TWI837083B - Manufacturing method of lithium ion cathode, lithium ion cathode and battery including the lithium ion cathode - Google Patents

Manufacturing method of lithium ion cathode, lithium ion cathode and battery including the lithium ion cathode Download PDF

Info

Publication number
TWI837083B
TWI837083B TW107101632A TW107101632A TWI837083B TW I837083 B TWI837083 B TW I837083B TW 107101632 A TW107101632 A TW 107101632A TW 107101632 A TW107101632 A TW 107101632A TW I837083 B TWI837083 B TW I837083B
Authority
TW
Taiwan
Prior art keywords
lithium ion
manufacturing
ion cathode
cathode
carbonate
Prior art date
Application number
TW107101632A
Other languages
Chinese (zh)
Other versions
TW201841836A (en
Inventor
安納貝爾 翁
卡模恩 皓迪金
愛拉海特拉耶 帕希利
法翰 耐斯微德瑞尼
歐瑞安 瑞德
希恩 梅他
史帝芬A 康貝爾
印金 芬
Original Assignee
加拿大商納諾萬麥帝瑞爾公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加拿大商納諾萬麥帝瑞爾公司 filed Critical 加拿大商納諾萬麥帝瑞爾公司
Publication of TW201841836A publication Critical patent/TW201841836A/en
Application granted granted Critical
Publication of TWI837083B publication Critical patent/TWI837083B/en

Links

Abstract

一種用於形成專門用於電池的鋰離子陰極材料的改良方法。該方法包括形成包含適合形成陰極氧化物前驅物的第一金屬的可分解原料和多元羧酸的溶液作為第一溶液。可分解原料在溶液中被分解以形成第一金屬鹽,其中第一金屬鹽作為去除該多元羧酸的質子的鹽,從而形成陰極氧化物前驅物。陰極氧化物前驅物被加熱以形成鋰離子陰極材料。 An improved method for forming a lithium-ion cathode material specifically for use in a battery. The method includes forming a solution containing a decomposable raw material of a first metal suitable for forming a cathode oxide precursor and a polycarboxylic acid as a first solution. The decomposable raw material is decomposed in the solution to form a first metal salt, wherein the first metal salt serves as a salt for removing protons from the polycarboxylic acid to form a cathode oxide precursor. The cathode oxide precursor is heated to form a lithium-ion cathode material.

Description

鋰離子陰極的製造方法及鋰離子陰極及包含該鋰離子陰極的 電池 Method for manufacturing lithium ion cathode, lithium ion cathode and battery containing the lithium ion cathode

本發明要求2017年1月18日提交申請中的美國臨時專利申請第62/447,598以及於2017年4月10日提交申請中的美國臨時專利申請第62/483,777的優先權,這兩個申請通過引用併入本文。 This invention claims priority to U.S. Provisional Patent Application No. 62/447,598 filed on January 18, 2017 and U.S. Provisional Patent Application No. 62/483,777 filed on April 10, 2017, both of which are incorporated herein by reference.

本發明涉及形成用於電池的鋰離子陰極的精細和超細粉末和奈米粉末的改良方法。更具體地說,本發明涉及但不限於鋰離子電池陰極和有效的製備尖晶石材料和其它先進材料的方法,其材料浪費最少並減少了對後續步驟不利的例如燒結和煅燒的工藝步驟。 The present invention relates to improved methods for forming fine and ultrafine powders and nanopowders for lithium ion cathodes for batteries. More specifically, the present invention relates to, but is not limited to, lithium ion battery cathodes and methods for efficiently preparing spinel materials and other advanced materials with minimal material waste and reduced process steps such as sintering and calcining that are detrimental to subsequent steps.

目前對電池的改良存在需求。電池有兩種主要應用,一種是靜止應用,另一種是移動應用。無論是固定式還是移動式應用,都希望增加存儲容量、延長電池壽命、更快速地實現充滿電、並降低成本。包含鋰金屬氧化物陰極的鋰離子電池在大多數應用中作為合適的電池是非常有利的,並且他們已經在各種應用中找到了支持。但是,特別希望改善鋰離子電池的儲存能力、再充電時間、成本和儲存穩定性。本發明主要針對在尖晶石形式或岩鹽結晶形式的鋰離子電池以及其製造工藝的改良。 There is a need for improvements in batteries. There are two main applications for batteries, one is stationary applications and the other is mobile applications. In both stationary and mobile applications, it is desirable to increase storage capacity, extend battery life, achieve full charge more quickly, and reduce cost. Lithium-ion batteries comprising a lithium metal oxide cathode are very advantageous as suitable batteries in most applications, and they have found support in a variety of applications. However, it is particularly desirable to improve the storage capacity, recharge time, cost and storage stability of lithium-ion batteries. The present invention is primarily directed to lithium-ion batteries in spinel form or rock salt crystal form and improvements in the process for their manufacture.

包含鋰鹽和以過渡金屬為基礎的陰極的岩鹽結晶形式的鋰離子電池的製備見於美國專利第5,511,621中。第9,136,534號、第9,159,999號和第 9,478,807號以及美國公佈的專利申請第2014/0271413號、2014/0272568和2014/0272580中,每一篇均通過引用併入本文。具有岩鹽結晶形式的陰極材料具有以下通式:LiNiaMnbXcO2 Preparation of lithium ion batteries in rock salt crystal form comprising a lithium salt and a transition metal based cathode is described in U.S. Patent Nos. 5,511,621, 9,136,534, 9,159,999 and 9,478,807 and U.S. Published Patent Application Nos. 2014/0271413, 2014/0272568 and 2014/0272580, each of which is incorporated herein by reference. The cathode material in rock salt crystal form has the following general formula: LiNi a Mn b X c O 2

其中X優選地為Co或Al,且a+b+c=1。為了方便起見,當X是鈷時,將陰極材料稱為NMC,並且為了方便,當X是鋁時,將陰極材料稱為NCA。在岩鹽結晶形式的製備中,過渡金屬可以通過添加化學計量當量的碳酸鋰以碳酸鹽形式沉澱以形成陰極材料前驅物。然後燒結陰極材料前驅物以形成陰極材料。具有尖晶石晶體結構的陰極材料具有以下通式:LiNixMnyCozO4 Wherein X is preferably Co or Al, and a+b+c=1. For convenience, when X is cobalt, the cathode material is referred to as NMC, and for convenience, when X is aluminum, the cathode material is referred to as NCA. In the preparation of rock salt crystal form, the transition metal can be precipitated in the form of carbonate by adding a stoichiometric equivalent of lithium carbonate to form a cathode material precursor. The cathode material precursor is then sintered to form the cathode material. The cathode material having a spinel crystal structure has the following general formula: LiNi x Mn y Co z O 4

其中x+y+z=2。在尖晶石中,鋰化學計量比過渡金屬化學計量的一半。因此,當合成陰極材料前驅物時,由碳酸鋰獲得的碳酸鹽不足以沉澱過渡金屬。只有當使用碳酸鈉時,通過引入不需要的反離子如鈉才能實現過量的碳酸鹽的加入,或者使pH控制複雜化,並且可能導致不充分的沉澱,例如當添加碳酸銨時。原則上可以使用兩倍化學計量過量的碳酸鋰,並通過傾析含水上清液來除去,然而由於電池性能隨鋰化學計量的變化敏感,這是不希望的。 where x+y+z=2. In spinel, the lithium stoichiometry is half the transition metal stoichiometry. Therefore, when synthesizing cathode material precursors, the carbonate obtained from lithium carbonate is insufficient to precipitate the transition metal. Excess carbonate addition can only be achieved when sodium carbonate is used, either by introducing unwanted counterions such as sodium, or complicates pH control and may lead to insufficient precipitation, such as when ammonium carbonate is added. In principle, a two-fold stoichiometric excess of lithium carbonate can be used and removed by decanting the aqueous supernatant, however this is undesirable due to the sensitivity of cell performance to changes in lithium stoichiometry.

一直期望在尖晶石和岩鹽結晶結構中製造鋰離子陰極,特別是鋰/錳/鎳基陰極的改良方法。本發明即提供了這樣一種方法。 Improved methods for making lithium-ion cathodes, particularly lithium/manganese/nickel-based cathodes, in spinel and rock salt crystal structures have been desired. The present invention provides such a method.

本發明的目的是提供製備鋰離子電池陰極的改良方法。 The object of the present invention is to provide an improved method for preparing a cathode for a lithium ion battery.

本發明的一個目的是提供一種形成鋰金屬陰極氧化物前驅物的改良方法,所述鋰金屬氧化物被煅燒以形成鋰金屬氧化物陰極。 An object of the present invention is to provide an improved method of forming a lithium metal cathode oxide precursor, wherein the lithium metal oxide is calcined to form a lithium metal oxide cathode.

本發明的具體目的是提供一種形成鋰離子電池的改良方法,該方法包括尖晶石結晶結構或優選地選自NMC和NCA的岩鹽結構中的過渡金屬陰極。 A specific object of the present invention is to provide an improved method for forming a lithium ion battery comprising a transition metal cathode in a spinel crystal structure or preferably in a rock salt structure selected from NMC and NCA.

本發明的特定特徵是製造鋰離子金屬氧化物陰極的能力,所述鋰離子金屬氧化物陰極在整個氧化物中包含過渡金屬組合物的梯度,並具有可預測性和再現性,從而改良例如由核心的本質特性到例如圍繞於該核心周圍部分的外殼特性。 A particular feature of the present invention is the ability to produce lithium-ion metal oxide cathodes that contain gradients of transition metal composition throughout the oxide that are predictable and reproducible, thereby modifying the properties of, for example, the intrinsic properties of the core to, for example, the properties of the shell surrounding the core.

本發明的一個實施例提供了一種形成鋰離子陰極材料的方法,所述鋰離子陰極材料包含適合於形成陰極氧化物前驅物的金屬鹽的可分解原料和多元羧酸;分解可分解原料以在溶液中形成金屬鹽,其中所述金屬鹽作為去除該多元羧酸的質子的鹽,從而形成陰極氧化物前驅物;和加熱陰極氧化物前驅物以形成所述鋰離子陰極材料。 One embodiment of the present invention provides a method for forming a lithium ion cathode material, the lithium ion cathode material comprising a decomposable raw material of a metal salt suitable for forming a cathode oxide precursor and a polycarboxylic acid; decomposing the decomposable raw material to form a metal salt in a solution, wherein the metal salt acts as a salt to remove protons from the polycarboxylic acid to form a cathode oxide precursor; and heating the cathode oxide precursor to form the lithium ion cathode material.

在形成鋰離子陰極材料的方法中提供又一個實施例,其包括:形成使碳酸鋰、碳酸錳和碳酸鎳與草酸反應、釋放CO2(g)和/或H2O(l)以形成沉澱包含草酸鋰、草酸錳和草酸鎳以形成陰極氧化物前驅物、加熱陰極氧化物前驅物以形成鋰離子陰極材料。 Yet another embodiment is provided in a method of forming a lithium ion cathode material, comprising: reacting lithium carbonate, manganese carbonate, and nickel carbonate with oxalic acid, releasing CO2 (g) and/or H2O (l) to form a precipitate comprising lithium oxalate, manganese oxalate, and nickel oxalate to form a cathode oxide precursor, and heating the cathode oxide precursor to form the lithium ion cathode material.

〔圖1〕提供了當使用過渡金屬乙酸鹽(頂部)和碳酸鹽(底部)原料時,草酸鹽噴霧乾燥的陰極氧化物前驅物和在900℃煅燒15小時的LiNi0.5Mn1.5O4材料的SEM顯微照片。 [Figure 1] provides SEM micrographs of oxalate spray dried cathode oxide precursor and LiNi 0.5 Mn 1.5 O 4 material calcined at 900 °C for 15 h when using transition metal acetate (top) and carbonate (bottom) feedstocks.

〔圖2〕提供了在不同條件下從碳酸錳和草酸在水中反應沉澱的草酸錳水合物的X射線衍射(XRD)圖。 [Figure 2] provides X-ray diffraction (XRD) patterns of manganese oxalate hydrate precipitated from the reaction of manganese carbonate and oxalic acid in water under different conditions.

〔圖3〕顯示本發明改良技術形成的尖晶石材料以特定容量為函數的電壓的曲線圖。 [Figure 3] shows the curve of voltage as a function of specific capacity for the spinel material formed by the improved technology of the present invention.

〔圖4〕是本發明的一個實施例的XRD圖案。 [Figure 4] is an XRD pattern of an embodiment of the present invention.

〔圖5〕是本發明的一個實施例的SEM顯微照片。 [Figure 5] is a SEM micrograph of an embodiment of the present invention.

〔圖6〕是本發明的一個實施例的XRD圖案。 [Figure 6] is an XRD pattern of an embodiment of the present invention.

〔圖7〕是本發明的一個實施例的SEM顯微照片。 [Figure 7] is a SEM micrograph of an embodiment of the present invention.

〔圖8〕是本發明的實施例的圖形。 [Figure 8] is a diagram of an embodiment of the present invention.

〔圖9〕是本發明的一個實施例的圖形。 [Figure 9] is a diagram of an embodiment of the present invention.

〔圖10〕是本發明的一個實施例的圖形。 [Figure 10] is a diagram of an embodiment of the present invention.

〔圖11〕是本發明的一個實施例的圖形。 [Figure 11] is a diagram of an embodiment of the present invention.

〔圖12〕是本發明的一個實施例的圖形。 [Figure 12] is a diagram of an embodiment of the present invention.

〔圖13〕是本發明的一個實施例的XRD圖案。 [Figure 13] is an XRD pattern of an embodiment of the present invention.

〔圖14〕是本發明的實施例的圖形。 [Figure 14] is a diagram of an embodiment of the present invention.

〔圖15〕是本發明的實施例的圖形。 [Figure 15] is a diagram of an embodiment of the present invention.

〔圖16〕是本發明的一個實施例的圖形。 [Figure 16] is a diagram of an embodiment of the present invention.

〔圖17〕是本發明的一個實施例的XRD圖案。 [Figure 17] is an XRD pattern of an embodiment of the present invention.

〔圖18〕是本發明的一個實施例的圖形。 [Figure 18] is a diagram of an embodiment of the present invention.

〔圖19〕是本發明的實施例的圖形。 [Figure 19] is a diagram of an embodiment of the present invention.

〔圖20〕是本發明的一個實施例的圖形。 [Figure 20] is a diagram of an embodiment of the present invention.

〔圖21〕是本發明的一個實施例的圖形。 [Figure 21] is a diagram of an embodiment of the present invention.

〔圖22〕是本發明的實施例的圖形。 [Figure 22] is a diagram of an embodiment of the present invention.

〔圖23〕是本發明的一個實施例的圖形。 [Figure 23] is a diagram of an embodiment of the present invention.

〔圖24〕是本發明的實施例的圖形。 [Figure 24] is a diagram of an embodiment of the present invention.

〔圖25〕是本發明的一個實施例的XRD圖案。 [Figure 25] is an XRD pattern of an embodiment of the present invention.

〔圖26〕是本發明一個實施例的XRD圖案。 [Figure 26] is an XRD pattern of an embodiment of the present invention.

〔圖27〕是本發明的一個實施例的XRD圖案。 [Figure 27] is an XRD pattern of an embodiment of the present invention.

〔圖28〕是本發明的一個實施例的XRD圖案。 [Figure 28] is an XRD pattern of an embodiment of the present invention.

〔圖29〕是本發明的一個實施例的SEM顯微照片。 [Figure 29] is a SEM micrograph of an embodiment of the present invention.

〔圖30〕是本發明的一個實施例的XRD圖案。 [Figure 30] is an XRD pattern of an embodiment of the present invention.

〔圖31〕是本發明的一個實施例的XRD圖案。 [Figure 31] is an XRD pattern of an embodiment of the present invention.

〔圖32〕是本發明實施例的SEM顯微照片。 [Figure 32] is a SEM micrograph of an embodiment of the present invention.

〔圖33〕是本發明實施例的SEM顯微照片。 [Figure 33] is a SEM micrograph of an embodiment of the present invention.

〔圖34〕是本發明的一個實施例的圖形 [Figure 34] is a diagram of an embodiment of the present invention

〔圖35〕是本發明的一個實施例的XRD圖案。 [Figure 35] is an XRD pattern of an embodiment of the present invention.

〔圖36〕是本發明的一個實施例的XRD圖案。 [Figure 36] is an XRD pattern of an embodiment of the present invention.

〔圖37〕是本發明實施例的SEM顯微照片。 [Figure 37] is a SEM micrograph of an embodiment of the present invention.

〔圖38〕是本發明實施例的SEM顯微照片。 [Figure 38] is a SEM micrograph of an embodiment of the present invention.

〔圖39〕是本發明的一個實施例的圖形。 [Figure 39] is a diagram of an embodiment of the present invention.

〔圖40〕是本發明的一個實施例的圖形。 [Figure 40] is a diagram of an embodiment of the present invention.

〔圖41〕是本發明的一個實施例的XRD圖案。 [Figure 41] is an XRD pattern of an embodiment of the present invention.

〔圖42〕是本發明的一個實施例的圖形。 [Figure 42] is a diagram of an embodiment of the present invention.

〔圖43〕是本發明的實施例的圖形。 [Figure 43] is a diagram of an embodiment of the present invention.

〔圖44〕是本發明的一個實施例的XRD圖案。 [Figure 44] is an XRD pattern of an embodiment of the present invention.

〔圖45〕是本發明實施例的SEM顯微照片。 [Figure 45] is a SEM micrograph of an embodiment of the present invention.

〔圖46〕是本發明的一個實施例的圖形。 [Figure 46] is a diagram of an embodiment of the present invention.

〔圖47〕是本發明的一個實施例的XRD圖案。 [Figure 47] is an XRD pattern of an embodiment of the present invention.

〔圖48〕是本發明的一個實施例的SEM顯微照片。 [Figure 48] is a SEM micrograph of an embodiment of the present invention.

〔圖49〕是本發明的一個實施例的XRD圖案。 [Figure 49] is an XRD pattern of an embodiment of the present invention.

〔圖50〕是本發明的一個實施例的SEM顯微照片。 [Figure 50] is a SEM micrograph of an embodiment of the present invention.

〔圖51〕是本發明的實施例的圖形。 [Figure 51] is a diagram of an embodiment of the present invention.

〔圖52〕是本發明的一個實施例的圖形。 [Figure 52] is a diagram of an embodiment of the present invention.

〔圖53〕是本發明的實施例的圖形。 [Figure 53] is a diagram of an embodiment of the present invention.

本發明涉及一種製備鋰離子電池的改良方法,特別是一種鋰離子電池的陰極。更具體地說,本發明具體涉及一種用於形成鋰離子電池的陰極的改良方法,其中該陰極係呈尖晶石形式或岩鹽形式,優選地係NMC和NCA材料的岩鹽形式。 The present invention relates to an improved method for preparing a lithium ion battery, in particular a cathode for a lithium ion battery. More specifically, the present invention relates to an improved method for forming a cathode for a lithium ion battery, wherein the cathode is in a spinel form or a rock salt form, preferably a rock salt form of NMC and NCA materials.

在一個優選實施例中,本發明的鋰金屬化合物包含由化學式I所定義的尖晶石晶體結構的鋰金屬化合物:LiNixMnyCozEwO4化學式I其中E是可選的摻雜劑;及X+Y+Z+W=2並且w

Figure 107101632-A0305-02-0007-2
0.2;或由化學式II所定義的岩鹽結晶結構;LiNiaMnbXcGdO2化學式II其中G是可選的摻雜劑;X是Co或Al;且 其中a+b+c+d=1且d
Figure 107101632-A0305-02-0008-3
0.1。 In a preferred embodiment, the lithium metal compound of the present invention comprises a lithium metal compound having a spinel crystal structure defined by Chemical Formula I: LiNi x Mn y Co z E w O 4 Chemical Formula I wherein E is an optional dopant; and X+Y+Z+W=2 and w
Figure 107101632-A0305-02-0007-2
0.2; or a rock salt crystal structure defined by Formula II; LiNi a Mn b X c G d O 2 Formula II wherein G is an optional dopant; X is Co or Al; and wherein a+b+c+d=1 and d
Figure 107101632-A0305-02-0008-3
0.1.

