TWI839694B - Display device - Google Patents

Display device Download PDF

Info

Publication number
TWI839694B
TWI839694B TW111108061A TW111108061A TWI839694B TW I839694 B TWI839694 B TW I839694B TW 111108061 A TW111108061 A TW 111108061A TW 111108061 A TW111108061 A TW 111108061A TW I839694 B TWI839694 B TW I839694B
Authority
TW
Taiwan
Prior art keywords
light
display device
chromaticity
blue
emitting chip
Prior art date
Application number
TW111108061A
Other languages
Chinese (zh)
Other versions
TW202321741A (en
Inventor
陳宏易
劉韻宜
吳珮佳
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to CN202210306813.8A priority Critical patent/CN114721184B/en
Publication of TW202321741A publication Critical patent/TW202321741A/en
Application granted granted Critical
Publication of TWI839694B publication Critical patent/TWI839694B/en

Links

Images

Abstract

The present disclosure provides a display device including a first light-emitting unit, a second light-emitting unit, and a third light-emitting unit. The first light-emitting unit includes a first light-emitting chip and a blue color resist having a first blue chromaticity between 0.141 and 0.151 and a second blue chromaticity between 0.033 and 0.043, where a first light entering the blue color resist has the peak wavelength between 459 nm and 469 nm. The second light-emitting unit includes a second light-emitting chip and a green color resist having a first green chromaticity between 0.151 and 0.171 and a second green chromaticity between 0.745 and 0.755, where a second light entering the green color resist has the peak wavelength between 527 nm and 537 nm. The third light-emitting unit includes a third light-emitting chip and a red color resist having a first red chromaticity between 0.692 and 0.698 and a second red chromaticity between 0.302 and 0.308, where a third light entering the red color resist has the peak wavelength between 639 nm and 649 nm.

Description

顯示裝置Display device

本公開內容是關於顯示裝置,且特別是關於包括色阻的顯示裝置。The present disclosure relates to display devices, and in particular to display devices including color resists.

在顯示裝置的發展中,裝置中的發光晶片尺寸逐漸微小化,使得發光晶片可以提供增加裝置性能、漸少裝置能耗等優勢。舉例而言,次毫米發光二極體(mini light emitting diode,mini LED)和微發光二極體(micro light emitting diode,micro LED)做為顯示器的像素單元,可增加顯示器的清晰度和對比度,並節省顯示器的能量消耗。然而,發光晶片和顯示裝置中其他元件的組合,可能影響顯示裝置所發出的光線抵達使用者時的色彩飽和度,從而影響成像效果。因此,如何調整發光晶片和其他元件的參數,進而提高顯示裝置的成像色彩飽和度,是顯示裝置領域的重要開發項目。In the development of display devices, the size of the light-emitting chips in the devices has gradually become smaller, so that the light-emitting chips can provide advantages such as increased device performance and reduced device energy consumption. For example, sub-millimeter light-emitting diodes (mini LEDs) and micro light-emitting diodes (micro LEDs) as pixel units of displays can increase the clarity and contrast of the display and save the energy consumption of the display. However, the combination of the light-emitting chip and other components in the display device may affect the color saturation of the light emitted by the display device when it reaches the user, thereby affecting the imaging effect. Therefore, how to adjust the parameters of the light-emitting chip and other components to improve the imaging color saturation of the display device is an important development project in the field of display devices.

根據本公開的一些實施方式,一種顯示裝置包括第一發光單元,第一發光單元包括第一發光晶片以及位於第一發光晶片上方的藍色色阻,其中藍色色阻於標準C光源下具有第一藍色色度(B x)介於0.141至0.151間和第二藍色色度(B y)介於0.033至0.043間,入射進藍色色阻的第一光線具有波峰波長介於459 nm至469 nm間。顯示裝置包括第二發光單元,第二發光單元包括第二發光晶片以及位於第二發光晶片上方的綠色色阻,其中綠色色阻於標準C光源下具有第一綠色色度(G x)介於0.151至0.171間和第二綠色色度(G y)介於0.745至0.755間,入射進綠色色阻的第二光線具有波峰波長介於527 nm至537 nm間。顯示裝置包括第三發光單元,第三發光單元包括第三發光晶片以及位於第三發光晶片上方的紅色色阻,其中紅色色阻於標準C光源下具有第一紅色色度(R x)介於0.692至0.698間和第二紅色色度(R y)介於0.302至0.308間,入射進紅色色阻的第三光線具有波峰波長介於639 nm至649 nm間。 According to some embodiments of the present disclosure, a display device includes a first light-emitting unit, which includes a first light-emitting chip and a blue color resist located above the first light-emitting chip, wherein the blue color resist has a first blue chromaticity (B x ) between 0.141 and 0.151 and a second blue chromaticity (B y ) between 0.033 and 0.043 under a standard C light source, and a first light incident on the blue color resist has a peak wavelength between 459 nm and 469 nm. The display device includes a second light emitting unit, which includes a second light emitting chip and a green color resist located above the second light emitting chip, wherein the green color resist has a first green chromaticity (G x ) between 0.151 and 0.171 and a second green chromaticity (G y ) between 0.745 and 0.755 under a standard C light source, and a second light incident on the green color resist has a peak wavelength between 527 nm and 537 nm. The display device includes a third light-emitting unit, which includes a third light-emitting chip and a red color resist located above the third light-emitting chip, wherein the red color resist has a first red chromaticity (R x ) between 0.692 and 0.698 and a second red chromaticity (R y ) between 0.302 and 0.308 under a standard C light source, and the third light incident on the red color resist has a peak wavelength between 639 nm and 649 nm.

在本公開的一實施方式中,第三光線和第一光線之間的波峰波長強度比例介於0.2至0.4間。In one embodiment of the present disclosure, the peak wavelength intensity ratio between the third light and the first light is between 0.2 and 0.4.

在本公開的一實施方式中,第二光線和第一光線之間的波峰波長強度比例介於0.5至0.7間。In one embodiment of the present disclosure, the peak wavelength intensity ratio between the second light and the first light is between 0.5 and 0.7.

在本公開的一實施方式中,第一光線具有半高寬介於20 nm至30 nm間,第二光線具有半高寬介於20 nm至30 nm間,以及第三光線具有半高寬介於35 nm至45 nm間。In one embodiment of the present disclosure, the first light has a half-height width between 20 nm and 30 nm, the second light has a half-height width between 20 nm and 30 nm, and the third light has a half-height width between 35 nm and 45 nm.

在本公開的一實施方式中,第一發光晶片、第二發光晶片和第三發光晶片是藍色發光二極體。In one embodiment of the present disclosure, the first light emitting chip, the second light emitting chip and the third light emitting chip are blue light emitting diodes.

在本公開的一實施方式中,第二發光單元進一步包括在綠色色阻下方且將藍光轉換成綠光的第一轉換層,以及其中第三發光單元進一步包括在紅色色阻下方且將藍光轉換成紅光的第二轉換層。In one embodiment of the present disclosure, the second light emitting unit further includes a first conversion layer under the green color filter and converts blue light into green light, and the third light emitting unit further includes a second conversion layer under the red color filter and converts blue light into red light.

在本公開的一實施方式中,第一發光晶片是藍色發光二極體,第二發光晶片是綠色發光二極體,以及第三發光晶片是紅色發光二極體。In one embodiment of the present disclosure, the first light emitting chip is a blue light emitting diode, the second light emitting chip is a green light emitting diode, and the third light emitting chip is a red light emitting diode.

在本公開的一實施方式中,顯示裝置進一步包括液晶模組位於第一發光晶片和藍色色阻之間、第二發光晶片和綠色色阻之間以及第三發光晶片和紅色色阻之間。In one embodiment of the present disclosure, the display device further includes a liquid crystal module located between the first light emitting chip and the blue color resist, between the second light emitting chip and the green color resist, and between the third light emitting chip and the red color resist.

根據本公開的一些實施方式,一種液晶顯示裝置包括發出光線的背光模組、位於背光模組上方的液晶層以及位於液晶層上方的濾光片,其中入射進濾光片的光線包括具有波峰波長介於459 nm至469 nm間的第一光線、具有波峰波長介於527 nm至537 nm間的第二光線和具有波峰波長介於639 nm至649 nm間的第三光線。濾光片包括藍色色阻、綠色色阻以及紅色色阻,其中藍色色阻於標準C光源下具有第一藍色色度(B x)介於0.141至0.151間和第二藍色色度(B y)介於0.033至0.043間,綠色色阻於標準C光源下具有第一綠色色度(G x)介於0.151至0.171間和第二綠色色度(G y)介於0.745至0.755間,紅色色阻於標準C光源下具有第一紅色色度(R x)介於0.692至0.698間和第二紅色色度(R y)介於0.302至0.308間。 According to some embodiments of the present disclosure, a liquid crystal display device includes a backlight module that emits light, a liquid crystal layer located above the backlight module, and a filter located above the liquid crystal layer, wherein the light incident on the filter includes a first light having a peak wavelength between 459 nm and 469 nm, a second light having a peak wavelength between 527 nm and 537 nm, and a third light having a peak wavelength between 639 nm and 649 nm. The filter includes a blue color resist, a green color resist and a red color resist, wherein the blue color resist has a first blue chromaticity ( Bx ) ranging from 0.141 to 0.151 and a second blue chromaticity ( By ) ranging from 0.033 to 0.043 under a standard C light source, the green color resist has a first green chromaticity ( Gx ) ranging from 0.151 to 0.171 and a second green chromaticity ( Gy ) ranging from 0.745 to 0.755 under a standard C light source, and the red color resist has a first red chromaticity ( Rx ) ranging from 0.692 to 0.698 and a second red chromaticity ( Ry ) ranging from 0.302 to 0.308 under a standard C light source.

在本公開的一實施方式中,背光模組包括側入式發光二極體,入射進濾光片的光線由第一光線、第二光線和第三光線混合而成。In an implementation of the present disclosure, the backlight module includes a side-entry light emitting diode, and the light incident on the filter is a mixture of a first light, a second light, and a third light.

