TWI838208B - 裝置及其操作方法 - Google Patents

裝置及其操作方法 Download PDF

Info

Publication number
TWI838208B
TWI838208B TW112113350A TW112113350A TWI838208B TW I838208 B TWI838208 B TW I838208B TW 112113350 A TW112113350 A TW 112113350A TW 112113350 A TW112113350 A TW 112113350A TW I838208 B TWI838208 B TW I838208B
Authority
TW
Taiwan
Prior art keywords
detector
display device
light
light source
layer
Prior art date
Application number
TW112113350A
Other languages
English (en)
Other versions
TW202331370A (zh
Inventor
那允中
陳書履
Original Assignee
美商光程研創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商光程研創股份有限公司 filed Critical 美商光程研創股份有限公司
Publication of TW202331370A publication Critical patent/TW202331370A/zh
Application granted granted Critical
Publication of TWI838208B publication Critical patent/TWI838208B/zh

Links

Abstract

在一態樣中,一種顯示裝置包括一顯示元件,其包括:一透明層;一顯示器積體電路層,其包括一或多個顯示器控制電路;以及一屏蔽層,其位於透明層以及顯示器積體電路層之間;以及一近紅外(NIR)光源以及一可見光源,以及一偵測器元件,偵測器元件包括一偵測器積體電路層,其包括一或多個偵測器控制電路,其中偵測器元件的一表面接觸顯示元件的表面,以及一光偵測器,電耦接至至少一偵測器控制電路並且包括一偵測區域,其被定位以接收沿著一路徑從顯示元件之一前側傳播至顯示元件之一後側的近紅外光,其中屏蔽層包括被定位於路徑中之一濾光區域。

Description

裝置及其操作方法
本發明是關於一種裝置及其操作方法,特別是有關於一種光學裝置及其操作方法。
光顯示器可包括感測組件,以利於光顯示器之使用者在觀看光顯示器上的視覺內容時與光顯示器互動之互動式特徵(例如,觸控、滑動、手勢、指紋讀取器等)。
本說明書描述了有關於顯示裝置的技術,顯示裝置係配置用於同時發光並且偵測物體。
一般而言,本說明書中所描述之主題的一個創新態樣可被實施於一種顯示裝置中,其包括:一顯示元件,其具有一前側以及與前側相對之一後側,並且包括一透明層;一顯示器積體電路層,包括一或多個顯示器控制電路;以及一屏蔽層,其位於透明層以及顯示器積體電路層之間;以及一近紅外(NIR)光源,被配置以將近紅外光引導至透明層,以及一可見光源,其被配置以將可見光引導至透明層。顯示裝置更包括一偵測器元件,其位於顯示元件之後側,並且包括一偵測器積體電路層,其包括一或多個偵測器控制電路,其 中偵測器元件的一表面接觸顯示元件的一表面;以及一光偵測器,其電耦接至至少一偵測器控制電路並且包括一偵測區域,偵測區域被定位以接收近紅外光,近紅外光沿著從顯示元件之前側至顯示元件之後側的一路徑傳播,而且其中屏蔽層包括被定位於路徑中之一濾光區域。本態樣之其他實施例包括相應之系統、裝置以及計算機程式,其被配置以執行在計算機儲存元件上所編碼之方法的動作。
這些以及其他實施例可各自選擇性地包括一或多個以下特徵。在一些實施例中,光偵測器包括鍺(Ge)或鍺矽(GeSi)材料。
在一些實施例中,近紅外光源係電耦接至一或多個顯示器控制電路之至少一顯示器控制電路,及/或電耦接至一或多個偵測器控制電路之至少一偵測器控制電路。近紅外光源可與顯示元件整合為一體及/或與偵測器元件整合為一體。一或多個顯示器控制電路以及一或多個偵測器控制電路可包括薄膜電晶體(thin-film transistor,TFT)、互補式金屬氧化物半導體(complementary metal-oxide-semiconductor,CMOS)電晶體或其等之組合。
在一些實施例中,顯示元件可包括透明層下方之一液晶層。
在一些實施例中,顯示裝置更包括在顯示元件以及偵測器元件之間之一成長(例如,單片整合)或接合(例如,機械接合)界面。
在一些實施例中,可見光源包括一可見光有機發光二極體陣列、可見光微發光二極體或其等之組合。近紅外光源可包括一近紅外光有機發光二極體陣列、近紅外光微發光二極體或其等之組合。
一般而言,本說明書中所描述之主題的另一態樣可被實施於一種顯示裝置中,其包括:一顯示元件,具有一前側以及與前側相對之一後側, 顯示元件更包括一透明層;一屏蔽層,設置於透明層以及顯示元件之後側之間,屏蔽層包括一濾光區域;一近紅外(NIR)光源,其被配置以將近紅外光引導至透明層;以及一偵測器元件,其包括一偵測器積體電路層,其包括一或多個偵測器控制電路;以及一光偵測器,其電耦接至一或多個偵測器控制電路之至少一偵測器控制電路。
這些以及其他實施例可各自選擇性地包括一或多個下列特徵。在一些實施例中,顯示元件更包括一顯示器積體電路層,其包括一或多個顯示器控制電路。
光偵測器之一偵測區域可在一垂直方向上與濾光區域對準。在一些實施例中,顯示元件更包括一可見光源,其電耦接至一或多個顯示器控制電路之至少一顯示器控制電路,其中可見光源被配置以將可見光引導至透明層。在一些實施例中,由近紅外光源引導至透明層之近紅外光在透明層內不與由可見光源引導至透明層之可見光重疊。
在一些實施例中,顯示裝置更包括位於顯示元件下方之一背光模組,其中顯示元件更包括在透明層下方之一液晶層。偵測器元件可位於顯示元件以及背光模組之間。
本說明書中所描述之主題的特定實施例可被實行,以實現一或多個以下優點。本技術之一優點在於顯示裝置可同時發射光線並且監測來自物體(例如,使用者的手指)之反射光。偵測器可被使用來監測反射光的各種性質(例如,偏極化、強度、相位等),然後透過諸如振幅影像偵測及/或深度影像偵測之技術,例如,利用飛行時間(time-of-flight,TOF)測量,以推斷物體的性質。藉由偵測更長(例如,大於1微米)之近紅外(NIR)光的反射波 長,所描述的技術可減少由可見光源所發出以及來自周圍環境的可見光所引起之對於偵測器的干擾,藉由將可見光屏蔽於積體電路層(例如,包括薄膜電晶體,亦即非晶、多晶或其他類型的矽之上的薄膜電晶體)之外以改善元件性能,並且藉由偵測更長的近紅外光波長以改善生物層穿透與感測。
在一些實施例中,顯示裝置可被配置以具有薄膜電晶體所構成之控制電路,其相對於傳統CMOS元件具有較低的製程溫度,更容易實現較低的熱預算(例如,保持低於鍺偵測器的熱預算)。
在以下附圖以及說明中闡述了本說明書中所描述之主題之一或多個實施例的細節。從說明、附圖和申請專利範圍,本說明書之主題的其他特徵、態樣與優點將顯得明瞭。
100,140,150,170,180,200,240,250,270,280,300,500,501:顯示裝置
102,202:顯示元件
103:第一表面
104,204,300,400:偵測器元件
105:第二表面
106:透明層
108,208:顯示器積體電路層
109:第二電極區域
110:屏蔽層
112:第一電極區域
114,172,272,282,524:近紅外光源
116:顯示器控制電路
118:第一濾光區域
121,530:物體
122,222,520:偵測器
123:前表面
124,125,164,264,525,528:近紅外光
126,226:偵測器積體電路層
127,227,404:基板
128,228,522:偵測器控制電路
129,229,316:互連
130:互連電路層
132:距離
142,182,242,318:界面
154,160,254,260:光源
156,256,503:可見光
166,266:第二濾光區域
168,268:雷射控制元件
231,262,526:表面
302:吸收區域
304,428,438:p摻雜區域
305:第一半導體層
306:第一n摻雜區域
307:第二半導體層
308:浮動擴散電容器
310:MOSFET
312:第二n摻雜區域
314:閘極
320,412:光訊號
402:吸收層
408:第一開關
410:第二開關
422:第一控制訊號
424:第一讀出電路
426,436:n摻雜區域
432:第二控制訊號
434:第二讀出電路
440:p井區
442,444:n井區
502:背光模組
504a:後偏極化膜
504b:前偏極化膜
506:玻璃基板模組
508:液晶層
510:薄膜電晶體電路層
512:彩色濾光層
514:背光源
516:導光板
517:反射層
518:偵測器模組
527:雷射控制電路
600:程序
602,604,606,608,610,612,614:步驟
圖1A至圖1E係為示例之顯示裝置的橫截面示意圖;圖2A至圖2E係為示例之顯示裝置的橫截面示意圖;圖3係為示例之偵測器元件的電路圖;圖4係為另一示例之偵測器元件的電路圖;圖5A和圖5B係為示例之顯示裝置的示意圖;以及圖6係為用於發光以及偵測物體之接近程度的顯示裝置的示例程序。
