TWI836394B - 醫療影像處理之方法、裝置及電腦程式 - Google Patents

醫療影像處理之方法、裝置及電腦程式 Download PDF

Info

Publication number
TWI836394B
TWI836394B TW111112655A TW111112655A TWI836394B TW I836394 B TWI836394 B TW I836394B TW 111112655 A TW111112655 A TW 111112655A TW 111112655 A TW111112655 A TW 111112655A TW I836394 B TWI836394 B TW I836394B
Authority
TW
Taiwan
Prior art keywords
interest
color
medical image
area
information
Prior art date
Application number
TW111112655A
Other languages
English (en)
Other versions
TW202243651A (zh
Inventor
金秉默
朴範熙
朴鍾勳
Original Assignee
韓商福諾有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210042510A external-priority patent/KR102569976B1/ko
Application filed by 韓商福諾有限公司 filed Critical 韓商福諾有限公司
Publication of TW202243651A publication Critical patent/TW202243651A/zh
Application granted granted Critical
Publication of TWI836394B publication Critical patent/TWI836394B/zh

Links

Abstract

根據本發明之一實施例,本發明揭示藉由計算裝置執行之醫療影像處理方法。上述方法可包括如下步驟:使用預先學習的深度學習模型來檢測醫療影像的關注區域;確定與關注區域有關的週邊線(contour)資訊;以及以外圍線資訊為基礎,生成對用於確定醫療影像的表現的多個要素進行定義的格式(format)資訊。並且,根據代替性實施例,上述方法可包括如下步驟:接收對用於確定醫療影像的表現的多個要素進行定義的格式資訊;使得與醫療影像對應的格式資訊結合於醫療影像;以及生成反映結合結果的使用者介面。

