TWI843174B - 用於決定工作的代理人員的伺服器 - Google Patents
用於決定工作的代理人員的伺服器 Download PDFInfo
- Publication number
- TWI843174B TWI843174B TW111130213A TW111130213A TWI843174B TW I843174 B TWI843174 B TW I843174B TW 111130213 A TW111130213 A TW 111130213A TW 111130213 A TW111130213 A TW 111130213A TW I843174 B TWI843174 B TW I843174B
- Authority
- TW
- Taiwan
- Prior art keywords
- work
- current
- value
- processor
- job
- Prior art date
Links
- 238000012360 testing method Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 238000001793 Wilcoxon signed-rank test Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
提供一種用於決定工作的代理人員的伺服器。所述伺服器包括儲存媒體、收發器以及處理器。儲存媒體儲存多個人員,其中多個人員包括缺席人員以及多個候選代理人員,且多個候選代理人員的每一者包括關聯於缺席人員的工作經歷相似值,其中儲存媒體更儲存關聯於多個人員的當前工作職務衝突條件。處理器根據迴歸模型以利用多個歷史工作績效分數獲得分別對應於多個人員的多個當前工作績效分數預測值;處理器利用工作經歷相似值、多個當前工作績效分數預測值以及當前工作職務衝突條件以從多個候選代理人員中決定出目標代理人員。
Description
本揭露是有關於一種用於決定工作的代理人員的伺服器。
目前,當特定公司/銀行的員工缺席時,通常僅能藉由主管的經驗,臨時地指派代理人員。然而,此種方式往往無法指派出,最適合的代理人員。
本揭露的用於決定工作的代理人員的伺服器包括儲存媒體、收發器以及處理器。儲存媒體儲存多個人員,其中多個人員包括缺席人員以及多個候選代理人員,且多個候選代理人員的每一者包括關聯於缺席人員的工作經歷相似值,其中儲存媒體更儲存關聯於多個人員的當前工作職務衝突條件。處理器耦接儲存媒體以及收發器,其中處理器根據迴歸模型以利用多個歷史工作績效分數獲得分別對應於多個人員的多個當前工作績效分數預測值;處理器利用工作經歷相似值、多個當前工作績效分數預測值以及當前工作職務衝突條件以從多個候選代理人員中決定出目標代理人員。
為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
圖1是根據本揭露的一實施例繪示的用於決定工作的代理人員的伺服器100的示意圖。伺服器100可包括儲存媒體110、收發器120以及處理器130。伺服器100可設置於銀行。
儲存媒體110例如是任何型態的固定式或可移動式的隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟(hard disk drive,HDD)、固態硬碟(solid state drive,SSD)或類似元件或上述元件的組合,而用於儲存可由處理器130執行的多個模組或各種應用程式。
收發器120以無線或有線的方式傳送及接收訊號。收發器120可通訊連接至主管電子裝置200。
處理器130例如是中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微控制單元(micro control unit,MCU)、微處理器(microprocessor)、數位信號處理器(digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(application specific integrated circuit,ASIC)、圖形處理器(graphics processing unit,GPU)、影像訊號處理器(image signal processor,ISP)、影像處理單元(image processing unit,IPU)、算數邏輯單元(arithmetic logic unit,ALU)、複雜可程式邏輯裝置(complex programmable logic device,CPLD)、現場可程式化邏輯閘陣列(field programmable gate array,FPGA)或其他類似元件或上述元件的組合。處理器130可耦接儲存媒體110以及收發器120。
在本實施例中,儲存媒體110可儲存多個人員。此些人員可包括缺席人員以及多個候選代理人員。為了方便說明,後續各實施例將以缺席人員為人員識別A,且多個候選代理人員為人員識別B、人員識別C以及人員識別D來說明。
進一步而言,多個候選代理人員(人員識別B、人員識別C以及人員識別D)的每一者可包括關聯於缺席人員(人員識別A)的工作經歷相似值。具體而言,處理器130可利用(儲存媒體110儲存的),分別對應於多個職務的多個職務因子獲得工作經歷相似值。表1是分別對應於多個職務的多個職務因子的一個範例。多個職務因子可包括(但不限於)「是否曾擔任過職務『台幣存匯』」、「是否曾擔任過職務『外幣存匯』」、「是否曾擔任過職務『理財』」、「是否曾擔任過職務『個人貸款』」以及「是否曾擔任過職務『企業貸款』」。
