TWI838795B - 用於藉由轉換模型分析微影製程的元件的裝置及方法 - Google Patents
用於藉由轉換模型分析微影製程的元件的裝置及方法 Download PDFInfo
- Publication number
- TWI838795B TWI838795B TW111127070A TW111127070A TWI838795B TW I838795 B TWI838795 B TW I838795B TW 111127070 A TW111127070 A TW 111127070A TW 111127070 A TW111127070 A TW 111127070A TW I838795 B TWI838795 B TW I838795B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- measurement
- component
- measurement data
- model
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 137
- 230000008569 process Effects 0.000 title claims abstract description 85
- 230000009466 transformation Effects 0.000 title abstract description 96
- 238000000206 photolithography Methods 0.000 title abstract 2
- 238000005259 measurement Methods 0.000 claims abstract description 365
- 238000012549 training Methods 0.000 claims abstract description 132
- 238000001459 lithography Methods 0.000 claims description 102
- 230000007547 defect Effects 0.000 claims description 93
- 239000000523 sample Substances 0.000 claims description 52
- 230000008439 repair process Effects 0.000 claims description 37
- 238000004088 simulation Methods 0.000 claims description 25
- 238000013461 design Methods 0.000 claims description 17
- 239000002245 particle Substances 0.000 claims description 14
- 238000010801 machine learning Methods 0.000 claims description 12
- 230000015654 memory Effects 0.000 claims description 12
- 230000000694 effects Effects 0.000 claims description 10
- 238000005516 engineering process Methods 0.000 claims description 5
- 238000011156 evaluation Methods 0.000 claims description 5
- 238000004590 computer program Methods 0.000 claims 1
- 230000001131 transforming effect Effects 0.000 abstract description 13
- 238000010894 electron beam technology Methods 0.000 description 33
- 238000013442 quality metrics Methods 0.000 description 33
- 230000003287 optical effect Effects 0.000 description 28
- 238000006243 chemical reaction Methods 0.000 description 27
- 239000007789 gas Substances 0.000 description 22
- 238000003384 imaging method Methods 0.000 description 16
- 238000013528 artificial neural network Methods 0.000 description 10
- 235000012431 wafers Nutrition 0.000 description 10
- 238000012545 processing Methods 0.000 description 9
- 238000013527 convolutional neural network Methods 0.000 description 8
- 239000002243 precursor Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000005530 etching Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000007689 inspection Methods 0.000 description 6
- 230000002950 deficient Effects 0.000 description 5
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 4
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 4
- 238000000313 electron-beam-induced deposition Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000003909 pattern recognition Methods 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 238000010200 validation analysis Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 229910018503 SF6 Inorganic materials 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000003709 image segmentation Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000012634 optical imaging Methods 0.000 description 2
- 238000001303 quality assessment method Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 2
- 229960000909 sulfur hexafluoride Drugs 0.000 description 2
- BLIQUJLAJXRXSG-UHFFFAOYSA-N 1-benzyl-3-(trifluoromethyl)pyrrolidin-1-ium-3-carboxylate Chemical compound C1C(C(=O)O)(C(F)(F)F)CCN1CC1=CC=CC=C1 BLIQUJLAJXRXSG-UHFFFAOYSA-N 0.000 description 1
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 1
- ODUCDPQEXGNKDN-UHFFFAOYSA-N Nitrogen oxide(NO) Natural products O=N ODUCDPQEXGNKDN-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 238000001900 extreme ultraviolet lithography Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000001127 nanoimprint lithography Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 235000012167 tiramisu Nutrition 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q30/00—Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
- G01Q30/02—Non-SPM analysing devices, e.g. SEM [Scanning Electron Microscope], spectrometer or optical microscope
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/68—Preparation processes not covered by groups G03F1/20 - G03F1/50
- G03F1/72—Repair or correction of mask defects
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/68—Preparation processes not covered by groups G03F1/20 - G03F1/50
- G03F1/72—Repair or correction of mask defects
- G03F1/74—Repair or correction of mask defects by charged particle beam [CPB], e.g. focused ion beam
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/68—Preparation processes not covered by groups G03F1/20 - G03F1/50
- G03F1/82—Auxiliary processes, e.g. cleaning or inspecting
- G03F1/84—Inspecting
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70491—Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
- G03F7/705—Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70491—Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
- G03F7/70508—Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70616—Monitoring the printed patterns
- G03F7/70641—Focus
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/706835—Metrology information management or control
- G03F7/706837—Data analysis, e.g. filtering, weighting, flyer removal, fingerprints or root cause analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
