TWI836058B - 訊號處理裝置、無線通訊裝置及熱管理方法 - Google Patents

訊號處理裝置、無線通訊裝置及熱管理方法 Download PDF

Info

Publication number
TWI836058B
TWI836058B TW109112121A TW109112121A TWI836058B TW I836058 B TWI836058 B TW I836058B TW 109112121 A TW109112121 A TW 109112121A TW 109112121 A TW109112121 A TW 109112121A TW I836058 B TWI836058 B TW I836058B
Authority
TW
Taiwan
Prior art keywords
temperature
signal processing
processing device
surface temperature
wireless communication
Prior art date
Application number
TW109112121A
Other languages
English (en)
Other versions
TW202046779A (zh
Inventor
兪炫碩
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190089208A external-priority patent/KR20200120462A/ko
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW202046779A publication Critical patent/TW202046779A/zh
Application granted granted Critical
Publication of TWI836058B publication Critical patent/TWI836058B/zh

Links

Images

Abstract

一種訊號處理裝置,其處理用於無線通訊的基頻訊號,所述訊號處理裝置包含:多個溫度感測器,配置成分別感測訊號處理裝置的內部溫度;臨限值儲存器,儲存多個臨限值;以及控制器,基於所感測內部溫度估計表面溫度且基於表面溫度及由多個臨限值定義的多個溫度範圍執行熱緩解操作。