Description

醫療影像處理之方法、裝置及電腦程式
本發明涉及醫療影像的處理方法,更具體地,涉及基於深度學習來分析醫療影像,並有效地向使用者提供分析結果之方法。
醫療影像為幫助理解人體的多種器官的物理狀態的資料。醫療影像包括數位放射影像(X-ray)、電腦斷層掃描(CT)或磁共振影像(MRI)等。
隨著影像分析技術及人工智慧技術的發達,醫療影像作為用於輔助疾病的診斷的分析資料,以多種方式使用。在當前構建的醫療系統中,將對於醫療影像的分析結果以多種方式視覺化來向臨床醫生等系統使用者提供。例如,當前醫療系統藉由將如病變資訊的對於醫療影像的分析結果顯示在醫療影像自身並向輸出終端提供。即,當前醫療系統藉由向輸出終端傳遞在原始醫療影像直接重疊顯示分析結果來生成的影像,向使用者提供分析結果。
在當前醫療系統中所使用之上述方式為與分析結果對應的數據直接複製原始影像的方式,因此,數據容量龐大,為了處理大容量的數據而需 要大量的資源(resource)。尤其,當原件為由數百張系列(series)組成的大容量影像時,在系統上用於處理分析影像的數據的容量負擔過重。因此,需要開發在當前醫療系統中,可減少分析數據的容量並有效顯示醫療影像的分析結果的技術。
韓國授權專利第10-1716039號(2017年03月13日)發明了基於醫療影像之疾病診斷資訊計算方法及裝置。
〔先前技術文獻〕 〔專利文獻〕
〔專利文獻1〕韓國公開專利第10-1716039號(2017年03月13日)
本發明對應上述先前技術來提出,本發明的目的在於,提供基於深度學習來檢測醫療影像之關注區域,以可以有效顯示檢測結果的方式處理數據的方法。
根據用於實現上述問題之本發明第一實施例,本發明揭示藉由計算裝置執行之醫療影像處理方法。上述方法可包括如下步驟:使用預先學習之深度學習模型來檢測醫療影像之關注區域;確定與上述關注區域有關的週邊線(contour)資訊;以及以上述週邊線資訊為基礎,生成對用於確定上述醫療影 像之表現之多個要素進行定義之格式(format)資訊。
在代替性實施例中,確定與上述關注區域有關的週邊線資訊的步驟可包括如下步驟:識別上述醫療影像的顏色空間(color space);以及基於識別到上述顏色空間的醫療影像的關注區域的顏色分佈,確定顯示上述關注區域的週邊線的顏色。
在代替性實施例中,確定顯示上述關注區域的週邊線的顏色的步驟可包括如下步驟,即,在上述顏色分佈內,以多個顏色之間的相互關聯性為基礎來確定顯示上述關注區域的週邊線的顏色。
在代替性實施例中,當所識別之上述顏色空間為紅綠藍空間時,確定顯示上述關注區域的週邊線的顏色的步驟可包括如下步驟:從上述醫療影像導出表示像素單位的顏色分佈的直方圖;以存在於上述直方圖(histogram)的多個顏色的出現頻率為基礎來確定第一候補顏色值;將上述醫療影像的顏色空間變換成色相飽和度值(hue saturation value)空間,以在上述色相飽和度值空間中的直方圖為基礎來確定第二候補顏色值;以包含在上述醫療影像的多個像素的亮度為基礎來確定灰度(grayscale)的第三候補顏色值;以及以上述第一候補顏色值、上述第二候補顏色值及上述第三候補顏色值為基礎來確定顯示上述關注區域的週邊線的顏色。
在代替性實施例中,以存在於上述直方圖的多個顏色的出現頻率為基礎來確定第一候補顏色值的步驟可包括如下步驟,即,在存在於上述直方圖的多個顏色中,以出現頻率最低的至少一個顏色為基礎,將突出表現規定顏色的至少一個顏色值確定為第一候補顏色值。
在代替性實施例中,以在上述色相飽和度值空間中的直方圖為 基礎來確定第二候補顏色值的步驟可包括如下步驟:從上述色相飽和度值空間中的直方圖中選擇空色調(hue);以包含上述關注區域的候補區域所包含的多個像素的亮度為基礎,選擇突出呈現視覺對比的飽和度(saturation)及亮度值(value of brightness);以及以所選擇的上述色調、飽和度及亮度值為基礎來確定上述第二候補顏色值。
在代替性實施例中,以包含在上述醫療影像之多個像素的亮度為基礎來確定第三候補顏色值的步驟可包括如下步驟:以包含上述關注區域的候補區域所包含的多個像素的亮度為基礎,選擇突出呈現視覺對比的灰度的顏色值;以及將所選擇的上述灰度的顏色值確定為上述第三候補顏色值。
在代替性實施例中,當所識別之上述顏色空間為灰度空間時,確定表示上述關注區域的週邊線的顏色的步驟可包括如下步驟:從上述醫療影像導出表示像素單位的顏色分佈的直方圖;以上述直方圖為基礎來掌握並未呈現在關注區域的至少一個顏色;以及以並未呈現在上述關注區域的至少一個顏色為基礎來確定顯示上述關注區域的週邊線的顏色。
在代替性實施例中,以並未呈現在上述關注區域之至少一個顏色為基礎來確定顯示上述關注區域的週邊線的顏色的步驟可包括如下步驟,即,以並未呈現在上述關注區域的至少一個顏色為基礎,按照顯示上述關注區域的週邊線的種類及數量來確定能夠與不同顏色區別的顏色。
在代替性實施例中,確定與上述關注區域有關之週邊線資訊之步驟可包括如下步驟,即,以上述關注區域的檢測資訊為基礎來確定與上述關注區域的週邊線的形態有關的表現要素。
在代替性實施例中,上述檢測資訊可包含與上述關注區域的存 在有關的概率值或上述關注區域的數值中的至少一個。而且,與上述關注區域的週邊線的形態有關的表現要素可包含上述週邊線的厚度、上述週邊線的鮮明度、上述週邊線的精度或上述週邊線的影子的鮮明度中的至少一個。
在代替性實施例中,以上述關注區域之檢測資訊為基礎來確定與上述關注區域的週邊線的形態有關的表現要素的步驟可包括如下步驟,即,以與上述關注區域的存在有關的概率值或上述關注區域的數值中的至少一個的大小為基礎,確定上述週邊線的厚度、上述週邊線的鮮明度、上述週邊線的精度或上述週邊線的影子的鮮明度中的至少一個。在此情況下,與上述關注區域的存在有關的概率值或上述關注區域的數值中的至少一個的大小越大,上述週邊線的厚度、上述週邊線的鮮明度、上述週邊線的精度或上述週邊線的影子的鮮明度中的至少一個的大小亦可以越大。
根據用於實現上述問題之本發明第二實施例,本發明揭示藉由計算裝置執行之醫療影像處理方法。上述方法可包括如下步驟:接收對用於確定醫療影像的表現的多個要素進行定義的格式資訊;使得與上述醫療影像對應的格式資訊結合於醫療影像;以及生成反映上述結合的結果的使用者介面。在此情況下,上述格式資訊能夠以與使用預先學習的深度學習模型來檢測的醫療影像的關注區域有關的週邊線資訊為基礎來生成。
根據用於實現上述問題之本發明一實施例,本發明揭示儲存在電腦可讀記憶介質之電腦程式。當在一個以上的處理器中執行上述電腦程式時,可執行處理醫療影像的下述的工作:使用預先學習的深度學習模型來檢測醫療影像的關注區域;確定與上述關注區域有關的週邊線資訊;以及以上述週邊線資訊為基礎,生成對用於確定上述醫療影像的表現階層的多個要素進行定 義的格式資訊。
根據用於實現上述問題之本發明一實施例,本發明揭示處理醫療影像之計算裝置。上述裝置可包括:處理器,包括至少一個核;記憶體,包含能夠在上述處理器中執行的程式代碼;以及網路部,用於接收醫療影像,上述處理器使用預先學習的深度學習模型來檢測醫療影像的關注區域,確定與上述關注區域有關的週邊線資訊,以上述週邊線資訊為基礎,生成對用於確定上述醫療影像的表現的多個要素進行定義的格式資訊。
本發明可提供基於深度學習來檢測醫療影像之關注區域,以可有效顯示檢測結果之方式處理數據之方法。
11,21,25,31,41,51:醫療影像
13:分析資訊
15:分析影像
17,27:輸出影像
23,39:格式資訊
35,45,59:週邊線資訊
53:檢測資訊
55:概率值
57:數值
100:計算裝置
110:處理器
130:記憶體
150:網路部
210,310:第一計算裝置
250,350:第二計算裝置
1102:電腦
1104:處理裝置
1106:系統記憶體
1108:系統匯流排
1110:唯讀記憶體
1112:隨機存取記憶體
1114:硬碟驅動器
1116:磁片驅動器
1118:軟碟
1120:光碟驅動器
1122:CD-ROM盤
1124:驅動器介面
1126:磁片驅動器介面
1128:光驅動器介面
1130:操作系統
1132:應用程式
1134:程式模組
1136:程式數據
1138:鍵盤
1140:滑鼠
1142:介面
1144:顯示器
1146:視訊適配器
1148:遠程電腦
1150:儲存裝置
1152:區域網路
1154:廣域網路
1156:適配器
1158:數據機
〔圖1〕為處理醫療影像的先前系統的框結構圖。
〔圖2〕為根據本發明一實施例的處理醫療影像的系統的框結構圖。
〔圖3〕為用於處理本發明一實施例的醫療影像的計算裝置的框結構圖。
〔圖4〕為示出本發明一實施例的醫療影像處理方法的流程圖。
〔圖5〕為示出本發明一實施例的網路函數的簡圖。
〔圖6〕為示出本發明一實施例的計算裝置的醫療影像處理過程的圖(diagram)。
〔圖7,圖8〕為具體化顯示本發明一實施例的計算裝置的關注區域的週邊 線資訊的確定過程的框圖。
〔圖9〕為示出本發明追加一實施例的醫療影像處理方法的流程圖。
〔圖10〕為本發明一實施例的計算環境的簡圖。
下述,參照圖式說明多種實施例。在本說明書中,為了幫助理解本發明而提供多種說明。但是,需明確的是,在沒有這種具體說明的情況下亦可以實施這種實施例。
在本說明書中使用之術語「組件」、「模組」、「系統」等係指電腦相關實體、硬體、固件、軟體、軟體及硬體的組合或軟體的執行。例如,組件可以為在處理器上運行的進程(procedure)、處理器、對象、執行線程、程式及/或電腦,但並不局限於此。例如,在計算裝置中運行的應用程式及計算裝置均可以為組件。一個以上的組件可駐留在處理器及/或執行線程內。一組件可本地化在一臺電腦內。一組件可分佈在兩臺以上的電腦之間。並且,這種組件可藉由儲存在其內部的具有多種數據結構的多種電腦可讀介質中執行。例如,組件可根據具有一個以上的數據包的訊號(例如,藉由來自在本體系統、分佈式系統中與其他組件相互作用的一個組件的數據及/或訊號,藉由如互聯網的網路與其他系統傳輸的數據),藉由本體及/或遠程處理進行通訊。
同時,術語「或」係指表示包含的「或」,而不是排他的「或」。即,在並未另行特定或者在文脈上未明確的情況下,「X利用A或B」係指自然隱式替換之一。即,在X利用A、X利用B、或者X利用A及B兩者的情況下,「X利用A或B」可使用為上述情況之一。並且,在本說明書中使用 的術語「及/或」應理解為指代並包括所列出的相關專案中的一個以上的專案的所有可能的組合。
並且,術語「包括」及/或「包括……」係指存在相應特徵及/或結構要素。但是,術語「包括」及/或「包括……」並不排除一個以上的其他特徵、結構要素及/或它們的組合的存在或附加。並且,在並未另行特定或者在文脈上明確表示單數形態的情況下,在本說明書及申請專利範圍中,單數通常解釋為「一個或一個以上」。
並且,術語「A或B中的至少一個」應解釋為「僅包括A的情況」、「僅包括B的情況」、「包括A及B的組合的情況」。
所屬技術領域中具有通常知識者需進一步理解,與在此揭示之實施例相關來說明之多種例示性邏輯塊、結構、模組、電路、單元、邏輯及演算法步驟可由電子硬體、電腦軟體或兩者的組合體現。為了明確例示硬體與軟體的相互交換性,多種例示性組件、塊、結構、單元、邏輯、模組、電路及步驟已在上述說明中大致在它們的功能方面進行了說明。此種功能是否由硬體或軟體體現取決於向整體系統賦予的特定應用程式(application)及設計局限。所屬技術領域中具有通常知識者可實現為了各個特定應用程式而以多種方法說明的功能。但是,不應解釋為這種體現的確定不應超出本發明內容的領域。
與揭示之實施例有關之說明以能夠使本發明所屬技術領域中具有通常知識者能夠利用或實施本發明之方式提供。對此種實施例的多種變形對於本發明所屬技術領域中具有通常知識者而言是顯而易見的。在此定義的一般原理可在不超出本發明的範圍內應用於其他實施例。由此,本發明並不限定於在此提出的實施例。本發明需由與在此揭示的原理及新的多個特徵一貫的最廣 範圍內解釋。
在本發明中,網路函數、人工神經網路及神經網路(neural network)可互換使用。
另一方面,在本發明之詳細說明及申請專利範圍中利用之術語「圖像」或「影像」指代由離散影像元素(例如,二維影像中的像素)構成之多維數據,換言之,係指代(例如,在影片畫面上顯示的)可肉眼看到的對象或(例如,與電子電腦斷層掃描(CT)、磁共振影像(MRI)檢測器等的像素輸出相對應的)該對象的數字表達物的術語。
例如,「圖像」或「影像」可以為電子電腦斷層掃描(CT:computed tomography)、磁共振影像(MRI:magnetic resonance imaging)、超聲波或藉由本發明的技術領域中習知的任意其他醫療影像系統收集的採集對象(subject)的醫療影像。影像並不是必須在醫療環境中提供,還可在非醫療環境中提供,例如,可具有安全檢索用X射線拍攝等。
在本發明之詳細說明及申請專利範圍中,術語「醫療數位影像傳輸協定(DICOM:Digital Imaging and Communications in Medicine)」標準為在醫療儀器中用於數位影像表達及通訊的多種標準的統稱,醫學數位影像及通訊標準由美國放射醫學會(ACR)及美國電氣製造商協會(NEMA)組成的聯合委員會發表。
並且,在本發明之詳細說明及申請專利範圍中,術語「數位影像儲存通訊系統(PACS:Picture Archiving and Communication System)」係指根據醫學數位影像及通訊標準儲存、處理、傳輸的系統,利用如X射線、電子電腦斷層掃描、磁共振影像的數位醫療影像裝置獲取的醫療影像(圖像)以醫學數 位影像及通訊形式儲存,可藉由網路向醫院內外的終端傳輸,在此可添加讀取結果及診斷記錄。
圖1為處理醫療影像的先前系統的框結構圖。