各附圖中相似的參考號碼和名稱表示相似的元件。
概述
本發明揭露有關於顯示裝置的技術,此顯示裝置可同時發射光線及偵測物件(例如,靠近顯示器之使用者手指、手或臉)的接近程度。本技術利用鍺矽或鍺偵測器以偵測從接近顯示裝置的物體所反射之近紅外(NIR)光,以確定相對於顯示裝置之物體的振幅影像及/或深度影像。
特別地,本發明揭露之技術包括一顯示元件、一偵測器元件、一紅綠藍(RGB)光源以及一近紅外(NIR)光源。顯示元件的下表面透過,例如,單片成長、機械接合或其他相似方法與偵測器元件的上表面接觸。
近紅外光源被配置以發射近紅外光,其被設置以實質上垂直於顯示元件的表面入射。在一些實施例中,近紅外光源係與顯示元件或偵測器元件整合為一體。在一些實施例中,近紅外光具有不小於1000奈米的峰值波長(例如,1.55微米或1.31微米或1.064微米)。在一些實施例中,近紅外光具有不大於2000奈米的峰值波長。近紅外光源可以是,例如,有機發光二極體(OLED)、微發光二極體(Micro-LED)、發光二極體(LED)、垂直腔面射型雷射(vertical cavity surface emitting laser,VCSEL)、邊射型雷射(edge emission laser,EEL)(諸如分佈式回授(distributed-feedback,DFB)雷射或分佈式布拉格反射鏡(distributed-Bragg reflector,DBR)雷射)以及雷射二極體,並且以顯示元件之每個或數個像素組成的陣列格式而設置成陣列型式。
顯示元件包括:(i)透明層(例如,保護玻璃);(ii)第一電極區域(例如,透明導電氧化層、金屬層);(iii)第二電極區域(例如,透明導電氧化層、金屬層);(iv)顯示器積體電路(IC)層,包括多個顯示器控制電路(例如,CMOS電晶體、TFT以及其他控制元件);以及(v)屏蔽 層,以避免可見光到達IC層(例如,避免來自環境的可見光、來自顯示器的反射可見光等到達IC層)。在一些實施例中,屏蔽層可包括第一濾光區域,用於允許具有不小於1000奈米的峰值波長的近紅外光通過。第一濾光區域在垂直方向與偵測器元件重疊,但不與近紅外光源重疊。第一濾光區域可用來作為光干涉濾波器。屏蔽層與近紅外光源可位於顯示器積體電路層與透明層之間。
在一些實施例中,近紅外光源係位於第一電極區域以及第二電極區域之間。近紅外光源經由第二電極區域而電耦接至多個顯示器控制電路之至少一顯示器控制電路。
紅綠藍(RGB)光源被配置以發射紅綠藍光,其具有的峰值波長不同於從近紅外光源發射的近紅外光之峰值波長。紅綠藍光源(例如,有機發光二極體、微發光二極體、發光二極體等)係每一或數個像素以陣列型式排列。近紅外光源在垂直方向上不與紅綠藍光源重疊,其中近紅外光源與紅綠藍光源的發射皆在垂直方向上為一致。在一些實施例中,屏蔽層可包括第二濾光區域,其係用於允許具有不小於1000奈米之峰值波長(例如,1.064微米、1.31微米、1.55微米等)的近紅外光源通過。從顯示裝置的橫截面圖觀之,第一濾光區域與第二濾光區域分離。
偵測器元件包括(i)偵測器積體電路層,其包括多個偵測器控制電路(例如,CMOS電晶體、薄膜電晶體以及其他控制元件)和(ii)偵測器(例如,矽鍺偵測器、矽上鍺(Ge-on-Si)偵測器等),其中偵測器直接位於第一濾光區域下方。偵測器與測器積體電路層之至少一偵測器控制電路電接觸。
在一些實施例中,偵測器元件執行源自近紅外光源之反射之近紅外光的飛行時間(TOF)測量。在一些實施例中,偵測器積體電路層係由承載基板支撐。偵測器係由施體基板支撐。接合層存在於偵測器以及偵測器積體電路層之間,用於建立電連接。
在一些實施例中,顯示裝置包括液晶顯示器(LCD)。顯示元件可包括在第一電極區域以及第二電極區域之間的液晶層。顯示裝置可更包括被定位於顯示元件下方的背光模組,以及包夾著液晶層之第一與第二偏極化膜。彩色濾光膜可位於第一偏極化膜與第二偏極化膜之間。偵測器元件可位於背光模組與顯示元件之間。
示例之顯示裝置
圖1A係為示例之顯示裝置100的橫截面示意圖。顯示裝置100包括顯示元件102以及偵測器元件104。顯示元件102與偵測器元件104可使用,例如,晶圓/晶粒接合、晶片堆疊或其他類似方法來對準,其中顯示元件102的第一表面103與偵測器元件104的第二表面105接觸。
顯示元件102包括透明層106、顯示器積體電路層108、屏蔽層110以及第一電極區域(例如,透明導電氧化層)112。另外,顯示元件102包括光源114,其中光源114與顯示器積體電路層108中之至少一顯示器控制電路116電接觸與物理接觸。
透明層106係為一封裝層,例如玻璃層、塑膠層或複合層,其在寬帶頻譜(例如,可見光與近紅外光波長)上具有高於至少50%的透明度。在一個示例中,對於範圍從380奈米到1.55微米的寬帶頻譜,透明層106具有90 %的穿透率。透明層106可作為保護顯示元件102之其他層免於環境條件影響之物理屏障(例如,防水、UV保護、耐撞、耐刮等)。
顯示器積體電路層108係為非晶矽(a-Si)、多晶矽(p-Si)或其他類型的矽層,並且包括多個顯示器控制電路116。顯示器控制電路116可包括,例如,薄膜電晶體元件,其中多個顯示器控制電路116可被製造於顯示器積體電路層108的矽層內之多層結構中。薄膜電晶體元件可為,例如,交錯或共平面結構,並且可使用CMOS製造技術製造。下面將更詳細討論顯示器積體電路層108的製造細節。
在一些實施例中,顯示元件102更包含顯示器積體電路層108中的第二電極區域109(例如,第二透明導電氧化層或金屬/金屬製層)。第二電極區域109係與光源114同時電接觸與物理接觸,其中近紅外光源114位於第一電極區域112以及第二電極區域109之間並且與兩者電接觸。
在一些實施例中,顯示器積體電路層108係為主動式矩陣有機發光二極體(AMOLED)顯示器螢幕的一部分,其中顯示器積體電路層108包括對於AMOLED顯示器螢幕上之每一像素之顯示器控制電路116(例如,包含薄膜電晶體元件的電路)。
在一些實施例中,顯示器積體電路層108係為薄膜電晶體液晶顯示器(TFT-LCD)的一部分,其中多個顯示器控制電路116之每一者嵌入TFT-LCD面板內。參考圖5A和圖5B,以下將更詳細地討論LCD型顯示裝置。
屏蔽層110係位於顯示器積體電路層108以及第一電極區域112之間。屏蔽層110的一部分由濾光材料組成,例如,聚合物或其他吸收可見光波長的材料,以避免可見光波長到達顯示元件102以及偵測器元件104的特定 層,例如,顯示器積體電路層108以及偵測器元件104中的層。屏蔽層110的一部分可由聚合物材料組成,諸如,有色聚乙烯或聚丙烯等。
屏蔽層110包括第一濾光區域118。在實質上垂直於顯示元件102之前表面123的垂直方向上,第一濾光區域118係與偵測器元件104的偵測器122重疊,但不與光源114重疊。屏蔽層110之第一濾光區域118可被配置為光濾波器,其反射一或多個頻譜帶或線並且允許其他之頻譜帶或線穿透,同時對於所有欲針對的波長保持幾乎為零的吸收係數,例如,近紅外光波長頻譜。第一濾光區域118的光濾波器可以是,例如,干涉濾波器(例如,高通濾波器、低通濾波器、帶通濾波器、帶拒濾波器或二向色濾波器)。第一濾光區域118被配置以允許近紅外光(例如,從物體121反射之近紅外光125)穿透顯示元件102的前表面123並且到達偵測器元件104的偵測器122。第一濾光區域118可包括,例如,具有不同折射率之不同介電材料。第一濾光區域118可以是在垂直於前表面123之方向上的屏蔽層110的區域,其範圍在數微米到數百微米之間,並且其至少是允許來自光源114之反射之近紅外光125到達偵測器122的臨界區域。
第一電極區域112位於透明層106以及屏蔽層110之間。第一電極區域112包括一或多個透光(例如,在可見光和近紅外頻譜中)並且導電之材料構成之薄膜。第一電極區域112可包括透明導電氧化物材料(例如,氧化銦錫(ITO))、導電聚合物、金屬或金屬製柵格或網路、奈米碳管或其他類似材料。
光源114係電耦接至顯示器積體電路層108的多個顯示器控制電路之至少一顯示器控制電路116。在一些實施例中,光源114位於第一電極區 域112與第二電極區域109之間,並且經由第二電極區域109電耦接至多個顯示器控制電路之至少一顯示器控制電路116。
儘管如圖1所示之光源114之數目為一個,但光源114可為多個光源114之其中之一,多個光源114包括於光源陣列中。在一些實施例中,光源陣列由子陣列單元組成,其中每個子陣列單元包括多個光源114,例如,紅綠藍(RGB)光源(例如,紅光源、藍光源、綠光源或是可以同時發射紅、綠和藍光的光源)以及近紅外(NIR)光源。紅綠藍光源被配置以發射紅綠藍光,其具有的峰值波長不同於從近紅外光源發射的近紅外光之峰值波長。紅綠藍光源(例如,有機發光二極體、微發光二極體、發光二極體等)係每一或數個像素以陣列型式排列。
近紅外光源在垂直方向上不與紅綠藍光源重疊,其中近紅外光源與紅綠藍光源的發射皆在垂直方向上保持一致。近紅外光源114係為一種光源,例如,有機發光二極體、微發光二極體、發光二極體、垂直腔面射型雷射、邊緣發射型雷射(諸如分佈式回授雷射或分佈式布拉格反射鏡雷射)以及雷射二極體等,其發射介於約700奈米至約1.65微米之間的波長範圍。
光源114可與顯示元件102一同被製造,例如,在形成顯示器積體電路層108的製造過程期間一同製造光源114。基於顯示元件102及/或偵測器元件104配置光源114的其他方法係配合參考圖1B至圖1E於以下討論。