Description

訊號處理裝置、無線通訊裝置及熱管理方法 [相關申請之交叉參考]
本申請案主張在韓國智慧財產局於2019年4月12日申請的韓國專利申請案第10-2019-0043297號及2019年7月23日申請的韓國專利申請案第10-2019-0089208號的權益,所述申請案中的每一者的揭露內容以全文引用的方式併入本文中。
本發明概念的實例實施例是關於無線通訊。舉例而言,至少一些實例實施例是關於用於無線通訊中的熱管理的方法及裝備。
由於無線通訊系統的高通量及訊號處理的高複雜度,高訊號處理能力可用於無線通訊裝置。尤其在維持大規模資料傳輸時,高訊號處理能力的持續使用可引起無線通訊裝置中的高功率消耗及熱量產生,且可顯著地升高無線通訊裝置的溫度。藉由執行高複雜度及高速度訊號處理而產生的熱量不僅可能導致無線通 訊裝置故障,且亦損害無線通訊裝置中包含的組件。另外,在用戶擁有的無線通訊裝置(諸如行動電話)中,熱量產生可能導致用戶不適且可損害用戶身體。因此,無線通訊裝置中的熱管理可為至關重要的。
本發明概念的實例實施例提供藉由估計表面溫度以管理無線通訊裝置中的熱量產生來進行更實用的熱管理的方法及/或裝備。
根據本發明概念的一實例實施例,提供一種訊號處理裝置,其處理用於無線通訊的基頻訊號,所述訊號處理裝置包含:多個溫度感測器,經組態以分別感測訊號處理裝置的多個內部溫度;儲存裝置,經組態以儲存定義多個溫度範圍的多個臨限值;以及控制器,經組態以基於多個內部溫度估計表面溫度且基於表面溫度及多個溫度範圍選擇性地執行至少一個熱緩解操作。
根據本發明概念的一實例實施例,提供一種無線通訊裝置,包含:溫度感測裝置,經組態以感測第一溫度;主處理器,經組態以獲得第一溫度;訊號處理裝置,與主處理器以通訊方式連接,所述訊號處理裝置經組態以處理用於無線通訊的基頻訊號,且藉由以下操作來執行熱管理操作:自主處理器獲得第一溫度,基於在內部感測的多個第二溫度及所述第一溫度估計無線通訊裝置的表面溫度,以及基於表面溫度及由多個臨限值定義的多個溫度範圍選擇性地執行熱緩解操作。
根據本發明概念的一實例實施例,提供一種由訊號處理 裝置執行的熱管理方法,所述訊號處理裝置經組態以處理用於無線通訊的基頻訊號,所述熱管理方法包含:感測訊號處理裝置的多個內部溫度;基於多個內部溫度估計表面溫度;自儲存裝置讀取定義多個溫度範圍的多個臨限值;以及基於表面溫度及多個溫度範圍執行至少一個熱緩解操作。
根據本發明概念的一實例實施例,提供一種處理用於無線通訊的基頻訊號的訊號處理裝置,所述訊號處理裝置包含:多個溫度感測器,經組態以分別感測訊號處理裝置的多個內部溫度;儲存裝置,經組態以儲存多個臨限值;以及處理電路系統,經組態以基於表面溫度在狀態機中於多個狀態之間轉換,所述表面溫度是基於多個內部溫度估計的,使得狀態機經組態以:回應於表面溫度小於或等於高於第一臨限值的第二臨限值而轉換至第一狀態,第一狀態為其中執行訊號處理的狀態;回應於表面溫度高於第二臨限值而轉換至第二狀態,所述第二狀態為其中執行訊號處理的狀態;回應於表面溫度為大於第二臨限值的第三臨限值而轉換至第三狀態,所述第三狀態為其中調整且執行訊號處理的狀態;以及回應於表面溫度高於大於第三臨限值的第四臨限值而轉換至第四狀態,所述第四狀態為其中訊號處理受到限制的狀態。
10:無線通訊系統
100:用戶設備
110:天線
130:收發器
142、150、300、400a、400b、500a、500b、500c、800、900:訊號處理器
144、170:主處理器
152、310、420a、420b、520b、520c、820、940:控制器
154、440a、440b、700:臨限值儲存器
190:溫度感測裝置
200:基地台
320:編碼器
330:調變器
340:解碼器
350:解調器
360:濾波器
370:類比至數位轉換器
422a:中斷產生電路
424a、424b:核心
426a、426b:記憶體
426a_1、426b_1:熱管理器
540b:查找表
540c:人工神經網路
710_1~710_k:臨限值
860:介面電路
920_1~920_p:接收鏈
A1~Ap:類比至數位轉換器
DL:下行鏈路
D_NEW:新資料
f:函數
F1~Fm:功能區塊
INTR:中斷訊號
MD1~MDp:MIMO偵測器
R1~R5:溫度範圍
RX_BB、RX_BB1~RX_BBp:接收基頻訊號
RX_PL:接收有效負載
Rθ1~Rθm、Rθ12、Rθ1m、Rθ2m:熱電阻
S10:安全狀態
S20:警告狀態
S30:過熱狀態
S40、S40':後饋狀態
S42:緊急狀態
S44:冷卻狀態
S100、S120、S140、S160、S162、S164、S166、S200、S400、S400'、S420、S440、S600、S600'、S610、S610'、S612、S614、S630、S650、S670、S670a、S670b、S671a、S671b、S690、S690'、S692、S694:操作
SM:狀態機
S_PRO:供應訊號
t1、t2、t3、t4、t5:時間
T1~Tn:溫度感測器
THR、THR1~THR4、THR_T:臨限值
THR1_F~THRk_F:下降臨限值
THR1_R~THRk_R:上升臨限值
TX_BB:傳輸基頻訊號
TX_PL:傳輸有效負載
T_EXT:外部溫度
T_INT:內部溫度
T_SUR:表面溫度
UL:上行鏈路
將自結合隨附圖式進行的以下詳細描述更清晰地理解本發明概念的實例實施例,其中:圖1為包含根據本發明概念的一實例實施例的無線通訊裝置的無線通訊系統的方塊圖。
圖2為示出根據本發明概念的一實例實施例的用於無線通訊中的熱管理的方法的流程圖。
圖3為根據本發明概念的一實例實施例的訊號處理器的實例的方塊圖。
圖4A及圖4B為根據本發明概念的實例實施例的訊號處理器的實例的方塊圖。
圖5A至圖5C為根據本發明概念的實例實施例的訊號處理器的實例的方塊圖。
圖6為示出根據本發明概念的一實例實施例的用於熱管理的方法的流程圖。
圖7為根據本發明概念的一實例實施例的臨限值儲存器的實例的方塊圖。
圖8為示出根據本發明概念的一實例實施例的多個臨限值的圖。
圖9為示出根據本發明概念的一實例實施例的用於熱緩解的方法的流程圖。
圖10為根據本發明概念的一實例實施例的訊號處理器的實例的方塊圖。
圖11為示出根據本發明概念的一實例實施例的用於熱管理的方法的流程圖。
圖12為示出根據本發明概念的一實例實施例的用於熱管理的方法的流程圖,且圖13為根據本發明概念的一實例實施例的訊號處理器的方塊圖。
圖14為示出根據本發明概念的一實例實施例的用於熱管理 的方法的流程圖。
圖15為示出根據本發明概念的一實例實施例的用於熱管理的方法的流程圖。
圖16示出執行根據本發明概念的一實例實施例的用於熱管理的方法的狀態機。
圖17示出執行根據本發明概念的一實例實施例的用於熱管理的方法的狀態機。
圖18為示出根據根據本發明概念的一實例實施例的熱管理方法的表面溫度隨時間推移而變化的圖表。
圖1為包含根據本發明概念的一實例實施例的無線通訊裝置的無線通訊系統10的方塊圖。
參考圖1,作為一非限制性實例,無線通訊系統10可以是使用蜂巢式網路的無線通訊系統,諸如第5代(5th generation;5G)無線系統、長期演進(long term evolution;LTE)系統、先進LTE系統、分碼多重存取(code division multiple access;CDMA)系統或全球行動通訊系統(global system for mobile communication;GSM),或可以是無線個人區域網路(wireless personal area network;WPAN)系統或任何其他無線通訊系統。下文中,將主要參考使用蜂巢式網路的無線通訊系統來描述無線通訊系統,但應理解,本發明概念的實施例不限於此。
用戶設備100與基地台200之間的無線通訊網路可藉由共用可用網路資源來支持多個用戶之間的通訊。舉例而言,在無 線通訊網路中,資訊可以各種多重存取方案傳輸,諸如分碼多重存取(CDMA)、分頻多重存取(frequency division multiple access;FDMA)、分時多重存取(time division multiple access;TDMA)、正交分頻多重存取(orthogonal frequency division multiple access;OFDMA)、單載波分頻多重存取(single carrier frequency division multiple access;SC-FDMA)、OFDM-FDMA、OFDM-TDMA以及OFDM-CDMA。如圖1中所示,用戶設備100可經由上行鏈路UL及下行鏈路DL與基地台200通訊。在一些實例實施例中,多個用戶設備可經由側行鏈路彼此通訊,所述側行鏈路諸如裝置對裝置(device-to-device;D2D)。在本說明書中,用戶設備100及基地台200中的每一者可稱為無線通訊裝置。
基地台200可大體上指代與用戶設備及/或其他基地台通訊且可藉由與用戶設備及/或其他基地台通訊來交換資料及控制資訊的固定台。舉例而言,基地台200亦可稱為節點B、演進節點B(evolved-Node B;eNB)、下一代節點B(next generation Node B;gNB)、區段、位點、基地收發器系統(base transceiver system;BTS)、存取點(access point;AP)、中繼節點、遠端無線電頭端(remote radio head;RRH)、無線電單元(radio unit;RU)、小型小區或類似物。在本說明書中,基地台或小區可在廣義上解釋為指示由CDMA中的基地台控制器(base station controller;BSC)、WCDMA中的節點B、LTE中的eNB、5G中的gNB或區段(位點)以及類似物覆蓋的一些區域或功能,且可覆蓋所有各種覆蓋區域,諸如兆小區(megacell)、巨型小區、微型小區、微微小區、超微型小區以及中繼節點、RRH、RU以及小型小區通訊範圍。
