TWI836173B - Apparatus for and method of control of a charged particle beam - Google Patents

Apparatus for and method of control of a charged particle beam Download PDF

Info

Publication number
TWI836173B
TWI836173B TW109146793A TW109146793A TWI836173B TW I836173 B TWI836173 B TW I836173B TW 109146793 A TW109146793 A TW 109146793A TW 109146793 A TW109146793 A TW 109146793A TW I836173 B TWI836173 B TW I836173B
Authority
TW
Taiwan
Prior art keywords
beamlet
pixels
pixel
mirror panel
voltage
Prior art date
Application number
TW109146793A
Other languages
Chinese (zh)
Other versions
TW202135118A (en
Inventor
艾爾伯圖斯 維克 傑拉杜斯 馬格努斯
邁可 羅伯特 葛森
厄文 保羅 史莫克曼
任岩
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202135118A publication Critical patent/TW202135118A/en
Application granted granted Critical
Publication of TWI836173B publication Critical patent/TWI836173B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/151Electrostatic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1534Aberrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2809Scanning microscopes characterised by the imaging problems involved

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

An apparatus comprising a set of pixels configured to shape a beamlet approaching the set of pixels and a set of pixel control members respectively associated with each of the set of pixels, each pixel control member being arranged and configured to apply a signal to the associated pixel for shaping the beamlet.

Description

用於控制帶電粒子束之裝置及方法Devices and methods for controlling charged particle beams

本文中所描述之實施例係關於一種具有一或多個帶電粒子束之帶電粒子器件,諸如利用一或多個電子束之電子顯微法裝置。 Embodiments described herein relate to a charged particle device having one or more charged particle beams, such as an electron microscopy apparatus utilizing one or more electron beams.

藉由在晶圓(亦被稱為基板)上產生圖案來製造積體電路。晶圓被支撐於設備中之晶圓載物台上以用於產生圖案。用於製造積體電路之程序之一個部分涉及查看或「檢測」晶圓之部分。此可藉由諸如掃描電子顯微鏡或SEM之帶電粒子系統來進行。 Integrated circuits are made by creating patterns on a wafer (also called a substrate). The wafer is supported on a wafer stage in the equipment used to create the pattern. Part of the process used to make integrated circuits involves viewing or "inspecting" portions of the wafer. This can be done with a charged particle system such as a scanning electron microscope, or SEM.

傳統顯微鏡使用可見光及一或多個透明透鏡或反射鏡以致使小至約一微米之物件可見。此顯微鏡之解像力受到用於照明之光之波長限制。帶電粒子系統使用帶電粒子束來代替光,且使用電磁或靜電透鏡以聚焦粒子。其可以小至一奈米之十分之一的精度來量測位置。 Traditional microscopes use visible light and one or more clear lenses or mirrors to make objects as small as about one micron visible. The resolving power of this microscope is limited by the wavelength of light used for illumination. Charged particle systems use charged particle beams instead of light and use electromagnetic or electrostatic lenses to focus the particles. It can measure position with an accuracy as small as one-tenth of a nanometer.

通常,用於在樣本上之單個點處聚焦帶電粒子之系統使用兩個或多於兩個電磁或靜電透鏡。然而,真實透鏡並不確切聚焦至單個點。舉例而言,第二透鏡可使帶電粒子束之波前失真。與完美透鏡之此等偏差被稱為透鏡之像差。像差致使由透鏡形成之影像模糊或失真。可運用例如具有多個孔徑之相位板來縮減像差,但此以縮減射束電流為代價。 Typically, systems for focusing charged particles at a single point on a sample use two or more electromagnetic or electrostatic lenses. However, real lenses do not focus exactly to a single point. For example, the second lens can distort the wavefront of the charged particle beam. These deviations from a perfect lens are called aberrations of the lens. Aberrations cause the image formed by the lens to be blurred or distorted. Aberrations can be reduced, for example, using phase plates with multiple apertures, but this comes at the expense of reducing the beam current.

本發明之實施例提供一種多射束檢測裝置,且更特定言之,一種包括一改良型射束操控單元之單射束或多射束檢測系統。在一些實施例中,該檢測系統包括:帶電粒子之一小射束之一源、用於導引該小射束之一射束分離器及一可程式化帶電粒子鏡面板,該可程式化帶電粒子鏡面板經配置以自該射束分離器接收該複數個小射束且經組態以校正該等小射束之像差。該鏡面板包含:一第一組像素,其經組態以塑形接近該第一組像素之一第一小射束;及一第一組像素控制構件,其分別與該第一組像素中之每一者相關聯,每一像素控制構件經配置及經組態以將一信號施加至該關聯像素以用於塑形該第一小射束。 Embodiments of the present invention provide a multi-beam detection device, and more particularly, a single-beam or multi-beam detection system including an improved beam steering unit. In some embodiments, the detection system includes: a source of a beamlet of charged particles, a beam splitter for directing the beamlet, and a programmable charged particle mirror panel, the programmable A charged particle mirror panel is configured to receive the plurality of beamlets from the beam splitter and configured to correct aberrations of the beamlets. The mirror panel includes: a first group of pixels configured to shape a first beamlet close to the first group of pixels; and a first group of pixel control components respectively connected to the first group of pixels. Associated with each, each pixel control member is configured and configured to apply a signal to the associated pixel for shaping the first beamlet.

在一些實施例中,提供一種用於操控一帶電粒子束之系統。該系統包括:帶電粒子之一小射束之一源、用於導引該小射束之一射束分離器及一可程式化帶電粒子鏡面板,該可程式化帶電粒子鏡面板經配置以自該射束分離器接收該經導引小射束且經組態以塑形該小射束。 In some embodiments, a system for manipulating a charged particle beam is provided. The system includes: a source of a beamlet of charged particles, a beam splitter for guiding the beamlet, and a programmable charged particle mirror panel, the programmable charged particle mirror panel being configured to receive the guided beamlet from the beam splitter and configured to shape the beamlet.

在一些實施例中,提供一種用於塑形帶電粒子之一小射束之方法。該方法包括:使用一射束分離器將帶電粒子之一第一小射束導引朝向一帶電粒子鏡面板;及藉由將信號提供至該帶電粒子鏡面板之一第一組像素以產生一電場來塑形該第一小射束且由該帶電粒子鏡面板將該經塑形小射束反射至該射束分離器。 In some embodiments, a method for shaping a beamlet of charged particles is provided. The method includes: directing a first beamlet of charged particles toward a charged particle mirror panel using a beam splitter; and shaping the first beamlet by providing a signal to a first set of pixels of the charged particle mirror panel to generate an electric field and reflecting the shaped beamlet from the charged particle mirror panel to the beam splitter.

在一些實施例中,提供一種非暫時性電腦可讀媒體,其儲存指令,該等指令用以由一處理器執行用以塑形帶電粒子之一小射束之一方法。該方法包括:使用一射束分離器將帶電粒子之一第一小射束導引朝向一帶電粒子鏡面板;及藉由將信號提供至該帶電粒子鏡面板之一第一組 像素以產生一電場來塑形該第一小射束且由該帶電粒子鏡面板將該經塑形小射束反射至該射束分離器。 In some embodiments, a non-transitory computer-readable medium is provided that stores instructions for executing, by a processor, a method for shaping a beamlet of charged particles. The method includes directing a first beamlet of charged particles toward a charged particle mirror panel using a beam splitter; and by providing a signal to a first group of charged particle mirror panels. The pixels generate an electric field to shape the first beamlet and the charged particle mirror panel reflects the shaped beamlet to the beam splitter.

1:例示性帶電粒子束檢測系統 1: Exemplary charged particle beam detection system

10:主腔室 10:Main chamber

20:裝載/鎖定腔室 20:Loading/locking chamber

30:設備前端模組(EFEM) 30: Equipment front-end module (EFEM)

30a:第一裝載埠 30a: First loading port

30b:第二裝載埠 30b: Second loading port

100:電子束工具 100: Electron Beam Tools

100A:電子束工具/裝置 100A: Electron beam tools/devices

100B:電子束工具/裝置 100B: Electron beam tools/devices

100C:電子束工具/裝置 100C: Electron beam tools/devices

102:陽極 102: Yang pole

103:陰極 103:Cathode

105:軸線 105:Axis

109:控制器 109:Controller

122:槍孔徑 122: gun bore diameter

125:射束限制孔徑 125: beam limiting aperture

126:聚光透鏡 126: Focusing lens

132:物鏡總成 132:Objective lens assembly

132a:磁極片 132a: Pole piece

132b:控制電極 132b: Control electrode

132c:偏轉器 132c: Deflector

132d:激磁線圈 132d: Excitation coil

134:機動載物台 134: Mobile stage

135:柱孔徑 135: Column aperture

136:晶圓固持器 136: Wafer holder

144:偵測器 144:Detector

148:四極透鏡 148: Quadrupole lens

150:晶圓 150:wafer

158:射束分離器 158: Beam splitter

161:初級射束 161:Primary beam

170:射束點 170: Beam point

202:電子源 202:Electron source

204:槍孔徑 204: Gun bore

206:聚光透鏡 206: condenser lens

208:交越 208: Crossover

211:初級電子束 211: Primary electron beam

212:源轉換單元 212: Source conversion unit

214:小射束 214:Small beam

216:小射束 216:Small beam

218:小射束 218: Small beam

220:初級投影光學系統 220: Primary projection optical system

222:射束分離器 222: Beam splitter

226:偏轉掃描單元 226: Deflection scanning unit

228:物鏡 228:Objective lens

230:晶圓 230: Wafer

236:二次電子束 236:Secondary electron beam

238:二次電子束 238:Secondary electron beam

240:二次電子束 240:Secondary electron beam

242:二次光學系統 242:Secondary optical system

244:電子偵測器件 244: Electronic detection devices

246:偵測子區 246: Detection sub-area

248:偵測子區 248: Detection sub-area

250:偵測子區 250: Detection sub-area

252:副光軸 252: Auxiliary optical axis

270:探測光點 270: Detect light spot

272:探測光點 272: Detect light spots

274:探測光點 274: Detect light spots

300:可程式化帶電粒子鏡面板 300: Programmable charged particle mirror panel

301:像素 301:pixel

302:電子源/像素 302:Electron source/pixel

303:像素 303:pixel

304:像素 304: Pixels

305:像素 305:pixel

306:第一透鏡/像素 306: First lens/pixel

307:像素 307:pixel

322:射束分離器 322: Beam splitter

328:第二透鏡 328:Second lens

340:樣本 340:Sample

350:電壓控制 350: Voltage control

351:像素控制構件/電壓控制 351: Pixel control component/voltage control

352:像素控制構件/電壓控制 352: Pixel control component/voltage control

353:像素控制構件/電壓控制 353: Pixel control component/voltage control

354:像素控制構件/電壓控制 354: Pixel control component/voltage control

355:像素控制構件/電壓控制 355: Pixel control component/voltage control

356:像素控制構件/電壓控制 356: Pixel control component/voltage control

357:像素控制構件/電壓控制 357: Pixel control component/voltage control

361:小射束 361: small beam

361r:小射束 361r: Small beam

370:樣本表面 370: Sample surface

390:等電位平面 390: Equipotential plane

400:可程式化像素化鏡面板 400: Programmable pixelated mirror panel

401:像素 401:Pixels

402:像素 402:Pixels

403:像素 403:pixel

404:像素 404:Pixels

405:像素 405:Pixels

411:像素 411:pixel

412:像素 412: pixels

413:像素 413: pixels

414:像素 414:pixel

415:像素 415: pixels

421:像素 421: pixels

422:像素 422: pixels

423:像素 423:pixel

424:像素 424: pixels

425:像素 425: pixels

450:電壓控制 450: Voltage control

451:控制構件 451:Control components

452:控制構件 452: Control components

453:控制構件 453:Control components

454:控制構件 454: Control components

455:控制構件 455: Control components

461:控制構件 461: Control components

462:控制構件 462:Control components

463:控制構件 463:Control components

464:控制構件 464: Control components

465:控制構件 465:Control components

471:控制構件 471:Control components

472:控制構件 472:Control components

473:控制構件 473: Control components

474:控制構件 474:Control components

475:控制構件 475: Control components

491:等電位平面 491: Equipotential plane

492:等電位平面 492: Equipotential plane

493:等電位平面 493: Equipotential plane

500:方法 500:Methods

510:步驟 510: Steps

520:步驟 520: Steps

530:步驟 530: Steps

本發明之上述及其他態樣自與隨附圖式結合獲取之例示性實施例之描述將變得更顯而易見。 The above and other aspects of the invention will become more apparent from the description of illustrative embodiments taken in conjunction with the accompanying drawings.

圖1為說明符合本發明之實施例的例示性帶電粒子束檢測系統之示意圖。 FIG1 is a schematic diagram illustrating an exemplary charged particle beam detection system according to an embodiment of the present invention.

圖2A為說明符合本發明之實施例的可為電子束工具之實例的帶電粒子束裝置之圖解,該電子束工具可為圖1之例示性電子束檢測系統之一部分。 FIG. 2A is a diagram illustrating an example charged particle beam apparatus that may be an electron beam tool consistent with an embodiment of the present invention, which may be a part of the exemplary electron beam detection system of FIG. 1 .