在化學式I的尖晶石晶體結構中,優選實施例為0.5

Figure 107101632-A0305-02-0008-4
x
Figure 107101632-A0305-02-0008-5
0.6;1.4
Figure 107101632-A0305-02-0008-6
y
Figure 107101632-A0305-02-0008-7
1.5且z
Figure 107101632-A0305-02-0008-8
0.9。更優選地,0.5
Figure 107101632-A0305-02-0008-10
x
Figure 107101632-A0305-02-0008-11
0.55,1.45
Figure 107101632-A0305-02-0008-12
y
Figure 107101632-A0305-02-0008-13
1.5且z
Figure 107101632-A0305-02-0008-14
0.05。在一個優選實施例中,x和y都不為零。在化學式I中,優選地Mn/Ni比不大於3,優選地至少2.33至小於3,最優選地至少2.6至小於3。 In the spinel crystal structure of formula I, the preferred embodiment is 0.5
Figure 107101632-A0305-02-0008-4
x
Figure 107101632-A0305-02-0008-5
0.6; 1.4
Figure 107101632-A0305-02-0008-6
y
Figure 107101632-A0305-02-0008-7
1.5 and z
Figure 107101632-A0305-02-0008-8
0.9. More preferably, 0.5
Figure 107101632-A0305-02-0008-10
x
Figure 107101632-A0305-02-0008-11
0.55, 1.45
Figure 107101632-A0305-02-0008-12
y
Figure 107101632-A0305-02-0008-13
1.5 and z
Figure 107101632-A0305-02-0008-14
In a preferred embodiment, x and y are both non-zero. In Formula I, the Mn/Ni ratio is preferably not greater than 3, preferably at least 2.33 to less than 3, and most preferably at least 2.6 to less than 3.

在化學式II的岩鹽結晶結構的優選實施例中,是高鎳NMC,其中0.5

Figure 107101632-A0305-02-0008-15
a
Figure 107101632-A0305-02-0008-16
0.9,更優選地由NMC 622呈現的0.58
Figure 107101632-A0305-02-0008-17
a
Figure 107101632-A0305-02-0008-18
0.62或如NMC811所呈現的0.78
Figure 107101632-A0305-02-0008-19
a
Figure 107101632-A0305-02-0008-20
0.82。在優選實施例中,由NMC 111呈現的a=b=c。 In a preferred embodiment of the rock salt crystal structure of Formula II, it is a high nickel NMC, wherein 0.5
Figure 107101632-A0305-02-0008-15
a
Figure 107101632-A0305-02-0008-16
0.9, preferably 0.58 presented by NMC 622
Figure 107101632-A0305-02-0008-17
a
Figure 107101632-A0305-02-0008-18
0.62 or 0.78 as shown by NMC811
Figure 107101632-A0305-02-0008-19
a
Figure 107101632-A0305-02-0008-20
0.82. In a preferred embodiment, a=b=c presented by NMC 111.

在整個說明書中的化學式中,化學計量地定義鋰以平衡電荷和理解鋰在陽極和陰極之間是可移動的。因此,在任何指定時間,陰極可以相對富含鋰或相對耗盡鋰。在鋰耗盡的陰極中,鋰將低於化學計量平衡,並且在充電時,鋰可以高於化學計量平衡。同樣地,在整個說明書中列出的配方中,金屬是以電荷平衡表示,且可理解由於在實施中不能配製完美平衡的化學計量,因此如元素分析所確定的那樣,該金屬有可能稍微富含或稍微耗盡。 In chemical formulas throughout this specification, lithium is defined stoichiometrically to balance charge and with the understanding that lithium is mobile between the anode and cathode. Thus, at any given time, the cathode can be relatively rich in lithium or relatively depleted in lithium. In a lithium-depleted cathode, the lithium will be below stoichiometric equilibrium, and when charging, the lithium can be above stoichiometric equilibrium. Likewise, in formulations listed throughout this specification, metals are expressed as charge balances, with the understanding that since perfectly balanced stoichiometries cannot be formulated in practice, it is possible that the metal may be slightly rich or slightly depleted as determined by elemental analysis.

可以添加摻雜劑以增強氧化物的特性,例如電子傳導率和穩定性。摻雜劑優選地為與主要的鎳、錳和可選的鈷或鋁一起添加的替代摻雜劑。摻雜劑優選地表示不超過氧化物的10莫耳%,優選地不超過5莫耳%。優選的摻雜劑包括Al,Gd,Ti,Zr,Mg,Ca,Sr,Ba,Cr,Cu,Fe,Zn,V,Bi,Nb和B,其中Al和Gd是特別優選的。 Dopants may be added to enhance the properties of the oxide, such as electronic conductivity and stability. The dopant is preferably a substitute dopant added with the primary nickel, manganese and optionally cobalt or aluminum. The dopant preferably represents no more than 10 mol %, preferably no more than 5 mol % of the oxide. Preferred dopants include Al, Gd, Ti, Zr, Mg, Ca, Sr, Ba, Cr, Cu, Fe, Zn, V, Bi, Nb and B, with Al and Gd being particularly preferred.

如將在本文中更全面描述的,陰極由包含Li,Ni,Mn,Co,Al或Fe的鹽的陰極氧化物前驅物形成。將陰極氧化物前驅物煅燒以形成作為鋰金屬氧化物的陰極材料。陰極材料可選地用磷酸鹽XPO4處理,其中X是平衡電 荷所需的原子,並且X可以是單價原子、二價原子或三價,可理解其可根據需要予以組合。特別優選的是,在施用後通過洗滌或汽化可以容易地除去X。磷酸鹽被施加到金屬氧化物的表面上,其中磷酸鹽部分在金屬氧化物的表面上形成MnPO4,或者結合到金屬氧化物的表面上。錳優選地主要處於+3氧化態,優選地少於10%的表面錳處於+2氧化態,並且由此使錳在表面上還原成Mn2+。該反應釋放出通過洗滌或蒸發而除去的X。在優選的磷酸鹽中,X選自NH4 +,H+,Li+,Na+及其組合。由於在形成表面磷酸錳之後易於除去X,特別優選的磷酸鹽包括(NH4)3PO4、(NH4)2HPO4、(NH4)H2PO4和H3PO4。煅燒陰極氧化物前驅物的天然氧化錳優選地與磷酸鹽反應,而不是添加的錳或其它金屬。因此,所添加的磷酸鹽優選地相對不含Mn,更優選地小於1重量%的錳。優選地不添加Mn+2與磷酸鹽或在形成氧化物之後。優選的是在表面上不存在單獨的磷酸錳如磷酸錳相。優選地,磷酸鹽連接金屬氧化物的表面。 As will be described more fully herein, the cathode is formed from a cathode oxide precursor comprising a salt of Li, Ni, Mn, Co, Al or Fe. The cathode oxide precursor is calcined to form a cathode material that is a lithium metal oxide. The cathode material is optionally treated with a phosphate XPO 4 , wherein X is an atom required for balancing the charge, and X can be a monovalent atom, a divalent atom or a trivalent atom, and it is understood that it can be combined as required. It is particularly preferred that X can be easily removed by washing or vaporization after application. The phosphate is applied to the surface of the metal oxide, wherein the phosphate portion forms MnPO 4 on the surface of the metal oxide, or is bonded to the surface of the metal oxide. Manganese is preferably predominantly in the +3 oxidation state, preferably less than 10% of the surface manganese is in the +2 oxidation state, and thereby the manganese is reduced to Mn 2+ on the surface. The reaction releases X which is removed by washing or evaporation. In preferred phosphates, X is selected from NH 4 + , H + , Li + , Na + and combinations thereof. Particularly preferred phosphates include (NH 4 ) 3 PO 4 , (NH 4 ) 2 HPO 4 , (NH 4 )H 2 PO 4 and H 3 PO 4 due to the ease of removing X after forming the surface manganese phosphate. The native manganese oxide of the calcined cathode oxide precursor preferably reacts with the phosphate rather than with added manganese or other metals. Thus, the added phosphate is preferably relatively free of Mn, more preferably less than 1 wt% manganese. Preferably, Mn +2 is not added with the phosphate or after the oxide is formed. Preferably, there is no separate manganese phosphate such as a manganese phosphate phase on the surface. Preferably, the phosphate is attached to the surface of the metal oxide.

陰極氧化物前驅物通過鹽在形成相對不溶性鹽的抗衡離子存在下的反應而形成。認為相對不溶性的鹽形成懸浮的晶體,據信是奧斯瓦爾德熟化最終以有序晶格沉澱。為了本發明的目的,優選地錳和鎳以及可選的鈷或鋁的鹽係結合在包含抗衡離子的溶液中,所述抗衡離子以足以允許晶體生長的速率沉澱錳,鎳和鈷或鋁。錳、鎳、鈷或鋁的可溶性抗衡離子是在20℃下每100克溶劑具有至少0.1克鹽的溶解度,包括乙酸鹽、硝酸鹽、碳酸鹽。金屬沉澱為不溶性鹽,其在20℃時每100克溶劑中具有小於0.05克鹽的溶解度,包括碳酸鹽和草酸鹽。 The cathodic oxide precursor is formed by the reaction of a salt in the presence of a counter ion that forms a relatively insoluble salt. The relatively insoluble salt is believed to form suspended crystals that are believed to be Oswald ripening and eventually precipitate in an ordered lattice. For the purposes of the present invention, preferably salts of manganese and nickel and optionally cobalt or aluminum are combined in a solution containing counter ions that precipitate manganese, nickel and cobalt or aluminum at a rate sufficient to allow crystal growth. Soluble counter ions of manganese, nickel, cobalt or aluminum are those having a solubility of at least 0.1 grams of salt per 100 grams of solvent at 20°C, including acetates, nitrates, carbonates. Metals precipitate as insoluble salts with a solubility of less than 0.05 g of salt per 100 g of solvent at 20°C, including carbonates and oxalates.

整個反應包括兩個順序的二次反應,其中第一反應是在如反應式A中所示的過量多元羧酸存在下,碳酸鹽原料的分解:

Figure 107101632-A0305-02-0009-63
The entire reaction involves two sequential secondary reactions, the first of which is the decomposition of the carbonate raw material in the presence of an excess of polycarboxylic acid as shown in Reaction Scheme A:
Figure 107101632-A0305-02-0009-63

其中X表示適用於優選地選自Li2,Mn,Ni,Co或Al的陰極材料的金屬。在反應式A中,為了簡單起見,反應式A中未示出的多元羧酸釋放酸。反應式A的結果是溶液中的金屬鹽,其中鹽被反應B所示去質子化的多羧酸螯合:X2++-OOCR1COO-→X(OOCR1COO) 反應式B Wherein X represents a metal suitable for cathode materials, preferably selected from Li 2 , Mn, Ni, Co or Al. In reaction A, for simplicity, the polycarboxylic acid not shown in reaction A releases acid. The result of reaction A is a metal salt in solution, wherein the salt is chelated by the deprotonated polycarboxylic acid shown in reaction B: X 2+ + - OOCR 1 COO - →X(OOCR 1 COO) reaction B

其中R1代表包含多元羧酸鹽的烷基鏈。由X(OOCR1COO)表示的鹽以有序晶格沉澱,如本文其他地方所述。 wherein R 1 represents an alkyl chain comprising a polycarboxylic acid salt. The salt represented by X(OOCR 1 COO) precipitates in an ordered lattice as described elsewhere herein.

反應式A的金屬碳酸鹽可以用金屬醋酸鹽如Li(O2CCH3)、Ni(O2CCH3)2或Mn(O2CCH3)2代替,其可以加入作為水溶液或作為固體物質。 The metal carbonate of reaction formula A may be replaced by a metal acetate such as Li( O2CCH3 ) , Ni( O2CCH3 ) 2 , or Mn( O2CCH3 ) 2 , which may be added as an aqueous solution or as a solid substance.

如果需要,可以用氫氧化銨調節pH值(酸鹼值),這是由於其簡單性和改善的性能可精確控制pH值。在現有技術方法中,使用氫氧化銨有其困難度,其原因是NH3與水溶液中的鎳傾向複合,其反應如下所示:

Figure 107101632-A0305-02-0010-66
If necessary, the pH value (acidity and alkalinity) can be adjusted with ammonium hydroxide due to its simplicity and improved performance for precise control of pH value. In the prior art methods, the use of ammonium hydroxide is difficult because NH 3 tends to complex with nickel in aqueous solution, and the reaction is as follows:
Figure 107101632-A0305-02-0010-66

其結果是鎳的不完全沉澱,這使得最終陰極氧化物前驅物的化學計量的確定性和控制性複雜化。多元羧酸,特別是草酸,優先有效地使鎳優先與NH4 +配位,從而提高沉澱速率,並將鎳結合到有序的陰極氧化物前驅物中。多羧酸優先沉澱驅使鎳沉澱反應,避免使用氫氧化銨。 The result is incomplete precipitation of nickel, which complicates the determination and control of the stoichiometry of the final cathodic oxide precursor. Polycarboxylic acids, especially oxalic acid, are effective in preferentially coordinating nickel with NH4 + , thereby increasing the precipitation rate and incorporating nickel into the ordered cathodic oxide precursor. Polycarboxylic acids preferentially precipitate nickel, avoiding the use of ammonium hydroxide.

特別優選的實施例通過由以下反應,較佳為水性,代表的陰極氧化物前驅物形成LiNi0.5Mn1.5O4來表示:

Figure 107101632-A0305-02-0010-64
A particularly preferred embodiment is represented by the formation of LiNi 0.5 Mn 1.5 O 4 from a cathode oxide precursor represented by the following reaction, preferably aqueous:
Figure 107101632-A0305-02-0010-64

其中所述NiC2O4和MnC2O4以有序的晶格形式沉澱為陰極氧化物前驅物,其中Li2C2O4在除去水時在其上沉澱。具有總組成(Li2C2O4)0.5(NiC2O4)0.5(MnC2O4)1.5的陰極氧化物前驅物被煅燒,導致以下反應:

Figure 107101632-A0305-02-0010-65
Wherein the NiC 2 O 4 and MnC 2 O 4 are precipitated as a cathode oxide precursor in the form of an ordered lattice, wherein Li 2 C 2 O 4 is precipitated thereon when water is removed. The cathode oxide precursor having a total composition of (Li 2 C 2 O 4 ) 0.5 (NiC 2 O 4 ) 0.5 (MnC 2 O 4 ) 1.5 is calcined, resulting in the following reaction:
Figure 107101632-A0305-02-0010-65

在多元羧酸存在下的碳酸鹽分解過程包括在水存在下將金屬碳酸鹽和草酸結合到一反應器中,接著攪拌。然後將漿料乾燥,優選地通過噴霧 乾燥,然後煅燒。煅燒溫度在400~1000℃範圍內變化,形成具有不同結構性質的材料,如尖晶石LiNi0.5Mn1.5O4中不同程度的Mn/Ni陽離子有序化。 The carbonate decomposition process in the presence of a polycarboxylic acid comprises combining a metal carbonate and oxalic acid in a reactor in the presence of water, followed by stirring. The slurry is then dried, preferably by spray drying, and then calcined. The calcination temperature varies in the range of 400-1000°C to form materials with different structural properties, such as different degrees of Mn/Ni cation ordering in spinel LiNi 0.5 Mn 1.5 O 4 .

碳酸鹽分解過程的特定特徵是不需要研磨或混合陰極氧化物前驅物粉末、過濾漿料或倒出漂浮表面物,即使這些步驟如果需要也可以完成。 A particular feature of the carbonate decomposition process is that there is no need to grind or mix the cathodic oxide precursor powder, filter the slurry or decant the floating surface, although these steps can be done if desired.

使用草酸鹽作為例子的碳酸鹽分解過程或分解(水解)-沉澱反應可以通過優選地在水存在下發生的以下等式來描述:H2C2O4(aq)+XCO3(s)→CO2(g)+H2O(l)+XC2O4(s,aq)(X=過渡金屬,Li2) The carbonate decomposition process or decomposition (hydrolysis) -precipitation reaction using oxalate as an example can be described by the following equation, preferably occurring in the presence of water: H2C2O4 (aq) + XCO3 (s) → CO2 (g) + H2O (l) + XC2O4 (s, aq) (X = transition metal, Li2 )

不受限於理論,假設草酸水解碳酸鹽以形成CO2(g),H2O(l)和金屬離子。過渡金屬離子隨後以金屬草酸鹽沉澱。根據含水量的不同,草酸鋰可能會沉澱或保持溶於水。預期可溶性草酸鋰在噴霧乾燥過程中被塗佈在過渡金屬草酸鹽顆粒上。不需要金屬碳酸鹽或草酸完全溶解,因為水僅僅是分解金屬碳酸鹽的介質,並以受控的方式沉澱出金屬草酸鹽,從而允許成核和晶體生長。分解(水解)-沉澱反應的速率取決於溫度、含水量、pH值、引入氣體和原料的晶體結構和形態。 Without being bound by theory, it is assumed that oxalic acid hydrolyzes carbonate to form CO 2(g) , H 2 O (l) and metal ions. The transition metal ions are subsequently precipitated as metal oxalate. Depending on the water content, the lithium oxalate may precipitate or remain soluble in the water. It is expected that the soluble lithium oxalate is coated on the transition metal oxalate particles during the spray drying process. It is not necessary for the metal carbonate or oxalic acid to be completely dissolved, because the water is merely a medium for decomposing the metal carbonate and precipitating the metal oxalate in a controlled manner, thereby allowing nucleation and crystal growth. The rate of the decomposition (hydrolysis)-precipitation reaction depends on the temperature, water content, pH, the introduced gas and the crystal structure and morphology of the raw materials.

在一較佳實施例中,由於提高分解反應速率,反應可以在水回流溫度10-100℃的溫度範圍內完成。 In a preferred embodiment, due to the increased decomposition reaction rate, the reaction can be completed within a temperature range of 10-100°C at the water reflux temperature.

對於每1g(克)草酸,水含量可以在約1至約400ml之間變化,優選地由於反應速率提高而降低水含量,並且隨後所必須除去的水會較少。 The water content may vary from about 1 to about 400 ml per 1 g (gram) of oxalic acid, with a lower water content being preferred since the reaction rate is increased and less water must subsequently be removed.

溶液的pH值可以從0到12變化。碳酸鹽分解過程的一個特別的優點是其反應可以在沒有額外的pH控制的情況下完成,從而簡化製程並且不需要額外的程序控制或添加物。 The pH of the solution can be varied from 0 to 12. A particular advantage of the carbonate decomposition process is that the reaction can be carried out without additional pH control, thus simplifying the process and requiring no additional process controls or additives.

儘管反應可以在未處理的大氣下進行,但是在一些實施例中可以使用其它氣體,例如CO2、N2、Ar、其他惰性氣體或O2。在一些實施例中,鼓泡進入溶液中的N2和CO2是優選的,因為它們可以稍微增加沉澱的金屬草酸鹽的結晶度。 Although the reaction can be conducted under untreated atmosphere, other gases may be used in some embodiments, such as CO 2 , N 2 , Ar, other inert gases, or O 2 . In some embodiments, N 2 and CO 2 bubbling into the solution are preferred because they can slightly increase the crystallinity of the precipitated metal oxalate.

諸如無定形相對於結晶碳酸鹽原料的陰極氧化物前驅物的結晶度和形態可以由於溶解度和粒度以及粒度範圍的差異而影響分解速率。 The crystallinity and morphology of the cathodic oxide precursors, such as amorphous versus crystalline carbonate feedstocks, can affect the decomposition rate due to differences in solubility and particle size and size range.