偵測器元件104包括一或多個偵測器122以及偵測器積體電路層126,其等由基板127(例如,矽基板)支撐。偵測器積體電路層126包括多個偵測器控制電路128,其中,一或多個偵測器122之每一偵測器122以及多個偵測器控制電路128中之至少一者電接觸,例如,透過互連129電接觸。多個 偵測器控制電路128可以是,例如,互補式金屬氧化物半導體(CMOS)元件、薄膜電晶體元件或其等之組合。多個偵測器控制電路128可被設置於偵測器積體電路層126內的多層(例如,兩或多個互連層)陣列中。
用於特定偵測器積體電路層126之一類型的偵測器控制電路128可部分的基於偵測器積體電路層126的材料選擇。在一示例中,偵測器積體電路層126的材料係結晶矽而且偵測器控制電路128係為CMOS元件系之電路。在另一示例中,偵測器積體電路層126的材料係非晶矽/多晶矽/其他類型的矽,而且偵測器控制電路128係為薄膜電晶體元件系的電路。包括非晶矽/多晶矽/其他類型的矽之偵測器積體電路層126將在以下配合參考圖2A至圖2E進一步討論。
一或多個偵測器122之每一偵測器122係電連接至至少一偵測器控制電路128,其可被配置以操作偵測器122,例如,施加偏壓於偵測器122、接收電訊號,電訊號即測量偵測器122內吸收的光訊號等。偵測器122可排列成陣列,其中,顯示元件102以及偵測器元件104在各別的第一表面103與第二表面105處對準並且接合在一起時,多個偵測器之陣列中的每一偵測器122與顯示元件102的第一濾光區域118對準。
偵測器122可以是,例如,鍺(Ge)偵測器或矽鍺(SiGe)偵測器。一般而言,偵測器122可具有0.5微米至5微米之厚度範圍的偵測區域,其中偵測器122的偵測區域之厚度可部分地基於便於在偵測器122的偵測區域內吸收反射之近紅外光125而被選擇。偵測器122將所吸收的反射之近紅外光125轉換成電訊號,其可由偵測器積體電路層126之一或多個電連接之偵測器控制電路128所收集。在一些實施例中,偵測器122可為光偵測器,例如,用 於執行飛行時間測量之單輸出光偵測器或雙輸出光偵測器,其將參考圖3與圖4而更詳細討論。
在一些實施例中,偵測器122以及偵測器積體電路層126各自製造於各自的基板上,例如,結晶矽基板。可使用例如,晶圓研磨與晶圓拋光來處理各個基板中之每一者,以移除各自基板之部分或全部。處理過之基板可接合在一起,使得反射之近紅外光125透過偵測器積體電路層126進入偵測器122。可使用包括多個互連129的互連電路(IC)層130將複數基板接合在一起,其中互連電路層130之多個互連129將偵測器122電連接至偵測器控制電路128。在一些實施例中,偵測器122以及偵測器積體電路層126係製造於相同的基板上,例如,結晶矽基板。
當顯示元件102以及偵測器元件104對準並接合使得各自元件的第一表面103與第二表面105接觸時,偵測器122的偵測區域被定位以接收反射之近紅外光125,其從顯示元件102的前側傳播至顯示元件102的後側,其中屏蔽層110之第一濾光區域118位於近紅外光路徑中。換言之,偵測器122的位置使得進入透明層106的反射之近紅外光125可穿過由第一濾光區域118所定義的區域並且在偵測器122的偵測區域中被吸收。
在一些實施例中,偵測器積體電路層126位於偵測器122與顯示元件102之間,使得反射之近紅外光125透過偵測器積體電路層126進入偵測器122。在一些實施例中,偵測器122位於偵測器積體電路層126以及顯示元件102之間,使得反射之近紅外光125不透過偵測器積體電路層126而進入偵測器122。透明層106以及偵測器122之間且反射之近紅外光125所經過的中間層的材料可部分地基於以減少顯示裝置100內的反射之近紅外光125的衰減量 而被選擇。在一些實施例中,選擇中間層的材料使得反射之近紅外光125的衰減量低於臨界衰減量。
在一些實施例中,可選擇第一濾光區域118之一或多個尺寸,以在顯示元件102以及偵測器元件104對準並且接合在一起時,使到達偵測器122的反射之近紅外光125的量最大化。到達偵測器122的反射之近紅外光125的量可部分地取決於偵測器122的接收角,亦即,在具有偵測器122透過第一濾光區域118之視線的透明層106的前表面123上反射之近紅外光125的入射角。最小接收角範圍可決定,例如,每一中間層(例如,屏蔽層110、顯示器積體電路層108以及偵測器積體電路層126)的相對厚度。
在一些實施例中,反射之近紅外光125係由光源114發射、從物體121反射並且被偵測器122的偵測區域所吸收的近紅外光。物體121可以是,例如,手指、手或臉。來自距前表面123之距離132的物體121的反射之近紅外光125可部分地根據物體121的類型而被收集。例如,反射之近紅外光125可收集自手指,其為相距數毫米(例如,介於1毫米與5毫米之間)之距離132的物體121。在另一示例中,反射之近紅外光125可收集自手,其為相距數釐米至數十釐米(例如,介於2釐米到50釐米之間、15釐米、30釐米等)之距離132的物體121。在另一示例中,反射之近紅外光125可收集自臉,其為相距數十至數百釐米(例如,介於10釐米到200釐米之間、80釐米、150釐米等)之距離132的物體121。
以下參考圖6描述顯示裝置100之操作的更多細節。
圖1A顯示根據一些實施例的顯示裝置100。圖1B至圖1E顯示根據其他實施例的顯示裝置100。
顯示裝置的其他實施例
儘管如圖1A所示之顯示元件102與偵測器元件104,其在第一表面103以及第二表面105處接合在一起,顯示裝置100之其他配置仍是可能的。圖1B係另一示例之顯示裝置140的橫截面示意圖。圖1B所示之顯示裝置140是單片整合結構,即顯示元件102以及偵測器元件104係使用單片地製造技術製造,例如,磊晶及/或側向成長技術,其不涉及機械接合步驟以在界面142處結合顯示元件102與偵測器元件104。
在一些實施例中,熱預算限制可決定可用於製造顯示裝置140之單片整合結構的製程。例如,偵測器122可為鍺偵測器並且具有800ºC的熱預算,其中在鍺偵測器122之後製造的顯示裝置140之任何結構都被限制為不得超過800ºC。
在一些實施例中,可同時使用機械接合技術與單片整合技術來製造顯示裝置140。例如,顯示元件102以及偵測器元件104可各自單片整合,並且接著在界面142處機械地接合在一起,例如,其中偵測器元件104不包括與IC層130接合在一起的兩個基板,而是被單片地製造成單一元件。
在一些實施例中,偵測器積體電路層126位於偵測器122與顯示元件102之間,使得反射之近紅外光125透過偵測器積體電路層126進入偵測器122。在一些實施例中,偵測器122位於偵測器積體電路層126與顯示元件 102之間,使得反射之近紅外光125不透過偵測器積體電路層126而進入偵測器122。
圖1C係另一示例之顯示裝置150的橫截面示意圖。顯示裝置150包括整合至顯示元件102中的光源154(例如,紅綠藍光源114),其中光源154包括發射可見光156的光源陣列154。對照於圖1A所示之顯示裝置100,圖1C之顯示裝置150包括光源160,其與顯示元件102以及偵測器元件104分離,並且被封裝在顯示元件102下方,與顯示元件102的第一表面103接觸。光源160係為近紅外光源,例如,封裝之雷射二極體、垂直腔面射型雷射(VCSEL)、邊緣發射雷射(EEL(諸如分佈式回授(DFB)雷射或分佈式布拉格反射鏡(DBR)雷射)、有機發光二極體(OLED)、微發光二極體(Micro-LED)、發光二極體(LED)等,其係分離製造、切割、接合或以其他方式附接到顯示元件102之後側而與第一表面103接觸。在一示例中,光源160可以是砷化銦鎵/磷化銦(InGaAs/InP)垂直腔面射型雷射。
光源160被定位並且接合於顯示元件102的後側,使得光源160發射垂直於顯示元件102之透明層106的前表面123的近紅外光164。另外,顯示元件102可包括第二濾光區域166,其包括與第一濾光區域118相同的組成。第二濾光區域166被嵌入於屏蔽層110中並且與光源160對準,使得由光源160發射的近紅外光164在光源160被定位並且接合於顯示元件102的後側時,穿過第二濾光區域166。
在一些實施例中,光源160透過一或多個互連129而與IC層130電接觸,其中光源160可經由IC層130被連接至一或多個雷射控制元件168。多個雷射控制元件168可以是,例如,薄膜電晶體元件、CMOS元件或其等之 組合,並且可向光源160提供控制指令、電源等,以操作光源160。雷射控制元件168可被設置於偵測器積體電路層126內的多層陣列中,其中每一雷射控制元件168可與相應的光源160電接觸。在一些實施例中,多個雷射控制元件168可被製造於不同於基板127之基板上,並且電連接至光源160以操作光源160。
在一些實施例中,偵測器積體電路層126位於偵測器122與顯示元件102之間,使得反射之近紅外光125透過偵測器積體電路層126進入偵測器122。在一些實施例中,偵測器122位於偵測器積體電路層126與顯示元件102之間,使得反射之近紅外光125不透過偵測器積體電路層126而進入偵測器122。
儘管如圖1C所示之光源160之數目為一個,但多個光源160可包括於顯示裝置150中,其中光源160以具有一或數個像素的間隔的陣列分佈。在一些實施例中,光源160可以是掃描雷射,其中所發射的近紅外光164可以一定角度範圍以弧形或另一掃描模式掃描。