圖2B為說明符合本發明之實施例的可為電子束工具之實例的多射束帶電粒子束裝置之圖解,該電子束工具可為圖1之例示性電子束檢測系統之一部分。 2B is a diagram illustrating a multi-beam charged particle beam apparatus that may be an example of an electron beam tool that may be part of the exemplary electron beam inspection system of FIG. 1 consistent with embodiments of the invention.

圖3A說明符合本發明之實施例的可為圖1之帶電粒子束檢測系統之部分的例示性電子束工具。 3A illustrates an exemplary electron beam tool that may be part of the charged particle beam detection system of FIG. 1 consistent with embodiments of the present invention.

圖3B為說明符合本發明之實施例的可程式化像素化鏡面板及電壓控制之運行的示意圖。 FIG. 3B is a schematic diagram illustrating the operation of a programmable pixelated mirror panel and voltage control in accordance with an embodiment of the present invention.

圖3C為說明符合本發明之實施例的可程式化像素化鏡面板及電壓控制之運行以用於校正多射束系統中之不同小射束之不同像差的另一示意圖。 FIG. 3C is another schematic diagram illustrating the operation of a programmable pixelated mirror panel and voltage control in accordance with an embodiment of the present invention for correcting different aberrations of different beamlets in a multi-beam system.

圖4為說明符合本發明之實施例的校正小射束之像差之例示性方法的流程圖。 FIG. 4 is a flow chart illustrating an exemplary method for correcting aberrations of a beamlet in accordance with an embodiment of the present invention.

現在將詳細參考例示性實施例,在隨附圖式中說明該等例示性實施例之實例。以下描述參考隨附圖式,其中除非另外表示,否則不同圖式中之相同編號表示相同或相似元件。例示性實施例之以下描述中所闡述之實施並不表示符合本發明之所有實施。取而代之,其僅僅為符合關於所附申請專利範圍中所敍述之本發明的態樣之系統、裝置及方法之實例。出於清楚起見,圖式中之組件的相對尺寸可被誇示。 Reference will now be made in detail to the exemplary embodiments, examples of which are illustrated in the accompanying drawings. The following description refers to the accompanying drawings, wherein the same reference numerals in different drawings represent the same or similar elements unless otherwise indicated. The implementations described in the following description of the exemplary embodiments do not represent all implementations consistent with the present invention. Instead, they are merely examples of systems, devices, and methods that are consistent with the aspects of the present invention described in the attached patent claims. For the sake of clarity, the relative sizes of the components in the drawings may be exaggerated.

電子器件係由形成於被稱為基板之矽塊上的電路構成。許多電路可一起形成於同一矽塊上且被稱為積體電路或IC。此等電路之大小已顯著地減小,使得電路中之許多電路可適配於基板上。舉例而言,智慧型手機中之IC晶片可與拇指甲一樣小且仍可包括超過20億個電晶體,每一電晶體之大小小於人類毛髮之大小的1/1000。 Electronic devices are made up of circuits formed on a block of silicon called a substrate. Many circuits can be formed together on the same block of silicon and are called an integrated circuit or IC. The size of these circuits has been reduced dramatically so that many of them can fit on a substrate. For example, an IC chip in a smartphone can be as small as a thumbnail and still include over 2 billion transistors, each less than 1/1000 the size of a human hair.

製造此等極小IC為常常涉及數百個個別步驟之複雜、耗時且昂貴之程序。甚至一個步驟中之錯誤亦具有導致成品IC中之缺陷的可能,該等缺陷使得成品IC為無用的。因此,製造程序之一個目標為避免此類缺陷以使在程序中製造之功能性IC的數目最大化,亦即改良程序之總良率。 Manufacturing these tiny ICs is a complex, time-consuming, and expensive process that often involves hundreds of individual steps. An error in even one step has the potential to result in defects in the finished IC that render it useless. Therefore, one goal of the manufacturing process is to avoid such defects in order to maximize the number of functional ICs manufactured in the process, i.e., to improve the overall yield of the process.

改良良率之一個組分為監測晶片製造程序,以確保其正生產足夠數目個功能性積體電路。監測該程序之一種方式為在晶片電路結構形成之各個階段處檢測晶片電路結構。可使用掃描電子顯微鏡(SEM)來進行檢測。SEM可用以實際上將此等極小結構成像,從而獲取該等結構之「圖像」。影像可用以判定結構是否適當形成,且亦判定結構是否形成於適當部位中。若結構為有缺陷的,則程序可經調整,使得缺陷不大可能再現。 One component of improving yield is monitoring the chip manufacturing process to ensure that it is producing a sufficient number of functional integrated circuits. One way to monitor the process is to inspect the chip circuit structures at various stages of their formation. Inspection can be done using a scanning electron microscope (SEM). The SEM can be used to actually image these extremely small structures, thereby obtaining an "image" of the structures. The image can be used to determine whether the structure was properly formed, and also determine whether the structure was formed in the proper location. If the structure is defective, the process can be adjusted so that the defect is less likely to recur.

晶圓之影像可藉由使SEM系統之初級射束遍及晶圓進行掃描且在偵測器處收集自晶圓表面產生的粒子(例如二次電子)而形成。成像之程序可包括將初級射束聚焦至一點,且使該射束偏轉(例如彎曲)使得其以逐線圖案越過晶圓之區(例如光柵掃描)。在給定時間,射束可聚焦至晶圓上之特定位置,且此時偵測器之輸出可與晶圓上之彼特定位置相關。可基於每次沿著射束掃描路徑之偵測器輸出來重建構影像。 An image of a wafer can be formed by scanning a primary beam of an SEM system across the wafer and collecting particles (e.g., secondary electrons) generated from the wafer surface at a detector. The imaging process can include focusing the primary beam to a point and deflecting (e.g., bending) the beam so that it passes over an area of the wafer in a line-by-line pattern (e.g., grating scanning). At a given time, the beam can be focused to a specific location on the wafer, and the output of the detector at that time can be associated with that specific location on the wafer. An image can be reconstructed based on the detector output at each time along the beam scan path.

影響成像之品質(例如由SEM產生之圖像之品質)的因素包括成像解析度。成像解析度可取決於射束待聚焦至一點的能力。隨著IC晶片上之特徵大小持續減小,例如至5nm及3nm節點大小,解析度變得愈來愈重要。解析度可受到可能引入於SEM系統中之各種失真或像差影響。可在射束行進通過透鏡時造成像差,諸如場曲率像差、像散像差及色像差。 Factors that affect the quality of imaging, such as the quality of images produced by a SEM, include image resolution. Image resolution can be determined by the ability of a beam to be focused to a point. Resolution becomes increasingly important as feature sizes on IC chips continue to decrease, such as to 5nm and 3nm node sizes. Resolution can be affected by various distortions or aberrations that may be introduced into the SEM system. Aberrations such as field curvature, astigmatism, and chromatic aberrations can be caused as the beam travels through the lens.

為了解決像差,現有系統可使用例如包含孔徑之可程式化相位板。該等孔徑中之每一者連接至一電壓,該電壓經組態以將電壓供應至對應孔徑以校正穿過該孔徑的射束之像差。雖然可程式化相位板可縮減像差,但當射束之部分並不落在孔徑中之一者上時,其導致射束電流之損失。射束透射損失可進一步限制SEM系統之產出量。 To account for aberrations, existing systems may use, for example, programmable phase plates containing apertures. Each of the apertures is connected to a voltage configured to supply voltage to the corresponding aperture to correct aberrations of the beam passing through the aperture. Although programmable phase plates reduce aberrations, they result in a loss of beam current when part of the beam does not fall on one of the apertures. Beam transmission losses can further limit the throughput of an SEM system.

為了增強SEM系統之效能,將需要在不縮減射束電流的情況下且在不抑制SEM系統之操作靈活性的情況下校正像差。舉例而言,可需要維持SEM系統之參數之廣泛範圍之可調性,該等參數諸如初級射束能量、射束開度角及到達偵測器之二次電子之能量。 To enhance the performance of SEM systems, it would be desirable to correct aberrations without reducing the beam current and without inhibiting the operational flexibility of the SEM system. For example, it would be desirable to maintain adjustability over a wide range of SEM system parameters such as primary beam energy, beam opening angle, and the energy of secondary electrons reaching the detector.

本發明之實施例可藉由縮減像差之效應來解決諸如上文所論述之問題的問題。可在無相當大射束電流損失且不損害操作參數之可調 性的情況下縮減像差。舉例而言,在射束穿過透鏡之後,該射束可經塑形以校正由透鏡引入之任何像差。塑形可藉由鏡面板執行。 Embodiments of the present invention may solve problems such as those discussed above by reducing the effects of aberrations. Adjustable without considerable beam current loss and without compromising operating parameters Reduce aberrations when possible. For example, after the beam passes through a lens, the beam can be shaped to correct for any aberrations introduced by the lens. Shaping can be performed with mirror panels.

例示性鏡面板可包含一組像素,其中每一像素係與一電壓控制相關聯。該電壓控制將電壓提供至對應像素,藉此在射束之帶電粒子接近像素時影響射束之帶電粒子。藉由影響帶電粒子,鏡面板之像素輔助塑形射束或校正由透鏡引入之像差。 An exemplary mirror panel may include a set of pixels, wherein each pixel is associated with a voltage control. The voltage control provides a voltage to the corresponding pixel, thereby affecting the charged particles of the beam as they approach the pixel. By affecting the charged particles, the pixels of the mirror panel assist in shaping the beam or correcting aberrations introduced by the lens.

在不限制本發明之範疇的情況下,實施例之描述及圖式可被例示性地稱作使用電子束。然而,實施例並不用以將本發明限於特定帶電粒子。舉例而言,用於波束成形之系統及方法可應用於離子等。此外,術語「射束」可指初級電子束、初級電子小射束、二次電子束或二次電子小射束以及其他。 Without limiting the scope of the invention, the description and drawings of the embodiments may be exemplarily referred to as using electron beams. However, the examples are not intended to limit the invention to specific charged particles. For example, systems and methods for beamforming may be applied to ions and the like. Furthermore, the term "beam" may refer to a primary electron beam, a primary electron beamlet, a secondary electron beam or a secondary electron beamlet, among others.

現在參看圖1,其為說明符合本發明之實施例的例示性帶電粒子束檢測系統1之示意圖。如圖1中所展示,帶電粒子束檢測系統1包括主腔室10、裝載/鎖定腔室20、電子束工具100,及設備前端模組(EFEM)30。電子束工具100位於主腔室10內。雖然本說明書及圖式係針對電子束,但應瞭解,實施例並非用以將本發明限制為特定帶電粒子。 Referring now to FIG. 1 , a schematic diagram illustrates an exemplary charged particle beam detection system 1 consistent with embodiments of the present invention. As shown in FIG. 1 , the charged particle beam detection system 1 includes a main chamber 10 , a load/lock chamber 20 , an electron beam tool 100 , and an equipment front-end module (EFEM) 30 . The electron beam tool 100 is located within the main chamber 10 . Although the description and drawings are directed to electron beams, it should be understood that the examples are not intended to limit the invention to specific charged particles.

EFEM 30包括第一裝載埠30a及第二裝載埠30b。EFEM 30可包括額外裝載埠。第一裝載埠30a及第二裝載埠30b可例如收納含有待檢測之晶圓(例如,半導體晶圓或由其他材料製成之晶圓)或樣本的晶圓前開式單元匣(FOUP)(晶圓及樣本在下文中被集體地稱作「晶圓」)。EFEM 30中之一或多個機器人臂(圖中未繪示)將晶圓輸送至裝載/鎖定腔室20。 The EFEM 30 includes a first loading port 30a and a second loading port 30b. The EFEM 30 may include additional loading ports. The first loading port 30a and the second loading port 30b may, for example, receive wafer front opening unit pods (FOUPs) containing wafers (e.g., semiconductor wafers or wafers made of other materials) or samples to be inspected (wafers and samples are collectively referred to as "wafers" hereinafter). One or more robot arms (not shown) in the EFEM 30 transport the wafers to the loading/locking chamber 20.

裝載/鎖定腔室20可連接至裝載/鎖定真空泵系統(圖中未繪 示),其移除裝載/鎖定腔室20中之氣體分子以達到低於大氣壓力之第一壓力。在達到第一壓力之後,一或多個機器人臂(圖中未繪示)將晶圓自裝載/鎖定腔室20輸送至主腔室10。主腔室10連接至主腔室真空泵系統(圖中未繪示),該主腔室真空泵系統移除主腔室10中之氣體分子以達到低於第一壓力之第二壓力。在達到第二壓力之後,晶圓經受電子束工具100之檢測。在一些實施例中,電子束工具100可包含單射束檢測工具。在其他實施例中,電子束工具100可包含多射束檢測工具。 The load/lock chamber 20 may be connected to a load/lock vacuum pump system (not shown). shown), which removes gas molecules in the loading/locking chamber 20 to achieve a first pressure below atmospheric pressure. After the first pressure is reached, one or more robotic arms (not shown) transport the wafers from the load/lock chamber 20 to the main chamber 10 . The main chamber 10 is connected to a main chamber vacuum pump system (not shown in the figure), which removes gas molecules in the main chamber 10 to reach a second pressure lower than the first pressure. After reaching the second pressure, the wafer is subjected to inspection by electron beam tool 100 . In some embodiments, electron beam tool 100 may include a single beam inspection tool. In other embodiments, electron beam tool 100 may include a multi-beam inspection tool.