參照圖1,先前系統接收醫療影像11來進行分析,包括第一計算裝置210及第二計算裝置250,上述第一計算裝置210以分析結果為基礎來生成分析影像15,上述第二計算裝置250生成顯示分析結果的輸出影像17。若完成對醫療影像11的分析,則在醫療影像11覆蓋(overlay)作為分析結果生成的分析資訊13來生成分析影像15。第二計算裝置250從第一計算裝置210接收分析影像15來生成輸出影像17。在此情況下,輸出影像17亦可以為分析影像15自身,亦可以為藉由對於分析影像15的追加處理來生成的影像。
藉由先前系統之第一計算裝置210生成之分析影像15為在作為原始影像之醫療影像11自身重疊顯示分析資訊13之影像。即,分析影像15包含作為原始影像的醫療影像11自身(或複製版)及分析資訊13。因此,相對於醫療影像11,分析影像15的容量只能變大。而且,分析影像15的大容量只能對計算裝置210、250之間的數據收發、計算裝置210、250的影像生成或輸出分析結果的處理工作產生負擔。
例如,先前系統之第一計算裝置210為分析醫療影像的病變的伺服器,第二計算裝置250為PACS查看器(viewer)終端。作為第一計算裝置210的病變分析伺服器接收醫療影像來分析病變區域,在醫療影像覆蓋與病變區域有關的資訊來生成次級擷取(SC:secondary capture)影像。在此情況下,次級擷取影像為醫學數位影像及通訊形式的數據,以可從作為第二計算裝置250的PACS查看器終端輸出。次級擷取影像(i.e.SC DICOM數據)直接複製作為原始 的醫療影像,因此,只能局域相當大的容量。尤其,在醫療影像為三維影像的情況下,原始影像為100至200多張的醫學數位影像及通訊形式的系列(series)數據,因此,醫學數位影像及通訊形式的次級擷取影像只能生成為計算資源很難處理的數十至數百MB(megabyte)的大容量。即,藉由先前系統,裝置間共用醫學數位影像及通訊形式的次級擷取影像,以醫學數位影像及通訊形式的次級擷取影像為基礎輸出病變分析結果對用於處理圖像的計算資源產生相當大的負擔,且很難提供有效率且有效果的分析結果。
圖2為根據本發明一實施例之處理醫療影像的系統的框結構圖。
參照圖2,本發明一實施例之系統可接收醫療影像21來進行分析,包括以分析結果為基礎來生成對用於確定醫療影像的表現的要素進行定義的格式資訊23及接收格式資訊23來生成顯示醫療影像的分析結果的輸出影像27的第二計算裝置350。第一計算裝置310並非在醫療影像21覆蓋分析結果,而是,可以生成能夠將對於醫療影像21的分析結果結合在醫療影像21的單獨的格式資訊23。第一計算裝置310可生成與確定對於醫療影像21的分析結果如何表現在醫療影像的多個要素有關的格式資訊23來向第二計算裝置350傳遞。第二計算裝置350可接收格式資訊23並藉由結合格式資訊23與醫療影像25的工作來生成用於顯示分析結果的輸出影像27。在此情況下,醫療影像25亦可以為與預先儲存在第二計算裝置350的格式資訊23對應的影像,亦可以為與從第一計算裝置310傳遞的原始對應的醫療影像21。
藉由本發明之第一計算裝置310生成的格式資訊23除作為原始影像的醫療影像21之外,還可包含用於在影像顯示醫療影像21的分析結果的 主要資訊。即,格式資訊23可以被理解成定義要素的數據,即,確定與分析結果匹配的醫療影像的種類,而並非與影像數據匹配、與顯示分析結果的影像內區域等分析結果有關的醫療影像的表現。因此,格式資訊23並不包含影像自身,而是不會丟失重要的分析結果,與圖1所示的先前系統的分析影像15相比,可生成少容量。格式資訊23的少容量可以減少對計算裝置310、350之間的數據收發、計算裝置310、350的影像生成或輸出分析結果的處理工作產生的負擔。
藉由本發明之第二計算裝置350生成的輸出影像27可以被理解成藉由格式資訊23與醫療影像25的結合生成的數據。格式資訊23對用於確定在哪個醫療影像表現哪個資訊的多種規格(specification)進行定義。因此,第二計算裝置350可將格式資訊23結合在醫療影像25,由此可以輕鬆生成能夠準確地表現藉由第一計算裝置310分析的結果的輸出影像27。如上所記載之,當使用格式資訊23來生成輸出影像27時,可減少在用於顯示分析結果的數據處理過程中所需要的資源。並且,格式資訊23定義分析結果的多種表現要素,因此,當使用格式資訊23來生成輸出影像27時,與先前系統相比,可以大幅度改善對於分析結果的視覺顯示效果。
例如,本發明一實施例之第一計算裝置310可以為分析醫療影像的病變的伺服器,第二計算裝置350可以為影像儲存及通訊系統中所包括的任意終端中的一個。作為第一計算裝置310的病變分析伺服器可接收醫療影像並使用預先學習的深度學習模型來分析病變區域。而且,作為第一計算裝置310的病變分析伺服器可以生成作為定義對於病變區域的影像表現要素的格式資訊中的一個的灰度軟拷貝顯示狀態(GSPS:grayscale softcopy presentation state)資訊。在此情況下,灰度軟拷貝顯示狀態資訊作為對用於確定醫學數位影像及通訊影像的顯示狀態的要素進行定義的醫學數位影像及通訊客體,可以包含與顯示顯示在畫面的影像的狀態有關的資訊。即,灰度軟拷貝顯示狀態資訊表示定義在哪個影像檔、在哪個位置呈現出病變分析資訊的數據要素。因此,即使是醫療影像為由100至200多張的醫學數位影像及通訊形式的系列(series)數據構成的三維影像,醫學數位影像及通訊資訊亦並非為影像數據自身,因此,可以生成計算資源輕鬆處理的數KB(kilobyte)至數MB(megabyte)的少容量。作為第二計算裝置350的影像儲存及通訊系統終端在醫學數位影像及通訊形式的影像整合灰度軟拷貝顯示狀態資訊來生成用於提供與病變區域有關的資訊的影像或使用者介面。
本發明一實施例之系統可以區分醫學數位影像及通訊形式的影像數據及定義對於病變區域的表現要素的灰度軟拷貝顯示狀態數據來處理,因此,可以相當減少計算資源的數據處理負擔。並且,根據本發明的一實施例,可藉由灰度軟拷貝顯示狀態檔來將影像的畫面顯示狀態標準化,因此,在不對影像拍攝裝置、輸出裝置等計算資源環境產生影響的情況下,可以向系統使用者提供品質得到保證的分析結果。即,在本發明一實施例的系統中的灰度軟拷貝顯示狀態檔的使用可以提供如下環境,即,可以提供有效率且有效果的數據視覺化處理及分析結果。
與如灰度軟拷貝顯示狀態的格式資訊的種類有關的具體記載僅為根據上述假設的醫療系統的計算環境設定的例示。因此,格式資訊的種類並不局限於上述例示(i.e.GSPS),而是可根據醫療系統的計算環境,在本發明所屬技術領域中具有通常知識者可以理解的範圍內改變。
圖3為用於處理本發明一實施例之醫療影像之計算裝置的框結構圖。
在圖3中所示的計算裝置100的結構僅為簡要示出的例示。在本發明之一實施例中,計算裝置100可包括用於執行計算裝置100的計算環境的其他結構,還可僅由揭示的結構中的一部分構成計算裝置100。
計算裝置100可包括處理器110、記憶體130、網路部150。
處理器110可由一個以上的內核構成,可包括計算裝置的中央處理器(CPU:central processing unit)、通用圖形處理器(GPGPU:general purpose graphics processing unit)、張量處理器(TPU:tensor processing unit)等用於數據分析、深度學習的處理器。處理器110可藉由讀取儲存在記憶體130中的電腦程式來執行本發明一實施例的用於機器學習的數據處理。根據本發明的一實施例,處理器110可執行用於學習神經網路的運算。處理器110可執行在深度學習(DL:deep learning)中用於學習的輸入數據的處理、輸入數據中的特徵提取、誤差計算、反向傳播(backpropagation)的神經網路的權重更新等的用於學習神經網路的計算。處理器110的中央處理器、通用圖形處理器及張量處理器中的至少一個可處理網路函數的學習。例如,中央處理器及通用圖形處理器可一同處理網路函數的學習、利用網路函數的數據分類。並且,在本發明的一實施例中,可同時使用多個計算裝置的處理器來處理網路函數的學習、利用網路函數的數據分類。並且,本發明一實施例的在計算裝置中運行的電腦程式可以為中央處理器、通用圖形處理器或張量處理器可執行之程式。
根據本發明之一實施例,處理器110可使用預先學習的深度學習模型來檢測醫療影像的關注區域。例如,處理器110可使用預先學習的深度 學習模型來執行醫療影像的關注區域的探測(detection)、分割(segmentation)或分類(classification)等的用於檢測病變的任務(task)。處理器110執行使用深度學習模型的探測、分割或分類等的任務,由此可以在醫療影像中檢測被判斷為病變的區域。在此情況下,醫療影像均可包含二維影像或三維影像。並且,醫療影像均可包含單個影像及系列影像、具有時間序列關係的多個圖像。
處理器110可以確定藉由深度學習模型檢測的關注區域的週邊線(contour)資訊。處理器110為了將關注區域與醫療區域的剩餘區域區別表示而以藉由深度學習模型導出的關注區域的檢測資訊為基礎來生成與關注區域有關的週邊線資訊。在此情況下,週邊線資訊可以包含表示關注區域的週邊線的顏色資訊、形態資訊等。例如,處理器110可基於構成關注區域的檢測資訊及醫療影像的顏色空間(color space)來確定週邊線的顏色來生成顏色資訊。在此情況下,週邊線的顏色可以考慮關注區域的周邊區域的顏色、關注區域的種類及數量等來確定。並且,處理器110可基於關注區域的檢測資訊來確定與週邊線的形態有關的表現要素來生成形態資訊。在此情況下,與週邊線的形態有關的表現要素可以考慮關注區域的種類及數量等來確定。
處理器110能夠以外圍線資訊為基礎來生成對用於確定醫療影像的表現的多個要素進行定義的格式資訊。格式資訊基於與關注區域有關的資訊來定義用於視覺化關注區域的多個表現要素。處理器110可以將包含關注區域的週邊線資訊的視覺化資訊與醫療影像區別來生成作為單獨的數據的格式資訊。與藉由處理器110生成的格式資訊均顯示在影像的先前方式相比,具有容量優點,同時,可以保障檢測資訊的視覺化品質。例如,在醫療影像為醫學數位影像及通訊影像的情況下,處理器110能夠以上述關注區域的分析結果為基 礎來生成對應於確定醫學數位影像及通訊影像的表現階層的多個要素進行定義的灰度軟拷貝顯示狀態資訊。在此情況下,灰度軟拷貝顯示狀態資訊可以包含與匹配(或參照)的醫學數位影像及通訊影像有關的資訊、在需要匹配的醫學數位影像及通訊影像中視覺表現的關注區域的檢測資訊及週邊線資訊等。
在代替性實施例中,在計算裝置100為輸出醫療影像的分析結果或用於向使用者提供的裝置的情況下,處理器110可以使得與醫療影像對應的格式資訊結合於醫療影像。在需要向使用者提供對於醫療影像的關注區域的分析結果的情況下,處理器110可結合格式資訊與醫療影像來生成表現對於關注區域的分析結果的影像。例如,在醫療影像為醫學數位影像及通訊影像的情況下,處理器110可以將灰度軟拷貝顯示狀態資訊結合在醫學數位影像及通訊影像來生成顯示與藉由使用深度學習模型的分析檢測的病變有關的資訊的影像。灰度軟拷貝顯示狀態資訊定義在哪種醫學數位影像及通訊影像的哪種區域表現病變,因此,處理器110可參照灰度軟拷貝顯示狀態資訊來從與灰度軟拷貝顯示狀態資訊對應的醫療影像生成視覺表現病變的醫療影像。
處理器110能夠以藉由醫療影像與格式資訊之間的結合生成的影像為基礎來生成使用者介面。處理器110可基於均表現包含在格式資訊的關注區域的檢測資訊及週邊線資訊等的醫療影像來生成使用者介面。例如,處理器110可基於藉由醫學數位影像及通訊影像與灰度軟拷貝顯示狀態資訊的結合生成的在身體一部分表現預期病變的醫學數位影像及通訊影像來生成輔助疾病的診斷的使用者介面。在此情況下,在藉由使用者介面輸出的醫學數位影像及通訊影像可顯示病變的檢測資訊(e.g.存在概率、大小、體積等)及被預測為基於灰度軟拷貝顯示狀態資訊表現的病變區域的週邊線。在此情況下,被預測為病 變區域的週邊線可基於灰度軟拷貝顯示狀態資訊,以考慮病變的種類、數量等來區分顏色、形態等的方式表現在醫學數位影像及通訊影像上。
根據本發明之一實施例,記憶體130可儲存處理器110所生成或確定的任意形態的資訊及網路部150所接收的任意形態的資訊。
根據本發明之一實施例,記憶體130可包括快閃記憶體類型(flash memory type)、硬碟類型(hard disk type)、多媒體卡微型類型(multimedia card micro type)、卡類型記憶體(例如,SD或XD記憶體等)、隨機存取記憶體(Random Access Memory,RAM)、靜態隨機存取記憶體(Static Random Access Memory,SRAM)、唯讀記憶體(Read-Only Memory,ROM)、電可除程式化唯讀記憶體(Electrically Erasable Programmable Read-Only Memory,EEPROM)、可程式唯讀記憶體(Programmable Read-Only Memory,PROM)、磁性記憶體、磁片、光碟中的至少一種類型的儲存介質。計算裝置100可與在互聯網(internet)上執行上述記憶體130的記憶功能的網頁記憶(web storage)關聯來操作。對於前述的記憶體的記載僅為例示,本發明並不局限於此。
本發明一實施例之網路部150可使用任意形態之習知的有線或無線通訊系統。
網路部150可從醫療影像拍攝裝置(或系統)接收表現身體的至少一部分的醫療影像。例如,表現身體的至少一部分的醫療影像可以為以二維特徵或三維特徵學習的深度學習模型的學習用數據或推理用數據。表現身體的至少一部分的醫療影像可以為如三維T1 MR圖像、放射影像圖像、電腦斷層掃描影像、病理學幻燈片圖像等與藉由拍攝獲取的身體器官有關的影像。