Landscapes
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Health & Medical Sciences (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Image Analysis (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Inspection Of Paper Currency And Valuable Securities (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
Abstract
本發明關於用以分析微影製程的一元件(470)的裝置(500),該裝置包含:(a)用以記錄元件(470)的第一資料(230)的第一量測裝置(500、510、560);以及(b)用以將第一資料(230)轉換為第二、非量測資料(250)的構件,其對應於使用第二量測裝置(400)對元件(470)進行量測的量測資料(420);以及(c)其中構件包含一轉換模型(200),其已使用用於訓練目的的多個第一資料(235)以及與其對應的鏈接至第二量測裝置(400)的第二資料(265)進行訓練。
Description
[相關專利參照] 本專利申請案主張2018年5月18日申請的德國專利申請案DE 10 2018 207 882.3的優先權,其整體的內容以引用的方式併入本文。
本發明關於用以分析微影製程的元件的裝置及方法。特別地,本發明關於用以使用一已訓練的轉換模型將由第一量測裝置所記錄的微影製程的裝置的第一資料轉換為第二非量測資料的裝置和方法,其中第二非量測資料對應使用第二量測資料對元件進行檢查的量測資料。此外,本發明關於用以檢查微影製程的元件的區域的裝置和方法。更詳細地,本發明關於用以使用已訓練模型將由量測裝置所記錄的微影製程的元件的區域的量測資料以及關聯於量測資料的參考資料轉換為元件的品質量測的裝置和方法。
隨著半導體工業中積體密度的增加,微影光罩必須在晶圓上成像越來越小的結構。在微影方面,藉由將微影系統的曝光波長轉移到更短的波長來解決積體密度增加的趨勢。目前在微影系統中經常使用作為光源的是ArF(氟化氬)準分子雷射,其發射波長約為193 nm。
目前正在開發使用EUV(極紫外光)波長範圍(例如,在10 nm至15 nm範圍內)的電磁輻射的微影系統。該EUV微影系統基於全新的光束導引概念,其毫無例外地使用反射光學元件,因為目前在所述的EUV範圍內沒有可用的光學透明的材料。發展EUV系統面臨的技術挑戰是巨大的,需要進行大量的開發工作才能使該系統提升到可用於工業應用的水平。
對在晶圓上配置的光阻中的更小結構的成像的顯著貢獻是由於微影光罩、曝光光罩、光學光罩或僅光罩。隨著積體密度的進一步增加,減小曝光光罩的最小結構尺寸變得越來越重要。因此,微影光罩的生產程序變得越來越複雜,因此更耗時且最終也更昂貴。由於圖案元件的微小結構尺寸,不能排除光罩生產期間的缺陷。這些缺陷必須盡可能地修復。光罩缺陷的修復通常基於改進的掃描電子顯微鏡來實現,例如MeRiT
®工具。
在修復光罩的缺陷之後,必須量測微影光罩的已修復區域,以能夠評估修復程序是否成功或者是否失敗。舉例來說,目前使用AIMS
TM(空間影像計量系統)來記錄缺陷及/或已修復區域的一或多個影像。藉由AIMS
TM記錄光罩的缺陷及/或特別是已修復區域的一或多個空間影像。基於一或多個空間影像分析光罩的缺陷及/或修復區域,以能夠決定如何繼續使用光罩。
勾畫程序的缺點在於必須從修復工具(例如,MeRiT
®工具)變更為分析工具(例如,AIMS
TM工具),用以評估修復程序的品質。光罩從一工具轉換到另一工具將有很長的時間耗費,其例如由打破真空並在AIMS
TM上對準光罩所造成。此外,存在在運輸過程中損壞光罩/或產生新缺陷的風險。
在一種新方法中,目前嘗試在機器學習(ML)模型的協助下處理在光罩的品質評估中的許多挑戰。以示例性方式指出用於此程序的以下文獻:WO 2017 / 087 653 A1、WO 2017 / 117 568 A1、WO 2017 / 120 253 A1、WO 2017 / 123 555 A1、WO 2017 / 123 561 A1、WO 2017 / 117 573 A1、WO 2017 / 123 555 A1及WO 2017/ 205 537 A1。舉例來說,在以下文獻中描述了機器學習的特定態樣:https://papers.nips.cc/ paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf;以及https://arxiv.org/pdf/1409.1556.pdf; https://arxiv.org/pdf/ 1608.06993.pdf。
如前文所解釋,針對微影製程的元件(例如微影光罩)產生空間影像可能是複雜的程序。
因此,本發明的目的在於,提出在評估微影製程的元件的品質時可至少部分地避免上述缺點的裝置和方法。
根據本發明的第一態樣,此問題由申請專利範圍第1項所述的裝置來解決。
用以分析微影製程的元件的裝置包含(a)用以記錄元件的第一資料的第一量測裝置;以及(b)用以將第一資料轉換為第二、非量測資料的構件,其對應於使用第二量測裝置量測元件的量測資料;以及(c)其中構件包含一轉換模型,其已使用用於訓練目的的多個第一資料以及與其對應的第二資料進行訓練,其中第二資料鏈接至第二量測裝置。
在第一態樣中,根據本發明的裝置在一已訓練的轉換模型的協助下解決了問題。藉由應用已訓練的轉換模型,根據本發明的裝置可轉換第一量測裝置(例如粒子掃描顯微鏡,特別是掃描電子顯微鏡)的量測資料,使得這些量測資料看起來像是由第二量測裝置(例如光學量測裝置,例如AIMS
TM)所量測的。因此,根據本發明的裝置有助於基於由修復工具所進行的一或多個量測來評估微影製程的元件(例如微影光罩的已修復缺陷)的品質。在此處,基於一資料記錄來評估光罩,該資料記錄類似於光罩在以光化波長進行曝光的過程中將在晶圓上產生的影像。可避免破壞修復工具的真空、以及運輸到光學量測裝置、以及對準光學量測裝置中的元件、以及使用光學量測裝置記錄影像。
在一第二態樣中,根據本發明的裝置藉由申請專利範圍第2項所述的裝置來解決問題。
用以將由第一量測裝置所記錄的微影製程的一元件的第一資料轉換成第二非量測資料(其對應於使用第二量測裝置量測元件的量測資料)的裝置可包含一轉換模型,其已使用用於訓練目的的多個第一資料以及與其對應的第二資料進行訓練,其中第二資料鏈接至第二量測裝置。
根據本發明的裝置避免了空間影像的複雜產生,用以能夠評估微影製程的元件的品質。一開始對特定光罩類型和特定第一量測裝置(例如掃描粒子顯微鏡)進行轉換模型的複雜訓練程序就足夠了。舉例來說,訓練程序可在中心位置執行,該中心位置最適合此目標。接著,可一起提供針對各種光罩類型的訓練轉換模型,例如,與製造環境中的修復工具一起提供。藉由將已訓練的轉換模型應用到第一量測裝置的第一資料,第一資料可接著直接或在最小擬合之後轉換為第二資料,該第二資料看起來像是已經由第二量測裝置量測。
轉換模型可包含一或多個超參數。轉換模型的超參數可包含來自以下群組的至少一元件:光罩類型、曝光波長、掃描器的數值孔徑(NA)、掃描器的曝光設定。
在訓練階段和操作期間為轉換模型提供一或多個超參數。藉由包含一或多個超參數的轉換模型,有可能建立和訓練覆蓋廣泛應用範圍的轉換模型。若需要,可針對特定應用對具有一或多個超參數的已訓練轉換模型進行後訓練。
鏈接到第二量測裝置的第二資料可包含由第二量測裝置所量測的資料及/或可包含相應的模擬資料,而不是由第二量測裝置所量測的第二資料。
第一量測裝置可包含成像量測裝置及/或第二量測裝置可包含成像量測裝置。第一成像量測裝置可包含在紫外光及/或深紫外光波長範圍中操作的光學工具,且第二成像量測裝置可包含在極紫外光(EUV)波長範圍中操作的光學工具。深紫外光波長範圍可包含193 nm的波長。第一成像量測裝置可包含AIMS
TM、WLCD、及/或PROVE
®工具。第二成像量測裝置可包含AIMS
TMEUV。
成像量測裝置是有利的,因為它們提供影像形式的量測資料。然而,成像量測裝置並不是應用已訓練轉換模型的先決條件。相反地,轉換模型可基於足夠大的訓練資料記錄來學習,從而將第一資料轉換為第二量測裝置的第二非量測資料。
第一量測裝置可包含來自以下群組的至少一元件:掃描粒子顯微鏡、掃描探針顯微鏡、以及干涉儀,及/或第二量測裝置可包含來自以下群組的至少一元件:掃描粒子顯微鏡、及/或光學量測工具。光學量測工具可例如包含AIMS
TM工具、WLCD工具、及/或PROVE
®工具。
舉例來說,第一量測裝置有可能包含掃描粒子顯微鏡和掃描探針顯微鏡。因此,有可能產生微影製程的元件的三維表示。
掃描粒子顯微鏡可包含:掃描電子顯微鏡、掃描離子束顯微鏡、掃描原子束顯微鏡、掃描分子束顯微鏡及/或x射線束顯微鏡。x射線束顯微鏡可包含掃描透射x射線束顯微鏡。
掃描探針顯微鏡可包含:掃描穿隧顯微鏡、掃描力顯微鏡、磁力顯微鏡及/或光學近場顯微鏡。
第一量測裝置也可能包含光學工具,即AIMS
TM工具、WLCD工具、及/或PROVE
®工具,且第二量測裝置也可能包含掃描粒子顯微鏡及/或掃描探針顯微鏡。
第一資料可包含:(a)微影製程的元件的一區域的量測資料,其具有至少一缺陷;及/或(b)微影製程的元件的一已修復區域的量測資料。
除了檢查微影製程的元件之外,根據本發明的裝置也可用以修復元件的一或多個缺陷。此外,根據本發明的裝置可用以在修復後掃描已修復缺陷的區域。接著,在應用已訓練的轉換模型之後,亦即在將第一量測資料轉換成對應於以第二量測裝置對修復區域進行的檢查的量測資料之後,可基於這些量測資料評估缺陷修復的品質。
第二資料可包含具有二維畫素表示的一影像。
舉例來說,影像資料特別適合於能夠分析缺陷修復的品質。此外,產生形式為影像資料的第二資料的根據本發明的裝置適合於已建立的工作過程,其基於影像資料檢查微影製程的元件的品質。
第二資料可包含一空間影像及/或一空間影像聚焦疊層。
AIMS
TM已成為分析微影製程的元件的缺陷的有力工具。由於藉由應用已訓練的轉換模型將第一量測裝置的第一資料轉換為空間影像,有可能保持用以評估微影製程的元件的品質的已建立工作流程。然而,有可能省去製造環境中的空間影像的複雜量測。
如果對微影製程的元件的品質分析有很高的要求,則可不是基於個別的空間影像而是基於空間影像聚焦疊層來執行元件的檢查。轉換模型可被教導以從第一量測裝置的相應第一資料組產生針對元件的區域的空間影像聚焦疊層。
第一資料和第二資料可具有相同數量的畫素。為了將第一資料重現轉換成第二資料,在第一量測裝置的資料和第二量測裝置的第二資料之間必須存在1:1的對應關係。然而,這並不意味著第一和第二資料必須具有1:1的畫素對應關係。第一和第二資料的畫素數目可不相同。此外,舉例來說,第一和第二資料可具有相對彼此的系統相對位移,其可透過轉換模型來學習。
第一資料可包含使用第一量測裝置的不同參數設定所記錄的量測資料。
第一量測裝置的不同參數設定可包含來自以下群組的至少一元件:焦點設定、聚焦疊層的設定、曝光設定和第一量測裝置的偵測器設定。
微影製程的元件可包含來自以下群組中的至少一元件:微影光罩、用於奈米壓印技術的模板以及晶圓。
根據本發明的裝置不限於分析和修復微影光罩的缺陷。相反地,它可用以分析和修復來自奈米壓印技術領域的模板以及在其各個處理階段中的晶圓。
在另一態樣中,根據本發明的方法藉由申請專利範圍第9項所述的方法來解決前述問題。
用以分析微影製程的一元件的方法可包含以下步驟:(a)使用第一量測裝置記錄元件的第一資料;以及(b)將第一資料轉換為第二非量測資料,其對應於使用第二量測裝置對元件進行檢查的量測資料,其中方法包含一轉換模型,其已使用多個訓練的第一資料以及與其對應的第二資料進行訓練,其中第二資料鏈接至第二量測裝置。方法可例如由前文所揭露的裝置的其中一者來執行。
轉換第一資料可包含:將使用第一量測裝置的不同參數設定所記錄的量測資料轉換為一空間影像聚焦疊層。
用於訓練目的的第一資料可包含第一量測裝置的量測資料,且相應的第二資料可包含第二量測裝置的量測資料。用於訓練目的的第一資料可包含第一量測裝置的模擬資料,且相應的第二資料可包含第二量測裝置的模擬資料。特別地,第二量測裝置的模擬資料可包含模擬的空間影像。此外,用於訓練目的的第一資料可包含第一量測裝置的量測資料,且相應的第二資料可包含第二量測裝置的模擬資料。此外,用於訓練目的的第一資料可包含第一量測裝置的模擬資料,且相應的第二資料可包含第二量測裝置的量測資料。