控制器109以電子方式連接至電子束工具100。控制器109可為經組態以執行對帶電粒子束檢測系統1之各種控制的電腦。控制器109亦可包括經組態以執行各種信號及影像處理功能之處理電路系統。雖然控制器109在圖1中被展示為在包括主腔室10、裝載/鎖定腔室20及EFEM 30之結構之外,但應瞭解,控制器109可為該結構之部分。雖然本發明提供容納電子束檢測工具之主腔室10的實例,但應注意,本發明之態樣在其最廣泛意義上而言不限於容納電子束檢測工具之腔室。實情為,應瞭解,亦可將前述原理應用於在第二壓力下操作之其他工具。 Controller 109 is electronically connected to electron beam tool 100 . Controller 109 may be a computer configured to perform various controls of charged particle beam detection system 1 . Controller 109 may also include processing circuitry configured to perform various signal and image processing functions. Although the controller 109 is shown in FIG. 1 as being external to the structure including the main chamber 10, the load/lock chamber 20, and the EFEM 30, it should be understood that the controller 109 may be part of the structure. While the present invention provides an example of a main chamber 10 housing an electron beam inspection tool, it should be noted that aspects of the invention are not limited to chambers housing electron beam inspection tools in its broadest sense. Indeed, it should be understood that the foregoing principles may also be applied to other tools operating under second pressure.

圖2A說明符合本發明之實施例的可為電子束工具100之實例的帶電粒子束裝置。電子束工具100A(在本文中亦被稱作裝置100A)可為用於帶電粒子束檢測系統1中之單射束SEM工具。裝置100A可包括初級射束源,該初級射束源包括陽極102及陰極103。可在陽極102與陰極103之間施加電壓,且可沿著軸線105發射初級射束161。軸線105可為SEM之主光軸。 FIG. 2A illustrates a charged particle beam device that may be an example of an electron beam tool 100 consistent with an embodiment of the present invention. The electron beam tool 100A (also referred to herein as device 100A) may be a single beam SEM tool used in a charged particle beam detection system 1. Device 100A may include a primary beam source that includes an anode 102 and a cathode 103. A voltage may be applied between the anode 102 and the cathode 103, and a primary beam 161 may be emitted along an axis 105. Axis 105 may be a main optical axis of the SEM.

初級射束161可穿過槍孔徑122及射束限制孔徑125。射束限制孔徑125可包括可調整孔徑板。槍孔徑122及射束限制孔徑125可判定 進入聚光透鏡126之電子束之大小。聚光透鏡126可提供於射束限制孔徑125下方(例如在射束限制孔徑125下游)。聚光透鏡126可經組態以在初級射束161進入柱孔徑135之前聚焦該初級射束161。柱孔徑135亦可包括可調整孔徑板。 The primary beam 161 may pass through the gun aperture 122 and the beam limiting aperture 125 . Beam limiting aperture 125 may include an adjustable aperture plate. Gun aperture 122 and beam limit aperture 125 can be determined The size of the electron beam entering the condenser lens 126. A condenser lens 126 may be provided below the beam limiting aperture 125 (eg, downstream of the beam limiting aperture 125). Concentrator lens 126 may be configured to focus primary beam 161 before it enters cylindrical aperture 135 . Post aperture 135 may also include an adjustable aperture plate.

在一些實施例中,裝置100A可包括用於操控初級射束161之額外透鏡148。舉例而言,可控制透鏡148以調整射束電流。透鏡148亦可包括可經控制以調整射束點大小及射束形狀之另一透鏡。舉例而言,透鏡148之此等透鏡可為任何類型之透鏡,諸如四極透鏡。 In some embodiments, the device 100A may include an additional lens 148 for manipulating the primary beam 161. For example, the lens 148 may be controlled to adjust the beam current. The lens 148 may also include another lens that may be controlled to adjust the beam spot size and beam shape. For example, such lenses of the lens 148 may be any type of lens, such as a quadrupole lens.

初級射束161之射束電流可藉由包括槍孔徑122、射束限制孔徑125及柱孔徑135之孔徑以及包括聚光透鏡126及四極透鏡148之透鏡予以判定。 The beam current of the primary beam 161 can be determined by the apertures including the gun aperture 122, the beam limiting aperture 125 and the column aperture 135, and the lenses including the focusing lens 126 and the quadrupole lens 148.

如圖2A所展示,裝置100A可包括機動載物台134及晶圓固持器136,該晶圓固持器由機動載物台134支撐以固持待檢測之晶圓150。裝置100A進一步包括物鏡總成132、射束分離器158及偵測器144。在一些實施例中,物鏡總成132可包括經修改擺動接物鏡延遲浸潤透鏡(SORIL),其包括磁極片132a、控制電極132b、偏轉器132c及激磁線圈132d。裝置100A可另外包括可用以特性化晶圓上之材料之能量色散X射線光譜儀(EDS)偵測器(圖中未繪示)。 As shown in FIG. 2A , the apparatus 100A may include a motorized stage 134 and a wafer holder 136 supported by the motorized stage 134 to hold a wafer 150 to be inspected. The apparatus 100A further includes an objective assembly 132, a beam splitter 158, and a detector 144. In some embodiments, the objective assembly 132 may include a modified oscillating objective delayed immersion lens (SORIL) including a pole piece 132a, a control electrode 132b, a deflector 132c, and an excitation coil 132d. The apparatus 100A may additionally include an energy dispersive x-ray spectrometer (EDS) detector (not shown) that may be used to characterize materials on the wafer.

在操作中,裝置100A可用以檢測安裝於晶圓固持器136上之晶圓150。初級射束161可行進通過裝置100A之SEM柱。偏轉器132c可使初級射束161偏轉以橫越晶圓150之表面上之部位進行掃描。在物鏡總成132中,激磁線圈132d及磁極片132a可產生在磁極片132a之一端開始且在磁極片132a之另一端終止的磁場。控制電極132b可與磁極片132a電隔 離且可控制影響射束焦點之電場。初級射束161可投影於晶圓150上且可形成射束點170。 In operation, device 100A may be used to inspect wafer 150 mounted on wafer holder 136 . Primary beam 161 may travel through the SEM column of device 100A. Deflector 132c can deflect primary beam 161 to scan across a location on the surface of wafer 150 . In the objective lens assembly 132, the excitation coil 132d and the magnetic pole piece 132a can generate a magnetic field starting at one end of the magnetic pole piece 132a and ending at the other end of the magnetic pole piece 132a. Control electrode 132b may be electrically isolated from pole piece 132a Isolated and controllable electric field that affects the beam focus. Primary beam 161 may be projected onto wafer 150 and may form beam spot 170 .

可自由初級射束161(例如在射束點170處)照明之晶圓150之部分發射二次粒子,諸如二次電子或反向散射電子。射束分離器158可將自晶圓150返回行進之二次粒子導引至偵測器144之感測器表面。射束分離器158可改變射束之方向。射束分離器158可例如基於穿過射束分離器158之射束之速度或能量而選擇性地改變射束之方向。射束分離器158可經組態以改變自晶圓150朝向射束分離器158導引回的二次粒子束之方向,使得其經導引朝向偵測器144,而在初級射束161穿過射束分離器158時,該初級射束161之軌跡並不變更。舉例而言,射束分離器158可與軸線105對準,且在二次粒子束遠離軸線105經轉向時可允許初級射束161沿著軸線105行進。在一些實施例中,射束分離器158可經組態以使初級射束161偏轉,而二次粒子束被允許自晶圓150返回行進通過射束分離器158,而使其軌跡不改變。在一些實施例中,射束分離器158可經組態以使初級射束161及二次粒子束偏轉。射束分離器158可包括產生磁場之組件。射束分離器158可連接至控制器109,且可基於自控制器109傳輸之信號而操作。 The portion of wafer 150 illuminated by primary beam 161 (eg, at beam point 170) may emit secondary particles, such as secondary electrons or backscattered electrons. Beam splitter 158 may direct secondary particles traveling back from wafer 150 to the sensor surface of detector 144 . Beam splitter 158 can change the direction of the beam. Beam splitter 158 may selectively change the direction of a beam, for example, based on the speed or energy of the beam passing through beam splitter 158 . Beam splitter 158 may be configured to redirect the secondary particle beam directed back from wafer 150 toward beam splitter 158 so that it is directed toward detector 144 where primary beam 161 passes When passing through the beam splitter 158, the trajectory of the primary beam 161 does not change. For example, beam splitter 158 may be aligned with axis 105 and may allow primary beam 161 to travel along axis 105 as the secondary particle beam is turned away from axis 105 . In some embodiments, beam splitter 158 may be configured to deflect primary beam 161 while the secondary particle beam is allowed to travel back from wafer 150 through beam splitter 158 without changing its trajectory. In some embodiments, beam splitter 158 may be configured to deflect primary beam 161 and secondary particle beams. Beam splitter 158 may include components that generate a magnetic field. Beam splitter 158 may be connected to controller 109 and may operate based on signals transmitted from controller 109 .

偵測器144可產生表示所接收帶電粒子之強度的信號(例如電壓、電流等),且將該等信號提供至諸如控制器109之處理系統。如圖2A中所展示,偵測器144可連接至控制器109。二次粒子束及偵測器144上之所得射束點的強度可根據晶圓150之外部或內部結構而變化。此外,如上文所論述,初級射束161可投影至晶圓150之頂部表面之不同部位上以產生不同強度的二次粒子束(及所得射束點)。因此,藉由將射束點之強度 與晶圓150之部位映射,處理系統可重建構反映晶圓150之內部或外部結構的影像。控制器109可包括影像處理系統。 Detector 144 may generate signals (eg, voltage, current, etc.) representative of the intensity of received charged particles and provide these signals to a processing system such as controller 109 . As shown in Figure 2A, detector 144 may be connected to controller 109. The intensity of the secondary particle beam and the resulting beam spot on detector 144 may vary depending on the external or internal structure of wafer 150 . Additionally, as discussed above, primary beam 161 may be projected onto different portions of the top surface of wafer 150 to produce secondary particle beams (and resulting beam spots) of varying intensities. Therefore, by converting the intensity of the beam point Mapping the portions of the wafer 150 , the processing system can reconstruct an image reflecting the internal or external structure of the wafer 150 . Controller 109 may include an image processing system.

圖2B說明符合本發明之實施例的可為電子束工具100之實例的帶電粒子束裝置。電子束工具100B(在本文中亦被稱作裝置100B)可為用於帶電粒子束檢測系統1中之多射束工具。裝置100B可包括電子源202。電子源202可經組態以沿著主光軸201產生電子束。 Figure 2B illustrates a charged particle beam apparatus that may be an example of electron beam tool 100 consistent with embodiments of the invention. Electron beam tool 100B (also referred to herein as device 100B) may be a multi-beam tool for use in charged particle beam detection system 1 . Device 100B may include electron source 202 . Electron source 202 may be configured to generate an electron beam along primary optical axis 201 .

如圖2B中所展示,裝置100B可包括電子源202、槍孔徑204、聚光透鏡206、自電子源202發射之初級電子束211、源轉換單元212、初級電子束211之複數個小射束214、216及218、初級投影光學系統220、晶圓載物台(圖2B中未繪示)、多個二次電子束236、238及240、二次光學系統242及電子偵測器件244。電子源202可產生初級粒子,諸如初級電子束211之電子。控制器、影像處理系統及其類似者可耦接至電子偵測器件244。初級投影光學系統220可包含射束分離器222、偏轉掃描單元226及物鏡228。電子偵測器件244可包含偵測子區246、248及250。 As shown in Figure 2B, device 100B may include an electron source 202, a gun aperture 204, a condenser lens 206, a primary electron beam 211 emitted from the electron source 202, a source conversion unit 212, and a plurality of beamlets of the primary electron beam 211 214, 216 and 218, primary projection optical system 220, wafer stage (not shown in FIG. 2B), a plurality of secondary electron beams 236, 238 and 240, secondary optical system 242 and electronic detection device 244. Electron source 202 may generate primary particles, such as electrons of primary electron beam 211 . Controllers, image processing systems, and the like may be coupled to electronic detection device 244 . Primary projection optical system 220 may include a beam splitter 222, a deflection scanning unit 226, and an objective lens 228. Electronic detection device 244 may include detection sub-regions 246, 248, and 250.

電子源202、槍孔徑204、聚光透鏡206、源轉換單元212、射束分離器222、偏轉掃描單元226及物鏡228可與裝置100B之主光軸201對準。二次光學系統242及電子偵測器件244可與裝置100B之副光軸252對準。 The electron source 202, gun aperture 204, condenser lens 206, source conversion unit 212, beam splitter 222, deflection scan unit 226 and objective lens 228 may be aligned with the main optical axis 201 of the device 100B. The secondary optical system 242 and the electronic detection device 244 may be aligned with the secondary optical axis 252 of the device 100B.