為了實現提及主題的不同特徵,以下公開內容提供了許多不同的實施例或示例。在附圖中,為了清楚起見,放大了層、膜、面板、區域等的厚度。在整個說明書中,相同的附圖標記表示相同的元件。應當理解,當諸如層、膜、區域或基板的元件被稱為在另一元件「上」或「連接到」另一元件時,其可以直接在另一元件上或與另一元件連接,或者中間元件可以也存在。相反,當元件被稱為「直接在另一元件上」或「直接連接到」另一元件時,不存在中間元件。如本文所使用的,「連接」可以指物理及/或電性連接。再者,「電性連接」或「耦合」可為二元件間存在其它元件。In order to realize the different features of the mentioned subject matter, the following disclosure provides many different embodiments or examples. In the accompanying drawings, for the sake of clarity, the thickness of layers, films, panels, regions, etc. is magnified. In the entire specification, the same figure markings represent the same elements. It should be understood that when an element such as a layer, film, region or substrate is referred to as being "on" or "connected to" another element, it can be directly on or connected to another element, or an intermediate element can also exist. On the contrary, when an element is referred to as being "directly on" or "directly connected to" another element, there is no intermediate element. As used herein, "connection" can refer to physical and/or electrical connection. Furthermore, "electrical connection" or "coupling" can be the presence of other elements between two elements.

本文使用的「約」、「近似」、或「實質上」包括所述值和在本領域普通技術人員確定的特定值的可接受的偏差範圍內的平均值,考慮到所討論的測量和與測量相關的誤差的特定數量(即,測量系統的限制)。例如,「約」可以表示在所述值的一個或多個標準偏差內,或±30%、±20%、±10%、±5%內。再者,本文使用的「約」、「近似」或「實質上」可依光學性質、蝕刻性質或其它性質,來選擇較可接受的偏差範圍或標準偏差,而可不用一個標準偏差適用全部性質。As used herein, "about", "approximately", or "substantially" includes the stated value and the average value within an acceptable deviation range of a particular value determined by a person of ordinary skill in the art, taking into account the measurement in question and the particular amount of error associated with the measurement (i.e., the limitations of the measurement system). For example, "about" can mean within one or more standard deviations of the stated value, or within ±30%, ±20%, ±10%, ±5%. Furthermore, as used herein, "about", "approximately", or "substantially" can select a more acceptable deviation range or standard deviation depending on the optical property, etching property or other property, and can apply to all properties without using one standard deviation.

本公開內容提供一種顯示裝置,其包括配置成發出藍光、綠光和紅光的多個發光單元。各個發光單元包括發光晶片和濾光片,其中濾光片的各個色阻具有給定範圍內的色度。另一方面,各個發光晶片發出的光線穿過濾光片,其中入射進濾光片的光線具有給定波峰波長(peak wavelength)範圍。透過發光單元內的元件和各個色阻的組合,使得入射進藍色色阻的光線具有波峰波長介於459 nm至469 nm間,入射進綠色色阻的光線具有波峰波長介於527 nm至537 nm間,並且入射進紅色色阻的光線具有波峰波長介於639 nm至649 nm間。由於入射進顯示裝置的濾光片的光線具有適當的波峰波長,以及顯示裝置中的濾光片包括具有適當色度的色阻,使得顯示裝置所發出的光具有高度符合標準的色度,從而提供顯示裝置良好的色彩飽和度。The present disclosure provides a display device, which includes a plurality of light-emitting units configured to emit blue light, green light, and red light. Each light-emitting unit includes a light-emitting chip and a filter, wherein each color resist of the filter has a chromaticity within a given range. On the other hand, the light emitted by each light-emitting chip passes through the filter, wherein the light incident on the filter has a given peak wavelength range. Through the combination of the elements in the light-emitting unit and each color resist, the light incident on the blue color resist has a peak wavelength between 459 nm and 469 nm, the light incident on the green color resist has a peak wavelength between 527 nm and 537 nm, and the light incident on the red color resist has a peak wavelength between 639 nm and 649 nm. Since the light incident into the filter of the display device has an appropriate peak wavelength, and the filter in the display device includes a color resist with an appropriate chromaticity, the light emitted by the display device has a chromaticity that highly complies with the standard, thereby providing the display device with good color saturation.

依據本公開的一些實施方式,第1圖繪示顯示裝置100的截面圖。如第1圖中所示,顯示裝置100包括基板110、配置於基板110上表面上的發光晶片組102,以及發光晶片組102上方的濾光片104。透過發光晶片組102和其上方濾光片104的組合設計,顯示裝置100中的不同區域可以配置成發出不同波長的發光單元。以下將進一步詳細描述顯示裝置100的結構。According to some embodiments of the present disclosure, FIG. 1 shows a cross-sectional view of a display device 100. As shown in FIG. 1, the display device 100 includes a substrate 110, a light-emitting chip set 102 disposed on the upper surface of the substrate 110, and a filter 104 above the light-emitting chip set 102. Through the combination design of the light-emitting chip set 102 and the filter 104 above it, different areas in the display device 100 can be configured as light-emitting units emitting light of different wavelengths. The structure of the display device 100 will be further described in detail below.

顯示裝置100包括基板110以及基板110上的多個發光單元。具體而言,基板110上的發光單元包括配置成發出不同波長的可見光的第一發光單元120、第二發光單元130和第三發光單元140。舉例而言,第一發光單元120可以配置成發出藍光,第二發光單元130以配置成發出綠光,而第三發光單元140可以配置成發出紅光。藉由控制分別配置成發出藍光、綠光和紅光的多個發光單元,顯示裝置100可以呈現彩色影像。舉例而言,在一些實施方式中,基板110可以包括印刷電路板(printed circuit board,PCB),用以控制第一發光單元120、第二發光單元130和第三發光單元140。The display device 100 includes a substrate 110 and a plurality of light-emitting units on the substrate 110. Specifically, the light-emitting units on the substrate 110 include a first light-emitting unit 120, a second light-emitting unit 130, and a third light-emitting unit 140 configured to emit visible light of different wavelengths. For example, the first light-emitting unit 120 can be configured to emit blue light, the second light-emitting unit 130 can be configured to emit green light, and the third light-emitting unit 140 can be configured to emit red light. By controlling the plurality of light-emitting units configured to emit blue light, green light, and red light, respectively, the display device 100 can present a color image. For example, in some embodiments, the substrate 110 can include a printed circuit board (PCB) for controlling the first light-emitting unit 120, the second light-emitting unit 130, and the third light-emitting unit 140.

更具體而言,顯示裝置100的基板110上的多個發光單元具有適當的元件組合,使得光線在穿過發光晶片組102上方的濾光片104前具有給定範圍的波峰波長,因此顯示裝置100可以具有良好的色彩飽和度。在第一發光單元120配置成發出藍光、第二發光單元130配置成發出綠光以及第三發光單元140配置成發出紅光的實施方式中,入射進第一發光單元120中的濾光片104的光線具有波峰波長介於459 nm至469 nm間,例如464 nm。入射進第二發光單元130中的濾光片104的光線具有波峰波長介於527 nm至537 nm間,例如532 nm。入射進第三發光單元140中的濾光片104的光線具有波峰波長介於639 nm至649 nm間,例如644 nm。由於入射進第一發光單元120、第二發光單元130和第三發光單元140中的濾光片104的光線各自具有合適的波峰波長範圍,從而增加顯示裝置100的色彩飽和度。舉例而言,若入射進第一發光單元120中的濾光片104的光線具有波峰波長小於459 nm,可能降低顯示裝置100的色彩飽和度;若入射進第一發光單元120中的濾光片104的光線具有波峰波長大於469 nm,可能難以顯著增加顯示裝置100的色彩飽和度,在第一發光單元120需要透過大幅度調整來實現上述範圍外波峰波長的情況下,將第一發光單元120調整成發出大於469 nm的波峰波長可能耗費過多成本。More specifically, the plurality of light-emitting units on the substrate 110 of the display device 100 have an appropriate combination of components, so that the light has a peak wavelength within a given range before passing through the filter 104 above the light-emitting chip group 102, so that the display device 100 can have good color saturation. In an embodiment in which the first light-emitting unit 120 is configured to emit blue light, the second light-emitting unit 130 is configured to emit green light, and the third light-emitting unit 140 is configured to emit red light, the light incident into the filter 104 in the first light-emitting unit 120 has a peak wavelength between 459 nm and 469 nm, for example, 464 nm. The light incident into the filter 104 in the second light-emitting unit 130 has a peak wavelength between 527 nm and 537 nm, for example, 532 nm. The light incident into the filter 104 in the third light emitting unit 140 has a peak wavelength between 639 nm and 649 nm, for example, 644 nm. Since the light incident into the filter 104 in the first light emitting unit 120, the second light emitting unit 130 and the third light emitting unit 140 each has a suitable peak wavelength range, the color saturation of the display device 100 is increased. For example, if the light incident into the filter 104 in the first light emitting unit 120 has a peak wavelength less than 459 nm, the color saturation of the display device 100 may be reduced; if the light incident into the filter 104 in the first light emitting unit 120 has a peak wavelength greater than 469 nm, it may be difficult to significantly increase the color saturation of the display device 100. In the case where the first light emitting unit 120 needs to be significantly adjusted to achieve a peak wavelength outside the above range, adjusting the first light emitting unit 120 to emit a peak wavelength greater than 469 nm may cost too much.

如上所述,顯示裝置100的多個發光單元中包括發光晶片組102和濾光片104的組合。更詳細而言,濾光片104中的不同區域具有不同顏色的色阻(color resist),例如在玻璃基板上塗覆的藍色、綠色和紅色色材與溶劑的混合物而形成各色色阻。當發光晶片組102的光線通過濾光片104中的色阻時,各個發光單元可以發出對應不同波長的光線,使得顯示裝置100可以呈現彩色影像。在第一發光單元120配置成發出藍光、第二發光單元130配置成發出綠光以及第三發光單元140配置成發出紅光的實施方式中,如第1圖所示,配置成發出藍光的第一發光單元120包括第一發光晶片122以及位於第一發光晶片122上方的藍色色阻124。配置成發出綠光的第二發光單元130包括第二發光晶片132以及位於第二發光晶片132上方的綠色色阻134。配置成發出紅光的第三發光單元140包括第三發光晶片142以及位於第三發光晶片142上方的紅色色阻144。As described above, the plurality of light-emitting units of the display device 100 include a combination of a light-emitting chip set 102 and a filter 104. More specifically, different regions in the filter 104 have color resists of different colors, such as a mixture of blue, green, and red color materials and solvents coated on a glass substrate to form the color resists of each color. When the light from the light-emitting chip set 102 passes through the color resists in the filter 104, each light-emitting unit can emit light corresponding to a different wavelength, so that the display device 100 can present a color image. In an embodiment in which the first light emitting unit 120 is configured to emit blue light, the second light emitting unit 130 is configured to emit green light, and the third light emitting unit 140 is configured to emit red light, as shown in FIG. 1 , the first light emitting unit 120 configured to emit blue light includes a first light emitting chip 122 and a blue color resist 124 located above the first light emitting chip 122. The second light emitting unit 130 configured to emit green light includes a second light emitting chip 132 and a green color resist 134 located above the second light emitting chip 132. The third light emitting unit 140 configured to emit red light includes a third light emitting chip 142 and a red color resist 144 located above the third light emitting chip 142.