碳酸鹽分解過程的進行是通過從固體碳酸鹽原料到固體草酸鹽前驅物物質的連串平衡。為了討論的目的,我們可以按照以下反應將該過程分成幾個不同的過程: The carbonate decomposition process proceeds through a series of equilibria from solid carbonate feedstock to solid oxalate precursor species. For the purposes of this discussion, we can divide the process into several different steps according to the following reactions:

(1)H2C2O4(s)→H2C2O4(aq)(草酸溶解) (1) H 2 C 2 O 4(s) →H 2 C 2 O 4(aq) (oxalic acid dissolution)

(2)H2C2O4(aq)←→H+ (aq)+HC2O4 - (aq)(草酸離解步驟一,pKa=1.25) (2) H 2 C 2 O 4(aq) ←→ H + (aq) + HC 2 O 4 - (aq) (oxalic acid dissociation step 1, pKa = 1.25)

(3)HC2O4 - (aq)←→H+ (aq)+C2O4 2- (aq)(草酸離解步驟二,pKa=4.19) (3) HC 2 O 4 - (aq) ←→ H + (aq) + C 2 O 4 2- (aq) (oxalic acid dissociation step 2, pK a =4.19)

(4)XCO3(s,aq)+2H+ (aq)→X2++H2O(l)+CO2(g)(碳酸鹽水解) (4) XCO 3(s, aq) +2H + (aq) →X 2+ +H 2 O (l) +CO 2(g) (carbonate hydrolysis)

(5)X2+ (aq)+C2O4 2- (aq)→XC2O4(s)(金屬草酸鹽沉澱) (5)X 2+ (aq) +C 2 O 4 2- (aq) →XC 2 O 4(s) (metal oxalate precipitation)

如果要使用該反應來產生高電壓LiNi0.5Mn1.5O4材料,則將發生 以下反應,其將優選地但不一定在H2O存在下進行: If this reaction is to be used to produce a high voltage LiNi0.5Mn1.5O4 material, the following reaction will occur, which will preferably , but not necessarily , be carried out in the presence of H2O :

(6)0.25Li2CO3(s)+0.25NiCO3(s)+0.75MnCO3(s)+1.25H2C2O4(aq)→0.25Li2C2O4(aq)+Ni0.25Mn0.75C2O4(s)+1.25CO2(g)+1.25H2O(l) (6) 0.25Li 2 CO 3(s) + 0.25NiCO 3(s) + 0.75MnCO 3(s) + 1.25H 2 C 2 O 4(aq) → 0.25Li 2 C 2 O 4(aq) + Ni 0.25 Mn 0.75 C 2 O 4(s) + 1.25CO 2(g) + 1.25H 2 O (l)

為了討論和解釋的目的,反應是逐步寫入的,理解的是在操作反應條件下反應可以同時發生。通過改變不同的反應參數,例如水含量/離子強度,過量的草酸含量,批量大小、溫度、大氣環境、回流反應混合物、pH值控制等,可以控制每個步驟的速率和其它所需的參數,例如可以優化固體含量。 For the purpose of discussion and explanation, the reactions are written step by step with the understanding that the reactions can occur simultaneously under the operating reaction conditions. By varying various reaction parameters such as water content/ionic strength, excess oxalic acid content, batch size, temperature, atmosphere, refluxing reaction mixture, pH control, etc., the rate of each step can be controlled and other desired parameters such as solids content can be optimized.

碳酸鹽分解過程可以描述為在連串平衡中進行,如上述反應4中從溶液中產生的CO2(g)和如上述反應5中的高度不溶性金屬草酸鹽的沉澱兩者都驅使反應完成。 The carbonate decomposition process can be described as proceeding in a series of equilibria, with both the generation of CO 2(g) from solution as in reaction 4 above and the precipitation of highly insoluble metal oxalates as in reaction 5 above driving the reaction to completion.

碳酸酯水解的速率與金屬碳酸鹽的Ksp相關,為方便起見,提供以下內容:碳酸鋰Li2CO3 8.15×10-4非常快(秒到分鐘);碳酸鎳(II),NiCO3,1.42×10-7快(分鐘);碳酸錳(II),MnCO3,2.24×10-11較慢(小時至幾天);而且 氫氧化鋁(Al(OH)3,3x10-34非常慢 The rate of carbonate hydrolysis is related to the K sp of the metal carbonate and is provided for convenience as follows: lithium carbonate, Li 2 CO 3 8.15×10 -4 very fast (seconds to minutes); nickel (II) carbonate, NiCO 3 , 1.42×10 -7 fast (minutes); manganese (II) carbonate, MnCO 3 , 2.24×10 -11 slower (hours to days); and aluminum hydroxide (Al(OH) 3 , 3x10 -34 very slow

共沉澱的均勻性可以取決於碳酸鹽水解的速率。例如,如果碳酸鎳(II)在碳酸錳(II)之前完全水解,則可以分別以NiC2O4和MnC2O4的形式沉澱。 The uniformity of the co-precipitation can depend on the rate of carbonate hydrolysis. For example, if nickel (II) carbonate is completely hydrolyzed before manganese (II) carbonate, it can be precipitated as NiC2O4 and MnC2O4 , respectively.

可以控制溫度,因為它影響草酸的溶解速率,碳酸鹽水解和金屬草酸鹽的沉澱。具體而言,在水回流溫度下進行反應將是有用的。在該反應中產生CO2(g),升高溫度將增加CO2(g)的去除速率,因此由於在較高溫度下較低的二氧化碳(g)溶解度,提高溫度可能會增加碳酸鹽水解速率。 Temperature can be controlled because it affects the rate of oxalic acid dissolution, carbonate hydrolysis, and precipitation of metal oxalates. Specifically, it will be useful to conduct the reaction at the reflux temperature of the water. CO2 (g) is produced in this reaction, and increasing the temperature will increase the rate of CO2 (g) removal, so increasing the temperature may increase the carbonate hydrolysis rate due to the lower solubility of CO2(g) at higher temperatures.

氣體鼓泡也可以是通過改變CO2釋放速率來控制反應速率的有效方法。N2(g),O2(g),CO2(g)和/或大氣空氣的鼓泡可能是有益的,因為氣體可以起到置換溶解CO2(g)或改善反應物混合的作用。 Gas sparging can also be an effective method to control the reaction rate by varying the rate of CO 2 evolution. Sparging with N 2(g) , O 2(g) , CO 2(g) , and/or atmospheric air can be beneficial as the gas can act to displace dissolved CO 2(g) or improve mixing of the reactants.

如果碳酸鹽首先是亞穩態碳酸氫鹽的形式,則它們可以更快地分解。例如,對於Li2CO3發生以下反應:Li2CO3(s)+CO2(g)+H2O(l)←→2 LiHCO3(aq) If the carbonates are first in the form of metastable bicarbonates, they can decompose more quickly. For example, for Li 2 CO 3 the following reaction occurs: Li 2 CO 3(s) +CO 2(g) +H 2 O (l) ←→ 2 LiHCO 3(aq)

亞穩態的碳酸氫鋰比Li2CO3溶解得多,並且後續的水解可以用單個質子以化學計量進行,如下所示:LiHCO3(aq)+H+ (aq)→H2O(l)+CO2(g)+Li+ (aq)l Metastable lithium bicarbonate is much more soluble than Li 2 CO 3 , and the subsequent hydrolysis can proceed stoichiometrically with a single proton as follows: LiHCO 3(aq) +H + (aq) →H 2 O (l) +CO 2(g) +Li + (aq)l

而不是像上面的反應4那樣進行。 Instead of proceeding as in reaction 4 above.

諸如NiC2O4,MnC2O4,CoC2O4,ZnC2O4等的二價金屬草酸鹽是高度不溶的,然而一價金屬草酸鹽如Li2C2O4在25℃下在水中的溶解度為8g/100mL時稍微可溶。如果必須使草酸鋰溶於溶液並均勻地分散在混合金屬草酸鹽沉澱物中,則將水體積保持在草酸鋰溶解度極限以上可能是必要的。 Divalent metal oxalates such as NiC2O4 , MnC2O4 , CoC2O4 , ZnC2O4 , etc. are highly insoluble, however monovalent metal oxalates such as Li2C2O4 are slightly soluble with a solubility of 8 g/100 mL in water at 25°C. If lithium oxalate must be dissolved in solution and evenly dispersed in the mixed metal oxalate precipitate, it may be necessary to keep the water volume above the solubility limit of lithium oxalate.

碳酸鹽水解、金屬草酸鹽沉澱以及金屬草酸鹽沉澱物的晶體結構和粒徑的速率受pH和水含量或離子強度的影響。在一些實施例中,以更高的離子強度或更低的水含量工作可能是有益的,因為這提高了草酸的質子活性和金 屬草酸鹽的沉澱速率。可將水含量正規化為碳酸鹽原料含量,優選的碳酸鹽莫耳數與L中水體積的比例範圍為約0.05至約20。每1.25莫耳碳酸鹽含水量為約1.64L,碳酸鹽的莫耳數與L中的水的體積之比為1.79,這適合於本發明的示範。 The rates of carbonate hydrolysis, metal oxalate precipitation, and the crystal structure and particle size of the metal oxalate precipitate are affected by pH and water content or ionic strength. In some embodiments, it may be beneficial to work at higher ionic strength or lower water content because this increases the proton activity of oxalic acid and the precipitation rate of the metal oxalate. The water content can be normalized to the carbonate feed content, and the preferred ratio of moles of carbonate to the volume of water in L ranges from about 0.05 to about 20. For every 1.25 moles of carbonate water content of about 1.64 L, the ratio of moles of carbonate to the volume of water in L is 1.79, which is suitable for demonstration of the present invention.

化學計量的草酸鹽與碳酸鹽的量足以實現完全沉澱。然而,加入過量的草酸可以提高反應速率,因為草酸上的第二質子酸性小得多,並且參與水解。大約5%的過量草酸按莫耳比碳酸鹽足以確保完成碳酸鹽水解。ICP分析顯示,10%過量的草酸通過完成反應在溶液中留下相似數量的Mn/Ni離子,化學計量過量為0%。小化學計量過量的草酸應能有效地達到完全沉澱,然而低的化學計量過量可能影響碳酸鹽水解的速率。 Stoichiometric amounts of oxalate and carbonate are sufficient to achieve complete precipitation. However, adding excess oxalic acid can increase the reaction rate because the second proton on oxalic acid is much less acidic and participates in the hydrolysis. Approximately 5% excess oxalic acid on a molar basis to carbonate is sufficient to ensure complete carbonate hydrolysis. ICP analysis showed that a 10% excess of oxalic acid completed the reaction leaving a similar number of Mn/Ni ions in solution as the 0% stoichiometric excess. A small stoichiometric excess of oxalic acid should be effective in achieving complete precipitation, however a low stoichiometric excess may affect the rate of carbonate hydrolysis.

碳酸鹽分解過程的一個特別的優點是在單一個反應器中即可完成整個反應直到完成的能力。由於鋰源在噴霧乾燥和煅燒步驟之前理想地處於溶液中,所以可能有用和/或可能分開地沉澱過渡金屬並且在共沉澱之後添加鋰源作為鋰鹽水溶液作為草酸鹽。 A particular advantage of the carbonate decomposition process is the ability to carry out the entire reaction to completion in a single reactor. Since the lithium source is ideally in solution prior to the spray drying and calcination steps, it may be useful and/or possible to precipitate the transition metal separately and add the lithium source as an aqueous lithium salt solution as the oxalate salt after co-precipitation.

本發明適用於過渡金屬乙酸鹽和混合碳酸鹽原料,從而使金屬化合物的溶解度更加匹配。考慮混合的碳酸鹽原料如Ni0.25Mn0.75CO3+Li2CO3以生產LiNi0.5Mn1.5O4材料。原料雜質對於最終材料的性能可能是關鍵的。特別是,MnCO3樣本可能含有少量在回流期間未水解的未知雜質。 The invention is applicable to transition metal acetate and mixed carbonate feedstocks, thereby making the solubility of the metal compounds more closely matched. Consider a mixed carbonate feedstock such as Ni 0.25 Mn 0.75 CO 3 + Li 2 CO 3 to produce LiNi 0.5 Mn 1.5 O 4 material. Feedstock impurities can be critical to the properties of the final material. In particular, the MnCO 3 sample may contain small amounts of unknown impurities that are not hydrolyzed during reflux.

多元羧酸包含至少兩個羧基。特別優選的多元羧酸是草酸,部分歸因於最小化在煅燒過程中必須除去的碳。可以使用其它低分子量二元羧酸,例如丙二酸、琥珀酸、戊二酸和己二酸。可以使用更高分子量的二羧酸,特別是偶數個具有較高溶解度的碳,然而除去額外的碳和降低溶解度的必要性使得它們不太理想。其它酸,例如檸檬酸、草醯乙酸、富馬酸、馬來酸和其它多元羧酸可以使用,條件是它們具有足夠的溶解度以實現至少小的化學計量過量並且具有足夠的螯合性質。具有羥基的酸由於其吸濕性增加而不能使用。 The polycarboxylic acid contains at least two carboxyl groups. A particularly preferred polycarboxylic acid is oxalic acid, in part to minimize the carbon that must be removed during calcination. Other low molecular weight dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, and adipic acid can be used. Higher molecular weight dicarboxylic acids can be used, especially even numbers of carbon with higher solubility, however the necessity to remove the extra carbon and reduce solubility makes them less desirable. Other acids such as citric acid, oxalylacetic acid, fumaric acid, maleic acid, and other polycarboxylic acids can be used provided they have sufficient solubility to achieve at least a small stoichiometric excess and have sufficient chelating properties. Acids with hydroxyl groups cannot be used due to their increased hygroscopicity.

為了完成形成陰極氧化物前驅物的反應,製備起始鹽的溶液。優選地製備添加的溶液,其優選地包含鎳、錳和鈷或鋁溶液,所述溶液總體上,單獨地或以某種組合形式,以及優選地包含鋰的本體溶液。然後如本文其他地方所述將添加的溶液加入到本體溶液中。溶液可以逆轉,然而,優選的是以預定的化學計量加入過渡金屬,因此有利的是作為包含全部過渡金屬的單一溶液加入到含鋰的本體溶液中。 To complete the reaction to form the cathode oxide precursor, a solution of the starting salt is prepared. Preferably, an additive solution is prepared, which preferably contains nickel, manganese and cobalt or aluminum solutions, said solutions generally, individually or in some combination, and preferably a bulk solution containing lithium. The additive solution is then added to the bulk solution as described elsewhere herein. The solution can be reversed, however, it is preferred to add the transition metal in a predetermined stoichiometry, and thus it is advantageous to add it as a single solution containing all the transition metals to the bulk solution containing lithium.

通過將固體溶解在選定的溶劑中,優選地極性溶劑如水中,但不限於此來製備每種溶液。溶劑的選擇取決於固體反應物在溶劑中的溶解度和溶解溫度。優選地在環境溫度下溶解並以快速溶解,使得溶解不是能量密集型的。溶解可以在稍高的溫度下進行,但優選地低於100℃。其他溶解助劑可以是添加酸或鹼。 Each solution is prepared by dissolving the solid in a chosen solvent, preferably a polar solvent such as water, but not limited thereto. The choice of solvent depends on the solubility of the solid reactant in the solvent and the dissolution temperature. Dissolution at ambient temperature and at a rapid rate so that dissolution is not energy intensive is preferred. Dissolution may be performed at slightly higher temperatures, but preferably below 100°C. Other dissolution aids may be the addition of acids or bases.

在混合期間,優選地將氣體鼓泡到本體溶液中。為了討論的目的,氣體被定義為惰性的,其對化學反應沒有助益,或者氣體被定義為反應性的,其調節pH或促成化學反應。優選的氣體包括空氣、CO2、NH3、SF6、HF、HCl、N2、氦氣、氬氣、甲烷、乙烷、丙烷或其混合物。除非反應物溶液對空氣敏感,否則特別優選的氣體包括環境空氣。如果需要降低大氣環境,則二氧化碳是特別優選的,並且其也可以用作溶解劑,作為pH調節劑或者如果形成碳酸鹽作為反應物。氨也可以作為調節pH的氣體引入。氨可以與過渡金屬形成氨化合物並且可以幫助溶解這種固體。作為例子,可以使用氣體混合物,例如在氬氣中的10%O2During mixing, a gas is preferably bubbled into the bulk solution. For purposes of discussion, a gas is defined as inert, which does not contribute to the chemical reaction, or a gas is defined as reactive, which adjusts the pH or promotes the chemical reaction. Preferred gases include air, CO 2 , NH 3 , SF 6 , HF, HCl, N 2 , helium, argon, methane, ethane, propane, or mixtures thereof. Unless the reactant solution is sensitive to air, particularly preferred gases include ambient air. If it is necessary to reduce the atmospheric environment, carbon dioxide is particularly preferred and it can also be used as a solvent, as a pH regulator or if carbonates are formed as reactants. Ammonia can also be introduced as a gas to adjust the pH. Ammonia can form ammonia compounds with transition metals and can help dissolve such solids. As an example, a gas mixture such as 10% O 2 in argon may be used.

為了形成陰極氧化物前驅物,pH優選地為至少約1至不超過約9.6,而不限於此。氨或氫氧化銨適用於增加pH值,因為任何可溶性鹼是特別優選的,因為LiOH是必需的。如果需要,酸,特別是甲酸適合於降低pH值。在一個實施例中,可以加入鋰,例如通過加入乙酸鋰以在乾燥之前達到足夠的固體含量,通常約20至30重量%。 To form the cathodic oxide precursor, the pH is preferably at least about 1 to no more than about 9.6, without limitation. Ammonia or ammonium hydroxide is suitable for increasing the pH, as is any soluble base, which is particularly preferred since LiOH is required. Acids, particularly formic acid, are suitable for lowering the pH if necessary. In one embodiment, lithium may be added, for example by adding lithium acetate to achieve a sufficient solids content, typically about 20 to 30 wt %, prior to drying.

本發明的特別優點是能夠在整個氧化物主體中形成過渡金屬濃度梯度,其區域,例如中心,可以具有一個過渡金屬比例,並且該比例可以以連續方式或逐步的方式通過氧化物的主體。 A particular advantage of the present invention is the ability to create a transition metal concentration gradient throughout the oxide body, where a region, such as the center, can have a transition metal ratio and this ratio can progress through the oxide body in a continuous or stepwise manner.

考慮到NMC係出於討論和澄清的目的而沒有予以限制,Ni,Mn和Co的濃度可以從核心向顆粒表面徑向變化。在為了清楚起見而提供的示例性實施例中,Ni含量可以處於梯度,由此允許在氧化物顆粒的表面上或附近具有相對低的鎳濃度,並且在氧化物顆粒的核心中具有相對高的鎳濃度。基於中性化學計量,Li與過渡金屬的比例將在整個氧化物顆粒中保持恆定。舉例來說,對於NMC 622和NMC 811,Ni:Mn:Co的總體組成可分別為6:2:2和8:1:1,核心相對富含一種過渡金屬,外殼在相同的過渡金屬中相對較差。更具體地說,核心可以富含一種過渡金屬,例如鎳,其中過渡金屬相對於過渡金屬的比例徑向遞減。例如,NMC8:1:1核心可以在其外部具有作為非限制性步驟示例的在外部具有NMC1:1:1外殼的NMC6:2:2外殼。這些反應可以逐步添加完成,或者通過改變過渡金屬的泵送速率以連續梯度完成。可以改變每次添加中過渡金屬的比例和添加次數以獲得所需的梯度分佈。 Considering that NMC is provided for purposes of discussion and clarification without limitation, the concentrations of Ni, Mn, and Co may vary radially from the core to the surface of the particle. In the exemplary embodiments provided for clarity, the Ni content may be in a gradient, thereby allowing for a relatively low Ni concentration at or near the surface of the oxide particle and a relatively high Ni concentration in the core of the oxide particle. Based on neutral stoichiometry, the ratio of Li to transition metal will remain constant throughout the oxide particle. For example, the overall composition of Ni:Mn:Co may be 6:2:2 and 8:1:1 for NMC 622 and NMC 811, respectively, with the core being relatively rich in one transition metal and the shell being relatively poor in the same transition metal. More specifically, the core can be enriched in one transition metal, such as nickel, with the ratio of transition metal to transition metal decreasing radially. For example, a NMC8:1:1 core can have an NMC6:2:2 shell on the outside with an NMC1:1:1 shell on the outside as a non-limiting example. These reactions can be done in stepwise additions or in a continuous gradient by varying the pumping rate of the transition metal. The ratio of transition metal in each addition and the number of additions can be varied to obtain the desired gradient distribution.