表1 分別對應於多個職務的多個職務因子的一個範例
人員識別 | 是否曾擔任過職務「台幣存匯」 | 是否曾擔任過職務「外幣存匯」 | 是否曾擔任過職務「理財」 | 是否曾擔任過職務「個人貸款」 | 是否曾擔任過職務「企業貸款」 |
A | 1(是) | 0(否) | 1(是) | 1(是) | 1(是) |
B | 1(是) | 0(否) | 0(否) | 1(是) | 1(是) |
C | 0(否) | 0(否) | 0(否) | 1(是) | 1(是) |
D | 1(是) | 0(否) | 0(否) | 0(否) | 0(否) |
處理器130可利用表1的(分別對應於多個職務的)多個職務因子獲得如表2所示的各工作經歷相似值。如表2所示,工作經歷相似值可包括相關性值以及差異檢定值。在本實施例中,相關性值例如是皮爾森相關係數(Pearson Correlation Coefficient)值。另一方面,差異檢定值例如是獨立雙樣本t檢定(Independent Two Sample t Test)的顯著性值(P Value)或者是威爾卡森符號檢定(Wilcoxon Signed Rank Test)的顯著性值(P Value)。詳細而言,處理器130可利用統計方法,以根據表1獲得人員識別B與缺席人員(人員識別A)之間的相關性值為0.61,且根據表1獲得人員識別B與缺席人員(人員識別A)之間的差異檢定值為0.545。相似地,處理器130可根據表1獲得人員識別C與缺席人員(人員識別A)之間的相關性值為0.41,且根據表1獲得人員識別C與缺席人員(人員識別A)之間的差異檢定值為0.243。相似地,處理器130可根據表1獲得人員識別D與缺席人員(人員識別A)之間的相關性值為0.25,且根據表1獲得人員識別D與缺席人員(人員識別A)之間的差異檢定值為0.067。在獲得各候選代理人員與缺席人員之間的各工作經歷相似值之後,處理器130可儲存此些工作經歷相似值於儲存媒體110。
表2 關聯於缺席人員的各工作經歷相似值的一個範例
候選代理人員 | 相關性值 | 差異檢定值 |
人員識別B | 0.61 | 0.545 |
人員識別C | 0.41 | 0.243 |
人員識別D | 0.25 | 0.067 |
在此需先說明的是,處理器130還可儲存工作經歷相似值門檻值於儲存媒體110。工作經歷相似值門檻值的用途將於後續說明。
進一步而言,在本實施例中,處理器130可通過收發器120從主管電子裝置200接收分別對應於多個人員的多個歷史工作績效分數。表3是一個範例。詳細而言,操作主管電子裝置200的主管(例如人員識別A、人員識別B、人員識別C以及人員識別D的主管)可預先記錄人員識別A、人員識別B、人員識別C以及人員識別D各自的歷史工作績效分數,且此些歷史工作績效分數的每一者包括多個績效分數因子。例如,如表3所示,人員識別A的歷史工作績效分數可包括績效分數因子「業績達成率」7分、績效分數因子「處理顧客事務效率」10分、績效分數因子「處理主管事務效率」5分、績效分數因子「與同事相處融洽度」5分以及績效分數因子「處理事務廣泛度」6分。另外,人員識別A的歷史工作績效分數還可包括「綜合分數」8分。處理器130可儲存人員識別A、人員識別B、人員識別C以及人員識別D各自的歷史工作績效分數於儲存媒體110。
表3 分別對應於多個人員的多個歷史工作績效分數的一個範例
人員識別 | 業績達成率 | 處理顧客事務效率 | 處理主管事務效率 | 與同事相處融洽度 | 處理事務廣泛度 | 綜合分數 |
A | 7 | 10 | 5 | 5 | 6 | 8 |
B | 6 | 9 | 6 | 6 | 7 | 9 |
C | 4 | 4 | 4 | 5 | 5 | 6 |
D | 8 | 7 | 5 | 5 | 7 | 8 |
更進一步而言,在本實施例中,儲存媒體110可儲存當前工作職務衝突條件。表4是當前工作職務衝突條件的一個範例。舉例來說,如表4所示,若缺席人員的當前職務為「台幣存匯」,且若特定候選代理人員的當前職務為「台幣存匯」,則當後續處理器130要為此缺席人員決定工作的代理人員時,處理器130將決定,此候選代理人員可以替代此缺席人員。舉另一例來說,若缺席人員的當前職務為「台幣存匯」,且若特定候選代理人員的當前職務為「理財」,則當後續處理器130要為此缺席人員決定工作的代理人員時,處理器130將決定,此候選代理人員不可替代此缺席人員。
表4 當前工作職務衝突條件的一個範例
候選代理人員的當前職務為「台幣存匯」 | 候選代理人員的當前職務為「外幣存匯」 | 候選代理人員的當前職務為「理財」 | 候選代理人員的當前職務為「個人貸款」 | 候選代理人員的當前職務為「企業貸款」 | |
缺席人員的當前職務為「台幣存匯」 | 可替代 | 可替代 | 不可替代 | 不可替代 | 不可替代 |
缺席人員的當前職務為「外幣存匯」 | 可替代 | 可替代 | 不可替代 | 不可替代 | 不可替代 |
缺席人員的當前職務為「理財」 | 不可替代 | 不可替代 | 可替代 | 不可替代 | 不可替代 |
缺席人員的當前職務為「個人貸款」 | 不可替代 | 不可替代 | 不可替代 | 可替代 | 不可替代 |
缺席人員的當前職務為「企業貸款」 | 不可替代 | 不可替代 | 不可替代 | 不可替代 | 可替代 |
圖2是根據本揭露的一實施例繪示的用於決定工作的代理人員的方法的流程圖,其中所述方法可由圖1所示的系統100實施。