顯示裝置100中的藍色色阻124、綠色色阻134和紅色色阻144分別具有不同的色度(chromaticity),從而提供顯示裝置100良好的色彩飽和度。一般而言,可以使用標準C光源(C light)做為界定色度的標準光源,因此在本文中以標準C光源做為光源來測量各個色阻的色度。第一發光單元120的藍色色阻124於標準C光源下具有第一藍色色度(B x)介於0.141至0.151間,例如0.146。藍色色阻124於標準C光源下具有第二藍色色度(B y)介於0.033至0.043間,例如0.038。第二發光單元130的綠色色阻134於標準C光源下具有第一綠色色度(G x)介於0.151至0.171間,例如0.161。綠色色阻134於標準C光源下具有第二綠色色度(G y)介於0.745至0.755間,例如0.750。第三發光單元140的紅色色阻144於標準C光源下具有第一紅色色度(R x)介於0.692至0.698間,例如0.695。紅色色阻144於標準C光源下具有第二紅色色度(R y)介於0.302至0.308間,例如0.305。由於各個發光單元中的色阻具有適當的色度範圍,使得通過各個色阻的光線具有更高的彩度,從而增加顯示裝置100的色彩飽和度。 The blue color resist 124, the green color resist 134, and the red color resist 144 in the display device 100 have different chromaticities, respectively, so as to provide the display device 100 with good color saturation. Generally speaking, a standard C light source (C light) can be used as a standard light source for defining chromaticity, so the standard C light source is used as a light source to measure the chromaticity of each color resist in this article. The blue color resist 124 of the first light-emitting unit 120 has a first blue chromaticity (B x ) between 0.141 and 0.151, for example, 0.146 under the standard C light source. The blue color resist 124 has a second blue chromaticity (B y ) between 0.033 and 0.043, for example, 0.038 under the standard C light source. The green color resist 134 of the second light emitting unit 130 has a first green chromaticity (G x ) between 0.151 and 0.171, such as 0.161, under the standard C light source. The green color resist 134 has a second green chromaticity (G y ) between 0.745 and 0.755, such as 0.750, under the standard C light source. The red color resist 144 of the third light emitting unit 140 has a first red chromaticity (R x ) between 0.692 and 0.698, such as 0.695, under the standard C light source. The red color resist 144 has a second red chromaticity (R y ) between 0.302 and 0.308, such as 0.305, under the standard C light source. Since the color resist in each light-emitting unit has an appropriate chromaticity range, the light passing through each color resist has a higher chromaticity, thereby increasing the color saturation of the display device 100.

顯示裝置100透過各個發光單元中的發光晶片和色阻的組合,使得顯示裝置100發出的各種色光具有合適的波長與彩度,從而提供顯示裝置100良好的色彩飽和度。根據本公開的一些實施例,第2圖繪示顯示裝置100和建議標準Rec. 2020的色度座標圖(chromaticity diagram)。一般而言,可以使用國際電信聯盟(ITU-R Recommendation)的建議標準Rec. 2020做為顯示裝置的色彩範圍的國際標準。具體而言,建議標準Rec. 2020在色度座標圖中,第一藍色色度(B x)是0.131,第二藍色色度(B y)是0.046;第一綠色色度(G x)是0.17,第二綠色色度(G y)是0.797;第一紅色色度(Rx)是0.708,第二紅色色度(Ry)是0.292。當裝置的色彩範圍在色度座標圖中和建議標準Rec. 2020的色彩範圍重疊時,可以將範圍的重疊率做為色彩飽和度的數值判定。例如,當顯示裝置100的色彩範圍和建議標準Rec. 2020的色彩範圍具有98.3%的重疊面積時,顯示裝置100的色彩飽和度可稱為98.3% Rec. 2020。 The display device 100 uses a combination of light-emitting chips and color resists in each light-emitting unit so that the various colors of light emitted by the display device 100 have appropriate wavelengths and chromaticity, thereby providing the display device 100 with good color saturation. According to some embodiments of the present disclosure, FIG. 2 shows a chromaticity diagram of the display device 100 and the recommended standard Rec. 2020. Generally speaking, the recommended standard Rec. 2020 of the International Telecommunication Union (ITU-R Recommendation) can be used as the international standard for the color range of the display device. Specifically, in the chromaticity coordinate diagram of the recommended standard Rec. 2020, the first blue chromaticity (B x ) is 0.131, the second blue chromaticity (B y ) is 0.046; the first green chromaticity (G x ) is 0.17, the second green chromaticity (G y ) is 0.797; the first red chromaticity (Rx) is 0.708, and the second red chromaticity (Ry) is 0.292. When the color range of the device overlaps with the color range of the recommended standard Rec. 2020 in the chromaticity coordinate diagram, the overlap ratio of the range can be used as a numerical determination of the color saturation. For example, when the color range of the display device 100 and the color range of the recommended standard Rec. 2020 have an overlapping area of 98.3%, the color saturation of the display device 100 can be referred to as 98.3% Rec. 2020.

如第2圖所示,在一些實施例中,顯示裝置100在色彩座標圖中,第一藍色色度(B x)是0.131,第二藍色色度(B y)是0.046;第一綠色色度(G x)是0.17,第二綠色色度(G y)是0.797;第一紅色色度(Rx)是0.708,第二紅色色度(Ry)是0.292。由於顯示裝置100呈現的色彩範圍在色彩座標圖中與建議標準Rec. 2020的色彩範圍具有大面積的重疊(亦即,顯示裝置100呈現的色彩範圍接近建議標準Rec. 2020的色彩範圍),顯示裝置100對使用者而言將具有良好的色彩飽和度。在一些實施例中,顯示裝置100可以具有97% Rec. 2020至99% Rec. 2020的色彩飽和度,例如98% Rec. 2020。 As shown in FIG. 2 , in some embodiments, in the color coordinate diagram of the display device 100, the first blue chromaticity (B x ) is 0.131, the second blue chromaticity (B y ) is 0.046; the first green chromaticity (G x ) is 0.17, the second green chromaticity (G y ) is 0.797; the first red chromaticity (Rx) is 0.708, and the second red chromaticity (Ry) is 0.292. Since the color range presented by the display device 100 has a large overlap with the color range of the recommended standard Rec. 2020 in the color coordinate diagram (that is, the color range presented by the display device 100 is close to the color range of the recommended standard Rec. 2020), the display device 100 will have good color saturation for the user. In some embodiments, the display device 100 may have a color saturation of 97% Rec. 2020 to 99% Rec. 2020, for example 98% Rec. 2020.

在一些實施方式中,顯示裝置100中的各個發光晶片可以發出不同強度的光線,使得入射進對應的色阻的光線之間具有適當的波峰波長強度比例。舉例而言,在一些示例中,配置成發出紅光的第三發光單元140和配置成發出藍光的第一發光單元120相比,入射進紅色色阻144的光線的波峰波長和入射進藍色色阻124的光線的波峰波長之間的強度比例可以介於0.2至0.4間。在一些示例中,配置成發出綠光的第二發光單元130和配置成發出藍光的第一發光單元120相比,入射進綠色色阻134的光線的波峰波長和入射進藍色色阻124的光線的波峰波長之間的強度比例可以介於0.5至0.7間。當第一發光單元120、第二發光單元130和第三發光單元140同時放光時,由於入射進各個色阻的光線具有適當的波峰波長強度比例,各個發光單元所發出不同波峰波長的光線可以混合而產生低色偏(color deviation)的白光。換而言之,當入射進第一發光單元120、第二發光單元130和第三發光單元140中的各個濾光片104的光線具有適當的波峰波長強度比例時,顯示裝置100所發出的白光可以避免偏藍或偏黃的色度偏差。具體而言,根據建議標準Rec. 2020,白光的第一白色色度(W x)為0.3127,以及第二白色色度(W y)為0.3290。當顯示裝置100的第一發光單元120、第二發光單元130和第三發光單元140具有上述的波峰波長強度比例時,顯示裝置100所發出的白光可以具有第一白色色度(W x)介於0.280至0.313間,並且具有第二白色色度(W y)介於0.290至0.329間。由於顯示裝置100的白光色度接近建議標準Rec. 2020的白色色度,顯示裝置100的白光可以具有良好的色彩飽和度。 In some embodiments, each light-emitting chip in the display device 100 can emit light of different intensities, so that there is an appropriate peak wavelength intensity ratio between the light incident on the corresponding color resist. For example, in some examples, the third light-emitting unit 140 configured to emit red light and the first light-emitting unit 120 configured to emit blue light have an intensity ratio between the peak wavelength of the light incident on the red color resist 144 and the peak wavelength of the light incident on the blue color resist 124, which may be between 0.2 and 0.4. In some examples, the second light-emitting unit 130 configured to emit green light and the first light-emitting unit 120 configured to emit blue light have an intensity ratio between the peak wavelength of the light incident on the green color resist 134 and the peak wavelength of the light incident on the blue color resist 124, which may be between 0.5 and 0.7. When the first light emitting unit 120, the second light emitting unit 130, and the third light emitting unit 140 emit light at the same time, since the light incident into each color filter has an appropriate peak wavelength intensity ratio, the light of different peak wavelengths emitted by each light emitting unit can be mixed to produce white light with low color deviation. In other words, when the light incident into each filter 104 in the first light emitting unit 120, the second light emitting unit 130, and the third light emitting unit 140 has an appropriate peak wavelength intensity ratio, the white light emitted by the display device 100 can avoid blue or yellow chromaticity deviation. Specifically, according to the recommended standard Rec. 2020, the first white chromaticity (W x ) of the white light is 0.3127, and the second white chromaticity (W y ) is 0.3290. When the first light emitting unit 120, the second light emitting unit 130, and the third light emitting unit 140 of the display device 100 have the above peak wavelength intensity ratio, the white light emitted by the display device 100 may have a first white chromaticity (W x ) between 0.280 and 0.313, and a second white chromaticity (W y ) between 0.290 and 0.329. Since the chromaticity of the white light of the display device 100 is close to the white chromaticity of the recommended standard Rec. 2020, the white light of the display device 100 may have good color saturation.

