TWI836267B - Actuator, cooling system, and method of cooling a heat-generating structure - Google Patents

Actuator, cooling system, and method of cooling a heat-generating structure Download PDF

Info

Publication number
TWI836267B
TWI836267B TW110134201A TW110134201A TWI836267B TW I836267 B TWI836267 B TW I836267B TW 110134201 A TW110134201 A TW 110134201A TW 110134201 A TW110134201 A TW 110134201A TW I836267 B TWI836267 B TW I836267B
Authority
TW
Taiwan
Prior art keywords
region
additional
cooling element
cooling
thickness
Prior art date
Application number
TW110134201A
Other languages
Chinese (zh)
Other versions
TW202218530A (en
Inventor
維克藍 慕昆丹
瑟亞普瑞卡許 甘堤
阿南斯 薩朗 雅拉瑪西
賽夏吉里 若伊 梅德哈維佩迪
普拉伯胡 莎斯亞摩西
Original Assignee
美商弗瑞歐系統有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/023,215 external-priority patent/US11510341B2/en
Application filed by 美商弗瑞歐系統有限公司 filed Critical 美商弗瑞歐系統有限公司
Publication of TW202218530A publication Critical patent/TW202218530A/en
Application granted granted Critical
Publication of TWI836267B publication Critical patent/TWI836267B/en

Links

Abstract

An actuator usable in a cooling system is described. The actuator includes an anchored region and a cantilevered arm. The cantilevered arm extends outward from the anchored region. The cantilevered arm includes a step region, an extension region and an outer region. The step region extends outward from the anchored region and has a step thickness. The extension region extends outward from the step region and has an extension thickness less than the step thickness. The outer region extends outward from the extension region and has an outer thickness greater than the extension thickness.

Description

致動器、冷卻系統及冷卻發熱結構之方法 Actuator, cooling system and method of cooling heat-generating structure

隨著計算裝置的速度及計算能力之增長,由計算裝置產生之熱亦增加。已提出各種機構來解決熱之產生。主動式裝置(諸如風扇)可用於驅動空氣通過大型計算裝置(諸如膝上型電腦或桌上型電腦)。被動式冷卻裝置(諸如散熱器)可用於較小、行動計算裝置,諸如智慧型電話、虛擬現實裝置及平板電腦。然而,此等主動式及被動式裝置可能無法充分冷卻行動裝置(諸如智慧型電話)及較大裝置(諸如膝上型電腦及桌上型電腦)。因此,需要用於計算裝置之額外冷卻解決方案。 As the speed and computing power of computing devices increases, the heat generated by the computing devices also increases. Various mechanisms have been proposed to address the generation of heat. Active devices (such as fans) may be used to drive air through large computing devices (such as laptops or desktop computers). Passive cooling devices (such as heat sinks) may be used for smaller, mobile computing devices such as smartphones, virtual reality devices, and tablet computers. However, these active and passive devices may not be able to adequately cool mobile devices (such as smartphones) and larger devices (such as laptops and desktop computers). Therefore, additional cooling solutions for computing devices are needed.

本發明描述一種可用於一冷卻系統之致動器。該致動器包含一錨定區域及一懸臂。該懸臂自該錨定區域向外延伸。該懸臂包含一台階區域、一延伸區域及一外部區域。該台階區域自該錨定區域向外延伸且具有一台階厚度。該延伸區域自該台階區域向外延伸且具有小於該台階厚度之一延伸厚度。該外部區域自該延伸區域向外延伸且具有大於該延伸厚度之一外部厚度。在一些實施例中,該外部厚度比該延伸厚度至少厚50微米但不超過200微米。該外部區域可具有至少100微米但不超過300微米之 一寬度。在一些實施例中,該延伸區域具有自該台階區域向外延伸之至少0.5毫米但不超過1.5毫米之一長度。 The present invention describes an actuator that can be used in a cooling system. The actuator includes an anchoring region and a cantilever. The cantilever extends outward from the anchoring region. The cantilever includes a step region, an extension region, and an outer region. The step region extends outward from the anchoring region and has a step thickness. The extension region extends outward from the step region and has an extension thickness less than the step thickness. The outer region extends outward from the extension region and has an outer thickness greater than the extension thickness. In some embodiments, the outer thickness is at least 50 microns thicker than the extension thickness but not more than 200 microns. The outer region may have a width of at least 100 microns but not more than 300 microns. In some embodiments, the extension region has a length extending outward from the step region of at least 0.5 mm but not more than 1.5 mm.

在一些實施例中,該懸臂進一步包含位於該台階區域與該延伸區域之間的一額外台階區域。該額外台階區域具有小於該台階厚度但大於該延伸厚度之一額外台階厚度。 In some embodiments, the cantilever further includes an additional step region between the step region and the extension region. The additional step area has an additional step thickness less than the step thickness but greater than the extended thickness.

在一些實施例中,該致動器之該台階區域、該延伸區域及該外部區域之至少一者在其中包含(若干)凹部。該(等)凹部包含一錐度,使得該凹部之一寬度隨距該錨定區域之距離而增加。例如,該錐度可選自一線性錐度、一二次錐度及一立方錐度。其他錐度係可行的。在一些實施例中,該致動器包含一蓋,其經構造使得該(等)凹部處在該致動器內部。 In some embodiments, at least one of the step region, the extension region, and the outer region of the actuator includes a recess (several) therein. The recess (s) includes a taper such that a width of the recess increases with distance from the anchor region. For example, the taper may be selected from a linear taper, a quadratic taper, and a cubic taper. Other tapers are possible. In some embodiments, the actuator includes a cover that is constructed such that the recess (s) are inside the actuator.

在一些實施例中,該致動器包含一額外懸臂。該額外懸臂自與該懸臂相對之該錨定區域向外延伸。該額外懸臂包含額外台階、延伸區域及外部區域。該額外台階區域具有一額外台階厚度。該額外延伸區域自該額外台階區域向外延伸且具有小於該額外台階厚度之一額外延伸厚度。該額外外部區域自該額外延伸區域向外延伸且具有大於該額外延伸厚度之一額外外部厚度。 In some embodiments, the actuator includes an additional cantilever. The additional cantilever extends outward from the anchoring region opposite the cantilever. The additional cantilever includes an additional step, an extension region, and an external region. The additional step region has an additional step thickness. The additional extension region extends outward from the additional step region and has an additional extension thickness less than the additional step thickness. The additional external region extends outward from the additional extension region and has an additional external thickness greater than the additional extension thickness.

該致動器可用作一冷卻系統中之一冷卻元件。該冷卻系統包含一錨及該致動器。該冷卻元件(即該致動器)在該錨定區域處固定至該錨。該冷卻元件經構形以在經致動以朝向一發熱結構驅動一流體時經歷振動運動。在一些實施例中,該冷卻系統包含其中具有孔口之一孔口板。該孔口板安置於該冷卻元件與該發熱結構之間。在一些實施例中,該冷卻系統包含單元壁,該等單元壁經構形使得在該複數個單元壁之一部分與該冷卻元件之間形成一頂部腔室且在該複數個單元壁、該孔口板及該冷卻元件 之間形成一底部腔室。該頂部腔室與該底部腔室流體連通。在一些實施例中,描述一種用於冷卻一發熱結構之方法。該方法包含驅動一冷卻元件以引起以一頻率之一振動運動。在一些實施例中,該冷卻元件係本文中所描述之該致動器。在一些實施例中,該冷卻元件實質上以該懸臂之一結構諧振頻率驅動。在一些實施例中,以或接近一流體諧振頻率驅動該冷卻元件。 The actuator can be used as a cooling element in a cooling system. The cooling system includes an anchor and the actuator. The cooling element (ie the actuator) is fixed to the anchor at the anchoring area. The cooling element is configured to undergo oscillatory motion when actuated to drive a fluid toward a heat-generating structure. In some embodiments, the cooling system includes an orifice plate having orifices therein. The orifice plate is disposed between the cooling element and the heating structure. In some embodiments, the cooling system includes cell walls configured such that a top chamber is formed between a portion of the cell walls and the cooling element and between the cell walls, the aperture Mouth plate and the cooling element A bottom chamber is formed between them. The top chamber is in fluid communication with the bottom chamber. In some embodiments, a method for cooling a heat-generating structure is described. The method includes driving a cooling element to induce oscillating motion at a frequency. In some embodiments, the cooling element is the actuator described herein. In some embodiments, the cooling element is driven substantially at a structural resonance frequency of the cantilever. In some embodiments, the cooling element is driven at or near a fluid resonant frequency.

100:冷卻系統 100: Cooling system

102:發熱結構 102: Heat generating structure

110:頂板 110: Top plate

112:通風口 112:Vent

120:冷卻元件 120: Cooling element

121:懸臂 121: hanging arms

122:錨定區域 122: Anchoring area

123:尖端 123: Cutting edge

124:台階區域 124:Stair area

126:延伸區域 126:Extended area

128:外部區域 128:External area

130:孔口板 130: Orifice plate

132:孔口 132: Orifice

140:頂部腔室 140: Top chamber

142:間隙 142: Gap

142B:間隙 142B: Gap

142C:間隙 142C: Gap

150:底部腔室 150: Bottom chamber

152:間隙 152: Gap

152B:間隙 152B: Gap

152C:間隙 152C: Gap

160:錨 160:Anchor

200A:曲線圖 200A: Curve Graph

200B:曲線圖 200B: Curve graph

200C:曲線圖 200C: Curve graph

200D:曲線圖 200D: Curve graph

200E:曲線圖 200E: Curve graph

202A:曲線 202A:Curve

202B:曲線 202B:Curve

204A:曲線 204A:Curve

204B:曲線 204B:Curve

223:壓電 223: Piezoelectric

300A:冷卻系統 300A: Cooling system

300B:冷卻系統 300B: Cooling system

300C:冷卻系統 300C: Cooling system

300D:冷卻系統 300D: Cooling system

320A:冷卻元件 320A: Cooling element

320B:冷卻元件 320B: Cooling element

320C:冷卻元件 320C: Cooling element

320D:冷卻元件 320D: Cooling element

323:壓電 323: Piezoelectric

360A:錨 360A:Anchor

360B:錨 360B:Anchor

360C:錨 360C: Anchor

360D:錨 360D: Anchor

363:孔 363:hole

400:冷卻系統 400: Cooling system

402:發熱結構 402: Heating structure

410:頂板 410: Top plate

412:通風口 412:Vent

413:通風口 413:Vent

420:冷卻元件 420: Cooling element

430:孔口板 430: Orifice plate

432:孔口 432:orifice

440:頂部腔室 440: Top chamber

450:底部腔室 450: Bottom chamber

460:錨 460: Anchor

500:冷卻元件 500: Cooling element

520:冷卻元件 520: Cooling element

521:懸臂 521: hanging arms

522:錨定區域 522: Anchor area

524:台階區域 524:Stair area

526:延伸區域 526:Extended area

528:外部區域 528: External area

529:額外台階區域 529: Additional step area

600:冷卻元件 600: Cooling element

601:懸臂 601: hanging arm

602:錨定區域 602: Anchor area

604:台階區域 604: Step area

606:凹陷區域 606:Recessed area

607:錐度 607: Taper

608:頂部邊緣(或蓋) 608: Top edge (or cover)

609:凹部 609: concave part

701:懸臂 701: Overhanging Arms

704:台階區域 704: Step area

706:凹陷區域 706: Depression area

707:錐度 707: Taper

708:底部邊緣(或蓋) 708: Bottom edge (or cover)

709:凹部 709: concave part

801:懸臂 801: hanging arm

804:台階區域 804: Stair area

806:凹陷區域 806:Recessed area

807:錐度 807:Taper

808:頂部邊緣 808:Top edge

809:凹部 809: concave part

816:額外凹陷區域 816: Additional recessed area

817:錐度 817:Taper

818:底部邊緣(或蓋) 818: Bottom edge (or cover)

900:冷卻元件 900: Cooling element

901:懸臂 901: hanging arm

902:錨定區域 902: Anchoring area

904:台階區域 904: Step area

906:凹陷區域 906:Recessed area

916:額外凹陷區域 916: Additional recessed area

1000:冷卻元件 1000: Cooling element

1001:懸臂 1001: hanging arm

1002:錨定區域 1002: Anchor area

1004:台階區域 1004: Step area

1006:凹陷區域 1006: Depression area

1101:懸臂 1101: hanging arm

1102:錨定區域 1102: Anchor area

1104:台階區域 1104: Step area

1106:凹陷區域 1106: Depression area

1107:錐度 1107: Taper

1108:虛線 1108: Dashed line

1109:凹部 1109: concave part

1201:懸臂 1201: hanging arm

1202:錨定區域 1202: Anchor area

1204:台階區域 1204: Step area

1206:凹陷區域 1206:Recessed area

1207:錐度 1207: Taper

1208:虛線 1208: dashed line

1209:凹部 1209: Concave part

1301:懸臂 1301:Cantilever

1302:錨定區域 1302: Anchor area

1304:台階區域 1304:Stair area

1306:凹陷區域 1306:Recessed area

1307:錐度 1307:Taper

1308:虛線 1308: Dashed line

1309:凹部 1309: concave part

1400:冷卻元件 1400: Cooling element

1421:懸臂 1421:Cantilever

1422:錨定區域 1422: Anchor area

1424:台階區域 1424:Stair area

1426:延伸區域 1426:Extended area

1427:錐度 1427: Taper

1428:外部區域 1428: External area

1429:凹部 1429: concave part

1500:冷卻系統 1500: Cooling system

1501:冷卻單元 1501: Cooling unit

1510:頂板 1510:top plate

1512:孔 1512: Kong

1520:冷卻元件 1520: Cooling element

1530:孔口板 1530: Orifice plate

1532:孔口 1532: Orifice

1540:頂部腔室 1540:Top chamber

1550:底部腔室 1550: Bottom chamber

1560:錨(支撐結構) 1560: Anchor (support structure)

1600:冷卻系統 1600: Cooling system

1601:冷卻單元 1601: Cooling unit

1700:方法 1700:Method

1702:致動一冷卻系統中之冷卻元件之一或多者以振動 1702: Actuating one or more cooling elements in a cooling system to vibrate

1704:來自壓電冷卻元件之反饋用於調整驅動電流 1704: Feedback from the piezoelectric cooling element is used to adjust the drive current

a:寬度 a:Width

C:長度 C: Length

d:距離 d: distance

e:長度 e: length

h:高度 h: height

h1:高度 h1: height

h2:高度 h2: height

L:長度 L: Length

o:寬度 o:Width

P:壓力 P: pressure

r1:距離 r1: distance

r2:距離 r2: distance

s:孔口間距 s: hole spacing

t:厚度 t: thickness

w:寬度 w:width

y:偏轉 y: deflection

z:偏轉 z: deflection

在以下詳細描述及附圖中揭示本發明之各種實施例。 Various embodiments of the present invention are disclosed in the following detailed description and accompanying drawings.

圖1A至圖1F描繪包含工程化致動器之一主動式冷卻系統之一實施例。 Figures 1A-1F depict one embodiment of an active cooling system including engineered actuators.

圖2A至圖2E描繪可用於包含中心錨定之冷卻元件之主動式冷卻系統中之致動器之實施例之效能度量。 2A-2E depict performance metrics for embodiments of actuators that may be used in active cooling systems that include centrally anchored cooling elements.

圖3A至圖3D描繪可用於包含中心錨定之冷卻元件之主動式冷卻系統中之致動器之實施例。 3A-3D depict embodiments of actuators that may be used in active cooling systems that include centrally anchored cooling elements.

圖4A至圖4B描繪包含一工程化致動器之一主動式冷卻系統之一實施例。 Figures 4A-4B depict one embodiment of an active cooling system including an engineered actuator.

圖5描繪一工程化致動器之一實施例。 Figure 5 depicts one embodiment of an engineered actuator.

圖6A至圖6B描繪一工程化致動器之一實施例。 Figures 6A-6B illustrate an embodiment of an engineered actuator.

圖7至圖13描繪一工程化致動器之實施例。 Figures 7 to 13 illustrate an embodiment of an engineered actuator.

圖14A至圖14B描繪一工程化致動器之實施例。 Figures 14A-14B illustrate an embodiment of an engineered actuator.

圖15A至圖15B描繪包含經構形為一微磚且使用工程化致動器之多個冷卻單元之一主動式冷卻系統之一實施例。 Figures 15A-15B depict an embodiment of an active cooling system including multiple cooling units configured as a microbrick and using engineered actuators.

圖16描繪包含多個冷卻單元之一主動式冷卻系統之一實施 例。 FIG. 16 depicts an embodiment of an active cooling system comprising a plurality of cooling units.

圖17係描繪用於驅動一致動器之一技術之一實施例之一流程圖。 FIG. 17 is a flow chart depicting an embodiment of a technique for driving an actuator.

本發明可以多種方式實施,包含作為一程序;一器件;一系統;物質之一組成;體現於一電腦可讀儲存媒體上之一電腦程式產品;及/或一處理器,諸如經組態以執行耦合至處理器之一記憶體上儲存及/或由其提供之指令之一處理器。在本說明書中,此等實施方案或本發明可採用之任何其他形式可稱作技術。一般而言,在本發明之範疇內可改變所揭示程序之步驟之順序。除非另有說明,否則經描述為經組態以執行一任務之一組件(諸如一處理器或一記憶體)可經實施為經暫時組態以在一給定時間執行任務之一通用組件或經製造為執行任務之一特定組件。如本文中所使用,術語「處理器」係指經組態以處理資料(諸如電腦程式指令)之一或多個裝置、電路及/或處理核心。 The invention may be implemented in a variety of ways, including as a program; a device; a system; a composition of matter; a computer program product embodied on a computer-readable storage medium; and/or a processor, such as a processor configured to execute instructions stored on and/or provided by a memory coupled to the processor. In this specification, these implementations or any other form in which the invention may be employed may be referred to as techniques. In general, the order of the steps of the disclosed procedures may be varied within the scope of the invention. Unless otherwise stated, a component (such as a processor or a memory) described as being configured to perform a task may be implemented as a general component that is temporarily configured to perform a task at a given time or as a specific component that is manufactured to perform a task. As used herein, the term "processor" refers to one or more devices, circuits, and/or processing cores configured to process data (such as computer program instructions).

下文提供本發明之一或多個實施例之一詳細描述以及繪示本發明之原理之附圖。結合此等實施例描述本發明,但本發明不限於任何實施例。本發明之範疇僅由申請專利範圍限定,且本發明涵蓋許多替代、修改及等效物。在以下描述中闡述許多具體細節以提供對本發明之一透徹理解。此等細節係為實例之目的而提供且本發明可根據申請專利範圍實踐,而無需此等特定細節之部分或全部。為清楚起見,並未詳細描述與本發明相關之技術領域中已知之技術材料,以免不必要地混淆本發明。 The following provides a detailed description of one or more embodiments of the present invention and drawings illustrating the principles of the present invention. The present invention is described in conjunction with these embodiments, but the present invention is not limited to any embodiment. The scope of the present invention is limited only by the scope of the patent application, and the present invention covers many alternatives, modifications and equivalents. Many specific details are set forth in the following description to provide a thorough understanding of the present invention. These details are provided for the purpose of example and the present invention can be practiced according to the scope of the patent application without some or all of these specific details. For the sake of clarity, technical materials known in the technical field related to the present invention are not described in detail to avoid unnecessary confusion of the present invention.

隨著半導體裝置變得越來越強大,在操作期間產生之熱亦增加。例如,行動裝置(諸如智慧型電話、平板電腦、筆記型電腦及虛擬 現實裝置)之處理器可以高時脈速度操作,但產生大量熱。由於產生之熱量,處理器可僅在一相對較短時間內全速運行。在此時間之後,發生節速(例如,降低處理器之時脈速度)。雖然節速可減少熱產生,但其亦不利地影響處理器速度,且因此影響使用處理器之裝置之效能。隨著技術向5G以後發展,預計此問題將加劇。 As semiconductor devices become more powerful, the heat generated during operation also increases. For example, mobile devices (such as smartphones, tablets, laptops and virtual Processors in real-world devices can operate at high clock speeds but generate large amounts of heat. Due to the heat generated, the processor can run at full speed for only a relatively short period of time. After this time, throttling occurs (eg, reducing the processor's clock speed). While throttling can reduce heat generation, it also adversely affects processor speed and, therefore, the performance of devices using the processor. As technology develops beyond 5G, this problem is expected to intensify.

較大裝置(諸如膝上型或桌上型電腦)包含具有旋轉葉片之電風扇。可回應於內部組件之一溫度升高使風扇通電。風扇驅動空氣通過較大裝置來冷卻內部組件。然而,此等風扇對於行動裝置(諸如智慧型電話)或較薄裝置(平板電腦)而言通常太大。由於存在於組件之表面之空氣之邊界層,風扇亦可能功效有限,為穿過需要冷卻之熱表面之氣流提供一有限空氣速度且可產生過量雜訊。被動式冷卻解決方案可包含組件(諸如一散熱器及一熱管或蒸汽室)以將熱傳遞至一熱交換器。儘管一散熱器在一定程度上減輕熱點處之溫度升高,但可能無法充分解決當前及未來裝置中產生之熱量。類似地,一熱管或蒸汽腔室可提供不充分熱傳遞量以去除所產生之過多熱。因此,需要能夠與較小行動裝置以及較大裝置一起使用之額外冷卻解決方案。 Larger devices, such as laptops or desktop computers, include electric fans with rotating blades. The fan may be energized in response to an increase in temperature of one of the internal components. The fan drives air through the larger unit to cool the internal components. However, these fans are often too large for mobile devices (such as smartphones) or thin devices (tablets). Fans may also have limited effectiveness due to the boundary layer of air that exists on the surface of the component, providing a limited air velocity for the airflow across the hot surface that needs to be cooled and may generate excessive noise. Passive cooling solutions may include components such as a radiator and a heat pipe or vapor chamber to transfer heat to a heat exchanger. Although a heat sink can mitigate temperature increases at hot spots to some extent, it may not adequately address the heat generated in current and future devices. Similarly, a heat pipe or steam chamber may provide insufficient heat transfer to remove excess heat generated. Therefore, there is a need for additional cooling solutions that can be used with smaller mobile devices as well as larger devices.

