TWI840585B - 自動化高速x射線檢驗方法、電腦可讀取非暫態儲存媒體及電子系統 - Google Patents

自動化高速x射線檢驗方法、電腦可讀取非暫態儲存媒體及電子系統 Download PDF

Info

Publication number
TWI840585B
TWI840585B TW109123429A TW109123429A TWI840585B TW I840585 B TWI840585 B TW I840585B TW 109123429 A TW109123429 A TW 109123429A TW 109123429 A TW109123429 A TW 109123429A TW I840585 B TWI840585 B TW I840585B
Authority
TW
Taiwan
Prior art keywords
ray
interest
ray image
image
speed
Prior art date
Application number
TW109123429A
Other languages
English (en)
Other versions
TW202109459A (zh
Inventor
大衛路易 阿德爾
史考特約瑟夫 朱爾
佛雷迪埃里希 巴比安
Original Assignee
美商布魯克奈米公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/924,581 external-priority patent/US11688067B2/en
Application filed by 美商布魯克奈米公司 filed Critical 美商布魯克奈米公司
Publication of TW202109459A publication Critical patent/TW202109459A/zh
Application granted granted Critical
Publication of TWI840585B publication Critical patent/TWI840585B/zh

Links

Abstract

提供一種自動化高速X射線檢驗方法。在第一方向上生成檢驗樣本的第一X射線影像,其中第一X射線影像是一高解析度灰階影像,第一方向實質上正交於該檢驗樣本的平面。根據第一X射線影像從檢驗樣本的多個物件中辨識出檢驗樣本的至少一感興趣物件,其中第一X射線影像包含多個干擾物件,干擾物件在第一X射線影像中干擾到感興趣物件。為各個感興趣物件決定出與各個感興趣物件相關聯的至少一第一特徵,其中根據第一X射線影像中的灰階值變化確定第一特徵。為各個感興趣物件根據第一特徵決定是否有與感興趣物件相關聯的至少一缺陷。

Description

自動化高速X射線檢驗方法、電腦可讀取非暫態儲存媒體及電子系統
本發明係關於使用X射線對物體進行高速檢查和檢驗,特別是關於一種自動化高速X射線檢驗方法。
積體電路可以製造成包括3D(三維)或2.5D結構。使用光學光子或電子來檢驗矽晶片的技術不能用於檢驗3D和2.5D積體電路封裝,因為光子和電子不能充分穿透積體電路、中介層或銅晶粒之間的黏晶接合(Cu-Cu die to die bonding)來提供封裝積體電路的內部視圖。光學檢驗方法也不能對部分封裝的部件進行檢驗或度量,這是製程控制的關鍵需求。由於X射線可以穿透封裝的許多層,X射線檢驗可以提供組裝裝置的內部視圖。
然而,現有的X射線系統缺乏足夠的解析度和成像速度來滿足對高解析度、高流通量(Throughput)積體電路以及電子封裝檢驗的需求。舉例來說,傳統的X射線電腦斷層掃描(CT)需要採集多張檢驗目標物的X射線影像,並且使用很多張的影像來建構目標物的3D模型,因而速度很慢且不適用於檢驗積體電路。
本發明所揭露的特定實施態樣描述關於使用單一X射線影像(例如俯視X射線影像、仰視X射線影像或是在任意合適角度擷取的X射線影像)或以不同角度生成的多個X射線影像檢驗積體電路裝置或積體電路封裝的系統及方法。自動化高速X射線檢驗系統可在一第一方向上生成檢驗樣本的高解析度灰階第一X射線影像,其中所述第一方向實質上正交於檢驗樣本的平面。第一X射線影像可藉由具有高動態範圍(例如大於10,000)的X射線探測器來生成,且第一X射線影像可具有大於10,000的灰度級(Graysale Level)。在特定實施態樣中,具有高動態範圍(例如灰度級大於10,000)的X射線影像可以是由多個低動態範圍X射線影像疊加所形成,且這些低動態範圍X射線影像使用低動態範圍(例如動態範圍小於10,000)的至少一X射線探測器以不同的X射線曝光設定來生成。自動化高速X射線檢驗系統可根據第一X射線影像從檢驗樣本所包含的多個物件中辨識出檢驗樣本中感興趣物件。第一X射線影像可包含干擾到感興趣物件之多個干擾物件。對於各個感興趣的物件,自動化高速X射線檢驗系統可為一或多個感興趣物件之一或多者決定與各個興趣物件相關聯的至少一第一特徵(例如材料厚度、形狀、尺寸、與其他物件的距離、位置、相對其他物件的位置、堆疊次序(Stacking order)、輪廓變化、梯度)。可根據第一X射線影像中的灰階值變化確定第一特徵。自動化高速X射線檢驗系統可為各個感興趣物件根據第一特徵確定是否有與各個感興趣物件相關聯的缺陷。
在特定實施態樣中,自動化高速X射線檢驗系統可在不同於第一方向的第二方向上生成檢驗樣本的第二X射線影像。藉由比較第一X射線影像與第二X射線影像,自動化高速X射線檢驗系統可確定與各個感興趣物件相關聯的至少一第二特徵(例如二個以上之層的堆疊次序、感興趣物件的位置改變、感興趣物件的形狀改變、干擾物件的位置改變、干擾物件的形狀改變、與感興趣物件相關聯的至少一灰階值的改變和與干擾物件相關聯的至少一灰階值的改變)。自動化高速X射線檢驗系統可根據感興趣物件的第二特徵使基於第一特徵對與感興趣物件相關聯的缺陷之判定無效之判定,來確定與感興趣物件相關聯的缺陷之判定是偽陽性結果。或者,自動化高速X射線檢驗系統可根據第二特徵基於至少一第一特徵驗證至少一缺陷與感興趣物件相關聯之判定,來驗證至少一缺陷與感興趣物件相關聯。
在特定實施態樣中,與感興趣物件相關聯的缺陷可藉由機器學習模型來辨識,其中機器學習模型是透過大數量母群體(例如包含至少10,000個樣本)來訓練,且機器學習模型在訓練過後能將感興趣物件從數個干擾物件中孤立出來。自動化高速X射線檢驗系統可為相鄰的檢驗樣本生成至少二參考X射線影像。自動化高速X射線檢驗系統可根據參考X射線影像為檢驗樣本生成參考模型。自動化高速X射線檢驗系統可藉由電腦視覺演算法比較檢驗樣本的第一X射線影像與參考模型,並且根據第一X射線影像與參考模型的比較結果辨識出與感興趣物件相關聯的缺陷。感興趣物件可以是焊料連接處,且與焊料連接處相關聯的缺陷例如但不限於包含空孔缺陷(Void defect)、枕頭缺陷(head-in-pillow defect)、非潤濕缺陷(Non-wet defect)、斷路缺陷(Non-contact open defect)、錯位(Misalignment)和橋接/短路缺陷(Bridging/short defect)等。
在特定實施態樣中,自動化高速X射線檢驗系統可包含X射線源以及至少一X射線濾除元件,其中X射線源發出具有白光光譜之X光光束,且X射線濾除元件濾除X光光束的特定光譜範圍。X射線濾除元件可以是對應第一光譜範圍的第一X射線濾除元件以及對應第二光譜範圍的第二X射線濾除元件,其中第一光譜範圍中的光可被第一材料吸收,且第二光譜範圍中的光可被第二材料吸收。自動化高速X射線檢驗系統可將第一X射線濾除元件應用於X射線源以生成第一材料選擇性X射線影像,其中第一材料X射線選擇性可影像可排除由第一材料製成的物件。自動化高速X射線檢驗系統還可將第二X射線濾除元件應用於X射線源以生成第二材料選擇性X射線影像,其中第二材料選擇性X射線影像可排除由第二材料製成的物件。自動化高速X射線檢驗系統還可藉由結合第一材料選擇性X射線影像與第二材料選擇性X射線影像生成優化的X射線影像,其中優化的X射線影像相對第一X射線影像具有較高的訊噪比(Signal-to-noise ratio)。可根據第一材料選擇性X射線影像、第二材料選擇性X射線影像或優化的X射線影像辨識出與感興趣物件相關聯的缺陷。
關於本揭露內容公開的實施態樣只是示例,本發明的範圍並不限於它們。特定的實施態樣可以包括上面公開的實施態樣的全部、部分或不包括任何元件、物件、特徵、功能、操作或步驟。針對方法、儲存媒介、系統和電腦程式產品的請求項中,根據本發明的實施例特別公開,其中在任一組請求項(如方法請求項)中提到的任何功能也可以在另一組請求項(如系統請求項)中提出。申請專利範圍中的附屬項或引用記載僅出於形式原因而選擇。然而,任何因刻意引用之前的請求項(特別是多重附屬關係)而產生的標的也可以請求保護,以便本揭露內容公開的請求項及其特徵的任何組合都可以主張,而不需考慮所附屬請求項中選擇的依賴關係。可以主張的標的不僅包含請求項中規定的特徵組合,而且還包括申請專利範圍中任何其他特徵的組合,其中申請專利範圍提到的每個特徵都可以與任一請求項中任何其他特徵組合。此外,揭露內容描述或描繪的任何實施例和特徵可以在單獨的請求項中主張,和/或與揭露內容描述或描繪的任何其他實施例或特徵做任何組合。
以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。
以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者瞭解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。
[自動化高速X射線檢驗系統]
(X射線系統架構)
本發明所揭露的系統和方法是關於系統以及此系統的使用,涉及以X射線照射目標物來進行檢查或檢驗、將X射線轉換成可見光(或波長接近可見光)的光子、形成可見光(或波長接近可見光)的影像並接著將影像轉換成電子形式。首先,將介紹X射線成像系統的各種實施例,然後介紹利用X射線成像系統的方法和系統之各種實施例。
雖然使用本發明的設備可以對多種物體進行檢測,但特別適用於積體電路晶片和封裝元件的檢測,其中一個例子是有多個矽穿孔(TSV)的矽中介層電路板,但本發明也可以用來檢查積體電路(IC)本身、矽中介層電路板、二氧化矽中介層電路板、具有或不具有已安裝IC的印刷電路板、3D(三維)IC封裝結構或組件、2.5D IC封裝結構或組件、多晶片模組(MCM)、系統封裝(System-in-package,SIP)和其他包含微結構的微電子元件或其部分。基於計量、程序控制、檢驗或良率管理的目的,上述物品可作為進料、成品或在其製造的任何階段作為半完成品被檢查。
具有微米級或奈米級結構的非電子元件例如是磁性記錄介質、光子結構和光子晶體、超材料等,這類的電子元件也可以使用本發明的設備進行檢查和檢驗。電容式感測器,如指紋感測器,也可以被檢驗。這種設備特別吸引的特點是,其可以像傳統的計量和檢驗工具那樣對物體內部的特徵進行無破壞性、高解析度的觀察和測量,而這些特徵在其他情況下是無法用電子或光子觀察到的。
一般而言,適於與本發明一起使用的物體包括至少一平坦側,其例子包括:半導體晶片上的電子電路、晶片的部分或晶片上的選定區域;積體電路晶片、晶粒、組裝物、封裝或其部分;微流體裝置;微機電系統,包括加速度計、陀螺儀、磁性感測器及電容感測器等;光子裝置,特別是用平面波導製作的光子裝置;生物組織,包括染色樣本;用於印刷或製造任何上述裝置的模板或光罩;以及太陽能電池、其部件或與太陽能電池有關的部件。其他沒有平坦側的物體也可以使用本發明來觀察和檢驗,但是不規則尺寸的物體的成像品質可能不一致。
在特定實施例中,本發明揭露的X射線檢驗系統可以是高速X射線檢驗系統。於特定實施例中,高速X射線檢驗系統可以具有比傳統X射線系統更高的測量/檢驗速度(例如,比傳統X射線系統快100倍)。高速x射線檢驗系統在檢驗電子元件或裝置時所需要的影像採集時間例如但不限於是約33毫秒。在特定實施例中,本發明中所描述的X射線檢驗系統可以是自動化X射線檢驗系統。在特定實施例中,自動化X射線檢驗系統可以包括一個或多個電腦指令或控制器,另外還包含儲存在一個或多個電腦媒介中的一個或多個指令。X射線自動檢驗系統的自動測量過程可以由電腦或控制器執行相應的指令來控制。自動化X射線檢驗系統的自動測量過程可不需要操作員的干預,並且可以按照特定的程式自動執行。
在特定實施例中,本發明所揭露的X射線檢驗系統可使用一個以上的人工智慧(AI)模組和/或機器學習(ML)模型。在特定實施例中,AI模組可以本身是或是包括由一個或多個計算系統執行的任何合適的方法、過程和/或演算法。在特定實施例中,機器學習模型可以本身是或是包括基於規則式(Rule-based)演算法、隨機森林模型、類神經網路或任何合適的機器學習模型,但本發明並不以此為限。在特定實施例中,本發明所揭露的X射線檢驗系統可以對由另一個系統(例如,鑽孔機、接合工具、組裝工具或任何合適工具)執行的一個或多個製程進行即時測量。在特定實施例中,術語「即時測量」可指由X射線檢驗系統在不降低相關製程進行的速度之情況下,與相關製程(例如鑽孔製程、組裝流程、接合製程或任何合適製程)並行進行的測量。X射線檢驗系統可以執行測量並以相較相關製程還要快或相當的速度向執行此相關製程的系統提供回饋。