在一些實施方式中,入射進各個色阻的光線可以具有小的半高寬(full width at half maximum,FWHM),從而增加顯示裝置100的色彩飽和度。舉例而言,在配置成發出藍光的第一發光單元120中,入射進藍色色阻124的光線可以具有半高寬介於20 nm至30 nm間。在配置成發出綠光的第二發光單元130中,入射進綠色色阻134的光線可以具有半高寬介於20 nm至30 nm間。在配置成發出紅光的第三發光單元140中,入射進紅色色阻144的光線可以具有半高寬介於35 nm至45 nm間。由於入射進各個發光單元中的各個濾光片的光線具有足夠小的半高寬,使得顯示裝置100所發出的光線具有精準的色度,因此可以提供顯示裝置100良好的色彩飽和度。In some embodiments, the light incident on each color resist may have a small full width at half maximum (FWHM), thereby increasing the color saturation of the display device 100. For example, in the first light-emitting unit 120 configured to emit blue light, the light incident on the blue color resist 124 may have a half-height width between 20 nm and 30 nm. In the second light-emitting unit 130 configured to emit green light, the light incident on the green color resist 134 may have a half-height width between 20 nm and 30 nm. In the third light-emitting unit 140 configured to emit red light, the light incident on the red color resist 144 may have a half-height width between 35 nm and 45 nm. Since the light incident into each filter in each light-emitting unit has a sufficiently small half-height width, the light emitted by the display device 100 has precise chromaticity, thereby providing the display device 100 with good color saturation.

在一些實施方式中,顯示裝置100中的多個發光單元可以具有多樣的發光晶片和其他元件的組合,使得顯示裝置100達到上述的色彩飽和度。舉例而言,在第一發光晶片122、第二發光晶片132和第三發光晶片142發出的光線抵達濾光片104之前,光線可以穿過基板110和濾光片104之間的光學層150,其中光學層150可以均勻化穿過光學層150的光線而進一步提升顯示裝置100的光學品質。在一些示例中,光學層150可以是抗反射層(anti- reflection coating,ARC),使得第一發光晶片122、第二發光晶片132和第三發光晶片142所發出的光線更容易抵達濾光片104,從而增加顯示裝置100的光學效益。In some embodiments, the plurality of light-emitting units in the display device 100 may have a combination of various light-emitting chips and other components, so that the display device 100 achieves the above-mentioned color saturation. For example, before the light emitted by the first light-emitting chip 122, the second light-emitting chip 132, and the third light-emitting chip 142 reaches the filter 104, the light may pass through the optical layer 150 between the substrate 110 and the filter 104, wherein the optical layer 150 may evenly pass through the light passing through the optical layer 150 and further improve the optical quality of the display device 100. In some examples, the optical layer 150 may be an anti-reflection coating (ARC) so that the light emitted by the first light emitting chip 122 , the second light emitting chip 132 , and the third light emitting chip 142 can more easily reach the filter 104 , thereby increasing the optical efficiency of the display device 100 .

在一些實施方式中,如第1圖所示,第一發光單元120的第一發光晶片122、第二發光單元130的第二發光晶片132和第三發光單元140的第三發光晶片142可以是藍色發光二極體。第一發光晶片122、第二發光晶片132和第三發光晶片142發出的藍光穿過濾光片104下方的轉換層106,從而轉換成各個發光單元的色光。舉例而言,第一發光單元120可以包括在藍色色阻124下方並且不轉換藍光的保護層126,第二發光單元130可以包括在綠色色阻134下方並且將藍光轉換成綠光的第一轉換層136,第三發光單元140可以包括在紅色色阻144下方並且將藍光轉換成紅光的第二轉換層146。由於發光晶片組102和濾光片104之間包括轉換層106,其中轉換層106可以提供顯示裝置100的不同色光,從而可以在基板110上配置相同的多個發光晶片而簡化製程。In some embodiments, as shown in FIG. 1 , the first light emitting chip 122 of the first light emitting unit 120, the second light emitting chip 132 of the second light emitting unit 130, and the third light emitting chip 142 of the third light emitting unit 140 may be blue light emitting diodes. The blue light emitted by the first light emitting chip 122, the second light emitting chip 132, and the third light emitting chip 142 passes through the conversion layer 106 under the filter 104, thereby being converted into the color light of each light emitting unit. For example, the first light emitting unit 120 may include a protective layer 126 under the blue color resist 124 and not converting blue light, the second light emitting unit 130 may include a first conversion layer 136 under the green color resist 134 and converting blue light into green light, and the third light emitting unit 140 may include a second conversion layer 146 under the red color resist 144 and converting blue light into red light. Since the conversion layer 106 is included between the light emitting chip set 102 and the filter 104, wherein the conversion layer 106 can provide different color lights for the display device 100, multiple identical light emitting chips can be configured on the substrate 110 to simplify the manufacturing process.

在一些實施方式中,轉換層106可以是量子點(quantum dot,QD)材料層,其包括微小尺寸的半導體顆粒,當半導體顆粒吸收能量後,可以產生窄波長範圍的放射光,從而提供顯示裝置100高色彩飽和度。具體而言,轉換層106的波長轉換效果與轉換層106中的量子點尺寸相關。在一些示例中,將藍光轉換成綠光的第一轉換層136可以包括第一量子點138,其中第一量子點138的粒徑介於約2 nm至約4 nm間,例如約3 nm。在一些示例中,將藍光轉換成紅光的第二轉換層146可以包括第二量子點148,其中第二量子點148的粒徑介於約6 nm至約8 nm間,例如約7 nm。在一些實施方式中,第一量子點138和第二量子點148可以具有殼核(shell-core)結構,避免第一量子點138和第二量子點148受到氧氣或水氣的破壞。舉例而言,形成第一量子點138和第二量子點148的內核材料可以包括CdSe、CdS、CdTe、PbS、InP、CuInS 2等高量子效率材料,而形成第一量子點138和第二量子點148的外殼的材料可以包括ZnSe、ZnS、HgS、CdSe、CdS等犧牲材料。 In some embodiments, the conversion layer 106 may be a quantum dot (QD) material layer, which includes semiconductor particles of microscopic size. When the semiconductor particles absorb energy, they may generate radiated light in a narrow wavelength range, thereby providing the display device 100 with high color saturation. Specifically, the wavelength conversion effect of the conversion layer 106 is related to the size of the quantum dots in the conversion layer 106. In some examples, the first conversion layer 136 that converts blue light into green light may include a first quantum dot 138, wherein the particle size of the first quantum dot 138 is between about 2 nm and about 4 nm, such as about 3 nm. In some examples, the second conversion layer 146 that converts blue light into red light may include a second quantum dot 148, wherein the particle size of the second quantum dot 148 is between about 6 nm and about 8 nm, such as about 7 nm. In some embodiments, the first quantum dot 138 and the second quantum dot 148 may have a shell-core structure to prevent the first quantum dot 138 and the second quantum dot 148 from being damaged by oxygen or moisture. For example, the core material forming the first quantum dot 138 and the second quantum dot 148 may include high quantum efficiency materials such as CdSe, CdS, CdTe, PbS, InP, CuInS2 , etc., and the material forming the shell of the first quantum dot 138 and the second quantum dot 148 may include sacrificial materials such as ZnSe, ZnS, HgS, CdSe, CdS, etc.

在顯示裝置100包括轉換層106的實施方式中,光學層150可以是波長選擇層(short-pass reflector,SPR),使得穿過轉換層106的光線更容易抵達濾光片104,從而增加顯示裝置100的光學效益。具體而言,光學層150做為波長選擇層,可以選擇性讓具有相對短波長的藍光通過光學層150,並且選擇性反射具有相對長波長的綠光和紅光。當第二發光晶片132所發出的藍光抵達光學層150時,藍光可以穿透光學層150而抵達第一轉換層136。當第一轉換層136中的第一量子點138吸收藍光後,第一量子點138所產生的綠光可能朝四周發射,使得部分的綠光朝向光學層150射出。光學層150做為波長選擇層可以反射綠光,從而增加抵達濾光片104的綠光量。相似而言,光學層150做為波長選擇層也可以反射第二量子點148所產生的紅光,從而增加抵達濾光片104的紅光量。In the embodiment where the display device 100 includes the conversion layer 106, the optical layer 150 may be a wavelength selective layer (short-pass reflector, SPR), so that the light passing through the conversion layer 106 can more easily reach the filter 104, thereby increasing the optical efficiency of the display device 100. Specifically, as a wavelength selective layer, the optical layer 150 can selectively allow blue light with a relatively short wavelength to pass through the optical layer 150, and selectively reflect green light and red light with a relatively long wavelength. When the blue light emitted by the second light-emitting chip 132 reaches the optical layer 150, the blue light can penetrate the optical layer 150 and reach the first conversion layer 136. When the first quantum dots 138 in the first conversion layer 136 absorb the blue light, the green light generated by the first quantum dots 138 may be emitted in all directions, so that part of the green light is emitted toward the optical layer 150. The optical layer 150, as a wavelength selective layer, can reflect the green light, thereby increasing the amount of green light reaching the filter 104. Similarly, the optical layer 150, as a wavelength selective layer, can also reflect the red light generated by the second quantum dots 148, thereby increasing the amount of red light reaching the filter 104.