電子源202可包含陰極、提取器或陽極,其中初級電子可自陰極發射且經提取或加速以形成具有交越(虛擬或真實)208之初級電子束211。初級電子束211可被視覺化為自交越208發射。槍孔徑204可阻擋初級電子束211之周邊電子以縮減探測光點270、272及274之大小。 Electron source 202 may include a cathode, extractor, or anode, from which primary electrons may be emitted and extracted or accelerated to form primary electron beam 211 with crossover (virtual or real) 208 . Primary electron beam 211 can be visualized as self-crossing 208 emission. The gun aperture 204 blocks peripheral electrons of the primary electron beam 211 to reduce the size of the detection spots 270, 272, and 274.

源轉換單元212可包含影像形成元件陣列(圖2B中未繪示) 及射束限制孔徑陣列(圖2B中未繪示)。可在全文皆以引用方式併入之美國專利第9,691,586號;美國公開案第2017/0025243號;及國際申請案第PCT/EP2017/084429號中發現源轉換單元212之實例。影像形成元件陣列可包含微偏轉器或微透鏡陣列。影像形成元件陣列可藉由初級電子束211之複數個小射束214、216及218形成交越208之複數個平行影像(虛擬或真實)。射束限制孔徑陣列可限制複數個小射束214、216及218。 Source conversion unit 212 may include an array of image forming elements (not shown in Figure 2B) and a beam limiting aperture array (not shown in Figure 2B). Examples of source conversion unit 212 can be found in U.S. Patent No. 9,691,586; U.S. Publication No. 2017/0025243; and International Application No. PCT/EP2017/084429, which are incorporated by reference in their entirety. The array of image forming elements may include an array of micro-deflectors or micro-lenses. The image forming element array can form a plurality of parallel images (virtual or real) across 208 by a plurality of beamlets 214, 216 and 218 of the primary electron beam 211. The beam limiting aperture array can limit a plurality of beamlets 214, 216, and 218.

聚光透鏡206可聚焦初級電子束211。可藉由調整聚光透鏡206之聚焦倍率或藉由改變射束限制孔徑陣列內之對應的射束限制孔徑之徑向大小來使源轉換單元212下游的小射束214、216及218之電流變化。聚光透鏡206可為可經組態以使得其第一主面之位置可移動的可調整聚光透鏡。可調整聚光透鏡可經組態為磁性的,此可導致離軸小射束216及218以旋轉角著陸於小射束限制孔徑上。旋轉角隨著可調整聚光透鏡之聚焦倍率及第一主平面之位置而改變。在一些實施例中,可調整聚光透鏡可為可調整反旋轉聚光透鏡,其涉及具有可移動第一主平面之反旋轉透鏡。全文係以引用方式併入之美國公開案第2017/0025241號中進一步描述了可調整聚光透鏡之實例。 The focusing lens 206 can focus the primary electron beam 211. The current of the beamlets 214, 216 and 218 downstream of the source conversion unit 212 can be varied by adjusting the focusing magnification of the focusing lens 206 or by changing the radial size of the corresponding beam limiting apertures in the beam limiting aperture array. The focusing lens 206 can be an adjustable focusing lens that can be configured so that the position of its first principal surface can be moved. The adjustable focusing lens can be configured to be magnetic, which can cause the off-axis beamlets 216 and 218 to land on the beamlet limiting apertures at a rotation angle. The rotation angle varies with the focusing magnification of the adjustable focusing lens and the position of the first principal plane. In some embodiments, the adjustable focusing lens may be an adjustable anti-rotation focusing lens, which involves an anti-rotation lens having a movable first principal plane. Examples of adjustable focusing lenses are further described in U.S. Publication No. 2017/0025241, which is incorporated by reference in its entirety.

物鏡228可將小射束214、216及218聚焦至晶圓230上以供檢測且可在晶圓230之表面上形成複數個探測光點270、272及274。 The objective lens 228 can focus the small beams 214, 216 and 218 onto the wafer 230 for detection and form a plurality of detection light spots 270, 272 and 274 on the surface of the wafer 230.

在一些實施例中,聚光透鏡206可使小射束214、216及218中之每一者之波前失真。作為補充,物鏡228可經組態以將波前之表示聚焦至晶圓230之表面上,藉此使電子源202成像。但由物鏡228引入之像差可使波前之形狀失真以偏離理想形狀,從而造成表面上之影像模糊。 In some embodiments, condenser lens 206 may distort the wavefront of each of beamlets 214, 216, and 218. Additionally, objective 228 may be configured to focus a representation of the wavefront onto the surface of wafer 230, thereby imaging electron source 202. However, the aberration introduced by the objective lens 228 can distort the shape of the wavefront away from the ideal shape, resulting in blurred images on the surface.

射束分離器222可為產生靜電偶極子場及磁偶極子場之韋 恩濾光器類型(Wien filter type)的射束分離器。在一些實施例中,由靜電偶極子場對小射束214、216及218之電子施加的力可與由磁偶極子場對電子施加之力量值相等且方向相反。小射束214、216及218可因此以零偏轉角直接穿過射束分離器222。然而,由射束分離器222產生之小射束214、216及218之總色散亦可為非零的。射束分離器222可將二次電子束236、238及240與小射束214、216及218分離,且朝向二次光學系統242導引二次電子束236、238及240。射束分離器222可藉由使小射束相對於主光軸201以角度θ偏轉,而將小射束導引朝向二次光學系統242。 Beam splitter 222 may be a means of generating electrostatic dipole fields and magnetic dipole fields. Beam splitter of Wien filter type. In some embodiments, the force exerted on the electrons of beamlets 214, 216, and 218 by the electrostatic dipole field may be equal in magnitude and opposite in direction to the force exerted on the electrons by the magnetic dipole field. Beamlets 214, 216, and 218 can thus pass directly through beam splitter 222 with zero deflection angle. However, the total dispersion of beamlets 214, 216, and 218 produced by beam splitter 222 may also be non-zero. Beam splitter 222 may separate secondary electron beams 236 , 238 , and 240 from beamlets 214 , 216 , and 218 and direct secondary electron beams 236 , 238 , and 240 toward secondary optical system 242 . Beam splitter 222 may direct the beamlet toward secondary optical system 242 by deflecting the beamlet at an angle θ relative to primary optical axis 201 .

偏轉掃描單元226可使小射束214、216及218偏轉以使探測光點270、272及274遍及晶圓230之表面上之區域進行掃描。回應於小射束214、216及218入射於探測光點270、272及274處,可自晶圓230發射二次電子束236、238及240。二次電子束236、238及240可包含具有能量之分佈的電子,包括二次電子及反向散射電子。二次光學系統242可將二次電子束236、238及240聚焦至電子偵測器件244之偵測子區246、248及250上。偵測子區246、248及250可經組態以偵測對應二次電子束236、238及240且產生用以重建構晶圓230之表面之影像的對應信號。 The deflection scanning unit 226 can deflect the beamlets 214, 216 and 218 so that the detection spots 270, 272 and 274 scan the area on the surface of the wafer 230. In response to the beamlets 214, 216 and 218 being incident on the detection spots 270, 272 and 274, secondary electron beams 236, 238 and 240 can be emitted from the wafer 230. The secondary electron beams 236, 238 and 240 can include electrons with a distribution of energies, including secondary electrons and backscattered electrons. The secondary optical system 242 can focus the secondary electron beams 236, 238 and 240 onto the detection sub-areas 246, 248 and 250 of the electron detection device 244. Detection sub-regions 246, 248, and 250 may be configured to detect corresponding secondary electron beams 236, 238, and 240 and generate corresponding signals for reconstructing an image of the surface of wafer 230.

圖3A說明符合本發明之實施例的可為圖1之帶電粒子檢測系統之部分的例示性電子束工具100C。電子束工具100C(在本文中亦被稱作裝置100C)包含電子源302、第一透鏡306、第二透鏡328、射束分離器322、可程式化帶電粒子鏡面板300及電壓控制350。出於簡單之目的,諸如孔徑及偏轉器之通常存在之其他組件在圖3A中未展示。具有樣本表面370之樣本340可提供於可移動載物台(圖中未繪示)上。電子源302、透鏡306及透鏡328可與裝置100C之主光軸對準。 FIG. 3A illustrates an exemplary electron beam tool 100C that may be part of the charged particle detection system of FIG. 1 consistent with embodiments of the present invention. Electron beam tool 100C (also referred to herein as device 100C) includes an electron source 302, a first lens 306, a second lens 328, a beam splitter 322, a programmable charged particle mirror panel 300, and a voltage control 350. For simplicity, other commonly present components such as apertures and deflectors are not shown in Figure 3A. Sample 340 having sample surface 370 may be provided on a movable stage (not shown). Electron source 302, lens 306, and lens 328 may be aligned with the principal optical axis of device 100C.

電子源302可包含陰極(圖中未繪示)及提取器或陽極(圖中未繪示),其中在操作期間,電子源302經組態以自陰極發射初級電子且由提取器或陽極提取或加速初級電子以形成初級電子束,該初級電子束被展示為一系列波前,亦即,多個表面、表面、實的或虛的,在該等波前下振盪相位相同。如可看到,由源302發射之射束之波前被展示為基本上球形。 The electron source 302 may include a cathode (not shown) and an extractor or anode (not shown), wherein during operation, the electron source 302 is configured to emit primary electrons from the cathode and extract or accelerate the primary electrons by the extractor or anode to form a primary electron beam, which is shown as a series of wavefronts, that is, multiple surfaces, surfaces, real or virtual, under which the oscillations are in phase. As can be seen, the wavefront of the beam emitted by the source 302 is shown to be substantially spherical.

射束分離器322、鏡面板300及電壓控制350經引入至射束路徑中以校正像差。射束分離器322、鏡面板300及電壓控制350經引入於透鏡之間以預塑形波前使得預塑形及像差之淨效應為較適當聚焦之射束。如下文更詳細地描述應理解,裝置100C中之射束分離器322、鏡面板300及電壓控制350之置放僅僅為實例,且射束分離器322、鏡面板300及電壓控制350可被置放於裝置100C中之其他位置中。射束分離器322可與圖2B中之射束分離器222相似地起作用,且可將傳入小射束引導朝向鏡面板300且將來自鏡面板300之反射射束進一步引導至另一方向上。鏡面板300可校正傳入小射束之像差且將經校正小射束朝向射束分離器322反射。 The beam splitter 322, the mirror panel 300, and the voltage control 350 are introduced into the beam path to correct aberrations. The beam splitter 322, the mirror panel 300, and the voltage control 350 are introduced between the lenses to pre-shape the wavefront so that the net effect of the pre-shaping and the aberrations is a more properly focused beam. As will be understood as described in more detail below, the placement of the beam splitter 322, the mirror panel 300, and the voltage control 350 in the device 100C is merely an example, and the beam splitter 322, the mirror panel 300, and the voltage control 350 may be placed in other locations in the device 100C. The beam splitter 322 may function similarly to the beam splitter 222 in FIG. 2B and may direct the incoming beamlet toward the mirror panel 300 and further direct the reflected beam from the mirror panel 300 in another direction. The mirror panel 300 may correct the aberration of the incoming beamlet and reflect the corrected beamlet toward the beam splitter 322.

又,在以下所描述之實例中,主要在校正由透鏡產生之像差方面來描述鏡面板300。然而,鏡面板300亦可或替代地用以塑形帶電粒子束。舉例而言,鏡面板300可用以使在樣本上之射束橫截面輪廓為環形而非點狀。在某些應用中,此可提供諸如用於使接觸孔之側壁成像之優點。作為另一實例,可使射束輪廓在晶圓處較少地發散以產生較大聚焦深度。 Also, in the examples described below, the mirror panel 300 is mainly described in terms of correcting aberrations generated by lenses. However, the mirror panel 300 may also or alternatively be used to shape the charged particle beam. For example, the mirror panel 300 can be used to make the beam cross-sectional profile on the sample a ring rather than a point. In certain applications, this may provide advantages, such as for imaging the sidewalls of contact holes. As another example, the beam profile can be made less divergent at the wafer to produce a greater depth of focus.

在一些實施例中,裝置100C可包含與可調整電壓成對之額外光學元件(諸如電極)或與可調整激發成對之磁性光學元件,該等光學元 件被置放於鏡面板300與分離器322之間以進一步影響電場及磁場以校正像差。複數個驅動器可與電極或磁性光學元件耦接,其中該複數個驅動器中之每一者可經組態以將可調整電壓或調整激發分別提供至對應電極或對應磁性光學元件。與鏡面板300耦接之額外光學元件可用以校正由透鏡306或射束分離器322引起的可能額外像差,比如由多極場引起之彼等像差。舉例而言,在一項實例實施中,鏡面板300可用以校正旋轉對稱像差或非對稱像差,而額外光學元件可用以校正由多極場引起之非對稱像差。 In some embodiments, device 100C may include additional optical elements (such as electrodes) paired with adjustable voltage or magnetic optical elements paired with adjustable excitation. The components are placed between the mirror panel 300 and the separator 322 to further influence the electric and magnetic fields to correct aberrations. A plurality of drivers may be coupled with an electrode or a magnetic optical element, wherein each of the plurality of drivers may be configured to provide an adjustable voltage or an adjustable excitation to a corresponding electrode or corresponding magnetic optical element, respectively. Additional optical elements coupled to mirror panel 300 may be used to correct for possible additional aberrations caused by lens 306 or beam splitter 322, such as those caused by multipole fields. For example, in one example implementation, the mirror panel 300 can be used to correct rotationally symmetric aberrations or asymmetric aberrations, and additional optical elements can be used to correct asymmetric aberrations caused by multipolar fields.

