TWI839006B - Method of manufacturing biosensor, and biosensor chip - Google Patents

Method of manufacturing biosensor, and biosensor chip Download PDF

Info

Publication number
TWI839006B
TWI839006B TW111146756A TW111146756A TWI839006B TW I839006 B TWI839006 B TW I839006B TW 111146756 A TW111146756 A TW 111146756A TW 111146756 A TW111146756 A TW 111146756A TW I839006 B TWI839006 B TW I839006B
Authority
TW
Taiwan
Prior art keywords
nanoparticle solution
biosensor
nanolayer
manufacturing
layer
Prior art date
Application number
TW111146756A
Other languages
Chinese (zh)
Inventor
李明玲
李憶興
高泉豪
Original Assignee
明新學校財團法人明新科技大學
Filing date
Publication date
Application filed by 明新學校財團法人明新科技大學 filed Critical 明新學校財團法人明新科技大學
Application granted granted Critical
Publication of TWI839006B publication Critical patent/TWI839006B/en

Links

Images

Abstract

A biosensor chip and a method for manufacturing a biosensor are provided. A method for manufacturing the biosensor, comprising the following steps: providing a wafer; setting a basic nano-layer with a nano-structure on the surface of the wafer; placing the wafer with the basic nano-layer on a wafer carrier; by the print head sprays the nanoparticle solution with a preset droplet size onto the surface of the basic nanolayer according to a preset pattern; the patterned nanoparticle solution is solidified by the curing control module, so that the nanoparticle solution is on the surface of the basic nanoparticle layer to form the nano-sensing film layer; an electrode layer is set on the back of the wafer, and the electrode layer is a bottom layer of the biosensor; and a sensing window is set around the nano-sensing film layer to form a biosensor module.

Description

生物感測模組的製造方法,以及生物感測晶片Biosensing module manufacturing method and biosensing chip

本發明有關於感測模組製造方法與感測晶片,尤指一種生物感測模組製造方法與生物感測晶片。The present invention relates to a sensing module manufacturing method and a sensing chip, and in particular to a biological sensing module manufacturing method and a biological sensing chip.

近年來由於電化學技術的發展,電化學生物感測器結合生物酶對特定物質特異性、快速響應時間以及簡便操作的優點,加上奈米材料的多元化進而改善許多電化學生物感測器的性能。In recent years, due to the development of electrochemical technology, electrochemical biosensors have combined the advantages of enzymes' specificity for specific substances, fast response time, and simple operation, and the diversification of nanomaterials has improved the performance of many electrochemical biosensors.

舉例而言,金屬氧化物的奈米結構具有獨特的能力,能夠促進電化學生物感測器電極之間的電子轉移和所需酶的活性位點更為快速。其中,電解質-絕緣體-半導體(Electrolyte-Insulator-Semiconductor,EIS)構造的生醫晶片用於量測下電極(BT)與待測液體的參考電極間的電位-電容變化,具有快速的初始反應、穩固的固態結構、具小型化潛力、與CMOS製程技術相容及低成本等特點。眾多的無機奈米材料,如氧化鐵、金球、二氧化鈰、二氧化鋯等,長期被認為在接近生理條件下是化學惰性的,然而近年來逐漸發現多種無機奈米材料(例如:ZnO、ZrO 2)具有類似於天然酶的活性,能夠催化一系列生理條件下的化學反應。 For example, metal oxide nanostructures have the unique ability to promote faster electron transfer between the electrodes of electrochemical biosensors and the active sites of the required enzymes. Among them, the biomedical chip with an electrolyte-insulator-semiconductor (EIS) structure is used to measure the potential-capacitance change between the lower electrode (BT) and the reference electrode of the test liquid. It has the characteristics of fast initial response, stable solid structure, miniaturization potential, compatibility with CMOS process technology and low cost. Many inorganic nanomaterials, such as iron oxide, gold spheres, vanadium dioxide, and zirconium dioxide, have long been considered chemically inert under conditions close to physiological conditions. However, in recent years, it has been gradually discovered that a variety of inorganic nanomaterials (such as ZnO and ZrO 2 ) have activities similar to those of natural enzymes and can catalyze a series of chemical reactions under physiological conditions.

目前有許多材料的表面奈米粒製程已被研究揭露,習知以自由散落的方式散落於晶片表面,並無法在特定區域形成特定圖案。At present, the surface nanoparticle manufacturing process of many materials has been studied and revealed. It is known that they are scattered freely on the surface of the chip and cannot form a specific pattern in a specific area.