圖1D係另一示例之顯示裝置170的橫截面示意圖。類似於圖1C中所示的顯示裝置150,顯示裝置170包括偵測器元件104,其中近紅外光源172(例如,圖1C中所示的光源160)與紅綠藍光源154分離。顯然地,圖1D之顯示裝置170包括整合至偵測器元件104中的近紅外光源172。近紅外光源172可使用,例如,磊晶及/或側向成長方法,而製造於偵測器元件104上。可替代地,近紅外光源172可分別地被製造與切割,然後將其作為晶粒整合到偵測器元件104,其可透過IC層130將晶粒接合到偵測器元件104的基板127。在一些實施例中,偵測器積體電路層126位於偵測器122以及顯示元件 102之間,使得反射之近紅外光125透過偵測器積體電路層126進入偵測器122。近紅外光源172以及偵測器122分別位於IC層130的兩個相對側。在一些實施例中,偵測器122位於偵測器積體電路層126以及顯示元件102之間,使得反射之近紅外光125不透過偵測器積體電路層126而進入偵測器122。近紅外光源172以及偵測器122位於IC層130之同一側。近紅外光源172可於第二濾光區域166正下方位置嵌入於基板127中。
在將近紅外光源172整合入偵測器元件104中後,偵測器元件104以及顯示元件102使用,例如,晶片/晶粒接合技術,在第一表面103以及第二表面105處接合在一起,如以上參考圖1A所述。
圖1E係另一示例之顯示裝置180的橫截面示意圖。圖1E所示之顯示裝置180係為上述參考圖1D所示之顯示裝置170的一種單片整合結構。顯示裝置180的單片整合包括顯示元件102以及偵測器元件104,其使用單片製造技術(例如,磊晶及/或側向成長技術)製造,其不涉及機械接合步驟以於界面182處結合顯示元件102以及偵測器元件104。
在一些實施例中,近紅外光源172可突出至顯示元件102的顯示器積體電路層108(例如,非晶矽層)中,其中使用單片整合技術的顯示器積體電路層108所用的非晶矽層成長,可部分地為近紅外光源172上之非晶矽的側向成長。
在一些實施例中,近紅外光源172可位於顯示元件的非晶矽層下方,其中近紅外光源172係嵌入於偵測器元件104內且位於界面182下方,使得近紅外光源172不位於顯示元件102內。
在一些實施例中,熱預算限制可決定可用於製造顯示裝置180之單片整合結構的製程。例如,偵測器122可為鍺偵測器並且具有800ºC的熱預算,其中在鍺偵測器122之後製造的顯示裝置140之任何結構都被限制為不得超過800ºC。在另一示例中,近紅外光源172可以是砷化銦鎵/磷化銦(InGaAs/InP)垂直腔面射型雷射,並且在偵測器元件104的IC層130上磊晶及/或側向成長近紅外光源172之後,具有不超過600ºC的熱預算。
在一些實施例中,可使用機械接合技術與單片整合技術來製造顯示裝置180。例如,顯示元件102以及偵測器元件104可各自單片整合,並且接著在界面182處機械地接合在一起,例如,其中偵測器元件104不包括與IC層130接合在一起的兩個基板,而是被單片地製造成單一元件。在另一示例中,偵測器元件104可包括一接合步驟,以將近紅外光源172與偵測器元件104整合,例如,以將近紅外光源172與IC層130接合,而且其中顯示裝置的其他態樣(例如,偵測器積體電路層126以及顯示元件102)使用單片整合技術製造。在一些實施例中,偵測器積體電路層126位於偵測器122以及顯示元件102之間,使得反射之近紅外光125透過偵測器積體電路層126進入偵測器122。近紅外光源172以及偵測器122分別位於IC層130的兩個相對側。在一些實施例中,偵測器122位於偵測器積體電路層126以及顯示元件102之間,使得反射之近紅外光125不透過偵測器積體電路層126而進入偵測器122。近紅外光源172以及偵測器122位於IC層130之同一側。在一些實施例中,近紅外光源172可於第二濾光區域166正下方位置嵌入於基板127中。
在一些實施例中,圖1A至圖1E中所示之偵測器元件102包括偵測器積體電路層126,其包括非晶矽(a-Si)、多晶矽(p-Si)或不是結晶矽 之其他類型的矽,其中偵測器控制電路128是薄膜電晶體元件而非CMOS元件。圖2A至圖2E中描繪顯示裝置之這些實施例,其包括偵測器積體電路層,其包括非晶矽/多晶矽/其他類型的矽並且相應於作為薄膜電晶體元件的偵測器控制電路。
圖2A係為另一示例之顯示裝置200的橫截面示意圖。顯示裝置200包括顯示元件202(例如,參考圖1A所述之顯示元件102)以及偵測器元件204。如上所述,偵測器元件204不同於上面參考圖1所述的偵測器元件104,其中偵測器元件204的偵測器積體電路層226包括非晶矽、多晶矽或不是結晶矽之其他類型的矽,而且多個偵測器控制電路228係為薄膜電晶體元件。
在一些實施例中,偵測器元件204的偵測器222由基板227(例如,結晶矽基板)支撐,且隨後,偵測器積體電路層226係製造於基板227的表面231上,其包括一或多個非晶矽/多晶矽/其他類型的矽層以及多個偵測器控制電路228。在一些實施例中,偵測器積體電路層226位於偵測器222以及顯示元件202之間,使得反射之近紅外光125透過偵測器積體電路層226進入偵測器222。在一些實施例中,偵測器222位於偵測器積體電路層226以及顯示元件202之間,使得反射之近紅外光125不透過偵測器積體電路層226而進入偵測器222。
如圖2A中所示,偵測器元件204不包括參考圖1A描述的顯示裝置100之相同IC層130。如此,互連229係用於電連接偵測器控制電路228與各對應的偵測器222。
圖2B係為另一示例之顯示裝置240的橫截面示意圖。圖2B所示之顯示裝置240是單片整合結構,即,顯示元件202以及偵測器元件204係 使用單片地製造技術製造,例如,磊晶及/或側向成長技術,其不涉及機械接合步驟以在界面242處結合顯示元件202與偵測器元件204。偵測器積體電路層226以及顯示器積體電路層208都包括非晶矽/多晶矽/其他類型的矽材料。因此,製造技術(例如,磊晶及/或側向成長)可用於在兩層之間的界面242上磊晶地整合偵測器積體電路層226以及顯示器積體電路層208。
在一些實施例中,熱預算限制可決定可用於製造顯示裝置240之單片整合結構的製程。例如,偵測器222可為鍺偵測器並且具有800ºC的熱預算,其中在鍺偵測器222之後製造的顯示裝置240之任何結構都被限制為不得超過800ºC。
在一些實施例中,可同時使用機械接合技術與單片整合技術來製造顯示裝置240。例如,顯示元件202以及偵測器元件204可各自單片整合,並且接著在界面242處機械地接合在一起,其中偵測器元件204被單片地製造成單一元件。在一些實施例中,偵測器積體電路層226位於偵測器222以及顯示元件202之間,使得反射之近紅外光125透過偵測器積體電路層226進入偵測器222。在一些實施例中,偵測器222位於偵測器積體電路層226以及顯示元件202之間,使得反射之近紅外光125不透過偵測器積體電路層226而進入偵測器222。
圖2C係為另一示例之顯示裝置250的橫截面示意圖。顯示裝置250包括整合至顯示元件202中的光源254(例如,紅綠藍光源214),其中光源254包括發射可見光256的光源陣列254。對照於圖2A所示之顯示裝置200,圖2C之顯示裝置250包括光源260,其與顯示元件202以及偵測器元件204分開製造,並且被封裝在顯示元件202下方,與顯示元件202的表面262接 觸。光源260係為近紅外光源,例如,封裝之雷射二極體、垂直腔面射型雷射(VCSEL)、邊緣發射雷射(EEL)(諸如分佈式回授(DFB)雷射或分佈式布拉格反射鏡(DBR)雷射)、有機發光二極體(OLED)、微發光二極體(Micro-LED)、發光二極體(LED)等,其係分離製造、切割、接合或以其他方式附接到顯示元件202之後側而與表面262接觸。在一示例中,光源260可以是砷化銦鎵/磷化銦(InGaAs/InP)垂直腔面射型雷射。
光源260被定位並且接合於顯示元件202的後側,使得光源260發射垂直於顯示元件202之透明層206的表面223的近紅外光264。另外,顯示元件202可包括第二濾光區域266,其包括與第一濾光區域218相同的組成(例如,圖1A所示之第一濾光區域118)。第二濾光區域266被嵌入於屏蔽層210(例如,圖1A所示之屏蔽層110)中並且在屏蔽層210內與光源260對準,使得由光源260發射的近紅外光264在光源260被定位並且接合於顯示元件202的後側時,穿過第二濾光區域266。在一些實施例中,偵測器積體電路層226位於偵測器222以及顯示元件202之間,使得反射之近紅外光125透過偵測器積體電路層226進入偵測器222。在一些實施例中,偵測器222位於偵測器積體電路層226以及顯示元件202之間,使得反射之近紅外光125不透過偵測器積體電路層226而進入偵測器222。
光源260與一或多個互連229電接觸,其中光源260可經由互連229被連接至一或多個雷射控制元件268。多個雷射控制元件268可以是,例如,薄膜電晶體元件、CMOS元件或其等之組合,並且可向光源260提供控制指令、電源等,以操作光源260。雷射控制元件268可被設置於偵測器積體電路層226內的多層陣列中,其中每一雷射控制元件268可與各對應的光源260 電接觸。在一些實施例中,多個雷射控制元件268可被製造於不同於基板227之基板上,並且電連接至光源260以操作光源260。
儘管如圖2C所示之光源260之數目為一個,多個光源260可包括於顯示裝置250中,其中光源260以具有一或數個像素的間隔的陣列分佈。在一些實施例中,光源260可以是掃描雷射,其中所發射的近紅外光264可以一定角度範圍以弧形或另一掃描模式掃描。