在代替性實施例中,網路部150亦可以從用於分析醫療影像的 裝置(或系統)接收醫療影像的分析數據。在此情況下,醫療影像的分析數據可以包含定義用於視覺表現醫療影像的分析結果的多個要素的特定格式的數據。例如,醫療影像的分析數據可以為包含藉由深度學習模型檢測的病變的週邊線資訊的灰度軟拷貝顯示狀態數據。只是,這僅為一個例示,醫療影像的分析數據並不局限於灰度軟拷貝顯示狀態例示,而是可以在本發明所屬技術領域中具有通常知識者可以理解的範圍內以多種方式改變。
另一方面,網路部150可藉由與其他終端的通訊收發藉由處理器110處理的資訊、使用者介面等。例如,網路部150可以向客戶端(e.g.使用者終端)提供藉由處理器110生成的使用者介面。並且,網路部150可以接收向客戶端進行的使用者的外部輸入來向處理器110傳遞。在此情況下,處理器110能夠以從網路部150接收的使用者的外部輸入為基礎來處理藉由使用者介面提供的資訊的輸出、修改、變更、追加等的工作。
雖然並未在圖3中示出,但計算裝置100亦可包括輸入部及輸出部。
本發明之代替性實施例的輸入部可包括用於接收使用者輸入的使用者介面上的鍵及/或多個按鈕或物理鍵及/或多個按鈕。根據藉由輸入部的使用者輸入,可以執行用於控制本發明實施例的顯示器的電腦程式。
輸入部可以檢測使用者的按鈕操作或觸控輸入來接收訊號,或者藉由攝像頭或麥克風來接收使用者等的語音或動作並將其轉換成輸入訊號。為此,可以使用語音識別(Speech Recognition)技術或動作識別(Motion Recognition)技術。
輸入部亦可體現為與計算裝置100連接的外部輸入裝置。例 如,輸入裝置可以為用於接收使用者輸入的觸控面板、觸控筆、鍵盤或滑鼠中的至少一個,但這僅為例示,本發明並不局限於此。
輸入部可以識別使用者觸控輸入。本發明一實施例的輸入部可以為與輸出部相同的結構。輸入部可以由以接收使用者的選擇輸入的方式體現的觸控螢幕。觸控螢幕可以使用接觸式靜電容量方式、紅外線光檢測方式、表面超聲波(SAW)方式、壓電方式、電阻膜方式中的一種方式。對於上述觸控螢幕的詳細記載僅為本發明一實施例的例示,多種觸控面板可採用在計算裝置100。由觸控螢幕構成的輸入部可包括觸控感測器。觸控感測器可以將向輸入部的特定部位施加的壓力或在輸入部的特定部位發生的靜電容量等的變化轉換成電輸入訊號。觸控感測器亦可以檢測觸控位置及面積以及當觸控時的壓力。在具有對於觸控感測器的觸控輸入的情況下,與此對應的訊號將傳輸到觸控控制器。觸控控制器在處理上述訊號之後,向處理器110傳輸對應的數據。由此,處理器110可以識別觸控輸入部的哪個區域等。
本發明之代替性實施例的輸出部可以輸出處理器110生成或確定的任意形態的資訊、使用者介面及網路部150接收的任意形態的資訊。
例如,輸出部可以包括液晶顯示器(liquid crystal display,LCD)、薄膜電晶體液晶顯示器(thin film transistor-liquid crystal display,TFT LCD)、有機發光二極體(organic light-emitting diode,OLED)、柔性顯示器(flexible display)、三維顯示器(3D display)中的至少一個。此等中的一部分顯示器模組以可藉由其來觀看外部的方式可呈透明型或光投射型。這亦可以稱為透明顯示模組,作為上述透明顯示模組的代表例,包括透明有機發光二極體(TOLED,Transparent OLED)。
另一方面,本發明一實施例之計算裝置100作為藉由與客戶端進行通訊來收發資訊的計算系統,可包括伺服器。在此情況下,客戶端可以為能夠訪問(access)伺服器的任意形態的終端。例如,作為伺服器的計算裝置100可從醫療影像拍攝終端接收醫療影像來檢測病變,並可向使用者終端提供包含檢測結果的使用者介面。在此情況下,使用者終端可輸出從作為伺服器的計算裝置100接收的使用者介面,藉由與使用者的相互作用接收或處理資訊。
在追加的實施例中,計算裝置100亦可包括接收在任意伺服器中生成的數據資源來執行追加的資訊處理的任意形態的終端。
圖4為示出本發明一實施例之醫療影像處理方法的流程圖。而且,圖5為示出本發明一實施例之網路函數的簡圖。
參照圖4,在步驟S100中,本發明一實施例之計算裝置100可使用預先學習的深度學習模型來檢測醫療影像的關注區域。在此情況下,參照圖5,本發明一實施例之深度學習模型可包括能夠探測、分割或分類包含在醫療影像的關注區域的神經網。在本發明中,神經網路、網路函數、神經網路(neural network)可互換使用。神經網路通常可由稱為節點的相互連接的計算單位的集合構成。這種節點還可稱為神經元(neuron)。神經網路藉由包括一個以上的節點來構成。構成神經網路的節點(或神經元)可藉由一個以上的鏈接相互連接。
在神經網路中,藉由鏈接連接的一個以上的節點可相對形成輸入節點及輸出節點的關係。輸入節點及輸出節點的概念是相對的,針對一個節點,輸出節點處的任意節點可在與其他節點的關係中處於輸入節點關係,反之亦然。如上所記載之,輸入節點與輸出節點關係能夠以鏈接為中心生成。一個 輸入節點可藉由鏈接與一個以上的輸出節點連接,反之亦然。
在藉由一個鏈接連接的輸入節點與輸出節點關係中,輸出節點的數據可基於向輸入節點輸入的數據來確定其值。其中,使輸入節點與輸出節點相連接的鏈接可具有權重(weight)。權重可改變,為了執行神經網路所要的功能,可由使用者或演算法改變。例如,在一個以上的輸入節點藉由各自的鏈接與一個輸出節點相連接的情況下,輸出節點可基於向與上述輸出節點連接的多個輸入節點輸入的值及在與各個輸入節點相對應的鏈接設置的權重來確定輸出節點值。
如上所記載之,在神經網路中,一個以上的節點可藉由一個以上的鏈接相連接來在神經網路中形成輸入節點與輸出節點關係。在神經網路中,可根據節點及鏈接的數量及多個節點與多個鏈接之間的相關關係、向各個鏈接賦予的權重的值確定神經網路的特性。例如,在存在相同數量的節點及多個鏈接且存在多個鏈接的權重值不同的兩個神經網路的情況下,兩個神經網路可識別為互不相同。
神經網路可由一個以上的節點的集合構成。構成神經網路的多個節點的部分集合可構成層(layer)。構成神經網路的多個節點中的一部分可基於距最初輸入節點的距離來構成一個層。例如,距最初輸入節點的距離為n的節點的集合可構成n層。距最初輸入節點的距離可由為了從最初輸入節點到達至相應節點為止而需要經過的多個鏈接的最少數量而定義。但是,為了說明而任意定義這種層,神經網路中的層的順序可定義為與上述方法不同的方法。例如,多個節點的層還可由距最終輸出節點的距離定義。
最初輸入節點係指如下的節點:在神經網路中的多個節點中, 在與其他節點的關係中不經過鏈接而直接輸入數據的一個以上的節點。或者,最初輸入節點還指如下的節點:在神經網路中的以鏈接為基準的節點之間的關係中,並不具有藉由鏈接連接的其他輸入節點的多個節點。與其相似地,最終輸出節點係指如下的節點:在神經網路中的多個節點中,在與其他節點的關係中並不具有輸出節點的一個以上的節點。並且,隱藏節點係指構成並不是最初輸入節點及最終輸出節點的神經網路的多個節點。
本發明一實施例之神經網路可以為如下形態的神經網路:輸入層的節點的數量可與輸出層的節點的數量相同,隨著從輸入層到隱藏層的進展,節點的數量減少並再次增加。並且,本發明再一實施例的神經網路可以為如下形態的神經網路:輸入層的節點的數量可少於輸出層的節點的數量,隨著從輸入層到隱藏層的進展,節點的數量減少。並且,本發明另一實施例的神經網路可以為如下形態的神經網路:輸入層的節點的數量可大於輸出層的節點的數量,隨著從輸入層到隱藏層的進展,節點的數量增加。本發明還有一實施例的神經網路可以為組合上述的神經網路的形態的神經網路。
深度類神經網路(DNN:deep neural network)係指除輸入層及輸出層之外還包括多個隱藏層的神經網路。若利用深度類神經網路,則可掌握數據的潛在結構(latent structures)。即,可掌握照片、文字、影片、語音、音樂的潛在結構(例如,照片中的物體是什麼、文字的內容及感情是什麼、語音的內容及感情是什麼等)。深度類神經網路可包括卷積神經網路(CNN;convolutional neural network)、遞迴神經網路(RNN:recurrent neural network)、自編碼器(auto encoder)、生成對抗網路(GAN:Generative Adversarial Networks)、受限玻爾茲曼機(RBM:restricted boltzmann machine)、深度信念網路(DBN:deep belief network)、Q網路、U網路、孿生網等。前述之深度神經網路之記載僅為例示,本發明並不局限於此。
在本發明之一實施例中,網路函數還可包括自編碼器。自編碼器可以為用於輸出與輸入數據相似的輸出數據的人工神經網路之一。自編碼器可包括至少一個隱藏層,奇數個的隱藏層可配置於輸入層與輸出層之間。各個層的節點的數量可在輸入層的節點的數量中減少到稱為瓶頸層(編碼)的中間層,之後在瓶頸層與減少對稱來擴張為輸出層(與輸入層對稱)。自編碼器可執行非線性降維。輸入層及輸出層的數量可與輸入數據的預處理之後的維度相對應。在自編碼器結構中,包括在編碼器的隱藏層的節點的數量可具有隨著距輸入層的距離增加而減少的結構。在瓶頸層(位於編碼器與解碼器之間的具有最少節點的層)的節點的數量過於少的情況下,可能無法傳遞足夠量的資訊,因此,還可保持為特定數量以上(例如,輸入層的一半以上等)。
神經網路可藉由監督式學習(supervised learning)、非監督式學習(unsupervised learning)、半監督式學習(semi supervised learning)或強化學習(reinforcement learning)中的至少一種方式學習。神經網路的學習可以為將神經網路用於執行特定操作的知識應用於神經網路的過程。
神經網路能夠以使輸出的錯誤最小化的方向學習。在神經網路的學習過程中,向神經網路重複輸入學習數據,計算對於學習數據的神經網路的輸出及目標誤差,在減少誤差的方向上,從神經網路的輸出層到輸入層方向反向傳播(backpropagation)網路的誤差,從而更新神經網路的各節點的權重。在監督式學習的情況下,使用在各個學習數據中標記正確答案的學習數據(即,標記的學習數據),在非監督式學習的情況下,可能未對各個學習數據標記正確答 案。即,例如,在關於數據分類的監督式學習的情況下,學習數據可以為在各個學習數據標記類別的數據。可向神經網路輸入標記的學習數據,對神經網路的輸出(類別)與學習數據的標籤進行比較,由此可計算誤差(error)。作為另一例,在關於數據分類的非監督式學習的情況下,可對作為輸入的學習數據與神經網路輸出進行比較來計算誤差。計算的誤差在神經網路中朝向反向(即,從輸出層到輸入層的方向)進行反向傳播,可根據反向傳播更新神經網路的各層的各個節點的連接權重。更新的各個節點的連接權重的變化量可根據學習率(learning rate)確定。對於輸入數據的神經網路的計算及誤差的反向傳播可構成學習週期(epoch)。學習率可根據神經網路的學習週期的重複次數應用得不同。例如,在神經網路的學習初期,使用高學習率使神經網路快速地確保規定水準的性能,由此可提高有效性,而在學習後期,可使用低的學習率來提高準確率。
在神經網路的學習過程中,通常,學習數據可以為實際數據(即,所要利用學習的神經網路處理的數據)的子集,因此,可存在如下的學習週期:學習數據的誤差減少,但實際數據的誤差增加。過度擬合(overfitting)為因藉由如上之方式過度學習學習數據而使實際數據的誤差增加的現象。例如,藉由看到黃色貓來學習貓的神經網路無法將黃色之外的貓識別為貓的現象為一種過度擬合。過度擬合可作用為增加機器學習演算法的誤差的原因。為了防止這種過度擬合,可使用多種優化方法。為了防止過度擬合,可應用增加學習數據或者正則化(regularization)、在學習過程中禁用網路的節點的一部分的失落(dropout)、批量歸一化層(batch normalization layer)的利用等方法。
參照圖4,在步驟S200中,本發明一實施例的計算裝置100可 以確定與藉由上述深度學習模型檢測的醫療影像的關注區域有關的週邊線資訊。週邊線資訊為用於視覺表現與關注區域對應的醫療影像的一區域的資訊,可包含與週邊線的顏色及形態有關的資訊。計算裝置100可基於與關注區域有關的檢測資訊及與醫療影像的表現要素有關的資訊來確定與週邊線的顏色及週邊線的形態有關的表現要素來生成週邊線資訊。
具體地,計算裝置100可基於醫療影像的關注區域的顏色分佈來確定顯示關注區域的週邊線的顏色。週邊線的顏色可以為了確定藉由顏色明確區別周邊區域來視覺性地良好表現關注區域而執行。例如,計算裝置100可以識別醫療影像的顏色空間。計算裝置100可以掌握識別顏色空間的醫療影像的關注區域的顏色分佈。而且,計算裝置100可以在顏色分佈內以多個顏色之間的相互關聯性為幾乎來確定顯示關注區域的週邊線的顏色。換句話說,計算裝置100掌握在醫療影像的顏色空間內的顏色分佈之後,可基於與在關注區域中所使用的顏色對比的顏色或補色關係的顏色來確定能夠突出關注區域的週邊線的顏色。在此情況下,計算裝置100可根據醫療影像的顏色空間來區分用於確定顏色的流水線(pipeline)來進行工作,由此可以確定週邊線的顏色。即,在計算裝置100中,可根據醫療影像的顏色空間是否為紅綠藍空間或灰度(grayscale)空間來執行不同運算並確定週邊線的顏色。參照圖7及圖8,對此進行具體說明。