儘管在一冷卻系統之背景中描述,但本文中所描述之技術及/或裝置可用於其他應用中。例如,此等致動器可用於其他應用。另外,在中心錨定之致動器(即冷卻元件)之背景中描述該等裝置。然而,在一些實施例中,致動器可沿一邊緣錨定。在一些此等實施例中,可僅利用致動器之一部分(例如一半)。 Although described in the context of a cooling system, the techniques and/or devices described herein may be used in other applications. For example, these actuators can be used in other applications. Additionally, these devices are described in the context of centrally anchored actuators (ie, cooling elements). However, in some embodiments, the actuator may be anchored along an edge. In some such embodiments, only a portion (eg, half) of the actuator may be utilized.

圖1A至圖1F係描繪可與發熱結構102一起使用且包含一中心錨定之冷卻元件120之冷卻系統100之一例示性實施例之圖。在一些實 施例中,冷卻系統100包含一主動式冷卻系統。為清楚起見,僅展示特定組件。圖1A至圖1F未按比例繪製。儘管展示為對稱,但冷卻系統100無需對稱。圖1A及圖1C至圖1F描繪使用一致動器或冷卻元件120之冷卻系統。圖1B係冷卻元件120之一側視圖。 1A-IF are diagrams depicting an exemplary embodiment of a cooling system 100 that may be used with a heat-generating structure 102 and includes a centrally anchored cooling element 120. In some practical In one embodiment, cooling system 100 includes an active cooling system. For clarity, only specific components are shown. Figures 1A-1F are not drawn to scale. Although shown to be symmetrical, cooling system 100 need not be symmetrical. 1A and 1C-IF depict a cooling system using an actuator or cooling element 120. Figure 1B is a side view of the cooling element 120.

冷卻系統100包含其中具有通風口112之頂板110、冷卻元件120、其中具有孔口132之孔口板130、支撐結構(或「錨」)160及形成於其中之腔室140及150(統稱為腔室140/150)。冷卻元件120在其中心區域處由錨160支撐。冷卻元件120之靠近且包含冷卻元件之周邊之部分(例如尖端123)之區域在經致動時振動。在一些實施例中,冷卻元件120之尖端123包含離錨160最遠之周邊之一部分且在冷卻元件120之致動期間經歷最大偏轉。為清楚起見,圖1A中僅標記冷卻元件120之一個尖端123。 Cooling system 100 includes a top plate 110 having vents 112 therein, a cooling element 120 , an orifice plate 130 having apertures 132 therein, a support structure (or "anchor") 160 and cavities 140 and 150 (collectively, Chamber 140/150). The cooling element 120 is supported at its central area by an anchor 160 . A region of the cooling element 120 proximate to and including portions of the cooling element's perimeter, such as the tip 123, vibrates when actuated. In some embodiments, the tip 123 of the cooling element 120 includes a portion of the perimeter furthest from the anchor 160 and experiences the greatest deflection during actuation of the cooling element 120 . For the sake of clarity, only one tip 123 of the cooling element 120 is labeled in FIG. 1A .

圖1A描繪處於一中間位置之冷卻系統100。因此,冷卻元件120經展示為實質上平坦。對於同相操作,冷卻元件120經驅動以在圖1C及圖1D中所展示之位置之間振動。此振動運動以高速及/或高流速將流體(例如空氣)吸入通風口112,通過腔室140及150然後自孔口132排出。例如,流體撞擊發熱結構102之速度可為至少每秒三十米。在一些實施例中,流體由冷卻元件120以每秒至少四十五米之一速度朝向發熱結構102驅動。在一些實施例中,流體由冷卻元件120以至少每秒六十米之速度驅動朝向發熱結構102。在一些實施例中,其他速度亦係可行的。冷卻系統100亦經構形使得很少或沒有流體藉由冷卻元件120之振動運動通過孔口132抽回至腔室140/150中。 Figure 1A depicts cooling system 100 in an intermediate position. Therefore, cooling element 120 is shown to be substantially flat. For in-phase operation, the cooling element 120 is driven to vibrate between the positions shown in Figures 1C and 1D. This vibrating motion draws fluid (eg, air) into vent 112 at high speed and/or flow rate, through chambers 140 and 150 and out of orifice 132 . For example, the speed at which the fluid impacts the heating structure 102 may be at least thirty meters per second. In some embodiments, fluid is driven by cooling element 120 toward heat-generating structure 102 at a speed of at least forty-five meters per second. In some embodiments, fluid is driven by cooling element 120 toward heat-generating structure 102 at a speed of at least sixty meters per second. In some embodiments, other speeds are possible. The cooling system 100 is also configured so that little or no fluid is drawn back into the chamber 140/150 through the orifice 132 by the vibrating motion of the cooling element 120.

發熱結構102需要由冷卻系統100冷卻。在一些實施例中,發熱結構102產生熱。例如,發熱結構可為一積體電路。在一些實施例 中,發熱結構102需要經冷卻但本身不產生熱。發熱結構102可傳導熱(例如來自產生熱之一附近物體)。例如,發熱結構102可為一散熱器或一蒸汽室。因此,發熱結構102可包含(若干)半導體組件,包含個別積體電路組件,諸如處理器、(若干)其他積體電路及/或(若干)晶片封裝;(若干)感測器;(若干)光學裝置;一或多個電池;一電子裝置之(若干)其他組件,諸如一計算裝置;散熱器;熱管;需要冷卻之(若干)其他電子元件及/或(若干)其他裝置。 The heat generating structure 102 needs to be cooled by the cooling system 100. In some embodiments, the heat generating structure 102 generates heat. For example, the heat generating structure can be an integrated circuit. In some embodiments, the heat generating structure 102 needs to be cooled but does not generate heat itself. The heat generating structure 102 can conduct heat (e.g., from a nearby object that generates heat). For example, the heat generating structure 102 can be a heat sink or a steam chamber. Thus, the heat dissipation structure 102 may include semiconductor component(s), including individual integrated circuit components, such as processors, other integrated circuit(s) and/or chip packages; sensor(s); optical devices; one or more batteries; other components of an electronic device, such as a computing device; heat sink; heat pipe; other electronic components and/or other devices that require cooling.

期望其中使用冷卻系統100之裝置亦可具有用以放置一冷卻系統之有限空間。例如,冷卻系統100可用於計算裝置中。此等計算裝置可包含(但不限於)智慧型電話、平板電腦、膝上型電腦、平板、二合一膝上型電腦、手持遊戲系統、數位相機、虛擬現實頭戴式組件、增強現實頭戴式組件、混合現實頭戴式組件及其他薄的裝置。冷卻系統100可為能夠設置於行動計算裝置及/或具有至少一維之有限空間之其他裝置內之一微機電系統(MEMS)冷卻系統。例如,冷卻系統100之總高度(自發熱結構102之頂部至頂板110之頂部)可小於2毫米。在一些實施例中,冷卻系統100之總高度不超過1.5毫米。在一些實施例中,總高度不超過250微米。在一些實施例中,此總高度不超過1.1毫米。在一些實施例中,總高度不超過1毫米。類似地,孔口板130之底部與發熱結構102之頂部之間的距離y可很小。在一些實施例中,y為至少200微米但不超過1毫米。在一些實施例中,y為至少200微米但不超過300微米。因此,冷卻系統100可用於計算裝置及/或具有至少一維之有限空間之其他裝置。然而,沒有什麼阻止將冷卻系統100用於對空間及/或除冷卻之外之目的具有較少限制之裝置中。儘管展示一個冷卻系統100(例如一個冷卻單元),但可使用多個冷卻 系統100以結合發熱結構102。例如,可利用一一維或二維陣列之冷卻單元。 It is contemplated that devices in which cooling system 100 is used may also have limited space for placement of a cooling system. For example, cooling system 100 may be used in computing devices. Such computing devices may include, but are not limited to, smartphones, tablets, laptops, slates, 2-in-1 laptops, handheld gaming systems, digital cameras, virtual reality headsets, augmented reality headsets wearables, mixed reality headsets, and other thin devices. Cooling system 100 may be a microelectromechanical system (MEMS) cooling system that can be disposed within a mobile computing device and/or other device having a limited space of at least one dimension. For example, the total height of the cooling system 100 (from the top of the heating structure 102 to the top of the top plate 110) may be less than 2 millimeters. In some embodiments, the total height of cooling system 100 does not exceed 1.5 mm. In some embodiments, the total height does not exceed 250 microns. In some embodiments, this total height does not exceed 1.1 mm. In some embodiments, the overall height does not exceed 1 mm. Similarly, the distance y between the bottom of the orifice plate 130 and the top of the heating structure 102 may be small. In some embodiments, y is at least 200 microns but no more than 1 millimeter. In some embodiments, y is at least 200 microns but no more than 300 microns. Accordingly, cooling system 100 may be used in computing devices and/or other devices with at least one dimension of limited space. However, there is nothing to prevent the cooling system 100 from being used in installations that have less constraints on space and/or purposes other than cooling. Although one cooling system 100 (eg, one cooling unit) is shown, multiple cooling systems may be used. System 100 incorporates a heating structure 102 . For example, a one-dimensional or two-dimensional array of cooling units may be utilized.

冷卻系統100與用於冷卻發熱結構102之一流體連通。流體可為一氣體或一液體。例如,流體可為空氣。在一些實施例中,流體包含來自冷卻系統100所在之裝置外部之流體(例如,通過裝置中之外部通風口提供)。在一些實施例中,流體在冷卻系統所在之裝置(例如在一封閉裝置中)內循環。 The cooling system 100 is in fluid communication with one for cooling the heat generating structure 102 . The fluid can be a gas or a liquid. For example, the fluid can be air. In some embodiments, the fluid includes fluid from outside the device in which the cooling system 100 is located (eg, provided through an external vent in the device). In some embodiments, fluid is circulated within the device in which the cooling system is located (eg, in an enclosed device).

冷卻元件120可被認為將冷卻系統100之內部切分成頂部腔室140及底部腔室150。頂部腔室140由冷卻元件120、側面及頂板110形成。底部腔室150由孔口板130、側面、冷卻元件120及錨160形成。頂部腔室140及底部腔室150在冷卻元件120之周邊處連接且一起形成腔室140/150(例如冷卻系統100之一內部腔室)。 The cooling element 120 can be thought of as dividing the interior of the cooling system 100 into a top chamber 140 and a bottom chamber 150 . The top chamber 140 is formed by the cooling element 120 , the sides and the top plate 110 . The bottom chamber 150 is formed by the aperture plate 130 , the sides, the cooling element 120 and the anchor 160 . Top chamber 140 and bottom chamber 150 are connected at the perimeter of cooling element 120 and together form chamber 140/150 (eg, an interior chamber of cooling system 100).

頂部腔室140之大小及構造可為單元(冷卻系統100)尺寸、冷卻元件120運動及操作頻率之一函數。頂部腔室140具有一高度h1。可選擇頂部腔室140之高度以提供充分壓力以將流體驅動至底部腔室150且以期望流速及/或速度通過孔口132。頂部腔室140亦足夠高使得冷卻元件120在致動時不接觸頂板110。在一些實施例中,頂部腔室140之高度為至少50微米但不超過500微米。在一些實施例中,頂部腔室140具有至少200但不超過300微米之一高度。 The size and configuration of the top chamber 140 can be a function of the size of the unit (cooling system 100), the motion of the cooling element 120, and the frequency of operation. The top chamber 140 has a height h1. The height of the top chamber 140 can be selected to provide sufficient pressure to drive the fluid to the bottom chamber 150 and through the orifice 132 at a desired flow rate and/or velocity. The top chamber 140 is also high enough so that the cooling element 120 does not contact the top plate 110 when actuated. In some embodiments, the height of the top chamber 140 is at least 50 microns but not more than 500 microns. In some embodiments, the top chamber 140 has a height of at least 200 but not more than 300 microns.

底部腔室150具有一高度h2。在一些實施例中,底部腔室150之高度足以容納冷卻元件120之運動。因此,在正常操作期間,冷卻元件120之任何部分均不接觸孔口板130。底部腔室150通常小於頂部腔室140且可幫助減少流體回流至孔口132中。在一些實施例中,底部腔室150 之高度係冷卻元件120之最大偏轉加上至少5微米但不超過10微米。在一些實施例中,冷卻元件120之偏轉(例如尖端123之偏轉)z具有至少10微米但不超過100微米之一幅度。在一些此等實施例中,冷卻元件120之偏轉幅度為至少10微米但不超過60微米。然而,冷卻元件120之偏轉之幅度取決於諸如通過冷卻系統100之期望流速及冷卻系統100之構形之因數。因此,底部腔室150之高度通常取決於通過冷卻系統100之流速及其他組件之流速。 The bottom chamber 150 has a height h2. In some embodiments, the height of the bottom chamber 150 is sufficient to accommodate the movement of the cooling element 120. Therefore, during normal operation, no part of the cooling element 120 contacts the orifice plate 130. The bottom chamber 150 is typically smaller than the top chamber 140 and can help reduce fluid backflow into the orifice 132. In some embodiments, the height of the bottom chamber 150 is the maximum deflection of the cooling element 120 plus at least 5 microns but not more than 10 microns. In some embodiments, the deflection z of the cooling element 120 (e.g., the deflection of the tip 123) has an amplitude of at least 10 microns but not more than 100 microns. In some of these embodiments, the amplitude of the deflection of the cooling element 120 is at least 10 microns but not more than 60 microns. However, the magnitude of the deflection of the cooling element 120 depends on factors such as the desired flow rate through the cooling system 100 and the configuration of the cooling system 100. Thus, the height of the bottom chamber 150 is generally dependent on the flow rate through the cooling system 100 and the flow rates of other components.

頂板110包含流體可通過其吸入至冷卻系統100中之通風口112。頂部通風口112可具有基於腔室140中所需聲壓選擇之一大小。例如,在一些實施例中,通氣孔112之寬度w至少為500微米但不超過1000微米。在一些實施例中,通風口112之寬度為至少250微米但不超過2000微米。在所展示之實施例中,通風口112係頂板110中之一位於中心孔口。在其他實施例中,通風口112可位於別處。例如,通風口112可更靠近頂板110之邊緣中之一者。通風口112可具有一圓形、矩形或其他形狀之覆蓋區。儘管展示一單一通風口112,但可使用多個通風口。例如,通風口可朝向頂部腔室140之邊緣偏移或位於頂部腔室140之(若干)側面上。儘管頂板110經展示為實質上平坦,但在一些實施例中可提供溝槽及/或其他結構於頂板110中以修改頂部腔室140及/或頂板110上方區域之構形。 Top panel 110 includes vents 112 through which fluid can be drawn into cooling system 100 . Top vent 112 may have a size selected based on the desired sound pressure in chamber 140 . For example, in some embodiments, the width w of the vent 112 is at least 500 microns but no more than 1000 microns. In some embodiments, the width of vent 112 is at least 250 microns but no more than 2000 microns. In the embodiment shown, the vent 112 is a central opening in one of the top panels 110 . In other embodiments, vents 112 may be located elsewhere. For example, the vents 112 may be closer to one of the edges of the top panel 110 . The vent 112 may have a circular, rectangular or other shaped footprint. Although a single vent 112 is shown, multiple vents may be used. For example, the vents may be offset toward the edge of the top chamber 140 or located on the side(s) of the top chamber 140 . Although the top plate 110 is shown as being substantially flat, in some embodiments grooves and/or other structures may be provided in the top plate 110 to modify the top chamber 140 and/or the top plate 110 region above the configuration.

冷卻元件120包含一錨定區域122及懸臂121。錨定區域122在冷卻系統100中由錨160支撐(例如,保持於適當位置)。懸臂121回應於冷卻元件120經致動而經歷振動運動。各懸臂121包含台階區域124、延伸區域126及外部區域128。為清楚起見,懸臂121、台階區域124、延伸區域126及外部區域128僅在圖1B中標記。在圖1A至圖1F中所展示之實施例 中,錨定區域122位於中心。台階區域124自錨定區域122向外延伸。延伸區域126自台階區域124向外延伸。外部區域128自延伸區域126向外延伸。在其他實施例中,錨定區域122可在致動器之一個邊緣處而外部區域128則在相對邊緣處。在此等實施例中,致動器係邊緣錨定。 The cooling element 120 includes an anchoring area 122 and a cantilever 121 . Anchor region 122 is supported (eg, held in place) by anchor 160 in cooling system 100 . Cantilever 121 undergoes oscillatory motion in response to cooling element 120 being actuated. Each cantilever 121 includes a step area 124 , an extension area 126 and an outer area 128 . For clarity, the cantilever 121, step area 124, extension area 126 and outer area 128 are only labeled in Figure IB. The embodiment shown in Figures 1A to 1F , anchoring region 122 is located in the center. The step area 124 extends outwardly from the anchor area 122 . The extension area 126 extends outwardly from the step area 124 . The outer region 128 extends outwardly from the extension region 126 . In other embodiments, the anchoring region 122 may be on one edge of the actuator and the outer region 128 on the opposite edge. In these embodiments, the actuator is edge anchored.

延伸區域126具有小於台階區域124之厚度(台階厚度)且小於外部區域128之厚度(外部厚度)之一厚度(延伸厚度)。因此,延伸區域126可被視為凹陷。延伸區域126亦可被視為提供一更大底部腔室150。在一些實施例中,外部區域128之外部厚度與台階區域124之台階厚度相同。在一些實施例中,外部區域128之外部厚度不同於台階區域124之台階厚度。外部區域128之外部厚度及台階區域124之台階厚度各為至少320但不超過360微米。在其他實施例中,其他厚度係可行的。在一些實施例中,外部厚度比延伸厚度厚至少50微米但不超過200微米。換言之,階差(台階厚度與延伸厚度之差)為至少50微米但不超過200微米。在一些實施例中,外部階差(外部厚度及延伸厚度之差)為至少50微米但不超過200微米。外部區域128可具有至少100微米但不超過300微米之一寬度o。在一些實施例中,延伸區域具有自台階區域向外延伸至少0.5毫米但不超過1.5毫米之一長度e。在一些實施例中,外部區域128具有在自錨定區域122開始之方向上高於延伸區域126之每單位長度之一質量。質量之此差可歸因於外部區域128之較大大小,冷卻元件120之部分之間的一密度差及/或另一機構。 The extended region 126 has a thickness (extended thickness) that is less than the thickness of the step region 124 (step thickness) and less than the thickness of the outer region 128 (outer thickness). Therefore, the extended region 126 can be considered as a depression. The extended region 126 can also be considered to provide a larger bottom chamber 150. In some embodiments, the outer thickness of the outer region 128 is the same as the step thickness of the step region 124. In some embodiments, the outer thickness of the outer region 128 is different from the step thickness of the step region 124. The outer thickness of the outer region 128 and the step thickness of the step region 124 are each at least 320 but not more than 360 microns. In other embodiments, other thicknesses are feasible. In some embodiments, the outer thickness is at least 50 microns thicker than the extended thickness but not more than 200 microns. In other words, the step (difference between the step thickness and the extension thickness) is at least 50 microns but not more than 200 microns. In some embodiments, the outer step (difference between the outer thickness and the extension thickness) is at least 50 microns but not more than 200 microns. The outer region 128 may have a width o of at least 100 microns but not more than 300 microns. In some embodiments, the extension region has a length e extending outward from the step region of at least 0.5 mm but not more than 1.5 mm. In some embodiments, the outer region 128 has a higher mass per unit length in the direction starting from the anchor region 122 than the extension region 126. This difference in mass may be due to the larger size of the outer region 128, a density difference between portions of the cooling element 120, and/or another mechanism.

錨(支撐結構)160在冷卻元件120之中心部分支撐冷卻元件120。因此,冷卻元件120之周邊之至少部分未受固定且可自由振動。在一些實施例中,錨160沿冷卻元件120之一中心軸線(例如,垂直於圖1A至 圖1F中之頁面)延伸。在此等實施例中,振動之冷卻元件120之部分(例如,包含尖端123之懸臂121)依一懸臂方式移動。因此,冷卻元件120之懸臂121可依類似於一蝴蝶之翅膀(即同相)及/或類似於一蹺蹺板(即異相)之一方式移動。因此,依一懸臂方式振動之冷卻元件120之懸臂121在一些實施例中同相振動而在其他實施例中異相振動。在一些實施例中,錨160不沿冷卻元件120之一軸線延伸。在此等實施例中,冷卻元件120之周邊之所有部分自由振動(例如類似於一水母)。在所展示之實施例中,錨160自冷卻元件120之底部支撐冷卻元件120。在其他實施例中,錨160可依另一方式支撐冷卻元件120。例如,錨160可自頂部支撐冷卻元件120(例如冷卻元件120自錨160懸掛)。在一些實施例中,錨160之寬度a為至少0.5毫米但不超過4毫米。在一些實施例中,錨160之寬度為至少2毫米但不超過2.5毫米。錨160可佔據冷卻元件120之至少10%但不超過50%。 Anchors (support structures) 160 support cooling element 120 at a central portion of cooling element 120. Thus, at least a portion of the periphery of cooling element 120 is unfixed and can vibrate freely. In some embodiments, anchors 160 extend along a central axis of cooling element 120 (e.g., perpendicular to the pages in FIGS. 1A to 1F ). In such embodiments, the vibrating portion of cooling element 120 (e.g., cantilever 121 including tip 123) moves in a cantilevered manner. Thus, cantilever 121 of cooling element 120 can move in a manner similar to the wings of a butterfly (i.e., in phase) and/or similar to a seesaw (i.e., out of phase). Thus, the cantilever 121 of the cooling element 120 vibrating in a cantilever manner vibrates in phase in some embodiments and out of phase in other embodiments. In some embodiments, the anchor 160 does not extend along an axis of the cooling element 120. In such embodiments, all portions of the periphery of the cooling element 120 vibrate freely (e.g., similar to a jellyfish). In the embodiment shown, the anchor 160 supports the cooling element 120 from the bottom of the cooling element 120. In other embodiments, the anchor 160 can support the cooling element 120 in another manner. For example, the anchor 160 can support the cooling element 120 from the top (e.g., the cooling element 120 is suspended from the anchor 160). In some embodiments, the width a of the anchor 160 is at least 0.5 mm but not more than 4 mm. In some embodiments, the width a of the anchor 160 is at least 2 mm but not more than 2.5 mm. The anchor 160 may occupy at least 10% but not more than 50% of the cooling element 120.