在特定實施例中,本發明所揭露的X射線檢驗系統對一個或多個其他系統或工具(例如:鑽孔機、接合工具、組裝工具或任何合適的其他工具)進行現場(In-situ)測量和/或產線上(Inline)測量。在具體實施例中,術語「現場量測」可指由與其他系統整合的X射線檢驗系統進行的測量。例如,X射線檢驗系統可以整合到鑽孔機上進行現場測量,以監測鑽孔機的鑽孔製程。現場測量可由一個或多個計算系統自動控制,且計算系統與X射線檢驗系統和鑽孔機相協調。在特定實施例中,術語「產線上測量」可指X射線檢驗系統在同一製程(例如鑽孔製程、組裝流程、接合製程或任何合適製程)中由另一個系統(例如鑽孔機、組裝工具、接合工具或任何合適工具)進行的測量。一個示例是由組裝工具執行的組裝流程中,X射線系統可以在組裝流程的一個或多個步驟期間檢查組裝部件或裝置。部件或裝置可以從組裝工具自動地傳送(例如,透過機械手臂)到X射線檢驗系統,或者可以從組裝工具手動地傳送(例如,透過操作人員)到X射線檢驗系統。X射線檢驗系統可以自動向組裝工具或操作人員提供回饋資訊。
(X射線成像系統)
圖1A繪示根據本發明一實施例的X射線成像系統。X射線發射器101發出X射線111。然後,在某些實施例中,利用X射線發射器101與平板140之間的距離以及平板140的孔徑142,將這些X射線調變成準直X射線光束211。準直X射線光束211接著照射一個預備檢查的物件200。X射線通過物件200而照射包含閃爍器310的閃爍器組件300,以及在某些實施例中還照射用於支撐閃爍器的載台350。閃爍器310吸收一部分的X射線並伴隨著射出可見光光子411而釋放一些所吸收的能量。
藉由光學系統400在感光元件500上形成閃爍器射出的可見光光子的放大影像511。感光元件500將放大影像511轉換成電訊號。感光元件500可包含電子感光元件,例如電荷耦合器件(CCD)或其他本技術領域已知的感光元件。電訊號傳遞到電子裝置600的系統,其在某些實施例中可顯示影像結果,且在某些實施例中可儲存影像結果及/或結合電腦系統700對影像結果進行影像處理演算法。
對於任何發射電離輻射(如X射線)的來源,通常較佳做法是在X射線源100周圍提供遮罩998,並且在某些情況下進行合乎法規的操作。這樣的遮罩998可以是一個簡單外殼形狀的鉛金屬片,或是任意數量的X射線吸收材料製作出更複雜之設計,其中X射線吸收材料例如是本技術領域熟知的含鉛玻璃或塑膠。遮罩是為了避免隨機X射線(直接來自發射器101或從其他表面反射)引起不必要的影響,特別是各種電子元件中用來控制系統的寄生訊號。
同樣地,對於某些實施例,也可以在光束路徑周圍增加遮罩999,並且在某些情況下進行合乎法規的操作。額外的遮罩999可以是一個簡單外殼形狀的鉛金屬片,或是任意數量的X射線吸收材料製作出更複雜之設計,其中X射線吸收材料例如是本技術領域熟知的含鉛玻璃或塑膠。額外的遮罩999是為了避免隨機X射線(直接來自發射器101或從其他表面反射)引起不必要的影響,特別是各種電子元件中用來控制系統的寄生訊號。
由於某些感光元件500(例如包括CCD感測器的感光元件500)對X射線曝光特別敏感,在一些實施例中,閃爍器組件300的一部分可以全部或部分地使用諸如含鉛玻璃的材料製造,該材料在傳遞閃爍器所發出之可見光光子411的同時吸收X射線。
圖1B繪示根據本發明一實施例的具有可移動X射線源的X射線成像系統,其中X射線源可相對檢驗樣本移動以在不同方向生成X射線影像。作為示例而非限制,X射線系統可包括安裝件106,其可相對於物件200移動X射線源100的位置,從而改變X射線光束相對於物件的入射角。安裝件106可被設計成允許X射線源100在x-z平面、y-z平面或任何其它軸的組合中擺動。X射線源100也可以沿著z軸移動,使X射線源100更靠近物件200。這可能會使光束更亮而增加訊號強度,換來的不良效應是X射線光束的準直度和解析度降低。透過縮減X射線源的光斑尺寸,可以減少或消除前述的不良效應。
透過安裝件106移動X射線源100的行為可由電腦系統700以多種方式控制。在某些實施例中,安裝件106可以將X射線源100移動到固定位置以允許捕捉影像。在某些實施例中,當影像被收集時,安裝件106可連續移動X射線源100,以允許通過物件200的X射線強度的動態變化作為光照角度的函數記錄下來。在一些實施例中,X射線發射器101可以移動到偏離法線入射角至少10度的位置。在一些實施例中,可以透過使用安裝件106協調X射線源100的運動與使用安裝件250協調物件200的運動來進一步調整X射線光束211相對於物件200的入射角。這種協調可以手動完成,也可以使用電腦系統700完成。在某些實施例中,遮罩998被設計成包圍X射線源100和安裝件106。在其它實施例中,遮罩998可設計成僅包圍X射線源,且安裝件106設計成在移動X射線源100時一併移動遮罩998。在本發明的一些實施例中,可以使用多個X射線源來產生具有不同入射角的影像。X射線源可以位於空間中的固定位置,也可以是可移動的,並且可以按順序操作或同時操作。X射線源可以手動操作,或使用一個或多個電腦系統700控制這些X射線源。
在特定實施例中,本發明所描述的X射線成像系統可以是用於生成電子裝置的X射線影像的自動化高速高解析度X射線成像系統。在具體實施例中,自動化高速X射線檢驗系統可以包括對X射線輻射具有高靈敏度的X射線探測器、具有大動態範圍的大灰度級(如灰度級10,000以上)和用於生成高解析度影像的大量像素(如大於或等於2900萬像素)。在特定實施例中,該系統可以具有低於2微米(µm)的空間解析度、12公釐(mm)×12公釐的視野以及每分鐘大於3000平方公釐(mm2)的流通量。關於X射線系統的更多細節可以參閱2017年3月27日提交的第15/470726號美國專利申請案,其內容合併在此作為參考。
[根據X射線影像中的灰階變化的檢驗]
(X射線檢驗於印刷電路板封裝和裝置上的應用)
於特定實施例中,自動化高速X射線檢驗系統可檢驗具有印刷電路板的積體電路裝置封裝以偵測缺陷。積體電路裝置封裝可以包括連接到印刷電路板的多個元件。在特定實施例中,裝置封裝可包括被單獨製造的一個或多個電連接元件、一個或多個焊料接點以及尺寸小於500微米的多個特徵。在特定實施例中,基於由自動化高速X射線檢驗系統進行的檢驗,能以小於或等於十億分之一的不良率製造積體電路裝置封裝。於特定實施例中,自動化高速X射線檢驗系統可檢驗積體電路裝置封裝,以確認封裝的銅晶粒之間的黏晶接合。自動化高速X射線檢驗系統可以在現場檢驗過程中確認銅晶粒的黏晶接合結果。於特定實施例中,在矽穿孔或多晶片封裝(MCP)製程的產線上進行現場檢驗時,自動化高速X射線檢驗系統可快速地檢驗矽穿孔、倒裝晶片、中介層以及多晶片封裝的裝置。
於特定實施例中,裝置封裝例如但不限於是高密度晶片封裝、2.5D高密度晶片封裝、3D高密度晶片封裝、堆疊式封裝層疊(PoP)、射頻封裝、系統封裝或扇出型晶圓級封裝。於特定實施例中,裝置封裝中的缺陷可以是焊料接點缺陷,包括但不限於是枕頭缺陷(Head-in-pillow defect)、雪人式缺陷(Snowman defect)、缺失焊料缺陷、低焊料體積缺陷、高焊料體積缺陷、焊料短路(橋接)缺陷、局部潤濕缺陷、錯位缺陷、微凸塊缺陷、焊球裂紋、焊球空洞或有缺陷的焊料接點直徑。於特定實施例中,可根據自動化高速X射線檢驗系統所測得的數個參數辨識出焊料缺陷。這些參數例如但不限於是包含焊料接點外部尺寸的均勻性度量、連接處直徑、接觸墊區域的暗度量、接觸墊區域的暗部覆蓋的均勻性度量、接觸墊的位置上的連續訊號變化、球體和焊料接觸處的明亮訊號震盪、接觸墊區域上的小黑點覆蓋和均勻覆蓋,或與通常定義良好連接處的參數的偏差。於特定實施例中,自動化高速X射線檢驗系統可進一步偵測球柵陣列(BGA)中的光纖錯位、準光連接器錯位、翹曲缺陷、缺陷間隙、缺陷接合線長度或晶粒翹曲缺陷中的一個或多個。於特定實施例中,焊料缺陷可能歸咎於許多因素,例如但不限於包含汙染、溫度、射頻電力產生的熱或其他因素。於特定實施例中,自動化高速X射線檢驗系統可轉動X射線源並使檢驗裝置或裝置封裝保持固定。於特定實施例中,自動化高速X射線檢驗系統的測量可在同一影像中或不同影像中從其中一個焊料接點轉移到其他焊料接點。
於特定實施例中,自動化高速X射線檢驗系統可對檢驗裝置的元件擷取一個或多個參考影像。於特定實施例中,參考影像可以是針對個別的元件或是成群的多個元件。於特定實施例中,可在這些元件連接到印刷電路板之前就擷取針對這些元件的參考影像。於特定實施例中,可在檢驗中的裝置附接於晶粒之前就擷取針對這些元件的參考影像。於特定實施例中,自動化高速X射線檢驗系統可擷取檢驗中的裝置封裝的一個或多個影像。於特定實施例中,自動化高速X射線檢驗系統可根據裝置影像和參考影像辨識每個焊料接點的形狀。於特定實施例中,自動化高速X射線檢驗系統可利用焊料凸塊的形狀來區分潤濕連接以及非潤濕連接,藉以辨識出焊料缺陷。於特定實施例中,自動化高速X射線檢驗系統可透過從被檢驗的裝置之影像減去參考影像而生成處理過的影像。於特定實施例中,自動化高速X射線檢驗系統可根據處理過的影像辨識每個焊料接點的形狀。於特定實施例中,自動化高速X射線檢驗系統可根據辨識出來的形狀確定每個焊料接點的潤濕性百分率。於特定實施例中,自動化高速X射線檢驗系統可根據辨識出來的形狀與已經確定的每個焊料接點的潤濕性百分率來辨識一個或多個焊料缺陷。於特定實施例中,可使用人工智慧(AI)模型和機器學習(ML)演算法辨識焊料缺陷。
於特定實施例中,自動化高速X射線檢驗系統可使用人工智慧模型和機器學習演算法將焊料接點的形狀分成不同的類別。於特定實施例中,自動化高速X射線檢驗系統可至少部分地根據人工智慧(AI)模型和機器學習(ML)演算法對焊料接點形狀的分類辨識出焊料缺陷。於特定實施例中,自動化高速X射線檢驗系統可提供元件的側向對準量測以及晶片間隙量測。於特定實施例中,自動化高速X射線檢驗系統可提供六標準差製程控管(Six-sigma process control)能追蹤的量測。
於特定實施例中,自動化高速X射線檢驗系統可檢驗裝置以辨識可能會導致缺陷的變化。於特定實施例中,所述變化例如但不限於包含凸凹情形、晶片形狀、晶片間隙、晶片與基板的間隙、側相偏移、金線長度變化、晶片至基板的側向對準度量、元件側向對準度量、堆疊晶粒側向對準度量、光纖連接器對準度量、錯位變化、潤濕百分比、非潤濕百分比、翹曲度量、低焊料體積、高焊料體積、微凸塊度量、焊球的破裂度量、球柵陣列中的晶粒翹曲、焊球空洞尺寸、焊料接點直徑、潤濕角、邊緣彎曲角、分布面積或在接觸墊位置的連續訊號變化。於特定實施例中,自動化高速X射線檢驗系統可在這些變化導致缺陷產生之前就先行辨識出這些變化。於特定實施例中,自動化高速X射線檢驗系統可使用人工智慧(AI)模型和機器學習(ML)演算法辨識這些變化。
於特定實施例中,自動化高速X射線檢驗系統可針對六標準差製程控管生成焊料接點的統計製程控制圖。於特定實施例中,自動化高速X射線檢驗系統可以每小時1000到25000單位或是至少每分鐘60平方公分(cm2)的速度檢驗裝置。於特定實施例中,自動化高速X射線檢驗系統進行的檢驗可以是產線上且即時的。於特定實施例中,人工智慧(AI)模型和機器學習(ML)演算法可即時運作。
於特定實施例中,自動化高速X射線檢驗系統可以測量球柵陣列中多個焊球的間隙,並確定焊球的分布圖。於特定實施例中,自動化高速X射線檢驗系統可測量積體晶片與基板之間的側向對準或積體晶片與3D堆疊晶粒之間的對準。於特定實施例中,自動化高速X射線檢驗系統可檢驗尺寸大至36英寸×48英寸的物體,且此物體例如但不限於是面板、晶圓、帶狀線(strip)或托盤。於特定實施例中,自動化高速X射線檢驗系統可裝載尺寸大至36英寸×48英寸且伴隨多個樣本的托盤,前述多個樣本例如但不限於是包含六片6英寸×12英寸的晶圓,或是二個18英寸×24英寸的面板,或是四十八條70公釐×240公釐的帶狀線。於特定實施例中,自動化高速X射線檢驗系統可自動處理JEDEC(固態技術協會)標準的帶狀線、托盤、晶圓和面板。於特定實施例中,自動化高速X射線檢驗系統可達到1微米的解析度。於特定實施例中,自動化高速X射線檢驗系統可達到0.5微米至5微米的解析度。於特定實施例中,自動化高速X射線檢驗系統可具有一個一億像素的感光元件的視野。於特定實施例中,自動化高速X射線檢驗系統可分批裝載要檢驗的物體。於特定實施例中,自動化高速X射線檢驗系統可具有24英寸×36英寸的平台尺寸。於特定實施例中,自動化高速X射線檢驗系統可具有36英寸×48英寸的平台尺寸。
於特定實施例中,藉由自動化高速X射線檢驗系統對焊料缺陷進行的檢驗可得到二維或三維的焊料接點資訊,這可以被利用來辨識無法透過特定方向上的一個横截面就能辨識的焊料接點缺陷。於特定實施例中,自動化高速X射線檢驗系統對於偵測焊料接點缺陷可更加靈敏。於特定實施例中,由自動化高速X射線檢驗系統進行的檢驗可以是於製造或組裝流程中為產線上且即時進行的檢驗。於特定實施例中,自動化高速X射線檢驗系統可以用比採用高通量X射線和快速成像的現有技術還要快的速度檢驗裝置或封裝。於特定實施例中,自動化高速X射線檢驗系統可以每天多達500,000個樣本的速度檢驗積體裝置封裝。於特定實施例中,自動化高速X射線檢驗系統可以每小時1000到25000單位或是至少每分鐘60平方公分(cm2 )的速度檢驗裝置或封裝。