用戶設備100可為固定的或行動的,且可指代可與諸如基地台200的基地台通訊以傳輸及接收資料及/或控制資訊的任何裝置。舉例而言,用戶設備100可稱為終端、終端設備、行動台(mobile station;MS)、行動終端(mobile terminal;MT)、用戶終端(user terminal;UT)、訂戶台(subscriber station;SS)、無線裝置、手持式裝置或類似物。下文中,將主要參考用戶設備100為無線通訊裝置描述本發明概念的實施例,但應理解,本發明概念的實施例亦可應用於基地台200。
如圖1中所示,用戶設備100可包含多個天線110、收發器130、訊號處理器150、主處理器170以及溫度感測裝置190。在一些實例實施例中,多個天線110、收發器130、訊號處理器150以及主處理器170中的至少兩者可包含在一個半導體封裝件中。
多個天線110可在接收模式中自基地台200接收訊號,且在傳輸模式中輸出自收發器130提供的訊號。在一些實例實施例中,用戶設備100可包含用於空間分集、極化分集、空間多工器以及波束成形中的至少一者的多個天線。舉例而言,多個天線110中的至少一些可支持多輸入及多輸出(multiple-input and multiple-output;MIMO)。在一些實例實施例中,多個天線110可包含兩個或大於兩個子陣列,所述兩個或大於兩個子陣列中之每一者可稱為相控陣列。
收發器130可連接至多個天線110。收發器130可在接收模式中藉由處理自多個天線110接收到的射頻(radio frequency;RF)訊號來產生接收基頻訊號RX_BB,且可在傳輸模式中藉由處理傳輸基頻訊號TX_BB來將RF訊號提供至多個天線110。舉例 而言,收發器130可包含濾波器、混合器、功率放大器、低雜訊放大器以及類似物。在一些實例實施例中,為了支持MIMO,收發器130可在接收模式中經由多個路徑將接收基頻訊號RX_BB提供至訊號處理器150,且可在傳輸模式中經由多個路徑自訊號處理器150接收傳輸基頻訊號TX_BB。
訊號處理器150可自收發器130接收所述接收基頻訊號RX_BB,且可將所述傳輸基頻訊號TX_BB提供至收發器130。如下文將參考圖3描述,訊號處理器150可包含用於自接收基頻訊號RX_BB產生接收有效負載RX_PL的功能區塊以及用於自傳輸有效負載TX_PL產生傳輸基頻訊號TX_BB的功能區塊。訊號處理器150可稱為通訊處理器、基頻處理器、調制解調器或基頻調制解調器,且在本文中亦可稱為訊號處理裝置。如圖1中所示,訊號處理器150可包含第一溫度感測器T1至第n溫度感測器Tn、控制器152以及臨限值儲存器154(其中n為大於1的整數)。
第一溫度感測器T1至第n溫度感測器Tn可感測訊號處理器150的內部溫度。舉例而言,如下文參考圖3所描述,第一溫度感測器T1至第n溫度感測器Tn中的至少一者可配置在訊號處理器150中包含的功能區塊中的每一者中。因此,第一溫度感測器T1至第n溫度感測器Tn可感測因功能區塊的熱量產生而致的內部溫度,且可輸出對應於所感測內部溫度的訊號。如圖1中所示,可將由第一溫度感測器T1至第n溫度感測器Tn感測的內部溫度T_INT提供至控制器152。在本說明書中,可將控制器152自藉由第一溫度感測器T1至第n溫度感測器Tn提供的訊號獲得內部溫度T_INT簡單陳述為控制器152自第一溫度感測器T1至第 n溫度感測器Tn獲得內部溫度T_INT。另外,在本說明書中,可將第一溫度感測器T1至第n溫度感測器Tn向控制器152提供包含關於所感測內部溫度T_INT的資訊的訊號簡單陳述為第一溫度感測器T1至第n溫度感測器Tn向控制器152提供內部溫度T_INT。第一溫度感測器T1至第n溫度感測器Tn可以任何方式感測內部溫度T_INT。舉例而言,第一溫度感測器T1至第n溫度感測器Tn中的每一者可包含熱敏電阻,且可輸出具有根據溫度而變化的特性(諸如頻率)的訊號。在一些實例實施例中,為了將藉由第一溫度感測器T1至第n溫度感測器Tn輸出的訊號選擇性地(或依序)提供至控制器152,訊號處理器150可更包含第一溫度感測器T1至第n溫度感測器Tn與控制器152之間的多工器。
臨限值儲存器154可儲存多個臨限值。如下文所描述,多個臨限值可與由控制器152所估計的表面溫度相比較,且可定義兩個或大於兩個溫度範圍。在一些實例實施例中,對於非限制性實例,臨限值儲存器154可包含非揮發性記憶體、快閃記憶體、電可抹除可程式化唯讀記憶體(electrically erasable programmable read only memory;EEPROM)、電阻式隨機存取記憶體(resistive random access memory;RRAM)、相變式隨機存取記憶體(phase-change random access memory;PRAM)以及類似物。在一些實例實施例中,多個臨限值可在製造訊號處理器150的過程中儲存於臨限值儲存器154中。此外,在一些實例實施例中,多個臨限值可在製造用戶設備100的過程中儲存於臨限值儲存器154中。如圖1中所示,控制器152可自臨限值儲存器154獲得多個臨限值THR。
控制器152可基於藉由第一溫度感測器T1至第n溫度感測器Tn提供的內部溫度T_INT估計表面溫度。在一些實例實施例中,控制器152可基於內部溫度T_INT估計訊號處理器150的表面溫度及/或用戶設備100的表面溫度。在一些實例實施例中,控制器152可自主處理器170獲得訊號處理器150的外部溫度T_EXT,且可基於內部溫度T_INT及外部溫度T_EXT估計設備100的表面溫度。控制器152可使所估計表面溫度與自臨限值儲存器154提供的多個臨限值THR相比較,且可根據比較結果選擇性地執行熱緩解操作。因此,可藉由預測表面溫度來實現訊號處理器150或用戶設備100的更實用熱管理,所述表面溫度實際上為由訊號處理器150的熱量產生導致的問題。另外,訊號處理器150可執行適合於多個溫度範圍中的每一者的熱緩解操作,藉此實現更高效熱管理。
在一些實施例中,控制器152可實施為由邏輯合成設計的邏輯硬體,且在一些實例實施例中,控制器152可實施為包含至少一個核心及記憶體的處理單元,所述記憶體儲存藉由至少一個核心執行的指令。在一些實例實施例中,控制器152可實施為邏輯硬體及處理單元的組合。
主處理器170可控制用戶設備100的操作,可產生包含待經由無線通訊提供至另一方的資訊的傳輸有效負載TX_PL,且可接收包含經由無線通訊自另一方提供的資訊的接收有效負載RX_PL。
在一些實例實施例中,主處理器170可包含至少一個核心且可稱為應用程式處理器(application processor;AP),所述至 少一個核心執行包含操作系統(operating system;OS)及OS上的應用程式的軟體。
溫度感測裝置190可感測用戶設備100內部的環境溫度,且可將指示所感測環境溫度的訊號提供至主處理器170。在一些實例實施例中,溫度感測裝置190可配置於安裝有訊號處理器150及主處理器170的板上。作為一非限制性實例,溫度感測裝置190可包含熱敏電阻。主處理器170可向訊號處理器150的控制器152提供藉由溫度感測裝置190感測的環境溫度,亦即,訊號處理器150的外部溫度T_EXT。在一些實例實施例中,可藉由處理器間通訊(inter-processor communication;IPC)將外部溫度T_EXT自主處理器170提供至訊號處理器150。
圖2為示出根據本發明概念的一實例實施例的用於無線通訊中的熱管理的方法的流程圖。在一些實例實施例中,圖2的方法可藉由圖1的訊號處理器150執行,此將在下文參考圖1描述。
參考圖2,可在操作S200中執行感測內部溫度的操作。舉例而言,包含在訊號處理器150中的第一溫度感測器T1至第n溫度感測器Tn可感測訊號處理器150的內部溫度T_INT,且可將所感測內部溫度T_INT提供至控制器152。
在操作S400中,可執行估計表面溫度的操作。舉例而言,控制器152可基於內部溫度T_INT估計訊號處理器150的表面溫度及/或用戶設備100的表面溫度。控制器152可進一步基於自主處理器170提供的外部溫度T_EXT估計用戶設備100的表面溫度。將在下文參考圖5A至圖5C、圖6以及類似圖描述操作S400 的實例。
在操作S600中,可選擇性地執行熱緩解操作。舉例而言,控制器152可基於在操作S400中估計的表面溫度及自臨限值儲存器154提供的多個臨限值THR判定是否執行熱緩解操作。另外,在判定執行熱緩解操作時,控制器152可選擇用於熱緩解的多個操作中的至少一者且可觸發所選擇操作。將在下文參考圖7及圖8描述多個臨限值THR的實例,且將在下文參考圖11至圖15描述熱緩解操作的實例。
圖3為根據本發明概念的一實例實施例的訊號處理器的實例的方塊圖。特定言之,圖3的方塊圖繪示包含在訊號處理器300中的溫度感測器的配置的實例。如上文參考圖1所描述,訊號處理器300可包含用於感測內部溫度T_INT的多個溫度感測器。
參考圖1至圖3,如上文參考圖1所描述,訊號處理器300可包含用以處理用於無線通訊的訊號的多個功能區塊。舉例而言,如圖3中所示,訊號處理器300可包含控制器310、編碼器320、調變器330、解碼器340、解調器350、濾波器360以及類比至數位轉換器(analog-to-digital converter;ADC)370。在一些實例實施例中,訊號處理器300可更包含圖3中未繪示的功能區塊,諸如數位至類比轉換器(digital-to-analog converter;DAC)。在此情況下,兩個或大於兩個功能區塊可實施為單一功能區塊。包含在訊號處理器300中的功能區塊中的至少一些可實施為邏輯硬體或可實施為處理單元。
在一些實例實施例中,訊號處理器300的功能區塊中的每一者中可配置至少一個溫度感測器。舉例而言,如由圖3中的● 指示,控制器310、編碼器320、調變器330、解碼器340、濾波器360以及類比至數位轉換器370中的每一者中可配置一個溫度感測器,然而在佔據相對較大面積的解調器350中可配置兩個溫度感測器。因此,溫度感測器可感測置放有溫度感測器的功能區塊的溫度。