本發明的特定特徵是將摻雜劑和其他材料優先地摻入氧化物內部或者朝向表面甚至在表面處的能力。利用現有技術,摻雜劑例如均勻分散在氧化物內。此外,諸如鋁之類的任何表面處理都在作為表面反應物的形成氧化物上,而不一定是作為結合到氧化物晶格中的原子。本發明允許摻雜劑系統地分散在核心處,如將摻雜劑摻入初始過渡金屬漿料中的情況下那樣,在徑向帶中,如果摻雜劑摻入隨後的過渡金屬中漿料或外殼中,如果將摻雜劑摻入最終的過渡金屬漿料中將會是這種情況。 A particular feature of the present invention is the ability to preferentially incorporate dopants and other materials into the oxide interior or towards or even at the surface. With prior art, dopants are for example uniformly dispersed within the oxide. Furthermore, any surface treatment such as aluminum is on the formed oxide as a surface reactant and not necessarily as atoms bonded into the oxide lattice. The present invention allows dopants to be systematically dispersed at the core, as would be the case if the dopant was incorporated into the initial transition metal slurry, in radial bands if the dopant was incorporated into a subsequent transition metal slurry or shell, as would be the case if the dopant was incorporated into the final transition metal slurry.

為了本發明的目的,氧化物顆粒的每個徑向部分將基於用於形成該部分的過渡金屬的百分比來限定。舉例來說,如果初始漿料具有第一比例的過渡金屬,並且初始漿料包含用於形成氧化物的總過渡金屬的10莫耳%,則核 心將被認為是10%體積的氧化物,並且核心的組成將被定義為具有與過渡金屬的第一比例相同的比例。類似地,圍繞核心的每個外殼將由其中過渡金屬的百分比限定。作為非限制性實例,使用三種漿料形成的陰極氧化物前驅物,每種均等莫耳的過渡金屬,其中第一漿料具有8:1:1的Ni:Mn:Co比例,第二漿料具有Ni:Mn:Co比例為6:2:2,並且第三漿料具有1:1:1的Ni:Mn:Co比例將被認為形成代表氧化物顆粒體積的1/3的氧化物是核心與過渡金屬之比為8:1:1,核心上的第一外殼代表氧化物顆粒體積的1/3,過渡金屬比為6:2:2,第一外殼上的外圍代表過渡金屬比例為1:1:1的氧化物顆粒體積的1/3,而不考慮陰極氧化物前驅物在氧化物燒結過程中可能發生的過渡金屬遷移。 For purposes of the present invention, each radial portion of an oxide particle will be defined based on the percentage of transition metal used to form that portion. For example, if the initial slurry has a first proportion of transition metal, and the initial slurry contains 10 mole % of the total transition metal used to form the oxide, the core will be considered to be 10% oxide by volume, and the composition of the core will be defined as having the same proportion as the first proportion of transition metal. Similarly, each shell surrounding the core will be defined by the percentage of transition metal therein. As a non-limiting example, a cathode oxide precursor formed using three slurries, each with equal moles of transition metal, wherein the first slurry has a Ni:Mn:Co ratio of 8:1:1, the second slurry has a Ni:Mn:Co ratio of 6:2:2, and the third slurry has a Ni:Mn:Co ratio of 1:1:1 would be considered to form an oxide representing 1/3 of the volume of the oxide particles having a core to transition metal ratio of 8:1:1, a first shell on the core representing 1/3 of the volume of the oxide particles having a transition metal ratio of 6:2:2, and a periphery on the first shell representing 1/3 of the volume of the oxide particles having a transition metal ratio of 1:1:1, without regard to transition metal migration that may occur during sintering of the cathode oxide precursor.

在特別優選的實施例中,將摻雜劑摻入具有鋁的特定摻雜劑的外殼中。更優選地,包含摻雜劑的外殼代表氧化物顆粒的體積的小於10%,甚至更優選地小於氧化物顆粒的體積的5%,並且最優選地不大於氧化物的體積的1%粒子。為了本發明的目的,摻雜劑被定義為在陰極氧化物前驅物形成過程中與至少一種選自Ni,Mn,Co,Al和Fe的過渡金屬一起沉澱的材料。更優選地,陰極氧化物前驅物包含Ni和Mn以及可選的Co或Al。在完成至少一種過渡金屬的沉澱之後添加的材料在本文中被定義為表面處理。 In particularly preferred embodiments, the dopant is incorporated into a shell of a specific dopant having aluminum. More preferably, the shell containing the dopant represents less than 10% of the volume of the oxide particles, even more preferably less than 5% of the volume of the oxide particles, and most preferably no more than 1% of the volume of the oxide particles. For the purposes of the present invention, a dopant is defined as a material that is precipitated with at least one transition metal selected from Ni, Mn, Co, Al and Fe during the formation of the cathode oxide precursor. More preferably, the cathode oxide precursor comprises Ni and Mn and optionally Co or Al. Materials added after the completion of the deposition of at least one transition metal are defined herein as surface treatments.

在完成形成陰極氧化物前驅物的反應之後,乾燥所得的漿料混合物以除去溶劑並獲得乾燥的陰極氧化物前驅物粉末。可以使用任何類型的乾燥方法和設備,包括根據最終產品選擇的噴霧乾燥器,盤式乾燥器,冷凍乾燥器等。乾燥溫度將由所用設備限定和限制,並且這種乾燥優選地低於350℃,更優選地200-325℃。可以使用蒸發器進行乾燥,使得漿料混合物被放置在托盤中,並且隨著溫度升高而釋放溶劑。任何工業使用的蒸發器都可以使用。特別優選的乾燥方法是具有流化噴嘴或旋轉霧化器的噴霧乾燥器。這些噴嘴優選地是適合漿料混合物中陰極氧化物前驅物尺寸的最小尺寸的直徑。由於成本考慮,乾燥介質優選地為空氣。 After the reaction to form the cathode oxide precursor is completed, the resulting slurry mixture is dried to remove the solvent and obtain a dry cathode oxide precursor powder. Any type of drying method and equipment can be used, including a spray dryer, a tray dryer, a freeze dryer, etc. selected according to the final product. The drying temperature will be defined and limited by the equipment used, and such drying is preferably below 350°C, more preferably 200-325°C. An evaporator can be used for drying so that the slurry mixture is placed in a tray and the solvent is released as the temperature rises. Any industrially used evaporator can be used. A particularly preferred drying method is a spray dryer with a fluidized nozzle or a rotary atomizer. These nozzles are preferably of a diameter that is the smallest size appropriate to the size of the cathodic oxide precursor in the slurry mixture. Due to cost considerations, the drying medium is preferably air.

陰極氧化物前驅物的粒度是奈米尺寸的主要和次要顆粒,直到小至50微米的聚集體的小尺寸二次顆粒,這些顆粒很容易被粉碎成較小尺寸。應該知道,最終粉末的組成也影響形態。陰極氧化物前驅物具有約1-5μm的優選粒度。如果使用噴霧乾燥器,冷凍乾燥器等,將所得混合物在泵送到噴霧乾燥機頭中時連續攪拌。對於盤式乾燥機,液體從溶液表面蒸發。 The particle size of the cathode oxide precursor is nano-sized primary and secondary particles, up to small-sized secondary particles of aggregates as small as 50 microns, which are easily crushed to smaller sizes. It should be known that the composition of the final powder also affects the morphology. The cathode oxide precursor has a preferred particle size of about 1-5 μm . If a spray dryer, freeze dryer, etc. is used, the resulting mixture is continuously stirred while being pumped into the spray dryer head. For a disk dryer, the liquid evaporates from the surface of the solution.

將乾燥的粉末分批或通過輸送帶轉移到煅燒系統中。在大規模生產中,這種轉移可能是連續的或批量的。煅燒系統可以是利用陶瓷盤或匣缽作為容器的箱式爐,旋轉煅燒爐,可以是並流或逆流的流化床,旋轉管式爐和其它類似的設備,但不限於此。 The dried powder is transferred to the calcining system in batches or by conveyor. In large-scale production, this transfer may be continuous or batch. The calcining system may be a box furnace using ceramic trays or saggers as containers, a rotary calciner, a fluidized bed that may be co-current or counter-current, a rotary tube furnace and other similar equipment, but is not limited to these.

煅燒期間的加熱速率和冷卻速率取決於所需的最終產品的類型。通常,每分鐘約5℃的加熱速率是優選的,但通常的工業加熱速率也是適用的。 The heating rate and cooling rate during calcination depend on the type of end product desired. Generally, a heating rate of about 5°C per minute is preferred, but common industrial heating rates are also applicable.

在煅燒步驟之後獲得的最終粉末是精細、超細或奈米尺寸的粉末,其可以不需要如常規處理中目前進行的額外的粉碎、研磨或碾磨。顆粒相對較軟並且不像常規加工那樣燒結。 The final powder obtained after the calcination step is a fine, ultrafine or nano-sized powder that may not require additional crushing, grinding or milling as currently performed in conventional processing. The particles are relatively soft and do not sinter as in conventional processing.

最終煅燒的氧化物粉末最好經過表面特徵化、通過電子顯微鏡的粒度、孔隙率、元素的化學分析以及優選的專門應用所需的性能測試。噴霧乾燥的陰極氧化物前驅物優選是非常細的奈米尺寸。 The final calcined oxide powder is preferably surface characterized, tested for particle size by electron microscopy, porosity, elemental chemical analysis and preferably the properties required for the specific application. The spray dried cathodic oxide precursor is preferably of very fine nano-size.

可以針對噴霧乾燥器收集器予以改良,使得當噴霧粉末被轉移到煅燒爐時可以打開和關閉出口閥。分批地,收集器中的噴霧乾燥粉末可以被轉移到托盤或匣缽中,並移入煅燒爐中。旋轉式煅燒爐或流化床煅燒爐可用於證明本發明。煅燒溫度由粉末的組成和所需的最終相純度決定。對於大多數氧化物類型的粉末,煅燒溫度範圍從低至400℃至略高於1000℃。煅燒後,粉末被篩分,因為它們是軟的而不是燒結的。煅燒氧化物不需要長的研磨時間,也不需要分級以獲得窄的粒度分佈。 The spray dryer collector can be modified so that the outlet valve can be opened and closed as the spray powder is transferred to the calciner. In batches, the spray dried powder in the collector can be transferred to a tray or sack and moved into the calciner. A rotary calciner or a fluidized bed calciner can be used to demonstrate the invention. The calcination temperature is determined by the composition of the powder and the desired final phase purity. For most oxide type powders, the calcination temperature ranges from as low as 400°C to slightly above 1000°C. After calcination, the powders are sieved because they are soft and not sintered. The calcined oxides do not require long grinding times and do not require grading to obtain a narrow particle size distribution.

LiM2O4尖晶石氧化物具有1-5μm的優選微晶尺寸。LiMO2岩鹽氧化物具有約50-250nm,更優選地約150-200nm的優選微晶尺寸。 LiM2O4 spinel oxide has a preferred crystallite size of 1-5 μm . LiMO2 rock salt oxide has a preferred crystallite size of about 50-250 nm, more preferably about 150-200 nm.

本發明的一個特別的優點是形成多元羧酸的金屬螯合物,而不是醋酸酯。乙酸鹽在隨後煅燒陰極氧化物前驅物的過程中起到燃燒燃料的作用,並且需要額外的氧氣才能充分燃燒。較低分子量的多元羧酸,特別是較低分子量的二羧酸,更特別是草酸,在較低溫度下分解而不引入另外的氧。例如,草酸鹽在約300℃時分解,不需要額外的氧氣,從而可以更準確地控制煅燒溫度。這可以允許降低的燒製溫度,從而促進形成無序的Fd-3m尖晶石晶體結構,如在高溫下看到的那樣具有最小的雜質相。 A particular advantage of the present invention is the formation of metal chelates of polycarboxylic acids rather than acetates. Acetates act as a combustion fuel during the subsequent calcination of the cathodic oxide precursor and require additional oxygen for adequate combustion. Lower molecular weight polycarboxylic acids, particularly lower molecular weight dicarboxylic acids, and more particularly oxalic acid, decompose at lower temperatures without the introduction of additional oxygen. For example, oxalates decompose at about 300°C and do not require additional oxygen, allowing for more accurate control of the calcination temperature. This can allow for reduced firing temperatures, thereby promoting the formation of a disordered Fd-3m spinel crystal structure with minimal impurity phases as seen at higher temperatures.

用於形成陰極氧化物前驅物的這種方法在本文中被稱為化合物前驅物製劑(CPF)方法,其適用於大規模工業生產高性能精細,超細和奈米級粉末,所述高性能精細、超細和奈米級粉末需要確定的獨特的化學和物理性質以滿足專門應用的性能規格。CPF方法提供了陰極氧化物前驅物,其中金屬以鹽的形式沉澱成有序的晶格。然後煅燒陰極氧化物前驅物以形成氧化物。雖然不限於理論,但假設與非晶固體相反,有序晶格的形成有助於在煅燒期間形成氧化物。 This method for forming a cathode oxide precursor is referred to herein as a compound precursor formulation (CPF) method, which is suitable for large-scale industrial production of high-performance fine, ultrafine and nanoscale powders that require defined unique chemical and physical properties to meet performance specifications for specialized applications. The CPF method provides a cathode oxide precursor in which the metal is precipitated in the form of a salt into an ordered lattice. The cathode oxide precursor is then calcined to form an oxide. Although not limited to theory, it is assumed that the formation of an ordered lattice facilitates the formation of the oxide during calcination, as opposed to an amorphous solid.

CPF方法提供專門的微結構或奈米結構的控制形成,以及具有適合於滿足性能規格的粒度、表面積、孔隙率、相純度、化學純度和其它基本特性的最終產品。通過CPF方法生產的粉末相對於目前使用的技術以減少的處理步驟獲得,並且可以利用目前可用的工業設備。 The CPF process provides the controlled formation of specialized microstructures or nanostructures, and a final product having particle size, surface area, porosity, phase purity, chemical purity and other essential properties suitable for meeting performance specifications. Powders produced by the CPF process are obtained with reduced processing steps relative to currently used technologies and can utilize currently available industrial equipment.

CPF方法適用於具有親電子或親核配體的任何無機粉末和有機金屬粉末。CPF方法可以使用低成本的原料作為起始原料,如果需要,可以原位進行附加的純化或分離。使用該方法的設備可容易地實現粉末合成所需的惰性或氧化性大氣條件。反應溫度可以是環境溫度或略微溫度,但最好不超過100℃。 The CPF method is applicable to any inorganic powder and organometallic powder with electrophilic or nucleophilic ligands. The CPF method can use low-cost raw materials as starting materials, and additional purification or separation can be performed in situ if necessary. The inert or oxidizing atmospheric conditions required for powder synthesis can be easily achieved using the equipment of this method. The reaction temperature can be ambient temperature or slightly warm, but preferably not more than 100°C.

CPF方法通過整合化學原理的結晶、溶解度、過渡配合物形成、相化學、酸度和鹼度、水性化學、熱力學和表面化學,以簡單有效的方式產生陰極氧化物前驅物的精細、超細和奈米級粉末。 The CPF method produces fine, ultrafine and nanoscale powders of cathode oxide precursors in a simple and effective manner by integrating the chemical principles of crystallization, solubility, transition complex formation, phase chemistry, acidity and alkalinity, aqueous chemistry, thermodynamics and surface chemistry.

結晶開始的時間,特別是當成核步驟開始時,是形成奈米級粉末的最關鍵的階段。由CPF提供的一個特別的優點是在該成核步驟開始時製備奈米尺寸顆粒的能力。來自起始反應物的溶質分子分散在給定的溶劑中並處於溶液中。在這種情況下,相信團簇會在溫度、過飽和度和其他條件合適的條件下以奈米級開始形成。這些團簇構成這樣的原子核,其中原子以限定的和周期性的方式開始排列,其隨後定義了晶體微觀結構。晶體尺寸和形狀是由內部晶格結構產生的晶體的宏觀性質。 The time when crystallization begins, especially when the nucleation step begins, is the most critical stage in the formation of nanoscale powders. A particular advantage offered by CPF is the ability to prepare nanosized particles at the beginning of this nucleation step. The solute molecules from the starting reactants are dispersed in a given solvent and are in solution. In this case, clusters are believed to begin to form at the nanoscale under the right conditions of temperature, supersaturation and other conditions. These clusters constitute nuclei in which atoms begin to arrange in a defined and periodic manner, which subsequently defines the crystalline microstructure. Crystal size and shape are macroscopic properties of the crystal resulting from the internal lattice structure.

在成核開始之後,晶體生長也開始,並且只要存在過飽和,成核和晶體生長都可以同時發生。成核和生長的速率由溶液中已有的過飽和決定,並且取決於過飽和狀態,成核或生長發生在另一個之上。確定所需反應物的濃度是非常關鍵的,以便調整晶體尺寸和形狀。如果成核決定生長,將獲得更精細的晶體尺寸。成核步驟是非常關鍵的步驟,並且在這個初始步驟中的反應條件限定了所獲得的晶體。根據定義,成核是一個小區域的初始相變,如由液體溶液形成晶體。這是在處於亞穩態平衡狀態的均相中分子尺度上局部劇烈波動的結果。總核化是兩類核化的總和效應-初級和次級。在初次成核中,在沒有晶體作為起始的情況下形成晶體。二次成核會在晶體成形開始成核過程時發生。正是這種考慮,初次成核步驟的重要性構成了CPF方法的基礎。 After nucleation begins, crystal growth also begins, and both can occur simultaneously as long as supersaturation exists. The rates of nucleation and growth are determined by the existing supersaturation in the solution, and depending on the supersaturation state, nucleation or growth occurs over the other. It is very critical to determine the concentrations of the required reactants in order to tune the crystal size and shape. If nucleation dominates growth, finer crystal sizes will be obtained. The nucleation step is a very critical step, and the reaction conditions in this initial step define the crystals obtained. By definition, nucleation is the initial phase transition of a small area, such as the formation of crystals from a liquid solution. This is the result of local, violent fluctuations on a molecular scale in a homogeneous phase that is in a metastable equilibrium state. Total nucleation is the combined effect of two types of nucleation - primary and secondary. In primary nucleation, crystals form without any crystals to start with. Secondary nucleation occurs when crystals form to initiate the nucleation process. It is this consideration and the importance of the primary nucleation step that forms the basis of the CPF method.

在CPF方法中,反應物優選地在環境溫度下或者如果需要的話,在稍高的溫度但優選地不超過100℃下溶解在溶液中。選擇廉價的原料和合適的溶劑是本發明的重要方面。起始材料的純度也是重要的,因為這會影響最終產品的純度,其可能需要其性能規格所要求的特定純度水平。因此,必須考慮在製備過程中可以淨化而不顯著增加處理成本的低成本起始材料。 In the CPF process, the reactants are preferably dissolved in solution at ambient temperature or, if necessary, at slightly higher temperatures but preferably not exceeding 100°C. The selection of inexpensive starting materials and suitable solvents are important aspects of the present invention. The purity of the starting materials is also important as this affects the purity of the final product, which may require a specific purity level required by its performance specifications. Therefore, low-cost starting materials that can be purified during the preparation process without significantly increasing the processing costs must be considered.

CPF使用常規設備密切混合反應物,優選地包括高度攪拌的混合物,優選地具有氣體鼓泡,特別是當反應氣體是有利的時。 CPF uses conventional equipment to intimately mix the reactants, preferably including a highly agitated mixture, preferably with gas sparging, particularly when a reactive gas is advantageous.

優選地將氣體直接引入到溶液中,而不受引入方法的限制。通過使位於反應器側面的多個氣體擴散器(例如管)能夠將氣體引入反應器內的溶液中,其中管具有用於排出氣體的孔。另一種構造是具有雙壁反應器,使得氣體穿過反應器的內壁。反應器的底部也可以有氣體入口。氣體也可以通過攪拌軸引入,在離開時產生氣泡。若干其他配置是可能的,並且這裡給出的這些佈置的描述不限於這些。 The gas is preferably introduced directly into the solution, without limitation to the method of introduction. The gas can be introduced into the solution within the reactor by having multiple gas diffusers (e.g., tubes) located on the side of the reactor, wherein the tubes have holes for the gas to be discharged. Another configuration is to have a double-walled reactor so that the gas passes through the inner wall of the reactor. There can also be a gas inlet at the bottom of the reactor. The gas can also be introduced through a stirrer shaft, producing bubbles upon exiting. Several other configurations are possible, and the description of these arrangements given here is not limited to these.