於特定實施例中,和現有技術相比,本發明揭露的自動化高速X射線檢驗系統具有較大的視野(百萬像素)、較佳的解析度與較高的速度。於特定實施例中,本發明揭露的自動化高速X射線檢驗系統具有較少的雜訊、具有較佳訊噪比的天文等級偵測器、低失真度、具有較少視差的平場成像與更好的精度。於特定實施例中,本發明揭露的自動化高速X射線檢驗系統可用於多種目的,諸如監控會影響產品品質和可靠性的晶粒黏接問題,但本發明並不以此為限。會產生影響的課題例如但不限於還包含每個接點的焊料品質(潤濕性和非潤濕性程度)、元件之間的對準或是每個元件的晶片翹曲熱點圖。於特定實施例中,本發明揭露的自動化高速X射線檢驗系統可用於檢驗高密度晶片封裝結構,例如包含但不限於2.5D高密度晶片、3D堆疊晶粒或是扇出型晶圓級封裝。於特定實施例中,相同的自動化高速X射線檢驗系統可提供能用六標準差製程控管追蹤的量測。於特定實施例中,本發明揭露的自動化高速X射線檢驗系統可提供針對缺陷率不超過十億分之一的零缺陷製程的量測。於特定實施例中,本發明揭露的自動化高速X射線檢驗系統可提供針對缺陷率十億分之一至十億分之十的六標準差製程的量測。於特定實施例中,本發明揭露的自動化高速X射線檢驗系統可用於多種製造積體裝置封裝的階段,所述製造積體裝置封裝的階段例如但不限於包含印刷電路板設計流程、印刷電路板背鑽孔製程、背鑽孔製程前後的檢驗、組裝流程或組裝後檢驗。前述優點僅是示例性的,其並非用以限制本發明。本發明還可能包括其他優點,並且每個優點可以對應於特定的實施例,而不是在所有實施例中都需要有這些優點。具體實施例可以包括任何前述的優點或不包括前述的優點。
(根據灰階變化的X射線檢驗)
在電子產業中,剖面影像常用來檢驗和分析電子元件或裝置,例如,X射線電腦斷層掃描成像技術可用於創建感興趣特徵的剖面影像。然而,此技術需要生成大量影像(例如多種角度和剖面的影像),因此工作速度相對較慢。此外,對於斷層掃描成像,要精確控制檢測樣本、X射線源與X射線偵測器的位置以盡可能減少所呈現的横截面的失真。對於高解析度X射線斷層掃描成像,需要將待檢驗樣本與X射線源之間的距離最小化,並且需要將樣本旋轉以生成多個不同角度的影像。這些條件侷限了可以檢驗的樣本之尺寸以及檢驗流程的速度。此外,儘管電腦斷層掃描成像在一些失效分析的應用中是可被接受的,但由於冗長的處理時間和樣本尺寸大小的限制,電腦斷層掃描成像仍然不適合在電子零件製造領域用於製程中檢驗和分析元件特性。因此,電腦斷層掃描成像技術的限制嚴重阻礙其在電子零件製造領域的產線上檢驗和現場監測方面的應用。
於特定實施例中,本發明所揭露的X射線成像系統可以是自動化高速高解析度X射線成像系統,其生成電子裝置的X射線影像。於特定實施例中,自動化高速X射線檢驗系統可包含X射線偵測器,X射線偵測器具有對X射線輻射的高敏感度、大量的灰度級(例如10,000以上的灰度級)、高動態範圍以及大量的像素(例如大於等於29百萬像素)等特色以生成高解析度影像。於特定實施例中,系統可具有低於2微米的空間解析度、12公釐×12公釐的視野以及每分鐘大於3000平方公釐的流通量。
於特定實施例中,自動化高速X射線檢驗系統可根據單一X射線影像(例如俯視X射線影像、仰視X射線影像或是在任意合適角度擷取的X射線影像)檢驗電子裝置。系統可根據前述單一X射線影像在正交於成像面(或待檢驗裝置的參考平面)的方向上決定印刷電路板或電子封裝結構中的一個或多個感興趣物件(例如焊球、接點、連接點、針腳、接合點等)的材料厚度。舉例來說,系統可根據X射線吸收的變化決定材料厚度,並且用影像灰階值的變化來表示X射線吸收的變化。系統可以根據單一影像中的至少一個特徵(邊緣、形狀、梯度、漸變趨勢、灰階值等)使用電腦視覺和計算分析技術決定材料厚度分布(例如關於感興趣物件的輪廓或形狀)。由於有缺陷的焊接點與可接受的焊接點在形狀上存在差異,特定實施例的系統可以使用灰度值的變化來區分有缺陷的焊接點和可接受的焊接點。舉例來說,系統可使用以歷史資料訓練過的機器學習模型來辨識和定位X射線影像中的一個或多個感興趣物件,而於X射線影像中將感興趣物件從其他干擾元件(例如同一層的物件或可能與感興趣物件重疊或交會的其他層的物件)中孤立出來;並且,系統還可根據單一X射線影像(例如俯視X射線影像、仰視X射線影像或是在任意合適角度擷取的X射線影像)辨識出與感興趣物件(例如連接點、焊球、電路板堆疊層等)相關聯的至少一特徵(例如良好的連接點、有不同類型缺陷的連接點等)。
於特定實施例中,針對受檢測的裝置,系統可在相對成像面或裝置參考面傾斜一定角度(或任意適當角度)的方向上生成第二X射線影像,以除了第一X射線影像以外還使用第二X射線影像來決定至少一特徵(例如多個層體的堆疊次序)和參數(例如材料厚度、形狀、尺寸、距離、相對位置、輪廓變化、梯度等)。舉例來說,系統可使用電腦視覺和計算分析技術處理第一X射線影像和第二X射線影像,其中第一X射線影像係在相對成像面或裝置參考面第一角度(例如實質上正交檢測樣本的平面的方向)的方向上所擷取,且第二X射線影像係在相對成像面或裝置參考面第二角度(例如傾斜方向)的方向上所擷取。經由處理第一X射線影像和第二X射線影像,系統可決定電路板中多個層體的堆疊次序及/或計算出正交於成像面或裝置平面方向上的多個特徵之間的距離。在給定傾斜方向的角度之情況下,系統可以識別和測量沿著與成像面或裝置參考平面正交的軸上的特徵、特徵的相對位移及/或正交方向上的多個特徵之間的距離。
透過省去大量剖面影像,特定實施例的系統可以快速測量特徵的材料厚度以及多個特徵之間在正交方向上的距離,因而允許電子製造業者測量和控制(現場和/或產線上)電子元件製程以具有較低的缺陷率。
對於需要在單個積體電路封裝中篩選出數百至數千個焊接點的應用,特定實施例的系統顯著減少了檢驗時間(例如,從幾個小時減少到幾秒鐘),並顯著提高了檢驗過程的檢驗速度。
舉例來說,特定實施例的系統只需要幾秒鐘或更少的時間便能生成單個影像來進行檢驗,而傳統電腦斷層掃描系統可能需要幾個小時才能產生可用於缺陷檢測的影像。
於特定實施例中,系統生成X射線影像的速度可以比傳統電腦斷層掃描系統快至少100倍,並且檢驗演算法(例如機器學習模型)檢驗樣本的速度可以比傳統電腦斷層掃描系統快至少1000倍。另外,相較於傳統電腦斷層掃描系統,特定實施例的系統能夠檢驗尺寸更大的電子元件或裝置。特定實施例的系統能夠檢驗產品中的每個電連接點,並且每平方英吋的檢驗點數量滿足每分鐘大於2英寸×2英寸的流通量。
圖2A繪示在電路板板層4801內測量感興趣物件4802的材料厚度和形狀(沿著電路板板層4801的正交方向)的示意圖。於特定實施例中,本發明揭露的自動化高速X射線檢驗系統可根據單一X射線影像(例如俯視X射線影像、仰視X射線影像或是在任意合適角度擷取的X射線影像)檢驗電子元件或裝置以決定感興趣物件(例如焊球、接點、連接點、針腳、接合點等)的至少一特徵(例如材料厚度、形狀、尺寸、距離、相對位置、輪廓變化、梯度等)。在一個不限制本發明的例子中,自動化高速X射線檢驗系統可生成俯視X射線影像以測量電路板板層4801內的感興趣物件4802的材料厚度4815。感興趣物件4802可以是由金屬材料(如焊接材料、銅或任何其他金屬材料)製成的實心圓柱體,其吸收及/或阻擋X射線束。感興趣物件4802可具有圓形的俯視形狀4803,並且由於X射線吸收效應而能在俯視視角X射線影像中擷取到俯視形狀4803。
於特定實施例中,為了決定感興趣物件4802的形狀以及測量圓柱體在電路板板層4801的正交方向4809上的材料厚度,系統可決定X射線偵測器接收到的X射線訊號位準的訊號曲線4804。X射線訊號曲線4804可對應圓形俯視形狀4803於電路板板層4801之平面上的中心線4807,並且可根據沿著中心線4807的俯視X射線影像的灰階值來決定訊號曲線4804。於訊號曲線4804之底部4806的訊號振幅可與感興趣物件4802的圓柱材料之X射線吸收率以及材料厚度4815有關聯。訊號曲線4804之周圍部分4805的訊號振幅可與圍繞感興趣物件4802的印刷電路板區域的X射線吸收率有關聯。訊號曲線4804的訊號邊緣4813、4814可分別對應到感興趣物件4802的邊緣4811、4812。
於特定實施例中,系統可根據訊號曲線4804之底部4806以及周圍部分4805的訊號振幅決定圓柱狀感興趣物件4802的材料厚度4815。系統可根據俯視形狀4803、訊號邊緣4813、4814與訊號曲線4804的整體輪廓決定感興趣物件4802的形狀、尺寸及/或位置。舉例來說,系統可因為訊號曲線4804具有銳利的訊號邊緣4813、4814而決定感興趣物件4802擁有銳利邊緣4811、4812。在另一個例子中,系統可根據訊號曲線4804之底部4806之寬度決定圓柱狀感興趣物件4802之頂面的直徑。在又另一個例子中,系統可根據訊號曲線4804之底部4806相對周圍部分4805的位置決定感興趣物件4802於電路板板層4801的橫向位置。前述圓柱狀元件僅用於舉例說明,可測量的物件形狀並不以此為限。被測量的物件可具有任何適當的形狀、尺寸及位置。另外,此處描述的X射線訊號曲線僅用於舉例說明,X射線訊號曲線並不以此為限。可根據通過俯視形狀的任意像素線或俯視影像中的任意像素線來決定X射線訊號曲線。
圖2B繪示根據單一X射線影像檢驗電路板板層4821中的焊球4822的示意圖。於特定實施例中,X射線成像系統可根據單一X射線影像(例如俯視X射線影像、仰視X射線影像或是在任意合適角度擷取的X射線影像)而透過量測與焊球相關的至少一參數或特徵(例如材料厚度、形狀、尺寸、距離、位置、與其他元件的相對位置等)來偵測及決定出良好的焊球。以一個不限制本發明的例來說明,針對電路板板層4821中的焊球4822,X射線成像系統可在電路板板層4821的實質正交方向4839上生成俯視X射線影像。由於焊接材料吸收X射線,俯視X射線影像可擷取到焊球4822的俯視形狀4823。焊球4822的俯視形狀4823可包含二圓形形狀,其圓形邊緣對應到焊球4822的邊緣4831、4832。
於特定實施例中,為了要決定出與焊球4822有關聯的至少一特徵(材料厚度、形狀、尺寸、位置、與其他元件的相對位置等),系統可決定出X射線偵測器接收到的X射線訊號位準的單一訊號曲線4824。X射線訊號曲線4824可對應焊球4822的頂面於電路板板層4821之平面上的中心線4827,並且可根據沿著焊球4822頂面之中心線4827的俯視X射線影像的灰階值來決定訊號曲線4824。於訊號曲線4824之底部4826的訊號振幅可與焊接材料之X射線吸收率和材料厚度有關聯。訊號曲線4824之周圍部分4825的訊號振幅可與圍繞焊球4822的印刷電路板區域的X射線吸收率有關聯。訊號曲線4824的訊號邊緣4833、4834可分別對應到焊球4822的邊緣4831、4832。
於特定實施例中,系統可根據俯視形狀4823、訊號曲線4824之訊號邊緣4833、4834、訊號振幅以及整體輪廓決定出焊球4822的材料厚度、形狀、尺寸、位置及/或與其他元件的相對位置。舉例來說,系統可根據訊號曲線4824之底部4826的平坦狀態決定焊球有良好的焊接,底部4826的平坦狀態能代表焊球4822的頂面與底面都是平坦的。在另一個例子中,系統可根據圓形俯視形狀4823的直徑決定出焊球4822的最大和最小圓圈直徑。在又一個例子中,系統可根據訊號曲線4824之底部4826相對周圍部分4825的位置決定出焊球4822於電路板板層4821的橫向位置。在又另一個例子中,系統可根據訊號邊緣4833、4834的形狀決定出焊球4822的邊緣4831、4832的形狀。
圖2C繪示根據單一X射線影像偵測電路板板層4841中有缺陷的焊球4842(例如非潤濕性缺陷或非潤濕斷路)的示意圖。於特定實施例中,X射線成像系統可根據單一X射線影像(例如俯視X射線影像、仰視X射線影像或是在任意合適角度擷取的X射線影像)而透過測量與焊球有關的至少一參數或特徵(例如材料厚度、形狀、尺寸、位置及/或與其他元件的相對位置)來偵測和決定出有缺陷的焊球。以一個不限制本發明的例子來說明,針對電路板板層4841中的焊球4842,X射線成像系統可在電路板板層4841的實質正交方向4849上生成俯視X射線影像。俯視視角X射線影像可因焊接材料吸收X射線而擷取到焊球4842的俯視形狀4843。焊球4842的俯視形狀4843可包含由焊球4842頂面所界定的圓形形狀。在另一不限制本發明的例子中,針對電路板板層4841中的焊球4842,X射線成像系統可在相對於電路板板層4841的任意合適方向或角度上生成X射線影像。X射線影像可因焊接材料吸收X射線而從特定角度擷取到焊球4842的特定形狀。從此特定角度觀察X射線影像所擷取的焊球4842,可以發現焊球4842的形狀可能包含由焊球4842頂面界定的橢圓形或實質圓形的形狀。
於特定實施例中,為了決定與焊球4842有關聯的至少一特徵 (例如材料厚度、形狀、尺寸、位置及/或與其他元件的相對位置),系統可決定X射線偵測器接收到的X射線訊號位準的單一訊號曲線4844。訊號曲線4844可對應焊球4842的頂面於電路板板層4841之平面上的中心線4847,並且可根據沿著焊球4842頂面之中心線4847的俯視X射線影像的灰階值來決定出訊號曲線4844。X射線訊號曲線4844在對應到焊球4842之位置的訊號振幅和訊號輪廓4846A、4846B可與焊接材料之X射線吸收率和輪廓(例如非潤濕輪廓4842A或斷路輪廓4842B)有關聯。焊球4842的材料厚度可與訊號曲線4844的對應部分的訊號振幅有關聯。
於特定實施例中,系統可根據俯視形狀4843、與振幅值相關聯的訊號輪廓4846A、4846B及訊號曲線4844整體來決定焊球4842的材料厚度、形狀、尺寸、位置及/或與其他元件的相對位置。舉例來說,系統可根據對應的訊號輪廓4846A決定焊球4842具有非潤濕缺陷(例如輪廓4842A)。儘管具有非潤濕缺陷,系統可根據訊號輪廓4846A(有一小塊平坦部位)和訊號振幅4848決定焊球4842與對應到電路板板層4841底面的元件有部分連接。在另一個例子中,系統可根據訊號輪廓4846A底端的訊號振幅沒有符合對應振幅閾值(例如訊號振幅4848)的判定結果來決定焊球4842具有斷路缺陷(例如輪廓4842B)。在又另一實施例中,訊號曲線4844的振幅會逐漸改變,並且系統可根據訊號曲線4844的對應訊號輪廓(例如輪廓4846A、4846B)決定焊球4842的輪廓(例如輪廓4842A、4842B)。