並且,計算裝置100能夠以關注區域的檢測資訊為基礎來確定與關注區域的週邊線的形態有關的表現要素。計算裝置100可將關注區域的檢測資訊的數值變化反映在外圍線的形態變化來確定與週邊線的形態相關的表現要素具有哪個值。即,週邊線的形態確定可以為了藉由與深度學習模型的預測 結果有關的關注區域的視覺表現,使使用者可以直管理解關注區域的分析結果而執行。例如,關注區域的檢測資訊為與藉由深度學習模型預測的關注區域有關的資訊,可包含關注區域的預測概率值、表示關注區域的大小、體積等的數值等。與週邊線的形態有關的表現要素為定義如何表現週邊線的外形的要素,可包含週邊線的形狀、厚度、鮮明度、精度、週邊線影子的鮮明度等。關注區域的預測概率值增加意味著深度學習模型預測的區域與關注區域對應的概率的增加。因此,計算裝置100為了表示深度學習模型如何準確地預測關注區域而可以確定與週邊線的形態有關的表現要素,以便關注區域的預測概率值越大,週邊線的厚度越厚。
在步驟S300中,計算裝置100能夠以關注區域的週邊線資訊為基礎來生成對用於確定醫療影像的表現的多個要素進行定義的的格式資訊。格式資訊可藉由與醫療影像單獨的數據定義包含在醫療影像的關注區域的檢測結果呈現在哪個部分或所呈現的內容為何物。即,格式資訊為與影像獨立地定義多個表現要素的數據,而並非將檢測結果顯示在影像自身來生成。因此,若生成及使用上述格式資訊,則可減少用於視覺化醫療影像的分析結果的數據處理的容量負擔,與影像的拍攝環境或種類等無關,可以保障能夠體現穩定表現的視覺化品質。例如,當醫療影像為醫學數位影像及通訊影像時,計算裝置100可生成定義關注區域的週邊線顏色及形態等的灰度軟拷貝顯示狀態資訊。灰度軟拷貝顯示狀態資訊與醫學數位影像及通訊影像的拍攝裝置的種類無關地生成,能夠藉由及與分析對應的原始醫學數位影像及通訊影像獨立的數據生成。定義與週邊線的顏色及形態有關的表現要素的灰度軟拷貝顯示狀態資訊可適用於醫療影像的顏色空間為灰度空間的情況及如病例影像的紅藍綠空間的情況。 灰度軟拷貝顯示狀態資訊反而可以在關注區域的顏色根據染色的幻燈片顏色而改變的病理影像中更加有效地使用。
圖6為示出本發明一實施例之計算裝置的醫療影像處理過程的圖(diagram)。
參照圖6,本發明一實施例之計算裝置100可使用預先學習的深度學習模型來檢測以醫療影像31為基礎輔助診斷的關注區域(步驟S210)。計算裝置100能夠以關注區域的檢測結果為基礎來生成確定關注區域的視覺表現要素的週邊線資訊35。具體地,計算裝置100可以識別醫療影像31的顏色空間(步驟S220)。其中,顏色空間為表示影像的顏色訊號的特定空間的術語,可根據顏色訊號的種類,可區分為灰度空間、紅綠藍空間、色相飽和度值(hue saturation value)空間等。計算裝置100可掌握識別顏色空間的醫療影像31的顏色分佈來確定週邊線顏色,以便與周邊區域相比突出表現關注區域(步驟S230)。並且,計算裝置100可以將關注區域的檢測結果反映在關注區域的週邊線形態來確定與關注區域的週邊線形態有關的表現要素,以可以使對於檢測結果的使用者直觀判斷。換句話說,計算裝置100可以確定各個要素的數值指標,以根據關注區域的檢測結果表現作為與週邊線形態有關的表現要素的週邊線的厚度、鮮明度、精度等。若藉由上述過程確定週邊線資訊35,計算裝置100可生成包含週邊線資訊35的格式資訊39(步驟S250)。其中,格式資訊39可以被理解成定義在醫療影像中表現的關注區域的位置、週邊線顏色、週邊線形態等的要素。可藉由上述格式資訊39的生成來大幅度減少用於呈現醫療影像31的分析結果的數據的容量。計算裝置100可以向輸出醫療影像31的分析結果的終端傳輸格式資訊39(步驟S260)。由於格式資訊39自身為低容量,因此,與 如以往的傳輸分析影像自身相比,計算裝置100可以有效地處理數據傳輸。
圖7為具體化確定包含在本發明一實施例之計算裝置的醫療影像的關注區域的週邊線顏色的過程的框圖。
在圖7所示的步驟S310與圖6的步驟S210對應,因此,下述省略具體說明。
參照圖7,本發明一實施例之計算裝置100可以識別包含藉由深度學習模型檢測的關注區域的醫療影像41的顏色空間(步驟S320)。計算裝置100可根據藉由步驟S320識別的醫療影像41的顏色空間執行不同的運算工作來確定週邊線顏色(步驟S380)。例如,計算裝置100可以識別醫療影像41的顏色空間是否為紅綠藍空間或灰度空間。當醫療影像41的顏色空間為紅綠藍空間時,計算裝置100可藉由基於紅綠藍空間的顏色分佈來確定候補顏色值的過程確定關注區域的週邊線顏色。當醫療影像41的顏色空間為灰度空間時,計算裝置100可基於灰度空間的顏色分佈,藉由與作為紅綠藍空間的情況區分的單獨的運算過程來確定關注區域的週邊線顏色。
具體地,當醫療影像41的顏色空間為紅綠藍空間時,計算裝置100可以為了確定週邊線的顏色而從醫療影像41導出表示像素單位的顏色分佈的統計資訊。例如,計算裝置100以醫療影像41的所有區域為基準,可在紅綠藍空間內生成表示像素單位的顏色分佈的直方圖(histogram)。計算裝置100可藉由表示像素單位的顏色分佈的直方圖來確認構成用於包含在醫療影像41的關注區域的像素的顏色。並且,計算裝置100可藉由表示像素單位的顏色分佈的直方圖來確認明確區分關注區域與周邊區域的顏色。
計算裝置100能夠以存在於直方圖的多個顏色的出現頻率為基 礎來確定第一候補顏色值(步驟S330)。計算裝置100能夠以在存在於直方圖的多個顏色中出現頻率最低的至少一個顏色為基礎來將突出表現規定顏色的至少一個顏色值確定為第一候補顏色值。在此情況下,規定顏色可以為與醫療影像的背景相比,對人眼的視覺衝擊最大的顏色或不用於關注區域而與用於關注區域的顏色具有補色關係的顏色。例如,計算裝置100可以掌握存在於直方圖的多個顏色的出現頻率。計算裝置100可以按最低順序掌握多個顏色的出現頻率來確定突出表現黃色(yellow)、紅色(red)或綠色(green)的至少一個顏色值。換句話說,計算裝置100能夠以直方圖的出現頻率為基準來將突出顯示黃色、紅色或綠色中的至少一個的顏色值確定為第一候補顏色值。計算裝置100亦能夠以直方圖的出現頻率為基準來按順序檢查黃色較強的顏色、紅色較強的顏色、綠色較強的顏色來確定第一候補顏色值。即,計算裝置100判斷在直方圖的出現頻率最低的顏色中是否存在黃色較強的顏色,當不存在黃色較強的顏色時,可依次判斷紅色較強的顏色、綠色較強的顏色來確定第一候補顏色值。因此,第一候補顏色值可以被理解成確定能夠最良好地視覺表現關注區域的週邊線的紅綠藍顏色值。與規定顏色相關地,上述黃色、紅色、綠色僅為一個例示,規定顏色能夠以多種方式考慮在醫療影像中表現的顏色及視覺強調效果等來在本發明所屬技術領域中具有通常知識者可以理解的範疇內改變。
計算裝置100可以將醫療影像41的顏色空間轉換成色相飽和度值空間,以在色相飽和度值空間中的直方圖為基礎來確定第二候補顏色值(步驟S340)。計算裝置100可以在色相飽和度值空間中的直方圖中選擇空色調(hue)。計算裝置100能夠以包含在包含關注區域的候補區域的多個像素的亮度為基礎來選擇與視覺相比突出呈現的飽和度(saturation)及亮度值(value of brightness)。 計算裝置100能夠以在色相飽和度值空間中選擇的色調、飽和度及亮度值為基礎來確定第二候補顏色值。例如,計算裝置100可以將紅綠藍空間內表示像素單位顏色分佈的直方圖轉換成色相飽和度值空間。計算裝置100可以選擇在色相飽和度值空間內呈現出顏色分佈的直方圖上不存在的色調。並且,計算裝置100可掌握包含在包含關注區域的候補區域的多個像素的亮度來選擇與視覺相比效果最大的飽和度及亮度值。在此情況下,候補區域包括關注區域及包圍關注區域的周邊區域,可以為與關注區域的2倍對應的大小。只是,2倍數值僅為一個例示,並不局限於此。換句話說,計算裝置100可以比較在包含在關注區域及其周邊區域的多個像素的色相飽和度值空間中的亮度來分別確定關注區域與周邊區域之間效果更好的飽和度及亮度值。計算裝置100可確定包含藉由上述選擇過程導出的色調、飽和度及亮度值的第二候補顏色值。因此,第二候補顏色值可以被理解成確定週邊線能夠最良好地視覺表現的色相飽和度值顏色值。
計算裝置100能夠以包含在醫療影像41的多個像素的亮度為基礎來確定灰度的第三候補顏色值(步驟S350)。計算裝置100能夠以包含在包含關注區域的候補區域的多個像素的亮度為基礎來選擇與視覺相比突出呈現的灰度的顏色值。計算裝置100可以將所選擇的灰度的顏色值確定為第三候補顏色值。例如,計算裝置100可以在紅綠藍空間中以包含在包含關注區域的候補區域的多個像素的亮度為基礎來選擇與視覺相比效果最大的灰度的顏色值。計算裝置100可以將紅綠藍空間轉換成灰度空間來選擇與視覺相比效果最大的灰度的顏色值。在此情況下,候補區域可包括關注區域及包圍關注區域的周邊區域,可以為與關注區域的2倍對應的大小。只是,2倍數值僅為一個例示,並 不局限於此。換句話說,計算裝置100可以比較在關注區域及其周邊區域的多個像素的紅綠藍或灰度空間中的亮度來確定與關注區域與周邊區域之間效果更好的灰度的顏色值。計算裝置100可以確定包含藉由上述運算過程選擇的灰度的顏色值的第三候補顏色值。因此,第三候補顏色值可以被理解成確定週邊線能夠最良好地表現的灰度顏色值。
如圖7所示,藉由上述說明的步驟S330、步驟S340及步驟S350表示的基於計算裝置100的工作可以依次執行,亦可以相互獨立(並列)執行。
計算裝置100能夠以第一候補顏色值、第二候補顏色值及第三候補顏色值為基礎來確定顯示關注區域的週邊線的顏色(步驟S380)。各個候補顏色值表示在不同顏色空間中最良好地表示關注區域與周邊區域之間的效果的顏色值。因此,基於第一候補顏色值、第二候補顏色值及第三候補顏色值的週邊線的顏色可以由在所有顏色空間中良好地呈現更好效果的顏色構成。即,計算裝置100可藉由以上述步驟S330、步驟S340及步驟S350表現的運算工作來構成週邊線的顏色,以在任何顏色空間中良好地區分關注區域與周邊。
另一方面,當醫療影像41的顏色空間為灰度空間時,計算裝置100為了確定週邊線的顏色而可以從醫療影像41導出表示像素單位的顏色分佈的統計資訊。例如,計算裝置100能夠以醫療影像41的所有區域為基準來生成在灰度空間內表示像素單位的顏色分佈的直方圖。計算裝置100可藉由表示像素單位的顏色分佈的直方圖來確認用於構成包含在醫療影像41的關注區域的像素的顏色。並且,計算裝置100可藉由表示像素單位的顏色分佈的直方圖來確認能夠明確區分關注區域與周邊區域的顏色。
計算裝置100能夠以直方圖為基礎來掌握並未呈現在關注區域 的至少一個顏色(步驟S370)。計算裝置100可以在構成關注區域的多個像素中掌握並未呈現在直方圖上的灰度的顏色。即,計算裝置100可以掌握並未在關注區域中使用的灰度的顏色來用於確定視覺區分關注區域與周邊區域的週邊線顏色。
計算裝置100能夠以並未呈現在關注區域的至少一個顏色為基礎來確定顯示關注區域的週邊線的顏色(步驟S380)。計算裝置100能夠以未呈現在關注區域的至少一個顏色為基礎,來確定根據顯示關注區域的週邊線的種類及數量來可藉由不同顏色區分的顏色。例如,當關注區域按各個種類存在多個時,為了進行準確地判別而需要根據種類及數量來藉由不同的顏色區分關注區域的週邊線顏色。因此,計算裝置100能夠以並未按各個關注區域呈現的至少一個顏色為基礎來選擇與關注區域的週邊線的種類及數量相對應的能夠藉由人眼區分的顏色來確定週邊線的顏色。能否藉由人眼區分能夠以表示藉由人眼區分的顏色變化的顏色表等的基準數據來判斷。藉由上述過程,與紅綠藍空間相比,在顏色間的表現艱難的灰度空間,計算裝置100亦可以確定與能夠藉由人眼明確區分的顏色有關的週邊線資訊45。
圖8為具體化確定與包含在本發明一實施例之計算裝置的醫療影像的關注區域的週邊線形態有關的多個要素的過程的框圖。若圖7的週邊線顏色確定為用於準確地視覺化藉由深度學習模型檢測的關注區域的過程,則圖8的週邊線形態確定可以為使關注區域的檢測值與關注區域的視覺化表現關聯來向使用者傳遞直觀資訊的過程。
在圖8所示的步驟S410與圖6的步驟S210對應,因此,下述將省略具體說明。
參照圖8,本發明一實施例之計算裝置100能夠以關注區域的檢測資訊53為基礎來確定與關注區域的週邊線的形態有關的表現要素(步驟S450)。計算裝置100可根據關注區域的檢測資訊53來確定與週邊線的形態有關的表現要素,以可將關注區域的檢測資訊53反映在與關注區域的週邊線形態有關的表現要素來進行直觀解釋。在此情況下,關注區域的檢測資訊53可以包含與關注區域的存在有關的概率值55或關注區域的大小、體積等的數值57中的至少一個。並且,與關注區域的週邊線的形態有關的表現要素可以包含週邊線的厚度、週邊線的鮮明度、週邊線的精度或週邊線的影子的鮮明度中的至少一個。
具體地,計算裝置100可根據關注區域的檢測資訊53的定量大小(或程度)來確定與週邊線的形態有關的表現要素的定量大小(或程度)。換句話說,計算裝置100能夠以在與關注區域的存在有關的概率值55或上述關注區域的數值57中的至少一個的大小來確定在外圍線的厚度、上述週邊線的鮮明度、週邊線的精度或週邊線的影子的鮮明度中的至少一個(步驟S420、步驟S430、步驟S440)。在此情況下,與關注區域的存在有關的概率值55或關注區域的數值57中的至少一個越大,週邊線的厚度、週邊線的鮮明度、週邊線的精度或週邊線的影子的鮮明度中的至少一個的大小亦越大。
例如,能夠以與計算裝置100的存在有關的概率值越大,使週邊線的厚度越粗的方式確定表現要素。當醫療影像為如CT影像或MRI影像的三維影像時,計算裝置100能夠以關注區域的體積越大,使週邊線的厚度越粗的方式確定表現要素。當在外圍線顯示影子時,計算裝置100能夠以與關注區域的存在有關的概率值越大,使影子越鮮明的方式確定表現要素。相反,若與 關注區域的存在有關的概率值變小,則計算裝置100能夠以使影子模糊顯示的方式確定表現要素。與關注區域的存在有關的概率值越大,計算裝置100能夠以使週邊線自身鮮明顯示的方式確定表現要素。相反,若與關注區域的存在有關的概率值變小,則計算裝置100能夠以使週邊線自身模糊顯示的方式確定表現要素。計算裝置100能夠以與專注區域的存在有關的概率值越大,使週邊線自身越精密顯示的方式確定表現要素。週邊線自身精密顯示意味著大量構成包含在外圍線的多個點來使週邊線如曲線平滑。相反,計算裝置100能夠以使與關注區域的存在有關的週邊線自身粗糙(rough)顯示的方式確定表現要素。週邊線自身粗糙顯示意味著少量構成包含在外圍線的多個點來使週邊線呈現出多邊形。藉由上述處理構成,使用者可以觀察與週邊線的形態有關的表現要素的定量大小(或程度)來直觀解釋對於關注區域的檢測結果。