依據本公開的一些實施方式,第3圖繪示顯示裝置200的截面圖。如第3圖中所示,顯示裝置200包括基板210以及基板210上的第一發光單元220、第二發光單元230和第三發光單元240。濾光片204形成於基板210上方,使得第一發光單元220包括第一發光晶片222和藍色色阻224,第二發光單元230包括第二發光晶片232和綠色色阻234,第三發光單元240包括第三發光晶片242和紅色色阻244。第3圖的顯示裝置200類似於第1圖的顯示裝置100,除了濾光片204的下方未包括轉換層(例如第1圖中的轉換層106)。具體而言,在顯示裝置200中,第一發光單元220的第一發光晶片222是藍色發光二極體,第二發光單元230的第二發光晶片232是綠色發光二極體,而第三發光單元240的第三發光晶片242是紅色發光二極體。舉例而言,第二發光晶片232可以包括藍色發光晶片233和其上方的第一量子點238,其中第一量子點238能夠將藍光轉換成綠光,使得第二發光晶片232形成綠色發光二極體。第三發光晶片242可以包括藍色發光晶片243和其上方的第二量子點248,其中第二量子點248能夠將藍光轉換成紅光,使得第三發光晶片242形成紅色發光二極體。由於第一發光晶片222、第二發光晶片232和第三發光晶片242各自發出顯示裝置200所需的不同色光,顯示裝置200可以不包括濾光片204下方的轉換層,從而簡化顯示裝置200的製程。在一些實施例中,在第一發光晶片222、第二發光晶片232和第三發光晶片242發出的不同色光抵達濾光片204之前,光線可以穿過基板210和濾光片204之間的光學層250而進一步提升其光學品質。例如,光學層250可以是抗反射層,使得第一發光晶片222、第二發光晶片232和第三發光晶片242所發出的光線更容易抵達濾光片204。According to some embodiments of the present disclosure, FIG. 3 shows a cross-sectional view of a display device 200. As shown in FIG. 3, the display device 200 includes a substrate 210 and a first light emitting unit 220, a second light emitting unit 230, and a third light emitting unit 240 on the substrate 210. A filter 204 is formed above the substrate 210, so that the first light emitting unit 220 includes a first light emitting chip 222 and a blue color resist 224, the second light emitting unit 230 includes a second light emitting chip 232 and a green color resist 234, and the third light emitting unit 240 includes a third light emitting chip 242 and a red color resist 244. The display device 200 of FIG. 3 is similar to the display device 100 of FIG. 1, except that a conversion layer (such as the conversion layer 106 in FIG. 1) is not included below the filter 204. Specifically, in the display device 200, the first light emitting chip 222 of the first light emitting unit 220 is a blue light emitting diode, the second light emitting chip 232 of the second light emitting unit 230 is a green light emitting diode, and the third light emitting chip 242 of the third light emitting unit 240 is a red light emitting diode. For example, the second light emitting chip 232 may include a blue light emitting chip 233 and a first quantum dot 238 thereon, wherein the first quantum dot 238 can convert blue light into green light, so that the second light emitting chip 232 forms a green light emitting diode. The third light emitting chip 242 may include a blue light emitting chip 243 and a second quantum dot 248 thereon, wherein the second quantum dot 248 can convert blue light into red light, so that the third light emitting chip 242 forms a red light emitting diode. Since the first light emitting chip 222, the second light emitting chip 232, and the third light emitting chip 242 each emit different color lights required by the display device 200, the display device 200 may not include a conversion layer under the filter 204, thereby simplifying the manufacturing process of the display device 200. In some embodiments, before the different color lights emitted by the first light emitting chip 222, the second light emitting chip 232, and the third light emitting chip 242 reach the filter 204, the light may pass through the optical layer 250 between the substrate 210 and the filter 204 to further improve its optical quality. For example, the optical layer 250 may be an anti-reflection layer, so that the light emitted by the first light emitting chip 222, the second light emitting chip 232, and the third light emitting chip 242 can reach the filter 204 more easily.

在一些實施方式中,顯示裝置中的發光單元可以具有不同的尺寸,使得不同的發光晶片和其他元件可以應用於顯示裝置中。舉例而言,如第1圖所示,顯示裝置100的發光晶片組102可以是微發光二極體(micro light emitting diode,micro LED),從而形成主動式發光的顯示裝置100。由於顯示裝置100具有發光效率高的微發光二極體做為發光晶片組102,從而增加顯示裝置100的亮度和反應速率。In some embodiments, the light-emitting units in the display device may have different sizes, so that different light-emitting chips and other components may be applied to the display device. For example, as shown in FIG. 1 , the light-emitting chipset 102 of the display device 100 may be a micro light-emitting diode (micro LED), thereby forming an active light-emitting display device 100. Since the display device 100 has a micro light-emitting diode with high light-emitting efficiency as the light-emitting chipset 102, the brightness and response rate of the display device 100 are increased.

在一些其他實施方式中,顯示裝置的發光晶片組可以是次毫米發光二極體(mini light emitting diode,mini LED)。依據本公開的一些實施方式,第4圖和第5圖分別繪示顯示裝置300和顯示裝置400的截面圖。如第4圖中所示,顯示裝置300包括基板310、基板310上的發光晶片組302、發光晶片組302上方的轉換層306和轉換層306上方的濾光片304,其中第一發光晶片322、第二發光晶片332和第三發光晶片342是藍色次毫米發光二極體。如第5圖中所示,顯示裝置400包括基板410、基板410上的發光晶片組402和發光晶片組402上方的濾光片404,其中第一發光晶片422是藍色次毫米發光二極體,第二發光晶片432是綠色次毫米發光二極體,第三發光晶片442是紅色次毫米發光二極體。第4圖的顯示裝置300類似於第1圖的顯示裝置100,而第5圖的顯示裝置400類似於第3圖的顯示裝置200,除了發光晶片組302和濾光片304之間包括薄膜電晶體(thin film transistor,TFT)陣列350和液晶模組360,發光晶片組402和濾光片404之間包括薄膜電晶體陣列450和液晶模組460。由於顯示裝置300和顯示裝置400具有省電且高良率的次毫米發光二極體做為發光晶片組302和發光晶片組402,從而降低顯示裝置300和顯示裝置400的能量消耗和製程成本。在一些示例中,顯示裝置300和顯示裝置400包括控制出光區域的液晶模組360和液晶模組460,因此顯示裝置300和顯示裝置400也可以稱為液晶顯示裝置(liquid crystal display,LCD)。In some other embodiments, the light emitting chip set of the display device may be a sub-millimeter light emitting diode (mini LED). According to some embodiments of the present disclosure, FIG. 4 and FIG. 5 respectively show cross-sectional views of a display device 300 and a display device 400. As shown in FIG. 4, the display device 300 includes a substrate 310, a light emitting chip set 302 on the substrate 310, a conversion layer 306 above the light emitting chip set 302, and a filter 304 above the conversion layer 306, wherein the first light emitting chip 322, the second light emitting chip 332, and the third light emitting chip 342 are blue sub-millimeter light emitting diodes. As shown in FIG. 5 , the display device 400 includes a substrate 410, a light emitting chip set 402 on the substrate 410, and a filter 404 above the light emitting chip set 402, wherein the first light emitting chip 422 is a blue sub-millimeter light emitting diode, the second light emitting chip 432 is a green sub-millimeter light emitting diode, and the third light emitting chip 442 is a red sub-millimeter light emitting diode. The display device 300 of FIG. 4 is similar to the display device 100 of FIG. 1 , and the display device 400 of FIG. 5 is similar to the display device 200 of FIG. 3 , except that a thin film transistor (TFT) array 350 and a liquid crystal module 360 are included between the light emitting chip set 302 and the filter 304, and a thin film transistor array 450 and a liquid crystal module 460 are included between the light emitting chip set 402 and the filter 404. Since the display device 300 and the display device 400 have power-saving and high-yield sub-millimeter light-emitting diodes as the light-emitting chipsets 302 and 402, the energy consumption and process cost of the display device 300 and the display device 400 are reduced. In some examples, the display device 300 and the display device 400 include liquid crystal modules 360 and 460 for controlling the light emitting area, so the display device 300 and the display device 400 can also be called a liquid crystal display (LCD).

在一些實施方式中,顯示裝置中的發光晶片可以具有不同的配置方式,使得不同配置的發光晶片和其他元件可以應用於顯示裝置中。舉例而言,如第4圖所示,顯示裝置300的發光晶片組302可以配置於基板310和濾光片304之間,使得發光晶片組302發出的光線直接抵達其上方的濾光片304,從而提高顯示裝置300的出光均勻度。在一些示例中,顯示裝置300可以稱為直下式(direct type)液晶顯示裝置,而發光晶片組302可以稱為直下式背光模組(backlight module)。In some embodiments, the light-emitting chip in the display device can have different configurations, so that light-emitting chips and other components of different configurations can be applied to the display device. For example, as shown in FIG. 4, the light-emitting chip set 302 of the display device 300 can be configured between the substrate 310 and the filter 304, so that the light emitted by the light-emitting chip set 302 directly reaches the filter 304 above it, thereby improving the light uniformity of the display device 300. In some examples, the display device 300 can be called a direct type liquid crystal display device, and the light-emitting chip set 302 can be called a direct type backlight module.

在一些其他實施方式中,顯示裝置的發光晶片可以配置在基板的側方。依據本公開的一些實施方式,第6圖和第7圖分別繪示顯示裝置500和顯示裝置600的截面圖。如第6圖中所示,顯示裝置500包括基板510、在基板510的側方的發光晶片組502、基板510上方的轉換層506、轉換層506上方的濾光片504,以及基板510和轉換層506之間的薄膜電晶體陣列550和液晶模組560,其中發光晶片組502是藍色發光二極體。第6圖的顯示裝置500類似於第4圖的顯示裝置300,除了發光晶片組502是配置於基板510的側方而取代配置於基板510的上方。在一些示例中,顯示裝置500的基板510可以包括導光板(light guide plate),使得發光晶片組502所發出的光線從基板510的側方進入基板510後,可以從基板510的上表面離開基板510而抵達基板510上方的濾光片504。在一些實施方式中,發光晶片組502和基板510可以共同做為顯示裝置500的背光模組。換而言之,在顯示裝置500中,入射進濾光片504的光線可以包括分開的多個光線,例如具有波峰波長介於459 nm至469 nm間的藍光、具有波峰波長介於527 nm至537 nm間的綠光和具有波峰波長介於639 nm至649 nm間的紅光。In some other embodiments, the light-emitting chip of the display device can be arranged on the side of the substrate. According to some embodiments of the present disclosure, FIG. 6 and FIG. 7 respectively show cross-sectional views of display device 500 and display device 600. As shown in FIG. 6, display device 500 includes substrate 510, light-emitting chip set 502 on the side of substrate 510, conversion layer 506 above substrate 510, filter 504 above conversion layer 506, and thin film transistor array 550 and liquid crystal module 560 between substrate 510 and conversion layer 506, wherein light-emitting chip set 502 is a blue light-emitting diode. Display device 500 of FIG. 6 is similar to display device 300 of FIG. 4, except that light-emitting chip set 502 is arranged on the side of substrate 510 instead of being arranged on the top of substrate 510. In some examples, the substrate 510 of the display device 500 may include a light guide plate, so that the light emitted by the light emitting chip set 502 can enter the substrate 510 from the side of the substrate 510, and then leave the substrate 510 from the upper surface of the substrate 510 to reach the filter 504 above the substrate 510. In some embodiments, the light emitting chip set 502 and the substrate 510 can be used together as a backlight module of the display device 500. In other words, in the display device 500, the light incident into the filter 504 may include a plurality of separate light rays, such as blue light with a peak wavelength between 459 nm and 469 nm, green light with a peak wavelength between 527 nm and 537 nm, and red light with a peak wavelength between 639 nm and 649 nm.