在步驟S201中,處理器130可根據迴歸模型以利用多個歷史工作績效分數獲得分別對應於多個人員的多個當前工作績效分數預測值。上述迴歸模型可以是線性回歸(Linear Regression)或者迴歸樹(Regression Tree),然而本揭露不限於此。詳細而言,如上述表3及其實施例所說明的,儲存媒體110儲存的多個歷史工作績效分數的每一者包括可多個績效分數因子(即,績效分數因子「業績達成率」、績效分數因子「處理顧客事務效率」、績效分數因子「處理主管事務效率」、績效分數因子「與同事相處融洽度」以及績效分數因子「處理事務廣泛度」)。進一步而言,績效分數因子「業績達成率」可對應於迴歸模型的權重1、績效分數因子「處理顧客事務效率」可對應於迴歸模型的權重2、績效分數因子「處理主管事務效率」可對應於迴歸模型的權重3、績效分數因子「與同事相處融洽度」可對應於迴歸模型的權重4以及績效分數因子「處理事務廣泛度」可對應於迴歸模型的權重5。處理器130可利用表3所示的「綜合分數」來獲得/決定權重1~權重5的值。接著,基於上述表3的各績效分數因子,處理器130可根據「業績達成率」的當前分數1、「處理顧客事務效率」的當前分數2、「處理主管事務效率」的當前分數3、「與同事相處融洽度」的當前分數4、「處理事務廣泛度」的當前分數5以及權重1~權重5決定/預測出,未來的特定時間內(例如未來的一個月內),分別對應於多個人員(人員識別A、人員識別B、人員識別C以及人員識別D)的多個當前工作績效分數預測值。表5是處理器130決定/預測出的,多個當前工作績效分數預測值的一個範例。
表5 多個當前工作績效分數預測值的一個範例
人員識別 | 當前工作績效分數預測值 |
A | 9.2 |
B | 8.9 |
C | 6.5 |
D | 7.2 |
在步驟S202中,處理器130可利用工作經歷相似值、多個當前工作績效分數預測值以及當前工作職務衝突條件以從多個候選代理人員中決定出目標代理人員。承前述實施例,以下將以缺席人員為人員識別A為例來說明。
首先,表2的各工作經歷相似值指示了,人員識別B與人員識別A的工作經歷相似值最高(各候選代理人員與人員識別A的工作經歷相似值依數值大小的順序為,人員識別B、人員識別C以及人員識別D)。進一步而言,假設儲存媒體110預儲存的工作經歷相似值門檻值包括相關性值門檻值0.4以及差異檢定值門檻值0.05。由於人員識別D與缺席人員(人員識別A)之間的相關性值為0.25小於相關性值門檻值0.4,及/或人員識別D與缺席人員(人員識別A)之間的差異檢定值0.067小於差異檢定值門檻值0.05,處理器130可決定出,人員識別D將不會被選為目標代理人員,並且處理器130可決定出多個候選代理人員的優先順序依序為,人員識別B以及人員識別C。
進一步而言,由於表5的多個當前工作績效分數預測值指示人員識別B的當前工作績效分數預測值最高(各候選代理人員的當前工作績效分數預測值依數值大小的順序為人員識別B、人員識別C以及人員識別D),處理器130可決定出多個候選代理人員的優先順序依序為,人員識別B以及人員識別C。
接著,假設儲存媒體110預先儲存了,缺席人員(人員識別A)對應於第一當前職務「台幣存匯」,且第一候選代理人員(人員識別B)對應於第二當前職務「理財」,且第二候選代理人員(人員識別C)對應於第一當前職務「台幣存匯」。處理器130可利用如表4所示的當前工作職務衝突條件將第二候選代理人員(人員識別C)決定為目標代理人員。換言之,雖然多個候選代理人員的優先順序依序為人員識別B以及人員識別C,由於前述表4指示了,若缺席人員(人員識別A)的當前職務為「台幣存匯」,且若特定候選代理人員(人員識別B)的當前職務為「理財」,則處理器130將決定人員識別B不可替代人員識別A,因此,處理器130會將人員識別C決定為目標代理人員。
綜上所述,本揭露的用於決定工作的代理人員的伺服器可利用候選代理人員與缺席人員之間的工作經歷相似值來決定工作的代理人員。基此,可決定出與缺席人員具有較相似的工作經歷的代理人員。進一步而言,還可利用當前工作績效分數預測值來決定工作的代理人員,換言之,還可決定出,將會有較高工作績效的代理人員。除此之外,還可利用當前工作職務衝突條件來決定工作的代理人員。因此可避免代理人員的當前職務與缺席人員的當前職務不符合而無法代理的情況。
雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。
100:用於決定工作的代理人員的伺服器
110:儲存媒體
120:收發器
130:處理器
200:主管電子裝置
S201~S202:步驟
圖1是根據本揭露的一實施例繪示的用於決定工作的代理人員的伺服器的示意圖。
圖2是根據本揭露的一實施例繪示的用於決定工作的代理人員的方法的流程圖。
100:用於決定工作的代理人員的伺服器
110:儲存媒體
120:收發器
130:處理器
200:主管電子裝置
Claims (2)