圖2D繪示根據單一X射線影像偵測電路板板層4851中有缺陷的焊球4852之空孔4860的示意圖。於特定實施例中,X射線成像系統可根據X射線偵測器接收到的X射線訊號位準以及單一X射線影像(例如俯視X射線影像、仰視X射線影像或是在任意合適角度擷取的X射線影像)擷取到的俯視形狀偵測缺陷焊球的空孔。以一個不限制本發明的例子作說明,針對電路板板層4851中的焊球4852,X射線成像系統可在電路板板層4851的正交方向4859上生成俯視X射線影像。俯視X射線影像可因焊接材料吸收X射線而擷取到焊球4852的俯視形狀4853。焊球4852的俯視形狀4853可包含具有與空孔4860的俯視形狀4858對應之形狀的區域。
於特定實施例中,為了偵測空孔4860,系統可決定出X射線偵測器接收到的X射線訊號位準的訊號曲線4854。X射線訊號曲線4854可對應焊球4852的頂面於電路板板層4851之平面上的中心線4857,並且可根據沿著焊球4852頂面之中心線4857的俯視X射線影像的灰階值來決定出訊號曲線4854。由於空孔內缺少焊料可能會減少焊球4852吸收的X射線,X射線訊號曲線4854可包含特徵部分(例如訊號輪廓4856),此特徵部分對應到焊球中的空孔區域。相對緊臨周圍部分來說,特徵部分可具有較大的訊號振幅。於特定實施例中,系統可根據X射線訊號曲線4854於對應到焊球4852的位置具有特徵部分的判定結果來決定焊球4852為具有空孔4860的缺陷焊球。於特定實施例中,系統可根據特徵部分相對於X射線訊號曲線4854的其他部分之尺寸、形狀及/或位置決定出空孔4860的尺寸、形狀及/或位置。
圖2E繪示根據單一X射線影像偵測電路板板層4861中有缺陷的焊球4862之枕頭缺陷的示意圖。以一個不限制本發明的例子來說明,針對焊球4862,X射線成像系統可在電路板板層4861的正交方向4869上生成俯視X射線影像。焊球4862可包含枕頭元件4870,其為關聯於枕頭缺陷的一部分。俯視X射線影像可因焊接材料吸收X射線而擷取到焊球4862的俯視形狀4863。焊球4862的俯視形狀4863可包含對應枕頭元件4870之俯視形狀4868的區域。於特定實施例中,為了偵測枕頭缺陷,系統可決定出X射線偵測器接收到的X射線訊號位準的訊號曲線4864。X射線訊號曲線4864可對應焊球4862的頂面於電路板板層4861之平面上的中心線4867,並且可根據沿著焊球4862的頂面之中心線4867的俯視X射線影像的灰階值來決定出訊號曲線4864。X射線訊號曲線4864可包含對應焊球4862之枕頭元件4870的底部4866。由於枕頭元件4870會增加X射線吸收量,因此底部4866可相對緊臨周圍部分具有較小的訊號振幅。於特定實施例中,系統可根據訊號曲線4864的底部4866和包含枕頭元件俯視形狀4868的焊球俯視形狀4863決定焊球4862為具有枕頭缺陷的缺陷焊球。於特定實施例中,系統可根據訊號曲線4864的底部4866相對於訊號曲線4864其他部分之振幅值、寬度、形狀及/或位置而決定出枕頭元件4870的尺寸、形狀及/或位置。
圖2F繪示根據單一X射線影像偵測經由橋接區域4878連接的兩個有缺陷的焊球4862的示意圖。以一個不限制本發明的例子來說明,針對焊球4872A、4872B,X射線成像系統可在電路板板層4871的正交方向4879上生成俯視X射線影像。由焊料形成並發生短路的橋接區域4878可有缺陷地連接焊球4872A、4872B。俯視X射線影像可因焊接材料吸收X射線而擷取到短路的焊球4872A、4872B的俯視形狀4873。於特定實施例中,為了偵測橋接或短路的焊球,系統可決定出X射線偵測器接收到的X射線訊號位準的訊號曲線4874。X射線訊號曲線4874可對應焊球4872A、4872B的頂面於電路板板層4871之平面上的中心線4877,並且可根據沿著焊球頂面之中心線4877的俯視X射線影像的灰階值來決定出訊號曲線4874。X射線訊號曲線4874可包含對應橋接的焊球4872A、4872B的底部4876。底部4876可較單一焊球還要寬並且涵蓋至少兩個焊球的寬度。系統可根據訊號曲線4874的輪廓以及俯視形狀4873決定兩個焊球4872A、4872B之間有橋接或短路情形。系統可根據X射線訊號曲線4874之底部4876的寬度決定出橋接區域4878的寬度。
圖2G繪示根據俯視X射線影像用於偵測有缺陷的焊球與焊墊錯位的示意圖。如圖2G所示,俯視X射線影像可包含焊墊4883、焊球4881以及周邊導體4885的俯視影像。焊球4881所在的位置可與焊墊4883錯位並且可很接近周邊導體4885。雖然錯位的焊球4881沒有接觸到周邊導體4885,但這仍會對包含錯位焊球的元件或裝置有不良影響。舉例來說,該區域內的局部阻抗可能會因為錯位的焊球而改變,並可能導致主機元件或裝置的功能發生問題。在另一個例子中,主機元件或裝置可能因為錯位焊球4881與周邊導體4885之間較短的距離而存在可靠度問題。於特定實施例中,當錯位焊球4881與焊墊4883之間的距離高於閾值或是錯位焊球4881與周邊導體4885之間的距離低於閾值時,系統可辨識出錯位焊球4881並且產生警示通知系統操作人員。於特定實施例中,系統可根據俯視X射線影像使用前述提及的X射線訊號曲線來定量測量焊球4881與焊墊4883之間的錯位距離以及焊球4881與周邊導體4885之間的距離。
值得注意的是,圖2B至圖2G中的焊球僅為示例性說明,並且焊球以及特定實施例中與焊球有關聯且可偵測測量之缺陷並非用以限制本發明。於特定實施例中,自動化高速X射線檢驗系統可偵測和測量例如但不限於良好的焊接、有空孔的焊球、非潤濕焊球、斷路焊球、有枕頭缺陷的焊球、位置錯位的焊球、尺寸過大的焊球、尺寸過小的焊球以及任何其他類型的缺陷。自動化高速X射線檢驗系統也不限於檢驗和測量焊料連接處。於特定實施例中,自動化高速X射線檢驗系統可檢驗和測量其他種物件,例如但不限於電連接點、微結構元件、電路板板層、板狀物、導通孔、金屬帶狀線、走線、具有微結構的感測器或致動器等。本發明揭露的俯視X射線影像或仰視X射線影像涉及沿一方向擷取的X射線影像,且此方向實質上正交於檢驗樣本的平面。於電路板板層的實質正交方向上擷取的俯視X射線影像僅為示例性說明,並且X射線影像並不以此為限。於特定實施例中,X射線成像系統可在任意合適的方向(例如相對於電路板表面或參考面的任意天頂角和方位角)上生成一個或多個X射線影像,並且根據生成的X射線影像進行檢驗和缺陷偵測。於特定實施例中,系統偵測檢驗樣本內之缺陷所使用的單一X射線影像可以是俯視X射線影像、仰視X射線影像或是在相對於檢驗樣本的任意合適角度擷取的X射線影像。
圖3A和圖3B繪示沿著檢驗樣本的正交方向(Z軸)根據從不同角度擷取的至少兩張X射線影像測量至少一特徵的示意圖。於特定實施例中,系統可自第一視角擷取第一X射線影像以及自第二視角擷取第二X射線影像,並且第一視角不同於第二視角。接著,系統可沿著檢驗樣本的正交方向以及橫向方向決定出至少一物件的至少一特徵(例如尺寸、形狀、相對位置、堆疊次序、距離等)。舉一個不限制本發明的例子來說,電路板板層4900可包含X射線吸收材料(例如金屬、焊料等)製成的二個圓柱狀物件4901、4902。圓柱狀物件4901、4902各自的中心軸可沿著Z軸4903彼此對準。如圖3A所示,系統可生成第一X射線影像,其為X射線束方向4909沿正交方向(Z軸4903)擷取的俯視影像。系統還可自傾斜方向4907生成第二X射線影像,其中傾斜方向4907與Z軸4903夾有角度4908。
第一X射線影像可擷取圓柱狀物件4901、4902各自的俯視形狀4904A、4905A。如圖3A所示,俯視形狀4904A、4905A可以是兩個圓呈同心圓形狀。第二X射線影像可自傾斜方向4907擷取圓柱狀物件各自的斜向形狀4904B、4905B。從傾斜方向4907觀察時,圓柱狀物件4901、4902可具有特定形狀(例如斜向形狀4904B、4905B)、尺寸及/或位置,並且從傾斜方向4907觀察到的形狀、尺寸及/或位置不同於從正交方向4903觀察到的形狀、尺寸及/或位置。舉例來說,從傾斜方向4907觀察到的圓柱狀物件4902的斜向形狀4905B可以是橢圓形,此橢圓形的長軸係沿著橫向方向。橢圓形的斜向形狀4905B可相對俯視形狀4904A具有較長的橫向軸,並且斜向形狀4905B與俯視形狀4905A可位於不同位置(在這個例子中是移到俯視形狀4905A的左側)。從傾斜方向4907觀察到的圓柱狀物件4901的斜向形狀4904B可以是橢圓形,其與Z軸4903(圓柱狀物件4901、4902的中心軸)相隔距離4906。
於特定實施例中,系統可使用第一和第二X射線影像於Z軸4903上決定出與圓柱狀物件4901、4902有關聯的至少一特徵。以一個不限制本發明的例子說明,系統可根據斜向形狀4904B與Z軸4903(中心軸)之間的距離4906以及傾斜方向4907的角度4908來決定圓柱狀物件4901、4902之間於Z軸上的距離4910。舉例來說,系統可根據俯視形狀(例如4904A、4905A)以及斜向形狀(例如4904B、4905B)決定圓柱狀物件4901、4902的形狀。於另一個例子,系統可根據俯視形狀(例如4904A、4905A)以及斜向形狀(例如4904B、4905B)決定圓柱狀物件4901、4902的堆疊次序。
值得注意的是,前述的圓柱狀物件僅為示例性說明,並且自動化高速X射線檢驗系統可檢驗的物件並不以此為限。例如,自動化高速X射線檢驗系統可檢驗的物件具有任意形狀、尺寸、相對位置或數量。只要物件能吸收X射線束,本發明揭露的X射線成像系統就可應用於對此物件進行檢驗。從沿著Z軸的正交方向和傾斜方向擷取之X射線影像也僅為示例性說明,並且擷取X射線影像的方向並不以此為限。於特定實施例中,系統可自具有任意天頂角和/或方位角的任意合適方向生成X射線影像,並且根據多張X射線影像決定特徵正交方向(Z軸)及/或橫向方向上的特徵。舉例來說,系統可根據在第一傾斜方向生成的第一X射線影像以及在第二傾斜方向生成的第二X射線影像決定正交方向和橫向方向上的特徵,其中第一傾斜方向不同於第二傾斜方向。在另一個例子中,系統可生成至少二X射線影像,並且所述至少二X射線影像各自在不同方向(例如正交和傾斜方向)生成,並且根據在不同方向生成的所述至少二X射線影像決定正交方向及/或橫向方向上的至少一特徵。
於特定實施例中,X射線成像系統可根據於不同方向或不同角度生成之至少一X射線影像決定至少一感興趣物件在沿著Z軸的正交方向上的至少一特徵(例如尺寸、形狀、相對位置、堆疊次序、距離等)。與傳統的電腦斷層掃描技術相比,系統不需要針對截面生成大量X射線影像(例如針對每個截面生成影像)便能決定這些特徵,因此大大地提高檢驗速度。於特定實施例中,系統可根據X射線影像中的一組灰階值的一個或多個特徵或屬性來決定被檢驗物件的一個或多個特徵(例如邊緣、形狀、尺寸、灰階值、梯度、趨勢等)。舉例來說,X射線影像中的銳利邊緣可對應沿生成該特定X射線影像之X射線方向的物件的銳利邊緣。在另一個例子中,灰階值逐漸變化的邊緣或形狀可能對應物件中漸變的邊緣或形狀。於特定實施例中,系統可包括用於生成X射線影像的具有高靈敏度和高解析度的至少一X射線偵測器。舉例來說,系統擷取的X射線影像可比傳統電腦斷層掃描系統擷取的影像擁有更多像素;舉例來說,傳統電腦斷層掃描系統擷取的影像為100萬至200萬像素,本發明揭露之系統擷取的影像可大於或等於2900萬像素。每個X射線影像可具有大量的灰階位準(例如10000到65000的灰階位準),這提供了大的動態範圍。此外,系統可包括高功率(例如1000W)X射線源,以能有更好的X射線穿透能力和更好的影像品質。這些特性(例如高解析度、大動態範圍、高功率X射線源)改善了系統檢驗電子裝置的能力而讓系統能執行高速和高精度的檢驗。
於特定實施例中,系統可包含使用電腦視覺技術與機器學習的自動化流程以處理X射線影像、決定相關特徵和決定感興趣物件的至少一品質度量(例如辨識有缺陷的焊球)。舉例來說,系統可利用電腦視覺技術與機器學習模型(已經先用歷史資料訓練過)辨識並定位出X射線影像中的感興趣物件。在另一個例子中,系統可利用電腦視覺技術與機器學習模型決定邊緣、形狀或輪廓、梯度改變、維度或尺寸、以及X射線影像中的其他特徵或參數。電腦視覺技術與機器學習模型可利用X射線影像之高解析度和大動態範圍的優點來根據X射線影像灰階值的細微差別(肉眼可能無法分辨)偵測並辨識上述特徵至少其中一者。在另一個例子中,系統可以使用電腦視覺技術和機器學習來決定至少一品質度量並辨識出有缺陷的焊料連接處。在又一個例子中,系統可使用電腦視覺技術和機器學習將焊料連接區分為良好連接和各種類型的缺陷,在這裡將進一步詳細描述。
於特定實施例中,X射線影像可能包含數個與感興趣物件無相關的特徵(例如邊緣、形狀、陰影等)。舉例來說,被檢驗的裝置可能包含多個層,該些層中各自具有多個物件(例如焊球、連接點、帶狀線、走線或其他層),其可能在特定方向或角度生成之X射線影像中與感興趣物件重疊或交會。這些干擾特徵可能會藉由引入雜訊而導致技術性困難,其中雜訊會干擾正在被辨識或定位的感興趣物件和相關特徵。於特定實施例中,系統可使用機器學習模型來移除或減少來自這些干擾特徵的影響。舉例來說,機器學習模型可經由歷史資料(例如標記資料或未標記資料)被訓練成能從包含真實類型之干擾特徵和物件的X射線影像辨識出在特定層的感興趣物件。在另一個例子中,機器學習模型可被訓練成能將X射線影像中的感興趣物件從干擾特徵和物件中孤立出來。於特定實施例中,系統可根據至少一特徵使用電腦視覺技術和機器學習模型將感興趣物件從干擾特徵或物件中孤立出來。舉例來說,印刷電路板的走線或帶狀導線可具有特定形狀(例如具有清晰邊緣和均勻厚度的帶狀外形)、尺寸及/或維度。在另一個例子中,焊墊可具有特定尺寸的圓形並且可位於特定位置(例如基於從設計藍圖中獲取的資訊)。