鏡面板300可藉由將負或正的總電壓施加於鏡面板300上而反射鏡面上方之小射束。舉例而言,電壓控制350可將負的總電壓施加至鏡面板300以反射來自小射束之電子(或負離子)。在另一實例中,電壓控制350可將正的總電壓施加至鏡面板300以反射來自小射束之帶正電荷粒子(或正離子)。使小射束朝向射束分離器322反射,其中反射小射束經引導至另一方向上且可聚焦於樣本上。圖3A展示成90度彎曲之小射束,且應瞭解,小射束可成其他角度彎曲。此外,鏡面板300可經進一步組態以僅反射多個小射束中之一者。 The mirror panel 300 can reflect the beamlets above the mirror surface by applying a negative or positive total voltage to the mirror panel 300. For example, the voltage control 350 can apply a negative total voltage to the mirror panel 300 to reflect electrons (or negative ions) from the beamlets. In another example, the voltage control 350 can apply a positive total voltage to the mirror panel 300 to reflect positively charged particles (or positive ions) from the beamlets. The beamlets are reflected toward the beam splitter 322, where the reflected beamlets are directed in another direction and can be focused on the sample. FIG. 3A shows the beamlets bent at 90 degrees, and it should be understood that the beamlets can be bent at other angles. Additionally, the mirror panel 300 may be further configured to reflect only one of the multiple beamlets.

在一些實施例中,鏡面板300及電壓控制350可經實施於單獨的組件中。在一些其他實施例中,鏡面板300及電壓控制350可經實施於單個組件中。 In some embodiments, mirror panel 300 and voltage control 350 may be implemented in separate components. In some other embodiments, mirror panel 300 and voltage control 350 may be implemented in a single component.

在一些實施中,可提供第二鏡面板以反射已由裝置100C內部之鏡面板300反射之小射束。舉例而言,可將自鏡面板300反射之小射束導引至實施於裝置100C內(諸如射束分離器322附近)之第二鏡面板。第二鏡面板可將來自射束分離器322之入射小射束朝向第二射束分離器反射,其中第二射束分離器將反射小射束引導至另一方向上且可聚焦於樣本 上。 In some implementations, a second mirror panel may be provided to reflect beamlets that have been reflected by mirror panel 300 inside device 100C. For example, beamlets reflected from mirror panel 300 may be directed to a second mirror panel implemented within device 100C (such as near beam splitter 322). The second mirror panel can reflect the incident beamlet from the beam splitter 322 toward the second beam splitter, where the second beam splitter directs the reflected beamlet in another direction and can focus on the sample. superior.

現在參看圖3B,其為說明符合本發明之一些實施例的可程式化像素化鏡面板300及電壓控制350之運行的示意圖。鏡面板300可包含一組像素301至307,該組像素用以塑形接近該組像素之小射束之輪廓。電壓控制350可包含分別與該組像素301至307中之每一者相關聯的一組控制構件351至357。每一像素控制構件351至357經配置及組態以將信號(例如電壓)施加至關聯像素。鏡面板300因此可程式化,此係因為可向每一像素或像素群組不同地提供電壓且可視需要改變該等電壓。由像素控制構件351至357中之每一者提供之電壓可在鏡面板300上方產生彎曲等電位平面(自訂電場)390。等電位平面390可判定來自小射束361之不同部分之電子在何處被反射,且該反射影響由鏡面板300反射之小射束361r之形狀及相位。因此,電壓之調整藉由局部地調整小射束361(亦即,小射束361受到等電位平面390影響的一或多個部位)來控制像差,且使得反射小射束361r能夠獲得一或若干所要特性,諸如以所要解析度聚焦於樣本上之點處。雖然鏡面板300經配置為具有七個像素及對應的七個控制構件,但應瞭解,可配置不同數目個像素及控制構件,且該等像素或控制構件可以各種配置中之任一者配置。 Referring now to FIG. 3B , a schematic diagram illustrating the operation of a programmable pixelated mirror panel 300 and a voltage control 350 consistent with some embodiments of the present invention is shown. The mirror panel 300 may include a set of pixels 301 to 307 for shaping the profile of a beamlet proximate to the set of pixels. The voltage control 350 may include a set of control components 351 to 357 associated with each of the set of pixels 301 to 307, respectively. Each pixel control component 351 to 357 is configured and arranged to apply a signal (e.g., a voltage) to the associated pixel. The mirror panel 300 is thus programmable in that voltages may be provided differently to each pixel or group of pixels and may be varied as desired. The voltage provided by each of the pixel control components 351 to 357 can generate a curved isopotential plane (custom electric field) 390 above the mirror plate 300. The isopotential plane 390 can determine where the electrons from different parts of the beamlet 361 are reflected, and the reflection affects the shape and phase of the beamlet 361r reflected by the mirror plate 300. Therefore, the adjustment of the voltage controls the aberration by locally adjusting the beamlet 361 (that is, one or more locations of the beamlet 361 affected by the isopotential plane 390), and enables the reflected beamlet 361r to obtain one or more desired characteristics, such as focusing at a point on the sample with a desired resolution. Although the mirror panel 300 is configured to have seven pixels and corresponding seven control elements, it should be understood that different numbers of pixels and control elements may be configured, and the pixels or control elements may be configured in any of a variety of configurations.

在一些實施例中,像素301至307及對應的像素控制構件351至357可各自經實施於單獨的組件中。在其他實施例中,像素301至307及對應的像素控制構件351至357可經實施於單個組件中。 In some embodiments, pixels 301 to 307 and corresponding pixel control components 351 to 357 may each be implemented in a separate component. In other embodiments, pixels 301 to 307 and corresponding pixel control components 351 to 357 may be implemented in a single component.

像素301至307可各自包含矩形形狀。應顯而易見的是,像素可包含其他形狀,諸如六邊形、環形段、正方形、另一合適形狀或此等形狀之組合。舉例而言,小射束常常為旋轉對稱的,因此使用作為環形段 共用之像素可提供減少所需之電壓控制及像素之數目之優點。作為另一實例,藉由使用六邊形像素來代替正方形像素,可將更多像素實施於同一區域中。 Pixels 301 to 307 may each include a rectangular shape. It should be apparent that the pixels may comprise other shapes, such as hexagons, ring segments, squares, another suitable shape, or a combination of these shapes. For example, beamlets are often rotationally symmetric and therefore used as ring segments Shared pixels provide the advantage of reducing the voltage control required and the number of pixels. As another example, by using hexagonal pixels instead of square pixels, more pixels can be implemented in the same area.

在一些實施例中,像素之大小或像素301至307之形狀可遍及鏡面板300變化。舉例而言,較小像素可用於需要較精確校正的鏡面板300之區域中,且可因此提供在校正像差方面的更大準確度。電壓控制350可將電壓提供至此等對應較小像素中之每一者以提供較準確射束形狀。在一些實施例中,像素301至307中之每一者可被唯一地控制。舉例而言,電壓控制可將例如負電壓提供至一些像素以反射與彼等像素相互作用的帶負電荷粒子,且可將正電壓提供至其他像素以吸引可落在為彼例項所偏好之塑形射束之外的帶電粒子。 In some embodiments, the size of the pixels or the shape of the pixels 301 - 307 may vary throughout the mirror panel 300 . For example, smaller pixels may be used in areas of mirror panel 300 that require more precise correction, and may therefore provide greater accuracy in correcting aberrations. Voltage control 350 can provide voltage to each of these corresponding smaller pixels to provide a more accurate beam shape. In some embodiments, each of pixels 301-307 may be uniquely controlled. For example, voltage control may provide, for example, a negative voltage to some pixels to reflect negatively charged particles that interact with those pixels, and a positive voltage may be provided to other pixels to attract particles that may fall within the pixels preferred for that pixel. Charged particles outside the shaping beam.

在一些實施中,鏡面板300可包括較大像素以使射束塑形更易於控制及實施。舉例而言,較大像素與較小像素相比可各自覆蓋較大區域,且可提供對入射小射束之相似影響(例如諸如反射或吸引)。在一些實施中,鏡面板300可包括較大及較小像素,其中較大像素可用於被預期一致地反射小射束之鏡面板之部分中,且較小像素可用於預期小射束可與之相互作用之周邊上,以便提供對射束形狀之較多控制。 In some implementations, the mirror panel 300 may include larger pixels to make beam shaping easier to control and implement. For example, larger pixels may each cover a larger area than smaller pixels and may provide similar effects on incident beamlets (e.g., such as reflection or attraction). In some implementations, the mirror panel 300 may include larger and smaller pixels, where larger pixels may be used in portions of the mirror panel where beamlets are expected to be uniformly reflected, and smaller pixels may be used on the periphery where beamlets are expected to interact, so as to provide more control over beam shape.

在一些實施例中,鏡面板300可彎曲。當鏡面板300彎曲時,用以校正像差之電壓可縮減。可藉由諸如壓電馬達之機械致動器機械地調整及控制鏡面曲率。 In some embodiments, mirror panel 300 is bendable. When the mirror panel 300 is bent, the voltage used to correct aberrations can be reduced. Mirror curvature can be mechanically adjusted and controlled by mechanical actuators such as piezoelectric motors.

在一些實施例中,經實施於鏡面板300中之個別像素可藉由使用具有機械可傾斜上表面之個別像素而傾斜。可藉由諸如壓電馬達之機械致動器機械地調整及控制可傾斜像素。傾斜像素可自入射小射束移除 帶電粒子且經移除帶電粒子可散射於鏡面板300與射束分離器之間。傾斜像素可產生用於帶電粒子之不同路徑,其中可使用該不同路徑以運用鏡面板300與射束分離器之間或該帶電粒子束系統中之別處的射束孔徑將帶電粒子自入射小射束濾出。 In some embodiments, individual pixels implemented in the mirror panel 300 can be tilted by using individual pixels with a mechanically tiltable upper surface. The tiltable pixels can be mechanically adjusted and controlled by mechanical actuators such as piezoelectric motors. The tilted pixels can remove charged particles from the incident beamlet and the removed charged particles can be scattered between the mirror panel 300 and the beam splitter. The tilted pixels can produce different paths for the charged particles, which can be used to filter the charged particles from the incident beamlet using a beam aperture between the mirror panel 300 and the beam splitter or elsewhere in the charged particle beam system.

在使用期間,使經聚焦電子束橫越樣本之表面進行掃描。在經聚焦電子束遍及大視場之掃描期間,樣本之表面上之源之影像的形狀及強度分佈(例如光點輪廓)可改變。可程式化鏡面板300之使用藉由動態地組態可程式化鏡面板300而提供校正或縮減此等掃描效應的能力。如上文所闡述,可程式化鏡面板300可經組態為具有像素301至307及用於每一像素之單獨電壓控制351至357的板。使用電壓控制350以調整像素處之電壓可局部地改變電子波之相位,其中電壓控制350可將AC電壓提供至像素以藉由不定地反射入射小射束而產生時間相依射束形狀。舉例而言,在像素上方反射之電子波之部分可實現或促進對電子光點(探針)形成之控制。作為一特定實例,使鏡面板電壓與電子束遍及樣本之掃描同步會實現或促進對遍及整個經掃描視場之探針形成之動態控制。在另一實例中,當在樣本上掃描大視場時,與中心相比,小射束之外邊緣中可出現更多像差。藉由將AC電壓施加至鏡面板300,可更精確地校正小射束之外邊緣中之像差。 During use, a focused electron beam is scanned across the surface of the sample. During scanning of a focused electron beam across a large field of view, the shape and intensity distribution (eg, spot profile) of the source's image on the surface of the sample can change. The use of programmable mirror panel 300 provides the ability to correct or reduce these scanning effects by dynamically configuring programmable mirror panel 300. As explained above, programmable mirror panel 300 can be configured as a panel having pixels 301-307 and individual voltage controls 351-357 for each pixel. The phase of the electron wave can be locally changed by adjusting the voltage at the pixel using voltage control 350, which can provide an AC voltage to the pixel to produce a time-dependent beam shape by non-deterministic reflection of the incident beamlet. For example, the portion of the electron wave reflected above the pixel may enable or facilitate control of the formation of an electron spot (probe). As a specific example, synchronizing the mirror panel voltage with the scanning of the electron beam across the sample enables or facilitates dynamic control of probe formation throughout the scanned field of view. In another example, when scanning a large field of view over a sample, more aberrations may occur in the outer edges of the beamlet compared to the center. By applying an AC voltage to the mirror panel 300, aberrations in the outer edges of the beamlet can be corrected more accurately.