- 一種用於決定工作的代理人員的伺服器,包括:儲存媒體,儲存多個人員,其中所述多個人員包括缺席人員以及多個候選代理人員,且所述多個候選代理人員的每一者包括關聯於所述缺席人員的工作經歷相似值,其中所述儲存媒體更儲存當前工作職務衝突條件;收發器;以及處理器,耦接所述儲存媒體以及所述收發器,其中所述處理器根據迴歸模型以利用多個歷史工作績效分數獲得分別對應於所述多個人員的多個當前工作績效分數預測值;所述處理器利用所述工作經歷相似值、工作經歷相似值門檻值、所述多個當前工作績效分數預測值以及所述當前工作職務衝突條件以從所述多個候選代理人員中決定出目標代理人員,其中所述工作經歷相似值包括相關性值以及差異檢定值,且所述工作經歷相似值門檻值包括對應於所述相關性值的相關性值門檻值以及對應於所述差異檢定值的差異檢定值門檻值,其中所述處理器利用分別對應於多個職務的多個職務因子獲得所述工作經歷相似值,並且儲存所述工作經歷相似值於所述儲存媒體,且所述多個職務因子包括是否曾擔任過台幣存匯、是否曾擔任過外幣存匯、是否曾擔任過理財、是否曾擔任過個人貸款以及是否曾擔任過企業貸款,其中所述多個歷史工作績效分數的每一者包括多個績效 分數因子,且所述多個績效分數因子的每一者對應於所述迴歸模型的權重值,其中所述多個績效分數因子包括業績達成率、處理顧客事務效率、處理主管事務效率、與同事相處融洽度以及處理事務廣泛度,其中所述多個候選代理人員包括第一候選代理人員以及第二候選代理人員,其中所述缺席人員對應於理財,且所述第一候選代理人員對應於第一當前職務,且所述第二候選代理人員對應於第二當前職務,其中所述處理器利用所述當前工作職務衝突條件將所述第二候選代理人員決定為所述目標代理人員,其中所述第二當前職務為所述理財,且所述第一當前職務為台幣存匯、外幣存匯、個人貸款或者企業貸款。
- 如請求項1所述的伺服器,其中所述收發器通訊連接至主管電子裝置,其中所述處理器通過所述收發器從所述主管電子裝置接收分別對應於所述多個人員的所述多個歷史工作績效分數。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111130213A TWI843174B (zh) | 2022-08-11 | 2022-08-11 | 用於決定工作的代理人員的伺服器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111130213A TWI843174B (zh) | 2022-08-11 | 2022-08-11 | 用於決定工作的代理人員的伺服器 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202407592A TW202407592A (zh) | 2024-02-16 |
TWI843174B true TWI843174B (zh) | 2024-05-21 |
Family
ID=90822691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111130213A TWI843174B (zh) | 2022-08-11 | 2022-08-11 | 用於決定工作的代理人員的伺服器 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI843174B (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200903357A (en) * | 2007-07-10 | 2009-01-16 | Shinewave Int Inc | Method used in a personnel leave information system for handling a deputation mechanism |
US9406052B2 (en) * | 2003-10-23 | 2016-08-02 | Kenneth B. Lakritz | Resource scheduling and monitoring |
CN109345064A (zh) * | 2018-08-22 | 2019-02-15 | 中国平安人寿保险股份有限公司 | 代理人业务调整方法、装置、存储介质及电子设备 |
TWM621081U (zh) * | 2021-08-11 | 2021-12-11 | 兆豐國際商業銀行股份有限公司 | 任務代理執行系統 |
CN114240162A (zh) * | 2021-12-17 | 2022-03-25 | 中国平安财产保险股份有限公司 | 人员调度方法、装置、设备及存储介质 |
CN114611971A (zh) * | 2022-03-21 | 2022-06-10 | 建信金融科技有限责任公司 | 一种推荐任务执行人员的方法、装置及设备 |
TWM634244U (zh) * | 2022-08-11 | 2022-11-11 | 兆豐國際商業銀行股份有限公司 | 用於決定工作的代理人員的伺服器 |
-
2022
- 2022-08-11 TW TW111130213A patent/TWI843174B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9406052B2 (en) * | 2003-10-23 | 2016-08-02 | Kenneth B. Lakritz | Resource scheduling and monitoring |
TW200903357A (en) * | 2007-07-10 | 2009-01-16 | Shinewave Int Inc | Method used in a personnel leave information system for handling a deputation mechanism |
CN109345064A (zh) * | 2018-08-22 | 2019-02-15 | 中国平安人寿保险股份有限公司 | 代理人业务调整方法、装置、存储介质及电子设备 |