另一方面,參照圖8,當一同顯示概率值55及週邊線資訊59時,計算裝置100能夠以概率值55的定量數值為基礎來確定與表示概率值55的字有關的表現要素。例如,計算裝置100能夠以與關注區域的存在有關的概率值越大,使表示概率值的字的大小越大的方式確定表現要素。相反,若與關注區域的存在有關的概率值變小,則計算裝置100能夠以使表示概率值的字的大小變小的方式確定表現要素。
圖9為示出本發明追加一實施例之醫療影像處理方法的流程圖。藉由圖4至圖8說明的執行運算過程的計算裝置與圖9所示的執行運算過程的計算裝置被區分。參照圖2,圖4至圖8的執行運算的裝置可以被理解為第一計算裝置310,執行圖9的運算的裝置可分別與第二計算裝置350對應。因此,下述,以圖2為基礎區分說明計算裝置。
參照圖9,在步驟S510中,本發明追加一實施例之第二計算裝置350可以接收對用於確定醫療影像的表現的多個要素進行定義的格式資訊。在此情況下,格式資訊可藉由第一計算裝置310的工作生成。具體地,格式資訊以與使用預先學習的深度學習模型來檢測的醫療影像的關注區域有關的週邊線資訊為基礎來生成。第二計算裝置350可藉由與第一計算裝置310的有線無線通訊來接收定義與關注區域的週邊線顏色及形態有關的多個表現要素的格式資訊。
在步驟S520中,第二計算裝置350為了視覺化對於關注區域的分析結果而可以使與醫療影像對應的格式資訊結合於醫療影像。格式資訊可以定義將與關注區域有關的多個視覺要素表現在哪個影像的哪個位置,因此,第二計算裝置350可確定與在步驟S510中接收的格式資訊對應的醫療影像,可藉由結合醫療影像與格式資訊來生成表現關注區域的影像。在此情況下,與格式資訊結合的醫療影像亦可以為藉由第一計算裝置310分析的原始影像,亦可以為第二計算裝置350預先確保來儲存的醫療影像。
在步驟S530中,第二計算裝置350可以生成反映格式資訊與醫療影像的結合結果的使用者介面。使用者介面可以包含用於輸出表現關注區域的週邊線的顏色及形態的影像,此外,可包括用於使用者的輸入的層、用於輸出與關注區域有關的樹脂資訊的層等。另一方面,第二計算裝置350可以將作為格式資訊與醫療影像的結合結果生成的影像直接藉由輸出部輸出來向使用者提供。並且,第二計算裝置350可以將作為格式資訊與醫療影像的結合結果生成的影像提供到單獨的輸出終端。
圖10為對於能夠實現本發明之實施例之例示性計算環境的簡要 且一般的簡圖。
以本發明通常由計算裝置實現的情況為例進行說明,但只要是所屬技術領域中具有通常知識者就可知道,本發明與可在一個以上的電腦上執行的電腦可執行指令及/或其他程式模組結合及/或由硬體及軟體的組合實現。
通常,程式模組包括執行特定任務或體現特定抽象數據類型的里程、程式、組件、數據結構、其他等等。並且,只要是所屬技術領域中具有通常知識者就可知,本發明之方法可由包括單一處理器或多處理器電腦系統、小型電腦、大型電腦、個人電腦、手持(handheld)計算裝置、基於微處理器或可編程電子產品、其他等等(此等分別與一個以上的相關裝置連接來操作)的其他電腦系統構成實施。
本發明說明之實施例還可在一些任務被藉由通訊網絡連接的遠程處理裝置執行的分散計算環境中實施。在分散計算環境中,程式模組可位於本地及遠程記憶體儲存裝置兩者。
電腦通常包括多種電腦可讀介質。可藉由電腦訪問的介質均可以為電腦可讀介質,這種電腦可讀介質包括易失性及非易失性介質、暫時性(transitory)及非暫時性(non-transitory)介質、可移動及不可移動介質。作為非限制性例,電腦可讀介質可包括電腦可讀記憶介質及電腦可讀傳輸介質。電腦可讀記憶介質包括用於記憶如電腦可讀指令、數據結構、程式模組或其他數據的資訊的以任意方法或技術體現的易失性及非易失性介質、暫時性及非暫時性介質、可移動及不可移動介質。電腦可讀記憶介質可包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、電可除程式化唯讀記憶體(EEPROM)、快閃記憶體或其他記憶體技術、CD-ROM、數位光碟(DVD,digital video disk)或其他光 碟儲存裝置、磁帶盒、磁帶、磁片儲存裝置或其他磁性儲存裝置、或者可由電腦訪問並記憶所要的資訊的任意其他介質,但並不限定於此。
電腦可讀傳輸介質通常包括在如載波(carrier wave)或其他傳輸機制(transport mechanism)的調製數據訊號(modulated data signal)實現電腦可讀指令、數據結構、程式模組或其他數據等的所有資訊傳遞介質。術語「調製數據訊號」係指以編碼訊號中的資訊的方式設置或變更其訊號的特性中的一種以上的訊號。作為非限制性例,電腦可讀傳輸介質包括如有線網路或直接有線連接(direct-wired connection)的有線介質以及如聲音、射頻(RE)、紅外線、其他無線介質的無線介質。上述的介質中的任意組合亦包括在電腦可讀傳輸介質的範圍內。
本發明示出了用於實現包括電腦1102的本發明之多個方面的例示性環境1100,電腦1102包括處理裝置1104、系統記憶體1106以及系統匯流排1108。系統匯流排1108可將包括系統記憶體1106(並不限定於此)在內的系統組件與處理裝置1104相連接。處理裝置1104可以為多種商用處理器中的任意處理器。雙處理器及其他多處理器架構亦可用作處理裝置1104。
系統匯流排1108可以為在使用記憶體匯流排、周圍裝置匯流排及多種商用匯流排架構中的任意一種的本地匯流排追加相互連接的幾種類型的匯流排結構中的任意匯流排。系統記憶體1106包括唯讀記憶體1110以及隨機存取記憶體1112。基本輸入/輸出系統(BIOS)記憶在唯讀記憶體、可除程式化唯讀記憶體(EPROM)、電可除程式化唯讀記憶體等的非易失性記憶體1110,該基本輸入/輸出系統包括如啟動時幫助電腦1102中的多個組件之間傳輸資訊的基本例程。隨機存取記憶體1112還可包括用於緩存數據的靜態隨機存取記憶體等 的高速隨機存取記憶體。
電腦1102還包括內置型硬碟驅動器(HDD)1114(例如,EIDE、SATA)(該內置型硬碟驅動器1114還可在適當的底盤(未圖示)中以外置型用途構成)、磁片驅動器(FDD)1116(例如,用於從可移動軟碟1118讀取或向其記錄)及光碟驅動器1120(例如,讀取CD-ROM盤1122或從數位通用光碟等的其他高容量光介質讀取或向其記錄)。硬碟驅動器1114、磁片驅動器1116及光碟驅動器1120可分別藉由硬碟驅動器介面1124、磁片驅動器介面1126及光驅動器介面1128與系統匯流排1108連接。用於體現外置型驅動器的介面1124包括通用串行匯流排(USB:Universal Serial Bus)及IEEE 1394介面技術中的至少一個或兩者。
此等驅動器及與其相關的電腦可讀介質提供數據、數據結構、電腦可執行指令、其他等等的非易失性儲存。在電腦1102的情況下,驅動器及介質與以數字形式記憶任意數據相對應。上述中的與電腦可讀介質有關的說明提及了硬碟驅動器、可移動磁片及光碟(CD)或數位光碟等的可移動光介質,只要是所屬技術領域中具有通常知識者可知,zip驅動器(zip drive)、磁帶盒、記憶卡、盒式磁帶、其他等等的電腦可讀的其他類型的介質亦可在例示性操作環境中使用,並且,任意的這種介質可包括用於執行本發明的方法的電腦可執行指令。
包括操作系統1130、一個以上的應用程式1132、其他程式模組1134及程式數據1136在內的多個程式模組可記憶在驅動器及隨機存取記憶體1112。操作系統、應用程式、模組及/或數據的全部或其一部分亦可緩存在隨機存取記憶體1112中。本發明可由多種商業上可利用的操作系統或多個操作系統 的組合實現。
使用者可藉由一個以上的有線/無線輸入裝置,例如鍵盤1138及滑鼠1140等定點裝置向電腦1102輸入指令及資訊。其他輸入裝置(未圖示)可例舉麥克風、紅外線(IR)遙控器、操縱杆、遊戲板、觸控筆、觸控屏、其他等等。此等輸入裝置及其他輸入裝置通常藉由連接在系統匯流排1108的輸入裝置介面1142與處理裝置1104連接,還可藉由並行端口、IEEE 1394串行端口、遊戲端口、通用串行匯流排端口、紅外線介面、其他等等的其他介面連接。
顯示器1144或其他類型的顯示裝置亦可藉由視訊適配器1146等介面連接到系統匯流排1108。除顯示器1144之外,電腦通常包括揚聲器、印表機、其他等周圍輸出裝置(未圖示)。
電腦1102可在藉由使用借助有線及/或無線通訊的(多個)遠程電腦1148等的一個以上的遠程電腦的理論連接來網路化的環境匯總操作。(多個)遠程電腦1148可以為工作站、計算裝置電腦、路由器、個人電腦、可攜式電腦、基於微處理器的娛樂裝置、對等裝置或其他通常的網路節點,通常包括對於電腦1102記述的組件中的大部分或全部,為了簡略,僅示出記憶體儲存裝置1150。圖示的理論連接包括區域網路(LAN)1152及/或更大的網路,例如,廣域網路(WAN)1154中的有線/無線連接。這種區域網路及廣域網網路環境在辦公室及公司常見,促進了內部網等的企業級電腦網(enterprise-wide computer network),此等均可連接到全球電腦網絡,例如,互聯網。
當在區域網路環境中使用時,電腦1102藉由有線及/或無線通訊網絡介面或適配器1156連接到區域網路1152。適配器1156可使區域網路1152中的有線或無線通訊變得容易,並且,為了與無線適配器1156進行通訊,該區 域網路1152包括設置於其的無線訪問接入點。當在廣域網路網路環境中使用時,電腦1102可包括數據機1158,或者與廣域網路1154上的通訊計算裝置連接或藉由借助互聯網進行通訊等廣域網路1154設置通訊的其他單元。可以為內置型或外置型及有線或無線裝置的數據機1158藉由串行端口介面1142與系統匯流排1108連接。在網路化的環境中,對於電腦1102說明的多個程式模組或其一部分可記憶在遠程記憶體/儲存裝置1150。圖示的網路連接僅為例示,可使用在多個電腦之間設置通訊鏈接的其他單元。
電腦1102進行與藉由無線通訊配置並操作的任意無線裝置或對象,例如印表機、掃描器、臺式電腦及/或可攜式電腦、可攜式數據助理(PDA,portable data assistant)、通訊衛星、與可無線檢測的標籤相關的按任意裝置或場所及電話通訊的操作。其至少包括無線保真(Wi-Fi)及藍牙無線技術。因此,通訊可以為如以往的網路預先定義的結構或簡單地至少兩個裝置之間的自組織通訊(ad hoc communication)。
無線保真(Wi-Fi,Wireless Fidelity)可在沒有有線的情況下連接到互聯網等。無線保真為這種裝置,例如電腦在室內及室外,即基站的範圍內的任何位置傳輸及接收數據的如手機的無線技術。無線保真網路安全可靠,為了提供告訴的無線連接,使用稱為IEEE 802.11(a、b、g、其他)的無線技術。為了使電腦相互連接或使電腦與互聯網及有線網路(使用IEEE 802.3或以太網),可使用無線保真。無線保真網路可在未經許可的2.4Hz及5GHz無線頻段中,例如,以11Mbps(802.11a)或54Mbps(802.11b)數據速率運行,或可在包括兩個頻段(雙頻段)的產品中運行。
本發明所屬技術領域中具有通常知識者可理解的是,資訊及訊 號可利用任意多種不同的技術及方法表現。例如,可在上述的說明中參照的數據、指示、指令、資訊、訊號、位、符號及晶片可藉由電壓、電流、電磁波、磁場或粒子、光場或粒子、或者它們的任意結合表現。
本發明所屬技術領域中具有通常知識者可理解的是,與在此提出的實施例關聯來說明的多種例示性理論塊、模組、處理器、單元、電路及演算法步驟可由電子硬體、(為了便利,在此稱為軟體的)多種形態的程式或設計代碼、或者它們的組合體現。為了明確說明硬體及軟體的這種互換性,與多種例示性組件、塊、模組、電路及步驟與它們的功能關聯來進行說明。這種功能是否利用硬體或軟體體現取決於對特定應用程式及整個系統賦予的設計制約。本發明所屬技術領域中具有通常知識者可理解的是,可實現以對各個特定應用程式以多種方式說明的功能,但此等實現確定不應解釋為超出本發明的範圍。
在此提出的多種實施例可由使用方法、裝置或標準編程及/或工程技術的製品(article)體現。術語「製品」包括可藉由任意電腦可讀記憶裝置訪問的電腦程式、載體或介質(media)。例如,電腦可讀記憶介質包括磁記憶裝置(例如,硬碟、軟碟、磁條等)、光碟(例如,小型鐳射盤、數位通用光碟等)、智能卡及閃存裝置(例如,電可除程式化唯讀記憶體、卡、條、鍵驅動等),但並不局限於此。並且,在此提出的多種記憶介質包括用於記憶資訊的一個以上的裝置及/或其他機械可讀介質。
需理解的是,提出的流程中的步驟的特定順序或層次結構為例示性訪問的一例。基於設計優先順序,本發明範圍內的流程中的步驟的特定順序或層次結構可重新排列。申請專利範圍作為樣品順序提供多種步驟的要素,但並不意味著限定於所提出的特定順序或層次結構。
對於提出的實施例的說明以可使任意的本發明所屬技術領域中具有通常知識者利用或實施本發明的方式提供。對於這種實施例的多種變形對於本發明所屬技術領域中具有通常知識者而言是顯而易見的,在此定義的通常的原理可在不超出本發明的範圍內應用於其他實施例。因此,本發明並不限定於在此提出的實施例,需在與在此提出的原理新的多個特徵一致的最寬範圍內解釋。
21:醫療影像
23:格式資訊
25:醫療影像
27:輸出影像
310:第一計算裝置
350:第二計算裝置