訓練轉換模型可包含:(a)使用用於訓練目的的第一數量的第一資料和鏈接至第二量測裝置的與其對應的第二資料在第一步中訓練轉換模型,其中用於訓練目的的第一資料包含第一量測裝置的模擬資料,且鏈接至第二量測裝置的與之對應的第二資料包含第二量測裝置的相應模擬資料;以及(b)使用用於訓練目的的第二數量的第一資料和鏈接至第二量測裝置的與之對應的第二資料在第二步中訓練轉換模型,其中用於訓練目的的第一資料包含第一量測裝置的量測資料,且鏈接至第二量測裝置的與之對應的第二資料包含第二量測裝置的量測資料。
產生第一量測裝置的模擬資料可包含模擬第一量測裝置的各種參數設定。產生第一量測裝置的模擬資料可包含模擬微影製程的元件的無缺陷區域及/或元件的缺陷區域。此外,產生第一量測裝置的模擬資料可包含模擬元件的部分已修復區域。
產生第二量測裝置的模擬資料可包含基於微影製程的元件的設計資料來模擬空間影像。此外,產生第二量測裝置的模擬資料可包含基於微影製程的元件的修改設計資料來模擬空間影像。
根據本發明另一態樣,上述問題由申請專利範圍第11項所述的裝置來解決。
用以檢查微影製程的一元件的至少一區域的裝置可包含:(a)用以記錄區域的量測資料的一量測裝置;以及(b)用以將量測資料及關聯於量測資料的參考資料轉換為元件的品質量測的一模型,該品質量測包含有關在進行微影製程時元件的區域的影響的一資訊項目;(c)其中模型已使用用於訓練目的多個量測資料、關聯於量測資料的參考資料以及相應的品質量測進行訓練。
根據本發明的第二裝置有助於根據元件的區域的量測資料和與量測資料相關的參考資料來直接確定微影製程的元件的品質量測。因此,根據本發明的第二裝置以類似於前文所描述的根據本發明的第一裝置的方式,避免量測空間影像以評估用於微影製程的元件的品質。
根據本發明另一態樣,上述問題由申請專利範圍第12項所述的裝置來解決。
揭露了一種用以將使用一量測裝置所記錄的微影製程的一元件的一區域的量測資料以及關聯於量測資料的參考資料轉換為元件的品質量測的裝置,其中模型已使用用於訓練目的多個量測資料、關聯於量測資料的參考資料以及相應的品質量測進行訓練。
如前段所定義的根據本發明的裝置允許量測資料的量測與用以將量測資料以及與量測資料相關聯的參考資料轉換為微影製程的元件的品質量測的訓練模型的應用解耦。因此,缺陷圖的確定可在時間和空間上與元件的區域的量測資料的記錄分開。因此,舉例來說,所討論的根據本發明的裝置可使用檢查工具的量測資料和參考資料作為輸入資料,並可基於這些資料來決定品質量測,品質量測作為進一步處理該元件的基礎。
藉由考慮元件的各個區域的品質量測,可將元件的一區域的品質量測轉換為元件的品質量測。
相應的品質量測可基於量測資料及相關的參考資料產生。此外,可基於模擬資料和相關參考資料產生相應的品質量測。相關的參考資料可包含量測的參考資料及/或模擬的參考資料。此外,可使用預測器來產生評估,而不是來自設計資料的參考資料。此外,預測器係設計以基於評估和量測裝置的量測資料來決定元件的區域中是否存在缺陷。
品質量測可包含來自以下群組中的至少一元件:元件的區域的一影像與元件的區域的參考影像之間的差異影像、包含有關在進行微影製程時在一缺陷圖中所指定的缺陷的影響的一資訊項目的元件的區域的合格缺陷圖、關於元件的區域是否可用於微影製程的一是/否陳述。
差異影像指出元件的一區域的每個畫素或整個元件與參考影像的偏差。合格的缺陷圖針對元件的一區域的缺陷圖的每一畫素或整個元件,指定畫素與參考資料的偏差對微影製程的影響。偏差可用絕對值(absolute terms)、相對值(relative terms)或偏差概率來考慮。關於元件的一區域或整個元件的是/否陳述描述了區域或元件(例如光罩)是否產生可見或作用於晶圓上的缺陷。
用以轉換量測資料的模型適合於品質量測。
量測資料可包含來自以下群組的至少一元件的資料:掃描粒子顯微鏡、掃描探針顯微鏡和干涉儀,及/或參考資料可包含元件的無缺陷區域的資料。
根據本發明的裝置的優點在於,修復工具可用於微影製程的元件的品質評估,無相對於第二量測裝置需被傳輸和對準的待分析的元件。
量測資料可包含掃描電子顯微鏡的量測資料,及/或參考資料可包含空間影像。空間影像可包含量測的空間影像或模擬的空間影像。量測資料可轉換為空間圖像,及/或參考資料可包含參考空間圖像。此外,參考資料可包含微影製程的元件的設計資料。
量測資料、與量測資料相關聯的參考資料、和合格的缺陷圖可具有相同數量的畫素。
空間影像可包含具有多樣化的光學成像條件的一系列空間影像,例如,該系列空間影像可包含空間影像聚焦疊層,及/或參考空間影像可包含參考空間影像聚焦疊層。
微影製程的元件的區域可包含具有缺陷的區域及/或區域可包含已修復的缺陷。
用於訓練目的的量測資料可包含元件的一無缺陷區域的量測資料、可包含具有一已修復缺陷的元件的一區域的量測資料、及/或可包含具有一不完全修復缺陷的元件的一區域的量測資料。
為了全面地訓練用於轉換量測資料的模型,若量測資料源自無缺陷、缺陷被修復及/或其缺陷被部分地(即不完全地)修復的元件的區域,則是有利的。與源自上述元件的不同區域的量測資料相關聯的參考資料可包含元件的基本上無誤差但有意近似的區域的理想或近似影像,其中成像可被量測或模擬。作為替代或補充,參考資料可包含待成像的光罩的結構或圖案元件的合適描述,例如形式為多邊形列或光柵影像的設計資料。
裝置可包含一掃描電子顯微鏡,其實施以掃描微影製程的元件且其更實施以修復微影製程的元件的一缺陷。
一方面,電子束適用於於微影製程的元件的區域的高準確度掃描,另一方面,可在電子束的協助下有效地修復元件的缺陷。若有可能在提供參考資料的情況下將電子束所產生的影像轉換成品質量測,則可再次提高改進的掃描電子顯微鏡的能力,在此基礎上可作出元件是否需要修復的決定。
轉換模型可包含機器學習的模型。用以轉換量測資料的模型可包含機器學習的模型。
用於轉換量測資料的模型的訓練可包含:將用於訓練目的的量測資料以及關聯於量測資料的參考資料與相應的品質量測進行比較。
相應品質量測的產生可包含:量測相應的已量測品質量測或模擬相應的已模擬品質量測。量測相應的已量測品質量測可包含量測空間影像並將空間影像與參考空間影像進行比較。參考空間影像可包含量測參考空間影像及/或模擬參考空間影像。模擬相應的已模擬品質量測可包含模擬空間影像並將後者與參考空間影像進行比較。
模擬空間影像的產生可包含:藉由數值地求解馬克士威方程來執行嚴格的模擬,其中使用微影製程的元件的設計資料及/或修改的設計資料作為輸入資料,及/或在克希何夫模型的協助下進行模擬,其中使用微影製程的元件的設計資料及/或修改的設計資料作為輸入資料。
將用於訓練目的的量測資料以及關聯於量測資料的參考資料與相應的品質量測進行比較可包含逐畫素的比較。此外,可基於臨界尺寸(CD)及/或影像對比來實現用於訓練目的的量測資料以及關聯於量測資料的參考資料與相應的品質量測的比較。
量測資料的畫素、用於訓練目的的量測資料的畫素,關聯於量測資料或用於訓練目的的量測資料的參考資料的畫素、以及相應的品質量測的畫素可包含灰階值表示。畫素的位元數可包含1位元到8位元的範圍,較佳為1位元到16位元、更佳為1位元到32位元、且最佳為2位元到64位元。
裝置可包含計算單元,其實施為執行已訓練的轉換模型及/或用於轉換目的的已訓練模型。裝置可包含計算單元,其進一步實施為訓練轉換模型及/或用於轉換目的模型。
機器學習模型可包含來自以下群組的至少一元件:參數映像、人工神經網絡(ANN)、深度神經網絡(DNN)、時間延遲神經網絡、卷積神經網絡(CNN)、循環神經網絡(RNN)、長短期記憶(LSTM)網絡和生成模型。
機器學習模型可包含:(a)至少一編碼器塊,用於根據元件的第一資料或元件的區域的量測資料來決定資訊承載特徵;(b)至少一解碼器塊,用於將第一資料轉換成第二非量測資料(其對應使用第二量測裝置對元件進行量測的量測資料)、或用以將量測資料及關聯於量測資料的參考資料轉換為品質量測,其包含關於執行微影製程時元件的區域的影響的資訊。
機器學習模型可包含:(a)兩個或更多個編碼器層,用以從第一資料決定資訊承載特徵;(b)兩個或多個解碼器層,用以產生第二非量測資料,其對應於第二量測裝置對元件進行檢查的量測資料。
機器學習模型可包含:(a)兩個或更多個編碼器層,用以根據區域的量測資料來決定資訊承載特徵;(b)兩個或多個解碼器層,用以將區域的量測資料和與量測資料相關的參考資料轉換為元件的品質量測。
裝置可實施為適合於轉換模型及/或用於將量測資料轉換為第二非量測資料的預定準確度的模型的多個編碼器層及/或解碼器層。
此外,裝置可實施為適合轉換模型及/或用於將量測資料轉換為元件的缺陷圖的預定準確度的模型的多個編碼器層及/或解碼器層。
轉換模型及/或模型的至少一層的輸出可使用作為轉換模型及/或用以轉換量測資料的模型的至少一非相鄰層的輸入。
轉換模型及/或用於轉換量測資料的模型可實施為提供編碼器的至少一層的輸出作為解碼器的至少一層的輸入。編碼器層的輸出可提供給解碼器的一相應層作為輸入。
藉由將一或多個編碼器層的結果提供給轉換模型及/或用於轉換量測資料的模型的一或多個相應解碼器層,至少部分地克服了中心特徵層的瓶頸。結果,可保持輸入資料的空間資訊,導致在轉換模型及/或模型的編碼器的輸出處的輸出資料的更高空間準確度。作者O. Ronneberger、P. Fischer及T. Brox在文章「U-Net:用於生物影像分割的卷積網絡(U-Net: Convolutional networks for biomedical image segmentation)」(18
thIntern. Conf. on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 5-9 October 2015, in Munich)中藉由醫學資料的畫素精確分割來驗證此關係。
轉換模型及/或用於轉換量測資料的模型可實施為提供編碼器的至少一層的輸出作為編碼器的至少一個下一層或更遠的一層的輸入,及/或解碼器的至少一層的輸出可提供作為解碼器的至少一個下一層或更遠的一層的輸入。
通過縮短編碼器的兩個非相鄰卷積層的輸出,將非相鄰編碼器層的結果結合(例如,相加或連接)並一起提供給後續編碼器層。因此,可使用具有更多層的生成模型的形式可靠地訓練轉換模型或用於轉換的模型,其有助於更高的成像準確度。作者K. He等人在文章「用於影像識別的深度殘差學習(Deep residual learning for image recognition)」(IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 26 – July 1, 2016, Las Vegas, Nevada, USA, pages 770-778)中報告了有關藉由層數高達152層的編碼器-解碼器架構的前饋佈線來改良完全卷積網絡FCN的訓練行為。
轉換模型及/或用於轉換量測資料的模型可實施以在塊中配置執行相同功能的兩個或更多個層,並將在塊的輸入提供給塊內的每一層,並在塊的輸出處結合塊的每一層的輸出。
塊內的層可包含卷積層。此外,塊可包含在每一層之後的組合節點,組合節點組合兩個或更多個層的輸出。塊可包含四層和四個組合節點。
轉換模型及/或用於轉換量測資料的模型可實施為將一或多塊安裝到編碼器中及/或將一或多塊安裝到解碼器中並使用編碼器的一塊或複數塊作為解碼器的一塊或複數塊的額外輸入。
轉換模型及/或用於轉換量測資料的模型(其包含兩個或更多個前文所定義的塊)擴展了編碼器-解碼器架構內的資料流。結果,與傳統編碼器-解碼器系統相比,首先改善了空間解析度,其中僅相鄰層連接,並同時改進了轉換模型或模型的可學習性。作者S. Jégou等人在出版物「一百層Tiramisu:用於語意分割的全卷積DenseNets (The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmention)」(Computer Vision and Pattern Recognition, December 5, 2016, arXiv: 1611.09326)中描述了前文定義的塊及其在CNN中的安裝,用以解決語義影像分割的問題。
可將第一和至少一個第二精鍊模組插入到轉換模型及/或用以轉換量測資料的模型的編碼器中,可在每一分群步驟後獲得輸出作為輸入,其中至少一個第二精鍊模組額外地接收第一精鍊模組的輸出。
可將第一和至少一個第二精鍊模組插入編碼器中,可在每一匯集步驟後獲得輸出作為輸入,其中至少一個第二精鍊模組額外地接收第一精鍊模組的輸出。精鍊模組可包含輸出卷積單元。