圖2D係另一示例之顯示裝置270的橫截面示意圖。類似於圖2C中所示的顯示裝置250,顯示裝置270包括偵測器元件204,其中近紅外光源272(例如,圖2C中所示的光源260)與紅綠藍光源254分離。顯然地,圖2D之顯示裝置270包括整合至偵測器元件204中的近紅外光源272。近紅外光源272可使用,例如,磊晶及/或側向成長方法,而製造於偵測器元件204上。如圖2D所示,近紅外光源272可製造嵌入於偵測器積體電路層226之非晶矽/多晶矽/其他類型的矽材料中。可替代地,近紅外光源272可分別地被製造與切割,然後將其作為晶粒整合到偵測器元件204,其可透過接合晶粒到偵測器元件204的偵測器積體電路層226。
在一些實施例中,偵測器積體電路層226位於偵測器222以及顯示元件202之間,使得反射之近紅外光125透過偵測器積體電路層226進入偵測器222。近紅外光源272以及偵測器222分別位於基板227之表面231的兩個相對側。在一些實施例中,偵測器222位於偵測器積體電路層226以及顯示元件202之間,使得反射之近紅外光125不透過偵測器積體電路層226而進入偵測器222。近紅外光源272以及偵測器222位於基板227之表面231之同一側。 在一些實施例中,近紅外光源272可於第二濾光區域266正下方位置嵌入於基板227。
在將近紅外光源272整合入偵測器元件204中後,偵測器元件204以及顯示元件202使用,例如,晶片/晶粒接合技術,在各對應的界面103以及105處接合在一起,如以上參考圖1A所述之偵測器元件204以及顯示元件202。
圖2E係另一示例之顯示裝置280的橫截面示意圖。圖2E所示之顯示裝置280係為上述參考圖2D所示之顯示裝置270的一種單片整合結構。顯示裝置280的單片整合包括顯示元件202以及偵測器元件204,其使用單片製造技術(例如,磊晶及/或側向成長技術)製造,其不涉及機械接合步驟以於界面242處結合顯示元件202以及偵測器元件204。
在一些實施例中,近紅外光源282可突出至顯示元件202的顯示器積體電路層208(例如,非晶矽層)中,其中使用單片整合技術的顯示器積體電路層208所用的非晶矽層成長可部分地為近紅外光源282上之非晶矽側向成長。
在一些實施例中,近紅外光源282可位於顯示元件的非晶矽層下方,其中近紅外光源282係嵌入於偵測器元件204內且位於界面242下方,使得近紅外光源282不位於顯示元件202內。
在一些實施例中,熱預算限制可決定可用於製造顯示裝置280之單片整合結構的製程。例如,偵測器222可為鍺偵測器並且具有800ºC的熱預算,其中在鍺偵測器222之後製造的顯示裝置280之任何結構都被限制為不得超過800ºC。在另一示例中,近紅外光源282可以是砷化銦鎵/磷化銦 (InGaAs/InP)垂直腔面射型雷射,並且在偵測器元件204的偵測器積體電路層226之非晶矽層上磊晶及/或側向成長近紅外光源282之後,具有不超過600ºC的熱預算。
在一些實施例中,可同時使用機械接合技術與單片整合技術來製造顯示裝置280。例如,顯示元件202以及偵測器元件204可各自單片整合,並且接著在界面242處機械地接合在一起。在另一示例中,偵測器元件204可包括一接合步驟,以將近紅外光源282與偵測器元件204整合,例如,以將近紅外光源282與偵測器積體電路層226的一部分接合,而且其中顯示裝置的其他態樣(例如,偵測器積體電路層226以及顯示元件202)使用單片整合技術製造,例如,圍繞和在近紅外光源282上方的非晶矽/多晶矽/其他類型的矽的磊晶及/或側向成長。
在一些實施例中,偵測器積體電路層226位於偵測器222以及顯示元件202之間,使得反射之近紅外光125透過偵測器積體電路層226進入偵測器222。近紅外光源282以及偵測器222分別位於基板227之表面231的兩個相對側。在一些實施例中,偵測器222位於偵測器積體電路層226以及顯示元件202之間,使得反射之近紅外光125不透過偵測器積體電路層226而進入偵測器222。近紅外光源282以及偵測器222位於基板227之表面231之同一側。在一些實施例中,近紅外光源282可於第二濾光區域266正下方位置嵌入於基板227中。
用於顯示裝置的製造技術
如圖1A中所示的顯示裝置100的各個態樣可以使用,例如,互補式金屬氧化物半導體(CMOS)微製造技術,例如光刻程序、蝕刻程序、沉積程序等來製造。在一些實施例中,顯示裝置100的製造可包括一層或多層材料(例如,矽、矽鍺或鍺)的磊晶及/或側向成長。
顯示裝置100中描述的各種層可使用各種真空技術,例如,化學氣相沉積(chemical-vapor deposition,CVD)、金屬有機化學氣相沉積(metal-organic chemical vapor deposition,MOCVD)、分子束磊晶(molecular beam epitaxy,MBE)、原子層沉積(atomic layer deposition,ALD)等而成長於矽基板上。在一些實施例中,屏蔽層110係為聚合物材料,其可在顯示器積體電路層108上旋轉塗佈或濺鍍。
鍺偵測器122可例如使用諸如CVD、MOCVD、MBE、ALD等磊晶成長或任何合適的方法來形成嵌入於矽基板127中。替代之偵測器配置係參考以下之圖3與圖4而更詳細地描述。
互連129以及IC層130可使用,例如,包括沉積、剝離(lift-off)或蝕刻步驟的程序,製造於偵測器122上並且與各對應的偵測器控制電路128接觸。沉積可使用,例如,金屬蒸鍍,來進行。
示例之光偵測器元件與操作
參考圖1A與圖2A所大致描述之偵測器122和222可以是鍺或矽鍺偵測器。一般而言,鍺或矽鍺偵測器可用於吸收近紅外光子並且將光訊號轉換成電訊號。在一些實施例中,偵測器(例如,偵測器122)可由單輸出光 偵測器或雙輸出光偵測器取代,並且當併入本文所述之顯示裝置中時可用於執行飛行時間(TOF)之偵測測量。
在飛行時間(TOF)偵測測量中,三維物體(例如,物體121)之深度資訊可使用發送的光脈沖與偵測到的光脈衝之間的相位差來決定,例如,來自近紅外光源114的近紅外光脈衝。例如,二維像素陣列可用於重建三維物體的三維影像,其中每個像素可包括一或多個光偵測器(例如,偵測器122)用於推導出三維物體的深度資訊。在一些實施例中,飛行時間應用使用具有近紅外光波長範圍內的光源。例如,發光二極體(LED)可具有850奈米、940奈米、1064奈米或1310奈米或1550奈米的波長。對於使用近紅外光波長的飛行時間(TOF)應用,可採用使用鍺矽或鍺作為吸收材料的多閘光偵測器。
圖3係為示例之單輸出偵測器元件300的電路圖。
吸收區域302、p摻雜區域304以及第一n摻雜區域306係由第一半導體層305所支撐,而且第二n摻雜區域312、閘極314以及浮動擴散電容器308係由第二半導體層307所支撐。第一半導體層305以及第二半導體層307可以是半導體晶圓,諸如在標準積體電路製程中所使用的矽晶圓。
p摻雜區域304係設置於收區域302第一表面上,其背離第一半導體層305之上表面。p摻雜區域304可從吸收區域302表面排開光電子,因此可藉以增加元件頻寬。例如,p摻雜區域304可具有p+摻雜,其中當吸收區域302是鍺並且摻雜硼時,摻雜劑濃度可高達製程所能達到之極限,例如,大約5×1020cm-3
n摻雜區域306係設置於吸收區域302的第一表面上,其背離第一半導體層305的上表面。n摻雜區域306可透過將摻雜劑植入至吸收區域302來形成。
第一半導體層305可與第二半導體層307分開地處理。例如,第一半導體層305可使用專用於形成吸收區域302的第一製程來處理,並且第二半導體層307可使用專用於形成閘極314的第二製程來處理。第二製程可以是,例如,用於形成高密度數位電路的次100奈米(sub 100nm)CMOS製程。互連316之第一部分可在處理第一半導體層305時製造,而且互連316之第二部分可在處理第二半導體層307時製造。經處理之第一以及第二半導體層305和307可接著在接合界面318處接合,機械地耦接第一以及第二半導體層305和307,以及將吸收區域302電耦接至第二n摻雜區域312。由第一以及第二半導體層305和307之接合產生的單元可視為基板。
第一以及第二半導體層305和307之接合可光學地遮蔽面對第二半導體層307的吸收區域302之第一表面。是以,光訊號320可從第一半導體層305的上表面進入吸收區域302,其中第一半導體層305的上表面與形成有吸收區302的下表面相對。
偵測器元件300之一般操作係如下所述。由吸收區域302所產生之光產生之載子(諸如電子)可被p摻雜區域304排斥而朝向第一n摻雜區域306。一旦光產生之載子到達第一n摻雜區域304,額外的力可在MOSFET 310導通時施加於載子,以引起這些載子從第一n摻雜區域306流到浮動擴散電容器308。這種力可透過設計第一n摻雜區域306的摻雜濃度n1、第二n摻雜區域312的摻雜濃度n2以及浮動擴散電容器308的摻雜濃度n3來產生。一般而 言,因為較低摻雜濃度區域引起的位能高於較高摻雜濃度區域引起的位能,電荷載子由低摻雜濃度區域被驅動至高摻雜濃度區域。因此,藉由根據不等式n3>n2>n1設定摻雜濃度,儲存於第一n摻雜區域306中的載子可被首先驅動朝向具有第二摻雜濃度n2的第二n摻雜區域312移動,第二摻雜濃度n2高於第一摻雜濃度n1。接著,當MOSFET 310導通時,第二n摻雜區域312的摻雜濃度n2以及浮動擴散電容器308的摻雜濃度n3之間的差異更驅動載子朝向浮動擴散電容器308移動。故,從吸收區302到浮動擴散電容器308的載子傳輸效率可獲得改善。