圖4A及圖4B為根據本發明概念的實例實施例的訊號處理器的實例的方塊圖。特定言之,圖4A的方塊圖繪示用於基於中斷執行用於熱管理的方法的訊號處理器400a,且圖4B的方塊圖繪示用於週期性地執行用於熱管理的方法的訊號處理器400b。下文中,將省略圖4A及圖4B的重複描述。
參考圖4A,訊號處理器400a可包含第一溫度感測器T1至第n溫度感測器Tn、控制器420a以及臨限值儲存器440a(其中n為大於1的整數)。第一溫度感測器T1至第n溫度感測器Tn可將內部溫度T_INT提供至控制器420a,且臨限值儲存器440a可將多個臨限值THR提供至控制器420a。
控制器420a可包含中斷產生電路422a、至少一個核心424a以及記憶體426a。中斷產生電路422a可基於內部溫度T_INT及多個臨限值THR產生中斷訊號INTR,所述中斷訊號INTR引起至少一個核心424a的中斷。舉例而言,控制器420a可基於內部溫度T_INT估計表面溫度,且可基於所估計表面溫度及多個臨限值THR在需要熱緩解操作中的變化(例如熱緩解操作的啟動、釋放、改變或增加)時激活中斷訊號INTR。
至少一個核心424a可執行儲存於記憶體426a中的一系列指令。舉例而言,如圖4A中所示,記憶體426a可將熱管理器 426a_1儲存為包含多個指令的程式(亦稱為軟體模組、程序、次常式等)。至少一個核心424a可藉由執行熱管理器426a_1來執行熱管理的操作。在本說明書中,至少一個核心424a藉由執行熱管理器426a_1來執行操作可簡單陳述為熱管理器426a_1執行操作。在一些實例實施例中,與圖4A中所繪示不同,記憶體426a可位於控制器420a外部或可位於訊號處理器400a外部。
在自中斷產生電路422a接收經激活中斷訊號INTR時,熱管理器426a_1可選擇性地執行熱緩解操作。舉例而言,熱管理器426a_1可在中斷發生時自中斷產生電路422a另外獲得關於所估計表面溫度的資訊及/或關於包含表面溫度的溫度範圍的資訊,且可基於所獲得資訊而啟動、釋放、改變或增加熱緩解操作。記憶體426a可包含可由至少一個核心424a存取的任何類型的記憶體,例如隨機存取記憶體(random access memory;RAM)、唯讀記憶體(read only memory;ROM)、磁帶、磁碟、光盤、揮發性記憶體、非揮發性記憶體以及其組合。
參考圖4B,訊號處理器400b可包含第一溫度感測器T1至第n溫度感測器Tn、臨限值儲存器440b以及控制器420b,且控制器420b可包含至少一個核心424b及記憶體426b。至少一個核心424b可藉由執行儲存於記憶體426b中的熱管理器426b_1來執行熱管理的操作。在圖4B的實例中,熱管理器426b_1可週期性地執行用於熱管理的方法,例如圖2的操作S400及操作S600。在一些實例實施例中,計時器中斷可週期性地發生,且熱管理器426b_1可回應於計時器中斷而執行圖2的操作S400及操作S600。在一些實例實施例中,熱管理器426b_1可藉由輪詢執行圖 2的操作S400及操作S600。
圖5A至圖5C為根據本發明概念的實例實施例的訊號處理器的實例的方塊圖。特定言之,圖5A至圖5C的方塊圖繪示用於自內部溫度T_INT估計表面溫度T_SUR的訊號處理器的結構。下文中,將省略圖5A至圖5C的重複描述。
參考圖5A,在一些實例實施例中,可基於採用內部溫度T_INT作為引數(argument)的預定義函數f來估計表面溫度T_SUR。舉例而言,如圖5A中所示,訊號處理器500a可包含第一功能區塊F1至第m功能區塊Fm,且第一功能區塊F1至第m功能區塊Fm(其中m為大於1的整數)中的每一者中可配置至少一個溫度感測器。訊號處理器500a可經模型化為包含第一功能區塊F1至第m功能區塊Fm作為熱源的熱電阻網路。舉例而言,如圖5A中所示,熱電阻網路可包含訊號處理器500a的表面與第一功能區塊F1至第m功能區塊Fm之間的熱電阻Rθ1、熱電阻Rθ2...以及熱電阻Rθm。另外,熱電阻網路可包含第一功能區塊F1至第m功能區塊Fm之間的熱電阻Rθ12、熱電阻Rθ1m、熱電阻Rθ2m以及類似物。因此,可基於熱電阻網路定義用於自內部溫度T_INT估計表面溫度T_SUR的函數f。在一些實例實施例中,函數f可儲存於圖4A及圖4B的記憶體426a及記憶體426b中。
參考圖5B,在一些實例實施例中,可基於查找表540b來估計表面溫度T_SUR,所述查找表540b包含對應於內部溫度T_INT的組合的表面溫度。舉例而言,如圖5B中所示,訊號處理器500b可包含控制器520b及查找表540b,且查找表540b可包含對應於內部溫度T_INT的組合的表面溫度。控制器520b可將內部 溫度T_INT提供至查找表540b,且可自查找表540b獲得對應於內部溫度T_INT的表面溫度T_SUR。查找表540b可儲存於可由控制器520b存取的非揮發性記憶體中。在一些實例實施例中,查找表540b可儲存於控制器520b的外部記憶體中,且可儲存於控制器520b的內部記憶體中,諸如圖4A及圖4B的記憶體426a及記憶體426b。
參考圖5C,在一些實例實施例中,訊號處理器500c可包含人工神經網路540c,所述人工神經網路540c可根據包含內部溫度T_INT的多個組合及多個表面溫度的訓練資料而處於訓練狀態中。人工神經網路540c可指代人工神經元(或神經元模型)實施互連集的結構。人工神經元可藉由對輸入資料執行簡單操作而產生輸出資料,且輸出資料可轉移至其他人工神經元。人工神經網路540c可回應於藉由控制器520c提供的內部溫度T_INT而輸出表面溫度T_SUR,且控制器520c可獲得藉由人工神經網路540c提供的表面溫度T_SUR。
圖6為示出根據本發明概念的一實例實施例的用於熱管理的方法的流程圖。特定言之,圖6的流程圖繪示圖2的操作S400的實例,且如上文參考圖2所描述,可在圖6的操作S400'中執行估計表面溫度的操作。如圖6中所示,操作S400'可包含操作S420及操作S440。在一些實例實施例中,圖6的操作S400'可由圖1的控制器152執行,且現將參考圖1描述圖6。
參考圖6,可在操作S420中執行獲得外部溫度T_EXT的操作。舉例而言,控制器152可自主處理器170獲得外部溫度T_EXT。如上文參考圖1所描述,外部溫度T_EXT可對應於藉由 配置於訊號處理器150外部的溫度感測裝置190感測的環境溫度,且主處理器170可根據溫度感測裝置190的輸出訊號將外部溫度T_EXT提供至控制器152。
在操作S440中,可執行估計用戶設備100的表面溫度的操作。舉例而言,控制器152可不僅基於藉由包含在訊號處理器150中的第一溫度感測器T1至第n溫度感測器Tn提供的內部溫度T_INT,且亦基於在操作S420中獲得的外部溫度T_EXT來估計用戶設備100的表面溫度。在一些實例實施例中,與上文參考圖5A所描述類似,控制器152可使用戶設備100的熱電阻網路模型化,且可基於函數(其基於熱電阻網路而經預定義)估計用戶設備100的表面溫度,所述預定義函數具有內部溫度T_INT及外部溫度T_EXT作為引數。在一些實例實施例中,與上文參考圖5B所描述類似,控制器152可藉由參考查找表來估計用戶設備100的表面溫度,所述查找表包含內部溫度T_INT及外部溫度T_EXT的多個組合以及對應於多個組合的表面溫度。此外,在一些實例實施例中,與上文參考圖5C所描述類似,控制器152可藉由將內部溫度T_INT及外部溫度T_EXT提供至人工神經網路來估計用戶設備100的表面溫度,所述人工神經網路是根據包含內部溫度T_INT及外部溫度T_EXT的多個組合及多個表面溫度的訓練資料而訓練的。
圖7為根據本發明概念的一實例實施例的臨限值儲存器的實例的方塊圖,且圖8為示出根據本發明概念的一實例實施例的多個臨限值的圖。特定言之,圖7的方塊圖示出儲存用於溫度範圍變化的磁滯的多個臨限值的臨限值儲存器700,且圖8的圖示 出儲存於圖7的臨限值儲存器700中的多個臨限值的大小。
參考圖7,臨限值儲存器700可儲存第一對至第k對臨限值710_1至臨限值710_k(其中k為大於1的整數),且一對臨限值可包含相較於上升的表面溫度的臨限值及相較於下降的表面溫度的臨限值。如上文參考圖式所描述,所估計表面溫度可與多個臨限值相比較以判定包含表面溫度的溫度範圍,且在一些實例實施例中,為了防止在對應於溫度範圍的熱緩解操作中頻繁發生變化,臨限值儲存器700可儲存用於磁滯的臨限值。舉例而言,臨限值儲存器700可儲存相較於上升的表面溫度的第一至第k上升臨限值THR1_R...以及上升臨限值THRk_R以及相較於下降的表面溫度的第一至第k下降臨限值THR1_F...以及下降臨限值THRk_F。
參考圖8,第一溫度範圍R1至第五溫度範圍R5可由第一臨限值THR1至第四臨限值THR4定義。此外,在一些實例實施例中,第一臨限值THR1至第四臨限值THR4可用於判定狀態機中的狀態轉換,如下文參考圖16所描述。
第一溫度範圍R1可定義為小於第一臨限值THR1,且在表面溫度處於第一溫度範圍R1內時,可能不執行熱緩解操作。在一些實例實施例中,在表面溫度較高時,例如在表面溫度處於第五溫度範圍R5中時,可執行熱緩解操作直至表面溫度處於第一溫度範圍R1內為止。如圖8中所示,第一上升臨限值THR1_R及第一下降臨限值THR1_F可在第一溫度範圍R1與第二溫度範圍R2之間的轉換中提供磁滯。第二溫度範圍R2可定義為在第一臨限值THR1與第二臨限值THR2之間,且類似於第一溫度範圍R1,在 表面溫度處於第二溫度範圍R2內時,可能不執行熱緩解操作。舉例而言,在第一溫度範圍R1及第二溫度範圍R2中,可實現eUTRAN新無線電雙連接(eUTRAN New Radio-Dual Connectivity;EN-DC)。如圖8中所示,第二上升臨限值THR2_R及第二下降臨限值THR2_F可在第二溫度範圍R2與第三溫度範圍R3之間的轉換中提供磁滯。如下文參考圖16所描述,第一溫度範圍R1及第二溫度範圍R2可對應於狀態機SM中的安全狀態S10。