冷卻元件120具有遠離發熱結構102之一第一側及靠近發熱結構102之一第二側。在圖1A至圖1F中所展示之實施例中,冷卻元件120之第一側係冷卻元件120之頂部(較靠近頂板110)且第二側係冷卻元件120之底部(較靠近孔口板130)。冷卻元件120經致動以進行如圖1A及圖1C至圖1F中所展示之振動運動。冷卻元件120之振動運動將流體自冷卻元件120之遠離發熱結構102之第一側(例如自頂部腔室140)驅動至冷卻元件120之靠近發熱結構102之一第二側(例如至底部腔室150)。冷卻元件120之振動運動亦將流體通過通風口112吸入至頂部腔室140中;迫使流體自頂部腔室140至底部腔室150;且驅動流體自底部腔室150通過孔口板130之孔口132。 The cooling element 120 has a first side away from the heat generating structure 102 and a second side close to the heat generating structure 102. In the embodiment shown in Figures 1A to 1F, the first side of the cooling element 120 is the top of the cooling element 120 (closer to the top plate 110) and the second side is the bottom of the cooling element 120 (closer to the orifice plate 130). The cooling element 120 is actuated to perform a vibrating motion as shown in Figures 1A and 1C to 1F. The vibration movement of the cooling element 120 drives the fluid from a first side of the cooling element 120 away from the heat generating structure 102 (e.g., from the top chamber 140) to a second side of the cooling element 120 close to the heat generating structure 102 (e.g., to the bottom chamber 150). The vibration movement of the cooling element 120 also draws the fluid into the top chamber 140 through the vent 112; forces the fluid from the top chamber 140 to the bottom chamber 150; and drives the fluid from the bottom chamber 150 through the orifice 132 of the orifice plate 130.

冷卻元件120具有取決於冷卻元件120期望振動之頻率之一 長度L。在一些實施例中,冷卻元件120之長度為至少4毫米但不超過10毫米。在一些此等實施例中,冷卻元件120具有至少6毫米但不超過8毫米之一長度。冷卻元件120之深度(例如,垂直於圖1A至圖1F中所展示之平面)可自L之四分之一到L之兩倍變化。例如,冷卻元件120可具有與長度相同之深度。冷卻元件120之厚度t可基於冷卻元件120之構形及/或冷卻元件120期望致動之頻率而變化。在一些實施例中,對於具有8毫米之一長度且以至少20千赫但不超過25千赫之一頻率驅動之冷卻元件120,冷卻元件厚度為至少200微米但不超過350微米。腔室140/150之長度C接近冷卻元件120之長度L。例如,在一些實施例中,冷卻元件120之邊緣與腔室140/150之壁之間的距離d為至少100微米但不超過500微米。在一些實施例中,d為至少200微米但不超過300微米。 The cooling element 120 has a length L that depends on the frequency at which the cooling element 120 is expected to vibrate. In some embodiments, the length of the cooling element 120 is at least 4 mm but not more than 10 mm. In some of these embodiments, the cooling element 120 has a length of at least 6 mm but not more than 8 mm. The depth of the cooling element 120 (e.g., perpendicular to the plane shown in Figures 1A to 1F) can vary from one quarter of L to two times L. For example, the cooling element 120 can have a depth that is the same as the length. The thickness t of the cooling element 120 can vary based on the configuration of the cooling element 120 and/or the frequency at which the cooling element 120 is expected to be actuated. In some embodiments, for a cooling element 120 having a length of 8 mm and driven at a frequency of at least 20 kHz but not more than 25 kHz, the cooling element thickness is at least 200 microns but not more than 350 microns. The length C of the chamber 140/150 is close to the length L of the cooling element 120. For example, in some embodiments, the distance d between the edge of the cooling element 120 and the wall of the chamber 140/150 is at least 100 microns but not more than 500 microns. In some embodiments, d is at least 200 microns but not more than 300 microns.

冷卻元件120可以處於或接近頂部腔室140中流體之一壓力波之一聲學諧振之諧振頻率及冷卻元件120之一結構諧振之諧振頻率兩者之一頻率驅動。冷卻元件120之經歷振動運動之部分在處於或接近冷卻元件120之諧振(「結構諧振」)頻率經驅動。冷卻元件120之經歷振動之此部分在一些實施例中可為懸臂121。結構諧振之振動之頻率稱為結構諧振頻率。在驅動冷卻元件120中使用結構諧振頻率降低冷卻系統100之功耗。冷卻元件120及頂部腔室140亦可經構形使得此結構諧振頻率對應於驅動通過頂部腔室140之流體中之一壓力波之一諧振(頂部腔室140之聲學諧振)。此一壓力波之頻率稱為聲學諧振頻率。在聲學諧振時,一壓力節點出現在通風口112附近且一壓力波腹出現在冷卻系統100之周邊附近(例如靠近冷卻元件120之尖端123及靠近頂部腔室140與底部腔室150之間的連接)。此兩個區域之間的距離係C/2。因此,C/2=nλ/4,其中λ係流體之 聲學波長且n為奇數(例如n=1、3、5等等)。對於最低階模式,C=λ/2。因為腔室140之長度(例如C)接近冷卻元件120之長度,所以在一些實施例中,L/2=nλ/4亦係大致正確,其中λ係流體之聲學波長且n為奇數。因此,驅動冷卻元件120之頻率ν處於或接近冷卻元件120之結構諧振頻率。頻率ν亦處於或接近至少頂部腔室140之聲學諧振頻率。頂部腔室140之聲學諧振頻率與參數(諸如溫度及大小)之變化相比冷卻元件120之結構諧振頻率之變化不大。因此,在一些實施例中,冷卻元件120可以(或接近)一結構諧振頻率而非聲學諧振頻率驅動。 The cooling element 120 can be driven at a frequency at or near a resonant frequency of an acoustic resonance of a pressure wave of the fluid in the top chamber 140 and a resonant frequency of a structural resonance of the cooling element 120. The portion of the cooling element 120 that experiences the vibratory motion is driven at or near the resonance ("structural resonance") frequency of the cooling element 120. This portion of the cooling element 120 that experiences the vibration may be the cantilever 121 in some embodiments. The frequency of the vibration of the structural resonance is referred to as the structural resonance frequency. Using the structural resonance frequency in driving the cooling element 120 reduces the power consumption of the cooling system 100. The cooling element 120 and the top chamber 140 can also be configured so that the structural resonant frequency corresponds to a resonance of a pressure wave in the fluid driven through the top chamber 140 (the acoustic resonance of the top chamber 140). The frequency of this pressure wave is called the acoustic resonance frequency. During the acoustic resonance, a pressure node occurs near the vent 112 and a pressure antinode occurs near the periphery of the cooling system 100 (e.g., near the tip 123 of the cooling element 120 and near the connection between the top chamber 140 and the bottom chamber 150). The distance between these two regions is C/2. Therefore, C/2=nλ/4, where λ is the acoustic wavelength of the fluid and n is an odd number (e.g., n=1, 3, 5, etc.). For the lowest order mode, C=λ/2. Because the length of the chamber 140 (e.g., C) is close to the length of the cooling element 120, in some embodiments, L/2=nλ/4 is also approximately correct, where λ is the acoustic wavelength of the fluid and n is an odd number. Therefore, the frequency v that drives the cooling element 120 is at or near the structural resonant frequency of the cooling element 120. The frequency v is also at or near the acoustic resonant frequency of at least the top chamber 140. The acoustic resonant frequency of the top chamber 140 does not vary much with changes in parameters (such as temperature and size) compared to the structural resonant frequency of the cooling element 120. Therefore, in some embodiments, the cooling element 120 can be driven at (or close to) a structural resonant frequency rather than an acoustic resonant frequency.

孔口板130在其中具有孔口132。儘管展示孔口132之一特定數目及分佈,但可使用其他數目及/或其他分佈。一單一孔口板130用於一單一冷卻系統100。在其他實施例中,多個冷卻系統100可共用一孔口板。例如,可以一期望構形一起提供多個單元。在此等實施例中,單元可具有相同大小及構形或不同大小及/或構形。孔口132經展示為具有垂直於發熱結構102之一表面定向之一軸線。在其他實施例中,一或多個孔口132之軸線可成另一角度。例如,軸線之角度可選自實質上為零之度數及一非零銳角。孔口132亦具有實質上平行於孔口板130之表面之法線之側壁。在一些實施例中,孔口可具有與孔口板130之表面之法線成非零角度之側壁。例如,孔口132可為錐形。進一步言之,儘管孔口板130經展示為實質上平坦,但在一些實施例中,可在孔口板130中提供溝槽及/或其他結構以修改底部腔室150及/或孔口板130與發熱結構102之間的區域之構形。 The orifice plate 130 has orifices 132 therein. Although a specific number and distribution of orifices 132 are shown, other numbers and/or other distributions may be used. A single orifice plate 130 is used for a single cooling system 100. In other embodiments, multiple cooling systems 100 may share an orifice plate. For example, multiple units may be provided together in a desired configuration. In these embodiments, the units may have the same size and configuration or different sizes and/or configurations. The orifice 132 is shown as having an axis oriented perpendicular to a surface of the heat generating structure 102. In other embodiments, the axis of one or more orifices 132 may be at another angle. For example, the angle of the axis may be selected from a substantially zero degree and a non-zero sharp angle. The orifice 132 also has side walls substantially parallel to the normal to the surface of the orifice plate 130. In some embodiments, the orifice may have sidewalls that are at a non-zero angle to the normal to the surface of the orifice plate 130. For example, the orifice 132 may be tapered. Further, although the orifice plate 130 is shown as being substantially flat, in some embodiments, grooves and/or other structures may be provided in the orifice plate 130 to modify the configuration of the bottom chamber 150 and/or the area between the orifice plate 130 and the heat generating structure 102.

選擇孔口132之大小、分佈及位置以控制經驅動至發熱結構102之表面之流體之流速。孔口132之位置及構形可經構形以增加/最大 化來自底部腔室150通過孔口132至噴射通道(孔口板130之底部與發熱結構102之頂部之間的區域)之流體流動。亦可選擇孔口132之位置及構形以減少/最小化自噴射通道通過孔口132之吸入流(例如回流)。例如,需要孔口之位置距尖端123足夠遠使得通過孔口132將流體拉入至底部腔室150中之冷卻元件120之上衝程(尖端123移動遠離孔口板130)中的吸力減小。亦期望孔口之位置足夠靠近尖端123,使得冷卻元件120之上衝程中之吸力亦允許來自頂部腔室140之一更高壓力以將流體自頂部腔室140推入至底部腔室150中。在一些實施例中,自頂部腔室140至底部腔室150中之流速與在上衝程中自噴射通道通過孔口132之流速之比(「淨流量比」)大於2:1。在一些實施例中,淨流量比為至少85:15。在一些實施例中,淨流量比為至少90:10。為提供所需壓力、流速、吸力及淨流量比,期望孔口132距尖端123至少一距離r1,且距冷卻元件120之尖端123不超過一距離r2。在一些實施例中,r1為至少100微米(例如r1

Figure 110134201-A0305-02-0017-1
100μm)且r2不超過1毫米(例如r2
Figure 110134201-A0305-02-0017-2
1000μm)。在一些實施例中,孔口132距冷卻元件120之尖端123至少200微米(例如r1
Figure 110134201-A0305-02-0017-3
200μm)。在一些此等實施例中,孔口132距冷卻元件120之尖端123至少300微米(例如r1
Figure 110134201-A0305-02-0017-5
300μm)。在一些實施例中,孔口132具有至少100微米但不超過500微米之一寬度o。在一些實施例中,孔口132具有至少200微米但不超過300微米之一寬度。在一些實施例中,孔口間距s為至少100微米但不超過1毫米。在一些此等實施例中,孔口間距為至少400微米但不超過600微米。在一些實施例中,亦期望孔口132佔據孔口板130之面積之一特定部分。例如,孔口132可覆蓋孔口板130之覆蓋區之至少5%但不超過50%以達成通過孔口132之流體之一所需流速。在一些實施例中,孔口132覆蓋孔口板130之覆蓋區之至少8%但不 超過12%。 The size, distribution and location of the orifices 132 are selected to control the flow rate of the fluid driven to the surface of the heat generating structure 102. The location and configuration of the orifices 132 can be configured to increase/maximize the flow of fluid from the bottom chamber 150 through the orifices 132 to the jet channel (the area between the bottom of the orifice plate 130 and the top of the heat generating structure 102). The location and configuration of the orifices 132 can also be selected to reduce/minimize the suction flow (e.g., backflow) from the jet channel through the orifices 132. For example, it is desirable that the location of the orifice be far enough from the tip 123 so that the suction force that pulls the fluid into the upper stroke of the cooling element 120 in the bottom chamber 150 (the tip 123 moves away from the orifice plate 130) is reduced. It is also desirable that the location of the orifice be close enough to the tip 123 so that the suction force during the upstroke of the cooling element 120 also allows a higher pressure from the top chamber 140 to push the fluid from the top chamber 140 into the bottom chamber 150. In some embodiments, the ratio of the flow rate from the top chamber 140 into the bottom chamber 150 to the flow rate from the jet channel through the orifice 132 during the upstroke (the "net flow ratio") is greater than 2:1. In some embodiments, the net flow ratio is at least 85:15. In some embodiments, the net flow ratio is at least 90:10. To provide the desired pressure, flow rate, suction, and net flow rate ratio, it is desirable that the orifice 132 is at least a distance r1 from the tip 123 and no more than a distance r2 from the tip 123 of the cooling element 120. In some embodiments, r1 is at least 100 microns (e.g., r1
Figure 110134201-A0305-02-0017-1
100μm) and r2 does not exceed 1 mm (e.g. r2
Figure 110134201-A0305-02-0017-2
In some embodiments, the orifice 132 is at least 200 microns (e.g., r1
Figure 110134201-A0305-02-0017-3
In some of these embodiments, the orifice 132 is at least 300 microns (e.g., r1
Figure 110134201-A0305-02-0017-5
300μm). In some embodiments, the orifice 132 has a width o of at least 100 microns but not more than 500 microns. In some embodiments, the orifice 132 has a width o of at least 200 microns but not more than 300 microns. In some embodiments, the orifice spacing s is at least 100 microns but not more than 1 mm. In some of these embodiments, the orifice spacing is at least 400 microns but not more than 600 microns. In some embodiments, it is also desirable that the orifice 132 occupies a specific portion of the area of the orifice plate 130. For example, the orifice 132 may cover at least 5% but not more than 50% of the coverage area of the orifice plate 130 to achieve a desired flow rate of the fluid passing through the orifice 132. In some embodiments, the orifice 132 covers at least 8% but not more than 12% of the coverage area of the orifice plate 130.

在一些實施例中,使用一壓電來致動冷卻元件120。因此,冷卻元件120可為一壓電冷卻元件。冷卻元件120可由安裝於冷卻元件120上或整合至冷卻元件120中之一壓電驅動。在一些實施例中,冷卻元件120依另一方式驅動,包含(但不限於)在冷卻系統100中之另一結構上提供一壓電。冷卻元件120及類似冷卻元件在下文中稱作壓電冷卻元件,然可使用除一壓電之外之一機構來驅動冷卻元件。在一些實施例中,冷卻元件120包含基板上之一壓電層。基板可為一不銹鋼、Ni合金及/或哈氏合金基板。在一些實施例中,壓電層包含在基板上形成為薄膜之多個子層。在其他實施例中,壓電層可為固定至基板之一主體層。此一壓電冷卻元件120亦包含用於啟動壓電之電極。在一些實施例中,基板用作一電極。在其他實施例中,可在基板與壓電層之間提供一底部電極。其他層(包含但不限於晶種層、覆蓋層、鈍化層或其他層)可包含於壓電冷卻元件中。因此,可使用一壓電來致動冷卻元件120。 In some embodiments, cooling element 120 is actuated using a piezoelectric. Therefore, the cooling element 120 can be a piezoelectric cooling element. The cooling element 120 may be driven by a piezoelectric mounted on or integrated into the cooling element 120 . In some embodiments, cooling element 120 is actuated in another manner, including (but not limited to) providing a piezoelectric on another structure in cooling system 100 . Cooling element 120 and similar cooling elements are hereinafter referred to as piezoelectric cooling elements, although a mechanism other than a piezoelectric may be used to drive the cooling element. In some embodiments, cooling element 120 includes a piezoelectric layer on a substrate. The substrate may be a stainless steel, Ni alloy and/or Hastelloy substrate. In some embodiments, the piezoelectric layer includes multiple sub-layers formed as thin films on a substrate. In other embodiments, the piezoelectric layer may be a bulk layer affixed to the substrate. This piezoelectric cooling element 120 also includes electrodes for activating the piezoelectricity. In some embodiments, the substrate serves as an electrode. In other embodiments, a bottom electrode may be provided between the substrate and the piezoelectric layer. Other layers, including but not limited to seed layers, capping layers, passivation layers, or other layers, may be included in the piezoelectric cooling element. Therefore, a piezoelectric can be used to actuate the cooling element 120.

在一些實施例中,冷卻系統100包含煙囪(未展示)或其他管道。此管道為經加熱流體流動離開發熱結構102提供一路徑。在一些實施例中,管道將流體返回至遠離發熱結構102之頂板110之側。在一些實施例中,管道可替代地引導流體在平行於發熱結構102或垂直於發熱結構102但在相反方向(例如朝向頁面之底部)之一方向上離開發熱結構102。對於其中在冷卻系統100中使用裝置外部之流體之一裝置,管道可將經加熱流體引導至一通風口。在此等實施例中,可自一入口通風口提供額外流體。在其中裝置經封閉之實施例中,管道可提供返回至靠近通風口112且遠離發熱結構102之區域之一迂迴路徑。此一路徑允許流體在被重新使用 以冷卻發熱結構102之前消散熱。在其他實施例中,管道可經省略或依另一方式構形。因此,允許流體自發熱結構102帶走熱。 In some embodiments, cooling system 100 includes a chimney (not shown) or other ducting. This conduit provides a path for heated fluid to flow away from the heating structure 102 . In some embodiments, the conduits return fluid to the side of the top plate 110 away from the heat-generating structure 102 . In some embodiments, the conduits may instead direct fluid away from the heating structure 102 in one of the directions parallel to the heating structure 102 or perpendicular to the heating structure 102 but in the opposite direction (eg, toward the bottom of the page). For a device where fluid external to the device is used in the cooling system 100, ducting may direct the heated fluid to a vent. In such embodiments, additional fluid may be provided from an inlet vent. In embodiments where the device is enclosed, the duct may provide a circuitous path back to an area near the vent 112 and away from the heat-generating structure 102 . This path allows the fluid to be reused to dissipate heat before cooling the heat-generating structure 102 . In other embodiments, the ducts may be omitted or configured in another manner. Thus, the fluid is allowed to remove heat from the heating structure 102.

冷卻系統100之操作在圖1A至圖1F之背景中描述。儘管在特定壓力、間隙大小及流動時間之背景中描述,但冷卻系統100之操作不依賴於本文之解釋。圖1C至圖1D描繪冷卻系統100之同相操作。參考圖1C,冷卻元件120已經致動,使得懸臂121及尖端123移動遠離頂板110。因此,可認為圖1C描繪冷卻元件120之一下衝程之結束。由於冷卻元件120之振動運動,底部腔室150之間隙152之大小已減小且展示為間隙152B。相反地,頂部腔室140之間隙142之大小已增加且展示為間隙142B。在下衝程期間,當冷卻元件120處於中立位置時,在周邊產生一較低(例如最小)壓力。隨著下衝程繼續,底部腔室150之大小減小且頂部腔室140之大小增加,如圖1C中所展示。因此,流體在處於或接近垂直於孔口板130之表面及/或發熱結構102之頂部表面之一方向上驅動出孔口132。流體自孔口132以一高速驅動朝向發熱結構102,例如以超過每秒35米。在一些實施例中,流體接著沿發熱結構102之表面並朝向發熱結構102之周邊行進,其中壓力低於孔口132附近之壓力。同樣在下衝程中,頂部腔室140之大小增加且一較低壓力存在於頂部腔室140中。因此,流體通過通風口112吸入至頂部腔室140中。流體至通風口112、通過孔口132並沿發熱結構102之表面之運動藉由圖1C中未標記箭頭展示。 The operation of the cooling system 100 is described in the context of Figures 1A-1F. Although described in the context of specific pressures, gap sizes, and flow times, operation of the cooling system 100 is independent of the explanation herein. Figures 1C-1D depict in-phase operation of the cooling system 100. Referring to FIG. 1C , cooling element 120 has been actuated such that cantilever 121 and tip 123 move away from top plate 110 . Accordingly, FIG. 1C may be considered to depict the end of a downstroke of cooling element 120 . Due to the vibratory motion of the cooling element 120, the size of the gap 152 of the bottom chamber 150 has been reduced and is shown as gap 152B. Conversely, gap 142 of top chamber 140 has increased in size and is shown as gap 142B. During the downstroke, when the cooling element 120 is in the neutral position, a lower (eg, minimum) pressure is generated in the periphery. As the downstroke continues, the bottom chamber 150 decreases in size and the top chamber 140 increases in size, as shown in Figure 1C. Thus, fluid is driven out of the orifice 132 in a direction that is at or nearly perpendicular to the surface of the orifice plate 130 and/or the top surface of the heating structure 102 . The fluid is driven from the orifice 132 toward the heat-generating structure 102 at a high speed, such as in excess of 35 meters per second. In some embodiments, the fluid then travels along the surface of the heat-generating structure 102 and toward the perimeter of the heat-generating structure 102 , where the pressure is lower than the pressure near the orifice 132 . Also on the down stroke, the size of the top chamber 140 increases and a lower pressure exists in the top chamber 140 . As a result, fluid is drawn into top chamber 140 through vent 112 . The movement of fluid to the vents 112, through the orifices 132, and along the surface of the heating structure 102 is illustrated by the unlabeled arrows in Figure 1C.