圖4係為示例之雙輸出偵測器元件400的電路圖。偵測器400是用於將光訊號轉換成電訊號的交換式光偵測器。偵測器400包括製造在基板404上之吸收層402。基板404可以是任何可在其上製造半導體元件的合適之基板。例如,基板404可以是矽基板。吸收層402包括第一開關408以及第二開關410。
一般而言,吸收層402接收光訊號412並且將光訊號412轉換成電訊號。吸收層402可以是本質的、p型或n型。在一些實施例中,吸收層402可由p型鍺矽材料所形成。在一些實施例中,吸收層402可由鍺組成。吸收層402係被選擇以在所針對之波長範圍內具有高吸收係數。對於近紅外光波長,吸收層402可以是鍺矽平台(mesa),其中鍺矽吸收光訊號412中的光子並且產生電子電洞對。鍺矽平台中的鍺與矽之材料組成可針對特定的程序或應用而被選擇。
在一些實施例中,吸收層402經設計而具有厚度t。例如,對於850奈米或940奈米波長,鍺矽平台的厚度可約為1微米,以具有顯著的量子 效率。在一些實施例中,吸收層402包括鍺並且被設計以吸收波長介於800奈米與2000奈米之間的光子,吸收層402的厚度t介於0.1微米與2.5微米之間。在一些實施例中,吸收層402的厚度t介於0.5微米與5微米之間,以獲得更高的量子效率。在一些實施例中,吸收層402的表面經設計以具有特定形狀。例如,取決於鍺矽平台表面上的光訊號412之空間分布,鍺矽平台可以是圓形、方形或矩形。在一些實施例中,吸收層402經設計以具有用於接收光訊號412的橫向尺寸d。例如,鍺矽平台可具有圓形或矩形形狀,其中d可在1微米至50微米的範圍內。
在吸收層402中製造第一開關408以及第二開關410。第一開關408係耦接至第一控制訊號422以及第一讀出電路424。第二開關410係耦接至第二控制訊號432以及第二讀出電路434。一般而言,第一控制訊號422以及第二控制訊號432控制吸收之光子所產生的電子或電洞是由第一讀出電路424或是由第二讀出電路434所收集。
在一些實施例中,第一開關408以及第二開關410可被製造以收集電子。在這種情況下,第一開關408包括p摻雜區域428以及n摻雜區域426。例如,p摻雜區域428可具有p+摻雜,其中活化之摻雜劑濃度可高達製程所能達到之極限,例如,當吸收層402是鍺而且摻雜硼時,峰值濃度可達約5×1020cm-3。在一些實施例中,p摻雜區域428的摻雜濃度可低於5×1020cm-3以降低製造複雜度,其代價會增加接觸電阻。n摻雜區域426可具有n+摻雜,其中活化之摻雜劑濃度可高達製程所能達到之極限,例如,當吸收層402是鍺而且摻雜磷時,峰值濃度可達約1×1020cm-3。在一些實施例中,n摻雜區域426的摻雜濃度可低於1×1020cm-3以降低製造複雜度,其代價會增加接觸電阻。p摻雜區 域428以及n摻雜區域426之間的距離可基於製程設計規則來設計。一般而言,p摻雜區域428以及n摻雜區域426之間的距離越近,所產生的光載子的切換效率越高。然而,減少p摻雜區域428以及n摻雜區域426之間的距離可能增加與在p摻雜區域428以及n摻雜區域426之間之暗電流,其與形成在p摻雜區域428以及n摻雜區域426之間的PN接面有關。因此,距離可基於交換式光偵測器400的性能要求來設定。第二開關410包括p摻雜區域438以及n摻雜區域436。p摻雜區域438類似於p摻雜區域428,而且n摻雜區域436類似於n摻雜區域426。
在一些實施例中,p摻雜區域428係耦接至第一控制訊號422。例如,p摻雜區域428可被耦接至電壓源,其中第一控制訊號422可為來自電壓源的交流電壓訊號。在一些實施例中,n摻雜區域426係耦接至讀出電路424。讀出電路424可為包括重置閘極、源極隨耦器以及選擇閘極之三電晶體配置、可為包括四個或更多電晶體之電路或用於處理載子之任何合適的電路。在一些實施例中,讀出電路424可製作於基板404上。在一些其他實施例中,讀出電路424可製造於另一基板上,並且經由晶圓/晶粒接合或晶片堆疊而與偵測器400整合/共同封裝。
p摻雜區域438係耦接至第二控制訊號432。例如,p摻雜區域438可被耦接至電壓源,其中第二控制訊號432可為交流電壓訊號,其相位與第一控制訊號422的相位相反。在一些實施例中,n摻雜區域436係耦接至讀出電路434。讀出電路434可類似於讀出電路424。
第一控制訊號422以及第二控制訊號432係用於控制吸收之光子所產生之複數電子的收集。例如,當使用電壓時,如果第一控制訊號422不同 於第二控制訊號432,則會在p摻雜區域428以及p摻雜區域438之間產生電場,自由電子會依據電場的方向而漂移朝向p摻雜區域428或p摻雜區域438。在一些實施例中,第一控制訊號422可固定在電壓值Vi,而且第二控制訊號432可在電壓值Vi±△V之間變換。偏壓值的大小決定了電子的漂移方向。因此,當一開關(例如,第一開關408)被「導通」(即,電子朝向p摻雜區域428漂移)時,另一開關(例如,第二開關410)被「截止」(即,電子受到p摻雜區域438阻擋)。在一些實施例中,第一控制訊號422以及第二控制訊號432可為彼此不同的電壓。
一般而言,在平衡之前,p摻雜區域的費米能階與n摻雜區域的費米能階之間的差異會在這兩個區域之間產生電場。在第一開關408中,電場形成在p摻雜區域428以及n摻雜區域426之間。類似地,在第二開關410中,電場形成在p摻雜區域438以及n摻雜區域436之間。當第一開關408「導通」並且第二開關410「截止」時,電子朝向p摻雜區域428漂移,並且p摻雜區域428以及n摻雜區域426之間的電場會進一步移動電子至n摻雜區域426。讀出電路424接著可以處理n摻雜區域426所收集的電荷。另一方面,當第二開關410「導通」並且第一開關408「截止」時,電子朝向p摻雜區域438漂移,並且p摻雜區域438以及n摻雜區域436之間的電場更進一步移動電子至n摻雜區域436。讀出電路434接著可以處理n摻雜區域436所收集的電荷。
在一些實施例中,可在開關的p摻雜區域與n摻雜區域之間施加電壓以在雪崩區中操作開關以增加交換式光偵測器400的靈敏度。例如,在吸收層402包括鍺矽之情況下,當p摻雜區域428以及n摻雜區域426之間的距 離約為100奈米時,可施加不大於7伏特的電壓以在p摻雜區域428以及n摻雜區域426之間產生雪崩增益(avalanche gain)。
在一些實施例中,基板404可被耦接至外部控制元件。例如,基板404可耦接至電接地或一預設電壓,預設電壓小於n摻雜區域426與n摻雜區域436之電壓。在一些其他實施例中,基板404可以是浮接並且不耦接至任何外部控制元件。
偵測器400更包括p井區440以及n井區442與444。在一些實施例中,n井區442與444的摻雜濃度可在1016cm-3至1020cm-3的範圍內。p井區440的摻雜濃度可在1016cm-3至1020cm-3的範圍內。
在一些實施例中,吸收層402可不完全吸收光訊號412中的入射光子。例如,如果鍺矽平台不完全吸收近紅外光訊號412中的入射光子,近紅外光訊號412可穿透矽基板404,其中矽基板404可吸收穿透的光子並且在基板中深處產生緩慢復合的光載子。這些緩慢復合的光載子對交換式光偵測器的操作速度產生負面影響。此外,矽基板404中產生的光載子可被相鄰像素收集,其可能導致像素之間所不欲見到的訊號串擾。此外,矽基板404中產生的光載子可能導致基板404充電,其可能導致交換式光偵測器中的可靠性問題。
為了進一步去除緩慢復合的光載子,偵測器400可包括使n井區442以及444與p井區440短路的連接。例如,連接可透過矽化物程序或沉積之金屬焊墊將n井區442以及444與p井區440連接。n井區442以及444與p井區440之間的短路允許在基板404中產生的光載子在短路節點處復合,因而改善交換式光偵測器的操作速度及/或可靠性。在一些實施例中,p井區440 係用於鈍化及/或減小在吸收層402與基板404之間的圍繞界面缺陷的電場,以減小元件暗電流。
儘管參考圖3和圖4描述了光偵測器的一些實施例,其他實施例也是可行的。例如,在2018年8月30日公開的美國專利申請2018/0247968 A1、2018年8月16日公開的美國專利申請2018/0233521 A1中描述了另外的合適實施例,其完整內容藉由引用而併入本說明書。
液晶系之顯示裝置的示例之實施例
在一些實施例中,顯示裝置包括液晶顯示器(LCD)。顯示元件可包括在第一電極區域以及第二電極區域之間之液晶層。顯示裝置可更包括位於顯示元件下方之背光模組,以及包夾液晶層之第一偏極化膜與第二偏極化膜。彩色濾光膜可位於第一偏極化膜與第二偏極化膜之間。偵測器元件可位於背光模組與顯示元件之間。
圖5A係為示例之液晶系的顯示裝置500的示意圖,其包括發射可見光503之背光模組502、後偏極化膜504a以及前偏極化膜504b、以及玻璃基板模組506。玻璃基板模組506包括液晶層508、薄膜電晶體電路層510以及彩色濾光層512。背光模組502包括背光源514,例如發光二極體或螢光燈、導光板516以及,可選擇地,反射層517。
另外,顯示裝置500包括偵測器模組518,其包括多個偵測器520(例如,如圖1A中所描述之偵測器122)以及多個偵測器控制電路522(例如,圖1A之偵測器控制電路128)。偵測器模組518亦包括近紅外光源524,例如近紅外光雷射二極體、近紅外光OLED、近紅外光微發光二極體等。偵測器模組518,如參考如圖1A至圖1E所描述之偵測器元件104,可包括偵測器 積體電路層(例如,偵測器積體電路層126),其包括多個偵測器控制電路522形成的陣列,其與多個偵測器520電接觸。