在一些實施例中,鏡面板300可提供使用遍及鏡面板300之表面在不同方向上係不同的像素電壓分佈。射束分離器322可將像差加至小射束且該等像差可為不旋轉對稱的,此係因為小射束在一個方向上偏轉。因此,小射束損失了旋轉對稱射束形狀且為了校正形狀,鏡面板可使用在兩個不同方向上之不同像素電壓分佈。 In some embodiments, the mirror panel 300 may provide for using different pixel voltage distributions in different directions across the surface of the mirror panel 300. The beam splitter 322 may add aberrations to the beamlets and these aberrations may be rotationally asymmetric because the beamlets are deflected in one direction. Therefore, the beamlets lose the rotationally symmetric beam shape and to correct the shape, the mirror panel may use different pixel voltage distributions in two different directions.

現在參看圖3C,其為說明符合本發明之一些實施例的可程式化像素化鏡面板400及電壓控制450之運行以用於校正多射束系統中之不同小射束之不同像差的另一示意圖。鏡面板400可包含三組像素401至405、411至415及421至425,且電壓控制450可包含分別與該等組像素中之每一者相關聯的三組控制構件451至455、461至465及471至475。每一像素控制構件451至455、461至465及471至475經配置及組態以將信號(例如電壓)施加至關聯像素。由像素控制構件451至455、461至465及471至475中之每一者提供之電壓可在鏡面板400上方產生對應的三個彎曲等電位平面491至493(自訂電場)。該等等電位平面可判定來自三個小射束之不同部分之電子在何處被反射,且該反射影響由鏡面板400反射之小射束中之每一者的形狀及相位。 Referring now to FIG. 3C , another diagram illustrating the operation of a programmable pixelated mirror panel 400 and voltage control 450 for correcting different aberrations of different beamlets in a multi-beam system, consistent with some embodiments of the present invention. A schematic diagram. The mirror panel 400 may include three groups of pixels 401 to 405, 411 to 415, and 421 to 425, and the voltage control 450 may include three groups of control members 451 to 455, 461 to 465 and 471 to 475. Each pixel control member 451-455, 461-465, and 471-475 is configured and configured to apply a signal (eg, a voltage) to the associated pixel. The voltage provided by each of the pixel control members 451 to 455, 461 to 465, and 471 to 475 can generate corresponding three curved equipotential planes 491 to 493 (customized electric fields) above the mirror panel 400. The equipotential planes determine where electrons from different portions of the three beamlets are reflected, and this reflection affects the shape and phase of each of the beamlets reflected by mirror panel 400.

實施於鏡面板400中之每一組像素可藉由將不同電壓提供至每一組像素而在鏡面板400之表面上方不同高度處進一步反射小射束。因此,鏡面板400可影響多個小射束中之每一者之形狀及相位且將所影響小射束朝向射束分離器以不同角度反射,從而使SEM能夠獲得一或若干所要特性,諸如以所要解析度針對小射束中之每一者聚焦於樣本上之不同點處。此外,除了控制相位以外或代替控制相位,鏡面板400亦可藉由自入射小射束之部分局部地移除帶電粒子來局部地控制電子波之振幅。鏡面板400可藉由防止小射束中之帶電粒子朝向射束分離器反射,例如藉由將帶電粒子吸引至像素而非反射帶電粒子從而達成對振幅之控制。 Each group of pixels implemented in the mirror panel 400 can further reflect the beamlets at different heights above the surface of the mirror panel 400 by providing different voltages to each group of pixels. Accordingly, the mirror panel 400 can affect the shape and phase of each of the plurality of beamlets and reflect the affected beamlets at different angles toward the beam splitter, thereby enabling the SEM to obtain one or more desired characteristics, such as Each of the beamlets is focused at a different point on the sample at the desired resolution. Furthermore, in addition to or instead of controlling the phase, the mirror panel 400 can also locally control the amplitude of the electron wave by locally removing charged particles from portions of the incident beamlet. The mirror panel 400 can control the amplitude by preventing the charged particles in the beamlets from reflecting toward the beam splitter, for example by attracting the charged particles to the pixels rather than reflecting the charged particles.

在一些實施例中,鏡面板400可藉由使用像素上之正電壓而自小射束局部地移除電子。帶正電荷像素可將像素上方之電子朝向鏡面板400吸引且吸收或散射鏡面板400之表面上之電子。 In some embodiments, the mirror panel 400 can locally remove electrons from the beamlet by using positive voltages on the pixels. Positively charged pixels can attract electrons above the pixel toward the mirror panel 400 and absorb or scatter electrons on the surface of the mirror panel 400 .

鏡面板400亦可藉由使用像素上之負電壓而移除小射束中之帶正電荷粒子。起源於鏡面板400之散射粒子或二次電子可在鏡面板400與射束分離器之間具有不同的路徑,且可藉由將射束孔徑置放於鏡面板400與射束分離器之間或帶電粒子束系統中之別處的合適部位處而濾出。 Mirror panel 400 can also remove positively charged particles in the beamlet by using negative voltages on the pixels. Scattered particles or secondary electrons originating from the mirror panel 400 can have different paths between the mirror panel 400 and the beam splitter by placing the beam aperture between the mirror panel 400 and the beam splitter. or filtered out from a suitable location elsewhere in the charged particle beam system.

針對向特定小射束指派之每一組像素或針對每一鏡面板,遍及像素之電壓分佈可不同。在一些實施例中,針對某些組像素或鏡面板之電壓分佈可能相同,以限制所需之單獨電壓控制之數目。 The voltage distribution across the pixels may be different for each set of pixels assigned to a particular beamlet or for each mirror panel. In some embodiments, the voltage distribution may be the same for certain sets of pixels or mirror panels to limit the number of individual voltage controls required.

可依據小射束之著陸能量來調整遍及像素之電壓分佈及總鏡面板電壓,以使能夠校正或縮減與不同著陸能量相關的不同電子束系統設定下之像差。可依據小射束在樣本上之位置來調整遍及像素之電壓分佈。舉例而言,小射束之位置可為小射束是否自所要射束點離軸或小射束在多大程度上自所要射束點離軸的量度,以最佳化小射束之各個離軸位置處之像差的校正或縮減。 The voltage distribution across the pixels and the total mirror panel voltage can be adjusted based on the landing energy of the beamlets, allowing correction or reduction of aberrations under different electron beam system settings associated with different landing energies. The voltage distribution across the pixel can be adjusted based on the position of the beamlet on the sample. For example, the position of the beamlet can be a measure of whether or how far the beamlet is off-axis from the desired beam point, in order to optimize the respective distances of the beamlet. Correction or reduction of aberrations at axial positions.

可依據小射束之射束電流來調整遍及像素之電壓分佈及總鏡面板電壓,以使能夠校正或縮減與不同小射束電流相關的不同電子束系統設定下之像差。可依據小射束在樣本處之著陸角度來調整遍及像素之電壓分佈及總鏡面板電壓,以使能夠校正或縮減與不同著陸角度相關的不同電子束系統設定下之像差。 The voltage distribution across the pixels and the total mirror panel voltage can be adjusted based on the beamlet current, allowing correction or reduction of aberrations under different electron beam system settings associated with different beamlet currents. The voltage distribution across the pixels and the total mirror panel voltage can be adjusted based on the beamlet's landing angle at the sample, allowing correction or reduction of aberrations under different electron beam system settings associated with different landing angles.

可依據樣本處之電場來調整遍及像素之電壓分佈及總鏡面板電壓,以使能夠校正或縮減與樣本處之不同電場相關的不同電子束系統設定下之像差。 The voltage distribution across the pixels and the total mirror panel voltage can be adjusted based on the electric field at the sample, allowing correction or reduction of aberrations under different electron beam system settings associated with different electric fields at the sample.

雖然圖3C之鏡面板400經配置為具有三組像素及關聯三個 控制構件以校正三個小射束之像差,但應瞭解,不同數目組之像素、控制構件及小射束可以各種配置中之任一者配置。 Although the mirror panel 400 of FIG. 3C is configured to have three sets of pixels and associated three control elements to correct the aberrations of the three beamlets, it should be understood that different numbers of sets of pixels, control elements, and beamlets may be configured in any of a variety of configurations.

現在參看圖4,其為說明符合本發明之實施例的校正小射束之像差之例示性方法500的流程圖。可藉由電子束工具(例如圖3A之電子束工具100C)執行方法500。此外,雖然方法500描述校正一小射束之像差,但應瞭解,方法500亦可應用於校正複數個小射束之像差。 Referring now to FIG. 4 , which is a flow chart illustrating an exemplary method 500 for correcting aberrations of a beamlet consistent with an embodiment of the present invention. The method 500 may be performed by an electron beam tool (e.g., the electron beam tool 100C of FIG. 3A ). Furthermore, although the method 500 describes correcting aberrations of a single beamlet, it should be understood that the method 500 may also be applied to correct aberrations of a plurality of beamlets.

在步驟510中,將小射束導引朝向可程式化帶電粒子鏡面板(例如圖3A之可程式化帶電粒子鏡面板300)。舉例而言,可由射束分離器(例如圖3A之射束分離器322)導引小射束。在一些實施例中,控制器(例如圖1之控制器109)可指示射束分離器將小射束導引至可程式化帶電粒子鏡面板。 In step 510, the beamlets are directed toward a programmable charged particle mirror panel (e.g., programmable charged particle mirror panel 300 of FIG. 3A). For example, the beamlets may be directed by a beam splitter (e.g., beam splitter 322 of FIG. 3A). In some embodiments, a controller (e.g., controller 109 of FIG. 1) may instruct the beam splitter to direct the beamlets toward the programmable charged particle mirror panel.

在步驟520中,將信號(例如電壓)提供至可程式化帶電粒子鏡面板之像素(例如圖3B之像素301至307)。在一些實施例中,此等信號可由電壓控制(例如圖3A之電壓控制350)提供,其中每一像素可具有對應的電壓控制(例如圖3B之電壓控制351至357)。在一些實施例中,所提供信號可為負電壓以反射電子(或負離子)且吸引來自小射束之帶正電荷粒子。在一些實施例中,所提供信號可為正電壓以反射帶正電荷粒子(或正離子)且吸引來自小射束之電子。 In step 520, a signal (eg, voltage) is provided to the pixels of the programmable charged particle mirror panel (eg, pixels 301 to 307 of FIG. 3B). In some embodiments, these signals may be provided by voltage controls (eg, voltage control 350 of FIG. 3A), where each pixel may have a corresponding voltage control (eg, voltage controls 351 to 357 of FIG. 3B). In some embodiments, the signal provided may be a negative voltage to reflect electrons (or negative ions) and attract positively charged particles from the beamlet. In some embodiments, the signal provided may be a positive voltage to reflect positively charged particles (or positive ions) and attract electrons from the beamlet.

像素可包括用以影響經導引小射束之一組像素。舉例而言,該組像素可經組態以塑形接近該組像素的小射束之輪廓。鏡面板中之該組像素中之每一者可具有經組態以在像素中建立電壓之單獨的電壓控制。鏡面板因此可程式化,此係因為可不同地提供電壓給每一像素或像素集合且可視需要改變該等電壓。所提供電壓可產生自訂電場(例如圖3B之 等電位平面390),該自訂電場經判定以塑形小射束輪廓。電壓之調整亦可改變小射束中所包含之電子之相位。 The pixel may include a group of pixels for influencing the guided beamlet. For example, the group of pixels may be configured to shape the profile of a beamlet proximate to the group of pixels. Each of the group of pixels in the mirror panel may have an individual voltage control configured to establish a voltage in the pixel. The mirror panel is thus programmable because voltages may be provided differently to each pixel or set of pixels and may be varied as desired. The provided voltages may generate custom electric fields (e.g., equipotential planes 390 of FIG. 3B ) determined to shape the profile of the beamlet. Adjustment of the voltage may also change the phase of the electrons contained in the beamlet.

在步驟530中,藉由可程式化帶電粒子鏡面板反射經塑形小射束以縮減像差。藉由施加至鏡面板上之像素之電壓在鏡面板之表面上方反射小射束。 In step 530, the shaped beamlets are reflected by the programmable charged particle mirror panel to reduce aberrations. The small beams are reflected above the surface of the mirror panel by a voltage applied to the pixels on the mirror panel.

在一些實施例中,方法500可進一步包括將經塑形小射束導引至樣本表面(例如圖3A之樣本表面370)之額外步驟。在到達樣本表面之前,經塑形小射束可受到物鏡(例如圖3A之第二透鏡328)進一步影響,該物鏡可用以將經塑形小射束聚焦至樣本表面上。 In some embodiments, method 500 may further include an additional step of directing the shaped beamlet to a sample surface (e.g., sample surface 370 of FIG. 3A ). Before reaching the sample surface, the shaped beamlet may be further affected by an objective lens (e.g., second lens 328 of FIG. 3A ) that may be used to focus the shaped beamlet onto the sample surface.