Claims (16)

  1. 一種醫療影像處理方法,其特徵係藉由包括至少一個處理器的計算裝置執行,其中,包括如下步驟:使用預先學習的深度學習模型來檢測醫療影像的關注區域;確定與該關注區域有關的週邊線資訊,其藉由基於該關注區域的檢測資訊及關於該醫療影像中的表現要素的資訊,來確定與標記該關注區域的週邊線的顏色及該週邊線的形態有關的表現要素;以及以該週邊線資訊為基礎,生成對用於確定該醫療影像的表現的多個要素進行定義的格式資訊。
  2. 如請求項1所述之方法,其中,確定與該關注區域有關的週邊線資訊的步驟包括如下步驟:識別該醫療影像的顏色空間;以及基於識別到該顏色空間的醫療影像的關注區域的顏色分佈,確定顯示該關注區域的週邊線的顏色。
  3. 如請求項2所述之方法,其中,確定顯示該關注區域的週邊線的顏色的步驟包括如下步驟,即,在該顏色分佈內,以多個顏色之間的相互關聯性為基礎來確定顯示該關注區域的週邊線的顏色。
  4. 如請求項2所述之方法,其中,當所識別的該顏色空間為紅綠藍空間時,確定顯示該關注區域的週邊線的顏色的步驟包括如下步驟:從該醫療影像導出表示像素單位的顏色分佈的直方圖;以存在於該直方圖的多個顏色的出現頻率為基礎來確定第一候補顏色值;將該醫療影像的顏色空間變換成色相飽和度值空間,以在該色相飽和度值空間 中的直方圖為基礎來確定第二候補顏色值;以包含在該醫療影像的多個像素的亮度為基礎來確定灰度的第三候補顏色值;以及以該第一候補顏色值、該第二候補顏色值及該第三候補顏色值為基礎來確定顯示該關注區域的週邊線的顏色。
  5. 如請求項4所述之方法,其中,以存在於該直方圖的多個顏色的出現頻率為基礎來確定第一候補顏色值的步驟包括如下步驟,即,在存在於該直方圖的多個顏色中,以出現頻率最低的至少一個顏色為基礎,將突出表現規定顏色的至少一個顏色值確定為第一候補顏色值。
  6. 如請求項4所述之方法,其中,以在該色相飽和度值空間中的直方圖為基礎來確定第二候補顏色值的步驟包括如下步驟:從該色相飽和度值空間中的直方圖中選擇空色調;以包含該關注區域的候補區域所包含的多個像素的亮度為基礎,選擇突出呈現視覺對比的飽和度及亮度值;以及以所選擇的該色調、飽和度及亮度值為基礎來確定該第二候補顏色值。
  7. 如請求項4所述之方法,其中,以包含在該醫療影像的多個像素的亮度為基礎來確定第三候補顏色值的步驟包括如下步驟:以包含該關注區域的候補區域所包含的多個像素的亮度為基礎,選擇突出呈現視覺對比的灰度的顏色值;以及將所選擇的該灰度的顏色值確定為該第三候補顏色值。
  8. 如請求項2所述之方法,其中,當所識別的該顏色空間為灰度空間時,確定表示該關注區域的週邊線的顏色的步驟包括如下步驟: 從該醫療影像導出表示像素單位的顏色分佈的直方圖;以該直方圖為基礎來掌握並未呈現在關注區域的至少一個顏色;以及以並未呈現在該關注區域的至少一個顏色為基礎來確定顯示該關注區域的週邊線的顏色。
  9. 如請求項8所述之方法,其中,以並未呈現在該關注區域的至少一個顏色為基礎來確定顯示該關注區域的週邊線的顏色的步驟包括如下步驟,即,以並未呈現在該關注區域的至少一個顏色為基礎,按照顯示該關注區域的週邊線的種類及數量來確定能夠與不同顏色區別的顏色。
  10. 如請求項1所述之方法,其中,確定與該關注區域有關的週邊線資訊的步驟包括如下步驟,即,以該關注區域的檢測資訊為基礎來確定與該關注區域的週邊線的形態有關的表現要素。
  11. 如請求項10所述之方法,其中,該檢測資訊包含與該關注區域的存在有關的概率值或該關注區域的數值中的至少一個,與該關注區域的週邊線的形態有關的表現要素包含該週邊線的厚度、該週邊線的鮮明度、該週邊線的精度或該週邊線的影子的鮮明度中的至少一個。
  12. 如請求項10所述之方法,其中,以該關注區域的檢測資訊為基礎來確定與該關注區域的週邊線的形態有關的表現要素的步驟包括如下步驟,即,以與該關注區域的存在有關的概率值或該關注區域的數值中的至少一個的大小為基礎,確定該週邊線的厚度、該週邊線的鮮明度、該週邊線的精度或該週邊線的影子的鮮明度中的至少一個。
  13. 如請求項12所述之方法,其中,與該關注區域的存在有關的概率 值或該關注區域的數值中的至少一個的大小越大,該週邊線的厚度、該週邊線的鮮明度、該週邊線的精度或該週邊線的影子的鮮明度中的至少一個的大小亦越大。
  14. 一種醫療影像處理方法,其特徵係藉由包括至少一個處理器的計算裝置執行,其中,包括如下步驟:接收對用於確定醫療影像的表現的多個要素進行定義的格式資訊;使得與該醫療影像對應的格式資訊結合於醫療影像;以及生成反映該結合的結果的使用者介面,該格式資訊以與使用預先學習的深度學習模型來檢測的醫療影像的關注區域有關的週邊線資訊為基礎來生成,以及其中確定與該關注區域有關的該週邊線資訊,其藉由基於該關注區域的檢測資訊及關於該醫療影像中的表現要素的資訊,來確定與標記該關注區域的週邊線的顏色及該週邊線的形態有關的表現要素。
  15. 一種記憶在電腦可讀記憶介質的電腦程式,其特徵係,當在一個以上的處理器中執行該電腦程式時,執行處理醫療影像的下述的工作:使用預先學習的深度學習模型來檢測醫療影像的關注區域;確定與該關注區域有關的週邊線資訊,其藉由基於該關注區域的檢測資訊及關於該醫療影像中的表現要素的資訊,來確定與標記該關注區域的週邊線的顏色及該週邊線的形態有關的表現要素;以及以該週邊線資訊為基礎,生成對用於確定該醫療影像的表現階層的多個要素進 行定義的格式資訊。
  16. 一種醫療影像處理裝置,其特徵係,包括:處理器,包括至少一個核;記憶體,包含能夠在該處理器中執行的程式代碼;以及網路部,用於接收醫療影像,該處理器使用預先學習的深度學習模型來檢測醫療影像的關注區域,確定與該關注區域有關的週邊線資訊,其藉由基於該關注區域的檢測資訊及關於該醫療影像中的表現要素的資訊,來確定與標記該關注區域的週邊線的顏色及該週邊線的形態有關的表現要素;以及以該週邊線資訊為基礎,生成對用於確定該醫療影像的表現的多個要素進行定義的格式資訊。
TW111112655A 2021-04-01 2022-03-31 醫療影像處理之方法、裝置及電腦程式 TWI836394B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210042510A KR102569976B1 (ko) 2021-04-01 2021-04-01 의료 영상 처리 방법
KR10-2021-0042510 2021-04-01