如第7圖中所示,顯示裝置600包括基板610、在基板610的側方的發光晶片組602、基板610上方的轉換層670、轉換層670上方的濾光片604,以及轉換層670和濾光片604之間的薄膜電晶體陣列650和液晶模組660,其中發光晶片組602是藍色發光二極體。第7圖的顯示裝置600類似於第6圖的顯示裝置500,除了顯示裝置600中的濾光片604下方未包括分離成多個區域的轉換層(例如第6圖中的轉換層506)。具體而言,發光晶片組602所發出的藍光從基板610的側方進入基板610,並從基板610的上方離開基板610。基板610上方的轉換層670可以包括多種光轉換材料(例如不同粒徑的量子點),使得離開基板610的藍光穿過轉換層670時可以轉換成白光。離開轉換層670的白光穿過轉換層670上方的濾光片604後將依照濾光片604的色阻顏色形成色光,從而提供顯示裝置600的成像功能。在一些實施方式中,發光晶片組602、基板610和轉換層670可以共同做為顯示裝置600的背光模組。換而言之,在顯示裝置600中,入射進濾光片604的白光由至少三種光線混合而成,光線包括具有波峰波長介於459 nm至469 nm間的藍光、具有波峰波長介於527 nm至537 nm間的綠光和具有波峰波長介於639 nm至649 nm間的紅光。As shown in FIG. 7 , the display device 600 includes a substrate 610, a light emitting chip set 602 on the side of the substrate 610, a conversion layer 670 on the substrate 610, a filter 604 on the conversion layer 670, and a thin film transistor array 650 and a liquid crystal module 660 between the conversion layer 670 and the filter 604, wherein the light emitting chip set 602 is a blue light emitting diode. The display device 600 of FIG. 7 is similar to the display device 500 of FIG. 6 , except that the display device 600 does not include a conversion layer separated into a plurality of regions (such as the conversion layer 506 in FIG. 6 ) under the filter 604. Specifically, the blue light emitted by the light-emitting chip set 602 enters the substrate 610 from the side of the substrate 610 and leaves the substrate 610 from the top of the substrate 610. The conversion layer 670 above the substrate 610 may include a variety of light conversion materials (e.g., quantum dots of different particle sizes), so that the blue light leaving the substrate 610 can be converted into white light when passing through the conversion layer 670. After the white light leaving the conversion layer 670 passes through the filter 604 above the conversion layer 670, it will form a color light according to the color of the color filter 604, thereby providing the imaging function of the display device 600. In some embodiments, the light-emitting chip set 602, the substrate 610, and the conversion layer 670 can be used together as a backlight module of the display device 600. In other words, in the display device 600, the white light incident into the filter 604 is a mixture of at least three kinds of light, including blue light with a peak wavelength between 459 nm and 469 nm, green light with a peak wavelength between 527 nm and 537 nm, and red light with a peak wavelength between 639 nm and 649 nm.

如第6圖和第7圖中所示,顯示裝置500和顯示裝置600的發光晶片組502和發光晶片組602是配置於基板510和基板610的側方,使得顯示裝置500和顯示裝置600的堆疊中的材料層數量減少。在一些示例中,顯示裝置500和顯示裝置600的發光晶片組502、發光晶片組602分別配置於基板510、基板610的側方,因此顯示裝置500和顯示裝置600可以稱為具有側入式(edge type)光源的液晶顯示裝置。As shown in FIG. 6 and FIG. 7 , the light emitting chipset 502 and the light emitting chipset 602 of the display device 500 and the display device 600 are arranged on the sides of the substrate 510 and the substrate 610, so that the number of material layers in the stack of the display device 500 and the display device 600 is reduced. In some examples, the light emitting chipset 502 and the light emitting chipset 602 of the display device 500 and the display device 600 are arranged on the sides of the substrate 510 and the substrate 610, respectively, so the display device 500 and the display device 600 can be called a liquid crystal display device with an edge type light source.

如上所述,提供第1圖和第3圖至第7圖中所示的結構做為示例。其他實施例可以不同於第1圖和第3圖至第7圖所述的結構。實際上,與第1圖和第3圖至第7圖中所示相比,可以存在更多的裝置及/或材料層、更少的裝置及/或材料層、不同的裝置及/或材料層或不同配置方式的裝置及/或材料層。例如,一或多個層間介電層或導線可以設置在第1圖和第3圖至第7圖中所示的結構之中。As described above, the structures shown in FIG. 1 and FIG. 3 to FIG. 7 are provided as examples. Other embodiments may differ from the structures described in FIG. 1 and FIG. 3 to FIG. 7. In practice, there may be more devices and/or material layers, fewer devices and/or material layers, different devices and/or material layers, or devices and/or material layers in different configurations than shown in FIG. 1 and FIG. 3 to FIG. 7. For example, one or more interlayer dielectric layers or wires may be disposed in the structures shown in FIG. 1 and FIG. 3 to FIG. 7.

根據本公開上述實施方式,本公開的顯示裝置包括多個發光單元,其中第一發光單元配置成發出藍光,第二發光單元配置成發出綠光,以及第三發光單元配置成發出紅光。入射進各個發光單元中的濾光片的光線具有適當的波峰波長,使得顯示裝置所發出的色光具有高度符合標準的色度,從而增加顯示裝置的色彩飽和度。此外,各個發光單元中包括發光晶片和濾光片,其中濾光片具有對應的色阻。由於濾光片的色阻在標準C光源下具有適當的色度,使得發光晶片所發出的光線穿過色阻後具有高度符合標準的色度,因此濾光片的色阻有助於改善顯示裝置的色彩飽和度。According to the above-mentioned implementation manner of the present disclosure, the display device of the present disclosure includes a plurality of light-emitting units, wherein the first light-emitting unit is configured to emit blue light, the second light-emitting unit is configured to emit green light, and the third light-emitting unit is configured to emit red light. The light incident into the filter in each light-emitting unit has an appropriate peak wavelength, so that the color light emitted by the display device has a chromaticity that is highly consistent with the standard, thereby increasing the color saturation of the display device. In addition, each light-emitting unit includes a light-emitting chip and a filter, wherein the filter has a corresponding color resistance. Since the color resistance of the filter has an appropriate chromaticity under the standard C light source, the light emitted by the light-emitting chip has a chromaticity that is highly consistent with the standard after passing through the color resistance, so the color resistance of the filter helps to improve the color saturation of the display device.

在以下敘述中,將針對本公開的顯示裝置進行各種測量和評估。下文將參照實驗例1至實驗例2,更具體地描述本公開內容的特徵。 <實驗例1:評估顯示裝置波峰波長對色彩飽和度的影響> In the following description, various measurements and evaluations will be performed on the display device of this disclosure. The following will refer to Experimental Examples 1 and 2 to describe the characteristics of the content of this disclosure in more detail. <Experimental Example 1: Evaluation of the effect of the peak wavelength of the display device on the color saturation>

在本實驗例中,針對比較例和實施例的顯示裝置進行波峰波長對色彩飽和度影響程度的評估。具體而言,根據第1圖的結構和本文上述內容製造比較例和實施例的顯示裝置,其中入射進各比較例和各實施例的濾光片的藍光波峰波長彼此不同,如下方表一所示。接著,測量顯示裝置的藍色色度、綠色色度和紅色色度,將顯示裝置的色度結果繪示於色度座標圖中。根據色度座標圖中的結果,以建議標準Rec. 2020的重疊率判讀顯示裝置的色彩飽和度。各比較例和各實施例的藍光波峰波長參數、色度和Rec. 2020重疊率的結果如表一所示。根據表一中的結果,第8A圖繪示比較例、實施例和建議標準Rec. 2020的色度座標圖。第8B圖則示出第8A圖中藍色色度區域的放大圖。In this experimental example, the effect of the peak wavelength on the color saturation of the display devices of the comparative example and the embodiment is evaluated. Specifically, the display devices of the comparative example and the embodiment are manufactured according to the structure of Figure 1 and the above content of this article, wherein the peak wavelengths of the blue light incident on the filters of each comparative example and each embodiment are different from each other, as shown in Table 1 below. Then, the blue chromaticity, green chromaticity, and red chromaticity of the display device are measured, and the chromaticity results of the display device are plotted in a chromaticity coordinate diagram. According to the results in the chromaticity coordinate diagram, the color saturation of the display device is judged with the overlap rate of the recommended standard Rec. 2020. The results of the blue light peak wavelength parameters, chromaticity and Rec. 2020 overlap rate of each comparative example and each embodiment are shown in Table 1. According to the results in Table 1, FIG. 8A shows the chromaticity coordinate diagram of the comparative example, the embodiment and the recommended standard Rec. 2020. FIG. 8B shows an enlarged view of the blue chromaticity area in FIG. 8A.

表一   藍光波峰波長(nm) 紅色色度 綠色色度 藍色色度 Rec.2020重疊率(%) R x R y G x G y B x B y Rec.2020 -- 0.708 0.292 0.170 0.797 0.131 0.046 100.0% 比較例1 449 0.709 0.291 0.153 0.789 0.151 0.026 94.8% 比較例2 454 0.709 0.291 0.153 0.788 0.147 0.030 95.8% 實施例1 459 0.709 0.291 0.153 0.788 0.142 0.037 97.0% 實施例2 464 0.709 0.291 0.153 0.788 0.136 0.045 98.3% Table I Blue light peak wavelength (nm) Red hue Green hue Blue hue Rec.2020 Overlap Rate (%) R R G x G y B x By Rec.2020 -- 0.708 0.292 0.170 0.797 0.131 0.046 100.0% Comparison Example 1 449 0.709 0.291 0.153 0.789 0.151 0.026 94.8% Comparison Example 2 454 0.709 0.291 0.153 0.788 0.147 0.030 95.8% Embodiment 1 459 0.709 0.291 0.153 0.788 0.142 0.037 97.0% Embodiment 2 464 0.709 0.291 0.153 0.788 0.136 0.045 98.3%

由表一和第8A圖可知,在各比較例的顯示裝置中,入射進濾光片的藍光波峰波長小於459 nm,並且各比較例的顯示裝置的Rec. 2020重疊率小於97%。相對地,在各實施例的顯示裝置中,入射進濾光片的藍光波峰波長介於459 nm至469 nm間,而各實施例的顯示裝置的Rec. 2020重疊率大於97%。更詳細而言,如第8B圖所示,相對於各比較例的藍色色度,各實施例的藍色色度在色度座標圖中更接近建議標準Rec. 2020的藍色色度。換而言之,各實施例的顯示裝置明顯改善藍光的色彩飽和度。因此,入射進各實施例的濾光片的光線具有適當的藍光波峰波長,可以提供顯示裝置良好的色彩飽和度。 <實驗例2:評估濾光片色阻對色彩飽和度的影響> As can be seen from Table 1 and FIG. 8A, in the display devices of each comparative example, the peak wavelength of the blue light incident on the filter is less than 459 nm, and the Rec. 2020 overlap rate of the display devices of each comparative example is less than 97%. In contrast, in the display devices of each embodiment, the peak wavelength of the blue light incident on the filter is between 459 nm and 469 nm, and the Rec. 2020 overlap rate of the display devices of each embodiment is greater than 97%. In more detail, as shown in FIG. 8B, the blue chromaticity of each embodiment is closer to the blue chromaticity of the recommended standard Rec. 2020 in the chromaticity coordinate diagram compared to the blue chromaticity of each comparative example. In other words, the display devices of each embodiment significantly improve the color saturation of blue light. Therefore, the light incident on the filter of each embodiment has an appropriate blue light peak wavelength, which can provide a good color saturation of the display device. <Experimental Example 2: Evaluating the effect of filter color resistance on color saturation>