第三溫度範圍R3可定義為在第二臨限值THR2與第三臨限值THR3之間,且在表面溫度暫時保持為處於第三溫度範圍R3內時,並不觸發熱緩解操作。另一方面,在表面溫度長時間保持處於第三溫度範圍R3中時,可開始熱緩解操作。如圖8中所示,第三上升臨限值THR3_R及第三下降臨限值THR3_F可在第三溫度範圍R3與第四溫度範圍R4之間的轉換中提供磁滯。如下文參考圖16所描述,第三溫度範圍R3可對應於狀態機SM中的警告狀態S20。
第四溫度範圍R4可定義為在第三臨限值THR3與第四臨限值THR4之間,且第四溫度範圍R4中可能需要即時熱緩解操作。如圖8中所示,第四上升臨限值THR4_R及第四下降臨限值THR4_F可在第四溫度範圍R4與第五溫度範圍R5之間的轉換中提供磁滯。如下文參考圖16所描述,第四溫度範圍R4可對應於狀態機SM中的過熱狀態S30。
第五溫度範圍R5可定義為高於第四臨限值THR4,且可能不允許表面溫度處於第五溫度範圍R5中。在表面溫度由於非特 定原因而處於第五溫度範圍R5內時,可執行所有用以減小表面溫度的可用熱緩解操作。
圖9為示出根據本發明概念的一實例實施例的用於熱緩解的方法的流程圖。特定言之,在圖9的操作S100中,可執行更新資訊的操作,所述資訊為估計表面溫度或判定包含表面溫度的溫度範圍的基礎。如圖9中所示,操作S100可包含操作S120、操作S140以及操作S160,且在一些實例實施例中,可在執行圖2的操作S200之前執行圖9的操作S100。在一些實例實施例中,圖9的操作S100可由圖1的訊號處理器150執行,且現將參考圖1描述圖9。
在操作S120中,可執行判定訊號處理器150是否處於校準模式中的操作。校準模式可與普通模式形成對比,在所述普通模式中,訊號處理器150執行用於執行無線通訊的操作。在一些實例實施例中,校準模式可設定為處於製造訊號處理器150或用戶設備100的過程中。如圖9中所示,在進入校準模式時,可隨後執行操作S140。
在操作S140中,可執行接收供應訊號的操作。供應訊號可指代自訊號處理器150的外部提供的用以更新資訊的訊號,所述資訊為估計表面溫度或判定包含表面溫度的溫度範圍的基礎。在一些實例實施例中,訊號處理器150可直接接收供應訊號。在一些實例實施例中,訊號處理器150可自主處理器170接收供應訊號。
在操作S160中,可執行更新資訊的操作,所述資訊為估計表面溫度或判定包含表面溫度的溫度範圍的基礎。如圖9中所 示,操作S160可包含操作S162、操作S164以及操作S166。在一些實例實施例中,與圖9中所繪示不同,操作S160可包含僅操作S162、操作S164以及操作S166中的一些。
在操作S162中,可執行更新查找表或函數的操作。舉例而言,如上文參考圖5A及圖5B所描述,可基於預定義函數及/或查找表來估計表面溫度,且在操作S162中,可根據供應訊號來更新函數及/或查找表。在操作S164中,可執行訓練人工神經網路的操作。舉例而言,如上文參考圖5C所描述,可基於人工神經網路來估計表面溫度,且在操作S164中,可根據包含在供應訊號中的訓練資料來訓練人工神經網路。在操作S166中,可執行更新多個臨限值的操作。舉例而言,多個臨限值可根據供應訊號儲存於臨限值儲存器154中。
圖10為根據本發明概念的一實例實施例的訊號處理器的實例的方塊圖。特定言之,圖10的方塊圖示出執行圖9的方法的訊號處理器800。如上文參考圖9所描述,訊號處理器800可在校準模式中自外部接收供應訊號S_PRO,且可基於供應訊號S_PRO來更新作為估計表面溫度或判定包含表面溫度的溫度範圍的基礎的資訊。如圖10中所示,訊號處理器800可包含控制器820及介面電路860。下文中,將自圖10的描述當中省略與圖1的描述相同的描述。
介面電路860可接收供應訊號S_PRO,且可自供應訊號S_PRO產生新資料D_NEW並將新資料D_NEW提供至控制器820。新資料D_NEW可包含作為估計表面溫度或判定包含表面溫度的溫度範圍的基礎的資訊,且控制器820可基於新資料D_NEW 來更新資訊。舉例而言,控制器820可:更新具有內部溫度及/或外部溫度作為引數的函數,如上文參考圖5A所描述;可更新查找表,如上文參考圖5B所描述;且可利用定義經訓練人工神經網路的資料來訓練人工神經網路或程式化人工神經網路。另外,控制器820可將多個臨限值儲存在臨限值儲存器中(例如圖1的臨限值儲存器154)。
在一些實例實施例中,介面電路860可在校準模式中激活且可在其他模式(即普通模式)中停用。另外,在一些實例實施例中,與圖10中所繪示不同,替代將新資料D_NEW提供至控制器820,介面電路860可存取預定義函數、查找表、人工神經網路、臨限值儲存器以及類似物,且可直接更新作為估計表面溫度或判定包含表面溫度的溫度範圍的基礎的資訊。
圖11為示出根據本發明概念的一實例實施例的用於熱管理的方法的流程圖。特定言之,圖11的流程圖示出圖2的操作S600的實例,且如上文參考圖2所描述,在操作圖11的S600'中可選擇性地執行熱緩解操作。如圖11中所示,操作S600'可包含多個操作S610、操作S630、操作S650、操作S670以及操作S690,且多個操作S610、操作S630、操作S650、操作S670以及操作S690中的一或多者可同時執行。在一些實例實施例中,操作S600'可由圖1的控制器152執行,且現將參考圖1描述圖11。
在操作S610中,可執行控制階層指示符或階層索引(rank indicator或rank index;RI)的操作。舉例而言,用戶設備100及基地台200可經由MIMO通訊,且RI可指代空間分離層的數目。在階層的數目減小時,由於可利用較低計算功率來處理訊號,因 此控制器152可藉由控制RI來執行熱緩解操作。將在下文參考圖12描述操作S610的實例。
在操作S630中,可執行切換至傳統無線電存取技術(radio access technology;RAT)的操作。舉例而言,用戶設備100可支持兩個或大於兩個RAT,諸如5G NR及LTE,且亦可支持用以同時存取兩個或大於兩個不同RAT的多連接(multi-connectivity;MC)。舉例而言,用戶設備100可支持用以同時存取兩個不同RAT的雙連接(dual-connectivity;DC)。與傳統RAT(例如LTE)相對的新RAT(例如5G NR)可能需要相對較高訊號處理能力以供用於高資料通量,且因此,控制器152可經由新RAT中止無線通訊且藉由經由傳統RAT實現無線通訊來執行熱緩解操作。在一些實例實施例中,傳統RAT可指代使用相對較低頻帶及/或相對較窄帶寬的RAT。
在操作S650中,可執行請求減小分量載波的數目的操作。舉例而言,用戶設備100及基地台200可經由載波聚合以無線方式通訊,且用於載波聚合的分量載波的數目增大,可能需要更高訊號處理能力。因此,控制器152可請求對應無線通訊裝置(亦即基地台200)減小用於載波聚合的分量載波的數目。
在操作S670中,可執行請求減少有效負載的操作。舉例而言,控制器152可請求主處理器170減少有效負載,即傳輸有效負載TX_PL,以減少經由無線通訊的傳輸(即經由上行鏈路的傳輸)所需的訊號處理。回應於控制器152的請求,將在下文參考圖14描述藉由主處理器170執行的減少傳輸有效負載TX_PL的操作的實例。
在操作S690中,可執行低複雜度訊號處理算法。舉例而言,訊號處理器150可基於各種訊號處理算法中的一所選擇者來處理訊號,且控制器152可藉由允許執行相對較低複雜度訊號處理算法替代高效能的高複雜度訊號處理算法來執行熱緩解操作。將在下文參考圖15描述操作S690的實例。
圖12為示出根據本發明概念的一實例實施例的用於熱管理的方法的流程圖,且圖13為根據本發明概念的一實例實施例的訊號處理器的方塊圖。特定言之,圖12的流程圖繪示圖11的操作S610的實例,且圖13的方塊圖繪示執行圖12的操作S610'的訊號處理器900。如上文參考圖11所描述,在圖12的操作S610'中可藉由控制RI來執行熱緩解操作。
參考圖13,訊號處理器900可包含第一接收鏈920_1至第p接收鏈920_p以及控制器940(其中p為大於1的整數)。接收鏈中的每一者可獨立地處理自收發器(例如圖1的收發器130)提供的接收基頻訊號。舉例而言,如圖13中所示,第一接收鏈920_1可接收第一接收基頻訊號RX_BB1,且可包含用於處理第一接收基頻訊號RX_BB1的類比至數位轉換器A1以及MIMO偵測器MD1。類似地,第p接收鏈920_p可包含用於處理第p接收基頻訊號RX_BBp的類比至數位轉換器Ap以及MIMO偵測器MDp。用於接收的接收鏈的數目可視MIMO階層而定。
返回參考圖12,操作S610'可包含操作S612及操作S614。在操作S612中,可執行請求減小MIMO階層的操作。舉例而言,控制器940可請求對應無線通訊裝置(例如圖1的基地台200)減小MIMO階層。在一些實例實施例中,控制器940可直接 請求減小MIMO階層,且亦可提供使得對應無線通訊裝置減小MIMO階層的資訊。舉例而言,控制器940可提供指示通道的低質量的資訊。
在操作S614中,可執行停用多個接收鏈中的至少一者的操作。舉例而言,在MIMO階層根據操作S612的請求而下降時,控制器940可停用第一接收鏈920_1至第p接收鏈920_p中的至少一者。因此,可減小訊號處理器900的功率消耗及熱量產生。
圖14為示出根據本發明概念的一實例實施例的用於熱管理的方法的流程圖。特定言之,圖14的流程圖繪示由訊號處理器142執行的圖11的操作S670的實例以及主處理器144的操作的實例,且如上文參考圖11所描述,訊號處理器142可請求主處理器144減少有效負載。
參考圖14,在操作S670a中,訊號處理器142可請求主處理器144減少有效負載。在一些實例實施例中,訊號處理器142可藉由IPC將請求提供至主處理器144。接著,在操作S671a中,主處理器144可能延遲產生超出上限的有效負載。舉例而言,主處理器144可延遲執行產生有效負載的多個應用程式中的至少一者。