根據上述習知技術的問題,本發明的目的在於提出一種生物感測模組的製造方法與生物感測晶片,在晶圓表面設置具有奈米結構的基礎奈米層,將含有奈米顆粒之液體置入高解析度噴墨列印噴頭內,每一噴出的液滴約數個皮升(pl),使用程式控制依據預設圖形噴出含有奈米顆粒之液體在基礎奈米層表面,以形成任何可增加反應接觸面積的二維或三維圖案,以增加更多可接觸待測生物液體的面積,大幅提升感測靈敏度。In view of the above problems of the prior art, the purpose of the present invention is to provide a method for manufacturing a biosensing module and a biosensing chip, wherein a base nanolayer having a nanostructure is arranged on the surface of a wafer, and a liquid containing nanoparticles is placed in a high-resolution inkjet printing nozzle, and each ejected droplet is about several picoliters (pl). The liquid containing nanoparticles is ejected on the surface of the base nanolayer according to a preset pattern using program control to form any two-dimensional or three-dimensional pattern that can increase the reaction contact area, thereby increasing more areas that can contact the biological fluid to be tested, and greatly improving the sensing sensitivity.

根據本發明之目的提出一種生物感測模組的製造方法,包含以下步驟:提供一晶圓;在晶圓表面設置具有奈米結構的一基礎奈米層;放置具有基礎奈米層的晶圓在微液滴列印系統的晶片承載座上;藉由微液滴列印系統的列印噴頭依據預設圖形,將奈米粒溶液以預設液滴尺寸的液滴噴發至基礎奈米層的表面上;利用微液滴列印系統的固化控制模組固化圖案化的奈米粒溶液,使奈米粒溶液在基礎奈米層上固化為奈米感測薄膜層;於晶圓背部設置電極層,電極層為生物感測模組的底層;以及在奈米感測薄膜層之周圍設置感測窗口,而形成具有生物感測模組。According to the purpose of the present invention, a method for manufacturing a biosensing module is proposed, comprising the following steps: providing a wafer; setting a base nanolayer having a nanostructure on the surface of the wafer; placing the wafer having the base nanolayer on a chip carrier of a micro-droplet printing system; using a print head of the micro-droplet printing system to spray a nanoparticle solution in droplets of a preset droplet size onto the surface of the base nanolayer according to a preset pattern; using a curing control module of the micro-droplet printing system to cure the patterned nanoparticle solution so that the nanoparticle solution is cured on the base nanolayer to form a nanosensing film layer; setting an electrode layer on the back of the wafer, the electrode layer being the bottom layer of the biosensing module; and setting a sensing window around the nanosensing film layer to form a biosensing module.

其中,預設液滴尺寸可為數個皮升(pl)。The default droplet size may be a few picoliters (pl).

其中,該奈米感測薄膜層為複數個三維結構體。The nano-sensing film layer is a plurality of three-dimensional structures.

在一實施例中,固化控制模組為一紫外線光源,且紫外線光源與列印噴頭相隔一間距,奈米粒溶液為光固化膠。In one embodiment, the curing control module is a UV light source, and the UV light source is spaced apart from the print head by a distance, and the nanoparticle solution is a photocurable adhesive.

在另一實施例中,固化控制模組為加熱器,並設置於晶片承載座中,奈米粒溶液為熱固化膠。In another embodiment, the curing control module is a heater and is disposed in the chip carrier, and the nanoparticle solution is a thermal curing glue.

其中,微液滴列印系統還包含一驅動器與一電腦。驅動器連接列印噴頭,驅動器控制列印噴頭移動。電腦連接晶片承載座、列印噴頭與驅動器,而微液滴列印系統將奈米粒溶液的液滴依照預設圖形噴發至基礎奈米層的步驟進一步包括:電腦依照預設圖形產生控制程式;以及藉由電腦執行控制程式,以操作驅動器而帶動列印噴頭,以及控制列印噴頭輸出奈米粒溶液的液滴,使得列印噴頭依據預設圖形相對晶片承載座移動的過程中,將奈米粒溶液的液滴噴發至基礎奈米層上。The micro-droplet printing system further includes a driver and a computer. The driver is connected to the print head, and the driver controls the movement of the print head. The computer is connected to the chip carrier, the print head and the driver, and the step of the micro-droplet printing system spraying droplets of nanoparticle solution onto the base nanolayer according to a preset pattern further includes: the computer generates a control program according to the preset pattern; and the computer executes the control program to operate the driver to drive the print head, and control the print head to output droplets of nanoparticle solution, so that the print head sprays droplets of nanoparticle solution onto the base nanolayer during the process of moving relative to the chip carrier according to the preset pattern.

根據本發明之目的,更提出一種生物感測晶片,包含一基板、一生物感測模組以及一覆蓋層。基板的表面設有一金屬層。如前述的製造方法所製成的生物感測模組黏貼於基板上,並與金屬層電性連接。覆蓋層設置於基板上,且覆蓋於生物感測模組與金屬層之外的周圍區域。According to the purpose of the present invention, a biosensor chip is further provided, comprising a substrate, a biosensor module and a covering layer. A metal layer is provided on the surface of the substrate. The biosensor module manufactured by the aforementioned manufacturing method is adhered to the substrate and electrically connected to the metal layer. The covering layer is provided on the substrate and covers the surrounding area outside the biosensor module and the metal layer.

以下舉例說明本申請較佳實施方式,並配合圖式說明如後。The following examples illustrate the preferred implementation of this application, and are illustrated with accompanying drawings.

