TWI841086B - Projection system and calibration method thereof - Google Patents

Projection system and calibration method thereof Download PDF

Info

Publication number
TWI841086B
TWI841086B TW111146269A TW111146269A TWI841086B TW I841086 B TWI841086 B TW I841086B TW 111146269 A TW111146269 A TW 111146269A TW 111146269 A TW111146269 A TW 111146269A TW I841086 B TWI841086 B TW I841086B
Authority
TW
Taiwan
Prior art keywords
color information
light
projection system
light sensor
solid
Prior art date
Application number
TW111146269A
Other languages
Chinese (zh)
Inventor
劉鎧銘
Original Assignee
台達電子工業股份有限公司
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Application granted granted Critical
Publication of TWI841086B publication Critical patent/TWI841086B/en

Links

Images

Abstract

A projection system includes a light source module, an image device, a first light sensor, a second light sensor, and a processor. The light source module has a monochromatic solid-state light emitting device or multicolor solid-state light emitting devices. The processor is configured to: drive the solid-state light emitting device(s) to operate at different output powers based on different light source control signals and to project native full white patterns on screen through the image system sequentially; drive the first light sensor to sense the white light at different output powers sequentially and to generate corresponding first color information; drive the second light sensor to sense the native full white patterns on screen at different output powers sequentially and to generate corresponding second color information; obtain a relation between the first color information and the second color information; obtain a second target color information; obtain a first target color information; calibrate the corresponding light source control signals based on the first target color information.

Description

投影系統及其校正方法Projection system and correction method thereof

本揭露是有關於一種投影系統及其校正方法。The present disclosure relates to a projection system and a calibration method thereof.

近年來,光學投影機已經被應用於許多領域之中,且應用範圍也日漸擴大,例如從雷射投影電視到飛行模擬器所使用之投影機。各種的光學投影機被廣泛應用於學校、家庭和商業場合。In recent years, optical projectors have been used in many fields, and the scope of application is gradually expanding, such as laser projection televisions to projectors used in flight simulators. Various optical projectors are widely used in schools, homes and commercial occasions.

雷射是固態光源的一種,以雷射投影機為例,自動白平衡校正是解決隨著時間流逝藍光雷射二極體和黃色磷光體(和紅光雷射二極體)衰減率不同而引起的白平衡偏移的方法。其中,外部校正是將外部光感測器在雷射最大輸出功率的光感測值用作白平衡目標,以提高校正精度的方法。然而,作為外部光感測器的標準儀表與相關工具對一般終端用戶而言較不易取得。Laser is a type of solid-state light source. For example, in laser projectors, automatic white balance correction is a method to solve the white balance shift caused by the different attenuation rates of blue laser diodes and yellow phosphors (and red laser diodes) over time. Among them, external correction is a method to use the light sensing value of an external light sensor at the maximum output power of the laser as the white balance target to improve the correction accuracy. However, standard instruments and related tools for external light sensors are not easy for general end users to obtain.

因此,如何提出一種可解決上述問題的光學投影機,是目前業界亟欲投入研發資源解決的問題之一。Therefore, how to come up with an optical projector that can solve the above problems is one of the problems that the industry is eager to invest research and development resources to solve.

有鑑於此,本揭露之一目的在於提出一種可有解決上述問題的投影系統及其校正方法。In view of this, one purpose of the present disclosure is to provide a projection system and a calibration method thereof that can solve the above-mentioned problems.

為了達到上述目的,依據本揭露之一實施方式,一種投影系統包含光源模組、成像裝置、第一光感測器、第二光感測器以及處理器。光源模組具有至少一固態光發射器。處理器訊號連接至光源模組、第一光感測器以及第二光感測器,並配置以執行校正程序,校正程序包含:驅使至少一固態光發射器根據不同光源控制訊號產生不同輸出功率,並依序發射白光,透過成像裝置依序於一屏幕上投射全白圖像;驅使第一光感測器依序感測白光,並對應產生第一色彩資訊;驅使第二光感測器依序感測全白圖像,並對應產生第二色彩資訊;獲取第一色彩資訊與第二色彩資訊之間的對應關係;根據第二色彩資訊中之一色彩空間座標獲取第二色彩資訊的目標色彩資訊;根據第二色彩資訊的目標色彩資訊與對應關係獲取第一色彩資訊的目標色彩資訊;以及根據第一色彩資訊的目標色彩資訊校正不同輸出功率所對應之光源控制訊號。To achieve the above object, according to an embodiment of the present disclosure, a projection system includes a light source module, an imaging device, a first light sensor, a second light sensor and a processor. The light source module has at least one solid-state light emitter. The processor signal is connected to the light source module, the first light sensor and the second light sensor, and is configured to execute a calibration procedure, which includes: driving at least one solid-state light emitter to generate different output powers according to different light source control signals, and sequentially emitting white light, and sequentially projecting a full white image on a screen through an imaging device; driving the first light sensor to sequentially sense the white light and correspondingly generate the first color information; driving the second light sensor to sequentially sense the full white image and correspondingly generate the second color information; obtaining the corresponding relationship between the first color information and the second color information; obtaining the target color information of the second color information according to a color space coordinate in the second color information; obtaining the target color information of the first color information according to the target color information of the second color information and the corresponding relationship; and calibrating the light source control signal corresponding to the different output powers according to the target color information of the first color information.

於本揭露的一或多個實施方式中,第二色彩資訊中之前述色彩空間座標為固態光發射器以不同輸出功率中之最大者所產生之全白圖像的色彩空間座標。In one or more embodiments of the present disclosure, the aforementioned color space coordinates in the second color information are color space coordinates of a full white image generated by the solid-state light emitter with a maximum of different output powers.

於本揭露的一或多個實施方式中,第一色彩資訊為第一光感測器在固態光發射器以不同輸出功率發射白光時所感測到的色彩空間座標。In one or more embodiments of the present disclosure, the first color information is the color space coordinates sensed by the first light sensor when the solid-state light emitter emits white light at different output powers.

於本揭露的一或多個實施方式中,第二色彩資訊為第二光感測器在固態光發射器以不同輸出功率投射全白圖像時所感測到的色彩空間座標。In one or more embodiments of the present disclosure, the second color information is the color space coordinates sensed by the second light sensor when the solid-state light emitter projects a full white image with different output powers.

於本揭露的一或多個實施方式中,投影系統進一步包含積光箱,設置於白光的路徑上,並具有一入口,白光通過入口進入積光箱中,並在積光箱中均勻混合,其中第一光感測器設置於積光箱上。In one or more embodiments of the present disclosure, the projection system further includes a light collecting box, which is arranged on the path of the white light and has an inlet, through which the white light enters the light collecting box and is evenly mixed in the light collecting box, wherein the first light sensor is arranged on the light collecting box.

於本揭露的一或多個實施方式中,積光箱進一步包含反光鏡,配置以允許白光的第一部分光通過,並轉向白光的第二部分光,第一光感測器配置以接收第一部分光與第二部分光中之一者,成像裝置配置以接收第一部分光與第二部分光中之另一者。In one or more embodiments of the present disclosure, the light collecting box further includes a reflector configured to allow a first portion of the white light to pass through and to turn the first portion of the white light to a second portion of the white light, the first light sensor configured to receive one of the first portion of the light and the second portion of the light, and the imaging device configured to receive the other of the first portion of the light and the second portion of the light.