在操作S670b中,訊號處理器142可請求主處理器144減少有效負載。接著,在操作S671b中,主處理器144可進入低功率模式。舉例而言,來自訊號處理器142的有效負載減少請求可能歸因於包含訊號處理器142及主處理器144的無線通訊裝置(例如圖1中的用戶設備100)的表面溫度升高。在此情況下,主處理器144可進入低功率模式以減小無線通訊裝置的表面溫度, 且可觸發對應於低功率模式的操作。
圖15為示出根據本發明概念的一實例實施例的用於熱管理的方法的流程圖。特定言之,圖15的流程圖示出圖11的操作S690的實例,且如上文參考圖11所描述,在圖15的操作S690'中可執行低複雜度訊號處理算法。如圖15中所示,操作S690'可包含操作S692及操作S694。在一些實例實施例中,與圖15中所繪示不同,操作S690'可僅包含操作S692及操作S694中的一者。在一些實例實施例中,操作S690'可由圖1的訊號處理器150執行,且現將參考圖1描述圖15。
在操作S692中,可執行基於最大概似(maximum likelihood;ML)而減小解調中的鄰近群集點的數目的操作。舉例而言,訊號處理器150可包含基於ML算法的MIMO偵測器操作,且控制器152可藉由控制MIMO偵測器來減小MIMO偵測器的功率消耗及熱量產生,以減小接近於群集圖上的經量測度量的候選群集點的數目。舉例而言,訊號處理器150可按最接近的次序對接近於經量測度量的候選群集點進行排序,且可選擇之前所使用的候選群集點的一半。
在操作S694中,可執行使用匹配濾波器(matched filter;MF)及/或最小均方差(minimum mean squared error;MMSE)替代ML的操作。舉例而言,訊號處理器150可包含基於選自ML、MF以及MMSE的算法進行操作的MIMO偵測器,且控制器152可藉由控制MIMO偵測器來減小MIMO偵測器的功率消耗及熱量產生,使得使用比ML具有更低複雜度的MF及/或MMSE。
圖16示出執行根據本發明概念的一實例實施例的用於熱 管理的方法的狀態機SM。如圖16中所示,狀態機SM可包含四個狀態,亦即,安全狀態S10、警告狀態S20、過熱狀態S30以及後饋狀態S40,且所述四個狀態之間的狀態轉換可基於所估計表面溫度T_SUR及第一臨限值THR1至第四臨限值THR4而發生。在一些實例實施例中,狀態機SM可實施於圖1的控制器152中,且圖16的第一臨限值THR1至第四臨限值THR4可對應於圖8的第一臨限值至第四臨限值。如上文參考圖8所描述,磁滯可提供於表面溫度T_SUR與第一臨限值THR1至第四臨限值THR4之間的比較中。
在安全狀態S10(其可稱為第一狀態)中,由於表面溫度T_SUR較低,因此可在不限制操作的情況下執行無線通訊。舉例而言,可允許EN-DC,且可允許使用由訊號處理器150提供的所有階層。然而,如圖16中所示,在表面溫度T_SUR高於第二臨限值THR2(T_SUR>THR2)時,可發生至警告狀態S20的轉換。另外,當在安全狀態S10中表面溫度T_SUR高於第三臨限值THR3(T_SUR>THR3)時,可發生至過熱狀態S30的轉換。如圖16中所示,在發生自安全狀態S10至警告狀態S20或過熱狀態S30的轉換時,可重置指示處於警告狀態S20或過熱狀態S30中的持續停留時間的時間「t」(t=0)。當在安全狀態S10中表面溫度T_SUR高於第四臨限值THR4(T_SUR>THR4)時,可發生至後饋狀態S40的轉換。
在警告狀態S20(其可稱為第二狀態)中,可在不限制操作的情況下暫時地執行無線通訊。然而,如圖16中所示,在處於警告狀態S20或過熱狀態S30中的持續停留時間超出臨限值 THR_T(t>THR_T)時,可發生至後饋狀態S40的轉換。另外,當在警告狀態S20中表面溫度T_SUR高於第三臨限值THR3(T_SUR>THR3)時,可發生至過熱狀態S30的轉換。另一方面,當在警告狀態S20中表面溫度T_SUR低於第二臨限值THR2(T_SUR<THR2)時,可發生至安全狀態S10的轉換。
在過熱狀態S30(其可稱為第三狀態)中,可執行一些熱緩解操作。舉例而言,雖然可暫時地允許EN-DC,但可用階層可減少,且可使用低複雜度訊號處理算法。如圖16中所示,當在過熱狀態S30中表面溫度T_SUR高於第四臨限值THR4或處於警告狀態S20或過熱狀態S30中的持續停留時間超出臨限值THR_T(t>THR_T)時,可發生至後饋狀態S40的轉換。另一方面,當在過熱狀態S30中表面溫度T_SUR低於第三臨限值THR3時,可發生至警告狀態S20的轉換。
在後饋狀態S40(其可稱為第四狀態)中,可執行最高效熱緩解操作。舉例而言,可能不允許EN-DC,且可發生至傳統RAT(例如LTE)的切換。在一些實例實施例中,可允許在後饋狀態S40中根據傳統RAT使用所有階層。如圖16中所示,當表面溫度T_SUR低於第一臨限值THR1時,可發生至安全狀態S10的轉換。
圖17示出執行根據本發明概念的一實例實施例的用於熱管理的方法的狀態機。特定言之,圖17示出圖16的後饋狀態S40的實例,且如圖17中所示,後饋狀態S40'可包含緊急狀態S42及冷卻狀態S44。
參考圖17,當所估計表面溫度T_SUR高於第四臨限值THR4時,可立即發生至緊急狀態S42的狀態轉換。舉例而言,當 在圖16的安全狀態S10、警告狀態S20以及過熱狀態S30中表面溫度T_SUR高於第四臨限值THR4(T_SUR>THR4)時,可發生至緊急狀態S42的轉換。在緊急狀態S42中,可立即執行至傳統RAT的切換。舉例而言,可終止跨5G NR的無線通訊,且可發生或維持跨LTE的無線電通訊。接著,如圖17中所示,可發生自緊急狀態S42至冷卻狀態S44的轉換。
即使所估計表面溫度T_SUR並不高於第四臨限值THR4,但當表面溫度T_SUR維持相對較高的時間較長時,亦可發生至冷卻狀態S44的轉換。舉例而言,當處於圖16的警告狀態S20或過熱狀態S30中的持續停留時間超出臨限值(t>THR_T)時,可發生至冷卻狀態S44的轉換。在冷卻狀態S44中,可發生至傳統RAT的切換且可能不允許EN-DC,但可使用根據傳統RAT的所有階層。如圖17中所示,當在冷卻狀態S44中表面溫度T_SUR低於第一臨限值THR1時,可發生至安全狀態S10的轉換。
圖18為示出根據根據本發明概念的一實例實施例的熱管理方法的表面溫度T_SUR隨時間推移而變化的圖表。詳細地,表面溫度T_SUR可與第一臨限值THR1至第四臨限值THR4相比較。可如由圖18中的虛線所指示應用磁滯。然而,下文中,為便於說明,圖18將描述為表面溫度T_SUR高於或低於第一臨限值THR1至第四臨限值THR4,且將參考圖16的狀態機SM來描述。
在時間t1時,表面溫度T_SUR可高於第二臨限值THR2。因此,可發生自安全狀態S10至警告狀態S20的轉換。另外,可啟動警報計時器以量測警告狀態S20或過熱狀態S30中的持續停留時間。
在時間t2時,表面溫度T_SUR可高於第三臨限值THR3。因此,可發生自警告狀態S20至過熱狀態S30的轉換,且MIMO階層可受限制。另外,可執行低複雜度訊號處理算法,且在時間t1時啟動的警報計時器可繼續操作。如圖18中所示,自時間t2至時間t3,在表面溫度低於或高於第三臨限值THR3時發生事件,但可由於磁滯(由圖8中的第三上升臨限值THR3_R及第三下降臨限值THR3_F定義)而防止發生狀態轉換。
在時間t3時,表面溫度T_SUR可低於第三臨限值THR3。因此,可發生自過熱狀態S30至警告狀態S20的轉換,且可去除對MIMO階層的限制。另外,可執行高複雜度訊號處理算法,且在時間t1時啟動的警報計時器可繼續操作。
在時間t4時,警報計時器可能到期。因此,可發生自警告狀態S20至後饋狀態S40的轉換,且可發生至諸如LTE的傳統RAT的轉換。另外,雖然可能不允許EN-DC,但可允許根據傳統RAT的所有階層。
在時間t5時,表面溫度T_SUR可低於第一臨限值THR1。因此,可發生自後饋狀態S40至安全狀態S10的轉換,且可允許EN-DC,亦即,可在不限制操作的情況下執行無線通訊。
上文所描述方法的各種操作可由能夠執行操作的任何合適的手段來執行。
舉例而言,包含本文中所包含的控制器、編碼器、解碼器、調變器、濾波器及/或類比至數位轉換器的訊號處理器可使用以下來實施:處理電路系統,包含邏輯電路;硬體/軟體組合,諸如執行軟體的處理器;或其組合。舉例而言,處理電路系統可包 含但不限於CPU、算術邏輯單元(arithmetic logic unit;ALU)、數位訊號處理器、微電腦、場可程式化閘陣列(field programmable gate array;FPGA)、系統單晶片(System-on-Chip;SoC)、可程式化邏輯單元、微處理器或特殊應用積體電路(application-specific integrated circuit;ASIC)等。處理電路系統可經組態為專用電腦,其用以基於所感測內部溫度來估計表面溫度且基於表面溫度及由溫度臨限值定義的多個溫度範圍來選擇性地執行至少一個熱緩解操作。因此,專用處理電路系統可藉由預測表面溫度且執行針對多個溫度範圍中的每一者定製的熱緩解操作來改良訊號處理器及/或包含其的用戶設備的功能,藉此實現更高效的熱管理。
雖然本發明概念已參考其的一些實例實施例具體展示及描述,但應理解,可在不偏離以下申請專利範圍的精神及範疇的情況下作出形式及細節的各種改變。
10:無線通訊系統
100:用戶設備
110:天線
130:收發器
150:訊號處理器
152:控制器
154:臨限值儲存器
170:主處理器
190:溫度感測裝置
200:基地台
DL:下行鏈路
RX_BB:接收基頻訊號
RX_PL:接收有效負載
T1~Tn:溫度感測器
THR:臨限值
TX_BB:傳輸基頻訊號
TX_PL:傳輸有效負載
T_EXT:外部溫度
T_INT:內部溫度
UL:上行鏈路