冷卻元件120亦經致動,使得懸臂121及因此尖端123移動遠離發熱結構102且朝向頂板110。因此,圖1D可被認為描繪冷卻元件120之一向上衝程之結束。由於冷卻元件120之運動,間隙142之大小減小且展示為間隙142C。間隙152之大小增加且展示為間隙152C。在上衝程期 間,當冷卻元件120處於中立位置時,在周邊產生一較高(例如最大)壓力。隨著上衝程繼續,底部腔室150之大小增加且頂部腔室140之大小減小,如圖1D中所展示。因此,流體自頂部腔室140(例如腔室140/150之周邊)驅動至底部腔室150。因此,當冷卻元件120之尖端123向上移動時,頂部腔室140用作用於使進入流體加速且驅動朝向底部腔室150之一噴嘴。流體至底部腔室150中之運動藉由圖1D中未標記之箭頭展示。冷卻元件120及孔口132之位置及構形經選擇為減少吸力,且因此減少在上衝程期間自噴射通道(在發熱結構102與孔口板130之間)至孔口132中之流體回流。因此,冷卻系統100能夠將流體自頂部腔室140驅動至底部腔室150,而沒有過量經加熱流體自噴射通道進入底部腔室150之回流。 The cooling element 120 is also actuated, causing the cantilever 121 and therefore the tip 123 to move away from the heat generating structure 102 and towards the top plate 110 . Therefore, FIG. 1D may be considered to depict the end of one upward stroke of cooling element 120. Due to the movement of cooling element 120, gap 142 decreases in size and appears as gap 142C. Gap 152 increases in size and is shown as gap 152C. during the upstroke During this time, when the cooling element 120 is in the neutral position, a higher (eg, maximum) pressure is generated in the periphery. As the upstroke continues, the bottom chamber 150 increases in size and the top chamber 140 decreases in size, as shown in Figure ID. Thus, fluid is driven from the top chamber 140 (eg, the perimeter of chambers 140/150) to the bottom chamber 150. Thus, the top chamber 140 acts as a nozzle for accelerating and driving the incoming fluid toward the bottom chamber 150 as the tip 123 of the cooling element 120 moves upward. The movement of fluid into the bottom chamber 150 is illustrated by the unlabeled arrow in Figure 1D. The location and configuration of the cooling element 120 and the orifice 132 are selected to reduce suction and therefore fluid backflow from the injection channel (between the heating structure 102 and the orifice plate 130) into the orifice 132 during the upstroke. Therefore, the cooling system 100 is able to drive fluid from the top chamber 140 to the bottom chamber 150 without excess heated fluid flowing back from the injection channel into the bottom chamber 150 .

重複圖1C及圖1D中所展示之位置之間的運動。因此,冷卻元件120經歷圖1A及圖1C至圖1D中所指示之振動運動,將流體自頂板110之遠側通過通風口112吸入至頂部腔室140中;將流體自頂部腔室140傳送至底部腔室150;且推動流體通過孔口132且朝向發熱結構102。如上文所論述,冷卻元件120經驅動以在冷卻元件120之結構諧振頻率處或附近振動。在一些實施例中,此對應於懸臂121之結構諧振。進一步言之,冷卻元件120之結構諧振頻率經組態以與腔室140/150之聲學諧振對準。結構及聲學諧振頻率通常選擇在超音波範圍內。例如,冷卻元件120之振動運動之頻率可自15kHz至30kHz。在一些實施例中,冷卻元件120以至少20kHz但不超過30kHz之一頻率/頻率振動。冷卻元件120之結構諧振頻率在冷卻系統100之聲學諧振頻率之10%內。在一些實施例中,冷卻元件120之結構諧振頻率在冷卻系統100之聲學諧振頻率之5%內。在一些實施例中,冷卻元件120之結構諧振頻率在冷卻系統100之聲學諧振頻率之3% 內。因此,可提高效率及流速。然而,可使用其他頻率。 The movement between the positions shown in FIG. 1C and FIG. 1D is repeated. Thus, the cooling element 120 undergoes the vibratory motion indicated in FIG. 1A and FIG. 1C to FIG. 1D , drawing fluid from the far side of the top plate 110 through the vent 112 into the top chamber 140; transferring the fluid from the top chamber 140 to the bottom chamber 150; and pushing the fluid through the orifice 132 and toward the heat generating structure 102. As discussed above, the cooling element 120 is driven to vibrate at or near the structural resonant frequency of the cooling element 120. In some embodiments, this corresponds to the structural resonance of the cantilever 121. Further, the structural resonant frequency of the cooling element 120 is configured to be aligned with the acoustic resonant frequency of the chamber 140/150. The structural and acoustic resonant frequencies are typically selected to be in the ultrasonic range. For example, the frequency of the vibration motion of the cooling element 120 may be from 15kHz to 30kHz. In some embodiments, the cooling element 120 vibrates at a frequency/frequency of at least 20kHz but not more than 30kHz. The structural resonant frequency of the cooling element 120 is within 10% of the acoustic resonant frequency of the cooling system 100. In some embodiments, the structural resonant frequency of the cooling element 120 is within 5% of the acoustic resonant frequency of the cooling system 100. In some embodiments, the structural resonant frequency of the cooling element 120 is within 3% of the acoustic resonant frequency of the cooling system 100. Thus, efficiency and flow rate can be improved. However, other frequencies may be used.

經驅動朝向發熱結構102之流體可實質上法向於(垂直於)發熱結構102之頂部表面移動。在一些實施例中,流體運動可相對於法向於發熱結構102之頂部表面具有一非零銳角。在兩者任一情況下,流體可在發熱結構102處之流體邊界層中變稀薄及/或形成孔。因此,可改良來自發熱結構102之熱傳遞。流體偏轉離開發熱結構102,沿發熱結構102之表面行進。在一些實施例中,流體在實質上平行於發熱結構102之頂部之一方向上移動。因此,來自發熱結構102之熱可由流體提取。流體可在冷卻系統100之邊緣處離開孔口板130與發熱結構102之間的區域。在冷卻系統100之邊緣處之煙囪或其他管道(未展示)允許流體自發熱結構102攜帶遠離。在其他實施例中,經加熱流體可依另一方式自發熱結構102進一步轉移。流體可將自發熱結構102傳遞至另一結構或周圍環境之熱進行交換。因此,頂板110之遠側處之流體可保持相對冷,允許額外熱提取。在一些實施例中,流體經循環,在冷卻之後返回至頂板110之遠側。在其他實施例中,經加熱流體在冷卻元件120之遠側攜帶遠離且由新流體替換。因此,可冷卻發熱結構102。 The fluid driven toward the heat generating structure 102 may move substantially normal (perpendicular) to the top surface of the heat generating structure 102. In some embodiments, the fluid motion may have a non-zero sharp angle relative to normal to the top surface of the heat generating structure 102. In either case, the fluid may be rarefied and/or form holes in the fluid boundary layer at the heat generating structure 102. Thus, heat transfer from the heat generating structure 102 may be improved. The fluid is deflected away from the heat generating structure 102, traveling along the surface of the heat generating structure 102. In some embodiments, the fluid moves in a direction substantially parallel to the top of the heat generating structure 102. Thus, heat from the heat generating structure 102 may be extracted by the fluid. The fluid may exit the area between the orifice plate 130 and the heat generating structure 102 at the edge of the cooling system 100. Chimneys or other ducting (not shown) at the edge of the cooling system 100 allow the fluid to be carried away from the heat generating structure 102. In other embodiments, the heated fluid may be further transferred from the heat generating structure 102 in another manner. The fluid may exchange heat transferred from the heat generating structure 102 to another structure or the surrounding environment. Thus, the fluid at the far side of the top plate 110 may remain relatively cool, allowing additional heat extraction. In some embodiments, the fluid is circulated and returned to the far side of the top plate 110 after cooling. In other embodiments, the heated fluid is carried away from the cooling element 120 and replaced by new fluid. Thus, the heat generating structure 102 can be cooled.

圖1E至圖1F描繪包含中心錨定之冷卻元件120之冷卻系統100之一實施例,其中冷卻元件經異相驅動。更具體而言,在錨160之相對側上(且因此在由錨160支撐之冷卻元件120之中心錨定區域122之相對側上)之冷卻元件120之懸臂121經驅動以異相振動。在一些實施例中,在錨160之相對側上之冷卻元件120之懸臂121以180度或接近180度異相驅動。因此,冷卻元件120之一個懸臂121朝向頂板110振動,而冷卻元件120之另一懸臂121朝向孔口板130/發熱結構102振動。冷卻元件120之一 懸臂121朝向頂板110之移動(一上衝程)將頂部腔室140中之流體驅動至錨160之該側上之底部腔室150。冷卻元件120之一部分朝向孔口板130之移動驅動流體通過孔口132且朝向發熱結構102。因此,以高速(例如,關於同相操作描述之速度)行進之流體交替地自錨160之相對側上之孔口132驅動出。流體之移動藉由圖1E及圖1F中未標記之箭頭展示。 Figures IE-IF depict one embodiment of a cooling system 100 including centrally anchored cooling elements 120, wherein the cooling elements are driven out of phase. More specifically, the cantilevers 121 of the cooling element 120 on the opposite side of the anchor 160 (and thus on the opposite side of the central anchoring region 122 of the cooling element 120 supported by the anchor 160) are driven to vibrate out of phase. In some embodiments, the cantilevers 121 of the cooling element 120 on opposite sides of the anchor 160 are driven at or near 180 degrees out of phase. Therefore, one cantilever 121 of the cooling element 120 vibrates towards the top plate 110 and the other cantilever 121 of the cooling element 120 vibrates towards the orifice plate 130/heat-generating structure 102 . One of the cooling elements 120 Movement of the cantilever 121 toward the top plate 110 (an upstroke) drives fluid in the top chamber 140 to the bottom chamber 150 on that side of the anchor 160 . Movement of a portion of the cooling element 120 toward the orifice plate 130 drives fluid through the orifice 132 and toward the heat generating structure 102 . Thus, fluid traveling at high speeds (eg, as described with respect to in-phase operation) is alternately driven out of orifices 132 on opposite sides of anchor 160 . The movement of fluid is illustrated by the unlabeled arrows in Figures 1E and 1F.

重複圖1E及圖1F中所展示之位置之間的運動。因此,冷卻元件120經歷圖1A、圖1E及圖1F中所指示之振動運動,交替地將流體自頂板110之遠側通過通風口112吸入至冷卻元件120之各側之頂部腔室140中;將流體自頂部腔室140之各側傳遞至底部腔室150之對應側;且推動流體通過錨160之各側上之孔口132且朝向發熱結構102。如上文所論述,冷卻元件120經驅動以在冷卻元件120之結構諧振頻率處或附近振動。進一步言之,冷卻元件120之結構諧振頻率經組態以與腔室140/150之聲學諧振對準。結構及聲學諧振頻率通常選擇在超音波範圍內。例如,冷卻元件120之振動運動可處於針對同相振動所描述之頻率。冷卻元件120之結構諧振頻率在冷卻系統100之聲學諧振頻率之10%內。在一些實施例中,冷卻元件120之結構諧振頻率在冷卻系統100之聲學諧振頻率之5%內。在一些實施例中。在一些實施例中,冷卻元件120之結構諧振頻率在冷卻系統100之聲學諧振頻率之3%內。因此,可提高效率及流速。然而,可使用其他頻率。 Repeat the movement between the positions shown in Figures 1E and 1F. Therefore, the cooling element 120 undergoes the vibratory motion indicated in FIGS. 1A, 1E, and 1F, alternately drawing fluid from the far side of the top plate 110 through the vents 112 into the top chambers 140 on each side of the cooling element 120; Pass fluid from each side of the top chamber 140 to the corresponding side of the bottom chamber 150; and push the fluid through the apertures 132 on each side of the anchor 160 and toward the heating structure 102. As discussed above, cooling element 120 is driven to vibrate at or near the structural resonance frequency of cooling element 120 . Further, the structural resonance frequency of cooling element 120 is configured to align with the acoustic resonance of chamber 140/150. Structural and acoustic resonant frequencies are usually chosen in the ultrasonic range. For example, the vibrational motion of the cooling element 120 may be at the frequencies described for in-phase vibrations. The structural resonance frequency of the cooling element 120 is within 10% of the acoustic resonance frequency of the cooling system 100 . In some embodiments, the structural resonant frequency of cooling element 120 is within 5% of the acoustic resonant frequency of cooling system 100 . In some embodiments. In some embodiments, the structural resonant frequency of cooling element 120 is within 3% of the acoustic resonant frequency of cooling system 100 . Therefore, efficiency and flow rate can be improved. However, other frequencies can be used.

經驅動朝向發熱結構102用於異相振動之流體可依與上述同相操作類似之一方式實質上法向於(垂直於)發熱結構102之頂部表面移動。類似地,冷卻系統100之邊緣處之煙囪或其他管道(未展示)允許流體自發熱結構102攜帶遠離。在其他實施例中,經加熱流體可依另一方式自 發熱結構102進一步轉移。流體可將自發熱結構102傳遞至另一結構或周圍環境之熱交換。因此,頂板110之遠側處之流體可保持相對冷,因此允許額外熱提取。在一些實施例中,流體經循環,在冷卻之後返回至頂板110之遠側。在其他實施例中,經加熱流體在頂板110之遠側攜帶遠離且由新流體替換。因此,發熱結構102可經冷卻。 Fluid driven toward the heating structure 102 for out-of-phase vibration may move substantially normal (perpendicular) to the top surface of the heating structure 102 in a manner similar to the in-phase operation described above. Similarly, chimneys or other conduits (not shown) at the edges of the cooling system 100 allow fluid to be carried away from the heating structure 102 . In other embodiments, the heated fluid may be generated in another manner. The heating structure 102 is further transferred. The fluid may transfer heat from the self-heating structure 102 to another structure or to the surrounding environment. Therefore, the fluid at the far side of the top plate 110 can remain relatively cold, thus allowing additional heat extraction. In some embodiments, the fluid is circulated, returning to the distal side of the top plate 110 after cooling. In other embodiments, the heated fluid is carried away distal to the top plate 110 and replaced with new fluid. Accordingly, the heat-generating structure 102 may be cooled.

使用經致動用於同相振動或異相振動之冷卻系統100,通過通風口112吸入且通過孔口132驅動之流體可有效地自發熱結構102散發熱。因為流體以足夠速度撞擊發熱結構(例如,至少每秒30米)且在一些實施例中實質上法向於發熱結構,發熱結構處之流體之邊界層可變稀薄及/或部分被移除。因此,改良發熱結構102與移動流體之間的熱傳遞。因為發熱結構經更有效地冷卻,所以對應積體電路可以更高速度及/或功率運行更長時間。例如,若發熱結構對應於一高速處理器,則此一處理器可在節速之前運行更長時間。因此,可提高利用冷卻系統100之一裝置之效能。進一步言之,冷卻系統100可為一MEMS裝置。因此,冷卻系統100可適用於其中有限空間可用之較小及/或行動裝置,諸如智慧型電話、其他行動電話、虛擬現實頭戴式組件、平板電腦、二合一電腦、可穿戴裝置及手持遊戲。此等裝置之效能因此可經改良。因為冷卻元件120可以15kHz或更高之頻率振動,所以使用者不會聽到與冷卻元件之致動相關聯之任何雜訊。若以或接近結構及/或聲學諧振頻率驅動,則操作中冷卻系統中使用之功率可顯著降低。冷卻元件120在振動期間不與頂板110或孔口板130實體接觸。因此,可更容易保持冷卻元件120之諧振。更具體而言,冷卻元件120與其他結構之間的實體接觸擾亂冷卻元件120之諧振狀況。擾亂此等狀況可驅動冷卻元件120脫離諧振。因此,將需要使用額外 功率來維持冷卻元件120之致動。進一步言之,由冷卻元件120驅動之流體之流動可減少。如上文所論述,通過使用壓差及流體流動避免此等問題。可使用有限額外功率達成經改良、安靜冷卻之益處。進一步言之,冷卻元件120之異相振動允許冷卻元件120之質心之位置保持更穩定。儘管一扭矩施加於冷卻元件120上,但歸因於質心之運動而產生之力經減小或消除。因此,可減少歸因於冷卻元件120之運動之振動。此外,冷卻系統100之效率可通過使用冷卻元件120兩側之異相振動運動來提高。對於懸臂121之異相振動,通過冷卻系統100之振動亦可減少。因此,可提高併入冷卻系統100之裝置之效能。進一步言之,冷卻系統100可用於其中需要高流體流量及/或速度之其他應用中(例如,具有或不具有發熱結構102)。 Using the cooling system 100 that is actuated for in-phase vibration or out-of-phase vibration, the fluid drawn in through the vent 112 and driven through the orifice 132 can effectively dissipate heat from the heat generating structure 102. Because the fluid hits the heat generating structure at a sufficient speed (e.g., at least 30 meters per second) and in some embodiments is substantially normal to the heat generating structure, the boundary layer of the fluid at the heat generating structure can be thinned and/or partially removed. Therefore, the heat transfer between the heat generating structure 102 and the moving fluid is improved. Because the heat generating structure is cooled more effectively, the corresponding integrated circuit can run at a higher speed and/or power for a longer time. For example, if the heat generating structure corresponds to a high-speed processor, such a processor can run for a longer time before throttling down. Therefore, the performance of a device utilizing the cooling system 100 can be improved. Further, the cooling system 100 may be a MEMS device. Thus, the cooling system 100 may be suitable for use in smaller and/or mobile devices where limited space is available, such as smartphones, other mobile phones, virtual reality headsets, tablets, two-in-one computers, wearable devices, and handheld games. The performance of such devices may therefore be improved. Because the cooling element 120 may vibrate at a frequency of 15 kHz or higher, the user will not hear any noise associated with the actuation of the cooling element. If driven at or near structural and/or acoustic resonant frequencies, the power used in the cooling system during operation may be significantly reduced. The cooling element 120 is not in physical contact with the top plate 110 or the orifice plate 130 during vibration. Thus, the resonance of the cooling element 120 can be maintained more easily. More specifically, physical contact between the cooling element 120 and other structures disturbs the resonant conditions of the cooling element 120. Disturbing these conditions can drive the cooling element 120 out of resonance. Therefore, additional power will need to be used to maintain the actuation of the cooling element 120. Further, the flow of the fluid driven by the cooling element 120 can be reduced. As discussed above, these problems are avoided by using pressure differentials and fluid flows. The benefits of improved, quiet cooling can be achieved with limited additional power. Further, the out-of-phase vibration of the cooling element 120 allows the position of the center of mass of the cooling element 120 to remain more stable. Although a torque is applied to the cooling element 120, the force due to the movement of the center of mass is reduced or eliminated. Therefore, the vibration due to the movement of the cooling element 120 can be reduced. In addition, the efficiency of the cooling system 100 can be improved by using out-of-phase vibration motion on both sides of the cooling element 120. For the out-of-phase vibration of the cantilever 121, the vibration through the cooling system 100 can also be reduced. Therefore, the performance of the device incorporated into the cooling system 100 can be improved. Furthermore, the cooling system 100 may be used in other applications where high fluid flow rates and/or velocities are required (e.g., with or without the heat generating structure 102).

工程化冷卻元件120之使用可進一步提高冷卻系統100之效能。延伸區域126比台階區域124及外部區域128薄。此導致冷卻元件120之底部中對應於延伸區域126之一腔洞。此腔洞之存在有助於提高冷卻系統100之效率。如關於圖1A及圖1C至圖1F所論述,懸臂121在一上衝程中朝向頂板110振動且在一下衝程中遠離頂板110振動。當一懸臂121移動朝向頂板110時,頂部腔室140中之高壓流體抵抗懸臂121之運動。此外,在上衝程期間,底部腔室150中之吸力亦抵抗懸臂121之向上運動。在懸臂121之下衝程中,底部腔室150中增加之壓力及頂部腔室140中之吸力抵抗懸臂121之向下運動。然而,對應於延伸區域126之懸臂121中腔洞之存在減輕一上衝程期間底部腔室150中之吸力。在一下衝程期間,腔洞亦降低底部腔室150中之壓力增加。因為吸力及壓力增加之量值減小,所以懸臂121可更容易地移動通過流體。此可在實質上維持頂部腔室140中之一較 高壓力時達成,其驅動流體流動通過冷卻系統100。因此,可提高效率。 The use of the engineered cooling element 120 can further improve the efficiency of the cooling system 100. The extended region 126 is thinner than the step region 124 and the outer region 128. This results in a cavity in the bottom of the cooling element 120 corresponding to the extended region 126. The presence of this cavity helps to improve the efficiency of the cooling system 100. As discussed with respect to Figures 1A and 1C to 1F, the cantilever 121 vibrates toward the top plate 110 in an upstroke and away from the top plate 110 in a downstroke. When a cantilever 121 moves toward the top plate 110, the high-pressure fluid in the top chamber 140 resists the movement of the cantilever 121. Additionally, during the upstroke, the suction in the bottom chamber 150 also resists the upward movement of the cantilever 121. During the downstroke of the cantilever 121, the increased pressure in the bottom chamber 150 and the suction in the top chamber 140 resist the downward movement of the cantilever 121. However, the presence of the cavity in the cantilever 121 corresponding to the extension area 126 reduces the suction in the bottom chamber 150 during an upstroke. The cavity also reduces the pressure increase in the bottom chamber 150 during a downstroke. Because the magnitude of the suction and pressure increase is reduced, the cantilever 121 can move more easily through the fluid. This can be achieved by substantially maintaining a higher pressure in one of the top chambers 140, which drives the fluid flow through the cooling system 100. Thus, efficiency can be improved.