精鍊模組使用編碼器內的卷積操作的不同細節階段並將這些階段融合,以進行高度解析的預測。作者G. Lin等人在文章「RefineNet:使用多路徑精鍊網路進行高解析度語義分割(RefineNet: Multi-path refinement networkd for high-resolution semantic segmentation)」(IEEE Cent. on Computer Vision and Pattern Recognition (CVPR), June 26 – July 1, 2016, Las Vegas, Nevada, USA, arXiv preprint arXiv: 1611.09326)中描述了上述精鍊模組及其在CNN(卷積神經網絡)的編碼器中的用途。
如果品質量測包含關於元件的區域是否可用於微影製程的是/否陳述,則用於轉換量測資料的模型可包含編碼器塊和映像模型,其將量測資料的資訊承載特徵映像至類別概率。編碼器塊可包含複數個卷積運算和匯集運算。映像模型可包含多層感知器(MLP)。在上述邊界條件下,用於轉換量測資料的模型也可包含深度卷積神經網絡(CNN),其在其輸出處具有一或多個完全連接層。在完全連接層的情況下,提供一層的輸出作為所有後續層的輸入。
根據本發明另一態樣,上述問題由申請專利範圍第19項所述的方法來解決。
用以檢查微影製程的一元件的至少一區域的方法可包含以下步驟:(a)以一量測裝置記錄區域的量測資料;以及(b)應用用以將量測資料及關聯於量測資料的參考資料轉換為元件的一品質量測的一模型;(c)其中模型已使用用於訓練目的多個量測資料、關聯於量測資料的參考資料以及相應的品質量測進行訓練。品質量測可包含關於在執行微影製程時元件的區域的影響的資訊項目。
步驟b可更包含以下步驟:基於品質量測釋出用於微影製程的元件。
評估品質量測可包含將缺陷或修復後留下的缺陷與一或多個預定臨界值進行比較。基於比較,有可能確定元件是否可釋出以在微影製程中使用、是否應進行進一步的修復程序、或是否應該丟棄。
訓練轉換模型及/或用於轉換量測資料的模型可包含監督式學習。監督式學習在C.M. Bishop的書「模式識別與機器學習(Pattern Recognition and Machine Learning)」(Springer 2006, ISBN-10: 0-387-31073-8)中有所描述。
訓練轉換模型及/或用於轉換量測資料的模型可包含決定機器學習模型的可學習參數。訓練轉換模型及/或用以轉換的模型可包含決定卷積層和反卷積層的濾波器遮罩的條目(entries)。
用於轉換目的的模型的訓練可包含:(a)在第一步驟中使用元件的區域的第一數量的量測資料(用於訓練目的)、關聯於量測資料的參考資料、以及相應的品質量測來訓練用於轉換目的的模型,其中量測資料和相關的參考資料包含模擬的量測資料和模擬的相關參考資料;以及(b)在第二步驟中使用元件的區域的第二數量的量測資料(用於訓練目的)、關聯於量測資料的參考資料、以及相應的品質量測來訓練用於轉換目的的模型,其中量測資料包含已量測的量測資料,且相關的參考資料包含已量測的參考資料,且其中第一步驟在第二步驟之前執行。
用於訓練目的的第一數量的資料記錄可大於用於訓練目的的第二數量的資料記錄。用於訓練目的的第一數量的資料記錄可比用於訓練目的的第二數量的資料記錄大10倍。
此外,訓練用於轉換目的的模型可包含執行步驟a及步驟b至少兩次。
在將掃描電子顯微鏡的量測資料轉換成空間影像以及產生合格的缺陷圖的基礎上、或在基於用於微影光罩的掃描電子顯微鏡的量測資料及相應的參考資料的品質量測的基礎上,更詳細地解釋了根據本發明的裝置和根據本發明的方法的當前較佳具體實施例。然而,根據本發明的方法和裝置並不限於掃描電子顯微鏡的量測資料的應用。相反地,根據本發明的裝置和方法可用以轉換任何掃描粒子顯微鏡或光學顯微鏡的量測資料。此外,本申請案中所描述的裝置和方法可用以轉換量測資料或從掃描探針顯微鏡的量測資料產生合格的缺陷圖或品質量測。
此外,根據本發明的裝置和方法的應用不限於下文描述的光罩;這些僅應視為微影製程的元件的一個例子。相反地,該裝置和方法可應用於微影製程的其他元件,例如奈米壓印微影的模板或模具,其可用以代替光罩。此外,根據本發明的方法和裝置可用以在其處理過程期間評估晶圓的品質。通常,本申請案中描述的裝置和方法可用以分析其缺陷可被成像或其相應的參考資料資料存在的物體。
圖1示意性地顯示了用於修復光罩的缺陷的當前工作流程。在第一步驟中,使用光學檢查系統發現微影光罩的缺陷,或更一般地,發現微影製程的一元件的缺陷。接著,使用光學量測系統在必要時詳細量測所識別的缺陷。缺陷可包含光罩的一或多個圖案元件的放置誤差。此外,缺陷可包含光罩的一或多個圖案元件的缺失或多餘材料。此外,缺陷可包含超過微影光罩的一或多個圖案元件的臨界尺寸(CD)的限制。舉例來說,光學量測系統可包括AIMS
TM(空間影像計量系統)工具、WLCD工具及/或PROVE
®工具。
在下一步驟中使用修復工具修復已識別的缺陷。修復工具的示例將在圖5的上下文中作詳細的描述。
在已修復缺陷後,藉由光學量測系統再次分析修復的位置,以檢查修復是否已產生預期結果。為此,將修復位置的量測資料與參考資料進行比較。參考資料是微影光罩的一區域的資料,其具有與缺陷區域相同的圖案元件,但是沒有缺陷。作為分析過程的結果,產生缺陷圖或缺陷概率圖。
圖2a的示意圖295示意性地示出了轉換模型205的訓練,其在後續操作期間將由第一量測裝置所量測的量測資料轉換為第二非量測資料。在轉換模型205可從量測資料產生轉換的第二資料之前,必須通過全面的資料記錄或訓練資料記錄來訓練轉換模型205用於此目標。在訓練階段期間,訓練中的轉換模型205或學習轉換模型從用於訓練目的的第一資料235產生轉換的第二資料255的預測。將預測的轉換第二資料255與鏈接到第二量測裝置的訓練資料記錄的相應第二資料265進行比較。這由圖2a中的雙頭箭頭270表示。
用於訓練的量測資料235和量測資料在訓練中的轉換模型205和已訓練的轉換模型的訓練和操作過程中經由輸入層210提供,且訓練中的轉換模型205經由輸出層220輸出轉換的第二資料255的預測。
取決於所選擇的轉換模型,存在用以在訓練階段中擬合轉換模型205的參數的各種方法。已針對DNN(深度神經網絡)建立了「隨機梯度下降」疊代技術,其具有多個參數。在這樣做時,訓練資料重複地「呈現」到學習轉換模型205,即學習轉換模型205使用當前的參數集從用於訓練目的的第一資料235計算轉換的第二資料255的預測,並將轉換後的第二資料255與訓練資料記錄的相應第二資料265進行比較,其中第二資料265鏈接到第二量測裝置。舉例來說,此比較可逐畫素地實現。如果在預測的第二轉換資料255和鏈接到第二量測裝置的相應第二資料265之間出現偏差,則擬合學習轉換模型205的參數。訓練階段通常在達到局部最佳化時結束,亦即,預測的轉換第二資料255與鏈接至第二量測裝置的相應第二資料265的配對的偏差不再變化,或在學習轉換模型205的訓練週期的預定時間預算已用完或在預定數量的訓練步驟之後。或者,當使用單獨的驗證資料記錄時,當驗證準確度顯著下降時(這是轉換模型205過度擬合的指示),可完成轉換模型205的訓練過程。
用於訓練目的的第一資料235可包含由第一量測裝置所量測的量測資料。用於訓練目的的第一資料235還可包含用於第一量測裝置的模擬資料。鏈接到第二量測裝置的相應第二資料265可包含由第二量測裝置所量測的第二資料。此外,鏈接到第二量測裝置的相應第二資料265可包含相應的模擬資料,而不是由第二量測裝置所量測的第二資料。此外,用於訓練目的的第一資料235可包含由第一量測裝置所量測的資料,且鏈接到第二量測裝置的相應的第二資料265可包含第二量測裝置的模擬資料。
圖2b的示意圖290示意性地顯示了已訓練的轉換模型200的操作,其將由第一量測裝置所量測的量測資料230轉換為第二非量測資料250。量測資料230經由輸入層210提供給已訓練的轉換模型200。通過其輸出層220,已訓練的轉換模型200提供第二非量測資料250。
圖3a的示意圖395示意性地顯示了訓練程序,以訓練在用於針對其目標轉換量測資料的訓練中的模型305。對於在用於轉換目的的訓練中的模型305,如圖3a所示,訓練資料包含用於訓練目的的量測裝置的量測資料335和與用於訓練目的的量測資料335相關聯的參考資料345作為輸入資料,其提供至學習模型305的輸入層310。學習模型305從用於訓練目的的量測資料335和相關的參考資料345來預測光罩的一區域的品質量測355,或更一般地,預測微影製程的元件的一區域的品質量測355。預測品質量測355與訓練資料記錄的相應品質量測365進行比較。在圖3a中,通過雙頭箭頭370再次闡明了預測品質量測355與相應品質量測365之間的比較。用於轉換量測資料330的學習模型305的訓練程序以與圖2a的上下文中所描述的訓練中的轉換模型205的訓練程序類似的方式來實施。因此,此處參考圖2a的描述。
圖3b的示意圖390示意性地顯示了用以轉換量測資料330的已訓練模型300的操作。量測資料330和相關參考資料340經由輸入層310提供給訓練模型300。在輸出層320的輸出中,訓練模型300提供微影光罩的品質量測350。
在下文中,分別用元件符號200和300表示通用和已訓練的轉換模型或用於轉換目的的模型。學習轉換模型和用於轉換目的的學習模型分別由元件符號205和305表示。
轉換模型200及/或用於轉換目的的模型300可包含機器學習的模型。轉換模型200及/或用於轉換目的的模型300可包含人工神經網路(ANN)。ANN可包含深度神經網路。有利的是,將轉換模型200及/或用以轉換量測資料330的模型300擬合到已轉換的第一資料250或品質量測350的所需預測準確度。舉例來說,擬合轉換模型200或用於轉換量測資料330的模型300可藉由適當選擇機器學習的模型的層數來實現。作為替代或補充,有利的是,擬合轉換模型200及/或用以轉換量測資料330的模型300的功能描述到要解決的目標,具體地說,第一資料230轉換為第二資料250或量測資料330和相關參考資料340轉換為微影光罩的品質量測350。
輸入影像的畫素數目可落在32×32到2048×2048畫素的範圍內。發現224×224到2048×2048畫素的範圍是特別有利的。轉換模型200或用於轉換量測資料330的模型300的輸入層210和310適合於輸入影像的大小。同樣地,轉換模型200或模型300的卷積層和池化層的數量適合於輸入層的大小。此外,轉換模型200和用於轉換量測資料330的模型300的自由模型參數的數量適合於待解決的目標的複雜性。除了模型200、300的訓練之外,這些可在使用之前由驗證資料記錄進行驗證。
圖4示意性地顯示了光學量測系統400或第二量測裝置400的截面,其可用於決定用於訓練目的並鏈接到第二量測裝置400的第二資料265。此外,光學量測系統400可用以產生相關參考資料340、用於訓練目的的相關參考資料345和相應的缺陷圖365,其為用以訓練模型300所需的。因此,光學量測系統400產生針對轉換模型200或用於轉換目的的模型300的用於訓練目的的相應資料265或品質量測365,並另外地產生與量測資料230或用於訓練目的量測資料235相關的參考資料340或用於訓練目的的相關參考資料345。第二量測裝置400或量測裝置400可產生形式為空間影像420的資料265、340和345。此外,空間影像420可用作用以建立相應品質量測365的輸入資料。
裝置400包含電腦系統410,其經由連接480而鏈接到量測裝置450。連接480可以有線或無線的方式實現。在圖4所示的示例中,量測裝置450藉由相互作用460來檢查微影光罩470。光罩470可為透射或反射光罩。光罩470可包含任何光罩類型。圖4的光罩470為微影製程的元件470的示例。
量測裝置450可為成像量測裝置450。在圖4所示的示例中,量測裝置450包含AIMS
TM或AIMS
TMEUV,即用於極紫外波長範圍的AIMS。然而,量測裝置450也可能實施為PROVE
®工具(圖4中未示出)。使用在光化波長或光化波長附近的光的AIMS
TM較佳作為量測裝置450,因為量測裝置450產生的光罩470的空間影像非常接近光罩470的影像(其由光罩470在微影製程期間在施加到晶圓的光阻劑中產生)。
量測裝置450可用以藉由改變焦平面來產生空間影像聚焦疊層。結果,量測裝置450有助於光罩470的空間影像聚焦疊層的量測。
除了藉由與光子的相互作用460來分析光罩470並產生空間影像420的成像量測裝置450之外,量測裝置450也可在中性或帶電粒子束(圖4中未示出)的協助下與光罩470相互作用460,且可基於反射及/或透射的中性及/或帶電粒子產生與第二量測裝置400鏈接的相應第二資料265或用於樣品(例如微影光罩470)的相應品質量測365的量測資料。