本發明之實施例將藉由下文配合相關圖式進一步加以解說。盡可能的,於圖式與說明書中,相同標號係代表相同或相似構件。於圖式中,基於簡化與方便標示,形狀與厚度可能經過誇大表示。可以理解的是,未特別顯示於圖式中或描述於說明書中之元件,為所屬技術領域中具有通常技術者所知之形態。本領域之通常技術者可依據本發明之內容而進行多種之改變與修改。The embodiments of the present invention will be further explained below in conjunction with the relevant drawings. As much as possible, the same reference numerals in the drawings and the specification represent the same or similar components. In the drawings, the shapes and thicknesses may be exaggerated for the sake of simplicity and convenience. It is understood that the components not specifically shown in the drawings or described in the specification are of a form known to those skilled in the art. Those skilled in the art can make various changes and modifications based on the content of the present invention.

請一併參閱圖1、圖2與圖3,圖1為本發明之生物感測模組製造方法的流程圖,圖2為本發明之生物感測晶片之示意圖,圖3為本發明之微液滴列印系統之一實施例之示意圖。本發明所提出的生物感測模組的製造方法,係用於製造一生物感測模組,製造方法包含下列步驟:Please refer to Figures 1, 2 and 3 together. Figure 1 is a flow chart of the biosensor module manufacturing method of the present invention, Figure 2 is a schematic diagram of the biosensor chip of the present invention, and Figure 3 is a schematic diagram of an embodiment of the micro-droplet printing system of the present invention. The biosensor module manufacturing method proposed by the present invention is used to manufacture a biosensor module, and the manufacturing method includes the following steps:

步驟S10:提供晶圓23。晶圓23較佳可為一種矽晶片。Step S10: Provide a wafer 23. The wafer 23 is preferably a silicon chip.

步驟S20:在晶圓23表面設置具有奈米結構的基礎奈米層24。Step S20: Disposing a base nanolayer 24 having a nanostructure on the surface of the wafer 23.

可藉由薄膜沉積方式(例如射頻濺鍍)或是溶膠-凝膠(sol-gel)塗佈方式在晶圓23表面形成。It can be formed on the surface of the wafer 23 by a thin film deposition method (such as radio frequency sputtering) or a sol-gel coating method.

其中,以射頻濺鍍方式,亦可藉由第一材料與第二材料形成基礎奈米層24,而第一材料可為氧化釔(Y 2O 3)或二氧化鈦(TiO 2),第二材料可為鈦(Ti)或釔(Y),使其所形成的基礎奈米層24具有預設厚度,預設厚度可小於30nm(奈米)。 The base nanolayer 24 may be formed by a first material and a second material by radio frequency sputtering. The first material may be yttrium oxide (Y 2 O 3 ) or titanium dioxide (TiO 2 ), and the second material may be titanium (Ti) or yttrium (Y). The formed base nanolayer 24 has a preset thickness, which may be less than 30 nm (nanometer).

藉由快速退火系統,使此基礎奈米層24更具奈米結構,而適當的熱處理可使基礎奈米層24更加緻密,因此可通入氮氣或氧氣進行快速退火處理。The rapid annealing system can make the base nanolayer 24 more nanostructured, and appropriate heat treatment can make the base nanolayer 24 more dense, so nitrogen or oxygen can be introduced for rapid annealing.

步驟S30:將具有基礎奈米層24的晶圓放置於微液滴列印系統的晶片承載座11上。Step S30: placing the wafer with the base nanolayer 24 on the wafer carrier 11 of the micro-droplet printing system.

步驟S40:藉由微液滴列印系統的列印噴頭12依據預設圖形將奈米粒溶液121以預設液滴尺寸的液滴噴發至基礎奈米層24的表面上。Step S40: The print head 12 of the micro-droplet printing system sprays the nanoparticle solution 121 onto the surface of the base nanolayer 24 in droplets of a preset droplet size according to a preset pattern.

其中,為要穩定列印出高解析度液滴,所以具奈米粒溶液121的黏度(Viscosity)、表面張力(Surface Tension)、奈米顆粒大小(Nanoparticle Size)、奈米粒於溶液中的分散均勻性(dispersion uniformity)、pH值等皆須優化,以配合噴墨列印晶片內之微流道設計,同時噴墨晶片之微流道材料也須相對應的優化,使含奈米粒之溶液可被穩定地噴出微液滴。In order to stably print high-resolution droplets, the viscosity, surface tension, nanoparticle size, dispersion uniformity of the nanoparticles in the solution, pH value, etc. of the nanoparticle solution 121 must be optimized to match the microchannel design in the inkjet printing chip. At the same time, the microchannel material of the inkjet chip must also be optimized accordingly so that the solution containing nanoparticles can be stably sprayed into microdroplets.

在本實施例中,液滴的預設液滴尺寸為數個pl(皮升),進一步較佳的預設液滴尺寸為小於或等於0.01pl(皮升)。In this embodiment, the preset droplet size of the droplets is several pl (picoliters), and a further preferred preset droplet size is less than or equal to 0.01 pl (picoliter).