此外,外部區域128之存在可提高懸臂121移動通過經驅動通過冷卻系統100之流體之能力。外部區域128具有一較高質量及因此具有一較高動量。因此,外部區域128可提高懸臂121移動通過經驅動通過冷卻系統100之流體之能力。懸臂121之偏轉量值亦可增加。通過使用較厚台階區域124,可在維持懸臂121之剛度時達成此等益處。因此,可再次提高冷卻系統100之效率。 Additionally, the presence of the outer region 128 may enhance the ability of the cantilever 121 to move through fluid driven through the cooling system 100 . The outer region 128 has a higher mass and therefore a higher momentum. Thus, outer region 128 may enhance the ability of cantilever 121 to move fluid driven through cooling system 100 . The deflection magnitude of the cantilever 121 can also be increased. By using a thicker step region 124, these benefits can be achieved while maintaining the stiffness of the cantilever 121. Therefore, the efficiency of the cooling system 100 can be improved again.

改良亦可如下理解。Q可被認為係冷卻元件120之效率之量度。Q之值至少部分由冷卻元件120與周圍流體(即,諸如空氣之一氣體或一液體)之相互作用、冷卻元件120內之結構損失、冷卻元件120之錨固及/或其他特性判定。Q可被認為由δres=Q*δstatic定義,其中δres係諧振時之偏轉且δstatic係對應靜態偏轉。Q值越高,諧振時之偏轉越大,且偏轉衰減越慢(即阻尼越低)。由於冷卻元件120之工程化組態,冷卻元件能夠更好地移動通過周圍流體。因此,可達成一更高靜態偏轉,偏轉可在諧振時更好地放大,驅動冷卻元件120消耗之功率可減少,且偏轉可更緩慢地消失(即經受減小阻尼)。冷卻元件120之Q及因此冷卻系統100之效率因此可藉由冷卻元件120之組態提高。 Improvements can also be understood as follows. Q can be considered a measure of the efficiency of the cooling element 120. The value of Q is at least partially determined by the interaction of the cooling element 120 with the surrounding fluid (i.e., a gas such as air or a liquid), structural losses within the cooling element 120, anchoring of the cooling element 120, and/or other characteristics. Q can be considered to be defined by δ res =Q*δ static , where δ res is the deflection during resonance and δ static is the corresponding static deflection. The higher the Q value, the greater the deflection during resonance, and the slower the deflection decays (i.e., the lower the damping). Due to the engineered configuration of the cooling element 120, the cooling element is able to move better through the surrounding fluid. Thus, a higher static deflection can be achieved, the deflection can be better amplified in resonance, the power consumed to drive the cooling element 120 can be reduced, and the deflection can die out more slowly (i.e. experience reduced damping). The Q of the cooling element 120 and thus the efficiency of the cooling system 100 can thus be improved by the configuration of the cooling element 120.

工程化冷卻元件120之使用亦可提高冷卻系統100之可靠性。由於其減小之厚度,延伸區域126之剛度可低於外部區域128及台階區域124。剛度之此減小減小振動期間冷卻元件120上之應力。冷卻元件120將較不可能發生故障。因此,可提高冷卻系統100之可靠性。 The use of the engineered cooling element 120 may also improve the reliability of the cooling system 100. Due to its reduced thickness, the stiffness of the extended region 126 may be lower than the outer region 128 and the step region 124. This reduction in stiffness reduces the stress on the cooling element 120 during vibration. The cooling element 120 will be less likely to fail. Thus, the reliability of the cooling system 100 may be improved.

例如,圖2A至圖2E描繪與冷卻元件200之效能相關之曲線圖200A、200B、200C、200D及200E之例示性實施例。曲線圖200A、 200B、200C、200D及200E僅用於說明目的且不旨在表示冷卻元件120及/或冷卻系統100之所有實施例之效能。曲線圖200A包含描繪具有均勻厚度之一冷卻元件在腔室140及150中之偏轉(y)(曲線204A)及壓力(P)(曲線202A)之曲線。曲線圖200B包含描繪腔室140及150中之壓力(P)(曲線202B)及冷卻元件120之偏轉(y)(曲線204B)之曲線。曲線204A及204B之偏轉量值在所展示之實施例中相同。在一些實施例中,偏轉之量值係4微米。由於在延伸區域126下方存在腔洞,所以壓力曲線202B指示在冷卻元件120之腔室中產生之壓力小於由一均勻致動器之壓力曲線202A指示之壓力。懸臂121因此可更容易且有效地移動通過冷卻系統100中之流體。因此可提高效率。 For example, Figures 2A-2E depict exemplary embodiments of graphs 200A, 200B, 200C, 200D, and 200E relating to the performance of cooling element 200. Graphs 200A, 200B, 200C, 200D, and 200E are for illustrative purposes only and are not intended to represent the performance of all embodiments of cooling element 120 and/or cooling system 100. Graph 200A includes curves depicting deflection (y) (curve 204A) and pressure (P) (curve 202A) of a cooling element having uniform thickness in chambers 140 and 150. Graph 200B includes curves depicting pressure (P) in chambers 140 and 150 (curve 202B) and deflection (y) of cooling element 120 (curve 204B). The magnitude of the deflection of curves 204A and 204B is the same in the embodiment shown. In some embodiments, the magnitude of the deflection is 4 microns. Due to the presence of a cavity below extension region 126, pressure curve 202B indicates that the pressure generated in the chamber of cooling element 120 is less than the pressure indicated by pressure curve 202A of a uniform actuator. Cantilever 121 can therefore more easily and efficiently move fluid through cooling system 100. Efficiency can therefore be improved.

類似地,曲線圖200C、200D及200E描繪一均勻冷卻元件(曲線圖200C)及冷卻元件120之兩個實施例(曲線圖200D及200E)之冷卻元件之應力(σ)與偏轉(y)。曲線圖200C指示靠近錨160邊緣之一單一高應力區域。此係隨著均勻冷卻元件偏轉而經歷最高應力之位置。曲線圖200D及200E指示冷卻元件120之應力集中於兩個位置處:錨160附近(即其中冷卻元件120自由振動)及台階區域124與延伸區域126之間的過渡區附近。然而,冷卻元件120之組態降低由冷卻元件120在此等區域處所經歷之應力之量值。因為冷卻元件120經受較小應力,所以冷卻元件120不太可能發生故障。因此,可提高可靠性。 Similarly, graphs 200C, 200D, and 200E depict stress (σ) versus deflection (y) for a uniform cooling element (graph 200C) and two embodiments of cooling element 120 (graphs 200D and 200E). Graph 200C indicates a single high stress region near the edge of anchor 160. This is the location that experiences the highest stress as the uniform cooling element deflects. Graphs 200D and 200E indicate that stress for cooling element 120 is concentrated at two locations: near anchor 160 (i.e., where cooling element 120 is free to vibrate) and near the transition region between step region 124 and extension region 126. However, the configuration of the cooling element 120 reduces the amount of stress experienced by the cooling element 120 in such areas. Because the cooling element 120 is subjected to less stress, the cooling element 120 is less likely to fail. Therefore, reliability can be improved.

圖3A至圖3D描繪類似於主動式冷卻系統(諸如冷卻系統100)之冷卻系統300A、300B、300C及300D之實施例之平面圖。圖3A至圖3D並未按比例繪製。為簡單起見,僅分別展示冷卻元件320A、320B、320C及320D及錨360A、360B、360C及360D之部分。冷卻元件320A、 320B、320C及320D類似於冷卻元件120。因此,用於冷卻元件320A、320B、320C及/或320D之大小及/或材料可類似於用於冷卻元件120之大小及/或材料。錨(支撐結構)360A、360B、360C及360D類似於錨160且由虛線指示。 3A-3D depict plan views of embodiments of cooling systems 300A, 300B, 300C, and 300D similar to active cooling systems, such as cooling system 100. Figures 3A-3D are not drawn to scale. For simplicity, only parts of cooling elements 320A, 320B, 320C and 320D and anchors 360A, 360B, 360C and 360D are shown respectively. Cooling element 320A, 320B, 320C and 320D are similar to cooling element 120. Accordingly, the size and/or materials used for cooling elements 320A, 320B, 320C, and/or 320D may be similar to the size and/or materials used for cooling element 120. Anchors (support structures) 360A, 360B, 360C, and 360D are similar to anchor 160 and are indicated by dashed lines.

對於冷卻元件320A及320B,錨360A及360B位於中心且分別沿冷卻元件320A及320B之一中心軸線延伸。因此,經致動振動之懸垂部分(即懸臂)位於錨360A及360B之右側及左側。在一些實施例中,冷卻元件320A及/或320B係連續結構,其兩部分經致動(例如,錨360A及360B外部之懸垂部分)。在一些實施例中,冷卻元件320A及/或320B包含分開的懸垂部分,各懸垂部分分別附接至錨360A及360B且經致動。冷卻元件320A及320B之懸垂部分因此可經構形以依類似於一蝴蝶之翅膀(同相)或一蹺蹺板(異相)之一方式振動。在圖3A及圖3B中,L係冷卻元件之長度,類似於圖1A至圖1F中所描繪之長度。同樣地,在圖3A及3B中,指示冷卻元件320A及320B之深度P。 For cooling elements 320A and 320B, anchors 360A and 360B are centrally located and extend along one of the central axes of cooling elements 320A and 320B, respectively. Therefore, the suspended portions (ie, cantilevers) that are actuated to vibrate are located to the right and left of anchors 360A and 360B. In some embodiments, cooling elements 320A and/or 320B are continuous structures with two portions actuated (eg, depending portions outside anchors 360A and 360B). In some embodiments, cooling elements 320A and/or 320B include separate depending portions that are each attached and actuated to anchors 360A and 360B, respectively. The overhanging portions of cooling elements 320A and 320B can thus be configured to vibrate in a manner similar to a butterfly's wing (in phase) or a seesaw (out of phase). In Figures 3A and 3B, L is the length of the cooling element, similar to that depicted in Figures 1A-1F. Likewise, in Figures 3A and 3B, the depth P of cooling elements 320A and 320B is indicated.

亦由圖3A至圖3B中之虛線展示的係壓電323。壓電323用於致動冷卻元件320A及320B。儘管在一壓電之背景中描述,但可利用用於致動冷卻元件320A及320B之另一機構。此等其他機構可在壓電體323之位置處或可位於別處。在冷卻元件320A中,壓電323可固定至懸垂部分或可整合至冷卻元件320A中。進一步言之,儘管壓電323在圖3A及圖3B中展示為具有特定形狀及大小,但可使用其他組態。 Also shown by the dashed lines in Figures 3A-3B is piezoelectric 323. Piezoelectric 323 is used to actuate cooling elements 320A and 320B. Although described in a piezoelectric context, another mechanism for actuating cooling elements 320A and 320B may be utilized. These other mechanisms may be at the location of piezoelectric body 323 or may be located elsewhere. In cooling element 320A, piezoelectric 323 may be fixed to the overhang or may be integrated into cooling element 320A. Further, although piezoelectric 323 is shown in FIGS. 3A and 3B as having a specific shape and size, other configurations may be used.

在圖3A中所展示之實施例中,錨360A延伸冷卻元件320A之整個深度。因此,冷卻元件320A之周邊之一部分經固定住。冷卻元件320A之周邊之未固定住部分係經歷振動運動之懸垂部分之部分。在其他 實施例中,錨無需延伸中心軸線之整個長度。在此等實施例中,冷卻元件之整個周邊未被固定住。然而,此一冷卻元件仍具有經構形以依本文中所描述之一方式振動之懸垂部分。例如,在圖3B中,錨360B沒有延伸至冷卻元件320B之周邊。因此,冷卻元件320B之周邊未被固定住。然而,錨360B仍沿冷卻元件320B之中心軸線延伸。冷卻元件320B仍經致動,使得懸垂部分振動(例如類似於一蝴蝶之翅膀)。 In the embodiment shown in FIG. 3A , anchor 360A extends the entire depth of cooling element 320A. Thus, a portion of the periphery of cooling element 320A is fixed. The unfixed portion of the periphery of cooling element 320A is part of the suspended portion that undergoes the vibrating motion. In other embodiments, the anchor need not extend the entire length of the central axis. In such embodiments, the entire periphery of the cooling element is unfixed. However, such a cooling element still has a suspended portion that is configured to vibrate in a manner described herein. For example, in FIG. 3B , anchor 360B does not extend to the periphery of cooling element 320B. Thus, the periphery of cooling element 320B is unfixed. However, anchor 360B still extends along the central axis of cooling element 320B. The cooling element 320B is still actuated, causing the suspended portion to vibrate (e.g. similar to the wings of a butterfly).

雖然冷卻元件320A經描繪為矩形,但冷卻元件可具有另一形狀。在一些實施例中,冷卻元件320A之隅角可為圓形的。圖3B之冷卻元件320B具有圓形懸垂部分。其他形狀亦係可行的。在圖3B中所展示之實施例中,錨360B係中空的且包含孔363。在一些實施例中,冷卻元件320B在錨360B之區域中具有孔。在一些實施例中,冷卻元件320B包含多個部分,使得孔存在於錨360B之區域中。因此,流體可經抽吸通過冷卻元件320B及通過錨360B。因此,可使用冷卻元件320B代替一頂板,諸如頂板110。在此等實施例中,冷卻元件320B中之孔及孔363可依類似於通風口112之一方式起作用。進一步言之,儘管冷卻元件320A及320B經描繪為支撐於一中心區域中,但在一些實施例中,冷卻元件320A及/或320B之一個懸垂部分可經省略。在此等實施例中,冷卻元件320A及/或320B可被認為在一個邊緣處或附近經支撐或錨定,而至少相對邊緣之至少部分自由地經歷振動運動。在一些此等實施例中,冷卻元件320A及/或320B可包含經歷振動運動之一單一懸垂部分。 Although the cooling element 320A is depicted as a rectangle, the cooling element may have another shape. In some embodiments, the corners of the cooling element 320A may be rounded. The cooling element 320B of FIG. 3B has a rounded overhang. Other shapes are also possible. In the embodiment shown in FIG. 3B , the anchor 360B is hollow and includes a hole 363. In some embodiments, the cooling element 320B has a hole in the region of the anchor 360B. In some embodiments, the cooling element 320B includes multiple portions such that the hole is present in the region of the anchor 360B. Therefore, the fluid may be pumped through the cooling element 320B and through the anchor 360B. Therefore, the cooling element 320B may be used in place of a top plate, such as the top plate 110. In such embodiments, the holes and holes 363 in cooling element 320B may function in a manner similar to vent 112. Further, although cooling elements 320A and 320B are depicted as supported in a central region, in some embodiments, a suspended portion of cooling elements 320A and/or 320B may be omitted. In such embodiments, cooling elements 320A and/or 320B may be considered to be supported or anchored at or near an edge, while at least a portion relative to the edge is free to undergo vibratory motion. In some such embodiments, cooling elements 320A and/or 320B may include a single suspended portion that undergoes vibratory motion.

圖3C至圖3D描繪類似於主動式冷卻系統(諸如冷卻系統100)之冷卻系統300C及300D之實施例之平面圖。為簡單起見,僅分別展示冷卻元件320C及320D及錨360C及360D。冷卻元件320C及320D類似於 冷卻元件120。因此,用於冷卻元件320C及/或320D之大小及/或材料可類似於用於冷卻元件120之大小及/或材料。錨360C及360D類似於錨160且由虛線指示。 3C-3D depict plan views of embodiments of cooling systems 300C and 300D similar to active cooling systems, such as cooling system 100. For simplicity, only cooling elements 320C and 320D and anchors 360C and 360D are shown respectively. Cooling elements 320C and 320D are similar to Cooling element 120. Accordingly, the size and/or materials used for cooling elements 320C and/or 320D may be similar to the size and/or materials used for cooling element 120 . Anchors 360C and 360D are similar to anchor 160 and are indicated by dashed lines.

對於冷卻元件320C及320D,錨360C及360D分別限於冷卻元件320C及320D之一中心區域。因此,包圍錨360C及360D之區域經歷振動運動。冷卻元件320C及320D因此可經構形以依類似於一水母或類似於雨傘之打開/關閉之一方式振動。在一些實施例中,冷卻元件320C及320D之整個周邊同相振動(例如,全部一起向上或向下移動)。在其他實施例中,冷卻元件320C及320D之周邊之部分異相振動。在圖3C及圖3D中,L係冷卻元件之長度(例如直徑),類似於圖1A至圖1F中所描繪。儘管冷卻元件320C及320D經描繪為圓形,但冷卻元件可具有另一形狀。進一步言之,可使用一壓電(未展示於圖3C至圖3D中)及/或其他機構來驅動冷卻元件320C及320D之振動運動。 For cooling elements 320C and 320D, anchors 360C and 360D are confined to a central region of cooling elements 320C and 320D, respectively. Thus, the region surrounding anchors 360C and 360D undergoes vibratory motion. Cooling elements 320C and 320D may thus be configured to vibrate in a manner similar to a jellyfish or similar to the opening/closing of an umbrella. In some embodiments, the entire periphery of cooling elements 320C and 320D vibrates in phase (e.g., all moving up or down together). In other embodiments, portions of the periphery of cooling elements 320C and 320D vibrate out of phase. In FIGS. 3C and 3D , L is the length (e.g., diameter) of the cooling element, similar to that depicted in FIGS. 1A to 1F . Although cooling elements 320C and 320D are depicted as being circular, the cooling elements may have another shape. Furthermore, a piezoelectric (not shown in FIGS. 3C-3D ) and/or other mechanisms may be used to drive the vibrational motion of cooling elements 320C and 320D.

在圖3D中所展示之實施例中,錨360D係中空的且具有孔363。在一些實施例中,冷卻元件320D在錨360D之區域中具有孔。在一些實施例中,冷卻元件320D包含多個部分,使得孔存在於錨360D之區域中。因此,流體可經抽吸通過冷卻元件320D且通過錨360D。流體可通過孔363離開。因此,冷卻元件320D可用於代替一頂板,諸如頂板110。在此等實施例中,冷卻元件320D中之孔及孔363可依類似於通風口112之一方式起作用。 In the embodiment shown in Figure 3D, anchor 360D is hollow and has hole 363. In some embodiments, cooling element 320D has holes in the area of anchor 360D. In some embodiments, cooling element 320D includes multiple portions such that holes are present in the area of anchor 360D. Accordingly, fluid may be drawn through cooling element 320D and through anchor 360D. Fluid can exit through hole 363. Therefore, cooling element 320D may be used in place of a top plate, such as top plate 110 . In such embodiments, the holes in cooling element 320D and holes 363 may function in a manner similar to vents 112 .

冷卻系統(諸如冷卻系統100)可利用冷卻元件320A、320B、320C、320D及/或類似冷卻元件。此等冷卻系統亦可共用冷卻系統100之益處。使用冷卻元件320A、320B、320C、320D及/或類似冷卻 元件之冷卻系統可更有效地以高速驅動流體朝向發熱結構。因此,改良發熱結構與移動流體之間的熱傳遞。因為發熱結構經更有效地冷卻,所以對應裝置可展現改良操作,諸如以更高速度及/或功率運行更長時間。採用冷卻元件320A、320B、320C、320D及/或類似冷卻元件之冷卻系統可適用於其中有限空間可用之較小及/或行動裝置。此等裝置之效能因此可經改良。因為冷卻元件320A、320B、320C、320D及/或類似冷卻元件可以15kHz或更高之頻率振動,所以使用者不會聽到與冷卻元件之致動相關聯之任何雜訊。若在冷卻元件320A、320B、320C、320D及/或類似冷卻元件之聲學及/或結構諧振頻率處或附近驅動,則在操作中冷卻系統中使用之功率可顯著降低。冷卻元件320A、320B、320C、320D及/或類似冷卻元件在使用期間可不實體接觸板,允許更容易地維持諧振。可使用有限額外功率達成經改良、安靜冷卻之益處。因此,可提高併入冷卻元件320A、320B、320C、320D及/或類似冷卻元件之裝置之效能。 A cooling system, such as cooling system 100, may utilize cooling elements 320A, 320B, 320C, 320D, and/or similar cooling elements. These cooling systems may also share the benefits of cooling system 100. Cooling using cooling elements 320A, 320B, 320C, 320D and/or similar The component's cooling system can more efficiently drive fluid toward the heat-generating structure at high speeds. Thus, heat transfer between the heating structure and the moving fluid is improved. Because the heat-generating structure is cooled more efficiently, the corresponding device may exhibit improved operation, such as operating at higher speeds and/or power for longer periods of time. Cooling systems employing cooling elements 320A, 320B, 320C, 320D, and/or similar cooling elements may be suitable for smaller and/or mobile devices in which limited space is available. The performance of these devices can therefore be improved. Because cooling elements 320A, 320B, 320C, 320D, and/or similar cooling elements can vibrate at frequencies of 15 kHz or higher, the user will not hear any noise associated with actuation of the cooling elements. If driven at or near the acoustic and/or structural resonance frequencies of cooling elements 320A, 320B, 320C, 320D and/or similar cooling elements, the power used in the cooling system can be significantly reduced in operation. Cooling elements 320A, 320B, 320C, 320D, and/or similar cooling elements may not physically contact the plate during use, allowing resonance to be more easily maintained. Limited additional power can be used to achieve the benefits of improved, quiet cooling. Thus, the performance of devices incorporating cooling elements 320A, 320B, 320C, 320D, and/or similar cooling elements may be improved.