在本實驗例中,針對比較例和實施例的顯示裝置進行濾光片色阻的色度對色彩飽和度影響程度的評估。具體而言,根據第1圖的結構和本文上述內容製造比較例和實驗例1中的實施例2的顯示裝置,其中比較例和實施例中的濾光片的色阻具有不同色度。更詳細而言,比較例和實施例的濾光片的色阻在標準C光源下具有不同的色度,如下方表二所示。接著,測量顯示裝置的藍色色度、綠色色度和紅色色度,將顯示裝置的色度結果繪示於色度座標圖中。根據色度座標圖中的結果,以建議標準Rec. 2020的重疊率判讀顯示裝置的色彩飽和度。比較例和實施例的色度和Rec. 2020重疊率的結果如表三所示。根據表三中的結果,第9圖繪示比較例、實施例和建議標準Rec. 2020的色度座標圖。In this experimental example, the influence of the chromaticity of the color resistance of the filter on the color saturation is evaluated for the display devices of the comparative example and the embodiment. Specifically, the display devices of the comparative example and the embodiment 2 in the experimental example 1 are manufactured according to the structure of FIG. 1 and the above content of this article, wherein the color resistance of the filter in the comparative example and the embodiment has different chromaticities. In more detail, the color resistance of the filter in the comparative example and the embodiment has different chromaticities under the standard C light source, as shown in Table 2 below. Then, the blue chromaticity, green chromaticity and red chromaticity of the display device are measured, and the chromaticity results of the display device are plotted in the chromaticity coordinate diagram. According to the results in the chromaticity coordinate diagram, the color saturation of the display device is judged with the overlap ratio of the recommended standard Rec. 2020. The results of the chromaticity and Rec. 2020 overlap ratio of the comparative example and the embodiment are shown in Table 3. According to the results in Table 3, FIG. 9 shows the chromaticity coordinate diagram of the comparative example, the embodiment and the recommended standard Rec. 2020.

表二   光源 紅色色度 綠色色度 藍色色度 R x R y G x G y B x B y 比較例3 C light 0.674 0.318 0.209 0.680 0.140 0.068 實施例2 C light 0.695 0.305 0.151 0.745 0.146 0.038 Table II light source Red hue Green hue Blue hue R R G x G y B x By Comparison Example 3 C light 0.674 0.318 0.209 0.680 0.140 0.068 Embodiment 2 C light 0.695 0.305 0.151 0.745 0.146 0.038

表三   藍光波峰波長(nm) 紅色色度 綠色色度 藍色色度 Rec.2020重疊率(%) R x R y G x G y B x B y Rec.2020 -- 0.708 0.292 0.170 0.797 0.131 0.046 100.0% 比較例3 449 0.702 0.295 0.168 0.772 0.150 0.053 92.7% 實施例2 464 0.709 0.291 0.153 0.788 0.136 0.045 98.3% Table 3 Blue light peak wavelength (nm) Red hue Green hue Blue hue Rec.2020 Overlap Rate (%) R R G x G y B x By Rec.2020 -- 0.708 0.292 0.170 0.797 0.131 0.046 100.0% Comparison Example 3 449 0.702 0.295 0.168 0.772 0.150 0.053 92.7% Embodiment 2 464 0.709 0.291 0.153 0.788 0.136 0.045 98.3%

由表三和第9圖可知,比較例3的顯示裝置中的濾光片的色阻在標準C光源下的色度並非落於本文所述的給定範圍內,並且比較例3的顯示裝置的Rec. 2020重疊率明顯小於97%。詳細而言,比較例3的濾光片的色阻不具有第一藍色色度(B x)介於0.141至0.151間、第二藍色色度(B y)介於0.033至0.043間、第一綠色色度(G x)介於0.151至0.171間、第二綠色色度(G y)介於0.745至0.755間、第一紅色色度(R x)介於0.692至0.698間,以及第二紅色色度(R y)介於0.302至0.308間。相對地,實施例2的顯示裝置中的濾光片的色阻在標準C光源下的色度落於上述範圍內,而實施例2的顯示裝置的Rec. 2020重疊率大於97%。更詳細而言,如第9圖所示,相對於比較例3的藍色色度和綠色色度,實施例2的藍色色度和綠色色度在色度座標圖中更接近建議標準Rec. 2020的藍色色度和綠色色度。換而言之,實施例2的顯示裝置明顯改善藍光和綠光的色彩飽和度。因此,實施例2的顯示裝置中的濾光片具有適當的色阻色度,可以提供顯示裝置良好的色彩飽和度。 As can be seen from Table 3 and Figure 9, the chromaticity of the color resistance of the filter in the display device of Comparative Example 3 under the standard C light source does not fall within the given range described in this article, and the Rec. 2020 overlap rate of the display device of Comparative Example 3 is significantly less than 97%. Specifically, the color resist of the filter of Comparative Example 3 does not have a first blue chromaticity (B x ) between 0.141 and 0.151, a second blue chromaticity (B y ) between 0.033 and 0.043, a first green chromaticity (G x ) between 0.151 and 0.171, a second green chromaticity (G y ) between 0.745 and 0.755, a first red chromaticity (R x ) between 0.692 and 0.698, and a second red chromaticity (R y ) between 0.302 and 0.308. In contrast, the chromaticity of the color resist of the filter in the display device of Example 2 under standard C light source falls within the above range, and the Rec. 2020 overlap rate of the display device of Example 2 is greater than 97%. In more detail, as shown in FIG. 9, the blue chromaticity and green chromaticity of Example 2 are closer to the blue chromaticity and green chromaticity of the recommended standard Rec. 2020 in the chromaticity coordinate diagram, compared with the blue chromaticity and green chromaticity of Comparative Example 3. In other words, the display device of Example 2 significantly improves the color saturation of blue light and green light. Therefore, the filter in the display device of Example 2 has appropriate color resistance chromaticity, which can provide the display device with good color saturation.

前面概述一些實施例的特徵,使得本領域技術人員可更好地理解本公開的觀點。本領域技術人員應該理解,他們可以容易地使用本公開作為設計或修改其他製程和結構的基礎,以實現相同的目的和/或實現與本文介紹之實施例相同的優點。本領域技術人員還應該理解,這樣的等同構造不脫離本公開的精神和範圍,並且在不脫離本公開的精神和範圍的情況下,可以進行各種改變、替換和變更。The features of some embodiments are summarized above so that those skilled in the art can better understand the perspective of the present disclosure. Those skilled in the art should understand that they can easily use the present disclosure as a basis for designing or modifying other processes and structures to achieve the same purpose and/or achieve the same advantages as the embodiments described herein. Those skilled in the art should also understand that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that various changes, substitutions and modifications can be made without departing from the spirit and scope of the present disclosure.

100:顯示裝置 102:發光晶片組 104:濾光片 106:轉換層 110:基板 120:第一發光單元 122:第一發光晶片 124:藍色色阻 126:保護層 130:第二發光單元 132:第二發光晶片 134:綠色色阻 136:第一轉換層 138:第一量子點 140:第三發光單元 142:第三發光晶片 144:紅色色阻 146:第二轉換層 148:第二量子點 150:光學層 200:顯示裝置 204:濾光片 210:基板 220:第一發光單元 222:第一發光晶片 224:藍色色阻 230:第二發光單元 232:第二發光晶片 233:藍色發光晶片 234:綠色色阻 238:第一量子點 240:第三發光單元 242:第三發光晶片 243:藍色發光晶片 244:紅色色阻 248:第二量子點 250:光學層 300:顯示裝置 302:發光晶片組 304:濾光片 306:轉換層 310:基板 322:第一發光晶片 332:第二發光晶片 342:第三發光晶片 350:薄膜電晶體陣列 360:液晶模組 400:顯示裝置 402:發光晶片組 404:濾光片 410:基板 422:第一發光晶片 432:第二發光晶片 442:第三發光晶片 450:薄膜電晶體陣列 460:液晶模組 500:顯示裝置 502:發光晶片組 504:濾光片 506:轉換層 510:基板 550:薄膜電晶體陣列 560:液晶模組 600:顯示裝置 602:發光晶片組 604:濾光片 610:基板 650:薄膜電晶體陣列 660:液晶模組 670:轉換層 100: display device 102: light-emitting chip set 104: filter 106: conversion layer 110: substrate 120: first light-emitting unit 122: first light-emitting chip 124: blue color resistance 126: protective layer 130: second light-emitting unit 132: second light-emitting chip 134: green color resistance 136: first conversion layer 138: first quantum dot 140: third light-emitting unit 142: third light-emitting chip 144: red color resistance 146: second conversion layer 148: second quantum dot 150: optical layer 200: display device 204: filter 210: substrate 220: first light-emitting unit 222: first light-emitting chip 224: blue color resistor 230: second light-emitting unit 232: second light-emitting chip 233: blue light-emitting chip 234: green color resistor 238: first quantum dot 240: third light-emitting unit 242: third light-emitting chip 243: blue light-emitting chip 244: red color resistor 248: second quantum dot 250: optical layer 300: display device 302: light-emitting chip set 304: filter 306: conversion layer 310: substrate 322: first light-emitting chip 332: second light-emitting chip 342: third light-emitting chip 350: thin film transistor array 360: liquid crystal module 400: display device 402: light-emitting chip set 404: filter 410: substrate 422: first light-emitting chip 432: second light-emitting chip 442: third light-emitting chip 450: thin film transistor array 460: liquid crystal module 500: display device 502: light-emitting chip set 504: filter 506: conversion layer 510: substrate 550: thin film transistor array 560: liquid crystal module 600: display device 602: light-emitting chip set 604: filter 610: substrate 650: thin film transistor array 660: liquid crystal module 670: conversion layer