Claims (22)

  1. 一種訊號處理裝置,經組態以處理用於無線通訊的基頻訊號,所述訊號處理裝置包括:多個溫度感測器,經組態以分別感測所述訊號處理裝置的多個內部溫度;儲存裝置,經組態以儲存定義多個溫度範圍的多個臨限值;以及控制器,經組態以:基於所述多個內部溫度估計表面溫度,以及基於所述表面溫度及所述多個溫度範圍選擇性地執行至少一個熱緩解操作;解調器,經組態以基於最大概似(ML)執行解調,其中所述控制器經組態以藉由減小與所述ML相關聯的群集圖中的鄰近群集點的數目來執行所述至少一個熱緩解操作。
  2. 如請求項1所述的訊號處理裝置,其中所述控制器包含:至少一個核心;記憶體,經組態以儲存藉由所述至少一個核心執行的一系列指令;以及中斷產生電路,經組態以:基於所述多個內部溫度估計所述表面溫度為所述訊號處理裝置的所述表面溫度,以及藉由使所述訊號處理裝置的所述表面溫度與所述多個臨限值相比較來向所述至少一個核心提供中斷。
  3. 如請求項1所述的訊號處理裝置,其中所述控制器經組態以:週期性地獲得所述多個內部溫度,基於所述多個內部溫度估計所述表面溫度,以及藉由分別使所述表面溫度與所述多個臨限值相比較來執行所述至少一個熱緩解操作。
  4. 如請求項3所述的訊號處理裝置,其中所述控制器經組態以基於至少所述多個內部溫度來估計所述表面溫度為包含所述訊號處理裝置的無線通訊裝置的所述表面溫度。
  5. 如請求項4所述的訊號處理裝置,其中所述控制器經組態以:獲得在所述訊號處理裝置外部感測到的外部溫度,以及基於所述多個內部溫度及所述外部溫度估計所述無線通訊裝置的所述表面溫度。
  6. 如請求項1所述的訊號處理裝置,更包括:多個接收鏈,各自包含類比至數位轉換器及多輸入多輸出(MIMO)偵測器,其中所述控制器經組態以藉由以下操作來執行所述至少一個熱緩解操作:請求對應無線通訊裝置減小MIMO階層,以及停用所述多個接收鏈中的至少一者。
  7. 如請求項1所述的訊號處理裝置,其中所述控制器經組態以藉由切換至傳統無線電存取技術(RAT)來執行所述至少一個熱緩解操作。
  8. 如請求項1所述的訊號處理裝置,其中所述控制器經組態以藉由請求對應無線通訊裝置減小用於載波聚合的分量載波的數目來執行所述至少一個熱緩解操作。
  9. 如請求項1所述的訊號處理裝置,其中所述控制器經組態以藉由請求主處理器減少與所述無線通訊相關聯的無線傳輸的有效負載來執行所述至少一個熱緩解操作,所述主處理器位於所述訊號處理裝置外部。
  10. 如請求項1所述的訊號處理裝置,更包括:第一介面電路,經組態以在校準模式中提供所述多個臨限值。
  11. 如請求項1所述的訊號處理裝置,其中所述控制器經組態以基於(i)具有所述多個內部溫度為引數的函數或(ii)使所述多個內部溫度與表面溫度相關聯的查找表來估計所述表面溫度。
  12. 如請求項11所述的訊號處理裝置,更包括:第二介面電路,經組態以在校準模式中提供所述函數或所述查找表。
  13. 如請求項1所述的訊號處理裝置,其中所述控制器經組態以基於人工神經網路估計所述表面溫度,所述人工神經網路是根據包含所述多個內部溫度及表面溫度的訓練資料來訓練的。
  14. 如請求項1所述的訊號處理裝置,更包括:多個裝置,包含編碼器、解碼器、調變器以及所述解調器,其中所述多個溫度感測器各別連接至所述多個裝置中的一者。
  15. 一種無線通訊裝置,包括: 溫度感測裝置,經組態以感測第一溫度;主處理器,經組態以獲得所述第一溫度;訊號處理裝置,與所述主處理器以通訊方式連接,所述訊號處理裝置經組態以:處理用於無線通訊的基頻訊號,以及藉由以下操作來執行熱管理操作:自所述主處理器獲得所述第一溫度,基於在內部感測的多個第二溫度及所述第一溫度估計所述無線通訊裝置的表面溫度,以及基於所述表面溫度及由多個臨限值定義的多個溫度範圍選擇性地執行熱緩解操作;以及解調器,經組態以基於自下述者中選出之一者執行解調:最大概似(ML)、匹配濾波器(MF)以及最小均方差(MMSE),其中所述控制器經組態以藉由控制所述解調器僅基於所述MF或所述MMSE執行解調來執行所述至少一個熱緩解操作。
  16. 如請求項15所述的無線通訊裝置,其中所述訊號處理裝置經組態以藉由傳輸請求至所述主處理器以減少與所述無線通訊相關聯的無線傳輸的有效負載來選擇性地執行所述熱緩解操作。
  17. 如請求項16所述的無線通訊裝置,其中所述主處理器經組態以回應於所述請求而在所述有效負載超出上限時延遲產生所述有效負載。
  18. 如請求項16所述的無線通訊裝置,其中所述主處理器經組態以回應於所述請求而進入低功率模式。
  19. 一種由訊號處理裝置執行的熱管理方法,所述訊號處理裝置經組態以處理用於無線通訊的基頻訊號,所述熱管理方法包括:感測所述訊號處理裝置的多個內部溫度;基於所述多個內部溫度估計表面溫度;自儲存裝置讀取定義多個溫度範圍的多個臨限值;以及基於所述表面溫度及所述多個溫度範圍執行至少一個熱緩解操作,其中當所述表面溫度位於所述多個溫度範圍的第一溫度範圍中時,不執行所述至少一個熱緩解操作,其中當所述表面溫度位於所述多個溫度範圍中高於所述第一溫度範圍的第二溫度範圍中且保持預定時間時,執行所述至少一個熱緩解操作,以及其中當所述表面溫度位於所述多個溫度範圍中高於所述第二溫度範圍的第三溫度範圍中時,立即執行所述至少一個熱緩解操作。
  20. 如請求項19所述的熱管理方法,其中所述表面溫度的估計包含:獲得在所述訊號處理裝置外部感測到的外部溫度;以及基於所述多個內部溫度及所述外部溫度估計所述表面溫度為包含所述訊號處理裝置的無線通訊裝置的所述表面溫度。
  21. 如請求項19所述的熱管理方法,其中所述訊號處理裝置包含多個接收鏈,所述多個接收鏈各自包含類比至數位轉換器及多輸入多輸出(MIMO)偵測器, 其中所述至少一個熱緩解操作的執行包含:請求對應無線通訊裝置減小MIMO階層;以及停用所述多個接收鏈中的至少一者。
  22. 如請求項19所述的熱管理方法,其中所述至少一個熱緩解操作的執行包含以下中的至少一者:切換至傳統無線電存取技術(RAT);請求對應無線通訊裝置減小用於載波聚合的分量載波的數目;以及請求主處理器減少與所述無線通訊相關聯的無線傳輸的有效負載,所述主處理器位於所述訊號處理裝置外部。
TW109112121A 2019-04-12 2020-04-10 訊號處理裝置、無線通訊裝置及熱管理方法 TWI836058B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0043297 2019-04-12
KR20190043297 2019-04-12
KR1020190089208A KR20200120462A (ko) 2019-04-12 2019-07-23 무선 통신에서 열 관리를 위한 방법 및 장치
KR10-2019-0089208 2019-07-23