在一個實施例中,充氣器可以用作氣體擴散器。可以將氣體擴散曝氣器結合到反應器中。陶瓷擴散曝氣器為管形或圓頂形,特別適用於本發明的示範。陶瓷泡沫擴散器的孔隙結構可以產生相對精細的小氣泡,從而導致提供的氣體每立方英尺每分鐘(cfm)具有非常高的氣-液界面。由於細氣泡速率較慢,高氣液界面比例與接觸時間的增加相結合可以提供較高的傳輸速率。陶瓷的孔隙率是形成氣泡的關鍵因素,並且對成核過程有顯著貢獻。儘管對於大多數構造不限於此,但是對於每分鐘每公升溶液每分鐘至少一公升氣體的氣體流速適合於本發明的示範。 In one embodiment, the aerator can be used as a gas diffuser. The gas diffusion aerator can be incorporated into the reactor. Ceramic diffusion aerators are tubular or dome-shaped and are particularly suitable for demonstration of the present invention. The pore structure of the ceramic foam diffuser can produce relatively fine small bubbles, resulting in a very high gas-liquid interface per cubic foot per minute (cfm) of gas provided. Due to the slow rate of fine bubbles, the high gas-liquid interface ratio combined with the increase in contact time can provide a higher transfer rate. The porosity of the ceramic is a key factor in the formation of bubbles and contributes significantly to the nucleation process. Although not limited to this for most configurations, a gas flow rate of at least one liter of gas per minute per liter of solution per minute is suitable for demonstration of the present invention.

在反應器壁的側面上的陶瓷管氣體擴散器特別適合於本發明的示範。這些管中的幾個可以放置在不同的位置,優選地彼此等距離,以更均勻地將氣體分配到整個反應器中。氣體優選地通過連接到集管組件的配件引入到反應器內的擴散器中,該配件略微加壓管的腔室。當氣體滲透通過陶瓷擴散器主體時,可能由於材料的多孔結構和陶瓷管外部的液體的表面張力而開始形成細小氣泡。一旦表面張力被克服,就會形成微小的氣泡。然後這個小氣泡通過液體上升,在達到液面之前形成用於在氣體和液體之間轉移的界面。 Ceramic tube gas diffusers on the side of the reactor wall are particularly suitable for demonstration of the present invention. Several of these tubes can be placed at different locations, preferably equidistant from each other, to more evenly distribute the gas throughout the reactor. The gas is preferably introduced into the diffuser within the reactor through a fitting connected to a header assembly, which slightly pressurizes the chamber of the tube. As the gas permeates through the ceramic diffuser body, tiny bubbles may begin to form due to the porous structure of the material and the surface tension of the liquid outside the ceramic tube. Once the surface tension is overcome, a tiny bubble is formed. This small bubble then rises through the liquid, forming an interface for transfer between gas and liquid before reaching the liquid surface.

圓頂形的擴散器可以放置在反應器的底部或反應器的側面上。對於圓頂形的擴散器,通常會產生從底部不斷上升到表面以提供大的反應表面的氣泡流。 The dome-shaped diffuser can be placed at the bottom of the reactor or on the side of the reactor. For the dome-shaped diffuser, a bubble flow is usually generated that continuously rises from the bottom to the surface to provide a large reaction surface.

當氣流不足以克服表面張力時關閉的膜擴散器適用於本發明的示範。這對於防止任何產品粉末進入擴散器是有用的。 A membrane diffuser that closes when the air flow is insufficient to overcome surface tension is suitable for use in demonstrations of the present invention. This is useful to prevent any product powder from entering the diffuser.

為了具有更高的氣體效率和利用率,優選地減少氣體流量和壓力並消耗更少的泵送能量。擴散器可以被配置為使得對於相同體積的氣體,形成具有較高表面積的較小氣泡,比形成較少的較大氣泡更小。較大的表面積意味著氣體在液體中溶解得更快。這在氣體也用於通過增加其在溶液中的溶解度來溶解反應物的解決方案中是有利的。 In order to have higher gas efficiency and utilization, it is preferred to reduce gas flow and pressure and consume less pumping energy. The diffuser can be configured so that for the same volume of gas, smaller bubbles with a higher surface area are formed, rather than fewer larger bubbles. A larger surface area means that the gas dissolves faster in the liquid. This is advantageous in solutions where the gas is also used to dissolve reactants by increasing its solubility in the solution.

噴嘴,優選地單向噴嘴可用於將氣體引入溶液反應器。氣體可以使用泵來輸送,並且應該控制流量以達到所需的氣泡和氣泡率。優選地在反應器的至少一個側面或底部上的噴嘴擴散器適用於本發明的示範。 A nozzle, preferably a one-way nozzle, can be used to introduce gas into the solution reactor. The gas can be delivered using a pump, and the flow rate should be controlled to achieve the desired bubbles and bubble rate. A nozzle diffuser, preferably on at least one side or bottom of the reactor, is suitable for demonstration of the present invention.

除了攪拌器的作用之外,氣體引入的速率優選地足以使溶液的體積增加至少5%。在大多數情況下,每升溶液每分鐘至少約一升氣體足以證明本發明。最好將氣體循環回到反應器中。 The rate at which the gas is introduced is preferably sufficient to increase the volume of the solution by at least 5%, in addition to the action of the agitator. In most cases, at least about one liter of gas per minute per liter of solution is sufficient to demonstrate the invention. It is preferred to recycle the gas back to the reactor.

要將添加的溶液轉移到本體溶液中,最好是使用連接到欲轉移到反應器的溶液的泵的管子。進入反應器的管子優選地為具有單個孔或具有選定的預定內徑的多個孔的管,使得直徑尺寸可以以給定速率輸送添加溶液的流。具有精細噴嘴的霧化器適合於將添加的溶液輸送到反應器中。該傳送管的末端可以包括噴頭,從而同時提供多個添加的溶液流。在大規模生產中,轉移率是一個時間因素,因此轉移率應足夠快以產生所需的合適大小。 To transfer the added solution to the bulk solution, it is best to use a tube connected to a pump for the solution to be transferred to the reactor. The tube entering the reactor is preferably a tube with a single hole or multiple holes with a selected predetermined inner diameter so that the diameter size can deliver the stream of added solution at a given rate. An atomizer with a fine nozzle is suitable for delivering the added solution to the reactor. The end of the transfer tube can include a nozzle to provide multiple added solution streams simultaneously. In large-scale production, the transfer rate is a time factor, so the transfer rate should be fast enough to produce the required appropriate size.

攪拌器可以配備有多個不同構造的螺旋槳,每個螺旋槳包括一個或多個螺旋槳,這些螺旋槳彼此成一定角度或在同一平面上。而且,混合器可以具有一組或多組這些螺旋槳。目標是為了使液體產生充分的擾動。直槳或有 角度的槳是合適的。這些槳的尺寸和設計決定了溶液的流動類型和流動的方向。至少約100轉/分鐘(rpm’s)的速度適合於本發明。 The agitator may be equipped with a plurality of propellers of different configurations, each propeller comprising one or more propellers which are angled relative to one another or in the same plane. Furthermore, the mixer may have one or more sets of these propellers. The goal is to produce sufficient agitation in the liquid. Straight propellers or angled propellers are suitable. The size and design of these propellers determine the type of flow of the solution and the direction of the flow. Speeds of at least about 100 revolutions per minute (rpm's) are suitable for the present invention.

添加的溶液的轉移速率對本體溶液對成核速率具有動力學效應。優選的方法是具有精細的轉移流以控制影響成核的反應物的局部濃度和晶核生長速率與晶體生長速率的關係。對於較小尺寸的粉末,較慢的轉移速率將產生較細的粉末。競爭性成核和生長的正確條件必須由最終的粉末特性決定。如果需要,反應的溫度優選地是環境溫度或溫和的溫度。 The transfer rate of the added solution has a kinetic effect on the nucleation rate from the bulk solution. The preferred approach is to have fine transfer flows to control the local concentrations of reactants that affect nucleation and the relationship of the nucleation growth rate to the crystal growth rate. For smaller sized powders, slower transfer rates will produce finer powders. The correct conditions for competitive nucleation and growth must be determined by the final powder characteristics. The temperature of the reaction is preferably ambient or mild temperatures, if desired.

預先形成特殊的奈米結構,將其轉移到最終產品中,從而提高材料在所需應用中的性能。為了本發明的目的,將奈米結構定義為具有100至300nm平均尺寸的初級顆粒的結構。 The specific nanostructure is formed in advance and transferred to the final product, thereby improving the performance of the material in the desired application. For the purpose of this invention, a nanostructure is defined as a structure of primary particles with an average size of 100 to 300 nm.

表面活性劑和乳化劑都不是必需的。事實上,優選的是,表面活性劑和乳化劑不使用,因為它們可能會抑制乾燥。 Neither surfactants nor emulsifiers are required. In fact, it is preferred that surfactants and emulsifiers are not used as they may inhibit drying.

通過溶液的濃縮,氣體的流速或添加溶液向本體溶液的轉移速率可進行尺寸控制。 Size control can be achieved by concentration of the solution, gas flow rate or transfer rate of added solution into the bulk solution.

不使用重複和麻煩的研磨和分類步驟。 No repeated and cumbersome grinding and sorting steps are required.

可以實現減少煅燒時間,並且通常不需要重複煅燒。 Reduced calcination times can be achieved and repeated calcinations are usually not necessary.

反應溫度是環境溫度。如果需要溶解,溫度升高最好不超過100℃。 The reaction temperature is the ambient temperature. If dissolution is required, the temperature should not exceed 100°C.

可以通過選擇反應條件和起始材料來小心控製粉末的定制物理性質,例如表面積、孔隙率、振實密度和粒子大小。 Customized physical properties of powders such as surface area, porosity, tap density, and particle size can be carefully controlled by selecting reaction conditions and starting materials.

該工藝易於使用當前可用的設備和/或本工業設備的創新來大規模製造。 The process is amenable to large-scale manufacturing using currently available equipment and/or innovations in industrial equipment.

實施例 Implementation example

電極的準備 Preparation of electrodes

複合電極的製備是將活性材料與作為導電添加劑的10重量%導電添加劑和作為粘合劑的5重量%聚偏二氟乙烯(PVDF)予以混合,然後溶解於N-甲基-2-吡咯烷酮(NMP)溶劑中。將漿料澆鑄在石墨塗覆的鋁箔並在60℃真空乾燥過夜。從電極片上切下面積為1.54cm2的電極盤,典型負載量為4mg.cm-2The composite electrode was prepared by mixing the active material with 10 wt% conductive additive as a conductive additive and 5 wt% polyvinylidene fluoride (PVDF) as a binder, and then dissolved in N-methyl-2-pyrrolidone (NMP) solvent. The slurry was cast on graphite-coated aluminum foil and vacuum dried at 60°C overnight. Electrode disks with an area of 1.54 cm2 were cut from the electrode sheet, with a typical loading of 4 mg.cm -2 .

鈕扣電池組件 Button battery assembly

將鈕扣電池組裝在充滿氬氣的手套箱中。使用鋰箔(340μm)作為半電池中的對電極和參考電極,並且使用市售的Li4Ti5O12(LTO)複合電極作為全電池中的對電極和參考電極。使用7:3(vol%)碳酸亞乙酯(EC):碳酸二亞乙酯(DEC)中的1M LiPF6作為電解質。電極由一個或兩個25μm厚的Celgard®膜(半電池)和一片Celgard膜全電池予以分開。 The button cells were assembled in an argon-filled glove box. Lithium foil (340 μm ) was used as the counter electrode and reference electrode in the half-cell, and a commercially available Li 4 Ti 5 O 12 (LTO) composite electrode was used as the counter electrode and reference electrode in the full cell. 1M LiPF 6 in 7:3 (vol%) ethylene carbonate (EC): diethylene carbonate (DEC) was used as the electrolyte. The electrodes were separated by one or two 25 μm thick Celgard ® membranes (half-cell) and one Celgard membrane full cell.

循環協定 Loop Protocol

使用Arbin Instrument電池測試儀(型號BT2000)在25℃下以各種C-速率(1C速率等於146mAg-1)在3.5V-4.9V的電壓範圍內對尖晶石陰極電池進行定電流循環充電。在1C或更高速率的定電流充電步驟結束時,對電池施加4.9V,10分鐘的恆定電壓充電步驟。岩鹽NMC電池在25℃的各種C速率(1C速率相當於200mAg-1)下,在2.7V-4.35V的電壓範圍內進行定電流循環充電。在1C或更高速率的定電流充電步驟結束時,對電池施加4.35V的恆定電壓充電步驟10分鐘。 The spinel cathode cells were charged at various C-rates (1C rate equals 146mAg -1 ) at 25°C over a voltage range of 3.5V-4.9V using an Arbin Instrument battery tester (Model BT2000). At the end of the 1C or higher rate constant current charging step, a 4.9V, 10-minute constant voltage charging step was applied to the cells. The rock salt NMC cells were charged at various C-rates (1C rate equals 200mAg -1 ) at 25°C over a voltage range of 2.7V-4.35V. At the end of the constant current charging step at 1C or higher rate, a constant voltage charging step of 4.35V is applied to the battery for 10 minutes.

實施例1:來自生產LiNi0.5Mn1.5O4陰極材料的噴霧乾燥的混合草酸鹽前驅物和煅燒材料的SEM分析都是結晶的,並且使用過渡金屬乙酸鹽和碳酸鹽原料提供瞭如圖1所示的相似的材料形態。 Example 1: SEM analysis of the spray-dried mixed oxalate precursor and calcined material from the production of LiNi 0.5 Mn 1.5 O 4 cathode material were both crystalline and provided similar material morphologies as shown in FIG. 1 using transition metal acetate and carbonate feedstocks.

實施例2: 圖2顯示了由碳酸錳和草酸(5過量莫耳%)在水中反應6小時而沉澱的草酸錳水合物的XRD圖譜(a)在室溫下在空氣中(b)在室溫下用氮氣鼓泡(c)在室溫下用二氧化碳鼓泡(d)在空氣中的水回流溫度下(e)在室溫下在10倍於前述實驗(a-d)含水量。在實驗(a-c)中沉澱的材料的XRD圖與具有空間群C2/c的草酸錳二水合物的XRD圖匹配。氮氣和二氧化碳氣體鼓泡對材料的結晶度有輕微的影響。在水回流溫度(b)下的反應產生了兩種不同的草酸錳二水合物相;一個在C2/c空間組和一個在P212121空間組。反應物濃度降低至實驗(a-d)的1/10時,形成了具有一維鏈狀結構的連-聚[[重石腦油(II)]-草酸根]一水合物]空間組Pcca。這些實驗表明反應條件如溫度、濃度和大氣對碳酸錳和草酸在水中的沉澱產物的顯著影響。 Example 2: Figure 2 shows the XRD patterns of manganese oxalate hydrate precipitated by the reaction of manganese carbonate and oxalic acid (5 excess mol%) in water for 6 hours (a) at room temperature in air (b) at room temperature with nitrogen bubbling (c) at room temperature with carbon dioxide bubbling (d) at water reflux temperature in air (e) at room temperature at 10 times the water content of the previous experiments (ad). The XRD pattern of the material precipitated in the experiment (ac) matches the XRD pattern of manganese oxalate dihydrate with the space group C2 / c . Bubbling nitrogen and carbon dioxide gases has a slight effect on the crystallinity of the material. The reaction at water reflux temperature (b) produces two different phases of manganese oxalate dihydrate; one in the C2 / c space group and one in the P212121 space group. When the concentration of the reactants was reduced to 1/10 of that in experiment (ad), a one-dimensional chain-like structure of the inter-polymer [[heavy naphtha (II)]-oxalate] monohydrate] space group Pcca was formed. These experiments show that reaction conditions such as temperature, concentration and atmosphere have a significant effect on the precipitation products of manganese carbonate and oxalic acid in water.

實施例3:LiNi0.5MN1.5O4尖晶石的特殊問題是被稱為4V平台的現象,其中在放電結束時電壓從4.7V下降到4.0V,如圖3所示。平台相信是在空氣中燒結時由於氧損失而形成Mn3+的結果。在圖3所示的現有技術方法的結果中,有序的陰極氧化物前驅物形成為包含碳酸鎳和碳酸錳的沉澱,並且使用化學計量的乙酸鋰,陰極氧化物前驅物被煅燒,提供尖晶石LiNi0.43Mn1.57O4其中Mn:Ni比例為3.70。測量作為電壓函數的充電容量,導致圖3中所示的顯著的4伏高原。 Example 3: A particular problem with LiNi 0.5 MN 1.5 O 4 spinel is a phenomenon known as the 4V plateau, in which the voltage drops from 4.7 V to 4.0 V at the end of the discharge, as shown in FIG3 . The plateau is believed to be the result of the formation of Mn 3+ due to oxygen loss during sintering in air. In the results of the prior art process shown in FIG3 , an ordered cathode oxide precursor is formed as a precipitate comprising nickel carbonate and manganese carbonate, and the cathode oxide precursor is calcined using a stoichiometric amount of lithium acetate to provide the spinel LiNi 0.43 Mn 1.57 O 4 in which the Mn:Ni ratio is 3.70. The charge capacity is measured as a function of voltage, resulting in the significant 4 volt plateau shown in FIG3 .

在發明A中,草酸鹽由過渡金屬乙酸鹽形成,導致4伏平台的顯著降低,如圖3所示。在發明A中,碳酸鋰、鎳乙酸和乙酸錳與草酸在圖3所示的程序中分解而使有序前驅物形成至氧化物。然後將陰極氧化物前驅物煅燒,得到尖晶石LiNi0.48Mn1.52O4,其中Mn:Ni比例為3.13。以放電容量作為電壓的函數測量結果,如圖3所示的4伏高原的顯著降低。 In Invention A, oxalate is formed from transition metal acetate, resulting in a significant reduction in the 4 volt plateau, as shown in Figure 3. In Invention A, lithium carbonate, nickel acetate and manganese acetate are decomposed with oxalic acid in the process shown in Figure 3 to form an ordered precursor to an oxide. The cathode oxide precursor is then calcined to obtain spinel LiNi 0.48 Mn 1.52 O 4 , where the Mn:Ni ratio is 3.13. The discharge capacity is measured as a function of voltage, as shown in Figure 3, with a significant reduction in the 4 volt plateau.

在發明B中,使用金屬碳酸鹽作為原料,用草酸鹽分解碳酸鹽,導致基本上消除了4伏高原,特別是使用略微過量的鎳,其中Mn與Ni的比例不再優選地至少2.33至小於3,最優選地2.64至小於3有序陰極氧化物前驅 物由碳酸鋰,碳酸鎳和碳酸錳以草酸分解在圖3中提及的方法中形成作為優化的過程。將陰極氧化物前驅物煅燒,得到尖晶石LiNi0.51Mn1.49O4,其中Mn:Ni比例為2.90。以放電容量作為電壓的函數測量結果,幾乎完全消除4伏平台,如圖3所示。 In invention B, metal carbonate is used as a raw material, and the carbonate is decomposed with oxalate, resulting in the substantial elimination of the 4 volt plateau, especially the use of a slightly excess of nickel, wherein the ratio of Mn to Ni is no longer preferably at least 2.33 to less than 3, and most preferably 2.64 to less than 3. The ordered cathode oxide precursor is formed by lithium carbonate, nickel carbonate and manganese carbonate decomposed with oxalic acid in the method mentioned in Figure 3 as an optimized process. The cathode oxide precursor is calcined to obtain spinel LiNi 0.51 Mn 1.49 O 4 , wherein the Mn: Ni ratio is 2.90. The discharge capacity is measured as a function of voltage, and the 4 volt platform is almost completely eliminated, as shown in Figure 3.