可使用以下條項進一步描述實施例: Embodiments may be further described using the following terms:

1.一種裝置,其包含:一第一組像素,其經組態以塑形接近該第一組像素之一第一小射束;及一第一組像素控制構件,其分別與該第一組像素中之每一者相關聯,每一像素控制構件經配置及經組態以將一信號施加至該關聯像素以用於塑形該第一小射束。 1. A device comprising: a first set of pixels configured to shape a first beamlet proximate to the first set of pixels; and a first set of pixel control components respectively associated with each of the first set of pixels, each pixel control component being configured and arranged to apply a signal to the associated pixel for shaping the first beamlet.

2.如條項1之裝置,其中該第一組像素具有經組態以基於與該第一組像素上方的該第一小射束相關聯之帶電粒子之一反射而調整的一電壓分佈。 2. The device of clause 1, wherein the first set of pixels has a voltage distribution configured to adjust based on a reflection of charged particles associated with the first beamlet above the first set of pixels.

3.如條項1或2中任一項之裝置,其中該第一小射束經塑形以引起一像差之一縮減。 3. A device as claimed in any one of clauses 1 or 2, wherein the first beamlet is shaped to induce a reduction of an aberration.

4.如條項1至3中任一項之裝置,其中該第一組像素及該第一組像素控制構件經實施於一組件中。 4. A device as claimed in any one of clauses 1 to 3, wherein the first set of pixels and the first set of pixel control components are implemented in a component.

5.如條項1至3中任一項之裝置,其中該第一組像素及該第一組像素控制構件經實施於單獨的組件中。 5. A device as claimed in any one of clauses 1 to 3, wherein the first set of pixels and the first set of pixel control components are implemented in separate components.

6.如條項1至3中任一項之裝置,其中該第一組像素中之每一像素及該第一組像素控制構件中之一對應像素控制構件經實施於一組件中。 6. A device as claimed in any one of clauses 1 to 3, wherein each pixel in the first set of pixels and a corresponding pixel control component in the first set of pixel control components are implemented in a component.

7.如條項1至3中任一項之裝置,其中該第一組像素中之每一像素及該第一組像素控制構件中之一對應像素控制構件經實施於單獨的組件中。 7. The device of any one of clauses 1 to 3, wherein each pixel in the first set of pixels and a corresponding pixel control component in the first set of pixel control components are implemented in a separate component.

8.如條項1至7中任一項之裝置,其中該信號觸發該關聯像素以產生用於塑形該第一小射束之一電場。 8. The device of any one of clauses 1 to 7, wherein the signal triggers the associated pixel to generate an electric field for shaping the first beamlet.

9.如條項1至7中任一項之裝置,其中該第一組像素經進一步組態以反射該經塑形之第一小射束。 9. A device as claimed in any one of clauses 1 to 7, wherein the first set of pixels is further configured to reflect the shaped first beamlet.

10.如條項1至9中任一項之裝置,其中該信號包含一負電壓以使該關聯像素能夠反射該第一小射束之帶負電荷粒子或自該第一小射束移除帶正電荷粒子。 10. A device as claimed in any one of clauses 1 to 9, wherein the signal comprises a negative voltage to enable the associated pixel to reflect negatively charged particles of the first beamlet or to remove positively charged particles from the first beamlet.

11.如條項1至10中任一項之裝置,其中該第一組像素包含傾斜以自該第一小射束移除帶電粒子之像素之一子集。 11. The device of any one of clauses 1 to 10, wherein the first set of pixels includes a subset of pixels tilted to remove charged particles from the first beamlet.

12.如條項1至9中任一項之裝置,其中該信號包含一正電壓以使該關聯像素能夠反射該第一小射束之帶正電荷粒子或自該第一小射束移除帶負電荷粒子。 12. A device as claimed in any one of clauses 1 to 9, wherein the signal comprises a positive voltage to enable the associated pixel to reflect positively charged particles of the first beamlet or to remove negatively charged particles from the first beamlet.

13.如條項1至12中任一項之裝置,其中該信號包含AC電壓以與該射束遍及一樣本進行掃描同步地塑形該第一小射束之輪廓。 13. The apparatus of any one of clauses 1 to 12, wherein the signal includes an AC voltage to shape the profile of the first beamlet in synchronization with scanning of the beam across a sample.

14.如條項1至13中任一項之裝置,其進一步包含:一第二組像素,其經組態以塑形接近該第二組像素之一第二小射 束;及一第二組像素控制構件,其分別與該第二組像素中之每一者相關聯,每一像素控制構件經配置及經組態以將一信號施加至該關聯像素以用於塑形該第二小射束。 14. The device of any one of clauses 1 to 13, further comprising: a second set of pixels configured to shape a second beamlet proximate to the second set of pixels; and a second set of pixel control components respectively associated with each of the second set of pixels, each pixel control component being configured and arranged to apply a signal to the associated pixel for shaping the second beamlet.

15.如條項14之裝置,其中該第一組像素及該第二組像素為一鏡面板之部分。 15. The device of clause 14, wherein the first set of pixels and the second set of pixels are part of a mirror panel.

16.如條項14之裝置,其中該第一組像素及該第二組像素中之每一者包含一組矩形、六邊形或環形段像素。 16. The device of clause 14, wherein each of the first set of pixels and the second set of pixels comprises a set of rectangular, hexagonal or ring-shaped segment pixels.

17.如條項14至16中任一項之裝置,其中該第一組像素及該第二組像素以一正方形或六邊形圖案配置。 17. A device as claimed in any one of clauses 14 to 16, wherein the first set of pixels and the second set of pixels are arranged in a square or hexagonal pattern.

18.如條項1之裝置,其中該第一組像素包含不同大小及形狀之像素。 18. A device as claimed in clause 1, wherein the first set of pixels comprises pixels of different sizes and shapes.

19.如條項1之裝置,其中該第一組像素安置於一板形構件上,且該板形構件彎曲,該板形構件之曲率係由機械致動器調整。 19. A device as in clause 1, wherein the first set of pixels is disposed on a plate-shaped member, and the plate-shaped member is curved, and the curvature of the plate-shaped member is adjusted by a mechanical actuator.

20.如條項1之裝置,其中該第一組像素控制構件經組態以施加負電壓、零或正電壓以塑形該第一小射束。 20. A device as claimed in clause 1, wherein the first set of pixel control components is configured to apply a negative voltage, zero or a positive voltage to shape the first beamlet.

21.如條項1之裝置,其中該第一組像素具有經組態以基於與該第一小射束相關聯之帶電粒子之一著陸能量而調整的一電壓分佈。 21. The device of clause 1, wherein the first set of pixels has a voltage distribution configured to adjust based on a landing energy of charged particles associated with the first beamlet.

22.如條項1之裝置,其中該第一組像素具有經組態以基於與該第一小射束相關聯之帶電粒子之一電流而調整的一電壓分佈。 22. The device of clause 1, wherein the first set of pixels has a voltage distribution configured to adjust based on a current of charged particles associated with the first beamlet.

23.如條項1之裝置,其中該第一組像素具有經組態以基於一樣本處之一著陸角度而調整的一電壓分佈。 23. The device of clause 1, wherein the first set of pixels has a voltage distribution configured to adjust based on a landing angle at a sample.

24.如條項1之裝置,其中該第一組像素具有經組態以基於一樣本 處之一電場之一量值而調整的一電壓分佈。 24. The device of clause 1, wherein the first set of pixels has a A voltage distribution adjusted by a magnitude of an electric field.

25.一種用於操控一帶電粒子小射束之系統,其包含:帶電粒子之一小射束之一源;及一可程式化帶電粒子鏡面板,其經配置以接收該小射束且經組態以塑形該小射束。 25. A system for manipulating a charged particle beamlet, comprising: a source of a beamlet of charged particles; and a programmable charged particle mirror panel configured to receive the beamlet and configured to shape the beamlet.

26.如條項25之系統,其進一步包含:複數個電極,其經組態以影響該經導引之小射束;及複數個驅動器,其分別與該複數個電極中之每一者相關聯,每一驅動器經組態以提供可調整電壓。 26. The system of clause 25, further comprising: a plurality of electrodes configured to affect the guided beamlet; and a plurality of drivers respectively associated with each of the plurality of electrodes, each driver configured to provide an adjustable voltage.

27.如條項25之系統,其進一步包含:複數個電磁光學元件,其與可調整激發件耦接,經組態以影響該導引小射束;複數個驅動器,其分別與該複數個電磁光學元件中之每一者相關聯,每一驅動器經組態以調整該對應電磁光學元件之激發。 27. The system of clause 25, further comprising: a plurality of electromagnetic optical elements coupled to the adjustable excitation element and configured to affect the guide beamlet; a plurality of drivers respectively connected to the plurality of Each of the electromagnetic optical elements is associated, and each driver is configured to adjust the excitation of the corresponding electromagnetic optical element.

28.如條項25之系統,其進一步包含:一射束分離器,其經組態以將該小射束導引至該可程式化帶電粒子鏡面板,其中該可程式化帶電粒子鏡面板可經進一步組態以將該經塑形小射束導引至該射束分離器。 28. The system of clause 25, further comprising: a beam splitter configured to direct the beamlet to the programmable charged particle mirror panel, wherein the programmable charged particle mirror panel can be further configured to direct the shaped beamlet to the beam splitter.

29.如條項28之系統,其中該射束分離器經組態以接收及導引多個小射束,且該可程式化帶電粒子鏡面板經配置以接收及反射該多個小射束。 29. The system of clause 28, wherein the beam splitter is configured to receive and direct a plurality of beamlets, and the programmable charged particle mirror panel is configured to receive and reflect the plurality of beamlets .

30.如條項25之系統,其中該可程式化帶電粒子鏡面板在該鏡面板 中具有複數個受控像素,該多個小射束中之每一者對應於經組態以塑形該對應小射束之一關聯組受控像素。 30. The system of clause 25, wherein the programmable charged particle mirror panel has a plurality of controlled pixels in the mirror panel, each of the plurality of beamlets corresponding to an associated set of controlled pixels configured to shape the corresponding beamlet.

31.一種用於塑形帶電粒子之一小射束之方法,該方法包含:使用一射束分離器將帶電粒子之一第一小射束導引朝向一帶電粒子鏡面板;及使用該帶電粒子鏡面板藉由將信號提供至該帶電粒子鏡面板之一第一組像素以產生一電場來塑形該第一小射束且反射該經塑形小射束。 31. A method for shaping a beamlet of charged particles, the method comprising: using a beam splitter to direct a first beamlet of charged particles toward a charged particle mirror panel; and using the charged particle mirror panel The particle mirror panel shapes the first beamlet and reflects the shaped beamlet by providing a signal to a first group of pixels of the charged particle mirror panel to generate an electric field.

32.如條項31之方法,其中將該經塑形小射束導引至該射束分離器。 32. The method of clause 31, wherein the shaped beamlet is directed to the beam splitter.

33.如條項31之方法,其進一步包含:使用該射束分離器將帶電粒子之一第二小射束導引朝向該帶電粒子鏡面板;及使用該帶電粒子鏡面板藉由將信號提供至該帶電粒子鏡面板之一第二組像素以產生一電場來塑形該第二小射束且將該經塑形小射束反射至該射束分離器。 33. The method of clause 31, further comprising: directing a second beamlet of charged particles toward the charged particle mirror panel using the beam splitter; and shaping the second beamlet using the charged particle mirror panel by providing a signal to a second set of pixels of the charged particle mirror panel to generate an electric field and reflecting the shaped beamlet to the beam splitter.

34.一種非暫時性電腦可讀媒體,其儲存一指令集,該指令集可由一裝置之一控制器執行以致使該裝置執行用以塑形帶電粒子之一小射束之一方法,該方法包含:使用一射束分離器將帶電粒子之一第一小射束導引朝向一帶電粒子鏡面板;及使用該帶電粒子鏡面板藉由將信號提供至該帶電粒子鏡面板之一第一組像素以產生一電場來塑形該第一小射束且將該經塑形小射束反射至該射束分離器。 34. A non-transitory computer-readable medium storing a set of instructions executable by a controller of a device to cause the device to perform a method for shaping a beamlet of charged particles, the method Comprising: using a beam splitter to direct a first beamlet of charged particles toward a charged particle mirror panel; and using the charged particle mirror panel by providing a signal to a first set of the charged particle mirror panel The pixels generate an electric field to shape the first beamlet and reflect the shaped beamlet to the beam splitter.

35.如條項34之非暫時性電腦可讀媒體,其中該指令集可由該裝置之該控制器執行以致使該裝置進一步執行以下操作:使用該射束分離器將帶電粒子之一第二小射束導引朝向該帶電粒子鏡面板;及藉由將信號提供至該帶電粒子鏡面板之一第二組像素以產生一電場來塑形該第二小射束且由該帶電粒子鏡面板將該經塑形小射束反射至該射束分離器。 35. The non-transitory computer-readable medium of clause 34, wherein the set of instructions is executable by the controller of the device to cause the device to further perform the following operations: directing a second beamlet of charged particles toward the charged particle mirror panel using the beam splitter; and shaping the second beamlet by providing a signal to a second set of pixels of the charged particle mirror panel to generate an electric field and reflecting the shaped beamlet from the charged particle mirror panel to the beam splitter.