電腦系統410通過連接480控制量測裝置450。此外,電腦系統410通過連接480接收量測裝置450的量測資料。圖4的電腦系統410可從量測裝置450的量測資料產生空間影像420。
此外,圖4所示的光學量測系統400或第二量測裝置400的電腦系統410包含介面435,其中電腦系統410可藉由介面435與另外的量測裝置交換資料。介面435可為連接到內部網路或網際網路的無線或有線通訊界面,或可將該無線或有線通訊界面提供給另一個量測裝置。此外,介面435可包含資料媒體驅動器。
此外,電腦系統410可包含機器學習的模型,例如轉換模型200及/或用於轉換目的的模型300。此外,電腦系統410可包含記憶體440,其儲存鏈接到第二量測裝置400的相應第二資料265及/或相應的品質量測365,即用於訓練中的轉換模型205及/或訓練中的用於轉換目的的模型305的訓練資料記錄的第二部分。電腦系統410可藉由介面435接收訓練資料記錄的第一部分,即,用於訓練目的的第一資料235及/或用於訓練目的的量測資料335以及與用於訓練目的的量測資料335相關的參考資料345。可基於這些訓練資料針對其目標來訓練轉換模型200及/或模型300。
為了能夠有效地訓練並也有效地操作轉換模型200或模型300,有利的情況為圖4中所示的示例性電腦系統410包含一或多個有能力的圖形處理器(GPU,圖形處理單元)或其他目標最佳化電腦硬體(例如Google的張量處理單元(TPU)(圖4中未示出)。
如前文所解釋,裝置400可用以產生鏈接到第二量測裝置400的相應第二資料265,該第二資料能夠使用作為用以訓練轉換模型200的訓練資料記錄的一部分。此外,裝置400或第二量測裝置400可用以產生相應的品質量測365,其為用於轉換目的的模型300的訓練資料記錄的一部分。此外,第二量測裝置400可用以決定與用於訓練目的的量測資料335相關的參考資料345。一方面,藉由使用量測裝置450的量測,可產生相關的參考資料345。接著,可得到形式為參考空間影像的相關參考資料345。另一方面,電腦系統410可藉由從微影光罩470的設計資料490模擬來產生與第二量測裝置400相關的參考資料345。設計資料490可儲存在電腦系統410的記憶體440中或由電腦系統410經由介面435接收。
用以確定用於微影光罩470的相應品質量測365的當前常用方法針對要在第一具體實施例的第一步驟中檢查的光罩470的一區域提供了形式為參考空間影像的相關參考資料345的決定。若光罩470包含許多區域或部分面積,或者至少其中複數個(其包含相同的圖案元件配置),則可選擇光罩470的無缺陷區域以記錄形式為參考空間影像的相關參考資料345。舉例來說,AIMS
TM形式的量測裝置450可用以量測空間影像,因此也可用以量測參考空間影像。
如果具有相同配置的圖案元件的區域或部分面積不在光罩470上重複,或者僅以非常長的間隔重複,則上述用於決定形式為參考空間影像的相關參考資料345的方法(所謂的晶粒到晶粒方法)無法使用或只能在很高的成本下使用,亦即在相對長時間搜尋合適的參考之後。在這種情況下(但也獨立於此)可用以產生參考空間影像的方法是所謂的晶粒到資料庫方法,其中用於訓練目的的相應第二資料265(其鏈接到第二量測裝置400),及/或形式為參考空間影像的相關參考資料345藉由從設計資料490(例如佈局資料)進行光學成像模擬(顯現(rendering))而獲得。在全始(ab initio)或嚴格模擬的協助下,計算光罩470的參考空間影像形式的理想相關參考資料345。
全始模擬考慮了量測裝置450的照明輻射(即入射在光罩470上的電磁波)與光罩470的結構或圖案元件的光學相互作用(散射、繞射、吸收、反射),以及隨後基於馬克士威方程式以數字嚴謹的方式將光罩470上游或下游的透射及/或反射電磁場傳播到量測裝置450的偵測器平面中。這意味著通過適當的數值方法在三個維度上針對各自的邊界條件求解馬克士威方程。這代表了特別的挑戰,特別是對於光罩470,其結構或圖案由於光罩470的不同材料而對照明輻射呈現為三維。
假設光罩結構為二維且繞射波為自由傳播的簡化模型被稱作「克希何夫模型」或「標量成像模型」。基於克希何夫模型模型對連接至第二量測裝置400的相應第二資料265以及用於訓練目的且關聯於量測資料335的形式為參考空間影像的參考資料345的模擬可加快幾個數量級的速度來進行模擬,儘管它可能不足以準確地成像光罩470的所有缺陷。
圖5顯示了裝置500的一些重要組件的示意剖視圖。裝置500可包含上述第一量測裝置500,用以記錄第一資料230及/或用以記錄用於訓練目的的第一資料235。此外,裝置500可包含用以記錄微影製程的元件的一區域的量測資料330的量測裝置500,例如光罩470。此外,量測裝置500可用以記錄用於訓練目的的量測資料335。量測資料235、335可用作已訓練的轉換模型200及/或已訓練模型300的輸入資料。此外,用於訓練目的的量測資料235、335可使用作為學習轉換模型205及/或學習模型305的輸入資料。
圖5中所示的示例性裝置500包含掃描粒子顯微鏡510,其實施為圖5中的改良掃描電子顯微鏡(SEM)510。電子槍512產生電子束514,其作為聚焦電子束由配置於柱516中的成像元件(未示於圖5)導向至可包含光罩470的樣品520上的位置518上。樣品520配置在樣品台522(或台)上。此外,SEM 510的柱516的成像元件可在樣品520上掃描電子束514。因此,可使用第一量測裝置500的SEM 510的電子束514來記錄或量測第一資料230及/或用於訓練目的的第一資料235。此外,量測裝置500的SEM 510的電子束514可用以記錄量測資料330及/或用於訓練目的的量測資料335。
由樣品520從電子束514反向散射的電子和由電子束514在樣品520中產生的次要電子由偵測器524記錄。配置在電子柱516中的偵測器524稱作「透鏡內偵測器」。在各種具體實施例中,偵測器524可安裝在柱516中。偵測器524由裝置500的控制裝置526控制。
控制裝置526及/或電腦系統528可在樣品520或光罩470上掃描電子束514,以分析光罩470及/或檢查光罩470的區域,例如微影光罩470的已修復區域。此外,SEM 510的控制裝置526接收偵測器524的量測資料。控制裝置526可從量測資料產生影像,該影像呈現於監視器580上。此外,裝置500的控制裝置526可藉由電子束514修改樣品520的曝光。因此,舉例來說,可沿光束方向修改電子束514的焦點。此外,控制裝置526或電腦系統528可改變電子束514在樣品520上的入射角。為此目的,除了在樣品平面中的移動選項外,樣品台522可繞電子束514的軸傾斜(未示於圖5)。
已訓練的轉換模型200不僅可產生看起來像是由AIMS
TM量測的空間影像,而且也可從第一資料的綜合資料記錄產生空間影像聚焦疊層。
作為替代或補充,SEM 510可具有用於反向散射的電子或用於次要電子的偵測器530,該偵測器配置在電子柱516的外部。偵測器530同樣由控制裝置526控制。
除了分析和檢查樣品520之外,SEM 510的電子束514也可用以修改光罩470的圖案的至少一或多個圖案元件。為此,控制裝置526或電腦系統528可包含一或多個演算法,其促使掃描電子顯微鏡510修復光罩470的一或多個圖案元件。圖5的示例性掃描電子顯微鏡510具有三個不同的供應容器535、540和545,用以修復光罩470的圖案元件。
舉例來說,第一供應容器535儲存第一前驅物氣體,例如金屬羰基(例如六羰基鉻(Cr(CO)
6))、或金屬醇鹽(例如TEOS(四乙氧基矽烷))。在儲存於第一供應容器535中的前驅物氣體的協助下,圖案元件的缺失材料可在局部化學反應中沉積在光罩470上,其中SEM 510的電子束514作用為能量供應器,以在材料應沉積於光罩470上的位置處將儲存在第一供應容器535中的前驅物氣體分離。這意味著電子束514和前驅物氣體的聯合提供導致EBID(電子束誘導沉積)程序被執行,以在光罩470上局部沉積吸收材料。
電子束514可聚焦到數奈米的光點直徑上。因此,EBID程序允許空間解析度在低兩位數奈米範圍內的吸收材料的局部沉積。
在圖5所示的裝置500中,第二供應容器540儲存蝕刻氣體,這使得有可能執行局部電子束誘導蝕刻(EBIE)程序。在電子束誘導蝕刻程序的協助下,可從光罩470移除一或多個圖案元件的過量吸收材料。舉例來說,蝕刻氣體可包含二氟化氙(XeF
2)、氯氣(Cl
2)、氧氣(O
2)、臭氧(O
3)、水蒸氣(H
2O)、過氧化氫(H
2O
2)、一氧化二氮(N
2O)、氮氧化物(NO)、二氧化氮(NO
2)、硝酸(HNO
3)、氨(NH
3)或六氟化硫(SF6)。
添加劑氣體可儲存在第三供應容器545中,該添加劑氣體必要時能夠添加到第二供應容器540中保持可用的蝕刻氣體中或添加到儲存在第一供應容器535中的前驅物氣體中。或者,第三供應容器545可儲存第二前驅物氣體或第二蝕刻氣體。
在圖5所示的掃描電子顯微鏡510中,每一供應容器535、540和545具有其自己的控制閥536、541和546,以監視或控制每單位時間提供的相應氣體的量,即電子束514在樣品520上入射的位置518處的氣體體積流量。控制閥536、541和546由控制裝置526控制和監視。使用它,有可能設定在處理位置518處提供的氣體的分壓條件,以在廣泛的範圍內改變一個或多個圖案元件。
此外,在圖5中的示例性SEM 510中,每一供應容器535、540和545具有其自己的氣體供給管線系統537、542和547,其在電子束514在樣品520上的入射點518附近以噴嘴538、543和548結束。
供應容器535、540和545可具有它們自己的溫度設定元件及/或控制元件,這允許相應的供應容器535、540和545的冷卻和加熱。這使得有可能在個別最佳溫度下儲存且特別是提供前驅物氣體及/或蝕刻氣體(圖5中未示出)。控制裝置526可控制供應容器535、540、545的溫度設定元件和溫度控制元件。當藉由EBID及/或EBIE程序來處理樣品520或光罩470時,供應容器535、540和545的溫度設定元件可進一步用以藉由選擇適當的溫度來設定儲存在其中的前驅物氣體的蒸氣壓。
圖5中所示的掃描電子顯微鏡510可在環境條件下或在真空室550中操作。修改光罩470的圖案元件需要相對於環境壓力減小在真空室550中的壓力。為此目的,圖5中的SEM 510包括泵系統552,用於產生和維持真空室550中所需的減壓。使用關閉的控制閥536、541和546,在真空室550中達到小於10
-4Pa的殘餘氣體壓力。泵系統552可包單獨的泵系統,用於真空室550的上部554以提供SEM 510的電子束514以及用於下部556或反應室556(未示於圖5)。
另外,圖5中所示的示例性裝置500包括掃描探針顯微鏡560,其在裝置500中以掃描力顯微鏡560或原子力顯微鏡(AFM)560的形式實施。掃描探針顯微鏡560為裝置500的選擇性組件。使用掃描探針顯微鏡560,有可能分析或檢查光罩470的輪廓,特別是其缺陷或其已修復的缺陷。此外,有可能使用AFM 560來移除光罩470的一個或多個圖案元件的多餘材料。
在圖5的裝置500中繪示了掃描探針顯微鏡560的量測頭562。量測頭562包含保持裝置565。量測頭562藉由保持裝置565固定在裝置500的框架上(未示於圖5)。壓電致動器567有助於壓電致動器567的自由端在三個空間方向上的移動(圖5中未示出),其中壓電致動器567附接到量測頭562的保持裝置565上。彎曲桿570或懸臂570固定在壓電致動器567上的自由端。懸臂570具有一個保持板,用於附接到壓電致動器567。懸臂570的自由端有一個量測尖端572,藉由量測尖端572可探測樣品520。
在圖5的裝置500中,待檢查樣品520(例如,光罩470)固定到樣品台522。待檢查樣品520的樣品表面575指向遠離樣品台522。。舉例來說,樣品520可藉由將樣品520放置在真空或高真空環境中的樣品台522的支承點上或藉由樣品台522和樣品520的導電後側之間的靜電相互作用來固定。此外,樣品520可藉由夾合(圖5中未示出)來保持在樣品台522上。