實施例4:使用碳酸鋰、碳酸鎳、碳酸錳和草酸合成具有式LiNi0.5Mn1.5O4的高壓尖晶石的陰極氧化物前驅物。在約40℃的溫度下,在化學反應器容器中將820.0g的H2C2O4.2H2O添加到2.0L的水中。在第二個容器中,製備包含在1.2L去離子水中的Li2CO3(96.1g)、NiCO3(148.4g)、MnCO3(431.1g)的碳酸鹽混合物漿料。將碳酸鹽混合物漿料以約0.2-0.3L/h的速率泵入化學反應器容器中。將反應器內的混合物在40℃下在大氣環境下劇烈混合以形成漿液。使用噴霧乾燥器乾燥漿料,產生高壓尖晶石陰極氧化物前驅物材料。圖4中提供了X射線衍射(XRD)圖,圖5中提供了乾燥粉末的掃描電子顯微鏡(SEM)圖像.XRD衍射指示高度有序的晶格,SEM顯示奈米結構晶體材料。 Example 4: Synthesis of a cathode oxide precursor of a high pressure spinel having the formula LiNi 0.5 Mn 1.5 O 4 using lithium carbonate, nickel carbonate, manganese carbonate and oxalic acid. 820.0 g of H 2 C 2 O 4 .2H 2 O was added to 2.0 L of water in a chemical reactor vessel at a temperature of about 40° C. In a second vessel, a carbonate mixture slurry containing Li 2 CO 3 (96.1 g), NiCO 3 (148.4 g), MnCO 3 (431.1 g) in 1.2 L of deionized water was prepared. The carbonate mixture slurry was pumped into the chemical reactor vessel at a rate of about 0.2-0.3 L/h. The mixture in the reactor was vigorously mixed at 40° C. under atmospheric environment to form a slurry. The slurry was dried using a spray dryer to produce a high pressure spinel cathode oxide precursor material. An X-ray diffraction (XRD) pattern is provided in Figure 4 and a scanning electron microscope (SEM) image of the dried powder is provided in Figure 5. The XRD diffraction indicates a highly ordered lattice and the SEM shows a nanostructured crystalline material.

實施例5:由實施例4的陰極氧化物前驅物製備具有化學式LiNi0.5Mn1.5O4的高壓尖晶石。將實施例4的陰極氧化物前驅物置於氧化鋁鍋中並在箱式爐中在900℃的大氣環境中煅燒15小時。通過粉末X-射線衍射分析分析所得粉末,得到圖6中提供的衍射圖。圖7中提供的SEM顯示陰極氧化物前驅物的奈米結構基本保持不變。尖晶石結構的晶格參數計算為8.174(1)Å.評估合成材料的電化學性能作為半電池中的陰極相對於鋰金屬陽極以及相對於Li4Ti5O12(LTO)陽極的全電池中的陰極。在圖8中示出了電池在0.1C的半電池中的放電容量的函數。在圖9中示出了在半電池中在25℃下的1C比例下的比容量作為循環的函數。比容量在半個電池中25oC的不同放電速率在圖10中示出。在具有LTO陽極的全電池中在25℃的1C下的比容量在圖11中示出。 Example 5: A high-pressure spinel having the chemical formula LiNi 0.5 Mn 1.5 O 4 was prepared from the cathode oxide precursor of Example 4. The cathode oxide precursor of Example 4 was placed in an alumina pot and calcined in a box furnace in an atmospheric environment at 900° C. for 15 hours. The resulting powder was analyzed by powder X-ray diffraction analysis to obtain the diffraction pattern provided in FIG6 . The SEM provided in FIG7 shows that the nanostructure of the cathode oxide precursor remains essentially unchanged. The lattice parameter of the spinel structure was calculated to be 8.174 (1) Å. The electrochemical properties of the synthesized material were evaluated as a cathode in a half-cell relative to a lithium metal anode and as a cathode in a full cell relative to a Li 4 Ti 5 O 12 (LTO) anode. The discharge capacity of the battery as a function of the half-cell at 0.1C is shown in Figure 8. The specific capacity at 1C rate at 25°C in the half-cell as a function of the cycle is shown in Figure 9. The specific capacity at different discharge rates at 25oC in the half-cell is shown in Figure 10. The specific capacity at 1C at 25°C in the full cell with LTO anode is shown in Figure 11.

實施例6:由實施例4的陰極氧化物前驅物製備具有化學式LiNi0.5Mn1.5O4的高壓尖晶石。將陰極氧化物前驅物材料置於氧化鋁舟中並在管式爐中在50cm3/min的氧氣流量下燒製。如圖12所示的燒製步驟包括350℃下的預燒步驟,900℃燒製並緩慢冷卻至650℃退火。除了緩慢冷卻之外,氧氣中的燃燒減輕了氧氣不足,並導致通常在這些材料中觀察到的4V平台的降低。所獲得的粉末的X射線衍射示於圖13中,並且基於此,尖晶石結構的晶格參數計算為8.168(1)A。評估合成材料的電化學性能,作為相對於鋰金屬陽極的半電池中的陰極。在半電池中,在25℃下以0.1C的放電速率獲得的電壓曲線如圖14所示。一個特別的特徵是沒有在這些材料中通常觀察到的4V電壓平台。在半個電池中以25C的1C週期速率獲得的比容量如圖15所示。在半個電池中,在25℃的不同放電速率下獲得的比容量如圖16所示。 Example 6: A high-pressure spinel having the chemical formula LiNi 0.5 Mn 1.5 O 4 was prepared from the cathode oxide precursor of Example 4. The cathode oxide precursor material was placed in an alumina boat and fired in a tubular furnace at an oxygen flow rate of 50 cm 3 /min. The firing steps as shown in Figure 12 included a pre-firing step at 350°C, firing at 900°C and slow cooling to 650°C annealing. In addition to slow cooling, combustion in oxygen alleviates oxygen deficiency and leads to a reduction in the 4V platform usually observed in these materials. The X-ray diffraction of the obtained powder is shown in Figure 13, and based on this, the lattice parameter of the spinel structure is calculated to be 8.168 (1) A. The electrochemical performance of the synthesized materials was evaluated as cathodes in half cells relative to a lithium metal anode. The voltage curves obtained at a discharge rate of 0.1C at 25°C in the half cell are shown in Figure 14. A particular feature is the absence of the 4V voltage plateau typically observed in these materials. The specific capacities obtained at a 1C cycle rate at 25°C in the half cell are shown in Figure 15. The specific capacities obtained at different discharge rates at 25°C in the half cell are shown in Figure 16.

實施例7:將實施例4的陰極氧化物前驅物材料置於氧化鋁鍋中,並使用圖12所示的燒製程序在大氣環境的箱式爐中燒製。所得粉末的X射線衍射圖示於圖17中,尖晶石結構的晶格參數計算為8.169(1)Å。評估合成材料的電化學性能作為相對於鋰金屬陽極的半電池中的陰極。在半個電池中,放電速率為0.1C,放電速率為25℃時的電壓如圖18所示。半電池在25℃的1C放電速率下獲得的比容量如圖19所示。 Example 7: The cathode oxide precursor material of Example 4 was placed in an alumina pot and fired in a box furnace in an atmospheric environment using the firing procedure shown in Figure 12. The X-ray diffraction pattern of the resulting powder is shown in Figure 17, and the lattice parameter of the spinel structure is calculated to be 8.169(1)Å. The electrochemical performance of the synthesized material was evaluated as a cathode in a half-cell relative to a lithium metal anode. In the half-cell, the discharge rate was 0.1C and the voltage at a discharge rate of 25°C is shown in Figure 18. The specific capacity obtained by the half-cell at a discharge rate of 1C at 25°C is shown in Figure 19.

實施例8:使用8.62g的MnCO3(Alfa;粒度:1-3μm),2.97g的NiCO3(Alfa;無水)和1.92g的具有化學式LiNi0.5Mn1.5O4的高壓尖晶石以碳酸鋰為起始原料。使用16.4g草酸二水合物(H2C2O4.2H2O)作為螯合劑。將金屬碳酸鹽與20mL去離子水混合以在一個燒杯中形成漿液,並將酸加入到另外的燒杯內的40mL去離子水中。然後將草酸漿料加熱至40℃,以8.9mL/小時的速率將 碳酸漿料加入到酸溶液中以形成陰極氧化物前驅物。陰極氧化物前驅物用噴霧乾燥器乾燥。將乾燥的陰極氧化物前驅物在900℃的氧化鋁鍋中在大氣環境中焙燒15小時。圖20顯示在半電池中在25℃以0.1C的放電率作為函數所測量出的電壓。 Example 8: 8.62 g of MnCO 3 (Alfa; particle size: 1-3 μm ), 2.97 g of NiCO 3 (Alfa; anhydrous) and 1.92 g of high pressure spinel having the chemical formula LiNi 0.5 Mn 1.5 O 4 were used as starting materials with lithium carbonate. 16.4 g of oxalic acid dihydrate (H 2 C 2 O 4 .2H 2 O) was used as a chelating agent. The metal carbonate was mixed with 20 mL of deionized water to form a slurry in a beaker, and the acid was added to 40 mL of deionized water in another beaker. The oxalic acid slurry was then heated to 40° C. and the carbonate slurry was added to the acid solution at a rate of 8.9 mL/hour to form a cathode oxide precursor. The cathode oxide precursor was dried in a spray dryer. The dried cathode oxide precursor was baked in an alumina pan at 900°C in an atmospheric atmosphere for 15 hours. Figure 20 shows the voltage measured as a function of the discharge rate of 0.1C at 25°C in a half cell.

實施例9:除了使用具有較大粒徑的MnCO3(Sigma;粒度:

Figure 107101632-A0305-02-0028-21
74μm)之外,與實施例8類似地合成具有化學式LiNi0.5Mn1.5O4的高壓尖晶石的陰極氧化物前驅物。與實施例8相似,將陰極氧化物前驅物乾燥並焙燒。在圖21中示出了在半電池中在25℃下以0.1C的放電速率測量的作為放電的函數的電壓。 Example 9: In addition to using MnCO 3 with a larger particle size (Sigma; particle size:
Figure 107101632-A0305-02-0028-21
A cathode oxide precursor of a high pressure spinel having the formula LiNi 0.5 Mn 1.5 O 4 was synthesized similarly to Example 8, except that the cathode oxide precursor had a 74 μm diameter. The cathode oxide precursor was dried and calcined similarly to Example 8. The voltage as a function of discharge measured at a discharge rate of 0.1 C at 25° C. in a half cell is shown in FIG. 21 .

實施例10:使用8.62g的MnCO3(Sigma;粒徑:

Figure 107101632-A0305-02-0028-22
7μm),2.97g的NiCO3(Alfa;無水)和1.92g的碳酸鋰作為合成高壓尖晶石LiNi0.5Mn1.5O4的前驅物起始材料。使用16.4g草酸二水合物(H2C2O4.2H2O)作為螯合劑。將金屬碳酸鹽與80mL去離子水混合以在一個燒杯中形成漿液,並將酸溶解在單獨燒杯內的120mL去離子水中。在約25℃的環境溫度下,以16mL/hr的速度將碳酸鹽漿料加入到草酸溶液中以形成陰極氧化物前驅物。然後使用噴霧乾燥器乾燥陰極氧化物前驅物。將乾燥的陰極氧化物前驅物在900℃的氧化鋁鍋中在大氣環境中焙燒15小時。在圖22中示出了在半個電池中在25℃以0.1C的放電率測量的作為放電的函數的電壓。 Example 10: 8.62 g of MnCO 3 (Sigma; particle size:
Figure 107101632-A0305-02-0028-22
7μm), 2.97g of NiCO3 (Alfa; anhydrous) and 1.92g of lithium carbonate were used as precursor starting materials for the synthesis of high-pressure spinel LiNi0.5Mn1.5O4 . 16.4g of oxalic acid dihydrate ( H2C2O4.2H2O ) was used as a chelating agent. The metal carbonate was mixed with 80mL of deionized water to form a slurry in a beaker , and the acid was dissolved in 120mL of deionized water in a separate beaker. At an ambient temperature of about 25°C, the carbonate slurry was added to the oxalic acid solution at a rate of 16mL/hr to form a cathode oxide precursor. The cathode oxide precursor was then dried using a spray dryer. The dried cathode oxide precursor was baked in an alumina pan at 900°C in an atmospheric environment for 15 hours. The voltage as a function of discharge measured at 25°C and a discharge rate of 0.1C in a half cell is shown in FIG.

實施例11:與實施例10類似地合成具有化學式LiNi0.5Mn1.5O4的高壓尖晶石的陰極氧化物前驅物,不同之處在於反應中使用較少的水:將相同量的金屬碳酸鹽與12mL去離子水和相同量的草酸加入到28mL的水中。將碳酸鹽漿液以3mL/hr的速率加入到草酸漿液中。然後乾燥陰極氧化物前驅物,並與實施例7類似地進行燒製。在圖23中示出了在半電池中在25℃下以0.1C的放電速 率測量的作為放電的函數的電壓。實施例11示出了用非常少量的添加水,並且在一些實施例中,不添加水,因為通過分解來提供水,並且起始材料的水合水可能足以引發和完成反應。 Example 11: A cathodic oxide precursor of a high pressure spinel having the chemical formula LiNi 0.5 Mn 1.5 O 4 was synthesized similarly to Example 10, except that less water was used in the reaction: the same amount of metal carbonate was added to 28 mL of water with 12 mL of deionized water and the same amount of oxalic acid. The carbonate slurry was added to the oxalic acid slurry at a rate of 3 mL/hr. The cathodic oxide precursor was then dried and fired similarly to Example 7. The voltage as a function of discharge measured at a discharge rate of 0.1 C at 25° C. in a half cell is shown in FIG. 23. Example 11 illustrates the use of very small amounts of added water, and in some examples, no water is added because the water provided by decomposition and the water of hydration of the starting materials may be sufficient to initiate and complete the reaction.

實施例12:除了使用鹼性碳酸鎳(Sigma;NiCO3.2Ni(OH)2.xH2O)外,與實施例11類似地合成具有化學式LiNi0.5Mn1.5O4的高壓尖晶石的陰極氧化物前驅物。然後乾燥陰極氧化物前驅物,並與實施例11類似地進行燒製。圖24中示出了在半電池中在25℃下以0.1C的放電速率測量的作為放電的函數的電壓。 Example 12: A cathode oxide precursor of a high pressure spinel having the formula LiNi 0.5 Mn 1.5 O 4 was synthesized similarly to Example 11, except that alkaline nickel carbonate (Sigma; NiCO 3 .2Ni(OH) 2 .xH 2 O) was used. The cathode oxide precursor was then dried and fired similarly to Example 11. The voltage as a function of discharge measured at 25° C. at a discharge rate of 0.1 C in a half cell is shown in FIG. 24 .

實施例13:使用8.62g的MnCO3(Sigma;粒度:

Figure 107101632-A0305-02-0029-23
74μm),2.97g的NiCO3(Alfa;無水)和1.92g的鋰(LiCl),合成具有化學式LiNi0.5Mn1.5O4的高壓尖晶石的前驅物碳酸鹽作為原料。使用16.4g草酸二水合物(H2C2O4.2H2O)作為螯合劑。將金屬碳酸鹽與80mL去離子水混合以在一個燒杯中形成漿液,並將酸溶解在單獨燒杯內的160mL去離子水中。然後將含有溶解的草酸的燒杯置於冰浴中保持約5℃的溫度。將碳酸鹽漿液以23mL/hr的速度添加到草酸溶液中。圖25中提供了乾燥陰極氧化物前驅物的XRD圖。 Example 13: 8.62 g of MnCO 3 (Sigma; particle size:
Figure 107101632-A0305-02-0029-23
74μm), 2.97g of NiCO 3 (Alfa; anhydrous) and 1.92g of lithium (LiCl) were used as raw materials to synthesize a high-pressure spinel precursor with the chemical formula LiNi 0.5 Mn 1.5 O 4. 16.4g of oxalic acid dihydrate (H 2 C 2 O 4 .2H 2 O) was used as a chelating agent. The metal carbonate was mixed with 80mL of deionized water to form a slurry in a beaker, and the acid was dissolved in 160mL of deionized water in a separate beaker. The beaker containing the dissolved oxalic acid was then placed in an ice bath to maintain a temperature of about 5°C. The carbonate slurry was added to the oxalic acid solution at a rate of 23mL/hr. The XRD pattern of the dry cathode oxide precursor is provided in Figure 25.

實施例14:除了在水的沸點(100℃)下進行合成之外,與實施例13類似地合成具有化學式LiNi0.5Mn1.5O4前驅物的高壓尖晶石的陰極氧化物前驅物。使用回流冷凝器來保持反應的水位。圖26中提供了乾燥陰極氧化物前驅物的XRD圖。 Example 14: A cathode oxide precursor having a high pressure spinel of the precursor having the chemical formula LiNi 0.5 Mn 1.5 O 4 was synthesized similarly to Example 13, except that the synthesis was performed at the boiling point of water (100° C.). A reflux condenser was used to maintain the water level of the reaction. The XRD pattern of the dried cathode oxide precursor is provided in FIG. 26 .

實施例15:使用碳酸鋰、碳酸錳和草酸作為原料合成具有化學式LiMn2O4的尖晶石的陰極氧化物前驅物。在燒杯中將16.39克H2C2O4.2H2O添加到40 毫升水中。在第二個燒杯中,將Li2CO3(1.85g)和MnCO3(11.49g)在24ml去離子水中混合。將碳酸鹽混合物漿料以0.01L/Hr的速率泵入草酸漿料中。反應器內的混合物在環境溫度下混合。通過蒸發乾燥得到的漿料,產生LiMn2O4的陰極氧化物前驅物。XRD圖譜示於圖27中。 Example 15: A cathode oxide precursor of spinel having the chemical formula LiMn 2 O 4 was synthesized using lithium carbonate, manganese carbonate and oxalic acid as raw materials. 16.39 grams of H 2 C 2 O 4 .2H 2 O was added to 40 milliliters of water in a beaker. In a second beaker, Li 2 CO 3 (1.85 g) and MnCO 3 (11.49 g) were mixed in 24 ml of deionized water. The carbonate mixture slurry was pumped into the oxalic acid slurry at a rate of 0.01 L/Hr. The mixture in the reactor was mixed at ambient temperature. The obtained slurry was dried by evaporation to produce a cathode oxide precursor of LiMn 2 O 4. The XRD spectrum is shown in Figure 27.

陰極氧化物前驅物材料在箱式爐中在空氣中在350℃下煅燒1小時,然後在850℃下煅燒5小時。燒製材料的X射線衍射圖和掃描電子顯微鏡圖,分別示於圖28和圖29。 The cathode oxide precursor material was calcined in a box furnace in air at 350°C for 1 hour and then at 850°C for 5 hours. The X-ray diffraction pattern and scanning electron microscopy pattern of the calcined material are shown in Figures 28 and 29, respectively.

實施例16:使用金屬碳酸鹽和草酸以表格1中所示的量合成化學式LiMn2M0.1O4(M:Mn,Al,Ni)的尖晶石的陰極氧化物前驅物。 Example 16: A cathode oxide precursor of spinel of the chemical formula LiMn 2 M 0.1 O 4 (M: Mn, Al, Ni) was synthesized using metal carbonate and oxalic acid in the amounts shown in Table 1.

將每種組合物的原料在32ml去離子水中在環境溫度下混合6小時。所得漿液通過蒸發乾燥。圖30所示的X射線衍射圖案顯示在正交空間群(P212121)中結晶的草酸錳二水合物(樣本A),LiMn2O4的陰極氧化物前驅物和LiMn1.9Al0.1O4的陰極氧化物前驅物(樣本B)。LiMn1.9Ni0.1O4(樣本C)在單斜空間群(C2/c)中結晶。 The raw materials of each composition were mixed in 32 ml of deionized water at ambient temperature for 6 hours. The resulting slurry was dried by evaporation. The X-ray diffraction pattern shown in Figure 30 shows that manganese oxalate dihydrate (sample A), cathode oxide precursor of LiMn 2 O 4 and cathode oxide precursor of LiMn 1.9 Al 0.1 O 4 ( sample B ) crystallized in the orthorhombic space group (P 2 1 2 1 2 1). LiMn 1.9 Ni 0.1 O 4 (sample C) crystallized in the monoclinic space group (C2/c).