於本揭露的一或多個實施方式中,投影系統進一步包含光纖,其中光源模組與成像裝置分別以光耦合方式設置於該光纖的兩端。In one or more embodiments of the present disclosure, the projection system further includes an optical fiber, wherein the light source module and the imaging device are respectively disposed at two ends of the optical fiber in an optical coupling manner.

於本揭露的一或多個實施方式中,投影系統進一步包含殼體,其中光源模組與成像裝置設置於殼體中,其中成像裝置包含光處理模組與投影機鏡頭。In one or more embodiments of the present disclosure, the projection system further includes a housing, wherein the light source module and the imaging device are disposed in the housing, wherein the imaging device includes a light processing module and a projector lens.

於本揭露的一或多個實施方式中,第二光感測器為電荷耦合元件影像感測器或互補式金氧半導體影像感測器。In one or more embodiments of the present disclosure, the second photo sensor is a charge coupled device image sensor or a complementary metal oxide semiconductor image sensor.

於本揭露的一或多個實施方式中,投影系統進一步包含輸入裝置與顯示裝置。輸入裝置訊號連接至處理器。輸入裝置配置以接收校正輸入,處理器配置以根據校正輸入執行校正程序。顯示裝置訊號連接至處理器,並配置以顯示校正程序之執行結果。In one or more embodiments of the present disclosure, the projection system further includes an input device and a display device. The input device is signal-connected to the processor. The input device is configured to receive a calibration input, and the processor is configured to execute a calibration procedure according to the calibration input. The display device is signal-connected to the processor and configured to display the execution result of the calibration procedure.

依據本揭露之另一實施方式,一種投影系統之校正方法包含:驅使至少一固態光發射器根據不同光源控制訊號產生不同輸出功率,並依序發射白光,透過成像裝置依序於屏幕上投射全白圖像;驅使第一光感測器依序感測白光,並對應產生第一色彩資訊;驅使第二光感測器依序感測全白圖像,並對應產生第二色彩資訊;獲取第一色彩資訊與第二色彩資訊之間的對應關係;根據第二色彩資訊中之一色彩空間座標獲取第二色彩資訊的目標色彩資訊;根據第二色彩資訊的目標色彩資訊與對應關係獲取第一色彩組的目標色彩資訊;以及根據第一色彩資訊的目標色彩資訊校正不同輸出功率所對應之光源控制訊號。According to another embodiment of the present disclosure, a calibration method for a projection system includes: driving at least one solid-state light emitter to generate different output powers according to different light source control signals, and sequentially emitting white light, and sequentially projecting a full white image on a screen through an imaging device; driving a first light sensor to sequentially sense white light, and correspondingly generate first color information; driving a second light sensor to sequentially sense the full white image, and correspondingly generate second color information; obtaining a corresponding relationship between the first color information and the second color information; obtaining target color information of the second color information according to a color space coordinate in the second color information; obtaining target color information of the first color group according to the target color information of the second color information and the corresponding relationship; and calibrating the light source control signals corresponding to the different output powers according to the target color information of the first color information.

於本揭露的一或多個實施方式中,根據第二色彩資訊中之前述色彩空間座標獲取第二色彩資訊的目標色彩資訊係根據固態光發射器以不同輸出功率中之最大者所產生之全白圖像的色彩空間座標。In one or more embodiments of the present disclosure, the target color information for obtaining the second color information according to the aforementioned color space coordinates in the second color information is the color space coordinates of a full white image generated by the solid-state light emitter with the maximum of different output powers.

於本揭露的一或多個實施方式中,第一色彩資訊為第一光感測器在固態光發射器以不同輸出功率發射白光時所感測到的色彩空間座標。In one or more embodiments of the present disclosure, the first color information is the color space coordinates sensed by the first light sensor when the solid-state light emitter emits white light at different output powers.

於本揭露的一或多個實施方式中,第二色彩資訊為第二光感測器在固態光發射器以不同輸出功率投射全白圖像時所感測到的色彩空間座標。In one or more embodiments of the present disclosure, the second color information is the color space coordinates sensed by the second light sensor when the solid-state light emitter projects a full white image with different output powers.

於本揭露的一或多個實施方式中,第一色彩資訊與第二色彩資訊均包含色彩空間座標。In one or more embodiments of the present disclosure, the first color information and the second color information both include color space coordinates.

於本揭露的一或多個實施方式中,第一色彩資訊與第二色彩資訊之間的不同關係為直線關係或N階多項式函數關係。In one or more embodiments of the present disclosure, the different relationships between the first color information and the second color information are linear relationships or N-order polynomial function relationships.

於本揭露的一或多個實施方式中,光源控制訊號為輸入固態光發射器之電流訊號。In one or more embodiments of the present disclosure, the light source control signal is a current signal input to a solid-state light emitter.

綜上所述,於本揭露的投影系統及其校正方法中,藉由將外部光感測器即所謂標準儀表內建於投影系統中,做為投影系統的第二光感測器,解決終端客戶需另外購置用以進行外部校正的標準儀表與相關工具的問題。此外,使用處理器驅使第二光感測器與原先的第一光感測器分別進行數據採樣,再經由處理器中預先寫入的演算法獲取光源控制訊號校正的目標,接著處理器自動調整輸入固態光發射器的光源控制訊號,即完成自動白平衡校正(auto white balance calibration)。而此操作可在投影系統架設或是工廠端生產測試時在一般功能選項中方便選擇操作。因此,本揭露的投影系統及其校正方法相較於目前常見的投影系統及其校正方法,在自動白平衡校正方面,可以簡化校正過程中所需的儀器與操作步驟,進一步提升終端用戶或工廠端自行測試的易用性。In summary, in the projection system and calibration method disclosed herein, an external light sensor, i.e., a so-called standard instrument, is built into the projection system as the second light sensor of the projection system, thereby solving the problem that the end customer needs to purchase a standard instrument and related tools for external calibration. In addition, a processor is used to drive the second light sensor and the original first light sensor to perform data sampling respectively, and then the target of the light source control signal calibration is obtained through the algorithm pre-written in the processor, and then the processor automatically adjusts the light source control signal input to the solid-state light emitter, thus completing the auto white balance calibration. This operation can be conveniently selected in the general function options when setting up the projection system or conducting factory-side production tests. Therefore, compared with the currently common projection systems and calibration methods, the projection system and calibration method disclosed herein can simplify the instruments and operation steps required in the calibration process in terms of automatic white balance calibration, and further improve the ease of self-testing by end users or factories.

以上所述僅係用以闡述本揭露所欲解決的問題、解決問題的技術手段、及其產生的功效等等,本揭露之具體細節將在下文的實施方式及相關圖式中詳細介紹。The above description is only used to explain the problem to be solved by the present disclosure, the technical means for solving the problem, and the effects produced, etc. The specific details of the present disclosure will be introduced in detail in the following implementation method and related drawings.

以下將以圖式揭露本揭露之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本揭露。也就是說,在本揭露部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。The following will disclose multiple embodiments of the present disclosure with drawings. For the purpose of clarity, many practical details will be described together in the following description. However, it should be understood that these practical details should not be used to limit the present disclosure. In other words, in some embodiments of the present disclosure, these practical details are not necessary. In addition, in order to simplify the drawings, some commonly used structures and components will be depicted in the drawings in a simple schematic manner.