如圖5中的箭頭所示,藉由定位系統577,樣品台522可相對於AFM 560的量測頭562及/或電子束514的入射點518在三個空間方向上移動。在圖5中的示例中,定位系統577以複數個微操縱器或位移元件的形式實施。樣品台522在樣品平面(即在xy-平面,其垂直於電子束514的光束方向)中的移動可由兩個干涉儀(圖5中未示出)來控制。在替代具體實施例中,定位系統577可另外包含壓電致動器(圖5中未示出)。定位系統577由控制裝置526的信號控制。在替代具體實施例中,控制裝置526並不移動樣品台522,而是移動AFM 560的量測頭562的保持裝置565。此外,控制裝置526有可能執行樣品520在高度(z方向)上的粗略定位,且量測頭562的壓電致動器567有可能執行AFM 560的精確高度設定。控制裝置526可為裝置500的電腦系統528的一部分。
為了藉由AFM的量測尖端572來分析樣品520(例如光罩470)、或為了檢查一區域(例如光罩470的已修復區域),控制裝置526或電腦系統528可具有作用在裝置500上的一或多個演算法。
AFM 560可用以產生第一資料230或用於第一量測裝置500的訓練目的的第一資料235。此外,AFM 560可用以產生量測資料330或用於光罩470的至少一區域的訓練目的的量測資料335。此外,有可能藉由結合由SEM 510的電子束514所量測的資料與由AFM 500的量測頭562所量測的資料來產生第一資料230或用於訓練目的的第一資料235。此外,光罩470的一區域的量測資料330及/或用於訓練目的的量測資料335同樣可藉由結合由SEM 510和AFM 560所量測的資料來合成。藉由結合量測儀器510和560的量測資料,有可能產生樣品520的真實三維影像。
第一量測裝置500的電腦系統528或量測裝置500包含介面582,藉由該介面,裝置500可與第二量測裝置400交換資料。此外,第一量測裝置500的電腦系統528或量測裝置500具有記憶體585。已訓練的轉換模型200及/或用於轉換目的的訓練模型300可儲存於記憶體585中。第一量測裝置500的電腦系統528可應用已訓練的轉換模型200,以例如將由SEM 510的電子束514所量測的第一資料230轉換為第二非量測資料250。在圖5所示的示例中,第二資料250包含光罩470的一區域或一部分的空間影像。
與量測資料330相關聯的參考資料340可儲存於量測裝置500的電腦系統528的記憶體585中。電腦系統528可經由介面582接收相關聯的參考資料340。此外,用於轉換目的的訓練模型300可儲存於電腦系統528的記憶體585中。因此,量測裝置500的電腦系統528被置於使用用於轉換目的訓練模型300的位置,用以從量測資料330(其例如由SEM 510所量測)及儲存的相關參考資料340來預測光罩470的一區域的品質量測350,或用以將輸入資料(即量測資料330和參考資料340)轉換為品質量測350。
與第二量測裝置400鏈接的相應第二資料265可儲存於第一量測裝置500的電腦系統528的記憶體585中,作為轉換模型200的訓練資料記錄的一部分。結果,第一量測裝置500的電腦系統528滿足用於訓練轉換模型200以用於其輸出的所有前提條件,亦即將第一資料230轉換為轉換的第二非量測資料250。這意味著電腦系統528可在儲存於記憶體585中的訓練資料記錄的協助下訓練轉換模型200。為此,若(如前文所解釋)電腦系統528包含一或多個有能力的圖形處理器及/或其他專用硬體(未示於圖5),則是有利的。
此外,除了量測資料330和相關的參考資料340之外,相應的品質量測365也可儲存在量測裝置500的電腦系統528的記憶體585中。因此,量測裝置500的電腦系統528可基於量測資料335(用於訓練目的)以及相關參考資料345(作為輸入資料)以及儲存的相應品質量測365(作為模型305在訓練中預測的品質量測355的比較資料)來訓練模型300。
圖5的裝置500可被認為是用以記錄第一資料230或用於訓練目的的第一資料235的第一量測裝置500。然而,也有可能將裝置500的SEM 510及/或AFM 560解釋為第一量測裝置500。此外,裝置500可被認為是用以記錄光罩470的一區域的量測資料的量測裝置。然而,也有可能將裝置500的SEM 510及/或AFM 560視為用以記錄光罩470的一區域的量測資料的量測裝置。
訓練中的轉換模型205的訓練資料記錄較佳為包含10
3到10
8個資料對。訓練中模型305的訓練資料記錄同樣較佳為包含10
3到10
8個資料三元組。
圖6的流程圖600示意性地顯示了根據本申請案中描述的本發明的第一示例性具體實施例的用以修復光罩470的缺陷的流程圖。圖6中以較厚邊緣的方法步驟來突顯與當前傳統工作流程相關的修改。工作流程開始於塊610。在步驟620中使用光學量測系統400檢查光罩470(或更一般地,微影製程的元件470)的缺陷,該缺陷先前已由檢查系統發現或識別。
在下一步驟630中,使用修復工具修復微影光罩470(或更一般地,微影製程的元件470)的缺陷。為此,可使用裝置500,特別是使用改進的SEM 510。
在步驟640中由修復工具500量測光罩470的已修復缺陷或已修復位置。與圖1中說明的工作流程相反,光罩470的已修復位置並不是使用光學量測系統400來量測,而是使用修復工具500、510的SEM 510的電子束514。除了SEM 510的電子束514之外,AFM 560的量測尖端572可額外地或替代地用以檢查光罩470的修復位置。這意味著修復工具500、510記錄第一資料230。
於是,在步驟650中使用已訓練的轉換模型200將第一資料230(即,例如,修復工具500的SEM 510的量測資料230)轉換為第二非量測資料250,亦即轉換為對應使用第二量測裝置400或光學量測系統400對光罩470的量測的量測資料250,例如,空間影像420。
在步驟660中,藉由與參考資料(例如由第二量測裝置400產生的參考空間影像)比較來分析已轉換的第一資料250。在下一步驟670中,基於已轉換的第一資料250和參考資料,產生針對光罩470的一合格缺陷圖。合格缺陷圖包含關於當在曝光程序期間光罩470對施加到晶圓的光阻進行成像時的缺陷圖中所指定的缺陷的影響的資訊項目。最後,方法在步驟680結束。
圖7的流程圖700示意性地示出了根據本申請案中所描述的本發明的第二示例性具體實施例的光罩470的缺陷的修復的工作流程。圖7中以較厚邊緣的方法步驟來突顯與當前修復工作流程相關的修改。修復程序的工作流程在塊710處開始。類似於圖1和圖6,在步驟720中使用光學量測系統400檢查光罩470(或更一般地,微影製程的元件470)的缺陷,該缺陷先前已由光學檢查系統發現或識別。
在下一步驟730中,使用修復工具500、510修復微影光罩470的缺陷,或更一般地,修復微影製程的元件470的缺陷。
在步驟740中,由修復工具500、510量測光罩470的已修復缺陷或已修復位置。與圖1中所解釋的工作流程相反,光罩470的已修復位置並不是由光學量測系統400量測,而是使用修復工具500的SEM 510的電子束514。或者,也有可能使用離子束來掃描光罩470的修復位置。此外,也可設想到使用掃描探針顯微鏡(例如圖5的AFM 560)來掃描修復的位置,以決定缺陷修復的成功。最後,也有可能使用帶電粒子束(例如SEM 510的電子束514)和掃描探針顯微鏡(例如裝置500的AFM 560)來掃描光罩470的修復位置。修復工具500、510產生量測資料330。
在步驟750中,提供參考資料340,該參考資料對應於或關聯於使用SEM 510檢查的光罩470的區域的量測資料330。
接著,在步驟760中,藉由應用用於轉換目的的訓練模型300,基於量測資料330和作為輸入資料的相關參考資料340,產生用於微影光罩470的品質量測350。最後,方法結束於步驟770。
圖6的具體實施例和圖7的具體實施例都避免了光學量測裝置400的二次使用。
圖8的示意圖800示意性地顯示了品質量測350的三個不同示例性具體實施例或表現。在第一示例性具體實施例中,品質量測350包含光罩470的量測資料330的影像與光罩470的參考資料340的影像之間的一差異影像810。差異影像810具有量測資料330的影像和參考資料340的影像之間的差異。可基於差異影像810來確定在晶圓曝光期間光罩470的偏差或缺陷對其操作行為的影響。差異影像包含具有與量測資料330相同或相似數量的畫素的影像,其提供作為用以轉換量測資料330的訓練模型300的輸入資料。
品質量測350包含第二表現形式中的合格缺陷圖820。與差異影像810不同,形式為合格缺陷圖820的品質量測350包含關於缺陷圖中指定的缺陷的影響的資訊項目,該缺陷在使用光罩470進行微影製程時發生。根據一或多個預定臨界值,可基於合格缺陷圖820來確定應使用所考慮的光罩470來做什麼。一般來說,合格缺陷圖820包含具有多個畫素的二維影像,其對應於或非常類似於量測資料330的影像或輸入影像。
然而,也有可能以列表的形式來實現合格的缺陷圖,其以表格的形式擷取光罩470的一區域或整個光罩470的已識別缺陷。在此處,合格缺陷圖820可包含例如缺陷的質心位置、其相對於相鄰圖案元件的位置、缺陷類型、缺陷尺寸和缺陷的影響,例如相對於曝光光罩470的掃描器的參數設定。可使用分類的形式來評估缺陷的影響。
品質量測350在第三示例性具體實施例中具有是/否陳述830的形式。是/否陳述830可包含關於光罩470的一區域或整個光罩470是否可用於微影製程的陳述。在此示例性具體實施例中,訓練模型300基於量測資料330和參考資料提供關於光罩470的進一步使用的數位陳述。如果品質量測350以是/否陳述830的形式存在,則將模型300擬合至品質量測350且在其輸出處具有分類器。
圖9的流程圖900闡明了本申請案中所描述的根據本發明的方法的第一示例性具體實施例。方法開始於步驟910。在第一步驟920中,由第一量測裝置500、510、560記錄微影製程的元件470的第一資料230。
在第二步驟930中,將第一資料230轉換為第二非量測資料250,其對應於使用第二量測裝置400對元件470進行檢查的量測資料420,其中使用轉換模型200來實現轉換,轉換模型200已使用用於訓練目的的多個第一資料235和與其對應的第二資料265(其鏈接到第二量測裝置400)進行訓練。方法最終在步驟940結束。
圖10的流程圖1000再現了本申請案中所描述的根據本發明的方法的第二示例性具體實施例。方法開始於步驟1010。在第一步驟1020中,由量測裝置500、510、560記錄微影製程的元件470的一區域的量測資料330。
在第二步驟1030中,模型300用以將量測資料330以及關聯於量測資料330的參考資料340轉換為元件470的品質量測350,其中品質量測包含關於元件470的區域在進行微影製程時的影響的資訊項目。模型300已使用用於訓練目的的多個量測資料335、與量測資料335相關聯的參考資料345、和相應的品質量測365進行訓練。最後,方法在步驟1040結束。
200:轉換模型
205:轉換模型
210:輸入層
220:輸出層
230:第一資料
235:第一資料
250:第二資料
255:第二資料
265:第二資料
270:比較
290:示意圖
295:示意圖
300:訓練模型
305:模型
310:輸入層
320:輸出層
330:量測資料
335:量測資料
340:參考資料
345:參考資料
350:品質量測
355:品質量測
365:品質量測
370:比較
390:示意圖
395:示意圖
400:第二量測裝置
410:電腦系統
420:量測資料
435:介面
440:記憶體
450:量測裝置
460:相互作用
470:元件
480:連接
490:設計資料
500:裝置
510:量測裝置
512:電子槍
514:電子束
516:柱
518:位置
520:樣品
522:樣品台
524:偵測器
526:控制裝置
528:電腦系統
530:偵測器
535:供應容器
536:控制閥
537:氣體供給管線系統
538:噴嘴
540:供應容器
541:控制閥
542:氣體供給管線系統
543:噴嘴
545:供應容器
546:控制閥
547:氣體供給管線系統
548:噴嘴
550:真空室
552:泵系統
554:上部
556:下部
560:量測裝置
562:量測頭
565:保持裝置
567:壓電致動器
570:懸臂
572:量測尖端
575:樣品表面
577:定位系統
580:監視器
582:介面
585:記憶體
600:流程圖
700:流程圖
800:示意圖
900:流程圖
1000:流程圖
下文的詳細說明將參照附圖描述本發明的當前較佳示例性具體實施例,其中:
圖1示意性地顯示了用以評估微影製程的元件的品質的當前工作流程;
圖2a示意性地顯示了在訓練階段期間具有輸入層、輸出層和相關輸入和輸出資料的轉換模型的示例;
圖2b示意性地顯示了在操作階段期間的圖2a的示例性轉換模型;
圖3a示意性地顯示了在訓練階段期間具有輸入層、輸出層和相關輸入資料和輸出資料的用於轉換目的的模型的示例;