奈米粒溶液121較佳可包含氧化鋅(ZnO)或二氧化鋯(ZrO 2),奈米粒溶液121亦可視狀況添加至少一種懸浮粒子,此懸浮粒子的成分為將形成在晶片表面的奈米粒子。在本實施例中,先將奈米粒子粉末配製成適用於高解析度列印噴頭12的奈米粒溶液121,並使奈米粒子均勻分散在溶液中,形成懸浮粒子,再藉由噴印方式將含有奈米粒子的液滴噴在晶片表面,經過加熱或UV處理後,大部分的溶液皆會揮發,最終留在晶片表面的就是此奈米粒子。較佳地,懸浮粒子包含氧化釔(Y 2O 3)或二氧化鈦(TiO 2),其中奈米粒溶液121之黏度較佳為1~8m Pas(毫帕斯卡秒),表面張力較佳為25~75 m N/m(毫牛頓/米)。 The nanoparticle solution 121 preferably contains zinc oxide (ZnO) or zirconium dioxide (ZrO 2 ). The nanoparticle solution 121 may also contain at least one kind of suspended particles as appropriate. The composition of the suspended particles is the nanoparticles to be formed on the surface of the chip. In this embodiment, the nanoparticle powder is first prepared into a nanoparticle solution 121 suitable for the high-resolution printing nozzle 12, and the nanoparticles are uniformly dispersed in the solution to form suspended particles. Then, the droplets containing the nanoparticles are sprayed on the surface of the chip by a printing method. After heating or UV treatment, most of the solution will evaporate, and the nanoparticles will eventually remain on the surface of the chip. Preferably, the suspended particles include yttrium oxide (Y 2 O 3 ) or titanium dioxide (TiO 2 ), wherein the viscosity of the nanoparticle solution 121 is preferably 1-8 m Pas (milliPascal seconds), and the surface tension is preferably 25-75 m N/m (milliNewton/meter).

步驟S50:利用微液滴列印系統的固化控制模組固化圖案化的奈米粒溶液,使奈米粒溶液在基礎奈米層24上固化為奈米感測薄膜層25a。其中,奈米感測薄膜層25a位於背離晶圓23的基礎奈米層24的表面上。Step S50: Use the curing control module of the micro-droplet printing system to cure the patterned nanoparticle solution, so that the nanoparticle solution is cured on the base nanolayer 24 to form a nanosensing thin film layer 25a. The nanosensing thin film layer 25a is located on the surface of the base nanolayer 24 away from the wafer 23.

預設圖形可使用程式控制噴出的圖案,可形成奈米點(Nanodots)、奈米柱(Nanorods)、奈米線(Nanowires)、奈米方格(Nanogrids)、或是任何可增加反應接觸面積的二維或三維圖案。The preset patterns can be programmed to form nanodots, nanorods, nanowires, nanogrids, or any two-dimensional or three-dimensional pattern that can increase the reactive contact area.

步驟S60:於晶圓23的背部設置電極層22。在此步驟中在晶圓背部鍍上一層金屬薄膜(例如:鋁)而形成電極層22,電極層22為生物感測模組的底層。此電極層22的厚度較佳為300nm(奈米)。Step S60: An electrode layer 22 is provided on the back of the wafer 23. In this step, a metal film (e.g., aluminum) is plated on the back of the wafer to form the electrode layer 22, which is the bottom layer of the biosensor module. The thickness of the electrode layer 22 is preferably 300 nm (nanometer).

步驟S70:在奈米感測薄膜層25a之周圍設置感測窗口31,而形成具有生物感測模組。其中,感測窗口31較佳可為SU8環氧基負型光阻劑。Step S70: A sensing window 31 is provided around the nano-sensing film layer 25a to form a biosensing module. The sensing window 31 is preferably SU8 epoxy negative photoresist.

如圖2所示,生物感測晶片包含基板21、生物感測模組以及覆蓋層32。基板21的表面設有金屬層211。基板21可為PCB印刷電路板,金屬層211可為銅箔。As shown in FIG2 , the biosensor chip includes a substrate 21, a biosensor module and a cover layer 32. A metal layer 211 is disposed on the surface of the substrate 21. The substrate 21 may be a PCB printed circuit board, and the metal layer 211 may be a copper foil.