Figure 107101632-A0305-02-0030-1
Figure 107101632-A0305-02-0030-1

實施例17:從3.88g Li2CO3、3.79g NiCO3、3.92g MnCO3、3.93g CoCO3和19.23g H2C2O4.2H2O分散在240mL去離子水中製備具有化學式LiNi0.333Mn0.333Co0.333O2的NMC 111的陰極氧化物前驅物圓底燒瓶。混合物加熱回流6.5小時,冷卻。最終混合物的固體含量約為13%。通過噴霧乾燥得到粉末,得到化學式LiNi0.333Mn0.333Co0.333(C2O4)1.5的陰極氧化物前驅物。將陰 極氧化物前驅物在110℃下加熱1小時,然後在箱式爐中在空氣中在800℃下煅燒7.5小時以獲得NMC 111。陰極氧化物前驅物的SEM圖示於圖32中。煅燒粉末的XRD圖示於圖31中,並且煅燒粉末的SEM示於圖33中,其中陰極氧化物前驅物的奈米結構被顯示為基本保持不變。放電容量與循環次數的關係如圖34所示。 Example 17: A cathode oxide precursor of NMC 111 with the chemical formula LiNi 0.333 Mn 0.333 Co 0.333 O 2 was prepared from 3.88 g Li 2 CO 3 , 3.79 g NiCO 3 , 3.92 g MnCO 3 , 3.93 g CoCO 3 and 19.23 g H 2 C 2 O 4 .2H 2 O dispersed in 240 mL deionized water. The mixture was heated to reflux for 6.5 hours and cooled. The solid content of the final mixture was about 13%. A powder was obtained by spray drying to obtain a cathode oxide precursor with the chemical formula LiNi 0.333 Mn 0.333 Co 0.333 (C 2 O 4 ) 1.5 . The cathode oxide precursor was heated at 110°C for 1 hour and then calcined in a box furnace at 800°C for 7.5 hours in air to obtain NMC 111. The SEM image of the cathode oxide precursor is shown in FIG32. The XRD pattern of the calcined powder is shown in FIG31, and the SEM of the calcined powder is shown in FIG33, in which the nanostructure of the cathode oxide precursor is shown to remain substantially unchanged. The relationship between the discharge capacity and the number of cycles is shown in FIG34.

實施例18:從燒杯中分散在200mL去離子水中的39g Li2CO3、71g NiCO3、23g MnCO3和24g CoCO3製備具有化學式LiNi0.6Mn0.2Co0.2O2的NMC 622的陰極氧化物前驅物。將碳酸鹽混合物泵入含有201克H2C2O42H2O在400毫升去離子水中的單獨燒杯中,以每小時0.38莫耳碳酸鹽的速率。然後將反應混合物攪拌1小時。將具有約20%固體含量的最終混合物噴霧乾燥以獲得化學式LiNi0.6Mn0.2Co0.2(C2O4)1.5的陰極氧化物前驅物。在圖35中提供陰極氧化物前驅物的XRD圖,在圖37中提供SEM。將陰極氧化物前驅物在110℃下加熱1小時,然後在箱式爐中在空氣中在800℃下煅燒7.5小時以獲得NMC 622,其具有圖36中所示的XRD圖案和圖38的SEM。SEM證明陰極氧化物前驅物的有序奈米結構晶格基本保持在煅燒粉末中。半個電池的放電容量在1C時為1C,與循環次數的函數關係如圖39所示。圖40顯示了初始充電和放電電壓曲線,其為0.1C時的容量的函數。 Example 18: A cathode oxide precursor of NMC 622 having the chemical formula LiNi 0.6 Mn 0.2 Co 0.2 O 2 was prepared from 39 g Li 2 CO 3 , 71 g NiCO 3 , 23 g MnCO 3 and 24 g CoCO 3 dispersed in 200 mL deionized water in a beaker. The carbonate mixture was pumped into a separate beaker containing 201 g H 2 C 2 O 4 2H 2 O in 400 mL deionized water at a rate of 0.38 mol carbonate per hour. The reaction mixture was then stirred for 1 hour. The final mixture having a solid content of about 20% was spray dried to obtain a cathode oxide precursor of the chemical formula LiNi 0.6 Mn 0.2 Co 0.2 (C 2 O 4 ) 1.5 . The XRD pattern of the cathode oxide precursor is provided in FIG. 35 and the SEM is provided in FIG. 37 . The cathode oxide precursor was heated at 110° C. for 1 hour and then calcined at 800° C. in air for 7.5 hours in a box furnace to obtain NMC 622, which has the XRD pattern shown in FIG. 36 and the SEM of FIG. 38 . SEM demonstrates that the ordered nanostructure lattice of the cathode oxide precursor is substantially maintained in the calcined powder. The discharge capacity of half a battery is 1C at 1C, and the functional relationship with the number of cycles is shown in FIG. 39 . Figure 40 shows the initial charge and discharge voltage curves as a function of capacity at 0.1C.

實施例19:具有化學式LiNi0.8Mn0.1Co0.1O2的NMC 811的陰極氧化物前驅物由燒杯中分散在200mL去離子水中的39g Li2CO3、95g NiCO3、12g MnCO3和12g CoCO3製備。將混合物以每小時0.38莫耳碳酸鹽的速率泵入含有201克H2C2O4.2H2O在400毫升去離子水中的單獨燒杯中。然後將反應混合物攪拌1小時。將具有約20%固體含量的最終混合物噴霧乾燥以獲得化學式LiNi0.8Mn0.1Co0.1(C2O4)1.5的陰極氧化物前驅物。將前驅體在空氣中在600℃的箱 式爐中加熱5小時,在氧氣流下在125℃下加熱1小時,並且在管式爐中在氧氣流下在830℃下煅燒15小時以獲得NMC 811。圖41提供了NMC 811氧化物的XRD圖譜。作為循環的函數的放電容量示於圖42中,作為容量的函數的電壓曲線示於圖43中。將NMC 811加熱在125℃下加熱1小時,然後在管式爐中在氧氣流下在830℃下煅燒15小時,以形成預燒的NMC 811。預燒的XRD的XRD圖示於圖44中,SEM示於圖2中。在圖46中提供放電容量,其中實線表示平均容量,誤差線表示一系列樣本的最大和最小容量。 Example 19: A cathode oxide precursor of NMC 811 having the chemical formula LiNi 0.8 Mn 0.1 Co 0.1 O 2 was prepared from 39 g Li 2 CO 3 , 95 g NiCO 3 , 12 g MnCO 3 and 12 g CoCO 3 dispersed in 200 mL deionized water in a beaker. The mixture was pumped into a separate beaker containing 201 g H 2 C 2 O 4 .2H 2 O in 400 mL deionized water at a rate of 0.38 mol carbonate per hour. The reaction mixture was then stirred for 1 hour. The final mixture with a solid content of about 20% was spray dried to obtain a cathode oxide precursor of the chemical formula LiNi 0.8 Mn 0.1 Co 0.1 (C 2 O 4 ) 1.5 . The precursor was heated in air in a box furnace at 600° C. for 5 hours, heated at 125° C. for 1 hour under an oxygen flow, and calcined in a tubular furnace at 830° C. for 15 hours under an oxygen flow to obtain NMC 811. FIG41 provides an XRD pattern of NMC 811 oxide. The discharge capacity as a function of the cycle is shown in FIG42, and the voltage curve as a function of the capacity is shown in FIG43. NMC 811 was heated at 125°C for 1 hour and then calcined at 830°C for 15 hours in a tubular furnace under an oxygen flow to form pre-calcined NMC 811. The XRD pattern of the pre-calcined XRD is shown in Figure 44 and the SEM is shown in Figure 2. The discharge capacity is provided in Figure 46, where the solid line represents the average capacity and the error line represents the maximum and minimum capacity of a series of samples.

實施例20:從燒杯中的8g Li2CO3、19g NiCO3、2g Al(OH)(CH3COO)2和4g CoCO3分散在40mL去離子水中製備化學式LiNi0.8Mn0.15Al0.05O2的NCA前驅物。將混合物以每小時0.08莫耳碳酸鹽的速度泵入含80克去離子水中的40克H2C2O42H2O的單獨燒杯中。然後將反應混合物攪拌1小時。將具有約20%固體含量的最終混合物噴霧乾燥以獲得化學式LiNi0.8Mn0.15Al0.0.05(C2O4)1.5的陰極氧化物前驅物。將陰極氧化物前驅物在125℃下加熱1小時,然後在管式爐中在氧氣流下在830℃下煅燒15小時以獲得NCA。在圖47中提供了XRD圖,在圖48中提供了SEM,其中源自陰極氧化物前驅物的層狀奈米結構容易觀察到。 Example 20: An NCA precursor of the chemical formula LiNi 0.8 Mn 0.15 Al 0.05 O 2 was prepared from 8 g Li 2 CO 3 , 19 g NiCO 3 , 2 g Al(OH)(CH 3 COO) 2 and 4 g CoCO 3 dispersed in 40 mL deionized water in a beaker. The mixture was pumped into a separate beaker containing 40 g H 2 C 2 O 4 2H 2 O in 80 g deionized water at a rate of 0.08 mol carbonate per hour. The reaction mixture was then stirred for 1 hour. The final mixture having a solid content of about 20% was spray dried to obtain a cathode oxide precursor of the chemical formula LiNi 0.8 Mn 0.15 Al 0.0.05 (C 2 O 4 ) 1.5 . The cathode oxide precursor was heated at 125° C. for 1 hour and then calcined at 830° C. for 15 hours in a tubular furnace under an oxygen flow to obtain NCA. An XRD pattern is provided in FIG. 47 and an SEM is provided in FIG. 48 , in which the layered nanostructure derived from the cathode oxide precursor is easily observed.

實施例21:具有整體化學式LiNi0.6Mn0.2Co0.2O2的NMC 622用從中心部分或核心到外部的過渡金屬的逐步濃度梯度製備。該陰極氧化物前驅物係將包含第一金屬作為鹽的3.9g Li2CO3、9.5g NiCO3、1.2g MnCO3和1.2g CoCO3由燒杯中分散在10mL去離子水中製備。將混合物泵入含有40.4g H2C2O4.2H2O在80mL去離子水中的單獨燒杯中以形成包含第一金屬鹽的核心的陰極氧化物前驅物。隨後,將包含分散在5mL去離子水中的包含第二金屬作為鹽的1.0g Li2CO3、1.8g NiCO3、0.6g MnCO3和0.6g CoCO3的混合物泵入反應混合物中 以在核心周圍形成含有第二金屬鹽的陰極氧化物前驅物的第一外殼。將包含2.9g Li2CO3、3.0g NiCO3、2.9g MnCO3和3.0g CoCO3的另外的混合物分散在10mL去離子水中並泵入反應混合物中以在第一外殼周圍的第二外殼中形成第三比例。每種溶液的添加速率保持恆定在15mL/小時。然後將反應混合物攪拌1小時,並噴霧乾燥,得到總體化學式為LiNi0.6Mn0.2Co0.2(C2O4)1.5的陰極氧化物前驅物。然後將陰極氧化物前驅物在110℃下加熱1小時,然後在箱式爐中在空氣中在800℃下煅燒7.5小時,以獲得具有化學式LiNi0.8Mn0.1Co0.1O2的富鎳核心NMC811的梯度NMC622,具有表示體積的LiNi0.6Mn0.2Co0.2O2的NMC622的第一外殼和具有化學式LiNi0.333Mn0.333Co0.333O2形式的外部NMC111外殼。由此本發明允許表面特性與體積不同。在圖49中提供了逐步NMC的XRD圖,SEM提供在圖50中。作為循環的函數的放電容量提供在圖51中。NMC 622(圖52中提供了實施例15)、NMC 811(實施例16)、兩次燃燒的NMC 811(實施例16)、NCA(實施例17)和NMC梯度(實施例18),並在圖53中顯示其正規化圖形。 Example 21: NMC 622 having an overall chemical formula of LiNi 0.6 Mn 0.2 Co 0.2 O 2 was prepared with a stepwise concentration gradient of the transition metal from the central portion or core to the outer portion. The cathode oxide precursor was prepared by dispersing 3.9 g of Li 2 CO 3 , 9.5 g of NiCO 3 , 1.2 g of MnCO 3 and 1.2 g of CoCO 3 containing the first metal as a salt in 10 mL of deionized water from a beaker. The mixture was pumped into a separate beaker containing 40.4 g of H 2 C 2 O 4 .2H 2 O in 80 mL of deionized water to form a cathode oxide precursor containing a core of the first metal salt. Subsequently, a mixture comprising 1.0 g Li 2 CO 3 , 1.8 g NiCO 3 , 0.6 g MnCO 3 and 0.6 g CoCO 3 dispersed in 5 mL of deionized water containing a second metal as a salt was pumped into the reaction mixture to form a first shell of a cathode oxide precursor containing a second metal salt around the core. Another mixture comprising 2.9 g Li 2 CO 3 , 3.0 g NiCO 3 , 2.9 g MnCO 3 and 3.0 g CoCO 3 was dispersed in 10 mL of deionized water and pumped into the reaction mixture to form a third ratio in a second shell around the first shell. The addition rate of each solution was kept constant at 15 mL/hour. The reaction mixture was then stirred for 1 hour and spray dried to obtain a cathode oxide precursor having an overall chemical formula of LiNi 0.6 Mn 0.2 Co 0.2 (C 2 O 4 ) 1.5 . The cathode oxide precursor is then heated at 110°C for 1 hour and then calcined in a box furnace in air at 800°C for 7.5 hours to obtain a gradient NMC622 with a nickel-rich core NMC811 of the chemical formula LiNi 0.8 Mn 0.1 Co 0.1 O 2 , a first shell of NMC622 representing the volume of LiNi 0.6 Mn 0.2 Co 0.2 O 2 and an outer NMC111 shell of the chemical formula LiNi 0.333 Mn 0.333 Co 0.333 O 2 form. The invention thus allows the surface characteristics to be different from the volume. The XRD pattern of the stepwise NMC is provided in Figure 49 and the SEM is provided in Figure 50. The discharge capacity as a function of the cycle is provided in Figure 51. NMC 622 (Example 15 is provided in Figure 52), NMC 811 (Example 16), double-burned NMC 811 (Example 16), NCA (Example 17) and NMC gradient (Example 18), and their normalized graphs are shown in Figure 53.

以上已經參考本發明較佳實施例對本發明予以說明,但不限於此。本領域的技術人員將認識到在此未具體闡述但在所附權利要求中更具體闡述的本發明權利範圍內的附加實施例和改良。 The present invention has been described above with reference to the preferred embodiments of the present invention, but is not limited thereto. A person skilled in the art will recognize additional embodiments and improvements within the scope of the present invention that are not specifically described herein but are more specifically described in the appended claims.

Claims (56)