圖3b示意性地顯示了在操作階段期間用於圖3a的轉換目的的模型;
圖4示意性地顯示了通過第二量測裝置的截面;
圖5示意性地顯示了通過根據本發明的裝置的截面;
圖6示意性地顯示了本申請案中所描述的本發明第一具體實施例的工作流程相對於圖1中所解釋的工作流程的變化;
圖7示意性地顯示了本申請案中所描述的本發明第二具體實施例的工作流程相對於圖1中所描述的工作流程的變化;
圖8示意性地闡明了品質量測的各種表示;
圖9顯示了用以在一已訓練轉換模型的協助下藉由從第一資料產生第二非量測資料來分析微影製程的元件的第一方法的流程圖,其中第二非量測資料對應由第二量測裝置對元件進行的量測的量測資料,第一資料由第一量測裝置所量測;以及
圖10顯示了用以藉由在一已訓練模型的協助下將量測裝置的量測資料和相關的參考資料轉換成品質量測來檢查微影製程的元件的元件的至少一區域的第二方法的流程圖。
600:流程圖
Claims (21)
- 一種用以檢查一微影製程的一元件的至少一區域的裝置,包含:a.用以記錄該至少一區域的量測資料的一量測裝置,其中該微影製程的該元件包含一微影光罩及/或用於奈米壓印技術的一模板;以及b.用以將該量測資料及關聯於該量測資料的參考資料轉換為該元件的一品質量測的一模型,該品質量測包含有關在進行一微影製程時該元件的該至少一區域的影響的一資訊項目;c.其中該模型已使用用於訓練目的多個量測資料、關聯於該量測資料的參考資料以及相應的品質量測進行訓練。
- 一種用以將使用一量測裝置記錄的一微影製程的一元件的至少一區域的量測資料以及關聯於該量測資料的參考資料轉換為該元件的一品質量測的裝置,其中該微影製程的該元件包含一微影光罩及/或用於奈米壓印技術的一模板,該裝置包含:用以將該量測資料及關聯於該量測資料的參考資料轉換為該元件的一品質量測的一模型,該品質量測包含有關在進行一微影製程時該元件的該至少一區域的影響的一資訊項目;其中該模型已使用用於訓練目的多個量測資料、關聯於該量測資料的參考資料以及相應的品質量測進行訓練。
- 如申請專利範圍第1項或第2項所述的裝置,其中該相應的品質量測係基於用於訓練目的之量測資料及相關的參考資料產生。
- 如申請專利範圍第3項所述的裝置,其中用於訓練目的之該量 測資料包含以下至少一者:量測的資料和模擬的資料,及/或其中相關的參考資料包含以下至少一者:量測的參考資料、模擬的參考資料和設計資料。
- 如申請專利範圍第1至3項中任一項所述的裝置,其中用於訓練目的之該量測資料包含以下至少一者:該元件的一無缺陷區域的量測資料、具有一已修復缺陷的該元件的一區域的量測資料、及具有一不完全修復缺陷的該元件的一區域的量測資料。
- 如申請專利範圍第1至3項中任一項所述的裝置,其中該品質量測包含來自以下群組中的至少一元件:該元件的該區域的一影像與該元件的該區域的一參考影像之間的一差異影像、包含有關在進行該微影製程時在一缺陷圖中所指定的缺陷的影響的一資訊項目的該元件的該區域的一合格缺陷圖、關於該元件的該區域是否可用於一微影製程的一是/否陳述。
- 如申請專利範圍第1至3項中任一項所述的裝置,更包含一預測器,可操作來產生用作參考資料的設計資料的評估,及/或可操作來基於該設計資料和該量測裝置的該量測資料的評估來決定該元件的該至少一區域中是否存在缺陷。
- 如申請專利範圍第1至3項中任一項所述的裝置,其中用以轉換該量測資料的該模型適合於該品質量測。
- 如申請專利範圍第1至3項中任一項所述的裝置,其中該量測資 料及/或用於訓練目的之該量測資料包含以下群組中的至少一元件的資料:一掃描粒子顯微鏡、一掃描探針顯微鏡和一干涉儀。
- 如申請專利範圍第1至3項中任一項所述的裝置,其中該參考資料及用於訓練目的之該參考資料包含以下至少一者:一無缺陷區域的量測資料、一無缺陷區域的模擬資料、設計資料的評估和一無缺陷區域的空間影像。
- 如申請專利範圍第1至3項中任一項所述的裝置,其中該裝置可操作來轉換在一空間影像中的量測資料和在一參考空間影像中的參考資料。
- 如申請專利範圍第10項所述的裝置,其中該空間影像包含以下至少一者:一量測的空間影像、一模擬的空間影像和一空間影像聚焦疊層,及/或其中該參考空間影像包含以下至少一者:一量測的參考空間影像、一模擬的參考空間影像和一參考空間影像聚焦疊層。
- 如申請專利範圍第1至3項中任一項所述的裝置,其中藉由考慮該元件的該各個區域的該品質量測,該裝置可更操作來將該至少一區域的該品質量測轉換為該元件的品質量測。
- 如申請專利範圍第1至3項中任一項所述的裝置,其中該裝置 包含:一掃描電子顯微鏡,其實施以掃描該微影製程的該元件且其更實施以修復該微影製程的該元件的一缺陷。
- 如申請專利範圍第1至3項中任一項所述的裝置,其中該元件的該區域包含以下至少一者:具有一缺陷的區域、具有一已修復缺陷的區域和一具有一不完全修復缺陷的區域。
- 如申請專利範圍第1至3項中任一項所述的裝置,其中用以轉換該量測資料的該模型包含一機器學習模型。
- 如申請專利範圍第16項所述的裝置,其中該機器學習模型可包含至少一超參數。
- 如申請專利範圍第17項所述的裝置,其中該超參數包含以下群組的至少一元件:光罩類型、曝光波長、掃描器的數值孔徑(NA)、掃描器的曝光設定。
- 一種用以檢查一微影製程的一元件的至少一區域的方法,其中該方法包含以下步驟:a.以一第一量測裝置記錄該至少一區域的量測資料,其中該微影製程的該元件包含一微影光罩及/或用於奈米壓印技術的一模板;以及 b.應用用以將該量測資料及關聯於該量測資料的參考資料轉換為該元件的一品質量測的一模型,該品質量測包含有關在進行一微影製程時該元件的該至少一區域的影響的一資訊項目;c.其中該模型已使用用於訓練目的多個量測資料、關聯於該量測資料的參考資料以及相應的品質量測進行訓練。
- 如申請專利範圍第19項所述的方法,其中步驟b更包含以下步驟:基於該品質量測釋出用於該微影製程的該元件。
- 一種電腦程式,其存儲在一非揮發性記憶體上且具有使一電腦系統執行如申請專利範圍第19項或第20項的方法步驟的指令。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018207882.3A DE102018207882A1 (de) | 2018-05-18 | 2018-05-18 | Vorrichtung und Verfahren zur Analyse eines Elements eines Photolithographieprozesses mit Hilfe eines Transformationsmodells |
DE102018207882.3 | 2018-05-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202244607A TW202244607A (zh) | 2022-11-16 |
TWI838795B true TWI838795B (zh) | 2024-04-11 |
Family
ID=68419767
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108117117A TWI774955B (zh) | 2018-05-18 | 2019-05-17 | 用於藉由轉換模型分析微影製程的元件的裝置及方法 |
TW111127070A TWI838795B (zh) | 2018-05-18 | 2019-05-17 | 用於藉由轉換模型分析微影製程的元件的裝置及方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108117117A TWI774955B (zh) | 2018-05-18 | 2019-05-17 | 用於藉由轉換模型分析微影製程的元件的裝置及方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US12001145B2 (zh) |
KR (1) | KR102257964B1 (zh) |
CN (1) | CN110501880B (zh) |
DE (1) | DE102018207882A1 (zh) |
TW (2) | TWI774955B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3598474A1 (en) | 2018-07-19 | 2020-01-22 | FEI Company | Adaptive specimen image acquisition using an artificial neural network |
DE102019209394B4 (de) | 2019-06-27 | 2024-06-20 | Carl Zeiss Smt Gmbh | Verfahren und Vorrichtung zum Überlagern von zumindest zwei Bildern einer fotolithographischen Maske |
MX2022014805A (es) * | 2020-05-26 | 2023-01-18 | Saint Gobain | Metodo para estimar una funcion de calidad de un sustrato transparente de mono o multiples capas. |
DE102020208183A1 (de) | 2020-06-30 | 2021-12-30 | Carl Zeiss Smt Gmbh | Verfahren und vorrichtung zum bearbeiten einer lithographischen maske |
DE102020208883B4 (de) | 2020-07-16 | 2023-06-15 | Carl Zeiss Smt Gmbh | Verfahren und Computerprogramm zur Reparatur einer Maske für die Lithographie |
CN112578646B (zh) * | 2020-12-11 | 2022-10-14 | 上海集成电路装备材料产业创新中心有限公司 | 一种基于图像的离线的光刻工艺稳定性控制方法 |
CN114326328B (zh) * | 2022-01-10 | 2023-05-26 | 厦门大学 | 一种基于深度学习的用于超紫外光刻的模拟仿真方法 |
FR3135554B1 (fr) * | 2022-05-13 | 2024-05-31 | Commissariat Energie Atomique | Procédé et dispositif de traitement d’image pour la localisation de gouttes représentatives de défauts ou irrégularités |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100005041A1 (en) * | 2008-07-07 | 2010-01-07 | Nec Laboratories America, Inc. | Machine learning based volume diagnosis of semiconductor chips |
TW201728897A (zh) * | 2015-11-17 | 2017-08-16 | 克萊譚克公司 | 單一影像偵測 |
TW201740216A (zh) * | 2016-04-15 | 2017-11-16 | Asml荷蘭公司 | 用於調整微影裝置之致動的方法 |
US20180017501A1 (en) * | 2016-07-13 | 2018-01-18 | Sightline Innovation Inc. | System and method for surface inspection |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6466314B1 (en) | 1998-09-17 | 2002-10-15 | Applied Materials, Inc. | Reticle design inspection system |
US6884999B1 (en) * | 2000-10-24 | 2005-04-26 | Advanced Micro Devices, Inc. | Use of scanning probe microscope for defect detection and repair |