生物感測模組是如前述的生物感測模組製造方法所製成的,生物感測模組包含電極層22、晶圓23、基礎奈米層24以及奈米感測薄膜層25a。電極層22定義為生物感測模組的底層,電極層22設置於基板21上。晶圓23設置於電極層22上。基礎奈米層24設置於晶圓23上。奈米感測薄膜層25a設置於基礎奈米層24上,奈米感測薄膜層25a包含一特定圖形,以微液滴列印系統將奈米粒溶液以預設液滴尺寸的液滴噴發至基礎奈米層24的表面上,並具有奈米粒溶液的基礎奈米層24經加熱而形成特定圖案的奈米感測薄膜層25a。在圖2中奈米感測薄膜層25a的形狀僅作為舉例,並非以此為限。生物感測模組黏貼於基板21上,並與金屬層211電性連接,其中可使用銀膠將生物感測模組黏貼於基板21上。其中金屬層211延伸設置至生物感測模組下方,且金屬層211與電極層22互相接觸。The biosensing module is manufactured by the aforementioned biosensing module manufacturing method, and the biosensing module includes an electrode layer 22, a wafer 23, a base nanolayer 24, and a nanosensing film layer 25a. The electrode layer 22 is defined as the bottom layer of the biosensing module, and the electrode layer 22 is disposed on the substrate 21. The wafer 23 is disposed on the electrode layer 22. The base nanolayer 24 is disposed on the wafer 23. The nano-sensing film layer 25a is disposed on the base nano-layer 24. The nano-sensing film layer 25a includes a specific pattern. The nano-particle solution is sprayed onto the surface of the base nano-layer 24 in droplet sizes by a micro-droplet printing system. The base nano-layer 24 with the nano-particle solution is heated to form a nano-sensing film layer 25a with a specific pattern. The shape of the nano-sensing film layer 25a in FIG. 2 is only used as an example and is not limited thereto. The biosensing module is attached to the substrate 21 and electrically connected to the metal layer 211. The biosensing module can be attached to the substrate 21 using silver glue. The metal layer 211 is extended to the bottom of the biosensing module, and the metal layer 211 and the electrode layer 22 are in contact with each other.

覆蓋層32設置在基板上,且覆蓋於生物感測模組與金屬層211之外的周圍區域,可使用環氧黏著劑來密封生物感測模組與金屬層211之外的區域,確定樣本及銅導線皆密封不受量測溶液影響。其中,環氧樹脂AB膠是由環氧樹脂(A組份)與多功能固化劑(B組份)交聯固化而成。The covering layer 32 is disposed on the substrate and covers the surrounding area outside the biosensor module and the metal layer 211. The epoxy adhesive can be used to seal the area outside the biosensor module and the metal layer 211 to ensure that the sample and the copper wire are sealed and not affected by the measurement solution. The epoxy resin AB glue is formed by cross-linking and curing epoxy resin (component A) and multifunctional curing agent (component B).

進一步言,本發明之生物感測模組製造方法所製成的生物感測晶片可應用於生醫感測技術領域感測生物液體之pH值、Na +K +離子濃度、血糖、尿素等,或是一些癌症早期血液化學檢驗指標,例如腎細胞癌 (RCC)的血液檢驗指標 血清AST、血清 ALT和它們的比值(AST/ALT),以達到提早檢驗出並預防疾病的目的。 Furthermore, the biosensor chip produced by the biosensor module manufacturing method of the present invention can be applied to the field of biomedical sensing technology to sense the pH value of biological fluids, Na + K + ion concentration, blood sugar, urea, etc., or some early blood chemistry test indicators of cancer, such as serum AST, serum ALT and their ratio (AST/ALT) of renal cell carcinoma (RCC), so as to achieve the purpose of early detection and prevention of diseases.

圖4為本發明之固化控制模組另一實施例示意圖,請進一步一併參閱圖3與圖4。FIG. 4 is a schematic diagram of another embodiment of the curing control module of the present invention. Please refer to FIG. 3 and FIG. 4 for further details.

微液滴列印系統包含晶片承載座11、列印噴頭12、固化控制模組、驅動器13以及電腦14。The micro-droplet printing system includes a chip carrier 11, a print head 12, a curing control module, a driver 13 and a computer 14.

晶片承載座11用來放置待製物10,在本實施例中,晶片承載座11上係放置已完成快速退火處理的基礎奈米層與晶圓。The chip carrier 11 is used to place the object 10 to be manufactured. In this embodiment, the chip carrier 11 is used to place the base nanolayer and the wafer that have completed the rapid annealing process.

列印噴頭12內裝有奈米粒溶液121,列印噴頭12的噴出孔以一預設液滴尺寸噴發奈米粒溶液121的液滴到待製物10的一面上。The print head 12 contains a nanoparticle solution 121 , and the ejection hole of the print head 12 ejects droplets of the nanoparticle solution 121 with a preset droplet size onto one surface of the object 10 .

溫度控制單元控制晶片承載座11的表面溫度,且加熱表面具有奈米粒溶液121的待製物10,而在待製物10表面上形成一特定圖形。The temperature control unit controls the surface temperature of the chip carrier 11 and heats the object 10 having the nanoparticle solution 121 on the surface thereof, thereby forming a specific pattern on the surface of the object 10 .