於特定實施例中,自動化高速X射線檢驗系統可用於電子元件製程以辨識電子元件中無法透過可見光光學攝像機檢驗到的缺陷結構。舉例來說,自動化高速X射線檢驗系統可檢驗覆晶晶片或球柵陣列封裝中的焊接點,其中感興趣物件被此部位中的其他元件阻礙。於特定實施例中,自動化高速X射線檢驗系統能檢驗與被檢驗電子元件或裝置有關聯的多種問題,例如但不限於包含晶粒崩缺或破裂、豎立或立碑元件、元件錯置、元件錯位、元件缺失、焊接潤濕問題(例如過度潤濕或無潤濕)、焊接處橋接現象(例如短路)、表面安裝元件破裂、額外元件、雙重元件、轉動元件、晶粒歪斜、非潤濕銅連接、表面安裝元件的非潤濕焊接、表面安裝元件的的焊接不良、表面安裝元件短路連接、印刷電路板通孔空洞、焊球空洞、上下組裝、嵌設元件、晶粒堆疊、晶粒黏接被覆性等。
[基於亮度值與潤濕度量的缺陷偵測]
於特定實施例中,自動化高速X射線檢驗系統可決定焊料接點的亮度值或亮度度量,並且至少部分根據決定出的亮度值辨識有缺陷的焊料接點。於特定實施例中,焊料接點的亮度值或亮度度量可取決於與此焊料接點相關聯之一個像素的灰階值或是一組像素的灰階值。舉例來說,於參考影像中灰階值可以是10,000,而在被測試部分對應的灰階值可以是12,000或8,000。可根據像素組合或基於像素組合得到的方程式計算出的值(例如根據核函數或動差函數的捲積)決定亮度度量。通常,在做出比較之前,可處理參考影像和被檢驗部分的影像以決定對應的亮度度量。以不限制本發明的一個例子來說明,針對數個焊料接點,自動化高速X射線檢驗系統可擷取數個X射線影像。系統可決定出每個焊料接點的亮度值(例如使用人工智慧或機器學習模型)。系統可將這些亮度值與至少一標準進行比較(例如預設閾值),並且將關聯於不符合標準的亮度值之焊料接點辨識為缺陷接點。以另一個不限制本發明的例子來說,針對數個焊料接點,自動化高速X射線檢驗系統可擷取數個X射線影像。系統可決定出每個焊料接點的亮度值(例如使用人工智慧或機器學習模型)。系統可比較這些亮度值,以辨識亮度值以閾值距離偏離平均值或參考值之焊料接點。亮度值的明顯偏差可代表焊料接點內有缺陷。系統還可將與偏差亮度值相關聯的焊料接點辯識為有缺陷的焊料接點。
於特定實施例中,自動化高速X射線檢驗系統可提取X射線影像擷取到之每個焊料接點的潤濕度量,並且至少部分根據所提取的潤濕度量辨識出有缺陷的焊料接點。於特定實施例中,可以根據相關於焊料和相鄰物(例如金屬墊或另一塊焊料)之間黏附的潤濕程度決定潤濕度量。濕潤度量可以由焊料與其他物體之間的夾角來表示和決定,銳角可表示潤濕良好,鈍角可表示潤濕不良。即使在單個焊料連接處,不同位置的潤濕程度可能也不同,潤濕程度能從0%(無潤濕)變化到100%(沿焊料連接處的整個邊緣濕潤)不等。以不限制本發明的一個例子來說明,針對數個焊料接點,自動化高速X射線檢驗系統可擷取數個X射線影像。系統可決定(例如使用人工智慧或機器學習模型)X射線影像中擷取到的每個焊料接點的潤濕度量。系統可以將潤濕度量與至少一標準(例如預設閾值)進行比較,並且將關聯於未達到標準之潤濕度量的焊料接點辨識為有缺陷的接點。以另一個不限制本發明的例子來說,針對數個焊料接點,自動化高速X射線檢驗系統可擷取數個X射線影像。系統可決定X射線影像中每個焊料接點的潤濕度量(例如使用人工智慧或機器學習模型)。系統可比較這些潤濕度量,以辨識潤濕度量以閾值距離偏離平均值或參考值之焊料接點。潤濕度量的明顯偏差可代表焊料接點內有缺陷。系統可將與偏差潤濕度量有關聯的焊料接點辨識為有缺陷的焊料接點。於特定實施例中,可以透過測量與焊料連接處相關聯的灰度級所決定的焊料幾何外形來決定潤濕程度。舉例來說,較小和較暗的焊料區域可表示焊料連接處外觀上較窄和較高,其表示潤濕性較差(即濕潤程度較低)。在另一個例子中,較寬和較不暗的焊料區域可表示焊料連接處外觀上較寬和較短,其表示潤濕性較好(即濕潤程度較高)。焊料相對於墊或銅柱的位置等額外因子也可以表示潤濕性的好壞。
[針對X射線源中特定光譜專用的X射線濾除元件]
於特定實施例中,自動化高速X射線檢驗系統可使用廣譜X射線束(例如具有白光光譜的X射線束)生成的單一X射線影像(例如俯視X射線影像、仰視X射線影像或是在任意合適角度擷取的X射線影像)來辨識檢驗樣本中的缺陷。於特定實施例中,自動化高速X射線檢驗系統可使用多個影像,並且各個影像由光譜比白光光譜窄的X射線束在相同角度/方向上生成。於特定實施例中,自動化高速X射線檢驗系統可包含能發出具有白光光譜(例如連續的X射線光譜)之X射線束的X射線源。於特定實施例中,自動化高速X射線檢驗系統可包含至少一X射線濾除元件,並且X射線濾除元件能濾除特定光譜範圍的X射線束。檢驗樣本(例如電子裝置或元件)可由不同材料製成,例如但不限於是銅、銀、金、鋁、合金、鈀、鎳、鋰、錫等。不同材料可以吸收不同光譜範圍的X射線束。於特定實施例中,自動化高速X射線檢驗系統可包含多個X射線濾除元件,這些X射線濾除元件分別對應能被不同材料吸收的多個光譜範圍。以不限制本發明的一個例子來說明,為了檢驗由錫鉛合金或銀材料製成的焊料接合點,檢驗樣本中的銅製元件(如走線、導通孔等)的影像可能會干擾X射線影像中的焊料接合點。自動化高速X射線檢驗系統可包含第一X射線濾除元件,第一X射線濾除元件對應能被銅材料吸收的第一光譜。自動化高速X射線檢驗系統可透過將第一X射線濾除元件應用於X射線源而生成檢驗樣本的第一材料選擇性X射線影像。由於銅材料能吸收的X射線光譜已經從X射線束中被濾除,檢驗樣本內的銅製元件對於已經進行濾除處理的此X射線束而言可以是透明的。如此一來,第一材料選擇性X射線影像可消除或減少X射線影像中銅製元件對焊料接合點的干擾,因而提供較佳品質的X射線影像(例如較佳訊噪比)來檢驗焊料接合點。於本發明中提及的「檢驗樣本中的感興趣物件」可涉及電子裝置或元件中的實體感興趣物件,「X射線影像中的感興趣物件」可涉及在影像中擷取到的實體感興趣物件的對應影像。
於不限制本發明的另一個例子中,為了檢驗銅製元件,在X射線影像中其他材料(例如銀、錫、鉛等)製成的物件可能會干擾到感興趣物件。自動化高速X射線檢驗系統可使用對應能被銅以外的材料(例如銀、錫、鉛等)吸收之光譜範圍的第二X射線濾除元件。自動化高速X射線檢驗系統可將X射線濾除元件應用於X射線源而能生成第二材料選擇性X射線影像。由其他材料製成的物件對於已經進行濾除處理的此X射線束而言可以是透明的。如此一來,第二材料選擇性X射線影像可消除或減少來自非銅製元件的干擾。於特定實施例中,自動化高速X射線檢驗系統可各自地依據每個材料選擇性X射線影像或是依據二個以上的材料選擇性X射線影像之組合,而辨識出感興趣物件以及相關聯的缺陷。
於特定實施例中,自動化高速X射線檢驗系統可透過結合二個以上的材料選擇性X射線影像(例如相加、相減、疊加等)生成優化X射線影像,其中這些材料選擇性X射線影像由不同X射線濾除元件生成。藉由相較沒使用X射線濾除元件生成之X射線影像還要高的訊噪比,優化過的X射線影像能為感興趣物件提供較好的影像品質。自動化高速X射線檢驗系統可從至少一優化過的X射線影像中辨識出感興趣物件、決定與感興趣物件有關聯的至少一特徵以及辨識出與感興趣物件有關聯的至少一缺陷。於特定實施例中,自動化高速X射線檢驗系統可利用低能量X射線濾除元件自X射線源發出之X射線束中濾除低能量X射線,這些低能量X射線可能導致檢驗樣本(例如半導體裝置)損害,因此低能量X射線濾除元件可避免低能量X射線損害檢驗樣本。
[複數個特定光譜專用的X射線感光元件]
於特定實施例中,自動化高速X射線檢驗系統可使用X射線偵測器中的複數個X射線感光元件,並且每個X射線感光元件對於X射線光譜具有不同的敏感範圍。自動化高速X射線檢驗系統可利用複數個X射線感光元件測量不同光譜範圍的X射線(這些光譜範圍對應到不同的光子能階)。自動化高速X射線檢驗系統可分別使用這些X射線感光元件生成不同X射線光譜範圍之X射線影像。不同X射線光譜範圍之X射線影像可針對不同材料製成的物件提供不同的細節。舉例來說,由對應第一X射線光譜範圍(可被銅材料吸收)之X射線感光元件生成的X射線影像可提供關於銅製元件的更多細節資訊,例如具有更高的訊噪比之更清晰的影像。舉另一個例子來說,由對應第二X射線光譜範圍(可被銀材料吸收)之X射線感光元件生成的X射線影像可提供關於檢驗樣本中銀製元件的更多細節資訊,例如具有更高訊噪比之清晰影像。
於特定實施例中,自動化高速X射線檢驗系統可根據特定X射線光譜範圍的單一X射線影像或是X射線光譜範圍不同的兩個以上X射線影像之結合,來辨識出感興趣物件和與感興趣物件有關聯的至少一缺陷。舉例來說,自動化高速X射線檢驗系統可自對應第一X射線光譜範圍(第一X射線光譜範圍內的X射線可被銀材料吸收)之第一X射線影像中辨識出銀製的感感興趣物件以及相關聯的至少一缺陷。舉例來說,自動化高速X射線檢驗系統可自對應第二X射線光譜範圍(第二X射線光譜範圍內的X射線可被銅材料吸收)之第二X射線影像中辨識出銅製感興趣物件和與感興趣物件有關聯的至少一缺陷。於特定實施例中,自動化高速X射線檢驗系統可根據對X射線光譜範圍不同的兩個以上X射線影像進行相減或/和相加,以提取不同材料之檢驗樣本中更上位的細節。自動化高速X射線檢驗系統可針對不同材料使用X射線光譜範圍不同的複數X射線影像以提供更高敏感度。
[針對隨機雜訊變化的機器學習模型]
於特定實施例中,自動化高速X射線檢驗系統可利用X射線影像中的灰階變化來辨識有缺陷的焊料接合點。然而,檢驗樣本可能包含一定數量的干擾物件或圖案(例如銅線、銅圖案等)。干擾物件或圖案會在X射線影像中干擾感興趣物件(例如焊料接合點)。干擾物件的干擾影像可能成為降低X射線影像訊噪比的雜訊因子,並且導致誤判焊料接合點有缺陷(例如過度拒絕(over rejections)、偽陽性結果、偽陰性結果等)。舉例來說,針對感興趣物件,干擾物件會使X射線訊號衰弱並且造成X射線影像中之灰度級的動態範圍縮減。在另一個例子中,干擾物件(例如銅製元件)可相對感興趣物件(例如焊料接合點)具有較大的位置公差,並且可能造成干擾圖案的變化(例如尺寸、位置、相對角度等),此變化額外地讓系統辨識感興趣物件和相關聯缺陷的難度增加。如本發明先前揭露之內容所述,特定實施例的系統可利用對應特定光譜的X射線濾波元件或X射線感光元件生成X射線影像,藉以為受檢驗的感興趣物件減少干擾雜訊和提高訊噪比,其中這些X射線影像對不同材料具有選擇性。
於特定實施例中,為了從包含干擾雜訊或圖案的X射線影像中辨識出缺陷物件,自動化高速X射線檢驗系統可使用至少一人工智慧演算法(例如機器學習模型、近鄰演算模型、電腦視覺演算法等)來處理X射線影像並辨識缺陷物件(例如有缺陷的焊料接合點)。在不限制本發明的一個例子中,自動化高速X射線檢驗系統可採用大數量的樣本訓練機器學習模型(例如包含10,000個電子裝置或元件的群體)。機器學習模型可根據訓練群體創建檢驗樣本的檢驗模型或參考模型。由於可以用一個大樣本群體訓練機器學習模型,可以透過大樣本群體來中和X射線影像中的隨機雜訊的影響。機器學習模型在訓練過後可根據包含各種類型的干擾圖案(例如銅圖案)的X射線影像有效地辨識出檢驗樣本中有缺陷的感興趣物件(例如有缺陷的焊料接合點)。舉例來說,機器學習模型可以提取檢驗樣本中與感興趣物件相關聯的數個特徵或數值屬性,並根據所提取的特徵決定與感興趣物件相關聯的缺陷是否存在。
[針對系統雜訊變化的基於鄰近樣本之參考模型]
在特定實施例中,自動化高速X射線檢驗系統可利用電腦視覺演算法並依據鄰近或相鄰樣本創建出感興趣物件的參考模型。自動化高速X射線檢驗系統可針對相對感興趣物件的鄰近樣本或相鄰樣本生成X射線影像。自動化高速X射線檢驗系統可根據鄰近樣本的X射線影像生成參考模型,並且利用此參考模型作為檢驗感興趣物件的基準。自動化高速X射線檢驗系統可生成感興趣樣本的X射線影像並將其與參考模型進行比較,以決定感興趣樣本中是否存在缺陷物件。假設彼此靠近的多個樣本可能具有相同或相似的雜訊或干擾圖案,透過使用基於鄰近樣本創建的參考模型,自動化高速X射線檢驗系統可消除或減少X射線影像中的系統性雜訊或系統性干擾圖案的影響。於特定實施例中,非隨機雜訊或干擾圖案可能因多種因素而有所不同,這些因素諸如感興趣物件位置、樣本的製程等,而因此可能對檢驗樣本有系統性的影響。根據鄰近樣本生成的參考模型能有效消除或減少系統性雜訊或系統性干擾圖案的影響。
在一個不限制本發明的例子中,自動化高速X射線檢驗系統可生成數個檢驗樣本的X射線影像,這些檢驗樣本包括感興趣樣本及其鄰近樣本。自動化高速X射線檢驗系統可根據數個鄰近樣本(例如,兩個樣本、三個樣本或任何適當數量的樣本)的X射線影像創建參考模型。假若鄰近樣本是無缺陷物件的合格樣本,自動化高速X射線檢驗系統可處理並整合這些鄰近樣本的X射線影像,以創建參考模型作為檢驗基準。接著,自動化高速X射線檢驗系統可比較感興趣樣本的X射線影像與參考基準,以決定感興趣樣本中是否存在一些缺陷物件。當感興趣樣本被辨識出與參考模型之間有差異(例如大於差異閾值),自動化高速X射線檢驗系統可決定感興趣樣本中存在缺陷物件。所述差異例如但不限於包含位置差異、尺寸差異、圖案差異、特性差異、輪廓差異、灰階值差異等。自動化高速X射線檢驗系統可重覆這道程序(即根據鄰近樣本創建基準模型,並將感興趣樣本與基準模型進行比較),並且用移動窗口按順序反覆檢驗這些樣本,以為每個感興趣樣本選出基準樣本。利用基於鄰近樣本創建的參考模型作為基準並且假設基準樣本和感興趣樣本擁有相同的雜訊特性,自動化高速X射線檢驗系統能有效地消除或減少來自系統性變化的雜訊或干擾圖案的影響。