請參照第1圖,其為繪示根據本揭露一實施方式之投影系統100的示意圖。如第1圖中所示,投影系統100包含光源模組120、積光箱(accumulated light box)124、成像裝置130、第一光感測器126以及第二光感測器133。Please refer to FIG. 1 , which is a schematic diagram of a projection system 100 according to an embodiment of the present disclosure. As shown in FIG. 1 , the projection system 100 includes a light source module 120 , an accumulated light box 124 , an imaging device 130 , a first light sensor 126 , and a second light sensor 133 .

光源模組120具有至少一固態光發射器(solid-state light emitting device)121,用以產生白光。舉例來說,固態光發射器121可為雷射二極體(laser diodes)、有機雷射二極體(organic laser diodes, OLD)或類似的光發射器。進一步來說,固態光發射器121可使用藍光雷射二極體激發螢光粉來產生其他色光,並混合產生白光。也可使用多個雷射二極體,同時產生不同色光混合產生白光,例如以紅綠藍或是紅黃藍,其中黃色部分為黃色磷光體(yellow phosphor)。The light source module 120 has at least one solid-state light emitting device 121 for generating white light. For example, the solid-state light emitting device 121 may be a laser diode, an organic laser diode (OLD) or a similar light emitter. Furthermore, the solid-state light emitter 121 may use a blue laser diode to excite phosphor to generate other colored lights, and mix them to generate white light. It is also possible to use multiple laser diodes to simultaneously generate different colored lights to mix and generate white light, such as red, green, and blue or red, yellow, and blue, where the yellow part is a yellow phosphor.

如第1圖中所示,可部分透射第一部分光並部分反射第二部分光的反光鏡122設置在固態光發射器121所發射出的白光經過的路徑上。反光鏡122允許第一部分光通過,並將第二部分光轉向。第一部分光經由積光箱124的入口124a與擴散片125進入積光箱124中。As shown in FIG. 1 , a reflector 122 that partially transmits the first portion of light and partially reflects the second portion of light is disposed on the path of the white light emitted by the solid-state light emitter 121. The reflector 122 allows the first portion of light to pass through and redirects the second portion of light. The first portion of light enters the light collecting box 124 through the inlet 124a of the light collecting box 124 and the diffusion sheet 125.

積光箱124可以為積分盒(integral sphere box)或類似的均光元件。舉例來說,積分盒由反光鏡組成,利用多次內部反射,將光均勻化。藉由此光路配置,積光箱124即可設置在不會受到第二部分光的反射光影響的位置,進而提高設置於積光箱124上以接收第一部分光的第一光感測器126所產生之光感測值的準確性。藉此,根據此光感測值的白平衡校正也同樣可具有較佳的準確性。The light-integrating box 124 can be an integral sphere box or a similar light-homogenizing element. For example, the integral sphere box is composed of a reflector and uses multiple internal reflections to make the light uniform. With this optical path configuration, the light-integrating box 124 can be set at a position that will not be affected by the reflected light of the second part of the light, thereby improving the accuracy of the light-sensing value generated by the first light sensor 126 set on the light-integrating box 124 to receive the first part of the light. In this way, the white balance correction based on this light-sensing value can also have better accuracy.

詳細來說,在第1圖所對應的實施方式中,投影系統100進一步包含中繼鏡123a。中繼鏡123a位於反光鏡122與積光箱124的入口124a之間,將通過反光鏡122的第一部分光聚焦至積光箱124中。第一部分光經積光箱124均勻化後,由第一光感測器126接收。第二部分光經由反光鏡122轉向後,通過入口132a進入成像裝置130中。成像裝置130配置以藉由其中的光處理模組132與投影鏡頭131將第二部分光收集成像,並投影至投影系統100外的一預定位置(例如投影屏幕S或其他物品上)。In detail, in the embodiment corresponding to FIG. 1 , the projection system 100 further includes a relay mirror 123a. The relay mirror 123a is located between the reflector 122 and the entrance 124a of the light collecting box 124, and focuses the first part of the light passing through the reflector 122 into the light collecting box 124. After the first part of the light is uniformed by the light collecting box 124, it is received by the first light sensor 126. After the second part of the light is turned by the reflector 122, it enters the imaging device 130 through the entrance 132a. The imaging device 130 is configured to collect the second part of the light into an image through the light processing module 132 and the projection lens 131 therein, and project it to a predetermined position outside the projection system 100 (for example, on a projection screen S or other objects).

光源模組120、反光鏡122、積光箱124、第二光感測器133以及處理器134都設置於殼體110中,成像裝置130至少部分地設置於殼體110中,但本揭露不意欲以此配置為限。The light source module 120, the reflector 122, the light collecting box 124, the second light sensor 133 and the processor 134 are all disposed in the housing 110. The imaging device 130 is at least partially disposed in the housing 110, but the present disclosure is not intended to be limited to this configuration.

在一些實施方式中,第二光感測器133可為電荷耦合元件(charge couple device, CCD)影像感測器或互補式金氧半導體影像感測器(complementary metal oxide semiconductor, CMOS)。In some implementations, the second photo sensor 133 may be a charge coupled device (CCD) image sensor or a complementary metal oxide semiconductor (CMOS) image sensor.

成像裝置130包含外露於殼體110外的投影鏡頭131與設置於殼體110中的光處理模組132。光處理模組132配置以將入射進成像裝置130的第二部分光有效轉向投影晶片(未示出),第二部分光經過投影晶片反射後,再將成像所需之全白圖像P投射出來。投影鏡頭131配置以將全白圖像P投影至投影屏幕S或其他物品上。The imaging device 130 includes a projection lens 131 exposed outside the housing 110 and a light processing module 132 disposed in the housing 110. The light processing module 132 is configured to effectively redirect the second portion of light incident into the imaging device 130 to a projection chip (not shown), and after the second portion of light is reflected by the projection chip, the full white image P required for imaging is projected. The projection lens 131 is configured to project the full white image P onto a projection screen S or other objects.

在第1圖所對應的實施方式中,反光鏡122的反射平面122a上設有具高反射率之塗層。具體來說,反射平面122a的反射率使得通過反光鏡122之第一部分光占固態光發射器121所發射之白光的約1%(亦即,被反光鏡122反射之第二部分光占固態光發射器121所發射之白光的約99%),但本揭露並不以此反射率為限。In the embodiment corresponding to FIG. 1 , a coating with high reflectivity is disposed on the reflective plane 122a of the reflector 122. Specifically, the reflectivity of the reflective plane 122a is such that the first portion of light passing through the reflector 122 accounts for approximately 1% of the white light emitted by the solid-state light emitter 121 (that is, the second portion of light reflected by the reflector 122 accounts for approximately 99% of the white light emitted by the solid-state light emitter 121), but the present disclosure is not limited to this reflectivity.

在另一些實施方式中,若反光鏡122的反射率使得第二部分光占整體白光的比例小於第一部分光佔整體白光,則元件與光路的配置改為使第二部分光轉向積光箱124,而第一部分光透射後進入成像裝置130中。(未在圖式中示出)在此實施方式中,成像裝置130配置以接收第一部分光。In other embodiments, if the reflectivity of the reflector 122 is such that the proportion of the second portion of light in the total white light is smaller than that of the first portion of light, the configuration of the components and the optical path is changed so that the second portion of light is directed to the light collecting box 124, and the first portion of light is transmitted and enters the imaging device 130. (Not shown in the figure) In this embodiment, the imaging device 130 is configured to receive the first portion of light.