在一些實施例中,如參考圖1C中所描述的偵測器元件104以及如參考圖2C中所描述的偵測器元件204,多個近紅外光源之每一近紅外光源524係與至少一雷射控制電路527電接觸。近紅外光源524係為雷射二極體,例如,近紅外光垂直腔面射型雷射,其係分離製造、切割並且接合至偵測器元件,並且透過一或多個雷射控制電路527電連接至偵測器模組518。
在一些實施例中,如參考圖1D中所描述的偵測器元件104以及如參考圖2D中所描述的偵測器元件204,近紅外光源524係為雷射二極體,例如,近紅外光垂直腔面射型雷射,其在偵測器模組518上單片地製造,並且透過一或多個雷射控制電路527電連接至偵測器模組518。
在一些實施例中,如圖5A中的示例之液晶系的顯示裝置500所示,偵測器模組518係位於背光模組502以及後偏極化膜504a之間,其中來自近紅外光源524的近紅外光525實質上垂直於顯示裝置500的表面526。從物體530反射之近紅外光528可被偵測器模組518中的偵測器520吸收。
在一些實施例中,如圖5B所示,偵測器模組518係位於背光模組502下方,其中來自近紅外光源524的近紅外光525實質上垂直於顯示裝置500的表面526。
偵測器模組518之位置以及近紅外光源524之位置可部分地基於顯示裝置500之複合層對於近紅外光波長的穿透特性來選擇。另外,近紅外光的特定波長範圍可部分地基於穿透顯示裝置的波長範圍之衰減因子來選擇。例如,1.55微米波長可在近紅外光源524處的起始點至其到達顯示裝置的上表面 526具有25%的衰減因子。在另一示例中,750奈米至1.1微米的波長範圍從近紅外光源524處的起始點至其到達顯示裝置的上表面526具有45%的衰減因子。在一些實施例中,相較於用於顯示裝置500的材料中較短波長之衰減因子,較長波長可具有更小的衰減因子。
在一些實施例中,偵測器模組518可分別製造,並且在後處理步驟中被接合至顯示裝置500的其他結構。
在一些實施例中,如上面參考圖3與圖4所述,偵測器520可以是鍺或矽鍺偵測器,或者可以是被配置以執行飛行時間測量的單輸出或雙輸出光偵測器。
顯示裝置的示例之程序
一般而言,近紅外光源係位於顯示元件下方,例如圖1A所示之顯示元件102,使得由近紅外光源發射的近紅外光首先被顯示元件之一或多層及/或部分結構偏折/散射,顯示元件位於近紅外光源以及目標物體之間。接著,未偏折/散射之近紅外光從物體反射,並且入射在顯示裝置之偵測器元件上的反射之近紅外光可由一或多個偵測器(例如,圖1A中的偵測器122)測量,一或多個偵測器係為顯示裝置之偵測器元件(例如,偵測器元件104)的一部分。因此,在遇到目標物體前,可執行校準程序以移除由穿過顯示元件之一或多層的近紅外光所產生的圖案。軟體影像重建可用於移除背景雜訊及/或所得圖案並且產生物體之校準影像。
圖6係為用於偵測物體(例如,手指、手或臉)與顯示裝置之表面的接近程度的顯示裝置(例如,圖1A中的顯示裝置100)的示例程序600。
校準或背景影像可首先藉由確定在顯示裝置表面的臨界距離(例如,數毫米、數十釐米、數百釐米)內沒有物體來測量(步驟602)。為了擷取校準影像,目標物體(例如,物體121)不應在顯示元件表面(例如,圖1A中的顯示元件102之前表面123)的臨界距離(例如,圖1A中的距離132)內。在一些實施例中,對於手指,臨界距離可以是數毫米;對於手,臨界距離可以是數十釐米;對於臉,臨界距離可以是數十釐米到數百釐米。距離顯示元件的表面太遠而無法獲得最小電訊號的物體為超出臨界距離的物體,最小電訊號係在偵測器處測量可到達顯示裝置的偵測器(例如,偵測器122)的反射之近紅外光之最小量。最小電訊號可部分地取決於特定偵測器的靈敏度。例如,最小電訊號可以是,例如,至少大於1微伏的電訊號。在大於臨界距離的距離處,物體可被忽略。
在一些實施例中,校準影像資料可在顯示裝置的設定過程期間(例如,在工廠設置中或在使用者初始化顯示裝置時)收集。例如,校準影像可在暗室或與雜散近紅外光隔離的環境中測量。
從近紅外光源發射近紅外光(步驟604)。近紅外光(例如,近紅外光124、近紅外光164等)係從近紅外光源發射。近紅外光源可以是,例如,近紅外光OLED、近紅外光微發光二極體、近紅外光雷射二極體或其他近紅外光源。顯示裝置可包括多個近紅外光源的陣列,每一近紅外光源發射近紅外光,而且其中每一近紅外光源係電連接至控制元件,例如顯示器控制電路116或雷射控制元件168。所發射的近紅外光,例如,可介於750奈米至1.65微米之間的範圍內。在另一示例中,所發射的光可以是1.55微米。近紅外光源可發射具有功率範圍介於1毫瓦至數瓦之間的近紅外光。
近紅外光可由發射近紅外光源以及顯示元件102前表面123之間之一或多個中間層反射(例如,折射或偏折)。在一些實施例中,例如在圖1A所示的顯示裝置100,近紅外光被透明導電氧化層(例如,第一電極區域)以及透明層106反射。在一些實施例中,例如圖1D所示的顯示裝置170中,近紅外光被顯示元件102之一或多層反射,例如顯示器積體電路層、第一電極區域、屏蔽層或第二電極區域。
收集基線影像資料,其中基線影像資料包括來自近紅外光源之所測量的反射之近紅外光,其從顯示裝置之一或多層反射(例如,散射、偏折等)(步驟606)。基線影像資料係收集於顯示裝置的多個偵測器之每一偵測器處。影像資料可以是從光訊號產生的電訊號,其中光訊號係由每個偵測器吸收的反射之近紅外光。
在一些實施例中,影像資料可以是在顯示裝置的多個偵測器/光偵測器之每一偵測器或光偵測器處進行的飛行時間測量,其中飛行時間測量對應於經由反射(例如,從顯示裝置層的反射)到達特定偵測器之光訊號(例如,從近紅外光源所發射的近紅外光)的相位、時間、頻率與延遲等。
多個偵測器中之每一偵測器具有相對於彼此偵測器的已知位置,例如,在顯示裝置之表面上的偵測器陣列中。基線影像資料可包括來自每一偵測器的相應測量(例如,電訊號、飛行時間測量等)以及包括特定偵測器相對於偵測器陣列之位置的後設資料(metadata)。
一旦收集了基線影像資料,可進行顯示裝置之操作。近紅外光從近紅外光源發射(步驟608)。
收集反射之影像資料,其中反射之影像資料包括來自近紅外光源之所測量的反射之近紅外光,其在臨界距離內從物體反射(步驟610)。如上面參考步驟604所討論的,近紅外光(例如,近紅外光124、近紅外光164等)係從近紅外光源發射。所發射之近紅外光可照射在物體上並且從物體反射,物體位於顯示裝置的上表面(例如,前表面123)之臨界距離內。反射之近紅外光(例如,反射之近紅外光125)可入射在顯示裝置上,使得反射之近紅外光之至少一部分入射到偵測器元件中之一或多個偵測器上,並且被一或多個偵測器吸收。
反射之影像資料係於顯示裝置的多個偵測器之每一偵測器處收集。反射之影像資料可以是從光訊號產生的電訊號,其中光訊號係由每一偵測器吸收的反射之近紅外光。
在一些實施例中,反射之影像資料可以是在顯示裝置的多個偵測器/光偵測器之每一偵測器或光偵測器處進行的飛行時間測量,其中飛行時間測量對應於經由反射(例如,在顯示裝置的臨界距離內的物體的反射)到達特定偵測器之光訊號(例如,來自近紅外光源所發射的近紅外光)的相位、時間、頻率與延遲等。
多個偵測器中之每一偵測器具有相對於彼此偵測器的已知位置,例如,在顯示裝置之表面上的偵測器陣列中。反射之影像資料可包括來自每一偵測器的相應測量(例如,電訊號、飛行時間測量等)以及包括特定偵測器相對於偵測器陣列之位置的後設資料(metadata)。
使用基線影像資料以及反射之影像資料決定物體之校準影像(步驟612)。在一些實施例中,校準影像可部分地基於跨越多個偵測器之每一偵 測器的反射之影像資料減去基線影像資料來產生。影像處理技術可用從偵測器陣列中的多個偵測器中之每一者處的各個測量,進而構建顯示裝置的臨界距離內之物體的影像。
提供物體之校準影像(步驟614)。在一些實施例中,物體之校準影像被提供作為對於顯示裝置上運行的應用程式(例如,用於行動元件的圖形使用者界面)的回授。在一些實施例中,校準影像被提供給,例如,在使用者平板電腦、行動電話、電視螢幕或LCD面板上之追踪軟體,追踪軟體可用於追蹤動作、臉部、手勢以及環境。
儘管本說明書中描述了許多實施細節,但是這些不應被解釋為限制本發明專利範圍,而是作為對特定實施例特定的特徵的描述。在本說明書中在單獨實施例的上下文中描述的某些特徵也可以在單個實施例中組合實現。相反,在單個實施例的上下文中描述的各種特徵也可以在多個實施例中單獨地或以任何合適的次組合來實現。此外,雖然特徵可以在上面被描述為在某些組合中起作用並且甚至最初如此要求保護,但是來自所要求保護的組合的一個或多個特徵在一些情況下可以從組合中刪除,並且所要求保護的組合可以涉及次組合或次組合變體。
再者,雖然在本文的圖式中顯示某些實施方式依照特定的操作順序實施,但應可理解的是,此種順序可能是非必要的(意即,實施方是可以不同順序實施該等操作、結合某些操作或重疊某些操作等),且在某些情況下,多工和並行處理某些操作是有利的。此外,在前述實施方式中,不同的系統組件的分離不應被理解為在所有實施方式中都需要這樣的分離,並且應當可理解的 是,所描述的程序組件和系統可整合於單一軟體產品中或封裝到多個軟體產品中
雖然本發明已以特定實施方式揭露如上,然本發明保護範圍仍涵括其他實施方式。在一些狀況下,在專利範圍所述之操作可以不同次序進行且仍可實現所需結果。此外,在附加圖示所繪示之程序不需要所示之特定次序或是依序的次序以實現所需結果。在一些實施方式,以多工或是平行處理可能較佳。
100:顯示裝置
102:顯示元件
103:第一表面
104:偵測器元件
105:第二表面
106:透明層
108:顯示器積體電路層
109:第二電極區域
110:屏蔽層
112:第一電極區域
114:近紅外光源