[高動態範圍X射線偵測器]
於特定實施例中,自動化高速X射線檢驗系統可根據在實質正交於檢驗樣本平面之方向上生成的單一X射線影像決定檢驗樣本中是否有缺陷。於特定實施例中,自動化高速X射線檢驗系統可包含具有高動態範圍(例如大於或等於10,000)的X射線偵測器。換句話說,X射線偵測器可生成動態範圍大於10,000灰度級的X射線影像。於特定實施例中,X射線偵測器可生成動態範圍大於65,000灰度級的X射線影像。高動態範圍可允許X射線影像提供更多檢驗樣本的細節資訊(例如更高的灰階解析度)。於特定實施例中,自動化高速X射線檢驗系統可利用X射線影像的高動態範圍並使用至少一電腦演算法(例如人工智慧演算法、機器學習模型、視覺演算法)來決定檢驗樣本中是否存在缺陷物件。透過使用電腦演算法,自動化高速X射線檢驗系統能有效地辨識出人類肉眼無法識別的特徵或/和屬性,並根據這些特徵或/和屬性檢測出有缺陷的物件。自動化高速X射線檢驗系統可利用灰階值和灰階變化來辨識這些特徵或/和屬性,然而人工檢驗可能需要依賴邊緣或形狀的資訊。如此一來,相較傳統CT技術生成之用人眼處理及檢驗的X射線影像,自動化高速X射線檢驗系統有比傳統CT技術更快的檢驗速度和更高的檢驗精度。
[由不同曝光程度的多張X射線影像創建的高動態範圍X射線影像]
於特定實施例中,自動化高速X射線檢驗系統可包含複數個X射線感光元件或偵測器,其各自具有相對較小的動態範圍(例如小於10,000)。自動化高速X射線檢驗系統可透過結合多張X射線影像生成具有大動態範圍(例如大於10,000灰度級)的X射線影像,其中這些X射線影像在不同的X射線曝光程度下生成。在一個不限制本發明的例子中,自動化高速X射線檢驗系統可使用多個小動態範圍X射線偵測器在不同X射線曝光程度下生成數個X射線影像,並且將這些小動態範圍(例如小於10,000)X射線影像相加在一起而創建具有大動態範圍(例如大於或等於10,000)的X射線影像。由此產生的大動態範圍X射線影像可包含這些小動態範圍X射線影像的疊加。
[第二X射線影像驗證或無效化偽陽性]
於特定實施例中,自動化高速X射線檢驗系統可根據在第一方向上(例如由上而下方向、實質上正交於檢驗樣本平面的方向)生成之檢驗樣本的單一X射線影像決定至少一感興趣物件是否與至少一缺陷相關聯。以一個不限制本發明的例子來說,自動化高速X射線檢驗系統可自俯視X射線影像中提取至少一第一特徵,並且根據所述至少一第一特徵決定有至少一缺陷與檢驗樣本的感興趣物件相關聯。於特定實施例中,至少一第一特徵例如但不限於包含材料厚度值、材料厚度變化、材料厚度分布(Thickness profile)、物件形狀、物件尺寸、感興趣物件與其他物件之間的距離、感興趣物件在該第一X射線影像中的位置、感興趣物件相對其他物件的位置以及與感興趣物件相關聯的幾何特徵(Geometric signature)等。
然而在部份情況下,由於X射線影像中雜訊或干擾圖案的影響,缺陷物件的檢測結果可能是偽陽性結果。於特定實施例中,自動化高速X射線檢驗系統可在不同於第一方向的第二方向(例如傾斜方向)上生成檢驗樣本的第二X射線影像,並且利用第二X射線影像驗證或無效化偵測到之檢驗樣本的缺陷物件。以一個不限制本發明的例子來說,自動化高速X射線檢驗系統可在傾斜方向上生成檢驗樣本的第二X射線影像,並且自第二X射線影像或是第一與第二X射線影像之結合提取出至少一第二特徵。舉例來說,透過比較第一X射線影像與第二X射線影像,自動化高速X射線檢驗系統可決定至少一第二特徵。於特定實施例中,至少一第二特徵例如但不限於包含二個以上層的堆疊次序、感興趣物件的位置改變、感興趣物件的形狀改變、干擾物件的位置改變、干擾物件的形狀改變、與感興趣物件相關聯的至少一灰階值的改變、與干擾物件相關聯的至少一灰階值的改變、第一X射線影像和第二X射線影像之間的任何差異等。
於特定實施例中,自動化高速X射線檢驗系統可根據驗證至少一第一特徵的至少一第二特徵來驗證至少一缺陷與感興趣物件相關聯的結論是正確的。以一個不限制本發明的例子來說,自動化高速X射線檢驗系統可根據俯視X射線影像偵測到兩個焊料接合點之間的橋接缺陷。自動化高速X射線檢驗系統可在不同方向上生成檢驗樣本的第二X射線影像,並且驗證前述兩個焊料接合點之間的橋接缺陷是真實存在的缺陷。自動化高速X射線檢驗系統可驗證檢測到的缺陷並決定這些檢驗結果不是偽陽性結果。於特定實施例中,只有當缺陷物件至少被兩個在不同方向生成之檢驗樣本的X射線影像驗證時,自動化高速X射線檢驗系統才會報告或標記檢測到的缺陷物件。
於特定實施例中,基於至少一第二特徵能使基於第一特徵得到至少一缺陷與感興趣物件相關聯的結論無效,自動化高速X射線檢驗系統可判定至少一缺陷與感興趣物件相關聯的結論是無效的。以一個不限制本發明的例子來說,自動化高速X射線檢驗系統可根據俯視X射線影像偵測到兩個焊料接合點之間的橋接缺陷。自動化高速X射線檢驗系統可在不同方向生成檢驗樣本的第二X射線影像,並且辨識所述兩個焊料接合點之間的橋接缺陷實際上是背鑽孔通孔(Back-dilled via),其中背鑽孔通孔垂直地與焊料接合點位於不同的其它層中並且在正交由上而下的方向的平面上是位於兩個焊料接合點之間,這導致背鑽孔通孔在俯視X射線影像中看起來像是將兩個焊料接合點橋接。自動化高速X射線檢驗系統可讓偵測到的橋接缺陷無效並且決定這些檢驗結果是偽陽性結果。於特定實施例中,只有當缺陷物件至少被兩個在不同方向生成之檢驗樣本的X射線影像驗證時,自動化高速X射線檢驗系統才會報告或標記檢測到的缺陷物件。
[不同元件尺寸導致的偽陰性]
於特定實施例中,在一些情況下,自動化高速X射線檢驗系統可因為數個因素而具有偽陰性結果(例如有一個或多個缺陷存在卻沒有辨識出來),其中數個因素例如是雜訊,干擾圖案,物件尺寸變化,物件位置變化等。於特定實施例中,當自動化高速X射線檢驗系統根據第一X射線影像(例如俯視X射線影像、仰視X射線影像或是在任意合適角度擷取的X射線影像)決定被檢驗物件沒有缺陷時,自動化高速X射線檢驗系統可透過從不同方向生成並分析檢驗樣本的第二X射線影像來執行另一次檢驗。於特定實施例中,只有在經過不同方向生成的至少兩X射線影像驗證後,自動化高速X射線檢驗系統才會決定檢驗樣本中沒有缺陷。
於特定實施例中,在一些情況下,自動化高速X射線檢驗系統可根據單一X射線影像(例如俯視X射線影像、仰視角X射線影像或是在任意合適角度擷取的X射線影像)而使檢驗得到偽陰性結果,並且在調整電腦演算法或檢驗模型使用的至少一參數後進行一個或多個更進一步的檢驗。以一個不限制本發明的例子來說,由於物件超出了電腦演算法使用的參數範圍,自動化高速X射線檢驗系統可能無法偵測到缺陷物件。舉例來說,焊料接合點有70±60微米的通常大尺寸變化,這超過電腦演算法使用的70±5微米的參數範圍,因此自動化高速X射線檢驗系統可能無法偵測到有缺陷的焊料接合點。自動化高速X射線檢驗系統可將參數範圍從70±5微米調整到70±60微米,並且使用調整後的參數重新對檢驗樣本進行檢驗。透過調整後的參數,自動化高速X射線檢驗系統能有效地真測出初檢時遺漏的缺陷物件。
[示例性方法]
圖4繪示根據單一X射線影像辨識缺陷焊料連接處的示例性方法5800。此方法從步驟5802開始,於步驟5802中,與自動化高速X射線檢驗系統有關聯的計算系統可在第一方向上生成裝置的第一X射線影像(例如從被測試裝置的正交方向向下拍攝所得到的俯視影像)。於步驟5804中,第一X射線影像中可能包含數個與感興趣物件重疊或相交的干擾物件(例如導電帶、導線、焊接墊、在同一層或不同層的焊球),這些干擾物件可能干擾感興趣物件的量測,並且計算系統可利用機器學習模型從第一X射線影像中辨識出裝置的感興趣物件。於步驟5806中,計算系統可利用機器學習模型來決定沿著裝置的正交方向上與感興趣物件相關聯的至少一特徵。可根據第一X射線影像中對應灰階值的變化來決定所述至少一特徵。於步驟5808中,計算系統可根據與感興趣物件相關聯的至少一特徵來決定與感興趣物件相關聯的至少一品質度量。
於特定實施例中,自動化高速X射線檢驗系統可在不同於第一方向的第二方向上生成裝置的第二X射線影像。第二X射線影像中可能包含數個干擾物件,並且系統可利用機器學習模型從第二X射線影像中辨識出裝置的感興趣物件。系統可根據第一X射線影像和第二X射線影像中對應灰階值的變化來決定與感興趣物件關聯的至少一特徵,其中第一方向與第一X射線影像相關聯,且第二方向與第二X射線影像相關聯。於特定實施例中,與第一X射線影像相關聯的第一方向可以是裝置的正交方向,並且與第二X射線影像相關聯的第二方向可以是裝置的傾斜方向。於特定實施例中,以歷史資料訓練過的機器學習模型可以將感興趣物件從多個干擾物件中孤立出來,並且辨識出與感興趣物件相關聯的至少一缺陷。
於特定實施例中,感興趣物件可以是或可包含焊料連接處。當焊料連接處的一個或多個品質度量滿足一個或多個品質標準時,計算系統可以將此焊料連接處辨識為合格的焊料連接。當焊料連接處的一個或多個品質度量不能滿足一個或多個品質標準時,系統可以使用機器學習模型辨識出與焊料連接處相關的一個或多個缺陷。於特定實施例中,缺陷例如但不限於包含空孔缺陷、枕頭缺陷、非潤濕缺陷、斷路缺陷和橋接/短路缺陷等。於特定實施例中,所述與感興趣物件相關聯的至少一特徵例如但不限於包含材料厚度、形狀、尺寸、位置、與其他元件的相對位置、堆疊次序、輪廓變化、梯度等。需注意的是,此處描述的流程和方法可包含生成任意合適數量的X射線影像和基於生成的X射線影像辨識有缺陷的元件。於特定實施例中,根據在由上而下的方向或傾斜方向生成的單一X射線影像、在兩個不同方向生成的兩張X射線影像或是在任意合適方向生成的N張X射線影像(N可以為任意整數),系統可辨識出有缺陷的焊料連接處。
於特定實施例中,自動化高速X射線檢驗系統可在第一方向上生成檢驗樣本的第一X射線影像。第一X射線影像可以是高解析度灰階影像。於特定實施例中,高解析度灰階影像可以是指大於或等於1200萬像素的影像。於特定實施例中,高解析度灰階影像可以是指大於或等於2900萬像素的影像。於特定實施例中,高解析度灰階影像可以是指光學空間解析度小於或等於10微米之影像,其用於X射線為基礎之量測。於特定實施例中,高解析度灰階影像可以是指光學空間解析度小於或等於5微米之影像,其亦適用於X射線為基礎之量測。第一方向實質上可正交於檢驗樣本的平面。自動化高速X射線檢驗系統可根據第一X射線影像從檢驗樣本的數個物件中辨識出檢驗樣本的至少一感興趣物件。第一X射線影像可包含數個干擾物件,數個干擾物件會干擾到第一X射線影像中的至少一感興趣物件。對於每個感興趣物件,自動化高速X射線檢驗系統可決定出與感興趣物件有關聯的至少一第一特徵。可根據第一X射線影像中的灰階值變化決定出所述至少一第一特徵。對於每個感興趣物件,自動化高速X射線檢驗系統可根據與感興趣物件有關聯的至少一第一特徵來決定是否有至少一缺陷與感興趣物件相關聯。
於特定實施例中,可透過具有高動態範圍(例如大於10,000)的X射線偵測器生成第一X射線影像,並且第一X射線影像可具有大於10,000的灰度級。於特定實施例中,具有高動態範圍的第一X射線影像(例如具有大於10,000的灰度級)可以是多個低動態範圍X射線影像的疊加,其中可使用至少一低動態範圍X射線偵測器(例如動態範圍小於10,000)在不同X射線曝光設定下生成這些低動態範圍X射線影像。於特定實施例中,可利用機器學習模型以根據沿著第一個方向的材料厚度決定出至少一第一特徵。於特定實施例中,所述至少一第一特徵例如但不限於包含材料厚度值、材料厚度變化、材料厚度分布、物件形狀、物件尺寸、感興趣物件與其他物件之間的距離、感興趣物件在該第一X射線影像中的位置、感興趣物件相對其他物件的位置以及與感興趣物件相關聯的幾何特徵等。
於特定實施例中,自動化高速X射線檢驗系統可在不同於第一方向的第二方向上生成檢驗樣本的第二X射線影像。透過比較第一X射線影像和第二X射線影像,自動化高速X射線檢驗系統可決定與感興趣物件有關聯的至少一第二特徵。於特定實施例中,所述至少一第二特徵例如但不限於包含二個以上層的堆疊次序、感興趣物件的位置改變、感興趣物件的形狀改變、干擾物件的位置改變、干擾物件的形狀改變、與感興趣物件相關聯的至少一灰階值改變和與干擾物件相關聯的至少一灰階值改變等。
於特定實施例中,根據至少一第二特徵使基於該至少一第一特徵得到該至少一缺陷與感興趣物件相關聯之結論無效的判定,自動化高速X射線檢驗系統可決定與感興趣物件相關聯的至少一缺陷是偽陽性結果。於特定實施例中,根據至少一第二特徵驗證基於該至少一第一特徵得到至少一缺陷與感興趣物件相關聯的結論正確的判定,自動化高速X射線檢驗系統可驗證與感興趣物件相關聯的至少一缺陷。
於特定實施例中,可透過機器學習模型辨識出與感興趣物件相關聯的至少一缺陷。機器學習模型可透過大樣本數(例如大於10,000個樣本的群體)來訓練。機器學習模型在訓練過後可將感興趣物件從數個數量的干擾物件中孤立出來。於特定實施例中,對於一組相鄰的檢驗樣本,自動化高速X射線檢驗系統可生成至少兩張參考X射線影像。自動化高速X射線檢驗系統可根據所述至少兩張參考X射線影像生成檢驗樣本的參考模型。自動化高速X射線檢驗系統可使用電腦視覺演算法比較檢驗樣本的第一X射線影像與參考模型,並且根據第一X射線影像與參考模型之間的比較結果辨識出感興趣物件相關聯的至少一缺陷。於特定實施例中,感興趣物件可以是焊料連接處,並且與焊料連接處相關聯的至少一缺陷例如但不限於包含空孔缺陷、枕頭缺陷、非潤濕缺陷、斷路缺陷、錯位和橋接/短路缺陷等。