為了擷取外部的投影資訊以進行自動白平衡校正,投影系統100包含處理器134。處理器134訊號連接至光源模組120、第一光感測器126以及第二光感測器133。處理器134可以向光源模組120傳送不同的光源控制訊號,以調整固態光發射器121所發射出的白光,還可以從第一光感測器126與第二光感測器133獲取其光感測值。藉由處理器134所達成的校正方法200流程如第2圖中所示。第2圖為繪示根據本揭露一實施方式之投影系統100之校正方法200的示意圖。In order to capture external projection information for automatic white balance calibration, the projection system 100 includes a processor 134. The processor 134 is signal-connected to the light source module 120, the first light sensor 126, and the second light sensor 133. The processor 134 can transmit different light source control signals to the light source module 120 to adjust the white light emitted by the solid-state light emitter 121, and can also obtain the light sensing values from the first light sensor 126 and the second light sensor 133. The calibration method 200 achieved by the processor 134 is shown in FIG. 2. FIG. 2 is a schematic diagram showing a calibration method 200 of the projection system 100 according to an embodiment of the present disclosure.

校正方法200開始於進行操作210、操作220以及操作230。首先決定光感測值採樣的輸出功率,舉例來說,100%、95%、90%、85%、80%、75%、70%、65%、60%、55%、50%、45%、40%、35%以及30%。再來,投影系統100在經過至少15分鐘的熱機程序後,透過處理器134向光源模組120傳送100%的輸出功率所對應的光源控制訊號,以驅使固態光發射器121以100%的輸出功率發射白光。白光的第二部分光經由光處理模組132與投影鏡頭131在投影系統100外的一預定位置(例如投影屏幕S或物品)上投射出全白圖像P。接著,透過處理器134驅使第一光感測器126感測透射過反光鏡122的第一部分光,產生對應於輸出功率為100%的第一色彩資訊。最後,透過處理器134驅使第二光感測器133感測投影在預定位置的全白圖像P,產生對應於輸出功率為100%的第二色彩資訊。The calibration method 200 begins by performing operations 210, 220, and 230. First, the output power of the light sensing value sampling is determined, for example, 100%, 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, and 30%. Next, after the projection system 100 has been warmed up for at least 15 minutes, the processor 134 transmits a light source control signal corresponding to the 100% output power to the light source module 120 to drive the solid-state light emitter 121 to emit white light at the 100% output power. The second part of the white light is projected onto a predetermined position (e.g., a projection screen S or an object) outside the projection system 100 through the light processing module 132 and the projection lens 131 to form a full white image P. Next, the processor 134 drives the first light sensor 126 to sense the first portion of light transmitted through the reflector 122, and generates first color information corresponding to an output power of 100%. Finally, the processor 134 drives the second light sensor 133 to sense the full white image P projected at the predetermined position, and generates second color information corresponding to an output power of 100%.

接著,透過處理器134向光源模組120依序傳送95%、90%、85%、80%、75%、70%、65%、60%、55%、50%、45%、40%、35%以及30%的輸出功率所對應的光源控制訊號,以驅使固態光發射器121依序以95%、90%、85%、80%、75%、70%、65%、60%、55%、50%、45%、40%、35%以及30%的輸出功率發射白光,並產生對應於輸出功率95%、90%、85%、80%、75%、70%、65%、60%、55%、50%、45%、40%、35%以及30%的第一色彩資訊與第二色彩資訊。在本實施方式中,第一色彩資訊與第二色彩資訊以XYZ色彩空間(color space)的形式獲取,其中X、Y、Z為主原色光(primaries)座標,X座標代表紅色光,Y座標代表綠色光,Z座標代表藍色光,並分別為不同色光在感測器中反映的強度。如此一來,當完成操作210、操作220以及操作230後,固態光發射器121在輸出功率為100%、95%、90%、85%、80%、75%、70%、65%、60%、55%、50%、45%、40%、35%以及30%時總共產生了十五個白光與十五個全白圖像P(如第1圖中所示),因此第一色彩資訊包含第一光感測器126所量測到的十五個白光的十五個色彩空間座標,第二色彩資訊包含第二光感測器133所量測到的十五個全白圖像P(如第1圖中所示)的十五個色彩空間座標。在一些實施方式中,第一色彩資訊與第二色彩資訊也可能以RGB色彩空間的形式獲取。Then, the processor 134 sequentially transmits light source control signals corresponding to the output powers of 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35% and 30% to the light source module 120 to drive the solid-state light emitter 121 to sequentially emit white light at the output powers of 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35% and 30%, and generate the first color information and the second color information corresponding to the output powers of 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35% and 30%. In this embodiment, the first color information and the second color information are obtained in the form of an XYZ color space, wherein X, Y, and Z are coordinates of primary colors, the X coordinate represents red light, the Y coordinate represents green light, and the Z coordinate represents blue light, and are respectively the intensities of different color lights reflected in the sensor. Thus, after completing operations 210, 220, and 230, the solid-state light emitter 121 generates a total of fifteen white lights and fifteen full white images P (as shown in FIG. 1 ) when the output power is 100%, 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, and 30%, so the first color information includes fifteen color space coordinates of the fifteen white lights measured by the first light sensor 126, and the second color information includes fifteen color space coordinates of the fifteen full white images P (as shown in FIG. 1 ) measured by the second light sensor 133. In some implementations, the first color information and the second color information may also be obtained in the form of RGB color space.

如上所述,處理器134可以藉由傳送不同的光源控制訊號來調整固態光發射器121所發射的白光。一般來說,可以根據一特定對應關係,從光源控制訊號推測出接收第二部分光的第一光感測器126所能感測到的光感測值。此外,這個對應關係會隨設備條件(例如反光鏡122的反射率)而有所不同,這些對應關係皆記錄在處理器134中。As described above, the processor 134 can adjust the white light emitted by the solid-state light emitter 121 by transmitting different light source control signals. Generally speaking, the light sensing value that can be sensed by the first light sensor 126 receiving the second portion of light can be inferred from the light source control signal according to a specific correspondence. In addition, this correspondence will vary depending on the equipment conditions (such as the reflectivity of the reflector 122), and these correspondences are all recorded in the processor 134.

相似地,在固定的外部環境之下,第二光感測器133所獲取的光感測值與第一光感測器126所獲取的光感測值也可以找到固定的對應關係,但由於外部環境的變動可以很大,因此在本揭露的校正方法200中,處理器134在每次的校正當中根據現場感測到的數據獲取此對應關係。Similarly, under a fixed external environment, the light sensing value obtained by the second light sensor 133 and the light sensing value obtained by the first light sensor 126 can also find a fixed corresponding relationship. However, since the external environment can change greatly, in the calibration method 200 disclosed in the present invention, the processor 134 obtains this corresponding relationship according to the data sensed on site during each calibration.