116:顯示器控制電路
118:第一濾光區域
12:物體
122:偵測器
123:前表面
125:近紅外光
126:偵測器積體電路層
127:基板
128:偵測器控制電路
129:互連
130:互連電路層
132:距離

Claims (20)

  1. 一種顯示裝置,包含:一透明層,包含一前側及一後側,該透明層對於波長大於800奈米的光訊號具有高於50%的透明度;一光濾波器,用以通過至少具有該光訊號波長之光線,該光線由該透明層的該前側行進到該後側;一光偵測器,用以接收由該透明層的該前側行進到該後側且通過該光濾波器的該光訊號的一部分;該光偵測器包含:一第一基板係基於一第一材料形成;及一偵測區域由該第一基板支撐,該偵測區域係基於與該第一材料不同的一第二材料形成;及一偵測器控制電路電耦接至該光偵測器;其中該光偵測器的位置可使該光訊號的該部份在進入該光偵測器的該偵測區域前通過(i)該光偵測器的該第一基板的一部分,或(ii)該偵測器控制電路的一部分。
  2. 如請求項1所述之顯示裝置,更包含一第一光源,用以發射具有波長大於800奈米之一第一光訊號。
  3. 如請求項2所述之顯示裝置,更包含一第二光源,用以發射具有波長大於800奈米之一第二光訊號。
  4. 如請求項2所述之顯示裝置,其中該第一光源包含一封裝之雷射二極體、一垂直腔面射型雷射(VCSEL)、一邊緣發射雷射(EEL)、一有機發光二極體(OLED)、或一微發光二極體(Micro-LED) 中的至少一個,該第一光源所發射之該第一光訊號波長在800奈米至1650奈米之間。
  5. 如請求項1所述之顯示裝置,其中該偵測器控制電路用以輸出一接近偵測計算、一影像偵測計算或是一深度影像偵測計算中一個或是多個資料。
  6. 如請求項1所述之顯示裝置,其中該偵測區域厚度為0.5微米至5微米。
  7. 如請求項1所述之顯示裝置,其中該第一材料包含矽,且該第二材料包含鍺。
  8. 如請求項1所述之顯示裝置,其中該偵測區域係嵌入該第一基板。
  9. 如請求項1所述之顯示裝置,其中該偵測區域在該第一基板上以平台形成。
  10. 如請求項1所述之顯示裝置,其中該光濾波器包含一高通濾波器。
  11. 如請求項1所述之顯示裝置,其中該光濾波器包含一帶通濾波器。
  12. 如請求項1所述之顯示裝置,其中該偵測器控制電路係形成於一第二基板上,且該第一基板與該第二基板接合。
  13. 如請求項1所述之顯示裝置,更包含一顯示器,該顯示器包含該透明層。
  14. 如請求項1所述之顯示裝置,其中該光偵測器更包含由該第一基板支撐的多個偵測區域。
  15. 一種操作一顯示裝置之方法,該方法包含:由一透明層接收一光訊號,該透明層對於波長大於800奈米的該光訊號具有高於50%的透明度;由一光濾波器接收該光訊號的一第一部份,該第一部份弱於或是等於該光訊號,其中該光濾波器可通過之光線至少包含該光訊號之該波長;由一光偵測器之一基板接收該光訊號之一第二部份,該光訊號之該第二部份弱於或是等於該光訊號之該第一部份,其中該基板係基於一第一材料形成;由該光偵測器之一或多個偵測區域接收該光訊號之一第三部份,該光訊號之該第三部份弱於或是等於該光訊號之該第二部份,其中該一或多個偵測區域係由一第二材料形成,該第二材料不同於該第一材料;由一偵測器積體電路層產生一電訊號,該偵測器積體電路層包含一或多個偵測器控制電路電耦接至該光偵測器,且該電訊號代表由該一或多個偵測區域接收該光訊號之該第三部份;且該電訊號用以計算與一目標物體相關的接近資料或是飛行時間資料。
  16. 如請求項15所述之方法,更包含:基於該電訊號判斷一量測資料;獲得一基線資料,該基線資料代表在接收該光訊號之前之一光偵測器量測;及依據該基線資料及該量測資料決定一校準資料。
  17. 如請求項15所述之方法,更包含:由一發射器朝該目標物體發射該光訊號。
  18. 一種操作一顯示裝置之方法,該方法包含:由一透明層接收一光訊號,該透明層對於波長大於800奈米的該光訊號具有高於50%的透明度;由一光濾波器接收該光訊號的一第一部份,該第一部份弱於或是等於該光訊號,其中該光濾波器可通過之光線至少包含該光訊號之該波長;由一偵測器控制電路層接收該光訊號之一第二部份,該光訊號之該第二部份弱於或是等於該光訊號之該第一部份,其中該偵測器控制電路層包含與一光偵測器電耦接之一或多個偵測器控制電路;由該光偵測器之一或多個偵測區域接收該光訊號之一第三部份,該光訊號之該第三部份弱於或是等於該光訊號之該第二部份,其中該一或多個偵測區域係形成於一基板上,該一或多個偵測區域與該基板係由不同材料形成;由一偵測器積體電路層產生一電訊號,該電訊號代表由該一或多個偵測區域接收該光訊號之該第三部份;且該電訊號用以計算與一目標物體相關的接近資料或是飛行時間資料。
  19. 如請求項18所述之方法,更包含:基於該電訊號判斷一量測資料;獲得一基線資料,該基線資料代表在接收該光訊號之前之一光偵測器量測;及依據該基線資料及該量測資料決定一校準資料。
  20. 如請求項18所述之方法,更包含:由一發射器朝該目標物體發射該光訊號。
TW112113350A 2018-05-08 2019-05-08 裝置及其操作方法 TWI838208B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862668261P 2018-05-08 2018-05-08
US62/668,261 2018-05-08

Publications (2)

Publication Number Publication Date
TW202331370A TW202331370A (zh) 2023-08-01
TWI838208B true TWI838208B (zh) 2024-04-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100220077A1 (en) 2009-02-27 2010-09-02 Sony Corporation Image input device, image input-output device and electronic unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100220077A1 (en) 2009-02-27 2010-09-02 Sony Corporation Image input device, image input-output device and electronic unit

Similar Documents

Publication Publication Date Title
TWI801578B (zh) 顯示裝置及其操作方法
US11747450B2 (en) High-speed light sensing apparatus
US20210273120A1 (en) Photodetectors, preparation methods for photodetectors, photodetector arrays, and photodetection terminals
CN207250518U (zh) 盖革模式雪崩光电二极管阵列、光电子器件和检测系统
US8357960B1 (en) Multispectral imaging device and manufacturing thereof
KR101638974B1 (ko) 광 변조기와 그 제조 및 동작방법과 광 변조기를 포함하는 광학장치
US8174059B2 (en) Multicolor photodiode array and method of manufacturing
KR20100130782A (ko) 광전자 셔터, 이의 동작 방법 및 광전자 셔터를 채용한 광학 장치
US20220262974A1 (en) Photo-Detecting Apparatus With Low Dark Current
US10892295B2 (en) Germanium-modified, back-side illuminated optical sensor
KR102514047B1 (ko) 복수의 기능이 통합된 이미지 센서 및 이를 포함하는 이미지 센서 모듈
WO2005122261A1 (en) Two colour photon detector
US9685477B2 (en) Two-terminal multi-mode detector
EP3792975A1 (en) Display apparatus
CN112542483A (zh) 显示装置
US7115910B2 (en) Multicolor photodiode array and method of manufacturing thereof
TWI838208B (zh) 裝置及其操作方法
US20240063321A1 (en) Apparatus having a single photon avalanche diode (spad) with improved near infrared (nir) photon detection efficiency
CN110870070A (zh) 高速光感测设备ii
Fang et al. PIN photodiode bandwidth optimization in integrated CMOS process