圖4A至圖4B描繪包含一頂部中心錨定之冷卻元件之冷卻系統400之實施例。在一些實施例中,冷卻系統400包含一主動式冷卻系統。圖4A描繪處於一中間位置之冷卻系統400之一側視圖。圖4B描繪冷卻系統400之一俯視圖。圖4A至圖4B並未按比例繪製。為簡單起見,僅展示冷卻系統400之部分。參考圖4A至圖4B,冷卻系統400類似於冷卻系統100。因此,類似組件具有類似標籤。例如,冷卻系統400與類似於發熱結構102之發熱結構402結合使用。 4A-4B depict an embodiment of a cooling system 400 including a top center-anchored cooling element. In some embodiments, the cooling system 400 comprises an active cooling system. FIG. 4A depicts a side view of the cooling system 400 in a mid-position. FIG. 4B depicts a top view of the cooling system 400. FIG. 4A-4B are not drawn to scale. For simplicity, only portions of the cooling system 400 are shown. Referring to FIG. 4A-4B , the cooling system 400 is similar to the cooling system 100. Therefore, similar components have similar labels. For example, the cooling system 400 is used in conjunction with a heat generating structure 402 similar to the heat generating structure 102.

冷卻系統400包含具有通風口412之頂板410、冷卻元件420、包含孔口432之孔口板430、具有一間隙之頂部腔室440、具有一間隙之底部腔室450及錨(即支撐結構)460,其等分別類似於具有通風口112 之頂板110、冷卻元件120、包含孔口132之孔口板130、具有間隙142之頂部腔室140、具有間隙152之底部腔室150及錨(即支撐結構)160。因此,冷卻元件420由錨460在中心支撐,使得冷卻元件420之周邊之至少一部分自由振動。在一些實施例中,錨460沿冷卻元件420之軸線延伸(例如依類似於錨360A及/或360B之一方式)。在其他實施例中,錨460僅靠近冷卻元件420之中心部分(例如類似於錨360C及/或360D)。儘管在圖4A及圖4B中未明確標出,但冷卻元件420包含一錨定區域及懸臂,懸臂包含台階區域、延伸區域及外部區域,其等分別類似於錨定區域122,懸臂121、台階區域124、延伸區域126及外部區域128。在一些實施例中,冷卻元件420之懸臂同相驅動。在一些實施例中,冷卻元件420之懸臂異相驅動。 Cooling system 400 includes a top plate 410 having vents 412, a cooling element 420, an orifice plate 430 including an orifice 432, a top chamber 440 having a gap, a bottom chamber 450 having a gap, and anchors (i.e., support structures) 460, etc. respectively similar to having vents 112 The top plate 110, the cooling element 120, the orifice plate 130 including the orifice 132, the top chamber 140 with the gap 142, the bottom chamber 150 with the gap 152 and the anchor (ie, support structure) 160. Thus, cooling element 420 is centrally supported by anchor 460 such that at least a portion of the perimeter of cooling element 420 is free to vibrate. In some embodiments, anchor 460 extends along the axis of cooling element 420 (eg, in a manner similar to anchors 360A and/or 360B). In other embodiments, anchor 460 is only proximate a central portion of cooling element 420 (eg, similar to anchors 360C and/or 360D). Although not explicitly labeled in FIGS. 4A and 4B , the cooling element 420 includes an anchoring region and a cantilever. The cantilever includes a step region, an extension region, and an outer region, which are similar to the anchoring region 122 , the cantilever 121 , and the step, respectively. Area 124, extension area 126 and outer area 128. In some embodiments, the cantilevers of cooling element 420 are driven in phase. In some embodiments, the cantilevers of cooling element 420 are driven out of phase.

錨460自上方支撐冷卻元件420。因此,冷卻元件420自錨460懸掛。錨460自頂板410懸掛。頂板410包含通風口413。在錨460之側上之通風口412為流體流入至腔室440之側中提供一路徑。 Anchor 460 supports cooling element 420 from above. Therefore, the cooling element 420 is suspended from the anchor 460 . Anchors 460 are suspended from the top plate 410 . Top panel 410 contains vents 413 . Vents 412 on the side of anchor 460 provide a path for fluid to flow into the side of chamber 440.

如以上關於冷卻系統100所討論,冷卻元件420可經驅動以在冷卻元件420之結構諧振頻率處或附近振動。進一步言之,冷卻元件420之結構諧振頻率可經組態以與腔室440/450之聲學諧振對準。結構及聲學諧振頻率通常選擇在超音波範圍內。例如,冷卻元件420之振動運動可以關於冷卻系統100描述之頻率。因此,可提高效率及流速。然而,可使用其他頻率。 As discussed above with respect to cooling system 100 , cooling element 420 may be driven to vibrate at or near the structural resonance frequency of cooling element 420 . Further, the structural resonance frequency of cooling element 420 may be configured to align with the acoustic resonance of chamber 440/450. Structural and acoustic resonant frequencies are usually chosen in the ultrasonic range. For example, the vibrational motion of cooling element 420 may be at a frequency described with respect to cooling system 100 . Therefore, efficiency and flow rate can be improved. However, other frequencies can be used.

冷卻系統400依類似於冷卻系統100之一方式操作。冷卻系統400因此共用冷卻系統100之益處。因此,可改良採用冷卻系統400之一裝置之效能。依類似於冷卻元件120之一方式構形之冷卻元件420之使用可提高效率及可靠性。另外,將冷卻元件420自錨460懸掛可進一步提高 效能。特定言之,可減少可影響其他冷卻單元(未展示)之冷卻系統400中之振動。例如,歸因於冷卻元件420之運動,可在頂板410中引起較少振動。因此,冷卻系統400與其他冷卻系統(例如其他單元)或併入冷卻系統400之裝置之其他部分之間的串擾可減少。因此,可增強效能。 The cooling system 400 operates in a manner similar to the cooling system 100. The cooling system 400 thus shares the benefits of the cooling system 100. As a result, the performance of a device employing the cooling system 400 may be improved. The use of a cooling element 420 configured in a manner similar to the cooling element 120 may improve efficiency and reliability. Additionally, suspending the cooling element 420 from the anchor 460 may further improve performance. Specifically, vibrations in the cooling system 400 that may affect other cooling units (not shown) may be reduced. For example, less vibration may be induced in the top plate 410 due to the movement of the cooling element 420. Therefore, crosstalk between the cooling system 400 and other cooling systems (e.g., other units) or other parts of an apparatus incorporating the cooling system 400 can be reduced. Thus, performance can be enhanced.

圖5描繪冷卻元件520或致動器之一實施例之一側視圖。圖5並未按比例繪製。冷卻元件520類似於冷卻元件120。因此,冷卻元件520包含類似於錨定區域122及懸臂121之錨定區域522及懸臂521。錨定區域522由一錨(諸如錨160及/或460)在一冷卻系統(諸如冷卻系統100及/或400)中保持於適當位置。懸臂521回應於冷卻元件520經驅動而經歷振動運動。各懸臂521包含分別類似於台階區域124、延伸區域126及外部區域128之台階區域524、延伸區域526及外部區域528。在所展示之實施例中,錨定區域522位於中心。台階區域524自錨定區域522向外延伸。延伸區域526自台階區域524向外延伸。外部區域528自延伸區域526向外延伸。在其他實施例中,錨定區域522可在相對邊緣處在致動器及外部區域528之一個邊緣處。在此等實施例中,致動器係邊緣錨定。延伸區域526、台階區域524及外部區域528可具有分別類似於延伸區域126、台階區域124及外部區域128之尺寸的尺寸。另外,如以上關於外部區域128所描述,外部區域528距錨定區域522之每單位距離之一質量高於延伸區域526。 FIG. 5 depicts a side view of an embodiment of a cooling element 520 or actuator. FIG. 5 is not drawn to scale. The cooling element 520 is similar to the cooling element 120. Thus, the cooling element 520 includes an anchoring region 522 and a cantilever 521 similar to the anchoring region 122 and the cantilever 121. The anchoring region 522 is held in place in a cooling system (such as the cooling system 100 and/or 400) by an anchor (such as the anchor 160 and/or 460). The cantilever 521 undergoes vibratory motion in response to the cooling element 520 being driven. Each cantilever 521 includes a step region 524, an extension region 526, and an outer region 528, which are similar to the step region 124, the extension region 126, and the outer region 128, respectively. In the embodiment shown, the anchor region 522 is located in the center. The step region 524 extends outward from the anchor region 522. The extension region 526 extends outward from the step region 524. The outer region 528 extends outward from the extension region 526. In other embodiments, the anchor region 522 can be at one edge of the actuator and the outer region 528 at opposite edges. In these embodiments, the actuator is edge anchored. Extension region 526, step region 524, and outer region 528 may have dimensions similar to the dimensions of extension region 126, step region 124, and outer region 128, respectively. In addition, as described above with respect to outer region 128, outer region 528 has a higher mass per unit distance from anchor region 522 than extension region 526.

各懸臂521亦包含額外台階區域529。額外台階區域529在台階區域524與延伸區域526之間。額外台階區域529之厚度在台階區域524之台階厚度與延伸區域526之延伸厚度之間。額外台階區域之厚度範圍可基於冷卻元件520振動之所需頻率而修改。 Each cantilever 521 also includes an additional step region 529. The additional step region 529 is between the step region 524 and the extension region 526. The thickness of the additional step region 529 is between the step thickness of the step region 524 and the extension thickness of the extension region 526. The thickness range of the additional step region can be modified based on the desired frequency of vibration of the cooling element 520.

冷卻元件500依類似於冷卻元件120之一方式在一冷卻系統(諸如冷卻系統100及/或400)中操作。因此,併入冷卻元件500之冷卻系統共用冷卻系統100之益處。因此,可提高採用此一冷卻系統之一裝置之效能。冷卻元件520之使用可進一步提高效率及可靠性。因此,可增強效能。 Cooling element 500 operates in a cooling system (such as cooling systems 100 and/or 400 ) in a manner similar to cooling element 120 . Therefore, cooling systems incorporating cooling element 500 share the benefits of cooling system 100 . Therefore, the performance of a device using this cooling system can be improved. The use of cooling element 520 can further improve efficiency and reliability. Therefore, performance can be enhanced.

圖6A至圖6B描繪可用作(例如)冷卻系統100及/或400中之一冷卻元件之工程化致動器之一實施例。因此,致動器經描述為冷卻元件600。圖6A至圖6B並未按比例繪製。圖6A描繪包含錨定區域602及懸臂601之冷卻元件600之一側視圖。圖6B描繪懸臂601之一底部透視圖。錨定區域602可用於由一錨(諸如錨160及/或460)將冷卻元件600支撐或保持於一冷卻系統(諸如冷卻系統100及/或400)中之適當位置。懸臂601回應於冷卻元件600經驅動而經歷振動運動。各懸臂601包含台階區域604及凹陷區域606。在所展示之實施例中,錨定區域602位於中心。台階區域604自錨定區域602向外延伸。凹陷區域606自台階區域604向外延伸。在其他實施例中,錨定區域602可在致動器之一個邊緣處且凹陷區域606可在相對邊緣處終止。在此等實施例中,致動器係邊緣錨定。進一步言之,其他區域(未展示)可包含於致動器中。 6A-6B depict an embodiment of an engineered actuator that can be used as, for example, a cooling element in cooling systems 100 and/or 400. Thus, the actuator is described as cooling element 600. FIGS. 6A-6B are not drawn to scale. FIG. 6A depicts a side view of cooling element 600 including anchoring region 602 and cantilever 601. FIG. 6B depicts a bottom perspective view of cantilever 601. Anchoring region 602 can be used to support or hold cooling element 600 in place in a cooling system (such as cooling system 100 and/or 400) by an anchor (such as anchor 160 and/or 460). The cantilever 601 undergoes vibratory motion in response to the cooling element 600 being driven. Each cantilever 601 includes a step region 604 and a recessed region 606. In the embodiment shown, the anchor region 602 is located in the center. The step region 604 extends outward from the anchor region 602. The recessed region 606 extends outward from the step region 604. In other embodiments, the anchor region 602 may be at one edge of the actuator and the recessed region 606 may terminate at the opposite edge. In these embodiments, the actuator is edge anchored. Further, other regions (not shown) may be included in the actuator.

凹陷區域606包含錐度607、頂部邊緣(或蓋)608及凹部609。錐度607之間的凹部609係冷卻元件600中之凹陷。因此,若冷卻元件600用於一冷卻系統(諸如冷卻在系統100及/或400)中,凹部609提供可被視為增加底部腔室之大小之腔洞。錐度607具有隨距錨定區域602之距離增加而減小之一寬度。類似地,凹部609具有隨距錨定區域602之距離增加而增加之一凹部寬度。例如,錐度(即寬度之變化)可選自一線性錐 度、一二次錐度及一立方錐度。其他錐度係可行的。在一些實施例中,錐度607及凹部609可具有恆定寬度(即係無錐度)。 The recessed region 606 includes a taper 607, a top edge (or lid) 608, and a recess 609. The recess 609 between the tapers 607 is a depression in the cooling element 600. Thus, if the cooling element 600 is used in a cooling system (such as the cooling system 100 and/or 400), the recess 609 provides a cavity that can be considered to increase the size of the bottom chamber. The taper 607 has a width that decreases as the distance from the anchoring region 602 increases. Similarly, the recess 609 has a recess width that increases as the distance from the anchoring region 602 increases. For example, the taper (i.e., the variation in width) may be selected from a linear taper, a quadratic taper, and a cubic taper. Other tapers are possible. In some embodiments, the taper 607 and the recess 609 may have a constant width (i.e., no taper).

在操作中,冷卻元件600依類似於冷卻元件120之一方式起作用。因此,可驅動冷卻元件600以經歷振動運動。當在一冷卻系統(諸如冷卻系統100及/或400)中使用時,冷卻元件600可以本文中所描述之速度驅動流體。因此,冷卻元件600可用於有效地冷卻發熱結構。此外,凹部609可依類似於冷卻元件120之延伸區域126之一方式在懸臂601之上衝程/下衝程期間減少吸力/壓力增加。因此,可進一步提高效率。進一步言之,錐度607可減少懸臂601在振動運動期間所經受之應力。因此,可提高冷卻元件600之可靠性。 In operation, the cooling element 600 functions in a manner similar to the cooling element 120. Thus, the cooling element 600 can be driven to undergo an oscillating motion. When used in a cooling system (such as the cooling system 100 and/or 400), the cooling element 600 can drive the fluid at the speed described herein. Thus, the cooling element 600 can be used to effectively cool a heat generating structure. In addition, the recess 609 can reduce the suction/pressure increase during the upstroke/downstroke of the cantilever 601 in a manner similar to the extended area 126 of the cooling element 120. Thus, efficiency can be further improved. Further, the taper 607 can reduce the stress experienced by the cantilever 601 during the oscillating motion. Therefore, the reliability of the cooling element 600 can be improved.

圖7係懸臂701之一實施例之一透視圖,其可為一冷卻元件(諸如冷卻元件600)之部分。圖7並未按比例繪製。懸臂701可相鄰於一錨定區域(未展示),該錨定區域可用於支撐或保持懸臂701係其一部分之冷卻元件。在一些實施例中,懸臂701可為一中心錨定之冷卻元件之部分或一邊緣錨定之冷卻元件之部分。懸臂701回應於此一冷卻元件經驅動而經歷振動運動。懸臂701包含台階區域704及凹陷區域706。台階區域704自一錨定區域(未展示)向外延伸。凹陷區域706自台階區域704向外延伸。其他區域(未展示)可包含於懸臂701中。 Figure 7 is a perspective view of an embodiment of a cantilever 701 that may be part of a cooling element, such as cooling element 600. Figure 7 is not drawn to scale. Cantilever 701 may be adjacent to an anchoring area (not shown) that may be used to support or retain a cooling element of which cantilever 701 is a part. In some embodiments, cantilever 701 may be part of a centrally anchored cooling element or part of an edge-anchored cooling element. Cantilever 701 undergoes oscillatory motion in response to this cooling element being driven. The cantilever 701 includes a stepped area 704 and a recessed area 706. Step region 704 extends outwardly from an anchor region (not shown). The recessed area 706 extends outwardly from the stepped area 704 . Other areas (not shown) may be included in cantilever 701 .

凹陷區域706包含錐度707、底部邊緣(或蓋)708及凹部709。錐度707及凹部709分別類似於錐度607及凹部609。若懸臂701用於一冷卻系統(諸如冷卻系統100及/或400)中,則底部邊緣708鄰接一底部腔室。因此,若懸臂701用於一冷卻系統(諸如冷卻系統100及/或400)中,則凹部709提供可被視為增加頂部腔室之大小之腔洞。錐度707具有隨距台 階區域704之距離增加而減小之一寬度。例如,錐度(即寬度之變化)可選自一線性錐度、一二次錐度及一立方錐度。其他錐度係可行的。在一些實施例中,錐度707及凹部709可具有恆定寬度(即係無錐度)。 Recessed area 706 includes taper 707, bottom edge (or cover) 708, and recess 709. Taper 707 and recess 709 are similar to taper 607 and recess 609 respectively. If cantilever 701 is used in a cooling system (such as cooling systems 100 and/or 400), bottom edge 708 abuts a bottom chamber. Therefore, if cantilever 701 is used in a cooling system (such as cooling system 100 and/or 400), recess 709 provides a cavity that can be considered to increase the size of the top chamber. Taper 707 has a variable distance stage The distance of the step area 704 increases and the width decreases. For example, the taper (ie, the change in width) may be selected from a linear taper, a quadratic taper, and a cubic taper. Other taper systems are possible. In some embodiments, taper 707 and recess 709 may have a constant width (ie, no taper).

在操作中,懸臂701依類似於冷卻元件600之懸臂601之一方式起作用。因此,懸臂701可經驅動以經歷振動運動。當用於一冷卻系統(諸如冷卻系統100及/或400)中時,懸臂701可以本文中所描述之速度驅動流體。因此,懸臂701可用於有效地冷卻發熱結構。此外,凹部709可在懸臂701之下衝程/上衝程期間減少吸力/壓力增加。因此,可提高效率。進一步言之,錐度707可減少懸臂701在振動運動期間所經受之應力。因此,可提高懸臂701之可靠性。 In operation, the cantilever 701 functions in a manner similar to the cantilever 601 of the cooling element 600 . Therefore, the cantilever 701 may be driven to undergo oscillatory motion. When used in a cooling system (such as cooling system 100 and/or 400), cantilever 701 can drive fluid at the speeds described herein. Therefore, cantilever 701 can be used to effectively cool heat-generating structures. Additionally, the recess 709 may reduce suction/pressure increase during the downstroke/upstroke of the boom 701 . Therefore, efficiency can be improved. Furthermore, taper 707 may reduce the stress experienced by cantilever 701 during vibratory motion. Therefore, the reliability of the cantilever 701 can be improved.

圖8係懸臂801之一實施例之一透視圖,其可為一冷卻元件(諸如冷卻元件600)之部分。圖8並非按比例繪製。懸臂801可相鄰於一錨定區域(未展示),該錨定區域可用於支撐或保持懸臂801係其一部分之冷卻元件。在一些實施例中,懸臂801可為一中心錨定之冷卻元件之部分或一邊緣錨定之冷卻元件之部分。懸臂801回應於此一冷卻元件經驅動而經歷振動運動。懸臂801包含台階區域804及凹陷區域806。台階區域804自一錨定區域(未展示)向外延伸。懸臂801亦包含額外凹陷區域816。凹陷區域806自額外凹陷區域816向外延伸。其他區域(未展示)可包含於懸臂801中。 FIG. 8 is a perspective view of an embodiment of a cantilever 801, which may be part of a cooling element, such as cooling element 600. FIG. 8 is not drawn to scale. Cantilever 801 may be adjacent to an anchoring area (not shown) that may be used to support or hold the cooling element of which cantilever 801 is a part. In some embodiments, cantilever 801 may be part of a center-anchored cooling element or part of an edge-anchored cooling element. Cantilever 801 undergoes vibratory motion in response to such a cooling element being driven. Cantilever 801 includes step area 804 and recessed area 806. Step area 804 extends outward from an anchoring area (not shown). The cantilever 801 also includes an additional recessed area 816. The recessed area 806 extends outward from the additional recessed area 816. Other areas (not shown) may be included in the cantilever 801.

凹陷區域806包含類似於冷卻元件600之凹陷區域606、錐度607、頂部邊緣608及凹部609之錐度807、頂部邊緣808及凹部809。額外凹陷區域816包含錐度817、底部邊緣(或蓋)818、頂部邊緣808及凹部(圖8中未標記)。錐度817及凹部分別類似於錐度807及凹部809。然而,錐 度817及對應凹部由底部邊緣818及頂部邊緣808包圍。在一些實施例中,額外凹陷區域816之側亦可經包圍。若懸臂801用於一冷卻系統(諸如冷卻系統100及/或400)中,則頂部邊緣808鄰接一頂部腔室且底部邊緣818鄰接一底部腔洞。因此,若懸臂801用於一冷卻系統(諸如冷卻系統100及/或400),則凹部809提供可被視為增加底部腔室之大小之腔洞。因此,可減輕懸臂801之一上衝程期間底部腔室中之吸力及懸臂801之下衝程期間之壓力增加。因此,懸臂801可更有效地移動通過腔室中之流體。然而,由於頂部邊緣808及底部邊緣818之存在,額外凹陷區域816不顯著影響周圍腔室中之壓力。代替地,額外凹陷區域816降低應力。 The recessed region 806 includes a taper 807, a top edge 808, and a recess 809 similar to the recessed region 606, taper 607, top edge 608, and recess 609 of the cooling element 600. The additional recessed region 816 includes a taper 817, a bottom edge (or lid) 818, a top edge 808, and a recess (not labeled in FIG. 8 ). The taper 817 and the recess are similar to the taper 807 and the recess 809, respectively. However, the taper 817 and the corresponding recess are surrounded by the bottom edge 818 and the top edge 808. In some embodiments, the sides of the additional recessed region 816 may also be surrounded. If the cantilever 801 is used in a cooling system (such as the cooling system 100 and/or 400), the top edge 808 is adjacent to a top chamber and the bottom edge 818 is adjacent to a bottom cavity. Therefore, if the cantilever 801 is used in a cooling system (such as the cooling system 100 and/or 400), the recess 809 provides a cavity that can be viewed as increasing the size of the bottom cavity. Therefore, the suction force in the bottom cavity during an upstroke of the cantilever 801 and the pressure increase during the downstroke of the cantilever 801 can be reduced. Therefore, the cantilever 801 can more efficiently move fluid through the chamber. However, due to the presence of the top edge 808 and the bottom edge 818, the additional recessed area 816 does not significantly affect the pressure in the surrounding chamber. Instead, the additional recessed area 816 reduces stress.