舉例來說,如第2圖中所示,校正方法200包含的操作240根據此前獲取的第一色彩資訊與第二色彩資訊的各十五個色彩空間座標,以一次線性迴歸(first-order linear regression)的模型獲取各座標的直線關係。舉例來說,在本實施方式中,操作240獲取第一色彩資訊的X座標對第二色彩資訊的X座標之直線關係、第一色彩資訊的Y座標對第二色彩資訊的Y座標之直線關係以及第一色彩資訊的Z座標對第二色彩資訊之Z座標的直線關係,總共三個關係式。應當理解,本領域具有通常知識者可以依據採樣的數據趨勢與相關性,選擇不同模型獲取對應關係,例如N階多項式迴歸(polynomial regression)等,而不脫離本揭露的範圍。For example, as shown in FIG. 2 , the calibration method 200 includes an operation 240 that obtains the linear relationship of each coordinate using a first-order linear regression model based on the fifteen color space coordinates of the first color information and the second color information obtained previously. For example, in this embodiment, the operation 240 obtains the linear relationship of the X coordinate of the first color information to the X coordinate of the second color information, the linear relationship of the Y coordinate of the first color information to the Y coordinate of the second color information, and the linear relationship of the Z coordinate of the first color information to the Z coordinate of the second color information, a total of three relationships. It should be understood that a person skilled in the art can select different models to obtain corresponding relationships based on the trends and correlations of the sampled data, such as N-order polynomial regression, without departing from the scope of this disclosure.

接著,校正方法200包含操作250。在操作250中,從第二色彩資訊中選取部分數據作為基準,舉例來說,以第二光感測器133在輸出功率為100%時所量測到的全白圖像P(如第1圖中所示)的色彩空間座標(X 100, Y 100, Z 100)作為基準,計算出色度座標(chromaticity coordinate),表示為(x 100, y 100)。色度座標(x, y)與色彩空間座標(X, Y, Z)之間的轉換如下式(1)與式(2)所示。 Next, the calibration method 200 includes an operation 250. In the operation 250, a portion of the data is selected from the second color information as a reference. For example, the color space coordinates (X 100 , Y 100 , Z 100 ) of the full white image P (as shown in FIG. 1 ) measured by the second light sensor 133 when the output power is 100% are used as a reference to calculate the chromaticity coordinate (x 100 , y 100 ). The conversion between the chromaticity coordinate (x, y) and the color space coordinate (X, Y, Z) is shown in the following equations (1) and (2).

接著,以在不同輸出功率下投射出的全白圖像P(如第1圖中所示)都能得到與(x 100, y 100)相同的色度座標為目標,進而獲取第二色彩資訊的目標色彩資訊。具體來說,當在不同輸出功率下的色度座標都等於(x 100, y 100)時,每個輸出功率下各個色彩空間座標X、Y、Z與輸出功率為100%時的各個色彩空間座標X 100、Y 100、Z 100之間的比例是固定的。以輸出功率為A%的狀況為例,在輸出功率為A%時色度座標等於(x 100, y 100)的條件下,X A、Y A、Z A與X 100、Y 100、Z 100的光感測值的比例關係式如式(3)所示。 Next, the target color information of the second color information is obtained by aiming that the all-white image P (as shown in FIG. 1) projected at different output powers can obtain the same chromaticity coordinates as (x 100 , y 100 ). Specifically, when the chromaticity coordinates at different output powers are all equal to (x 100 , y 100 ), the ratio between each color space coordinate X, Y, Z at each output power and each color space coordinate X 100 , Y 100 , Z 100 when the output power is 100% is fixed. Taking the case where the output power is A% as an example, when the output power is A% and the chromaticity coordinates are equal to ( x100 , y100 ), the proportional relationship between the light sensitivity values of XA , YA , ZA and X100 , Y100 , Z100 is as shown in formula (3).

如此一來,在X 100、Y 100、Z 100的光感測值已知的情況下,只要給定X A、Y A以及Z A中的任一值,就能得出其餘兩者的值。舉例來說,原先在操作230中已感測到未校正前的固態光發射器121在輸出功率為50%時的第二色彩資訊為(X 50, Y 50, Z 50),則若保留Y 50的光感測值(即指定Y A等於Y 50),並以其對Y 100的比值推算X A與Z A,此時X A即為X 50的目標值X 50',Z A即為Z 50的目標值Z 50',所獲得的目標色彩空間座標(X 50', Y 50, Z 50')代表具有這個色彩空間座標的全白圖像P(即校正後的投影系統100在輸出功率為50%時所產生的全白圖像P)與輸出功率為100%時的全白圖像P具有相同的色度座標。當操作250完成時,所獲得的十五個目標色彩空間座標組成第二色彩資訊的目標色彩資訊。 In this way, when the light sensitivity values of X100 , Y100 , and Z100 are known, the values of the other two can be obtained by giving any one of XA , YA, and ZA . For example, the second color information of the solid-state light emitter 121 before calibration when the output power is 50% is sensed to be (X 50 , Y 50 , Z 50 ). If the light sensing value of Y 50 is retained (i.e., Y A is designated to be equal to Y 50 ), and X A and Z A are calculated by using the ratio of Y 50 to Y 100 , then X A is the target value X 50 ′ of X 50 , and Z A is the target value Z 50 ′ of Z 50. The target color space coordinates (X 50 ′, Y 50 , Z 50 ′) obtained represent that the full white image P with this color space coordinate (i.e., the full white image P generated by the calibrated projection system 100 when the output power is 50%) has the same chromaticity coordinates as the full white image P when the output power is 100%. When operation 250 is completed, the obtained fifteen target color space coordinates constitute the target color information of the second color information.

在一些實施方式中,作為基準的色度座標不限於從第二色彩資訊中獲取。舉例來說,以參考白(reference white)的色度座標(0.3127, 0.3290)為基準,保留Y 100在操作230中的光感測值,再回推X 100與Z 100的目標值X 100'與Z 100',其他輸出功率以此類推,也可以得出十五個目標色彩空間座標,組成第二色彩資訊的目標色彩資訊。 In some implementations, the chromaticity coordinates used as a reference are not limited to being obtained from the second color information. For example, the chromaticity coordinates (0.3127, 0.3290) of the reference white are used as a reference, the light sensitivity value of Y 100 in operation 230 is retained, and the target values X 100 ' and Z 100 ' of X 100 and Z 100 are deduced, and the other output powers are deduced in the same way, and fifteen target color space coordinates can also be obtained to form the target color information of the second color information.

校正方法200包含操作260。在操作260中,將目標色彩資訊中的十五個目標色彩空間座標分別代入操作240獲得的對應關係,例如一次線性迴歸的關係式,即獲得十五個色彩空間座標。這十五個色彩空間座標代表著在輸出功率為95%、90%、85%、80%、75%、70%、65%、60%、55%、50%、45%、40%、35%以及30%時,要達到所投影的全白圖像P與輸出功率為100%時所投影的全白圖像P具有相同的色度座標的話,固態光發射器121需要校正到使第一光感測器126在這十五個輸出功率下分別能夠感測到操作260所獲得的這十五個色彩空間座標。這十五個色彩空間座標組成第一色彩資訊的目標色彩資訊。The calibration method 200 includes an operation 260. In the operation 260, the fifteen target color space coordinates in the target color information are respectively substituted into the corresponding relationship obtained in the operation 240, such as a linear regression relationship, to obtain fifteen color space coordinates. The fifteen color space coordinates represent that when the output power is 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35% and 30%, in order to achieve that the projected full white image P has the same chromaticity coordinates as the projected full white image P when the output power is 100%, the solid-state light emitter 121 needs to be calibrated to enable the first light sensor 126 to sense the fifteen color space coordinates obtained in the operation 260 under the fifteen output powers. These fifteen color space coordinates constitute the target color information of the first color information.

