resistance. [Figure 4] is a diagram showing a number of examples of XRD spectra of the inorganic fiber of the example and the comparative example. [Figure 5] is a diagram showing a number of examples of DTA curves of the inorganic fiber of the example and the comparative example according to the differential thermal analysis.

Claims (17)

一種抗放射線性無機材料,其係包含SiO2、Al2O3、CaO及Fe2O3作為成分之無機材料,且上述無機材料中之上述成分以氧化物換算之質量百分率為:i)SiO2及Al2O3之合計含量為40質量%以上且70質量%以下;ii)Al2O3/(SiO2+Al2O3)之質量比於0.15~0.40之範圍內;iii)Fe2O3之含量為16質量%以上且25質量%以下;及iv)CaO之含量為5~30質量%。 A radiation-resistant inorganic material comprises SiO2 , Al2O3 , CaO and Fe2O3 as components, wherein the mass percentages of the above components in the above inorganic material in terms of oxide conversion are as follows: i) the total content of SiO2 and Al2O3 is 40 mass % or more and 70 mass% or less; ii) the mass ratio of Al2O3 / ( SiO2 + Al2O3 ) is in the range of 0.15-0.40; iii) the content of Fe2O3 is 16 mass% or more and 25 mass% or less; and iv) the content of CaO is 5-30 mass%. 如請求項1之抗放射線性無機材料,其係放射線被照射部用。 For example, the radiation-resistant inorganic material in claim 1 is used for the part irradiated by radiation. 一種纖維,其係由請求項1或2之抗放射線性無機材料所構成。 A fiber composed of the radiation-resistant inorganic material of claim 1 or 2. 一種纖維強化複合材料,其經請求項3之纖維補強。 A fiber-reinforced composite material reinforced with the fiber of claim 3. 如請求項4之纖維強化複合材料,其係纖維強化樹脂。 The fiber-reinforced composite material of claim 4 is a fiber-reinforced resin. 如請求項4之纖維強化複合材料,其係纖維強化水泥。 The fiber-reinforced composite material in claim 4 is fiber-reinforced cement. 一種抗放射線性無機纖維之製造方法,其係將二氧化矽源、氧化鋁源、氧化鈣源及氧化鐵源之混合物熔融紡絲的無機纖維之製造方法,其中上述混合物中之SiO2、Al2O3、CaO及Fe2O3以氧化物換算之質量百分率為:i)SiO2及Al2O3之合計含量為40質量%以上且70質量%以下;ii)Al2O3/(SiO2+Al2O3)之質量比於0.15~0.40之範圍內;iii)Fe2O3之含量為16質量%以上且25質量%以下;及iv)CaO之含量為5~30質量%。 A method for producing radiation-resistant inorganic fibers comprises melt-spinning a mixture of a silicon dioxide source, an aluminum oxide source, a calcium oxide source and an iron oxide source, wherein the mass percentages of SiO2, Al2O3 , CaO and Fe2O3 in the mixture as oxides are as follows : i) the total content of SiO2 and Al2O3 is 40 mass% or more and 70 mass% or less; ii) the mass ratio of Al2O3 /( SiO2 + Al2O3 ) is in the range of 0.15-0.40; iii) the content of Fe2O3 is 16 mass% or more and 25 mass% or less; and iv) the content of CaO is 5-30 mass%. 如請求項7之抗放射線性無機纖維之製造方法,其係放射線被照射部用。 The method for manufacturing radiation-resistant inorganic fibers as in claim 7 is for use in the part irradiated by radiation. 如請求項7或8之抗放射線性無機纖維之製造方法,其中,使用飛灰作為二氧化矽源或氧化鋁源。 A method for producing radiation-resistant inorganic fibers as claimed in claim 7 or 8, wherein fly ash is used as a silicon dioxide source or an aluminum oxide source. 如請求項9之抗放射線性無機纖維之製造方法,其中,氧化鐵源為銅熔渣。 The method for producing radiation-resistant inorganic fibers as claimed in claim 9, wherein the iron oxide source is copper slag. 如請求項10之抗放射線性無機纖維之製造方法,其中,氧化鈣源為鋼鐵熔渣。 The method for producing radiation-resistant inorganic fibers as claimed in claim 10, wherein the calcium oxide source is steel slag. 如請求項7或8之抗放射線性無機纖維之製造方法,其中,二氧化矽源或氧化鋁源係玄武岩或安山岩。 The method for producing radiation-resistant inorganic fibers as claimed in claim 7 or 8, wherein the silicon dioxide source or aluminum oxide source is basalt or andesite. 如請求項12之抗放射線性無機材料之製造方法,其中,氧化鐵源為銅熔渣。 The method for manufacturing a radiation-resistant inorganic material as claimed in claim 12, wherein the iron oxide source is copper slag. 如請求項13之抗放射線性無機材料之製造方法,其中,氧化鈣源為鋼鐵熔渣。 The method for manufacturing a radiation-resistant inorganic material as claimed in claim 13, wherein the calcium oxide source is steel slag. 一種無機材料於放射線被照射部之使用,該無機材料包含SiO2、Al2O3、CaO及Fe2O3作為成分,上述無機材料中之上述成分以氧化物換算之質量百分率為:i)SiO2及Al2O3之合計含量為40質量%以上且70質量%以下;ii)Al2O3/(SiO2+Al2O3)之質量比於0.15~0.40之範圍內;iii)Fe2O3之含量為16質量%以上且25質量%以下;及iv)CaO之含量為5~30質量%。 An inorganic material is used in a radiation irradiated part, the inorganic material contains SiO2 , Al2O3 , CaO and Fe2O3 as components , and the mass percentages of the above components in the above inorganic material in terms of oxide conversion are as follows: i) the total content of SiO2 and Al2O3 is 40 mass% or more and 70 mass % or less; ii) the mass ratio of Al2O3 /( SiO2 + Al2O3 ) is in the range of 0.15-0.40; iii) the content of Fe2O3 is 16 mass% or more and 25 mass% or less; and iv) the content of CaO is 5-30 mass%. 如請求項15之無機材料於放射線被照射部之使用,其中,上述放射線被照射部係下述中之任一者:a)核反應爐建築物、核反應爐收納容器、核反應爐設施內配管、或廢爐處理用機器人;b)太空基地建築物、太空站、人造衛星、行星探測衛星、或太空服;c)利用粒子射線之醫療裝置。 For example, the use of inorganic materials in radiation-irradiated parts as in claim 15, wherein the radiation-irradiated parts are any of the following: a) nuclear reactor buildings, nuclear reactor storage containers, piping in nuclear reactor facilities, or waste reactor processing robots; b) space base buildings, space stations, artificial satellites, planetary exploration satellites, or space suits; c) medical devices using particle radiation. 一種抑制放射線被照射部之纖維強化複合材料之放射線劣化 之方法,其係抑制構成放射線被照射部之纖維強化複合材料之放射線劣化之方法,其中,將上述纖維製成包含SiO2、Al2O3、CaO及Fe2O3作為成分之無機纖維;進而使上述無機纖維中之上述成分以氧化物換算之質量百分率為:i)SiO2及Al2O3之合計含量為40質量%以上且70質量%以下;ii)Al2O3/(SiO2+Al2O3)之質量比於0.15~0.40之範圍內;iii)Fe2O3之含量為16質量%以上且25質量%以下;及iv)CaO之含量為5~30質量%。 A method for suppressing radiation degradation of a fiber-reinforced composite material of a radiation-irradiated portion is disclosed. The method is for suppressing radiation degradation of a fiber-reinforced composite material constituting a radiation-irradiated portion, wherein the fiber is made into an inorganic fiber containing SiO2 , Al2O3 , CaO and Fe2O3 as components ; and the mass percentages of the above components in the inorganic fiber as converted into oxides are as follows : i) the total content of SiO2 and Al2O3 is 40 mass% or more and 70 mass% or less; ii) the mass ratio of Al2O3 /( SiO2 + Al2O3 ) is in the range of 0.15-0.40; iii) the content of Fe2O3 is 16 mass% or more and 25 mass% or less; and iv) the content of CaO is 5-30 mass%.
TW109113728A 2019-04-25 2020-04-24 Radiation-resistant inorganic materials and their fibers TWI844671B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019083950 2019-04-25
JPJP2019-083950 2019-04-25
WOPCT/JP2019/039911 2019-10-09
PCT/JP2019/039911 WO2020217568A1 (en) 2019-04-25 2019-10-09 Inorganic composition resistant to degradation by radiation, and fiber thereof