於特定實施例中,自動化高速X射線檢驗系統可包含發出具有白光光譜X射線束的X射線源以及濾除X射線束中相對應的光譜範圍的至少一X射線濾除元件。於特定實施例中,所述至少一X射線濾除元件可包含對應第一光譜範圍的第一X射線濾除元件以及對應第二光譜範圍的第二X射線濾除元件,其中第一光譜範圍可被第一材料吸收,且第二光譜範圍可被第二材料吸收。自動化高速X射線檢驗系統可將第一X射線濾除元件應用於X射線源以生成第一材料選擇性X射線影像,並且第一材料選擇性X射線影像可排除由第一材料製成的物件。自動化高速X射線檢驗系統可將第二X射線濾除元件應用於X射線源以生成第二材料選擇性X射線影像,其中第二材料選擇性X射線影像可排除由第二材料製成的物件。藉由結合第一材料選擇性X射線影像與第二材料選擇性X射線影像,自動化高速X射線檢驗系統可生成優化的X射線影像,並且優化的X射線影像相對第一X射線影像具有較高的訊噪比。於特定實施例中,可根據第一材料選擇性X射線影像、第二材料選擇性X射線影像或優化的X射線影像辨識出與感興趣物件相關聯的至少一缺陷。於特定實施例中,自動化高速X射線檢驗系統可包含低能量X射線濾除元件,低能量X射線濾除元件從X射線束中濾除低能量X射線,以防止對檢驗樣本造成潛在的損害。
儘管本發明揭露之內容描述並說明圖4中的檢驗方法的特定步驟以特定順序發生,仍考量圖4中的檢驗方法的任何適當步驟以任何適當的順序發生。此外,雖然本發明揭露之內容描述並說明一種包含圖4中的特定步驟的示例方法,這種方法基於單一X射線影像辨識出有缺陷的焊料連接處,但仍考量包含任何適當步驟的適當方法以根據單一X射線影像辨識出有缺陷的焊料連接處,且此適當方法的步驟可包含全部、一部分或不包含圖4中的步驟。另外,雖然本發明揭露之內容描述並說明特定元件、裝置或系統執行圖4中的特定步驟,仍考量任何適當元件、裝置或系統的任何適當組合執行圖4中的任何適當步驟。
[優點:檢驗速度]
本發明的一個明顯優點是可以使用擴增的X射線源,從而增加了用於成像的X射線的可用流通量,這又進一步增加了系統可能的流通量。換句話說,在可移植像素圖格式(PPM)系統獲取單張檢驗影像的時間內,本發明可以獲得超過30萬張相同解析度的影像。
考慮以下與PPM X射線系統的比較,獲得影像的時間取決於X射線的通量:Tacquire = (P# x XP )/Φ,其中P# 是像素數量,XP 是每個像素的X射線數,以及Φ是X射線的通量。來自一點光源的X射線的通量為:通量 = Φ = β x Ω x SA ,其中β是點光源的亮度,Ω是角分布(單位為毫弧度平方,mrad2 ),SA 是點光源面積(SA =πr2 )。X射線系統點光源的光斑尺寸通常使用ASTM標準SE-1165定義(“Standard Test Method for Measurement of Focal Spots of Industrial X-ray Tubes by Pinhole Imaging,” ASTM Committee E-7 on Nondestructive Testing, May 15, 1992)。
一種典型的X射線源亮度β滿足以下條件:β = 108 X射線/秒/平方公釐/毫弧度平方。為了避免自動檢驗中產生視差誤差,PPM X射線系統需以良好的方式實現準直,典型是20毫弧度的發散程度。對於一個點光源滿足下列條件:Ω = (20 mrad)2 = 400 mrad2 ,以及光源光斑直徑d滿足下列條件:d = 2r = 1 µm = 10-3 mm,可以由下列計算得到通量Φ:Φ = β x Ω x SA = 108 x 400 x π x [0.5 x 10-3 ]2 X射線/秒 = 400 x π x 0.25 x 108 x [10-3 ]2 X射線/秒 = 400 x π x 25 X射線/秒 = 31,416 = 3.14 x 104 X射線/秒。
典型的X射線感光元件可具有512 x 512個像素,其需要每個像素1000道X射線來形成影像。因此,PPM系統的影像採集大約需要8350秒,即2.3小時。
另一方面,根據本發明揭露之內容,保持光源亮度但用尺寸較大的光斑照射會顯著增加照射在物體上的X射線通量。例如,假設光源直徑為1公釐(半徑r=0.5公釐),與物體相距100公釐,並且物體與閃爍器相距100微米,則可以由下列計算得到X射線束的角發散度(angular divergence):α = 1 mm /100 mm = 10 mrad,因此Ω = 100 mrad2 。光斑面積=π x [0.5]2 = 0.785 mm2 ,故通量Φ變成:Φ = 108 x 100 x 0.785光子數/秒 = 7.85 x 109 光子數/秒;此通量比PPM的構成還要高250,000倍。因此,現在能夠快速地產生同樣的512 x 512影像(每個像素1000道X射線),例如影像採集時間大約成比例地提高了33毫秒。
作為一個實際問題,流通量的增加可能會從這個數字進一步減少2到10倍。PPM成像系統可搭配量子效率在50%到100%之間的CCD X射線偵測器直接偵測放大子影像(Shadow image)中的X射線。典型的X射線CCD陣列包含陣列像素,其中像素尺寸大約為100微米x100微米。
相較之下,本發明揭露的系統的高解析度直接子影像來自擴增的X射線源,並且不被放大。現有X射線成像偵測器的像素太大而無法解析近距離影像。相反地,本發明揭露包括一個閃爍器能將X射線轉換為光學光子,然後放大光學影像。
為了達到特定的解析度,閃爍器可能有厚度規格。例如,對於1微米的解析度,閃爍器可具有1到10微米之間的指定厚度。對於薄閃爍器而言,一些入射的X射線會穿過閃爍器而不被吸收。因此,這種轉換過程的量子效率可能比PPM系統還要差,只有大約20%的X射線通過閃爍器時會發射出可見光光子。除此之外,顯微鏡可能會失去額外的光子,這取決於光學系統的數值孔徑(NA)和可見光CCD偵測器的量子效率。即使有這些損失,擴增光源的較高通量所提供的好處仍然有顯著的優點。
[優點:成像解析度]
先前技術的PPM系統解析度由X射線源的光斑尺寸決定。舉例來說,假設系統以最佳解析度運作,光斑尺寸1微米的X射線源可產生解析度1微米的影像。實際上,由於小光斑尺寸的X射線源之效率快速衰減,PPM系統很難達到1微米以下的解析度。當X射線源的光斑尺寸減小,必須降低X射線功率以避免熔化X射線目標物。此外,X射線目標物需要較薄以減少目標物光散射現象。如此一來,對於光斑尺寸每減小二倍,來自射線源的通量減少二至四倍。總體而言,隨著解析度提升二倍,流通量將會減少至少八倍。
根據本發明所揭露之內容,閃爍器離要被檢查的物體很近,並且射出的光子與x射線成比例。對於將閃爍器發射的光子傳輸到偵測器的光學系統,假設有發射波長為535奈米的閃爍器以及數值孔徑約為1.75的固體浸入式光學系統(含有折射率為1.84的LuAG光學元件),將閃爍器產生的光子傳輸到偵測器的光學系統所擁有的繞射極限解析度R可定義如下:
,此繞射極限解析度R比PPM系統的1微米解析度還要小6.5倍。
[優點:上市時間]
解析度小於50微米的無損影像的高採集速度可以改善如前述提到的倒裝晶片互連(FCI)製程等生產製程以縮短上市時間。在之前也提及的針對失效分析的破壞性製程可能耗費數星期收集單一影像,以及耗費數個月獲得部分的統計資料。由於使用本發明揭露的系統可以快速地收集和分析影像,此類產品的開發過程所需時間可以以天為單位計算,通常只占設計並將新產品推向市場所需總時間的一小部分。
另外,由於解析度提升,本發明可用於間距(Pitch)小於50微米的新倒裝晶片互連製程。本發明可用於明顯更小的間距且仍然維持滿足需求的影像解析度和速度。就產品開發週期而言,增加一周到數周的回饋時間對開發新產品所需的時間有明顯的衝擊。
舉一個簡單的例子,也許三到五個週期的設定和資料收集就足以建構一個新裝置的製程。在更複雜的情況下,如高密度交聯器或3D積體電路,可能需要數十或數百次反覆運算。如果不採用本發明,每個週期可能需要耗費幾個星期,而產品的總上市時間可能就會被這些週期嚴重影響。很明確地,在加工過程中確認細小間距(50微米和更小的)接合品質的方法給出顯著的優勢。
本發明揭露的系統和方法所產生的影像和計算允許在接合之後的數秒或數分鐘內立即檢查接合品質。為了開發一種新的半導體產品並使其能被量產,必須建立、調整和測試許多單獨的製程和這些製程的整合。在半導體晶圓中形成矽穿孔的情況下,製造流程通常要求首先形成通孔洞,然後在通孔上的晶圓表面形成面環(Capture pad)。由於面環模糊了對通孔本身的光學檢查,在沒有本發明的情況下,如果不切割矽晶圓並在橫截面上檢查通孔特徵,則可能無法在製造時準確確定通孔和面環之間的對準關係。由於這個對準程序很耗時,而且會破壞矽晶圓和其中所包含的有價值之內容,因此不希望有它的存在。
在使用倒裝晶片互連製程將兩個或多個晶片、基板或甚至數個晶圓接合在一起時,必須嚴格控制對準關係、接合力、接合溫度、加熱速率和冷卻速率等因素。雖然對製造設備和製程的控制可以實現一些必要的控制,但對產品中不可見的特徵的檢驗和測量也可能是必需的。
在不使用本發明所公開的設備的情況下,組裝部件必須被橫切以便進行檢驗。考慮到連接接合的細小間距和大量的連接處,這個檢驗程序可能需要幾個星期。即使如此,通常只有很小一部分的連接接合會被檢驗。
不能快速檢查接合會明顯增加微調獨立製程步驟以及多個製程步驟整合以創建成品所需的時間。例如考慮一個案例,其中需要反覆25次焊接過程來開發和鑒定產品。在沒有本發明所揭露的裝置的情況下,在各種製程和工具配置下,每次反覆運算可能需要1周時間來構建每組樣品。在製造一組樣品之後,可能需要額外的2周的時間來橫切各個單元並檢驗已經形成的接合之品質和屬性。因此,總時間為25周x(1周製作+2周檢查)= 75.0周。
使用本發明所揭露的裝置,透過消除耗時的橫切需求,可以將2周的檢查縮短到幾分鐘。一連串週期的總時間現在可以計算為:25個週期x(1周製作+ 1小時檢查)= 25.15周,減少了49.85周(約初始上市時間的66%)。隨著電子產品大量消費,如手機年銷量超過1億台,不難看出上市時間縮短50周(近一年)會對市場產生重大影響。設備還可進一步整合到接合工具或通孔填充工具(例如電化學沉積工具),以即時對接合製程提供反饋。這種設備的使用減少了數周的上市時間,實際上使一種產品可即時進入市場,而不會因太昂貴或上市時機太晚而喪失經濟價值。
[優點:產品良率和成本]
據稱,已經在這些裝置上開始生產商業產品,並且與封裝組件和互連裝置的總體良率在80%的範圍內。這個良率遠低於半導體領域一般能接受的數值,且有相當多的與廢料相關的額外成本。對於被認為具有很高商業價值的特定物件,即使考慮到低產量所付出的相關成本,僅僅80%的封裝組件良率進行生產也是可行的。然而,在其他成本更低、更以消費者為導向的市場領域,定價壓力要大得多,而且只有這種水準的封裝組件產品不太可能具有商業可行性。基於這個理由,產品製造過程必須強力且嚴格控管,以減少因接合製程而產生的報廢產品數量或良率損失。傳統上,封裝組件的良率範圍在98%至99%之間。本領域的技術人員能很快認知到,透過使用低良率的接合技術導致良好晶片被報廢,並且用於生產封裝良率低於80%的低價值晶片,是完全不可接受的。
需要注意的是,在多個晶粒以3D IC或高密度交聯器的形式安裝在一起的情況下,任何晶片上的一個連接失敗都會導致整個MCP或封裝組件的報廢。可能有成千上萬的連接處都必須按照設計的功能正常運行。如果有接合不正確的情況,通常難以對材料進行任何形式的重工(Rework)或回復(Recovery)。舉例來說,以一個成本為10美元的處理器晶片與4個成本為5美元(即20美元)的記憶體晶片安裝在一起為例。晶片的總成本是30美元。晶片組裝和封裝可能會增加另外5美元的成本,總組裝成本為35美元。
藉由本發明的設備所產生的影像和測量結果,可以控制和監控對準流程和檢驗接合,從而使良率能夠迅速提高。對於MCP封裝,在上面的例子中,偵測前兩個晶粒之間的瑕疵將允許封裝組裝者只報廢前兩個晶粒,而不需要損失所有五個晶粒,因此節省報廢成本和提高良率。在良好的控制和監控下,組裝流程的良率通常能超過99.9%。本發明允許封裝組裝者在MCP結構中達到大於或等於90%的良率,其中此MCP結構具有4個以上的晶粒;另外,在最小間距小於100微米的間距處,每個中介層或晶粒層具有超過100個矽穿孔。在最小間距小於100微米之間距處具有超過400個微凸塊的倒裝晶片結構中,也可以實現同樣優異的良率。
這種在成本和良率方面的優異性也可以體現在細小間距中介層和3D晶粒堆疊的其他製程中,例如空孔的孔填充監視器、面環與穿孔的對準、凸塊對晶片或中介層的對準以及接合後完整焊點的品質。它也可用於測量矽裝置或小間距中介層的多晶片組裝中的熔合線(Bondline),或是矽裝置和其他感興趣材料之間的熔合線,熔合線的厚度對裝置性能是至關重要的。
[備註]
此處,詞語「或」具有包容性和非排他性,除非另有說明或上下文另有說明。因此,此處的詞語「A或B」是指「A、B或兩者」,除非另有明確說明或上下文另有說明。此外,詞語「和/以及/與」是共同且連帶的,除非另有明確說明或上下文另有說明。因此,此處的詞語「A和/以及/與B」是指「A、B共同」或「A、B個別」,除非另有明確說明或上下文另有說明。