Publications (2)

Publication Number Publication Date
TW202243651A TW202243651A (zh) 2022-11-16
TWI836394B true TWI836394B (zh) 2024-03-21

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200193236A1 (en) 2017-09-15 2020-06-18 Fujifilm Corporation Medical image processing device, medical image processing method, and medical image processing program

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200193236A1 (en) 2017-09-15 2020-06-18 Fujifilm Corporation Medical image processing device, medical image processing method, and medical image processing program

Similar Documents

Publication Publication Date Title
Rajpurkar et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists
US10853449B1 (en) Report formatting for automated or assisted analysis of medical imaging data and medical diagnosis
US10692602B1 (en) Structuring free text medical reports with forced taxonomies
Shaukat et al. Computer-aided detection of lung nodules: a review
KR102460257B1 (ko) 진단 결과를 제공하기 위한 방법 및 장치
JP2022553906A (ja) 疾患検出モデルを開発するためのシステム、方法、プログラム
US20210407637A1 (en) Method to display lesion readings result
TW202223917A (zh) 基於醫學影像的疾病預測方法
CN115170464A (zh) 肺图像的处理方法、装置、电子设备和存储介质
Shamrat et al. Analysing most efficient deep learning model to detect COVID-19 from computer tomography images
Tian et al. Radiomics and Its Clinical Application: Artificial Intelligence and Medical Big Data
TWI836394B (zh) 醫療影像處理之方法、裝置及電腦程式
US20220198668A1 (en) Method for analyzing lesion based on medical image
KR102507451B1 (ko) 흉부 이미지 판독 방법
KR20220050014A (ko) 영상 분석을 위한 사용자 인터페이스
KR102569976B1 (ko) 의료 영상 처리 방법
JP2024508852A (ja) 医療画像における病変分析方法
KR20220075119A (ko) 의료 영상 기반의 뇌백질 병변 탐지 방법
KR102375786B1 (ko) 의료 영상에서 이상 소견 탐지 및 판독문 생성 방법
KR102534088B1 (ko) 의료 데이터 검색 방법
KR102317857B1 (ko) 병변 판독 방법
US20220237777A1 (en) Method for measuring lesion of medical image
US20220122249A1 (en) User interface for video analysis
US20220237780A1 (en) Method for detecting serial section of medical image
Singh et al. Overview of image processing technology in healthcare systems