在操作中,懸臂801依類似於冷卻元件600之懸臂601之一方式起作用。因此,懸臂801可經驅動以經歷振動運動。當用於一冷卻系統(諸如冷卻系統100及/或400)中時,懸臂801可以本文中所描述之速度驅動流體。因此,懸臂801可用於有效地冷卻發熱結構。此外,在懸臂801之上衝程/下衝程期間,凹部809可減少吸力/壓力增加。因此,可提高效率。進一步言之,錐度807及錐度817兩者可減少懸臂801在振動運動期間所經受之應力。因此,可提高懸臂801之可靠性。 In operation, cantilever 801 functions in a manner similar to cantilever 601 of cooling element 600 . Therefore, the cantilever 801 may be driven to undergo oscillatory motion. When used in a cooling system (such as cooling system 100 and/or 400), cantilever 801 can drive fluid at the speeds described herein. Therefore, cantilever 801 can be used to effectively cool heat-generating structures. Additionally, the recess 809 may reduce suction/pressure increase during the up/down stroke of the boom 801. Therefore, efficiency can be improved. Furthermore, both taper 807 and taper 817 may reduce the stress experienced by cantilever 801 during vibratory motion. Therefore, the reliability of the cantilever 801 can be improved.

圖9描繪致動器或冷卻元件900之實施例之一側視圖。圖9並非按比例繪製。冷卻元件900類似於冷卻元件600且可用於一冷卻系統(諸如冷卻系統100及/或400)。因此,冷卻元件900包含類似於錨定區域602及懸臂601之錨定區域902及懸臂901。錨定區域602由一錨(諸如錨160及/或460)在一冷卻系統(諸如冷卻系統100及/或400)中保持適當位置。懸臂901回應於冷卻元件900經驅動而經歷振動運動。在所展示之實施例中,錨定區域902位於中心。在其他實施例中,錨定區域902可在致動器 之一個邊緣處且凹陷區域906可在相對邊緣處。在此等實施例中,致動器係邊緣錨定。 FIG. 9 depicts a side view of an embodiment of an actuator or cooling element 900. FIG. 9 is not drawn to scale. Cooling element 900 is similar to cooling element 600 and can be used in a cooling system (such as cooling system 100 and/or 400). Thus, cooling element 900 includes an anchoring region 902 and cantilever 901 similar to anchoring region 602 and cantilever 601. Anchoring region 602 is held in place in a cooling system (such as cooling system 100 and/or 400) by an anchor (such as anchor 160 and/or 460). Cantilever 901 undergoes vibratory motion in response to cooling element 900 being driven. In the embodiment shown, the anchoring region 902 is located in the center. In other embodiments, the anchoring region 902 may be at one edge of the actuator and the recessed region 906 may be at the opposite edge. In such embodiments, the actuator is edge-anchored.

各懸臂901類似於懸臂601、701及801。因此,各懸臂包含台階區域904、凹陷區域906及額外凹陷區域916。凹陷區域906及額外凹陷區域916包含類似於錐度607及凹部609之錐度(未明確展示)及凹部(未明確展示)。在所展示之實施例中,凹陷區域906具有頂蓋及底蓋。因此,凹陷區域906可在實質上不改變周圍腔室中之壓力之情況下降低懸臂901之此部分中之振動引起之應力。額外凹陷區域916既可降低應力又可影響安裝有冷卻元件900之頂部腔室中之壓力。 Each cantilever 901 is similar to cantilevers 601, 701 and 801. Accordingly, each cantilever includes a stepped area 904, a recessed area 906, and an additional recessed area 916. Recessed area 906 and additional recessed area 916 include tapers (not expressly shown) and recesses (not expressly shown) similar to tapers 607 and recesses 609 . In the illustrated embodiment, recessed area 906 has a top cover and a bottom cover. Thus, recessed area 906 may reduce vibration-induced stresses in this portion of cantilever 901 without substantially changing the pressure in the surrounding chamber. The additional recessed area 916 both reduces stress and affects the pressure in the top chamber where the cooling element 900 is mounted.

冷卻元件900依類似於冷卻元件600之一方式起作用。因此,懸臂901可經驅動以經歷振動運動。當用於一冷卻系統(諸如冷卻系統100及/或400)中時,冷卻元件900可以本文中所描述之速度驅動流體。因此,可利用冷卻元件來有效地冷卻發熱結構。此外,凹陷區域906及額外凹陷區域916可在懸臂901之下衝程/向上衝程期間減少吸力/壓力增加。因此,可提高效率。進一步言之,凹陷區域906及額外凹陷區域916兩者可減少懸臂901在振動運動期間所經受之應力。因此,可提高冷卻元件900之可靠性。 Cooling element 900 functions in a manner similar to cooling element 600 . Therefore, the cantilever 901 may be driven to undergo oscillatory motion. When used in a cooling system (such as cooling system 100 and/or 400), cooling element 900 can drive fluid at the velocities described herein. Therefore, the cooling element can be utilized to effectively cool the heat-generating structure. Additionally, the recessed areas 906 and additional recessed areas 916 may reduce suction/pressure increases during the downstroke/upstroke of the boom 901 . Therefore, efficiency can be improved. Furthermore, both the recessed area 906 and the additional recessed area 916 may reduce the stress experienced by the cantilever 901 during vibratory motion. Therefore, the reliability of the cooling element 900 can be improved.

圖10描繪致動器或冷卻元件1000之實施例之一側視圖。圖10並非按比例繪製。冷卻元件1000類似於冷卻元件600且可用於一冷卻系統(諸如冷卻系統100及/或400)。因此,冷卻元件1000包含類似於錨定區域602及懸臂601之錨定區域1002及懸臂1001。錨定區域1002由一錨(諸如錨160及/或460)在一冷卻系統(諸如冷卻系統100及/或400)中保持適當位置。懸臂1001回應於冷卻元件1000經驅動而經歷振動運動。在所展示之 實施例中,錨定區域1002位於中心。在其他實施例中,錨定區域1002可在致動器之一個邊緣處且凹陷區域1006可在相對邊緣處。在此等實施例中,致動器係邊緣錨定。 Figure 10 depicts a side view of an embodiment of an actuator or cooling element 1000. Figure 10 is not drawn to scale. Cooling element 1000 is similar to cooling element 600 and may be used in a cooling system (such as cooling systems 100 and/or 400). Thus, the cooling element 1000 includes an anchor region 1002 and a cantilever 1001 similar to the anchor region 602 and the cantilever 601 . Anchor region 1002 is held in place by an anchor (such as anchors 160 and/or 460) in a cooling system (such as cooling systems 100 and/or 400). The cantilever 1001 undergoes oscillatory motion in response to the cooling element 1000 being actuated. on display In an embodiment, anchor region 1002 is located in the center. In other embodiments, the anchor area 1002 can be at one edge of the actuator and the recessed area 1006 can be at the opposite edge. In these embodiments, the actuator is edge anchored.

各懸臂1001類似於懸臂601、701及801。因此,各懸臂包含台階區域1004及凹陷區域1006。凹陷區域1006包含類似於錐度607及凹部609之錐度(未明確展示)及凹部(未明確展示)。在所展示之實施例中,凹陷區域1006具有頂蓋及底蓋。因此,凹陷區域1006可在實質上不改變周圍腔室中之壓力之情況下降低懸臂1001之此部分中之振動引起之應力。 Each cantilever 1001 is similar to cantilevers 601, 701 and 801. Therefore, each cantilever includes a stepped area 1004 and a recessed area 1006. Recessed area 1006 includes a taper (not expressly shown) and a recess (not expressly shown) similar to taper 607 and recess 609. In the illustrated embodiment, recessed area 1006 has a top cover and a bottom cover. Thus, recessed area 1006 may reduce vibration-induced stresses in this portion of cantilever 1001 without substantially changing the pressure in the surrounding chamber.

冷卻元件1000依類似於冷卻元件600之一方式起作用。因此,懸臂1001可經驅動以經歷振動運動。當用於一冷卻系統(諸如冷卻系統100及/或400)中時,冷卻元件1000可以本文中所描述之速度驅動流體。因此,冷卻元件1000可用於有效地冷卻發熱結構。此外,凹陷區域1006可減少懸臂1001在振動運動期間所經受之應力。因此,可提高冷卻元件1000之可靠性。 Cooling element 1000 functions in a manner similar to cooling element 600 . Therefore, the cantilever 1001 may be driven to undergo oscillatory motion. When used in a cooling system (such as cooling system 100 and/or 400), cooling element 1000 can drive fluid at the velocities described herein. Therefore, cooling element 1000 can be used to effectively cool heat-generating structures. Additionally, the recessed area 1006 may reduce the stress experienced by the cantilever 1001 during vibratory motion. Therefore, the reliability of the cooling element 1000 can be improved.

圖11至圖13描繪懸臂1101、1201及1301之實施例,其等可為一冷卻元件(諸如冷卻元件600)之部分。圖11至圖13並未按比例繪製。懸臂1101、1201及/或1301可相鄰於一錨定區域(未展示),該錨定區域可用於支撐或保持懸臂1101、1201及/或1301係其一部分之冷卻元件。在一些實施例中,懸臂1101、1201及/或1301可為一中心錨定之冷卻元件之部分或一邊緣錨定之冷卻元件之部分。懸臂1101、1201及1301各回應於此一冷卻元件經驅動而經歷振動運動。懸臂1101包含台階區域1104及凹陷區域1106。亦展示錨定區域1102。台階區域1104自錨定區域1102向外延伸。凹陷區域1106自台階區域1104向外延伸。懸臂1201包含台階區 域1204及凹陷區域1206。亦展示錨定區域1202。台階區域1204自一錨定區域1202向外延伸。凹陷區域1206自台階區域1204向外延伸。懸臂1301包含台階區域1304及凹陷區域1306。亦展示錨定區域1302。區域1304自一錨定區域1302向外延伸。凹陷區域1306自台階區域1304向外延伸。其他區域(未展示)可包含於懸臂1101、1201及/或1301中。 FIGS. 11-13 depict embodiments of cantilevers 1101, 1201, and 1301, which may be part of a cooling element, such as cooling element 600. FIGS. 11-13 are not drawn to scale. Cantilevers 1101, 1201, and/or 1301 may be adjacent to an anchoring region (not shown) that may be used to support or hold the cooling element of which cantilevers 1101, 1201, and/or 1301 are a part. In some embodiments, cantilevers 1101, 1201, and/or 1301 may be part of a center-anchored cooling element or part of an edge-anchored cooling element. Suspension arms 1101, 1201, and 1301 each undergo vibratory motion in response to a cooling element being driven. Suspension arm 1101 includes a step region 1104 and a recessed region 1106. Anchor region 1102 is also shown. Step region 1104 extends outward from anchor region 1102. Recessed region 1106 extends outward from step region 1104. Suspension arm 1201 includes a step region 1204 and a recessed region 1206. Anchor region 1202 is also shown. Step region 1204 extends outward from an anchor region 1202. Recessed region 1206 extends outward from step region 1204. Cantilever 1301 includes step region 1304 and recessed region 1306. Anchor region 1302 is also shown. Region 1304 extends outward from an anchor region 1302. Recessed region 1306 extends outward from step region 1304. Other regions (not shown) may be included in cantilever 1101, 1201 and/or 1301.

凹陷區域1106、1206及1306各分別包含錐度1107、1207及1307,以及分別包含凹部1109、1209及1309。懸臂1101、1201及1301指示錐度1107、1207及1307之變化亦可分別用於調整懸臂1101、1201及1301之剛度。例如,錐度1107、1207及1307之寬度可隨距分別台階區域1104、1204及1304與分別凹陷區域1106、1206及1306之間的過渡之距離之平方而減小。虛線1108、1208及1308指示若錐度1107、1207及1307之寬度隨距分別台階區域1104、1204及1304與分別凹陷區域1106、1206、1306之間的過渡之距離而線性變化,則該等寬度可如何減小。另外,錐度1107、1207及1307之寬度以不同比例減小。錐度1107在邊緣處之寬度減小最多(例如大致90%)。錐度1207在相對邊緣處減少一較小部分(例如減少大致75%)。錐度1307在相對邊緣處減少最小部分(例如大致50%)。可使用寬度之其他變化(例如立方)及其他逐漸變小量。藉由定製錐度改變寬度之方式及/或寬度改變之量,懸臂之剛度及應力之減小可經修改。 The recessed regions 1106, 1206, and 1306 each include a taper 1107, 1207, and 1307, respectively, and a recess 1109, 1209, and 1309, respectively. The cantilevers 1101, 1201, and 1301 indicate that changes in the tapers 1107, 1207, and 1307 can also be used to adjust the stiffness of the cantilevers 1101, 1201, and 1301, respectively. For example, the width of the tapers 1107, 1207, and 1307 can decrease as the square of the distance from the transition between the step regions 1104, 1204, and 1304, respectively, and the recessed regions 1106, 1206, and 1306, respectively. Dashed lines 1108, 1208, and 1308 indicate how the widths of the tapers 1107, 1207, and 1307 may decrease if the widths vary linearly with the distance from the transition between the respective step regions 1104, 1204, and 1304 and the respective recessed regions 1106, 1206, 1306. In addition, the widths of the tapers 1107, 1207, and 1307 decrease at different rates. The taper 1107 decreases the most in width at the edge (e.g., approximately 90%). The taper 1207 decreases a smaller portion (e.g., approximately 75%) at the opposite edge. The taper 1307 decreases by a minimum amount (e.g., approximately 50%) at opposite edges. Other variations of width (e.g., cubic) and other tapers may be used. By customizing the manner in which the taper changes width and/or the amount by which the width changes, the reduction in stiffness and stress of the cantilever may be modified.

懸臂1101、1201及1301依類似於冷卻元件600之懸臂601之一方式起作用。因此,懸臂1101、1201及1301可經驅動以經歷振動運動。當用於一冷卻系統(諸如冷卻系統100及/或400)中時,懸臂1101、1201及1301可以本文中所描述之速度驅動流體。因此,懸臂1101、1201及1301可用於有效地冷卻發熱結構。此外,凹陷區域可經構形以減少應 力同時保持剛度。因此,可提高懸臂1101、1201及1301之可靠性。 Suspensions 1101, 1201, and 1301 function in a manner similar to suspension 601 of cooling element 600. Thus, suspensions 1101, 1201, and 1301 can be driven to undergo vibratory motion. When used in a cooling system (such as cooling system 100 and/or 400), suspensions 1101, 1201, and 1301 can drive fluid at the speeds described herein. Thus, suspensions 1101, 1201, and 1301 can be used to effectively cool heat generating structures. Furthermore, the recessed areas can be configured to reduce stress while maintaining stiffness. Thus, the reliability of suspensions 1101, 1201, and 1301 can be improved.

圖14A及圖14B描繪致動器或冷卻元件1400之實施例之側視圖及仰視圖。圖14A至圖14B並非按比例繪製。冷卻元件1400類似於冷卻元件120及冷卻元件600。冷卻元件1400可用於一冷卻系統(諸如冷卻系統100及/或400)。因此,冷卻元件1400包含類似於錨定區域122及602以及懸臂121及601之錨定區域1422及懸臂1421。錨定區域1422由一錨(諸如錨160及/或460)在一冷卻系統(諸如冷卻系統100及/或400)中保持適當位置。懸臂1421回應於冷卻元件1400經驅動而經歷振動運動。在所展示之實施例中,錨定區域1422位於中心。在其他實施例中,錨定區域1422可在致動器之一個邊緣處。 14A and 14B depict side and bottom views of an embodiment of an actuator or cooling element 1400. Figures 14A-14B are not drawn to scale. Cooling element 1400 is similar to cooling element 120 and cooling element 600 . Cooling element 1400 may be used in a cooling system (such as cooling systems 100 and/or 400). Thus, cooling element 1400 includes anchor regions 1422 and cantilevers 1421 similar to anchor regions 122 and 602 and cantilevers 121 and 601 . Anchor region 1422 is held in place by an anchor (such as anchors 160 and/or 460 ) in a cooling system (such as cooling systems 100 and/or 400 ). Cantilever 1421 undergoes vibratory motion in response to cooling element 1400 being actuated. In the illustrated embodiment, anchor region 1422 is centrally located. In other embodiments, anchoring area 1422 may be at one edge of the actuator.

各懸臂1421類似於懸臂121以及懸臂601、701及801。因此,各懸臂包含類似於台階區域124、延伸區域126及外部區域128之台階區域1424、延伸區域1426及外部區域1428。懸臂1421各包含具有類似於錐度607及凹部609之錐度1427及凹部1429之延伸區域1426。因此,延伸區域1426之部分亦係凹陷。在一些實施例中,代替延伸區域1426或除了延伸區域1426以外,台階區域1424及/或外部區域1428可包含凹部及/或錐度。因此,冷卻元件120之構形及冷卻元件600、900及/或1000之凹部及/或懸臂701、801、1101、1201及/或1301可依各種方式組合。 Each cantilever 1421 is similar to cantilever 121 and cantilevers 601, 701, and 801. Accordingly, each cantilever includes a step region 1424 , an extension region 1426 , and an exterior region 1428 similar to the step region 124 , the extension region 126 , and the exterior region 128 . The cantilevers 1421 each include an extended region 1426 having a taper 1427 and a recess 1429 similar to the taper 607 and recess 609 . Therefore, portions of the extension area 1426 are also recessed. In some embodiments, step region 1424 and/or outer region 1428 may include recesses and/or tapers instead of or in addition to extension region 1426 . Therefore, the configuration of the cooling element 120 and the recesses and/or cantilevers 701, 801, 1101, 1201 and/or 1301 of the cooling elements 600, 900 and/or 1000 can be combined in various ways.

冷卻元件1400依類似於冷卻元件120及600之一方式起作用。因此,懸臂1421可經驅動以經歷振動運動。當用於一冷卻系統(諸如冷卻系統100及/或400)中時,冷卻元件1400可以本文中所描述之速度驅動流體。因此,冷卻元件1400可用於有效地冷卻發熱結構。此外,懸臂1421移動通過流體之能力可經提高且懸臂1421在振動運動期間經受之應 力減小。因此,可提高冷卻元件1400之效率、效能及可靠性。 The cooling element 1400 functions in a manner similar to the cooling elements 120 and 600. Thus, the cantilever 1421 can be driven to undergo an oscillating motion. When used in a cooling system (such as the cooling system 100 and/or 400), the cooling element 1400 can drive the fluid at the speed described herein. Thus, the cooling element 1400 can be used to effectively cool a heat generating structure. In addition, the ability of the cantilever 1421 to move through the fluid can be increased and the stress experienced by the cantilever 1421 during the oscillating motion is reduced. Thus, the efficiency, performance, and reliability of the cooling element 1400 can be improved.

各種冷卻元件120、420、600、900、1000及1400及各種懸臂701、801、1101、1201及1301已經描述且特定特徵經強調。冷卻元件120、420、600、900、1000及1400以及各種懸臂701、801、1101、1201及1301之各種特性可依本文未明確描述之方式組合。 The various cooling elements 120, 420, 600, 900, 1000 and 1400 and the various cantilevers 701, 801, 1101, 1201 and 1301 have been described and specific features highlighted. The various features of the cooling elements 120, 420, 600, 900, 1000 and 1400 and the various cantilevers 701, 801, 1101, 1201 and 1301 may be combined in ways not expressly described herein.