如上所述,在處理器134中預設有第一色彩資訊與控制固態光發射器121的光源控制訊號之間的對應關係。因此,在校正方法200的操作270中,藉由此對應關係獲得能使第一光感測器126感測到第一色彩資訊的目標色彩資訊的光源控制訊號。在一些實施方式中,光源控制訊號包含不同形式,例如分別驅動三色光雷射二極體的電流值,但本揭露不意欲以此為限。As described above, the processor 134 presets a correspondence between the first color information and the light source control signal for controlling the solid-state light emitter 121. Therefore, in operation 270 of the calibration method 200, the light source control signal that enables the first light sensor 126 to sense the target color information of the first color information is obtained through this correspondence. In some embodiments, the light source control signal includes different forms, such as current values for driving three-color laser diodes respectively, but the present disclosure is not intended to be limited thereto.

請參照第3圖,其為繪示根據本發明另一實施方式之投影系統300的示意圖。如第3圖中所示,投影系統300包含分離的殼體110與殼體140。光源模組120、反光鏡122、中繼鏡123a、積光箱124以及第一光感測器126設置於殼體110中。第二光感測器133與處理器134設置於殼體140中。成像裝置130至少部分地設置於殼體140中。成像裝置130包含外露於殼體140外的投影鏡頭131與設置於殼體140中的光處理模組132。Please refer to FIG. 3, which is a schematic diagram of a projection system 300 according to another embodiment of the present invention. As shown in FIG. 3, the projection system 300 includes a housing 110 and a housing 140 that are separated. The light source module 120, the reflector 122, the relay mirror 123a, the light collecting box 124 and the first light sensor 126 are disposed in the housing 110. The second light sensor 133 and the processor 134 are disposed in the housing 140. The imaging device 130 is at least partially disposed in the housing 140. The imaging device 130 includes a projection lens 131 exposed outside the housing 140 and a light processing module 132 disposed in the housing 140.

如第3圖中所示,光源模組120包含固態光發射器121。積光箱124包含擴散片125。第一光感測器126設置於積光箱124上。成像裝置130包含光處理模組132與投影鏡頭131。這些元件的配置及投影系統300的校正方法相同或相似於第1圖與第2圖中所示之實施方式所揭露者,因此在此恕不贅述,請參閱前文中相關說明。As shown in FIG. 3 , the light source module 120 includes a solid-state light emitter 121. The light-collecting box 124 includes a diffusion sheet 125. The first light sensor 126 is disposed on the light-collecting box 124. The imaging device 130 includes a light processing module 132 and a projection lens 131. The configuration of these components and the calibration method of the projection system 300 are the same or similar to those disclosed in the embodiments shown in FIG. 1 and FIG. 2 , and therefore will not be described in detail here. Please refer to the relevant description in the previous text.

特別來說,第3圖所對應的實施方式相較於第1圖的實施方式的差異處,在於投影系統300改變了光源模組120與成像裝置130之間的光耦合方式。具體來說,在第3圖所對應的實施方式中,投影系統300進一步包含光纖150,其中殼體110中進一步包含中繼鏡123b,成像裝置130進一步包含積分柱135。光源模組120光耦合至光纖150的一端,而成像裝置130經由積分柱135光耦合至光纖150的另一端。換言之,第二部分光在被反光鏡122反射後,被中繼鏡123b聚焦,再由光纖150的一端進入光纖150,接著才經由光纖150的另一端抵達成像裝置130的積分柱135。藉由此結構配置,可有效增加投影系統300在光路設計上的彈性。In particular, the difference between the embodiment corresponding to FIG. 3 and the embodiment of FIG. 1 is that the projection system 300 changes the optical coupling method between the light source module 120 and the imaging device 130. Specifically, in the embodiment corresponding to FIG. 3, the projection system 300 further includes an optical fiber 150, wherein the housing 110 further includes a relay mirror 123b, and the imaging device 130 further includes an integrating rod 135. The light source module 120 is optically coupled to one end of the optical fiber 150, and the imaging device 130 is optically coupled to the other end of the optical fiber 150 via the integrating rod 135. In other words, after being reflected by the reflector 122, the second part of light is focused by the relay mirror 123b, enters the optical fiber 150 from one end of the optical fiber 150, and then reaches the integrating rod 135 of the imaging device 130 through the other end of the optical fiber 150. With this structural configuration, the flexibility of the projection system 300 in the optical path design can be effectively increased.

在本揭露中,應用校正方法200的投影系統100或投影系統300可以在處理器134的驅動下,完成自動白平衡校正,因此,在一些實施方式中,投影系統100或投影系統300進一步包含輸入裝置136與顯示裝置137。輸入裝置136與顯示裝置137分別訊號連接至處理器134。輸入裝置136配置以自使用者接收關聯於自動白平衡校正的校正輸入,處理器134配置以根據校正輸入執行校正程序(例如校正方法200)。在校正程序執行完成後,顯示裝置137顯示校正程序的執行結果。舉例來說,輸入裝置136可以是鍵盤,顯示裝置137可以是顯示螢幕,或者輸入裝置136與顯示裝置137可以整合為觸控式顯示模組。使用者可以透過輸入裝置136一鍵啟動自動白平衡校正的校正程序,顯示裝置137於校正完成後顯示校正結果或錯誤訊息。如此一來,使用者可以直接於投影系統100或投影系統300上進行操作,而無須額外連接其他設備。In the present disclosure, the projection system 100 or the projection system 300 to which the calibration method 200 is applied can complete the automatic white balance calibration under the drive of the processor 134. Therefore, in some embodiments, the projection system 100 or the projection system 300 further includes an input device 136 and a display device 137. The input device 136 and the display device 137 are respectively connected to the processor 134 by signals. The input device 136 is configured to receive a calibration input related to the automatic white balance calibration from a user, and the processor 134 is configured to execute a calibration program (such as the calibration method 200) according to the calibration input. After the calibration program is executed, the display device 137 displays the execution result of the calibration program. For example, the input device 136 may be a keyboard, the display device 137 may be a display screen, or the input device 136 and the display device 137 may be integrated into a touch display module. The user may start the calibration procedure of the automatic white balance calibration by one key through the input device 136, and the display device 137 may display the calibration result or error message after the calibration is completed. In this way, the user may operate directly on the projection system 100 or the projection system 300 without connecting other devices.

由以上對於本揭露之具體實施方式之詳述,可以明顯地看出,於本揭露的投影系統及其校正方法中,藉由將外部光感測器即所謂標準儀表內建於投影系統中,做為投影系統的第二光感測器,解決終端客戶需另外購置用以進行外部校正的標準儀表與相關工具的問題。此外,使用處理器驅使第二光感測器與原先的第一光感測器分別進行數據採樣,再經由處理器中預先寫入的演算法獲取光源控制訊號校正的目標,接著處理器自動調整輸入固態光發射器的光源控制訊號,即完成自動白平衡校正。而此操作可在投影系統架設或是工廠端生產測試時在一般功能選項中方便選擇操作。因此,本揭露的投影系統及其校正方法相較於目前常見的投影系統及其校正方法,在自動白平衡校正方面,可以簡化校正過程中所需的儀器與操作步驟,進一步提升終端用戶或工廠端自行測試的易用性。From the above detailed description of the specific implementation of the present disclosure, it can be clearly seen that in the projection system and calibration method disclosed herein, an external light sensor, i.e., a so-called standard instrument, is built into the projection system as the second light sensor of the projection system, thereby solving the problem that the end customer needs to purchase a standard instrument and related tools for external calibration. In addition, a processor is used to drive the second light sensor and the original first light sensor to perform data sampling respectively, and then the target of the light source control signal calibration is obtained through the algorithm pre-written in the processor, and then the processor automatically adjusts the light source control signal input to the solid-state light emitter, thereby completing the automatic white balance calibration. This operation can be conveniently selected in the general function options when setting up the projection system or conducting factory-side production tests. Therefore, compared with the currently common projection systems and calibration methods, the projection system and calibration method disclosed herein can simplify the instruments and operation steps required in the calibration process in terms of automatic white balance calibration, and further improve the ease of self-testing by end users or factories.