本發明的專利保護範圍包括本發明中描述或說明的具有本技術領域具有通常知識的人可能理解的對示例性實施例的所有變更、替換、變化、變更和修改。本發明的專利保護範圍不限於本文描述或說明的示例性實施例。此外,儘管本發明描述和說明了各個實施例包含特定元件、物件、特徵、功能、操作或步驟,這些實施例可能包含任意段落描述或說明的任何元件、物件、特徵、功能、操作或步驟的任何組合或排列,並且這些組合或排列是本技術領域具有通常知識的人能夠理解的。
此外,請求項中對設備或系統或設備與系統的組合適於、配置成、能夠或可操作地執行包括該設備、系統、部件的特定功能,無論此特定功能是否被啟動、接通或解鎖,只要該設備、系統或部件適於、被佈置成、能夠或可操作的。儘管本發發明公開描述或繪示了提供特定優點的特定實施例,但是特定實施例也可以沒有這些優點,或是只有部分優點或全部優點。
100:X射線源 101:發射器 106、250:安裝件 111:X射線 140:平板 142:孔徑 211:準直X射線光束 200:物件 300:閃爍器組件 310:閃爍器 350:載台 411:可見光光子 400:光學系統 500:感光元件 511:放大影像 600:電子裝置 700:電腦系統 998、999:遮罩 4801、4821、4841、4851、4861、4871、4900:電路板板層 4802:感興趣物件 4803、4823、4843、4853、4863、4873:俯視形狀 4858、4868:俯視形狀 4804、4824、4844、4854、4864、4874:訊號曲線 4805、4825:周圍部分 4806、4826、4866、4876:底部 4807、4827、4847、4857、4867、4877:中心線 4809、4839、4849、4859、4869、4879:正交方向 4811、4812、4831、4832:邊緣 4813、4814、4833、4834:訊號邊緣 4815:材料厚度 4846A、4846B:訊號輪廓 4842A:非潤濕輪廓 4842B:斷路輪廓 4848:訊號振幅 4856:訊號輪廓 4822、4842、4852、4862、4872A、4872B、4881:焊球 4860:空孔 4870:枕頭元件 4878:橋接區域 4883:焊墊 4885:周邊導體 4901、4902:圓柱狀物件 4904A、4905A:俯視形狀 4904B、4905B:斜向形狀 4903:Z軸 4906、4910:距離 4907:傾斜方向 4908:角度 4909:X射線束方向 5800:方法 5802、5804、5806、5808:步驟
圖1A繪示根據本發明一實施例的X射線成像系統。 圖1B繪示根據本發明一實施例的具有可移動X射線源的X射線成像系統,其中X射線源可相對檢驗樣本移動以在不同方向生成X射線影像。 圖2A繪示在電路板板層內測量感興趣物件的材料厚度和形狀(沿著電路板板層的正交方向)的示意圖。 圖2B繪示根據單一X射線影像檢驗電路板板層中焊球的示意圖。 圖2C繪示根據單一X射線影像偵測電路板板層中有缺陷的焊球(例如非潤濕性缺陷或非潤濕斷路缺陷)的示意圖。 圖2D繪示根據單一X射線影像偵測電路板板層中有缺陷的焊球之空孔的示意圖。 圖2E繪示根據單一X射線影像偵測電路板板層中有缺陷的焊球之枕頭缺陷的示意圖。 圖2F繪示根據單一X射線影像偵測經由橋接區域連接的兩個有缺陷的焊球的示意圖。 圖2G繪示根據俯視X射線影像用於偵測有缺陷的焊球與焊墊錯位的示意圖。 圖3A和圖3B繪示沿著檢驗樣本的正交方向根據從不同角度擷取的至少兩張X射線影像測量至少一特徵的示意圖。 圖4繪示根據單一X射線影像辨識有缺陷的焊料連接處的示例性方法。 備註:圖中所示的物件是為了說明本發明的功能,並不是按實際尺寸比例繪製的。
5800:方法
5802、5804、5806、5808:步驟

Claims (17)

  1. 一種由自動化高速X射線檢驗系統執行的方法,包含:在一第一方向上生成一檢驗樣本的一第一X射線影像,其中該第一X射線影像是一高解析度灰階影像,該第一方向實質上正交於該檢驗樣本的平面;根據該第一X射線影像從該檢驗樣本的多個物件中辨識出該檢驗樣本的至少一感興趣物件,其中該第一X射線影像包含多個干擾物件,該些干擾物件源自於該檢驗樣本的該些物件且在該第一X射線影像中干擾到該至少一感興趣物件;為各個該至少一感興趣物件決定出與各個該至少一感興趣物件相關聯的至少一第一特徵,其中根據該第一X射線影像中的灰階值變化確定該至少一第一特徵;以及為各個該至少一感興趣物件根據該至少一第一特徵決定是否有與各個該至少一感興趣物件相關聯的至少一缺陷;其中該自動化高速X射線檢驗系統包含一X射線源以及至少一X射線濾除元件,該X射線源發出具有白光光譜之X光光束,且該至少一X射線濾除元件濾除X光光束的特定光譜範圍,該至少一X射線濾除元件包含對應一第一光譜範圍的一第一X射線濾除元件以及對應一第二光譜範圍的一第二X射線濾除元件,該第一光譜範圍對一第一材料有反應,且該第二光譜範圍對一第二材料有反應; 該方法更包含:將該第一X射線濾除元件應用於該X射線源以生成一第一材料選擇性X射線影像,其中該第一材料選擇性X射線影像排除由第一材料製成的該些物件;將該第二X射線濾除元件應用於該X射線源以生成一第二材料選擇性X射線影像,其中該第二材料選擇性X射線影像排除由第二材料製成的該些物件;以及藉由結合該第一材料選擇性X射線影像與該第二材料選擇性X射線影像來生成一優化X射線影像,其中該優化X射線影像相對該第一X射線影像具有較高的訊噪比。
  2. 如請求項1所述之方法,其中該高解析度灰階影像具有大於等於12百萬像素的解析度。
  3. 如請求項2所述之方法,其中該高解析度灰階影像具有大於等於29百萬像素的解析度。
  4. 如請求項1所述之方法,其中該第一X射線影像是藉由動態範圍大於10,000的X射線探測器所生成,且該第一X射線影像具有大於10,000的灰度級(Grayscale Level)。
  5. 如請求項1所述之方法,其中該第一X射線影像是多個低動態範圍X射線影像的疊加,該些低動態範圍X射線影像使用動態範圍小於10,000的X射線探測器以不同的X射線曝光設定擷取而得。
  6. 如請求項1所述之方法,其中該至少一第一特徵是根據沿著該第一方向的材料厚度使用機器學習模型所決定。
  7. 如請求項6所述之方法,其中該至少一第一特徵包含下列至少其中一者:材料厚度值、材料厚度變化、材料厚度分布(Thickness profile)、物件形狀、物件尺寸、感興趣物件與其他物件之間的距離、感興趣物件在該第一X射線影像中的位置、感興趣物件相對其他物件的位置以及與感興趣物件相關聯的幾何特徵(Geometric signature)。
  8. 如請求項1所述之方法,更包含:在不同於該第一方向的一第二方向上生成該檢驗樣本的一第二X射線影像;以及比較該第一X射線影像與該第二X射線影像,以決定出與各個該至少一感興趣物件相關聯的至少一第二特徵。
  9. 如請求項8所述之方法,其中該至少一第二特徵包含下列至少其中一者:二個以上層的堆疊次序(Stacking order)、感興趣物件的位置改變、感興趣物件的形狀改變、干擾物件的位置改變、干擾物件的形狀改變、與感興趣物件相關聯的至少一灰階值的改變和與干擾物件相關聯的至少一灰階值的改變。
  10. 如請求項8所述之方法,更包含:根據該至少一第二特徵使基於該至少一第一特徵得到該至少一缺陷與該至少一感興趣物件相關聯之結論無效的判定,來決定與該至少一感興趣物件相關聯的該至少一缺陷是偽陽性結果。
  11. 如請求項8所述之方法,更包含:根據該至少一第二特徵驗證基於該至少一第一特徵得到該至少一缺陷與該至少一感興趣物件相關聯的結論正確的判定,來驗證與該至少一感興趣物件相關聯的該至少一缺陷。
  12. 如請求項1所述之方法,其中藉由一機器學習模型辨識出該至少一缺陷,該機器學習模型是透過包含至少10,000個樣本的群體來訓練,且該機器學習模型在訓練過後將該至少一感興趣物件從該些干擾物件中孤立出來。
  13. 如請求項1所述之方法,更包含:為相鄰的多個該檢驗樣本生成至少二參考X射線影像;以及為該檢驗樣本根據該至少二參考X射線影像生成一參考模型。
  14. 如請求項13所述之方法,更包含:藉由電腦視覺演算法比較該檢驗樣本的該第一X射線影像與該參考模型,其中根據該第一X射線影像與該參考模型的比較結果辨識出與該至少一感興趣物件相關聯的該至少一缺陷。
  15. 如請求項1所述之方法,其中該至少一感興趣物件包含一焊料連接處,且該至少一缺陷包含下列至少其中一者:空孔缺陷、枕頭缺陷、非潤濕缺陷、斷路缺陷、錯位和短路缺陷。
  16. 如請求項1所述之方法,其中根據該第一材料選擇性X射線影像、該第二材料選擇性X射線影像或該優化X射線影像辨識出與該至少一感興趣物件相關聯的該至少一缺陷。
  17. 如請求項1所述之方法,其中該至少一X射線濾除元件包含低能量X射線濾除元件以從X光光束濾除低能量X射線物質。
TW109123429A 2019-07-12 2020-07-10 自動化高速x射線檢驗方法、電腦可讀取非暫態儲存媒體及電子系統 TWI840585B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962873752P 2019-07-12 2019-07-12
US62/873,752 2019-07-12
US16/924,581 2020-07-09
US16/924,581 US11688067B2 (en) 2019-07-12 2020-07-09 Methods and systems for detecting defects in devices using X-rays

Publications (2)

Publication Number Publication Date
TW202109459A TW202109459A (zh) 2021-03-01
TWI840585B true TWI840585B (zh) 2024-05-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090080764A1 (en) 2007-09-21 2009-03-26 Teradyne, Inc. X-ray inspection of solder reflow in high-density printed circuit board applications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090080764A1 (en) 2007-09-21 2009-03-26 Teradyne, Inc. X-ray inspection of solder reflow in high-density printed circuit board applications

Similar Documents

Publication Publication Date Title
US11688067B2 (en) Methods and systems for detecting defects in devices using X-rays
US20210010953A1 (en) Methods and Systems for Defects Detection and Classification Using X-rays
US11615533B2 (en) Methods and systems for product failure prediction based on X-ray image re-examination
US11662479B2 (en) Methods and systems for printed circuit board design based on automatic corrections
US8661905B2 (en) Non-contact microelectronic device inspection systems and methods
US11430118B2 (en) Methods and systems for process control based on X-ray inspection
TW202109034A (zh) 基於x射線檢驗之印刷電路板製造系統及方法、電腦可讀取非暫存性儲存媒體及印刷電路板
TW201706595A (zh) 缺陷判定方法、及x射線檢查裝置
TW202107071A (zh) 快速分類在製造組件之子組件中的缺陷的方法及設備
KR102137186B1 (ko) 전자 기판의 엑스레이 검사 방법
Huang et al. Detection of plated through hole defects in printed circuit board with X-ray
TWI840585B (zh) 自動化高速x射線檢驗方法、電腦可讀取非暫態儲存媒體及電子系統
US11815349B2 (en) Methods and systems for inspecting integrated circuits based on X-rays
TWI842929B (zh) 根據x射線影像複查預測產品失效的方法、電腦可讀取非暫存性儲存媒體及系統
TWI840586B (zh) 基於自動校正的印刷電路板設計之方法、系統與非暫態電腦可讀儲存媒體
KR20160006052A (ko) 전자 기판의 엑스레이 검사 방법
KR20160011222A (ko) 전자 기판의 엑스레이 검사 방법