Publications (2)

Publication Number Publication Date
TW202104125A TW202104125A (en) 2021-02-01
TWI844671B true TWI844671B (en) 2024-06-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5775564B2 (en) 2013-12-25 2015-09-09 韓国水力原子力株式会社Koreahydro & Nuclear Power Co., Ltd. Method of vitrifying aluminum and filter radioactive waste

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5775564B2 (en) 2013-12-25 2015-09-09 韓国水力原子力株式会社Koreahydro & Nuclear Power Co., Ltd. Method of vitrifying aluminum and filter radioactive waste

Similar Documents

Publication Publication Date Title
JP7129679B2 (en) Radiation-resistant inorganic materials and their fibers
WO2022145401A1 (en) Inorganic composition and fibers and flakes thereof
JPWO2022145401A5 (en)
Turcotte et al. Radiation damage in nuclear waste ceramics
JPWO2017038378A1 (en) Glass composition and neutron absorbing material using the same, method for managing molten fuel, method for taking out molten fuel, and method for shutting down reactor
Aloraini et al. Effect of various Na2O-MoO3 concentrations on the thermal, mechanical, and radiation-resisting attributes of zinc-borosilicate glasses
TWI844671B (en) Radiation-resistant inorganic materials and their fibers
Saudy et al. Mechanical, thermal and chemical durability behaviors of CdO-Bi 2 O 3 Boro-Phosphate glasses containing Fe 2 O 3
KR102678500B1 (en) Radiation-resistant inorganic materials and their fibers
TW202104125A (en) Radiation-resistant inorganic material and fiber thereof
RU2815656C2 (en) Radiation-resistant inorganic material and fiber thereof
CN115611513B (en) Radiation-resistant glass material and preparation method and application thereof
O'Holleran et al. Glass-ceramic waste forms for immobilizing plutonium
Naseer et al. Experimental and numerical assessment on Pb-free alkaline mixed borate glasses for radiation resisting applications
CN116648439A (en) Inorganic composition, fiber and sheet thereof
US20230373848A1 (en) Radiation resistant inorganic oxide flakes
Chen et al. Immobilization of simulated An3+ in radioactive sludge via microwave sintering: Mechanisn and performance
US20240071638A1 (en) Radiation shielding composite material
Miekina Crystal formation during the vitrification of HLW in Ca/Zn base glass
Clarke Conditioning of legacy radioactive wastes requiring additional treatment
Mayzan Graphite immobilisation in glass composite materials
Bart et al. Development of new vitreous matrices for conditioning cesium
Ebert et al. The incorporation of technetium into a representative low-activity waste glass
Kazemian et al. Vitrification of HLW generated by a production unit for radiopharmaceuticals using simulated waste solutions
Bardeza et al. Studies on ceramics and glass-ceramics for immobilization of high-level nuclear wastes