雖然本揭露已以實施方式揭露如上,然其並不用以限定本揭露,任何熟習此技藝者,在不脫離本揭露的精神和範圍內,當可作各種的更動與潤飾,因此本揭露的保護範圍當視後附的申請專利範圍所界定者為準。Although the present disclosure has been disclosed in the above implementation form, it is not intended to limit the present disclosure. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, the protection scope of the present disclosure shall be determined by the scope of the attached patent application.

100,300:投影系統 110,140:殼體 120:光源模組 121:固態光發射器 122:反光鏡 122a:反射平面 123a,123b:中繼鏡 124:積光箱 124a,132a:入口 125:擴散片 126:第一光感測器 130:成像裝置 131:投影鏡頭 132:光處理模組 133:第二光感測器 134:處理器 135:積分柱 136:輸入裝置 137:顯示裝置 150:光纖 200:校正方法 210,220,230,240,250,260,270:操作 P:全白圖像 S:投影屏幕 100,300: projection system 110,140: housing 120: light source module 121: solid-state light emitter 122: reflector 122a: reflection plane 123a,123b: relay mirror 124: light integrating box 124a,132a: entrance 125: diffusion sheet 126: first light sensor 130: imaging device 131: projection lens 132: light processing module 133: second light sensor 134: processor 135: integration column 136: input device 137: display device 150: optical fiber 200: calibration method 210,220,230,240,250,260,270: Operation P: All white image S: Projection screen

為讓本揭露之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: 第1圖為繪示根據本揭露一實施方式之投影系統的示意圖。 第2圖繪示根據本揭露一實施方式之投影系統之校正方法的示意圖。 第3圖為繪示根據本揭露一實施方式之投影系統的示意圖。 In order to make the above and other purposes, features, advantages and embodiments of the present disclosure more clearly understandable, the attached drawings are described as follows: Figure 1 is a schematic diagram of a projection system according to an embodiment of the present disclosure. Figure 2 is a schematic diagram of a calibration method of a projection system according to an embodiment of the present disclosure. Figure 3 is a schematic diagram of a projection system according to an embodiment of the present disclosure.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date, and number) None Foreign storage information (please note in the order of storage country, institution, date, and number) None

200:校正方法 200: Calibration method

210,220,230,240,250,260,270:操作 210,220,230,240,250,260,270: Operation

Claims (17)