KR101159337B1 (ko) * | 2003-01-16 | 2012-06-22 | 에프이아이 컴파니 | 마스크 수정을 위한 전자 빔 프로세싱 |
US7873585B2 (en) * | 2007-08-31 | 2011-01-18 | Kla-Tencor Technologies Corporation | Apparatus and methods for predicting a semiconductor parameter across an area of a wafer |
JP5662123B2 (ja) * | 2010-02-02 | 2015-01-28 | 株式会社日立ハイテクサイエンス | Euvマスク修正装置および方法 |
DE102010025033B4 (de) * | 2010-06-23 | 2021-02-11 | Carl Zeiss Smt Gmbh | Verfahren zur Defekterkennung und Reparatur von EUV-Masken |
DE102011079382B4 (de) | 2011-07-19 | 2020-11-12 | Carl Zeiss Smt Gmbh | Verfahren und Vorrichtung zum Analysieren und zum Beseitigen eines Defekts einer EUV Maske |
US10769320B2 (en) | 2012-12-18 | 2020-09-08 | Kla-Tencor Corporation | Integrated use of model-based metrology and a process model |
US10101670B2 (en) | 2013-03-27 | 2018-10-16 | Kla-Tencor Corporation | Statistical model-based metrology |
DE102014217907B4 (de) | 2014-09-08 | 2018-12-20 | Carl Zeiss Smt Gmbh | Verfahren zum Herstellen einer Maske für den extrem ultra-violetten Wellenlängenbereich und Maske |
CN107004060B (zh) | 2014-11-25 | 2022-02-18 | Pdf决策公司 | 用于半导体制造工艺的经改进工艺控制技术 |
JP6338778B2 (ja) | 2014-12-02 | 2018-06-06 | エーエスエムエル ネザーランズ ビー.ブイ. | リソグラフィ方法及び装置 |
JP2017538156A (ja) | 2014-12-02 | 2017-12-21 | エーエスエムエル ネザーランズ ビー.ブイ. | リソグラフィ方法及び装置 |
US9965901B2 (en) | 2015-11-19 | 2018-05-08 | KLA—Tencor Corp. | Generating simulated images from design information |
US9916965B2 (en) | 2015-12-31 | 2018-03-13 | Kla-Tencor Corp. | Hybrid inspectors |
EP3398123A4 (en) | 2015-12-31 | 2019-08-28 | KLA - Tencor Corporation | ACCELERATED TRAINING OF A MODEL BASED ON AUTOMATIC LEARNING FOR SEMICONDUCTOR APPLICATIONS |
US10648924B2 (en) | 2016-01-04 | 2020-05-12 | Kla-Tencor Corp. | Generating high resolution images from low resolution images for semiconductor applications |
US10181185B2 (en) | 2016-01-11 | 2019-01-15 | Kla-Tencor Corp. | Image based specimen process control |
US10043261B2 (en) * | 2016-01-11 | 2018-08-07 | Kla-Tencor Corp. | Generating simulated output for a specimen |
US10395356B2 (en) | 2016-05-25 | 2019-08-27 | Kla-Tencor Corp. | Generating simulated images from input images for semiconductor applications |
DE102016218452A1 (de) * | 2016-09-26 | 2018-03-29 | Carl Zeiss Smt Gmbh | Verfahren zur Ermittlung eines Abstandes eines ersten Strukturelements auf einem Substrat von einem zweiten Strukturelement |
US10209615B2 (en) * | 2017-05-26 | 2019-02-19 | Xtal, Inc. | Simulating near field image in optical lithography |
CN107506774A (zh) | 2017-10-09 | 2017-12-22 | 深圳市唯特视科技有限公司 | 一种基于局部注意掩模的分段感知神经网络方法 |
-
2018
- 2018-05-18 DE DE102018207882.3A patent/DE102018207882A1/de active Pending
-
2019
- 2019-05-17 TW TW108117117A patent/TWI774955B/zh active
- 2019-05-17 KR KR1020190058103A patent/KR102257964B1/ko active IP Right Grant
- 2019-05-17 US US16/415,510 patent/US12001145B2/en active Active
- 2019-05-17 TW TW111127070A patent/TWI838795B/zh active
- 2019-05-20 CN CN201910421175.2A patent/CN110501880B/zh active Active
-
2024
- 2024-03-21 US US18/612,515 patent/US20240264536A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100005041A1 (en) * | 2008-07-07 | 2010-01-07 | Nec Laboratories America, Inc. | Machine learning based volume diagnosis of semiconductor chips |
TW201728897A (zh) * | 2015-11-17 | 2017-08-16 | 克萊譚克公司 | 單一影像偵測 |
TW201740216A (zh) * | 2016-04-15 | 2017-11-16 | Asml荷蘭公司 | 用於調整微影裝置之致動的方法 |
US20180017501A1 (en) * | 2016-07-13 | 2018-01-18 | Sightline Innovation Inc. | System and method for surface inspection |
Also Published As
Publication number | Publication date |
---|---|
TW202244607A (zh) | 2022-11-16 |
KR20190132280A (ko) | 2019-11-27 |
CN110501880A (zh) | 2019-11-26 |
US20240264536A1 (en) | 2024-08-08 |
US20190354019A1 (en) | 2019-11-21 |
TW202006744A (zh) | 2020-02-01 |
TWI774955B (zh) | 2022-08-21 |
US12001145B2 (en) | 2024-06-04 |
KR102257964B1 (ko) | 2021-05-31 |
DE102018207882A1 (de) | 2019-11-21 |
CN110501880B (zh) | 2022-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI838795B (zh) | 用於藉由轉換模型分析微影製程的元件的裝置及方法 | |
JP6342436B2 (ja) | Euvフォトマスクの欠陥を解析かつ除去する方法及び装置 | |
US12111579B2 (en) | Method and apparatus for evaluating an unknown effect of defects of an element of a photolithography process | |
KR102508759B1 (ko) | 마스크 블랭크의 결함을 보상하기 위한 방법 및 장치 | |
TWI524152B (zh) | 藉由投影光學件之包含光操控之圖案相關近似匹配/調諧 | |
CN111512235A (zh) | 基于计算量测的校正和控制 | |
TW202321835A (zh) | 用於改良影像中之結構之基於程序之輪廓資訊之方法 | |
CN114766012A (zh) | 用参数化模型预测过程信息的方法和系统 | |
TWI808444B (zh) | 用於產生消除雜訊模型之裝置及方法 | |
JP2016148747A (ja) | 画像作成方法、検査方法および画像作成装置 | |
KR20180096757A (ko) | 프로세스-윈도우 특성화를 위한 장치 및 방법 | |
KR20230119137A (ko) | 패터닝된 기판의 이미지에 기반하여 3차원 데이터를 판정하기 위한 장치 및 방법 | |
CN116685909A (zh) | 显影后或蚀刻后图像的基于机器学习的图像生成 | |
KR20230040354A (ko) | 리소그래픽 마스크의 결함을 수리하기 위한 방법 및 장치 | |
Martin et al. | Manufacturability study of masks created by inverse lithography technology (ILT) | |
TWI844923B (zh) | 使用帶電粒子檢測系統之圖案化參數判定 | |
TWI807819B (zh) | 確保橫越度量衡工具之參數量測匹配之系統與方法 | |
TWI815419B (zh) | 用於判定與微影製程相關之隨機度量之方法 | |
KR102719344B1 (ko) | 기판의 스택 구성을 결정하는 방법 | |
EP4418042A1 (en) | Method and system for predicting process information from image data | |
EP3828632A1 (en) | Method and system for predicting electric field images with a parameterized model | |
TW202403465A (zh) | 度量衡裝置的參數重構方法及相關度量衡裝置 | |
CN117642700A (zh) | 用于低维度数据分析的数据映射的方法和计算机程序 |