當結合附圖閱讀時,從以下詳細描述中可以最好地理解本公開的各方面。應注意,根據工業中的標準方法,各種特徵未按比例繪製。實際上,為了清楚地討論,可任意增加或減少各種特徵的尺寸。 第1圖依據本公開的一實施方式繪示顯示裝置的截面圖。 第2圖繪示第1圖中的顯示裝置和建議標準Rec. 2020的色度座標圖。 第3圖至第7圖依據本公開的一些實施方式繪示顯示裝置的截面圖。 第8A圖至第9圖依據本公開的一些實驗例繪示顯示裝置和建議標準Rec. 2020的色度座標圖。 Aspects of the present disclosure are best understood from the following detailed description when read in conjunction with the accompanying drawings. It should be noted that various features are not drawn to scale, in accordance with standard methods in the industry. In fact, the sizes of various features may be arbitrarily increased or decreased for clarity of discussion. FIG. 1 shows a cross-sectional view of a display device according to an embodiment of the present disclosure. FIG. 2 shows a chromaticity coordinate diagram of the display device in FIG. 1 and the recommended standard Rec. 2020. FIGS. 3 to 7 show cross-sectional views of a display device according to some embodiments of the present disclosure. FIGS. 8A to 9 show chromaticity coordinate diagrams of a display device and the recommended standard Rec. 2020 according to some experimental examples of the present disclosure.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date, and number) None Foreign storage information (please note in the order of storage country, institution, date, and number) None

100:顯示裝置 100: Display device

102:發光晶片組 102: Light-emitting chipset

104:濾光片 104: Filter

106:轉換層 106: Transition layer

110:基板 110: Substrate

120:第一發光單元 120: First light-emitting unit

122:第一發光晶片 122: First light-emitting chip

124:藍色色阻 124: Blue color block

126:保護層 126: Protective layer

130:第二發光單元 130: Second light-emitting unit

132:第二發光晶片 132: Second light-emitting chip

134:綠色色阻 134: Green color block

136:第一轉換層 136: First conversion layer

138:第一量子點 138: The first quantum dot

140:第三發光單元 140: The third light-emitting unit

142:第三發光晶片 142: The third light-emitting chip

144:紅色色阻 144: Red color block

146:第二轉換層 146: Second conversion layer

148:第二量子點 148: Second quantum dot

150:光學層 150: Optical layer

Claims (9)

一種顯示裝置,包括:一第一發光單元,包括:一第一發光晶片;以及一藍色色阻位於該第一發光晶片上方,其中該藍色色阻於標準C光源下具有一第一藍色色度(Bx)介於0.141至0.151間和一第二藍色色度(By)介於0.033至0.043間,其中入射進該藍色色阻的一第一光線具有波峰波長介於459nm至469nm間;一第二發光單元,包括:一第二發光晶片;以及一綠色色阻位於該第二發光晶片上方,其中該綠色色阻於標準C光源下具有一第一綠色色度(Gx)介於0.151至0.171間和一第二綠色色度(Gy)介於0.745至0.755間,其中入射進該綠色色阻的一第二光線具有波峰波長介於527nm至537nm間;以及一第三發光單元,包括:一第三發光晶片;以及一紅色色阻位於該第三發光晶片上方,其中該紅色色阻於標準C光源下具有一第一紅色色度(Rx)介於0.692至0.698間和一第二紅色色度(Ry)介於0.302至0.308間, 其中入射進該紅色色阻的一第三光線具有波峰波長介於639nm至649nm間,其中該第三光線和該第一光線之間的波峰波長強度比例介於0.2至0.4間。 A display device comprises: a first light-emitting unit, comprising: a first light-emitting chip; and a blue color block located above the first light-emitting chip, wherein the blue color block has a first blue chromaticity (B x ) between 0.141 and 0.151 and a second blue chromaticity (B y ) between 0.033 and 0.043 under a standard C light source, wherein a first light incident on the blue color block has a peak wavelength between 459 nm and 469 nm; a second light-emitting unit, comprising: a second light-emitting chip; and a green color block located above the second light-emitting chip, wherein the green color block has a first green chromaticity (G x ) between 0.151 and 0.171 and a second green chromaticity (G y ) between 0.033 and 0.043 under a standard C light source. ) is between 0.745 and 0.755, wherein a second light incident on the green color resist has a peak wavelength between 527nm and 537nm; and a third light-emitting unit, comprising: a third light-emitting chip; and a red color resist located above the third light-emitting chip, wherein the red color resist has a first red chromaticity (R x ) between 0.692 and 0.698 and a second red chromaticity (R y ) between 0.302 and 0.308 under a standard C light source, wherein a third light incident on the red color resist has a peak wavelength between 639nm and 649nm, wherein a peak wavelength intensity ratio between the third light and the first light is between 0.2 and 0.4. 如請求項1所述之顯示裝置,其中該第二光線和該第一光線之間的波峰波長強度比例介於0.5至0.7間。 A display device as described in claim 1, wherein the peak wavelength intensity ratio between the second light and the first light is between 0.5 and 0.7. 如請求項1所述之顯示裝置,其中該第一光線具有半高寬介於20nm至30nm間,該第二光線具有半高寬介於20nm至30nm間,以及該第三光線具有半高寬介於35nm至45nm間。 A display device as claimed in claim 1, wherein the first light has a half-height width between 20nm and 30nm, the second light has a half-height width between 20nm and 30nm, and the third light has a half-height width between 35nm and 45nm. 如請求項1所述之顯示裝置,其中該第一發光晶片、該第二發光晶片和該第三發光晶片是藍色發光二極體。 The display device as described in claim 1, wherein the first light-emitting chip, the second light-emitting chip and the third light-emitting chip are blue light-emitting diodes. 如請求項4所述之顯示裝置,其中該第二發光單元進一步包括在該綠色色阻下方且將藍光轉換成綠光的一第一轉換層,以及其中該第三發光單元進一步包括在該紅色色阻下方且將藍光轉換成紅光的一第二轉換層。 A display device as described in claim 4, wherein the second light-emitting unit further includes a first conversion layer under the green color filter and converts blue light into green light, and wherein the third light-emitting unit further includes a second conversion layer under the red color filter and converts blue light into red light. 如請求項1所述之顯示裝置,其中該第一發光晶片是藍色發光二極體,該第二發光晶片是綠色發光二 極體,以及該第三發光晶片是紅色發光二極體。 A display device as described in claim 1, wherein the first light-emitting chip is a blue light-emitting diode, the second light-emitting chip is a green light-emitting diode, and the third light-emitting chip is a red light-emitting diode. 如請求項1所述之顯示裝置,進一步包括一液晶模組位於該第一發光晶片和該藍色色阻之間、該第二發光晶片和該綠色色阻之間以及該第三發光晶片和該紅色色阻之間。 The display device as described in claim 1 further includes a liquid crystal module located between the first light-emitting chip and the blue color resistor, between the second light-emitting chip and the green color resistor, and between the third light-emitting chip and the red color resistor. 一種液晶顯示裝置,包括:一背光模組;一液晶層位於該背光模組上方;以及一濾光片位於該液晶層上方,其中入射進該濾光片的光線包括具有波峰波長介於459nm至469nm間的一第一光線、具有波峰波長介於527nm至537nm間的一第二光線和具有波峰波長介於639nm至649nm間的一第三光線,其中該濾光片包括:一藍色色阻,該藍色色阻於標準C光源下具有一第一藍色色度(Bx)介於0.141至0.151間和一第二藍色色度(By)介於0.033至0.043間;一綠色色阻,該綠色色阻於標準C光源下具有一第一綠色色度(Gx)介於0.151至0.171間和一第二綠色色度(Gy)介於0.745至0.755間;以及一紅色色阻,該紅色色阻於標準C光源下具有一第一紅色色度(Rx)介於0.692至0.698間和一第二紅色色 度(Ry)介於0.302至0.308間。 A liquid crystal display device comprises: a backlight module; a liquid crystal layer located above the backlight module; and a filter located above the liquid crystal layer, wherein the light incident on the filter comprises a first light with a peak wavelength between 459nm and 469nm, a second light with a peak wavelength between 527nm and 537nm, and a third light with a peak wavelength between 639nm and 649nm, wherein the filter comprises: a blue color resist having a first blue chromaticity (B x ) between 0.141 and 0.151 and a second blue chromaticity (B y ) between 0.033 and 0.043 under a standard C light source; a green color resist having a first green chromaticity (G x ) between 0.141 and 0.151 and a second blue chromaticity (B y ) between 0.033 and 0.043 under a standard C light source; ) is between 0.151 and 0.171 and a second green chromaticity (G y ) is between 0.745 and 0.755; and a red color resist having a first red chromaticity (R x ) between 0.692 and 0.698 and a second red chromaticity (R y ) between 0.302 and 0.308 under standard C light source. 如請求項8所述之液晶顯示裝置,其中該背光模組包括側入式發光二極體,入射進該濾光片的光線由該第一光線、該第二光線和該第三光線混合而成。 The liquid crystal display device as described in claim 8, wherein the backlight module includes a side-entry light-emitting diode, and the light incident on the filter is a mixture of the first light, the second light, and the third light.
TW111108061A 2021-11-25 2022-03-04 Display device TWI839694B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210306813.8A CN114721184B (en) 2021-11-25 2022-03-25 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW110144082 2021-11-25
TW110144082 2021-11-25

Publications (2)

Publication Number Publication Date
TW202321741A TW202321741A (en) 2023-06-01
TWI839694B true TWI839694B (en) 2024-04-21

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202012551A (en) 2018-07-23 2020-04-01 日商Jsr股份有限公司 Display element and method for manufacturing display element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202012551A (en) 2018-07-23 2020-04-01 日商Jsr股份有限公司 Display element and method for manufacturing display element

Similar Documents

Publication Publication Date Title
TWI512341B (en) Display device
US7834953B2 (en) Light unit, liquid crystal display having the same, and method of manufacturing the same
US8860907B2 (en) Backlight unit, liquid crystal display apparatus using the same, and light-emitting diode used therefor
KR101713148B1 (en) Liquid crystal display device
TWI582498B (en) Optical member and display device including the same
TW201625479A (en) Optical sheet, display device and light emitting device having the same
US11397354B2 (en) Lighting device
WO2017071344A1 (en) Color film substrate, display panel and display device
CN101555993A (en) LED light source module and backlight module using same
CN109426034A (en) Liquid crystal display device
CN109557714A (en) Light supply apparatus and display device
TW201910885A (en) Liquid crystal display device
CN114721184B (en) Display device
US10330265B2 (en) Front light source and display device comprising the front light source
TWI839694B (en) Display device
US20190088186A1 (en) Display device
TWI691765B (en) Display apparatus
TW202321741A (en) Display device
TWI675239B (en) Display device
US7821195B2 (en) High color expression display device
TWI712843B (en) Display apparatus
TWI608601B (en) Led module, led array module and display module
TWI799096B (en) Display device
TWI801848B (en) Reflective display and white light source thereof
WO2022241687A1 (en) Backlight module, display device, and manufacturing method