圖15A至圖15B描繪包含經構形為一微磚之多個冷卻單元之冷卻系統1500之一實施例。在一些實施例中,冷卻系統1500包含一主動式冷卻系統。圖15A描繪一俯視圖,而圖15B描繪一側視圖。圖15A至圖15B並未按比例繪製。冷卻系統1500包含四個冷卻單元1501,其等類似於本文中所描述之冷卻系統之一或多者(諸如冷卻系統100及/或400)。儘管展示一2x2組態之四個冷卻單元1501,但在一些實施例中,可採用冷卻單元1501之另一數目及/或另一組態。在所展示之實施例中,冷卻單元1501包含具有孔1512之共用頂板1510、冷卻元件1520、包含孔口1532之共用孔口板1530、頂部腔室1540、底部腔室1550及錨(支撐結構)1560,其等類似於具有通風口112之頂板110、冷卻元件120、具有孔口132之孔口板130、頂部腔室140、底部腔室150及錨160。儘管在冷卻元件1520之背景中描述,但可使用冷卻元件120、420、600、900、1000及1400以及各種懸臂701、801、1101、1201及1301之任何組合。儘管展示底部錨1560,但在其他實施例中可使用頂部錨。在所展示之實施例中,冷卻元件1520經異相驅動(即依類似於一蹺蹺板之一方式)。進一步言之,一個單元中之冷卻元件1520與相鄰單元中之冷卻元件異相驅動。 FIGS. 15A-15B depict an embodiment of a cooling system 1500 comprising a plurality of cooling units configured as a tile. In some embodiments, the cooling system 1500 comprises an active cooling system. FIG. 15A depicts a top view, while FIG. 15B depicts a side view. FIGS. 15A-15B are not drawn to scale. The cooling system 1500 comprises four cooling units 1501, which are similar to one or more of the cooling systems described herein (e.g., cooling systems 100 and/or 400). Although four cooling units 1501 in a 2x2 configuration are shown, in some embodiments, another number and/or another configuration of cooling units 1501 may be employed. In the embodiment shown, the cooling unit 1501 includes a common top plate 1510 having a hole 1512, a cooling element 1520, a common orifice plate 1530 including an orifice 1532, a top chamber 1540, a bottom chamber 1550 and an anchor (support structure) 1560, which are similar to the top plate 110 having a vent 112, the cooling element 120, the orifice plate 130 having an orifice 132, the top chamber 140, the bottom chamber 150 and the anchor 160. Although described in the context of cooling elements 1520, any combination of cooling elements 120, 420, 600, 900, 1000, and 1400 and various cantilevers 701, 801, 1101, 1201, and 1301 may be used. Although bottom anchors 1560 are shown, top anchors may be used in other embodiments. In the embodiment shown, the cooling elements 1520 are driven out of phase (i.e., in a manner similar to a seesaw). Further, the cooling elements 1520 in one unit are driven out of phase with the cooling elements in an adjacent unit.

冷卻系統1500之冷卻單元1501依類似於冷卻系統100及/或400之一方式起作用。因此,本文中所描述之益處可由冷卻系統1500共 用。因為附近單元中之冷卻元件異相驅動,所以可減少冷卻系統1500中之振動。因為使用多個冷卻單元1501,所以冷卻系統1500可享有增強冷卻能力。 Cooling unit 1501 of cooling system 1500 functions in a manner similar to cooling systems 100 and/or 400 . Accordingly, the benefits described herein may be achieved by cooling system 1500 use. Because cooling elements in nearby units are driven out of phase, vibrations in cooling system 1500 may be reduced. Because multiple cooling units 1501 are used, the cooling system 1500 can enjoy enhanced cooling capabilities.

圖16描繪包含多個冷卻單元1601之冷卻系統1600之一實施例之一俯視圖。圖16並非按比例繪製。冷卻單元1601類似於本文中所描述之冷卻系統之一或多者,諸如冷卻系統100及/或400。如冷卻系統1600中所指示,冷卻單元1601可以所需大小及組態之一二維陣列配置。在一些實施例中,冷卻系統1600可被視為由多個微磚160組成。因此,可達成所需冷卻功率及組態。 Figure 16 depicts a top view of an embodiment of a cooling system 1600 including a plurality of cooling units 1601. Figure 16 is not drawn to scale. Cooling unit 1601 is similar to one or more of the cooling systems described herein, such as cooling systems 100 and/or 400 . As indicated in cooling system 1600, cooling units 1601 may be configured in a two-dimensional array of desired sizes and configurations. In some embodiments, cooling system 1600 may be considered to be composed of a plurality of microbricks 160 . Therefore, the required cooling power and configuration can be achieved.

圖17係描繪用於操作一冷卻系統之方法1700之一例示性實施例之一流程圖。方法1700可包含為簡單起見未描繪之步驟。在冷卻系統100之背景中描述方法1700。在一些實施例中,冷卻系統100包含一壓電冷卻系統。然而,方法1700可與包含(但不限於)本文中所描述之系統及單元之其他冷卻系統一起使用。 Figure 17 is a flowchart depicting an exemplary embodiment of a method 1700 for operating a cooling system. Method 1700 may include steps not depicted for simplicity. Method 1700 is described in the context of cooling system 100 . In some embodiments, cooling system 100 includes a piezoelectric cooling system. However, method 1700 may be used with other cooling systems including, but not limited to, the systems and units described herein.

在1702處,致動一冷卻系統中之冷卻元件之一或多者以振動。在1702處,具有所需頻率之一電信號用於驅動冷卻元件。在一些實施例中,在1702處以或接近結構及/或聲學諧振頻率驅動冷卻元件。驅動頻率可為15kHz或更高。若在1702處驅動多個冷卻元件,則可異相驅動冷卻元件。在一些實施例中,冷卻元件實質上以180度異相驅動。進一步言之,在一些實施例中,個別冷卻元件異相驅動。例如,可驅動一冷卻元件之不同部分以在相反方向上振動(即類似於一蹺蹺板)。在一些實施例平,可同相驅動個別冷卻元件(即類似於一蝴蝶)。另外,驅動信號可提供給錨、冷卻元件或錨及冷卻元件兩者。進一步言之,錨可經驅動彎曲及/ 或平移。 At 1702, one or more cooling elements in a cooling system are actuated to vibrate. At 1702, an electrical signal with one of the desired frequencies is used to drive the cooling element. In some embodiments, the cooling element is driven at 1702 at or near structural and/or acoustic resonance frequencies. The driving frequency can be 15kHz or higher. If multiple cooling elements are driven at 1702, the cooling elements may be driven out of phase. In some embodiments, the cooling elements are driven substantially 180 degrees out of phase. Furthermore, in some embodiments, individual cooling elements are driven out of phase. For example, different parts of a cooling element can be driven to vibrate in opposite directions (ie, similar to a seesaw). In some embodiments, individual cooling elements may be driven in phase (i.e., similar to a butterfly). Additionally, the drive signal may be provided to the anchor, the cooling element, or both. Furthermore, the anchor can be driven to bend and/or Or pan.

在1704處,來自壓電冷卻元件之反饋用於調整驅動電流。在一些實施例中,調整用於將頻率保持處於或接近冷卻元件及/或冷卻系統之聲學及/或結構諧振頻率/頻率。一特定冷卻元件之諧振頻率可漂移,例如歸因於溫度變化。在1704處進行之調整允許考慮諧振頻率之漂移。 At 1704, feedback from the piezoelectric cooling element is used to adjust the drive current. In some embodiments, adjustments are made to maintain the frequency at or near an acoustic and/or structural resonance frequency/frequency of the cooling element and/or cooling system. The resonant frequency of a particular cooling element may drift, for example due to temperature changes. The adjustment made at 1704 allows the drift of the resonant frequency to be taken into account.

例如,在1702處,壓電冷卻元件120可以其結構諧振頻率/頻率驅動。此諧振頻率亦可處於或接近頂部腔室140之聲學諧振頻率。此可藉由驅動錨160中之壓電層(未展示於圖1A至圖1F中)及/或冷卻元件120中之壓電層來達成。在1704處,反饋用於維持冷卻元件120處於諧振,且在其中多個冷卻元件經驅動之實施例中,相位相差180度。因此,可維持冷卻元件120驅動流體流過冷卻系統100且流至發熱結構102上之效率。在一些實施例中,1704包含對通過冷卻元件120之電流及/或通過錨160之電流進行採樣且調整電流以維持諧振及低輸入功率。 For example, at 1702, the piezoelectric cooling element 120 can be driven at its structural resonant frequency/frequency. This resonant frequency can also be at or near the acoustic resonant frequency of the top chamber 140. This can be achieved by driving the piezoelectric layer in the anchor 160 (not shown in Figures 1A to 1F) and/or the piezoelectric layer in the cooling element 120. At 1704, feedback is used to maintain the cooling element 120 in resonance, and in embodiments where multiple cooling elements are driven, 180 degrees out of phase. Therefore, the efficiency of the cooling element 120 to drive the fluid through the cooling system 100 and onto the heat generating structure 102 can be maintained. In some embodiments, 1704 includes sampling the current through the cooling element 120 and/or the current through the anchor 160 and adjusting the current to maintain resonance and low input power.

因此,冷卻元件(諸如冷卻元件120、420、600、900、1000及1400)及各種懸臂701、801、1101、1201及1301可如上文所描述操作。因此,方法1700提供本文中所描述之壓電冷卻系統之使用。因此,壓電冷卻系統可以較低功率更有效及安靜地冷卻半導體裝置。 Thus, cooling elements (such as cooling elements 120, 420, 600, 900, 1000, and 1400) and various cantilevers 701, 801, 1101, 1201, and 1301 can be operated as described above. Thus, method 1700 provides for the use of the piezoelectric cooling system described herein. Thus, the piezoelectric cooling system can cool semiconductor devices more efficiently and quietly with lower power.

儘管為清楚理解之目的已以一些細節描述前述實施例,但本發明不限於所提供之細節。存在許多實施本發明之替代方式。所揭示之實施例係繪示性的而非限制性的。 Although the foregoing embodiments have been described in some detail for the purpose of clarity of understanding, the present invention is not limited to the details provided. There are many alternative ways of implementing the present invention. The disclosed embodiments are illustrative and not restrictive.

100:冷卻系統 100: Cooling system

102:發熱結構 102: Heating structure

110:頂板 110:top plate

112:通風口 112: Ventilation vents

120:冷卻元件 120: Cooling element

123:尖端 123:tip

130:孔口板 130: Orifice plate

132:孔口 132: Orifice

140:頂部腔室 140:Top chamber

142:間隙 142: Gap

150:底部腔室 150: Bottom chamber

152:間隙 152: Gap

160:錨 160:Anchor

a:寬度 a:Width

C:長度 C:Length

d:距離 d: distance

h1:高度 h1: height

h2:高度 h2: height

L:長度 L: length

o:寬度 o:Width

r1:距離 r1: distance

r2:距離 r2: distance

s:孔口間距 s: hole spacing

t:厚度 t: thickness

w:寬度 w:width

Claims (20)

一種致動器,其包括: 一錨定區域;及 一懸臂,其自該錨定區域向外延伸,其中該懸臂包含 一台階區域,其自該錨定區域向外延伸,具有一台階厚度; 一延伸區域,其自該台階區域向外延伸,具有小於該台階厚度之一延伸厚度;及 一外部區域,其自該延伸區域向外延伸,具有大於該延伸厚度之一外部厚度。 An actuator comprising: an anchor area; and a cantilever extending outwardly from the anchoring area, wherein the cantilever includes a step area extending outward from the anchoring area and having a step thickness; an extended area extending outwardly from the step area and having an extended thickness less than the thickness of the step; and An outer region extends outward from the extended region and has an outer thickness greater than the extended thickness. 如請求項1之致動器,其中該懸臂進一步包含: 一額外台階區域,其位於該台階區域與該延伸區域之間,該額外台階區域具有小於該台階厚度且大於該延伸厚度之一額外台階厚度。 The actuator of claim 1, wherein the cantilever further includes: An additional step area is located between the step area and the extension area, and the additional step area has an extra step thickness smaller than the step thickness and greater than the extension thickness. 如請求項1之致動器,其中該外部厚度比該延伸厚度至少厚50微米但不超過200微米,其中該外部區域具有至少100微米但不超過300微米之一寬度,且其中該延伸區域具有自該台階區域向外延伸之至少0.5毫米但不超過1.5毫米之一長度。The actuator of claim 1, wherein the outer thickness is at least 50 microns but no more than 200 microns thicker than the extended thickness, wherein the outer region has a width of at least 100 microns but no more than 300 microns, and wherein the extended region has A length of at least 0.5 mm but not more than 1.5 mm extending outward from the step area. 如請求項1之致動器,其中該台階區域、該延伸區域及該外部區域之至少一者包含其中之至少一個凹部。The actuator of claim 1, wherein at least one of the step area, the extension area and the outer area includes at least one recess therein. 如請求項4之致動器,其中該至少一個凹部包含一錐度,使得該至少一個凹部之一寬度隨距該錨定區域之距離而增加。An actuator as claimed in claim 4, wherein the at least one recess comprises a taper such that a width of the at least one recess increases with the distance from the anchoring area. 如請求項5之致動器,其中該錐度選自一線性錐度、一二次錐度及一立方錐度。An actuator as claimed in claim 5, wherein the taper is selected from a linear taper, a quadratic taper and a cubic taper. 如請求項4之致動器,其進一步包括: 一蓋,其經構造使得該至少一個凹部在該致動器內部。 The actuator of claim 4 further comprises: A cover configured so that the at least one recess is inside the actuator. 如請求項1之致動器,其進一步包括: 一額外懸臂,其自與該懸臂相對之該錨定區域向外延伸,且其中該額外懸臂包含 一額外台階區域,其自該錨定區域向外延伸,具有一額外台階厚度; 一額外延伸區域,其自該額外台階區域向外延伸且具有小於該額外台階厚度之一額外延伸厚度;及 一額外外部區域,其自該額外延伸區域向外延伸且具有大於該額外延伸厚度之一額外外部厚度。 The actuator of claim 1 further includes: an additional cantilever extending outwardly from the anchoring area opposite the cantilever, and wherein the additional cantilever includes an additional step region extending outwardly from the anchoring region and having an additional step thickness; an additional extension area extending outwardly from the additional step area and having an additional extension thickness that is less than the thickness of the additional step; and An additional outer region extends outwardly from the additional extended region and has an additional outer thickness greater than the additional extended thickness. 一種冷卻系統,其包括: 一錨;及 一冷卻元件,其包含一錨定區域及一懸臂,該錨定區域由該錨固定,該懸臂自該錨定區域向外延伸,其中該懸臂包含 一台階區域,其自該錨定區域向外延伸,具有一台階厚度; 一延伸區域,其自該台階區域向外延伸,具有小於該台階厚度之一延伸厚度;及 一外部區域,其自該延伸區域向外延伸,具有大於該延伸厚度之一外部厚度; 其中該冷卻元件經構形以在經致動以將一流體推動朝向一發熱結構時經歷振動運動。 A cooling system comprising: an anchor; and a cooling element comprising an anchor region and a cantilever, the anchor region being secured by the anchor, the cantilever extending outwardly from the anchor region, wherein the cantilever comprises a step region extending outwardly from the anchor region and having a step thickness; an extension region extending outwardly from the step region and having an extension thickness less than the step thickness; and an outer region extending outwardly from the extension region and having an outer thickness greater than the extension thickness; wherein the cooling element is configured to undergo a vibratory motion when actuated to push a fluid toward a heat generating structure. 如請求項9之冷卻系統,其中該懸臂進一步包括: 一額外台階區域,其在該台階區域與該延伸區域之間,該額外台階區域具有小於該台階厚度且大於該延伸厚度之一額外台階厚度。 A cooling system as claimed in claim 9, wherein the cantilever further comprises: an additional step region between the step region and the extension region, the additional step region having an additional step thickness that is less than the step thickness and greater than the extension thickness. 如請求項9之冷卻系統,其中該台階區域、該延伸區域及該外部區域之至少一者包含其中之至少一個凹部。The cooling system of claim 9, wherein at least one of the step area, the extension area and the outer area includes at least one recess therein. 如請求項11之冷卻系統,其中該冷卻元件進一步包含: 一蓋,其經構形使得該至少一個凹部在該冷卻元件內部。 A cooling system as claimed in claim 11, wherein the cooling element further comprises: a cover configured so that the at least one recess is inside the cooling element. 如請求項9之冷卻系統,其中該冷卻元件進一步包含: 一額外懸臂,其自與該懸臂相對之該錨定區域向外延伸,且其中該額外懸臂包含 一額外台階區域,其自該錨定區域向外延伸且具有一額外台階厚度; 一額外延伸區域,其自該額外台階區域向外延伸且具有小於該額外台階厚度之一額外延伸厚度;及 一額外外部區域,其自該額外延伸區域向外延伸且具有大於該額外延伸厚度之一額外外部厚度。 The cooling system of claim 9, wherein the cooling element further includes: an additional cantilever extending outwardly from the anchoring area opposite the cantilever, and wherein the additional cantilever includes an additional step region extending outwardly from the anchoring region and having an additional step thickness; an additional extension area extending outwardly from the additional step area and having an additional extension thickness that is less than the thickness of the additional step; and An additional outer region extends outwardly from the additional extended region and has an additional outer thickness greater than the additional extended thickness. 如請求項13之冷卻系統,其進一步包括: 一孔口板,其中具有複數個孔口,該孔口板安置於該冷卻元件與該發熱結構之間。 The cooling system of claim 13 further includes: An orifice plate has a plurality of orifices, and the orifice plate is arranged between the cooling element and the heating structure. 如請求項14之冷卻系統,其進一步包括: 複數個單元壁,其經構形使得在該複數個單元壁之一部分與該冷卻元件之間形成一頂部腔室,且在該複數個單元壁、該孔口板及該冷卻元件之間形成一底部腔室,該頂部腔室與該底部腔室流體連通。 The cooling system of claim 14 further comprises: A plurality of unit walls configured to form a top chamber between a portion of the plurality of unit walls and the cooling element, and a bottom chamber between the plurality of unit walls, the orifice plate and the cooling element, the top chamber being in fluid communication with the bottom chamber. 一種冷卻一發熱結構之方法,其包括: 驅動一冷卻元件以引起以一頻率之一振動運動,該冷卻元件包含一錨定區域及一懸臂,該懸臂自該錨定區域向外延伸,其中該懸臂包含一台階區域、一延伸區域及一外部區域,自該錨定區域向外延伸之該台階區域具有一台階厚度,自該台階區域向外延伸之該延伸區域具有小於該台階厚度之一延伸厚度,自該延伸區域向外延伸之該外部區域具有大於該延伸厚度之一外部厚度,該冷卻元件經構形以在經致動以將一流體推動朝向一發熱結構時經歷振動運動。 A method for cooling a heat generating structure, comprising: Driving a cooling element to induce a vibration motion at a frequency, the cooling element comprising an anchoring region and a cantilever, the cantilever extending outward from the anchoring region, wherein the cantilever comprises a step region, an extension region and an outer region, the step region extending outward from the anchoring region has a step thickness, the extension region extending outward from the step region has an extension thickness less than the step thickness, the outer region extending outward from the extension region has an outer thickness greater than the extension thickness, the cooling element being configured to undergo vibration motion when actuated to push a fluid toward a heat generating structure. 如請求項16之方法,其中該驅動進一步包含: 實質上以該懸臂之一結構諧振頻率驅動該冷卻元件。 Such as the method of request item 16, wherein the driver further includes: The cooling element is driven substantially at a structural resonance frequency of the cantilever. 如請求項17之方法,該驅動進一步包含: 實質上以一流體諧振頻率驅動該冷卻元件。 As in the method of claim 17, the driving further comprises: Driving the cooling element substantially at a fluid resonant frequency. 如請求項16之方法,其中該冷卻元件進一步包含自與該懸臂相對之該錨定區域向外延伸之一額外懸臂,該額外懸臂包含一額外台階區域、一額外延伸區域及一額外外部區域,該額外台階區域自該錨定區域向外延伸且具有一額外台階厚度,該額外延伸區域自該額外台階區域向外延伸且具有小於該額外台階厚度之一額外延伸厚度,該額外外部區域自該額外延伸區域向外延伸且具有大於該額外延伸厚度之一額外外部厚度,該方法進一步包括: 以該頻率驅動該額外懸臂。 The method of claim 16, wherein the cooling element further includes an additional cantilever extending outwardly from the anchoring area opposite the cantilever, the additional cantilever including an additional step area, an additional extension area, and an additional outer area, The additional step region extends outwardly from the anchoring region and has an additional step thickness. The additional extension region extends outwardly from the additional step region and has an additional extension thickness less than the additional step thickness. The additional outer region extends from the additional step region. The additional extension region extends outwardly and has an additional outer thickness greater than the additional extension thickness, the method further comprising: The additional cantilever is driven at this frequency. 如請求項19之方法,其中驅動該頻率實質上係用於該額外懸臂之一額外結構諧振頻率及一流體諧振頻率之至少一者。The method of claim 19, wherein driving the frequency is substantially for at least one of an additional structural resonant frequency and a fluid resonant frequency of the additional cantilever.
TW110134201A 2020-09-16 2021-09-14 Actuator, cooling system, and method of cooling a heat-generating structure TWI836267B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/023,215 2020-09-16
US17/023,215 US11510341B2 (en) 2019-12-06 2020-09-16 Engineered actuators usable in MEMs active cooling devices

Publications (2)

Publication Number Publication Date
TW202218530A TW202218530A (en) 2022-05-01
TWI836267B true TWI836267B (en) 2024-03-21

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190062150A1 (en) 2016-03-14 2019-02-28 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Component Carrier With Integrated Wall Structure For Subsequent Assembly of an Electronic Component

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190062150A1 (en) 2016-03-14 2019-02-28 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Component Carrier With Integrated Wall Structure For Subsequent Assembly of an Electronic Component

Similar Documents

Publication Publication Date Title
KR102638828B1 (en) Engineered actuators for use in active cooling of electromechanical systems
TWI786465B (en) Centrally anchored mems-based active cooling systems
US20220189852A1 (en) Mems-based active cooling systems
TWI829010B (en) Cooling system and method for driving cooling system
KR20220082053A (en) MEMS based airflow system
US20230011084A1 (en) Cooling element architecture for mems-based cooling system architecture
TWI792595B (en) Top chamber cavities for center-pinned actuators
US20230016991A1 (en) Exit channel configuration for mems-based actuator systems
TWI836267B (en) Actuator, cooling system, and method of cooling a heat-generating structure
KR20230075503A (en) active heatsink
TWI835005B (en) Cooling system, active heat sink and method of cooling heat-generating structure
TW202218530A (en) Engineered actuators usable in mems active cooling devices
US11796262B2 (en) Top chamber cavities for center-pinned actuators
US20230200000A1 (en) Method and system for tailoring fluidic resonant frequency in a mems-based cooling system
US11956921B1 (en) Support structure designs for MEMS-based active cooling
US11696421B1 (en) Method and system for driving and balancing actuators usable in MEMS-based cooling systems
US20230413471A1 (en) Mems based cooling systems having an integrated spout
WO2023283448A2 (en) Anchor and cavity configuration for mems-based cooling systems