一種投影系統,包含:  一光源模組,具有至少一固態光發射器; 一成像裝置; 一第一光感測器; 一第二光感測器;以及 一處理器,訊號連接至該光源模組、該第一光感測器以及該第二光感測器,並配置以執行一校正程序,該校正程序包含: 驅使該至少一固態光發射器根據複數個光源控制訊號產生複數個輸出功率,並依序發射複數個白光,透過該成像裝置依序於一屏幕上投射複數個全白圖像; 驅使該第一光感測器依序感測該些白光,並對應產生一第一色彩資訊; 驅使該第二光感測器依序感測該些全白圖像,並對應產生一第二色彩資訊; 獲取該第一色彩資訊與該第二色彩資訊之間的一對應關係; 根據該第二色彩資訊中之一色彩空間座標獲取該第二色彩資訊的一目標色彩資訊; 根據該第二色彩資訊的該目標色彩資訊與該對應關係獲取該第一色彩資訊的一目標色彩資訊;以及 根據該第一色彩資訊的該目標色彩資訊校正該些輸出功率所對應之該些光源控制訊號。 A projection system comprises: a light source module having at least one solid-state light emitter; an imaging device; a first light sensor; a second light sensor; and a processor, which is signal-connected to the light source module, the first light sensor and the second light sensor and configured to execute a calibration procedure, the calibration procedure comprising: driving the at least one solid-state light emitter to generate a plurality of output powers according to a plurality of light source control signals, and sequentially emitting a plurality of white lights, and sequentially projecting a plurality of full-white images on a screen through the imaging device; driving the first light sensor to sequentially sense the white lights and generate a first color information accordingly; driving the second light sensor to sequentially sense the full-white images and generate a second color information accordingly; Obtain a corresponding relationship between the first color information and the second color information; Obtain a target color information of the second color information according to a color space coordinate in the second color information; Obtain a target color information of the first color information according to the target color information of the second color information and the corresponding relationship; and Correct the light source control signals corresponding to the output powers according to the target color information of the first color information. 如請求項1所述之投影系統,其中該第二色彩資訊中之該色彩空間座標為該至少一固態光發射器以該些輸出功率中之一最大者所產生之該全白圖像的一色彩空間座標。A projection system as described in claim 1, wherein the color space coordinate in the second color information is a color space coordinate of the full white image generated by the at least one solid-state light emitter with one of the maximum output powers. 如請求項1所述之投影系統,其中該第一色彩資訊為該第一光感測器在該至少一固態光發射器以該些輸出功率發射該些白光時所感測到的複數個色彩空間座標。The projection system as described in claim 1, wherein the first color information is a plurality of color space coordinates sensed by the first light sensor when the at least one solid-state light emitter emits the white lights at the output powers. 如請求項1所述之投影系統,其中該第二色彩資訊為該第二光感測器在該至少一固態光發射器以該些輸出功率投射該些全白圖像時所感測到的複數個色彩空間座標。A projection system as described in claim 1, wherein the second color information is a plurality of color space coordinates sensed by the second light sensor when the at least one solid-state light emitter projects the all-white images at the output powers. 如請求項1所述之投影系統,進一步包含一積光箱,設置於該些白光的路徑上,並具有一入口,該些白光通過該入口進入該積光箱中,並在該積光箱中均勻混合,其中該第一光感測器設置於該積光箱上。The projection system as described in claim 1 further includes a light collecting box, which is arranged on the path of the white lights and has an inlet, through which the white lights enter the light collecting box and are evenly mixed in the light collecting box, wherein the first light sensor is arranged on the light collecting box. 如請求項5所述之投影系統,該積光箱進一步包含一反光鏡,配置以允許該些白光中的每一者的一第一部分光通過,並轉向該些白光中的每一者的一第二部分光,該第一光感測器配置以接收該第一部分光與該第二部分光中之一者,該成像裝置配置以接收該第一部分光與該第二部分光中之另一者。In the projection system as described in claim 5, the light collecting box further includes a reflector configured to allow a first portion of each of the white lights to pass through and to turn a second portion of each of the white lights, the first light sensor is configured to receive one of the first portion of light and the second portion of light, and the imaging device is configured to receive the other of the first portion of light and the second portion of light. 如請求項1所述之投影系統,進一步包含一光纖,其中該光源模組與該成像裝置分別以光耦合方式設置於該光纖的兩端。The projection system as described in claim 1 further comprises an optical fiber, wherein the light source module and the imaging device are respectively arranged at two ends of the optical fiber in an optical coupling manner. 如請求項1所述之投影系統,進一步包含一殼體,其中該光源模組與該成像裝置設置於該殼體中,其中該成像裝置包含一光處理模組與一投影機鏡頭。The projection system as described in claim 1 further comprises a housing, wherein the light source module and the imaging device are disposed in the housing, wherein the imaging device comprises a light processing module and a projector lens. 如請求項1所述之投影系統,其中該第二光感測器為一電荷耦合元件影像感測器或一互補式金氧半導體。A projection system as described in claim 1, wherein the second light sensor is a charge coupled device image sensor or a complementary metal oxide semiconductor. 如請求項1所述之投影系統,進一步包含: 一輸入裝置,訊號連接至該處理器,該輸入裝置配置以接收一校正輸入,該處理器配置以根據該校正輸入執行該校正程序;以及 一顯示裝置,訊號連接至該處理器,並配置以顯示該校正程序之一執行結果。 The projection system as described in claim 1 further comprises: an input device, signal-connected to the processor, the input device configured to receive a correction input, the processor configured to execute the correction procedure according to the correction input; and a display device, signal-connected to the processor, and configured to display an execution result of the correction procedure. 一種投影系統之校正方法,包含: 驅使至少一固態光發射器根據複數個光源控制訊號產生複數個輸出功率,並依序發射複數個白光,透過一成像裝置依序於一屏幕上投射複數個全白圖像; 驅使一第一光感測器依序感測該些白光,並對應產生一第一色彩資訊; 驅使一第二光感測器依序感測該些全白圖像,並對應產生一第二色彩資訊; 獲取該第一色彩資訊與該第二色彩資訊之間的一對應關係; 根據該第二色彩資訊中之一色彩空間座標獲取該第二色彩資訊的一目標色彩資訊; 根據該第二色彩資訊的該目標色彩資訊與該對應關係獲取該第一色彩資訊的一目標色彩資訊;以及 根據該第一色彩資訊的該目標色彩資訊校正該些輸出功率所對應之該些光源控制訊號。 A calibration method for a projection system, comprising: Driving at least one solid-state light emitter to generate a plurality of output powers according to a plurality of light source control signals, and sequentially emitting a plurality of white lights, and sequentially projecting a plurality of full-white images on a screen through an imaging device; Driving a first light sensor to sequentially sense the white lights, and correspondingly generating a first color information; Driving a second light sensor to sequentially sense the full-white images, and correspondingly generating a second color information; Obtaining a corresponding relationship between the first color information and the second color information; Obtaining a target color information of the second color information according to a color space coordinate in the second color information; Obtaining a target color information of the first color information according to the target color information of the second color information and the corresponding relationship; and The light source control signals corresponding to the output powers are corrected according to the target color information of the first color information. 如請求項11所述之投影系統之校正方法,其中根據該第二色彩資訊中之該色彩空間座標獲取該第二色彩資訊的一目標色彩資訊係根據該至少一固態光發射器以該些輸出功率中之一最大者所產生之該全白圖像的一色彩空間座標。A calibration method for a projection system as described in claim 11, wherein a target color information of the second color information is obtained based on the color space coordinates in the second color information, which is a color space coordinate of the full white image generated by the at least one solid-state light emitter with one of the largest output powers. 如請求項11所述之投影系統之校正方法,其中該第一色彩資訊為該第一光感測器在該至少一固態光發射器以該些輸出功率發射該些白光時所感測到的複數個色彩空間座標。A calibration method for a projection system as described in claim 11, wherein the first color information is a plurality of color space coordinates sensed by the first light sensor when the at least one solid-state light emitter emits the white lights at the output powers. 如請求項11所述之投影系統之校正方法,其中該第二色彩資訊為該第二光感測器在該至少一固態光發射器以該些輸出功率投射該些全白圖像時所感測到的複數個色彩空間座標。A calibration method for a projection system as described in claim 11, wherein the second color information is a plurality of color space coordinates sensed by the second light sensor when the at least one solid-state light emitter projects the all-white images with the output powers. 如請求項11所述之投影系統之校正方法,其中該第一色彩資訊與該第二色彩資訊均包含複數個色彩空間座標。A calibration method for a projection system as described in claim 11, wherein the first color information and the second color information both include a plurality of color space coordinates. 如請求項11所述之投影系統之校正方法,其中該第一色彩資訊與該第二色彩資訊之間的該對應關係為一直線關係或一N階多項式函數關係。A calibration method for a projection system as described in claim 11, wherein the corresponding relationship between the first color information and the second color information is a linear relationship or an N-order polynomial function relationship. 如請求項11所述之投影系統之校正方法,其中該些光源控制訊號為輸入該至少一固態光發射器之複數個電流訊號。A calibration method for a projection system as described in claim 11, wherein the light source control signals are a plurality of current signals input into the at least one solid-state light emitter.
TW111146269A 2022-12-02 Projection system and calibration method thereof TWI841086B (en)

Publications (1)

Publication Number Publication Date
TWI841086B true TWI841086B (en) 2024-05-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110832396A (en) 2017-07-12 2020-02-21 索尼公司 Image display apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110832396A (en) 2017-07-12 2020-02-21 索尼公司 Image display apparatus

Similar Documents

Publication Publication Date Title
US7177033B2 (en) Image processing type of measuring device, lighting system for the same, lighting system control method, lighting system control program, and a recording medium with the lighting system control program recorded therein
EP2506573B1 (en) Projection display apparatus and projection display method
US20040140982A1 (en) Image projection with display-condition compensation
CN102722076B (en) Projection device and projection method
US8272750B2 (en) Projection-type image display apparatus
US11303862B2 (en) Projector, display system, image correction method, and colorimetric method
JPH1090645A (en) Liquid crystal display device
JP2012248910A (en) Color correction method of projection display device
TWI841086B (en) Projection system and calibration method thereof
JP6623239B2 (en) Method for controlling projector and projector applied to the method
CN108600713B (en) Method and module for dynamically detecting color coordinates of projection device and projection device
JP2020039082A (en) Display device, display system, and method for controlling display device
CN112995623A (en) Method for color adjustment of DLP (digital light processing) optical machine
US20240187558A1 (en) Projection system and calibration method thereof
CN118138731A (en) Projection system and correction method thereof
JPH0548849B2 (en)
JP2009216767A (en) Projector
US20210036483A1 (en) Driving current correction method and apparatus for multiple laser devices, and laser projector
JP2022007978A (en) Control method for spectral imaging device, spectral imaging device, computer program, control method for display system, control method for projector, display system, and projector
JP4133886B2 (en) Projector device and color correction method in projector device
US20240114116A1 (en) Multi-projector system and method of calibrating multi-projector system
JP5200599B2 (en) Screen, optical characteristic measuring system, and optical characteristic measuring method
TWI771131B (en) Parameter adjusting method and projector
TWI758094B (en) Light source module and projection device
JP2001324386A (en) Measuring method of chromaticity or illuminance, and measuring system of chromaticity or illuminance