TWM621081U (zh) * | 2021-08-11 | 2021-12-11 | 兆豐國際商業銀行股份有限公司 | 任務代理執行系統 |
CN114240162A (zh) * | 2021-12-17 | 2022-03-25 | 中国平安财产保险股份有限公司 | 人员调度方法、装置、设备及存储介质 |
CN114611971A (zh) * | 2022-03-21 | 2022-06-10 | 建信金融科技有限责任公司 | 一种推荐任务执行人员的方法、装置及设备 |
TWM634244U (zh) * | 2022-08-11 | 2022-11-11 | 兆豐國際商業銀行股份有限公司 | 用於決定工作的代理人員的伺服器 |
Also Published As
Publication number | Publication date |
---|---|
TW202407592A (zh) | 2024-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180144138A1 (en) | Data Security and Risk Ranking Tool | |
US9170993B2 (en) | Identifying tasks and commitments using natural language processing and machine learning | |
US10346782B2 (en) | Adaptive augmented decision engine | |
US7146002B1 (en) | Customer service transaction handling based on transaction history | |
JP2019519021A (ja) | パフォーマンスモデル悪影響補正 | |
US20150154713A1 (en) | Claim work assignment using weighted workloads | |
US11669684B2 (en) | Method and system of natural language processing in an enterprise environment | |
US10440187B1 (en) | Bootstrapped predicative routing in CRM | |
US20190251492A1 (en) | Cognitive optimization of work permit application and risk assessment | |
US20220261890A1 (en) | Systems and methods for processing items in a queue | |
US20210142406A1 (en) | Vehicle selection platform | |
US20230162133A1 (en) | Method and system for selecting vendor on a digital platform | |
TWM634244U (zh) | 用於決定工作的代理人員的伺服器 | |
WO2020087828A1 (zh) | 预售风险评估方法、系统、计算机装置及可读存储介质 | |
US10977728B1 (en) | Systems and methods for intelligently optimizing a queue of actions in an interface using machine learning | |
TWI843174B (zh) | 用於決定工作的代理人員的伺服器 | |
US20180114173A1 (en) | Cognitive service request dispatching | |
CN112634062B (zh) | 基于Hadoop的数据处理方法、装置、设备及存储介质 | |
JP6729703B2 (ja) | 情報提示方法、装置、及びプログラム | |
WO2015137879A1 (en) | Method and apparatus for algorithmic control of the acceptance of orders by an e-commerce enterprise | |
US20230073157A1 (en) | Integrated lending-and-brokering environment with entity-relationship management and methods thereof | |
US11144881B2 (en) | Computer-generated team based metrics for candidate onboarding and retention | |
US20200099588A1 (en) | System and method for hierarchical relationship matrix opportunity scoring | |
US11954443B1 (en) | Complaint prioritization using deep learning model | |
TWM633539U (zh) | 用於決定服務人員的伺服器 |