其中,固化控制模組可設置於晶片承載座11或另外裝設,在圖3中固化控制模組為加熱器,並裝設在晶片承載座11中(故圖中固化控制模組未標號),並不以此為限。在本實施例中,奈米粒溶液121為一熱固化膠,當奈米粒溶液121噴發至待製物10(基礎奈米層)的表面上時,藉由固化控制模組即時控制溫度並加熱晶片承載座11,使表面具有奈米粒溶液121的基礎奈米層的溫度提高,而在基礎奈米層表面上形成對應預設圖形的奈米感測薄膜層。The curing control module can be disposed on the chip carrier 11 or installed separately. In FIG. 3 , the curing control module is a heater and is installed in the chip carrier 11 (so the curing control module is not numbered in the figure), but the present invention is not limited thereto. In the present embodiment, the nanoparticle solution 121 is a heat curing glue. When the nanoparticle solution 121 is sprayed onto the surface of the object 10 (base nanolayer), the curing control module controls the temperature in real time and heats the chip carrier 11, so that the temperature of the base nanolayer with the nanoparticle solution 121 on the surface is increased, and a nanosensing film layer corresponding to a preset pattern is formed on the surface of the base nanolayer.

驅動器13連接列印噴頭12,驅動器13控制列印噴頭12移動。The driver 13 is connected to the print head 12 and controls the print head 12 to move.

電腦14連接晶片承載座11、列印噴頭12與驅動器13,以藉由電腦14程式控制形成特定圖形。微液滴列印系統將奈米粒溶液121的液滴依照預設圖形噴發至基礎奈米層的步驟進一步包括:電腦14依照預設圖形產生控制程式;以及藉由電腦14執行控制程式,以操作驅動器13而帶動列印噴頭12,以及控制列印噴頭12輸出該奈米粒溶液121的液滴,使得列印噴頭12依據預設圖形相對晶片承載座11移動的過程中,將奈米粒溶液121的液滴噴發至基礎奈米層上。The computer 14 is connected to the chip carrier 11, the print head 12 and the driver 13 to form a specific pattern through the program control of the computer 14. The step of the micro-droplet printing system spraying the droplets of the nanoparticle solution 121 onto the base nanolayer according to the preset pattern further includes: the computer 14 generates a control program according to the preset pattern; and the computer 14 executes the control program to operate the driver 13 to drive the print head 12, and control the print head 12 to output the droplets of the nanoparticle solution 121, so that the print head 12 sprays the droplets of the nanoparticle solution 121 onto the base nanolayer during the process of moving relative to the chip carrier 11 according to the preset pattern.

其中,電腦14亦可控制後續再堆疊列印,以形成更多立體空間,使奈米結構具有更多可被待測生物液體接觸的面積,以提高感測靈敏度。The computer 14 can also control subsequent stacking printing to form more three-dimensional space, so that the nanostructure has more area that can be contacted by the biological fluid to be tested, so as to improve the sensing sensitivity.

如此一來,可依據程式設計的二維或三維圖案,將奈米粒溶液121以微液滴方式列印於基礎奈米層表面,同時使用可溫度控制之晶片承載座11對含奈米粒微液滴的表面進行熱處理,或者使用UV光照射方式,以形成特定圖形之奈米感測薄膜層。In this way, the nanoparticle solution 121 can be printed on the surface of the base nanolayer in the form of microdroplets according to the programmed two-dimensional or three-dimensional pattern, and the surface containing the nanoparticle microdroplets can be heat-treated using a temperature-controllable chip carrier 11, or UV light can be used to irradiate the surface to form a nanosensing film layer with a specific pattern.

如圖4所示,固化控制模組可以是紫外線光源15,且紫外線光源15與列印噴頭相隔一間距,奈米粒溶液121為光固化膠。在奈米粒溶液121噴發至待製物10(基礎奈米層)的表面上時,即時移動紫外線光源15並照射在具有奈米粒溶液121的基礎奈米層上,而在基礎奈米層表面上形成對應預設圖形的奈米感測薄膜層。As shown in FIG4 , the curing control module may be an ultraviolet light source 15, and the ultraviolet light source 15 is spaced apart from the print head, and the nanoparticle solution 121 is a light-curing glue. When the nanoparticle solution 121 is sprayed onto the surface of the object 10 (base nanolayer), the ultraviolet light source 15 is moved in real time and irradiated onto the base nanolayer having the nanoparticle solution 121, and a nanosensing film layer corresponding to a preset pattern is formed on the surface of the base nanolayer.

請參閱圖5至圖8,圖5至圖8為本發明之奈米感測薄膜層的第一示意圖、第二示意圖、第三示意圖與第四示意圖,在上述各實施例中,奈米感測薄膜層可為複數個三維結構體。Please refer to FIG. 5 to FIG. 8 , which are first, second, third and fourth schematic diagrams of the nano-sensing thin film layer of the present invention. In the above embodiments, the nano-sensing thin film layer can be a plurality of three-dimensional structures.

在圖5中,奈米感測薄膜層25b為奈米點(nanodots)結構。In FIG. 5 , the nanosensing film layer 25 b is a nanodots structure.

在圖6中,奈米感測薄膜層25c為奈米線(nanowires)結構。In FIG. 6 , the nanosensing film layer 25 c is a nanowire structure.

在圖7中,奈米感測薄膜層25d為奈米柱(nanorods)結構。In FIG. 7 , the nanosensing film layer 25 d is a nanorod structure.