在一些實施例中,控制器可控制帶電粒子束系統。控制器可包括電腦處理器。控制器可指示帶電粒子束系統之組件執行各種功能,諸如控制各種驅動器以用於操控一或多個小射束,用於控制射束分離器以導引小射束及用於控制電壓控制以及可程式化帶電粒子鏡面板之對應像素。控制器可包含作為儲存媒體之儲存器,諸如硬碟、雲端儲存器、隨機存取記憶體(RAM)、其他類型之電腦可讀記憶體及其類似者。控制器可與雲端儲存器通信。可提供非暫時性電腦可讀媒體,該非暫時性電腦可讀媒體儲存用於使控制器109之處理器進行波束成形或與本發明一致的其他功能及方法的指令。常見形式之非暫時性媒體包括例如:軟碟、可撓性磁碟、硬碟、固態磁碟機、磁帶或任何其他磁性資料儲存媒體;CD-ROM;任何其他光學資料儲存媒體;具有孔圖案之任何實體媒體;RAM、PROM及EPROM、FLASH-EPROM或任何其他快閃記憶體;NVRAM;快取記憶體;暫存器;任何其他記憶體晶片或卡匣;及其網路化版本。 In some embodiments, a controller may control a charged particle beam system. The controller may include a computer processor. The controller may instruct components of the charged particle beam system to perform various functions, such as controlling various drivers for manipulating one or more beamlets, for controlling a beam splitter for directing the beamlets, and for controlling voltage control and corresponding pixels of a programmable charged particle mirror panel. The controller may include storage as a storage medium, such as a hard drive, cloud storage, random access memory (RAM), other types of computer readable memory, and the like. The controller may communicate with the cloud storage. A non-transitory computer-readable medium may be provided that stores instructions for causing the processor of controller 109 to perform beamforming or other functions and methods consistent with the present invention. Common forms of non-transitory media include, for example: floppy disks, flexible disks, hard disks, solid-state drives, magnetic tapes, or any other magnetic data storage media; CD-ROMs; any other optical data storage media; any physical media with a hole pattern; RAM, PROM and EPROM, FLASH-EPROM or any other flash memory; NVRAM; cache memory; registers; any other memory chip or cartridge; and networked versions thereof.

如本文中所使用,除非另外特定陳述,否則術語「或」涵蓋所有可能組合,除非不可行。舉例而言,若陳述組件可包括A或B,則 除非另外特定陳述或不可行,否則組件可包括A,或B,或A及B。作為第二實例,若陳述組件可包括A、B或C,則除非另外特定陳述或不可行,否則組件可包括A,或B,或C,或A及B,或A及C,或B及C,或A及B及C。 As used herein, unless specifically stated otherwise, the term "or" encompasses all possible combinations unless not feasible. For example, if the statement component can include A or B, then Unless otherwise specifically stated or impracticable, components may include A, or B, or A and B. As a second example, if it is stated that a component may include A, B, or C, then unless otherwise specifically stated or impracticable, the component may include A, or B, or C, or A and B, or A and C, or B and C, or A and B and C.

雖然已結合各種實施例來描述本發明之實施例,但應瞭解,在不脫離本本發明之範疇的情況下,可進行各種修改及改變。希望本說明書及實例僅被認為係例示性的。 Although various embodiments have been combined to describe embodiments of the present invention, it should be understood that various modifications and changes may be made without departing from the scope of the present invention. It is intended that this specification and examples be considered illustrative only.

100C:電子束工具/裝置 100C: Electron beam tools/devices

300:可程式化帶電粒子鏡面板 300: Programmable charged particle mirror panel

302:電子源 302:Electron source

306:第一透鏡 306:First lens

322:射束分離器 322: Beam splitter

328:第二透鏡 328: Second lens

340:樣本 340: Sample

350:電壓控制 350:Voltage control

370:樣本表面 370: Sample surface

Claims (15)

一種用於控制帶電粒子束之裝置,其包含:一第一組像素,其經組態以塑形接近該第一組像素之一第一小射束(beamlet);及一第一組像素控制構件,其分別與該第一組像素中之每一者相關聯,每一像素控制構件經配置及經組態以將一信號施加至該關聯像素以用於塑形該第一小射束,其中每一像素控制構件經組態以在該關聯像素上方產生一彎曲等電位平面(curved equipotential plane),使得該第一小射束之該塑形(shaping)經影響以獲得一所要特性。 A device for controlling a charged particle beam, comprising: a first set of pixels configured to shape a first beamlet proximate to the first set of pixels; and a first set of pixel control components respectively associated with each of the first set of pixels, each pixel control component being configured and configured to apply a signal to the associated pixel for shaping the first beamlet, wherein each pixel control component is configured to generate a curved equipotential plane above the associated pixel so that the shaping of the first beamlet is affected to obtain a desired characteristic. 如請求項1之裝置,其中該第一組像素具有經組態以基於與該第一組像素上方的該第一小射束相關聯之帶電粒子之一反射而調整的一電壓分佈。 The device of claim 1, wherein the first set of pixels has a voltage distribution configured to adjust based on a reflection of charged particles associated with the first beamlet above the first set of pixels. 如請求項1之裝置,其中該第一小射束經塑形以引起一像差(aberration)之一縮減。 A device as claimed in claim 1, wherein the first beamlet is shaped to cause a reduction in an aberration. 如請求項1之裝置,其中該第一組像素及該第一組像素控制構件經實施於一組件中。 The device of claim 1, wherein the first set of pixels and the first set of pixel control components are implemented in a component. 如請求項1之裝置,其中該第一組像素及該第一組像素控制構件經實 施於單獨的(separate)組件中。 A device as claimed in claim 1, wherein the first set of pixels and the first set of pixel control components are implemented in separate components. 如請求項1之裝置,其中該第一組像素中之每一像素及該第一組像素控制構件中之一對應像素控制構件經實施於一組件中。 The device of claim 1, wherein each pixel in the first set of pixels and a corresponding pixel control component in the first set of pixel control components are implemented in a component. 如請求項1之裝置,其中該第一組像素中之每一像素及該第一組像素控制構件中之一對應像素控制構件經實施於單獨的組件中。 A device as claimed in claim 1, wherein each pixel in the first set of pixels and a corresponding pixel control component in the first set of pixel control components are implemented in a separate component. 如請求項1之裝置,其中該信號觸發該關聯像素以產生用於塑形該第一小射束之一電場。 The device of claim 1, wherein the signal triggers the associated pixel to generate an electric field for shaping the first beamlet. 如請求項1之裝置,其中該第一組像素經進一步組態以反射該經塑形之第一小射束。 The device of claim 1, wherein the first set of pixels is further configured to reflect the shaped first beamlet. 如請求項1之裝置,其中該信號包含一負電壓以使該關聯像素能夠反射該第一小射束之帶負電荷粒子或自該第一小射束移除帶正電荷粒子。 The device of claim 1, wherein the signal includes a negative voltage to enable the associated pixel to reflect negatively charged particles of the first beamlet or to remove positively charged particles from the first beamlet. 如請求項1之裝置,其中該第一組像素包含傾斜以自該第一小射束移除帶電粒子之像素之一子集。 The device of claim 1, wherein the first set of pixels includes a subset of pixels tilted to remove charged particles from the first beamlet. 如請求項1之裝置,其中該信號包含一正電壓以使該關聯像素能夠反射該第一小射束之帶正電荷粒子或自該第一小射束移除帶負電荷粒子。 The device of claim 1, wherein the signal includes a positive voltage to enable the associated pixel to reflect the positively charged particles of the first beamlet or to remove negatively charged particles from the first beamlet. 如請求項1之裝置,其中該信號包含AC電壓以與該射束遍及一樣本進行掃描同步地(synchronously)塑形該第一小射束之輪廓。 The device of claim 1, wherein the signal comprises an AC voltage to synchronously shape the profile of the first beamlet as the beam is scanned across a sample. 如請求項1之裝置,其進一步包含:一第二組像素,其經組態以塑形接近該第二組像素之一第二小射束;及一第二組像素控制構件,其分別與該第二組像素中之每一者相關聯,每一像素控制構件經配置及經組態以將一信號施加至該關聯像素以用於塑形該第二小射束。 The device of claim 1, further comprising: a second set of pixels configured to shape a second beamlet proximal to the second set of pixels; and a second set of pixel control members respectively and Associated with each of the second set of pixels, each pixel control member is configured and configured to apply a signal to the associated pixel for shaping the second beamlet. 一種用於塑形帶電粒子之一小射束之方法,該方法包含:使用一射束分離器將帶電粒子之一第一小射束導引朝向一帶電粒子鏡面板;及使用該帶電粒子鏡面板藉由將信號提供至該帶電粒子鏡面板之一第一組像素以在關聯像素上方產生一彎曲等電位平面來塑形該第一小射束且反射該經塑形之第一小射束,其中該第一小射束之該塑形經影響以獲得一所要特性。 A method for shaping a beamlet of charged particles, the method comprising: using a beam splitter to direct a first beamlet of charged particles toward a charged particle mirror panel; and using the charged particle mirror The panel shapes the first beamlet by providing a signal to a first group of pixels of the charged particle mirror panel to create a curved equipotential plane above the associated pixel and reflect the shaped first beamlet , wherein the shaping of the first beamlet is influenced to obtain a desired characteristic.
TW109146793A 2020-01-06 2020-12-30 Apparatus for and method of control of a charged particle beam TWI836173B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20150384.4 2020-01-06
EP20150384.4A EP3846197A1 (en) 2020-01-06 2020-01-06 Apparatus for and method of control of a charged particle beam

Publications (2)

Publication Number Publication Date
TW202135118A TW202135118A (en) 2021-09-16
TWI836173B true TWI836173B (en) 2024-03-21

Family

ID=69137814

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109146793A TWI836173B (en) 2020-01-06 2020-12-30 Apparatus for and method of control of a charged particle beam

Country Status (5)

Country Link
US (1) US20230048580A1 (en)
EP (1) EP3846197A1 (en)
CN (1) CN114930486A (en)
TW (1) TWI836173B (en)
WO (1) WO2021140072A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020130274A1 (en) * 2001-03-15 2002-09-19 International Busines Machines Corporation Spatial phase locking with shaped electron beam lithography
TW201839794A (en) * 2017-03-20 2018-11-01 德商卡爾蔡司顯微鏡有限責任公司 Charged particle beam system and method
EP3474308A1 (en) * 2017-10-17 2019-04-24 Universiteit Antwerpen Spatial phase manipulation of charged particle beam
TW201940872A (en) * 2018-02-21 2019-10-16 日商紐富來科技股份有限公司 Charged particle beam inspection method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9691588B2 (en) 2015-03-10 2017-06-27 Hermes Microvision, Inc. Apparatus of plural charged-particle beams
US9922799B2 (en) 2015-07-21 2018-03-20 Hermes Microvision, Inc. Apparatus of plural charged-particle beams
KR20190091577A (en) 2015-07-22 2019-08-06 에이에스엠엘 네델란즈 비.브이. Apparatus of plural charged-particle beams

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020130274A1 (en) * 2001-03-15 2002-09-19 International Busines Machines Corporation Spatial phase locking with shaped electron beam lithography
TW201839794A (en) * 2017-03-20 2018-11-01 德商卡爾蔡司顯微鏡有限責任公司 Charged particle beam system and method
EP3474308A1 (en) * 2017-10-17 2019-04-24 Universiteit Antwerpen Spatial phase manipulation of charged particle beam
TW201940872A (en) * 2018-02-21 2019-10-16 日商紐富來科技股份有限公司 Charged particle beam inspection method

Also Published As

Publication number Publication date
TW202135118A (en) 2021-09-16
CN114930486A (en) 2022-08-19
WO2021140072A1 (en) 2021-07-15
EP3846197A1 (en) 2021-07-07
US20230048580A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
US20220216029A1 (en) Multi-beam inspection apparatus
JP7308981B2 (en) MULTI-CHARGED PARTICLE BEAM DEVICE AND OPERATION METHOD THEREOF
TWI829931B (en) Multiple charged-particle beam apparatus and methods
US20230223233A1 (en) Charged particle system, aperture array, charged particle tool and method of operating a charged particle system
US20220199355A1 (en) Apparatus for and method of local control of a charged particle beam
TWI836173B (en) Apparatus for and method of control of a charged particle beam
JP7400106B2 (en) Multi-charged particle beam device with low crosstalk
KR102660817B1 (en) Apparatus and method for controlling energy spread of charged particle beam
US20220415611A1 (en) Multi-source charged particle illumination apparatus
US20230109236A1 (en) Manipulator, manipulator array, charged particle tool, multi-beam charged particle tool, and method of manipulating a charged particle beam
TWI830168B (en) Flood column and charged particle apparatus
TWI773020B (en) Systems and methods for chromatic aberration mitigation
TW202420456A (en) System and method for image disturbance compensation
CN115335949A (en) Flood column, charged particle tool and method for flooding charged particles of a sample
TW202303658A (en) Method of compensating for an effect of electrode distortion, assessment system
JP2024523820A (en) Method and evaluation system for compensating for effects of electrode distortion
CN118251748A (en) Multi-charged particle beam device and method of operating the same
KR20240095476A (en) Multiple charged-particle beam apparatus and methods of operating the same