一種鋰離子陰極的製造方法,包括:形成一包含溶劑、適於形成一陰極氧化物前驅物的第一金屬的可溶解鹽之可分解原料和一個多元羧酸的溶液作為第一溶液,其中該第一溶液包括錳、鎳、鈷或鋁的可溶性抗衡離子,且該可溶性抗衡離子於20℃下在每100克溶劑中具有至少0.1克鹽的溶解度;分解該可分解原料,以形成一第一金屬鹽,其中該第一金屬鹽以一有序晶格沉澱作為去除該多元羧酸的質子的鹽,從而形成該陰極氧化物前驅物;以一噴霧乾燥器將該陰極氧化物前驅物乾燥;和加熱該陰極氧化物前驅物,以形成該鋰離子陰極。 A method for manufacturing a lithium ion cathode comprises: forming a solution as a first solution comprising a solvent, a decomposable raw material of a soluble salt of a first metal suitable for forming a cathode oxide precursor, and a polycarboxylic acid, wherein the first solution comprises soluble counter ions of manganese, nickel, cobalt or aluminum, and the soluble counter ions have a relative humidity of 100 g of the solvent at 20°C. at least 0.1 gram of salt solubility; decomposing the decomposable raw material to form a first metal salt, wherein the first metal salt precipitates as an ordered lattice as a salt for removing protons from the polycarboxylic acid to form the cathode oxide precursor; drying the cathode oxide precursor with a spray dryer; and heating the cathode oxide precursor to form the lithium ion cathode. 根據申請專利範圍第1項的鋰離子陰極的製造方法,其中所述可分解原料是所述第一金屬的碳酸鹽、氫氧化物或乙酸鹽,其中所述第一金屬選自Li,Mn,Ni,Co,Al和Fe的群組。 According to the method for manufacturing a lithium ion cathode of item 1 of the patent application, the decomposable raw material is a carbonate, hydroxide or acetate of the first metal, wherein the first metal is selected from the group consisting of Li, Mn, Ni, Co, Al and Fe. 根據申請專利範圍第2項的鋰離子陰極的製造方法,其中所述可分解原料包括碳酸鋰、碳酸錳和碳酸鎳中的至少一種。 According to the method for manufacturing a lithium ion cathode of item 2 of the patent application, the decomposable raw material includes at least one of lithium carbonate, manganese carbonate and nickel carbonate. 根據申請專利範圍第3項的鋰離子陰極的製造方法,其中所述可分解原料包括碳酸鋰、碳酸錳和碳酸鎳。 According to the method for manufacturing a lithium ion cathode in item 3 of the patent application, the decomposable raw materials include lithium carbonate, manganese carbonate and nickel carbonate. 根據申請專利範圍第3項的鋰離子陰極的製造方法,其中所述可分解原料還包含碳酸鈷或氫氧化鋁中的至少一種。 According to the method for manufacturing a lithium ion cathode of item 3 of the patent application, the decomposable raw material also contains at least one of cobalt carbonate or aluminum hydroxide. 根據申請專利範圍第1項的鋰離子陰極的製造方法,其中所述多元羧酸係選自草酸、丙二酸、琥珀酸、戊二酸、己二酸、檸檬酸、草醯乙酸、富馬酸和馬來酸的群組。 According to the method for manufacturing a lithium ion cathode of claim 1, the polycarboxylic acid is selected from the group consisting of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, citric acid, oxalylacetic acid, fumaric acid and maleic acid. 根據申請專利範圍第6項的鋰離子陰極的製造方法,其中所述多元羧酸是草酸。 According to the method for manufacturing a lithium ion cathode of claim 6, the polycarboxylic acid is oxalic acid. 根據申請專利範圍第1項的鋰離子陰極的製造方法,其中所述鋰離子陰極由化學式I定義:LiNixMnyCozEeO4化學式I其中E是摻雜劑x+y+z+e=2;和0
Figure 107101632-A0305-02-0035-54
e
Figure 107101632-A0305-02-0035-55
0.2。
According to the method for manufacturing a lithium ion cathode of claim 1, the lithium ion cathode is defined by chemical formula I: LiNi x Mn y Co z E e O 4 Chemical formula I wherein E is a dopant x+y+z+e=2; and 0
Figure 107101632-A0305-02-0035-54
e
Figure 107101632-A0305-02-0035-55
0.2.
根據申請專利範圍第8項的鋰離子陰極的製造方法,其中所述化學式I為尖晶石結晶形式。 According to the method for manufacturing a lithium ion cathode of claim 8, the chemical formula I is in the form of spinel crystals. 根據申請專利範圍第8項的鋰離子陰極的製造方法,其中x和y都不為零。 According to the method for manufacturing a lithium ion cathode of claim 8, wherein both x and y are not zero. 根據申請專利範圍第10項的鋰離子陰極的製造方法,其中所述鋰離子陰極是LiNi0.5Mn1.5O4According to the method for manufacturing a lithium ion cathode of claim 10, the lithium ion cathode is LiNi 0.5 Mn 1.5 O 4 . 根據申請專利範圍第8項的鋰離子陰極的製造方法,其中所述鋰離子陰極由LiNixMnyO4定義,其中0.5
Figure 107101632-A0305-02-0035-24
x
Figure 107101632-A0305-02-0035-25
0.6且1.4
Figure 107101632-A0305-02-0035-26
y
Figure 107101632-A0305-02-0035-27
1.5。
According to the method for manufacturing a lithium ion cathode of claim 8, the lithium ion cathode is defined by LiNi x Mn y O 4 , wherein 0.5
Figure 107101632-A0305-02-0035-24
x
Figure 107101632-A0305-02-0035-25
0.6 and 1.4
Figure 107101632-A0305-02-0035-26
y
Figure 107101632-A0305-02-0035-27
1.5.
根據申請專利範圍第12項的鋰離子陰極的製造方法,其中,0.5
Figure 107101632-A0305-02-0035-28
x
Figure 107101632-A0305-02-0035-29
0.55且1.45
Figure 107101632-A0305-02-0035-30
y
Figure 107101632-A0305-02-0035-31
1.5。
According to the method for manufacturing a lithium ion cathode of claim 12, wherein 0.5
Figure 107101632-A0305-02-0035-28
x
Figure 107101632-A0305-02-0035-29
0.55 and 1.45
Figure 107101632-A0305-02-0035-30
y
Figure 107101632-A0305-02-0035-31
1.5.
根據申請專利範圍第8項的鋰離子陰極的製造方法,其中所述鋰離子陰極具有不大於3的Mn與Ni的莫耳比。 A method for manufacturing a lithium ion cathode according to claim 8, wherein the lithium ion cathode has a molar ratio of Mn to Ni of no more than 3. 根據申請專利範圍第14項的鋰離子陰極的製造方法,其中所述鋰離子陰極具有至少2.33至小於3的Mn與Ni的莫耳比。 A method for manufacturing a lithium ion cathode according to claim 14, wherein the lithium ion cathode has a molar ratio of Mn to Ni of at least 2.33 to less than 3. 根據申請專利範圍第15項的鋰離子陰極的製造方法,其中所述鋰離子陰極具有至少2.64至小於3的Mn與Ni的莫耳比。 A method for manufacturing a lithium ion cathode according to claim 15, wherein the lithium ion cathode has a molar ratio of Mn to Ni of at least 2.64 to less than 3. 根據申請專利範圍第8項的鋰離子陰極的製造方法,其中所述摻雜劑選自由Al,Gd,Ti,Zr,Mg,Ca,Sr,Ba,Cr,Fe,Cu,Zn,V,Bi,Nb和B的群組。 According to the method for manufacturing a lithium ion cathode of item 8 of the patent application, the dopant is selected from the group consisting of Al, Gd, Ti, Zr, Mg, Ca, Sr, Ba, Cr, Fe, Cu, Zn, V, Bi, Nb and B. 根據申請專利範圍第17項的鋰離子陰極的製造方法,其中所述摻雜劑選自Al和Gd的群組。 According to the method for manufacturing a lithium ion cathode of claim 17, the dopant is selected from the group consisting of Al and Gd. 根據申請專利範圍第1項的鋰離子陰極的製造方法,其中所述鋰離子陰極由化學式II定義:LiNiaMnbXcGdO2化學式II其中G是摻雜劑;X是Co或Al;其中a+b+c+d=1;和0
Figure 107101632-A0305-02-0036-32
d
Figure 107101632-A0305-02-0036-33
0.1。
According to the method for manufacturing a lithium ion cathode of claim 1, the lithium ion cathode is defined by chemical formula II: LiNi a Mn b X c G d O 2 chemical formula II wherein G is a dopant; X is Co or Al; wherein a+b+c+d=1; and 0
Figure 107101632-A0305-02-0036-32
d
Figure 107101632-A0305-02-0036-33
0.1.
根據申請專利範圍第19項的鋰離子陰極的製造方法,其中,0.5
Figure 107101632-A0305-02-0036-56
a
Figure 107101632-A0305-02-0036-57
0.9。
According to the method for manufacturing a lithium ion cathode of claim 19, wherein 0.5
Figure 107101632-A0305-02-0036-56
a
Figure 107101632-A0305-02-0036-57
0.9.
根據申請專利範圍第20項的鋰離子陰極的製造方法,其中0.58
Figure 107101632-A0305-02-0036-34
a
Figure 107101632-A0305-02-0036-35
0.62或0.78
Figure 107101632-A0305-02-0036-36
a
Figure 107101632-A0305-02-0036-37
0.82。
According to the method for manufacturing a lithium ion cathode of claim 20, wherein 0.58
Figure 107101632-A0305-02-0036-34
a
Figure 107101632-A0305-02-0036-35
0.62 or 0.78
Figure 107101632-A0305-02-0036-36
a
Figure 107101632-A0305-02-0036-37
0.82.
根據申請專利範圍第19項的鋰離子陰極的製造方法,其中a=b=c。 According to the method for manufacturing a lithium ion cathode of item 19 of the patent application, a=b=c. 根據申請專利範圍第1項的鋰離子陰極的製造方法,其中所述加熱係在空氣中。 According to the method for manufacturing a lithium ion cathode of claim 1, the heating is performed in air. 根據申請專利範圍第1項的鋰離子陰極的製造方法,其中所述陰極氧化物前驅物係形成一核心。 According to the method for manufacturing a lithium ion cathode of claim 1, the cathode oxide precursor forms a core. 根據申請專利範圍第24項的鋰離子陰極的製造方法,其中在所述加熱之前:增加一適合於形成另一陰極氧化物前驅物的第二金屬和一第二多元羧酸至該可分解原料;和分解所述可分解原料以形成一第二金屬鹽,其中所述第二金屬鹽沉澱在所述核心上作為一殼體。 According to the manufacturing method of the lithium ion cathode of claim 24, before the heating: adding a second metal suitable for forming another cathode oxide precursor and a second polycarboxylic acid to the decomposable raw material; and decomposing the decomposable raw material to form a second metal salt, wherein the second metal salt is precipitated on the core as a shell. 根據申請專利範圍第25項的鋰離子陰極的製造方法,其中所述第二金屬佔所述第一金屬和所述第二金屬的總莫耳數的不超過10莫耳%。 According to the method for manufacturing a lithium ion cathode of item 25 of the patent application, the second metal accounts for no more than 10 mol% of the total molar amount of the first metal and the second metal. 根據申請專利範圍第26項的鋰離子陰極的製造方法,其中所述第二金屬佔所述總莫耳數的不多於5莫耳%。 According to the method for manufacturing a lithium ion cathode of claim 26, the second metal accounts for no more than 5 mol% of the total molar amount. 根據申請專利範圍第27項的鋰離子陰極的製造方法,其中所述第二金屬佔所述總莫耳數的不多於1莫耳%。 According to the method for manufacturing a lithium ion cathode of claim 27, the second metal accounts for no more than 1 mol% of the total molar amount. 根據申請專利範圍第25項的鋰離子陰極的製造方法,其中所述第二金屬選自由Ni,Mn,Co,Al,Gd,Ti,Zr,Mg,Ca,Sr,Ba,Cr,Fe,Cu,Zn,V,Bi,Nb和B。 A method for manufacturing a lithium ion cathode according to item 25 of the patent application, wherein the second metal is selected from Ni, Mn, Co, Al, Gd, Ti, Zr, Mg, Ca, Sr, Ba, Cr, Fe, Cu, Zn, V, Bi, Nb and B. 根據申請專利範圍第25項的鋰離子陰極的製造方法,其中所述可分解原料包含Al。 According to the method for manufacturing a lithium ion cathode of claim 25, the decomposable raw material contains Al. 根據申請專利範圍第25項的鋰離子陰極的製造方法,其中所述核心包含第一莫耳比的Ni和Mn,並且所述殼體包含第二莫耳比的Ni和Mn。 A method for manufacturing a lithium ion cathode according to claim 25, wherein the core comprises Ni and Mn in a first molar ratio, and the shell comprises Ni and Mn in a second molar ratio. 根據申請專利範圍第31項的鋰離子陰極的製造方法,其中所述第一莫耳比和所述第二莫耳比是不同的。 A method for manufacturing a lithium ion cathode according to claim 31, wherein the first molar ratio and the second molar ratio are different. 根據申請專利範圍第32項的鋰離子陰極的製造方法,其中所述第一莫耳比具有比所述第二莫耳比更高的Ni與Mn的莫耳比。 According to the method for manufacturing a lithium ion cathode of claim 32, wherein the first molar ratio has a higher molar ratio of Ni to Mn than the second molar ratio. 一種鋰離子陰極的製造方法,包括:形成一包含溶劑和包括錳、鎳、鈷或鋁的可溶性抗衡離子的溶液,該可溶性抗衡離子於20℃下在每100克溶劑中具有至少0.1克鹽的溶解度,其中該可溶性抗衡離子係選自於碳酸鋰、碳酸錳和碳酸鎳;將該碳酸鋰、該碳酸錳和該碳酸鎳與草酸反應、釋放出CO2(g)和H2O(l)形成包含草酸鋰、草酸錳和草酸鎳的一有序晶格的沉澱而形成一陰極氧化物前驅物;以一噴霧乾燥器將該陰極氧化物前驅物乾燥;和加熱該陰極氧化物前驅物,以形成所述鋰離子陰極。 A method for manufacturing a lithium ion cathode comprises: forming a solution comprising a solvent and a soluble counter ion comprising manganese, nickel, cobalt or aluminum, wherein the soluble counter ion has a solubility of at least 0.1 gram of salt per 100 grams of solvent at 20°C, wherein the soluble counter ion is selected from lithium carbonate, manganese carbonate and nickel carbonate; reacting the lithium carbonate, the manganese carbonate and the nickel carbonate with oxalic acid to release CO2 (g) and H2O (l) forming a cathode oxide precursor by precipitating an ordered lattice containing lithium oxalate, manganese oxalate and nickel oxalate; drying the cathode oxide precursor with a spray dryer; and heating the cathode oxide precursor to form the lithium ion cathode. 根據申請專利範圍第34項的鋰離子陰極的製造方法,其中所述碳酸錳和所述碳酸鎳係於第一莫耳比並且所述陰極氧化物前驅物形成一核心。 According to the method for manufacturing a lithium ion cathode of claim 34, the manganese carbonate and the nickel carbonate are in a first molar ratio and the cathode oxide precursor forms a core. 根據申請專利範圍第35項的鋰離子陰極的製造方法,還包括:在該加熱之前,以第二莫耳比形成包含碳酸鋰、碳酸錳和碳酸鎳的第二漿液;和在所述核心上沉澱該草酸鋰、該草酸錳和該草酸鎳的外殼,其中所述外殼的所述草酸錳和所述草酸鎳處於所述第二莫耳比。 According to the method for manufacturing a lithium ion cathode of claim 35, the method further comprises: before the heating, forming a second slurry containing lithium carbonate, manganese carbonate and nickel carbonate at a second molar ratio; and precipitating a shell of the lithium oxalate, the manganese oxalate and the nickel oxalate on the core, wherein the manganese oxalate and the nickel oxalate of the shell are at the second molar ratio. 根據申請專利範圍第35項的鋰離子陰極的製造方法,其中所述沉澱還包含一摻雜劑。 According to the method for manufacturing a lithium ion cathode of claim 35, the precipitate also contains a dopant. 根據申請專利範圍第37項的鋰離子陰極的製造方法,其中所述摻雜劑選自Al,Gd,Ti,Zr,Mg,Ca,Sr,Ba,Cr,Fe,Zn,Cu,V,Bi,Nb和B。 A method for manufacturing a lithium ion cathode according to item 37 of the patent application, wherein the dopant is selected from Al, Gd, Ti, Zr, Mg, Ca, Sr, Ba, Cr, Fe, Zn, Cu, V, Bi, Nb and B. 根據申請專利範圍第38項的鋰離子陰極的製造方法,其中所述摻雜劑係Al。 According to the method for manufacturing a lithium ion cathode of claim 38, the dopant is Al. 根據申請專利範圍第36項的鋰離子陰極的製造方法,所述外殼的草酸錳和草酸鎳佔所述陰極氧化物前驅物中所有草酸錳和草酸鎳的總量小於10莫耳%。 According to the method for manufacturing a lithium ion cathode in item 36 of the patent application, the manganese oxalate and nickel oxalate in the shell account for less than 10 mol% of the total amount of all manganese oxalate and nickel oxalate in the cathode oxide precursor. 根據申請專利範圍第34項的鋰離子陰極的製造方法,其中所述鋰離子陰極由化學式I定義:LiNixMnyCozEeO4化學式I其中E是摻雜劑;x+y+z+e=2;和0
Figure 107101632-A0305-02-0038-38
e
Figure 107101632-A0305-02-0038-39
0.1。
According to the method for manufacturing a lithium ion cathode of claim 34, the lithium ion cathode is defined by chemical formula I: LiNi x Mn y Co z E e O 4 Chemical formula I wherein E is a dopant; x+y+z+e=2; and 0
Figure 107101632-A0305-02-0038-38
e
Figure 107101632-A0305-02-0038-39
0.1.
根據申請專利範圍第41項的鋰離子陰極的製造方法,其中所述化學式I為尖晶石結晶形式。 According to the method for manufacturing a lithium ion cathode of claim 41, the chemical formula I is in the form of spinel crystals. 根據申請專利範圍第41項的鋰離子陰極的製造方法,其中x和y都不為零。 According to the method for manufacturing a lithium ion cathode of claim 41, wherein both x and y are not zero. 根據申請專利範圍第41項的鋰離子陰極的製造方法,其中所述鋰離子陰極是LiNi0.5Mn1.5O4According to the method for manufacturing a lithium ion cathode of claim 41, the lithium ion cathode is LiNi 0.5 Mn 1.5 O 4 . 根據申請專利範圍第41項的鋰離子陰極的製造方法,其中所述鋰離子陰極由式LiNixMnyO4定義,其中0.5
Figure 107101632-A0305-02-0039-40
x
Figure 107101632-A0305-02-0039-41
0.6且1.4
Figure 107101632-A0305-02-0039-42
y
Figure 107101632-A0305-02-0039-43
1.5。
According to the method for manufacturing a lithium ion cathode of claim 41, the lithium ion cathode is defined by the formula LiNi x Mn y O 4 , wherein 0.5
Figure 107101632-A0305-02-0039-40
x
Figure 107101632-A0305-02-0039-41
0.6 and 1.4
Figure 107101632-A0305-02-0039-42
y
Figure 107101632-A0305-02-0039-43
1.5.
根據申請專利範圍第45項的鋰離子陰極的製造方法,其中所述0.5
Figure 107101632-A0305-02-0039-44
x
Figure 107101632-A0305-02-0039-45
0.55且1.45
Figure 107101632-A0305-02-0039-46
y
Figure 107101632-A0305-02-0039-47
1.5。
According to the method for manufacturing a lithium ion cathode of claim 45, wherein the 0.5
Figure 107101632-A0305-02-0039-44
x
Figure 107101632-A0305-02-0039-45
0.55 and 1.45
Figure 107101632-A0305-02-0039-46
y
Figure 107101632-A0305-02-0039-47
1.5.
根據申請專利範圍第41項的鋰離子陰極的製造方法,其中所述鋰離子陰極具有不大於3的Mn與Ni的莫耳比。 A method for manufacturing a lithium ion cathode according to claim 41, wherein the lithium ion cathode has a molar ratio of Mn to Ni of no more than 3. 根據申請專利範圍第47項的鋰離子陰極的製造方法,其中所述鋰離子陰極具有至少2.33至小於3的Mn與Ni的莫耳比。 A method for manufacturing a lithium ion cathode according to claim 47, wherein the lithium ion cathode has a molar ratio of Mn to Ni of at least 2.33 to less than 3. 根據申請專利範圍第48項的鋰離子陰極的製造方法,其中所述鋰離子陰極具有至少2.64至小於3的Mn與Ni的莫耳比。 A method for manufacturing a lithium ion cathode according to claim 48, wherein the lithium ion cathode has a molar ratio of Mn to Ni of at least 2.64 to less than 3. 根據申請專利範圍第41項的鋰離子陰極的製造方法,其中所述摻雜劑選自由Al,Gd,Ti,Zr,Mg,Ca,Sr,Ba,Cr,Fe,Zn,Cu,V,Bi,Nb和B。 A method for manufacturing a lithium ion cathode according to item 41 of the patent application, wherein the dopant is selected from Al, Gd, Ti, Zr, Mg, Ca, Sr, Ba, Cr, Fe, Zn, Cu, V, Bi, Nb and B. 根據申請專利範圍第50項的鋰離子陰極的製造方法,其中所述摻雜劑選自由Al和Gd組成的群組。 According to the method for manufacturing a lithium ion cathode of item 50 of the patent application, the dopant is selected from a group consisting of Al and Gd. 根據申請專利範圍第34項的鋰離子陰極的製造方法,其中所述鋰離子陰極由化學式II定義:LiNiaMnbXcGdO2化學式II其中G是摻雜劑X是Co或Al其中a+b+c+d=1;和 0
Figure 107101632-A0305-02-0040-48
d
Figure 107101632-A0305-02-0040-49
0.1。
According to the method for manufacturing a lithium ion cathode of claim 34, the lithium ion cathode is defined by chemical formula II: LiNi a Mn b X c G d O 2 chemical formula II wherein G is a dopant, X is Co or Al, a+b+c+d=1; and
Figure 107101632-A0305-02-0040-48
d
Figure 107101632-A0305-02-0040-49
0.1.
根據申請專利範圍第52項的鋰離子陰極的製造方法,其中0.5
Figure 107101632-A0305-02-0040-58
a
Figure 107101632-A0305-02-0040-59
0.9。
According to the method for manufacturing a lithium ion cathode of claim 52, wherein 0.5
Figure 107101632-A0305-02-0040-58
a
Figure 107101632-A0305-02-0040-59
0.9.
根據申請專利範圍第53項的鋰離子陰極的製造方法,其中0.58
Figure 107101632-A0305-02-0040-50
a
Figure 107101632-A0305-02-0040-51
0.62或0.78
Figure 107101632-A0305-02-0040-52
a
Figure 107101632-A0305-02-0040-53
0.82。
According to the method for manufacturing a lithium ion cathode of claim 53, wherein 0.58
Figure 107101632-A0305-02-0040-50
a
Figure 107101632-A0305-02-0040-51
0.62 or 0.78
Figure 107101632-A0305-02-0040-52
a
Figure 107101632-A0305-02-0040-53
0.82.
根據申請專利範圍第52項的鋰離子陰極的製造方法,其中a=b=c。 According to the method for manufacturing a lithium ion cathode of item 52 of the patent application, a=b=c. 根據申請專利範圍第34項的鋰離子陰極的製造方法,其中所述加熱係於空氣、氧氣或其混合物中。 According to the method for manufacturing a lithium ion cathode of claim 34, the heating is carried out in air, oxygen or a mixture thereof.
TW107101632A 2017-01-18 2018-01-17 Manufacturing method of lithium ion cathode, lithium ion cathode and battery including the lithium ion cathode TWI837083B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762447598P 2017-01-18 2017-01-18
US62/447,598 2017-01-18
US201762483777P 2017-04-10 2017-04-10
US62/483,777 2017-04-10

Publications (2)

Publication Number Publication Date
TW201841836A TW201841836A (en) 2018-12-01
TWI837083B true TWI837083B (en) 2024-04-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466167A (en) 2014-12-17 2015-03-25 中信大锰矿业有限责任公司大新锰矿分公司 Method for preparing positive material LiNi1/3Co1/3Mn1/3O2 of lithium ion battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466167A (en) 2014-12-17 2015-03-25 中信大锰矿业有限责任公司大新锰矿分公司 Method for preparing positive material LiNi1/3Co1/3Mn1/3O2 of lithium ion battery

Similar Documents

Publication Publication Date Title
CN110495025B (en) One-pot synthesis method for cathode material precursor of lithium ion battery
KR102631552B1 (en) One-pot synthesis method for lithium niobate coated spinel
JP7295275B2 (en) Stabilized high-nickel NMC cathode materials for improved battery performance
TWI672852B (en) Phosphate stabilized lithium ion battery cathode
TWI837083B (en) Manufacturing method of lithium ion cathode, lithium ion cathode and battery including the lithium ion cathode
WO2022077105A1 (en) Improved battery with spinel cathode
TWI832104B (en) Improved battery containing spinel type cathode
US20230246175A1 (en) One-Pot Synthesis for LiNbO3 Coated Spinel
US20220045315A1 (en) Battery with Spinel Cathode