在圖8中,奈米感測薄膜層25e為奈米方格(nanogrids)結構。In FIG. 8 , the nanosensing film layer 25 e is a nanogrids structure.

以上所述,僅為舉例說明本發明的較佳實施方式,並非以此限定實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單置換及等效變化,皆屬本發明的專利申請範疇。The above is only an example to illustrate the preferred implementation of the present invention, and is not intended to limit the scope of implementation. All simple substitutions and equivalent changes made according to the scope of the patent application of the present invention and the content of the patent specification are within the scope of the patent application of the present invention.

S10~S70:步驟 10:待製物 11:晶片承載座 12:列印噴頭 121:奈米粒溶液 13:驅動器 14:電腦 15:紫外線光源 21:基板 211:金屬層 22:電極層 23:晶圓 24:基礎奈米層 25a、25b、25c、25d、25e:奈米感測薄膜層 31:感測窗口 32:覆蓋層 S10~S70: Steps 10: Object to be manufactured 11: Chip carrier 12: Print head 121: Nanoparticle solution 13: Driver 14: Computer 15: UV light source 21: Substrate 211: Metal layer 22: Electrode layer 23: Wafer 24: Base nanolayer 25a, 25b, 25c, 25d, 25e: Nanosensing film layer 31: Sensing window 32: Covering layer

圖1為本發明之生物感測模組製造方法的流程圖; 圖2為本發明之生物感測晶片之示意圖; 圖3為本發明之微液滴列印系統之一實施例之示意圖; 圖4為本發明之固化控制模組另一實施例示意圖; 圖5為本發明之奈米感測薄膜層的第一示意圖; 圖6為本發明之奈米感測薄膜層的第二示意圖; 圖7為本發明之奈米感測薄膜層的第三示意圖; 圖8為本發明之奈米感測薄膜層的第四示意圖。 Figure 1 is a flow chart of the biosensing module manufacturing method of the present invention; Figure 2 is a schematic diagram of the biosensing chip of the present invention; Figure 3 is a schematic diagram of an embodiment of the micro-droplet printing system of the present invention; Figure 4 is a schematic diagram of another embodiment of the curing control module of the present invention; Figure 5 is a first schematic diagram of the nanosensing film layer of the present invention; Figure 6 is a second schematic diagram of the nanosensing film layer of the present invention; Figure 7 is a third schematic diagram of the nanosensing film layer of the present invention; Figure 8 is a fourth schematic diagram of the nanosensing film layer of the present invention.

S10~S70:步驟 S10~S70: Steps

Claims (8)

一種生物感測模組的製造方法,包含下列步驟:提供一晶圓;在該晶圓表面設置具有奈米結構的一基礎奈米層;放置具有該基礎奈米層的該晶圓在一微液滴列印系統的一晶片承載座上;藉由該微液滴列印系統的一列印噴頭依據一預設圖形,將一奈米粒溶液以一預設液滴尺寸的液滴噴發至該基礎奈米層的表面上;利用該微液滴列印系統的一固化控制模組固化圖案化的該奈米粒溶液,使該奈米粒溶液在該基礎奈米層上固化為一奈米感測薄膜層,其中該奈米感測薄膜層為複數個三維結構體;於該晶圓背部設置一電極層;以及在該奈米感測薄膜層之周圍設置一感測窗口,而形成一生物感測模組。 A method for manufacturing a biosensor module comprises the following steps: providing a wafer; arranging a base nanolayer having a nanostructure on the surface of the wafer; placing the wafer having the base nanolayer on a chip carrier of a micro-droplet printing system; and spraying a nanoparticle solution in the form of droplets of a preset droplet size onto the base nanolayer by a print head of the micro-droplet printing system according to a preset pattern. The nanoparticle solution is solidified on the surface of the substrate layer; a solidification control module of the micro-droplet printing system is used to solidify the patterned nanoparticle solution so that the nanoparticle solution is solidified on the substrate nanolayer into a nanosensing film layer, wherein the nanosensing film layer is a plurality of three-dimensional structures; an electrode layer is disposed on the back of the wafer; and a sensing window is disposed around the nanosensing film layer to form a biosensing module. 如請求項1所述的製造方法,其中該預設液滴尺寸為小於或等於0.01pl(皮升)。 A manufacturing method as described in claim 1, wherein the preset droplet size is less than or equal to 0.01 pl (picoliter). 如請求項1所述的製造方法,其中該奈米粒溶液摻雜至少一種懸浮粒子。 The manufacturing method as described in claim 1, wherein the nanoparticle solution is doped with at least one type of suspended particles. 如請求項1所述的製造方法,其中該固化控制模組為一紫外線光源,且該紫外線光源與該列印噴頭相隔一間距,該奈米粒溶液為一光固化膠。 The manufacturing method as described in claim 1, wherein the curing control module is an ultraviolet light source, and the ultraviolet light source is separated from the print head by a distance, and the nanoparticle solution is a photocurable glue. 如請求項1所述的製造方法,其中該固化控制模組為一加熱器,並設置於該晶片承載座中,該奈米粒溶液為一熱固化膠。 The manufacturing method as described in claim 1, wherein the curing control module is a heater and is disposed in the chip carrier, and the nanoparticle solution is a thermal curing glue. 如請求項1所述的製造方法,其中該微液滴列印系統包含一驅動器以及一電腦,該驅動器連接該列印噴頭,該電腦連接該晶片承載座、該列印 噴頭與該驅動器,而該微液滴列印系統將該奈米粒溶液的液滴依照該預設圖形噴發至該基礎奈米層的步驟進一步包括:該電腦依照該預設圖形產生一控制程式;以及藉由該電腦執行該控制程式,以操作該驅動器而帶動該列印噴頭,以及控制該列印噴頭輸出該奈米粒溶液的液滴,使得該列印噴頭依據該預設圖形相對該晶片承載座移動的過程中,將該奈米粒溶液的液滴噴發至該基礎奈米層上。 The manufacturing method as described in claim 1, wherein the micro-droplet printing system comprises a driver and a computer, the driver is connected to the print head, the computer is connected to the chip carrier, the print head and the driver, and the step of the micro-droplet printing system spraying the droplets of the nanoparticle solution onto the base nanolayer according to the preset pattern further comprises: the computer generates a control program according to the preset pattern; and the computer executes the control program to operate the driver to drive the print head, and control the print head to output the droplets of the nanoparticle solution, so that the print head sprays the droplets of the nanoparticle solution onto the base nanolayer during the process of moving relative to the chip carrier according to the preset pattern. 一種生物感測晶片,包含:一基板,該基板的表面設有一金屬層;如請求項1至6任一項所述的製造方法所製成的生物感測模組,黏貼於該基板上,並與該金屬層電性連接。 A biosensor chip comprises: a substrate, a metal layer is provided on the surface of the substrate; a biosensor module manufactured by the manufacturing method described in any one of claims 1 to 6 is adhered to the substrate and electrically connected to the metal layer. 如請求項7所述的生物感測晶片,更包含:一覆蓋層,設置在該基板上,且覆蓋於該生物感測模組與該金屬層之外的周圍區域。 The biosensor chip as described in claim 7 further comprises: a covering layer disposed on the substrate and covering the surrounding area outside the biosensor module and the metal layer.
TW111146756A 2022-12-06 Method of manufacturing biosensor, and biosensor chip TWI839006B (en)