Publications (2)

Publication Number Publication Date
TW202046779A TW202046779A (zh) 2020-12-16
TWI836058B true TWI836058B (zh) 2024-03-21

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019068818A1 (en) 2017-10-05 2019-04-11 Sony Corporation USER EQUIPMENT OVERHEATING MANAGEMENT DURING SIMULTANEOUS TRANSMISSION LTE-NEW UPLINK RADIO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019068818A1 (en) 2017-10-05 2019-04-11 Sony Corporation USER EQUIPMENT OVERHEATING MANAGEMENT DURING SIMULTANEOUS TRANSMISSION LTE-NEW UPLINK RADIO

Similar Documents

Publication Publication Date Title
US11722957B2 (en) Method and apparatus for thermal management in wireless communication
US20220060227A1 (en) Wireless Device, a Radio Node, and Methods Therein
US20220022215A1 (en) Systems and methods of configuration using group identifiers
CN109561463B (zh) 针对与移动用户设备的下行链路数据传输选择参数的方法
KR102527915B1 (ko) 업링크 파워 제어 방법 및 기기
TWI706637B (zh) 大規模多輸入多輸出系統中的波束插入
US11937328B2 (en) Millimeter wave link reliability and power efficiency improvements using sensor input
US10698459B2 (en) Electronic devices and method of controlling an electronic device
KR102602370B1 (ko) 무선 통신 시스템에서 안테나들을 제어하기 위한 장치 및 방법
WO2019068266A1 (en) UPLINK TRANSMISSION BASED ON CODEBOOK IN WIRELESS COMMUNICATIONS
US20230216557A1 (en) Electronic device for operating antenna module and method for controlling same
TWI836058B (zh) 訊號處理裝置、無線通訊裝置及熱管理方法
EP4066530A1 (en) Method for measuring and reporting associated with group information
TW202046779A (zh) 訊號處理裝置、無線通訊裝置及熱管理方法
TWI811482B (zh) 用於控制在無線通訊中的曝露的訊號處理設備及方法以及能夠連接至多個無線通訊系統的終端機
TW202114463A (zh) 用於確定上行鏈路信號的空間關係與功率控制參數的無線通訊方法
CN113395774A (zh) 使用传感器输入实现的毫米波链路的可靠性和功率效率的改善
US20240129766A1 (en) Throttle Control Method and System for Mobile Device
US20220368438A1 (en) Apparatus and method for monitoring an antenna module in a wireless communication system
US20240039673A1 (en) Systems and methods for network energy saving
WO2023206225A1 (en) Coherent joint transmission channel state information codebooks for multi-transmission-reception-point operation
US20230319831A1 (en) Memory access for a user application in a wireless communication device
US11817927B1 (en) Allocating antenna resources to prepare for idle equipment to transition to active mode
US20230199516A1 (en) Configurable hybrid beamforming
US20220360402A1 (en) Periodic Reference Signal Activation and Deactivation