Publications (1)

Publication Number Publication Date
TWI839006B true TWI839006B (en) 2024-04-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040014240A1 (en) 2000-07-06 2004-01-22 Keigo Takeguchi Molecule detecting sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040014240A1 (en) 2000-07-06 2004-01-22 Keigo Takeguchi Molecule detecting sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
期刊 Chyuan-Haur Kao et al. Comparison of Magnesium and Titanium Doping on Material Properties and pH Sensing Performance on Sb2O3 Membranes in Electrolyte-Insulator-Semiconductor Structure 2022, 12, 25 Membranes Published: 25 December 2021 all

Similar Documents

Publication Publication Date Title
Zub et al. Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications
US20230375501A1 (en) Method of making biochip having a channel
Gonzalez-Macia et al. Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices
Grunwald et al. Surface biofunctionalization and production of miniaturized sensor structures using aerosol printing technologies
US9616617B2 (en) Scalable biochip and method for making
Komuro et al. Inkjet printed (bio) chemical sensing devices
US7695689B2 (en) Micro reactor device and method of manufacturing micro reactor device
JP3811108B2 (en) Method for forming fine metal pattern on plastic substrate
US20140308770A1 (en) Chemical sensor
CN110567933A (en) SERS substrate and preparation method thereof
Li et al. Precise droplet manipulation based on surface heterogeneity
US10828637B2 (en) Microfluidic chip with anchored nano particle assembly
Bridonneau et al. Self-assembly of nanoparticles from evaporating sessile droplets: Fresh look into the role of particle/substrate interaction
JP2008298575A (en) Electrode, manufacturing method, and apparatus and method for detection using the same
TWI839006B (en) Method of manufacturing biosensor, and biosensor chip
Yu et al. Ink-drop dynamics on chemically modified surfaces
Zheng et al. From functional structure to packaging: full-printing fabrication of a microfluidic chip
Gonzalez-Macia et al. Screen printing and other scalable point of care (POC) biosensor processing technologies
Du et al. Hybrid printing of fully integrated microfluidic devices for biosensing
Hung et al. Hierarchical Nanoparticle assemblies formed via one-step catalytic stamp pattern transfer
KR100532812B1 (en) Method for fabricating a nano-biochip using the nanopattern of block copolymers
CN113117765B (en) Detection chip for photonic crystal coding, preparation method and application thereof, and drug screening system and drug screening method
Lemarchand et al. Challenges and Prospects of Inkjet Printed Electronics Emerging Applications—A Chemist Point of View
du Plooy et al. Advances in paper-based electrochemical immunosensors: Review of fabrication strategies and biomedical applications
KR101116125B1 (en) fabrication method of Lab-on-a-Chip using printing techniques