TWI835524B - Machine training system of chip position correctness and machine training method of chip position correctness - Google Patents

Machine training system of chip position correctness and machine training method of chip position correctness Download PDF

Info

Publication number
TWI835524B
TWI835524B TW112101668A TW112101668A TWI835524B TW I835524 B TWI835524 B TW I835524B TW 112101668 A TW112101668 A TW 112101668A TW 112101668 A TW112101668 A TW 112101668A TW I835524 B TWI835524 B TW I835524B
Authority
TW
Taiwan
Prior art keywords
image data
chip
training image
data
server
Prior art date
Application number
TW112101668A
Other languages
Chinese (zh)
Inventor
林迪利
邱浩榕
梁昱
Original Assignee
大陸商環旭電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商環旭電子股份有限公司 filed Critical 大陸商環旭電子股份有限公司
Application granted granted Critical
Publication of TWI835524B publication Critical patent/TWI835524B/en

Links

Images

Abstract

A machine learning system and a machine learning method for the correctness of the chip position, wherein the machine learning method includes: obtaining a chip image data and a socket image data from a training image data according to the brightness characteristics of a chip and a socket; according to a relative position relationship between the chip image data and the socket image data, determining whether a position offset phenomenon occurs; when the position offset phenomenon occurs, labeling the training image data as an unqualified data; and when the position offset phenomenon does not occur , labeling the training image data as a qualified data.

Description

晶片位置正確性的機器學習系統及晶片位置正確性的機器學習方法Machine learning system for chip position accuracy and machine learning method for chip position accuracy

本發明涉及一種電子元件位置正確性的訓練系統及訓練方法,尤其是關於一種晶片位置正確性的機器學習系統及機器學習方法。The invention relates to a training system and a training method for the correctness of the position of electronic components, and in particular to a machine learning system and a machine learning method for the correctness of the position of a chip.

目前的晶片定位設備先透過機器手臂將晶片擺放於基座後,接著再使用光學測距儀依序對晶片的兩個對角位置分別發出雷射光。當光學測距儀接收到來自兩個對角的反射光時,根據發出雷射光的時間點與接收到反射光的時間點之間的時間差,便可估計出晶片的兩個對角位置分別與光學測距儀之間的距離。The current chip positioning equipment first places the chip on the base through a robot arm, and then uses an optical rangefinder to sequentially emit laser light at two diagonal positions of the chip. When the optical rangefinder receives reflected light from two opposite corners, based on the time difference between the time point when the laser light is emitted and the time point when the reflected light is received, it can be estimated that the two diagonal positions of the wafer are related to each other. The distance between optical rangefinders.

當晶片的第一對角與光學測距儀的距離相等於晶片的第二對角與光學測距儀的距離時,表示晶片擺放的位置正確。反之,當晶片的第一對角與光學測距儀的距離不等於晶片的第二對角與光學測距儀的距離時,表示晶片擺放的位置不正確。而在每一次經過光學測距儀進行距離測量時,需要花費一些時間。When the distance between the first diagonal corner of the wafer and the optical rangefinder is equal to the distance between the second diagonal corner of the wafer and the optical rangefinder, it means that the wafer is placed correctly. On the contrary, when the distance between the first diagonal corner of the wafer and the optical rangefinder is not equal to the distance between the second diagonal corner of the wafer and the optical rangefinder, it means that the wafer is placed in an incorrect position. It takes some time every time the distance is measured by the optical rangefinder.

本發明所要解決的技術問題在於,針對現有技術的不足提供一種晶片位置正確性的機器學習系統及晶片位置正確性的機器學習方法。The technical problem to be solved by the present invention is to provide a machine learning system for the correctness of the wafer position and a machine learning method for the correctness of the wafer position in view of the shortcomings of the existing technology.

為了解決上述的技術問題,本發明所採用的其中一技術方案是提供一種晶片位置正確性的機器學習系統,包括:晶片定位設備;伺服器,電性連接於晶片定位設備,伺服器從晶片定位設備取得多筆訓練影像資料,而伺服器對每一訓練影像資料執行以下操作:根據晶片亮度特徵以及基座亮度特徵,從訓練影像資料中區別出晶片影像資料以及基座影像資料;根據晶片影像資料與基座影像資料之間的相對位置關係,判斷是否發生位置偏移現象;當發生位置偏移現象時,標記訓練影像資料為不合格資料;以及當未發生位置偏移現象時,標記訓練影像資料為合格資料;在多筆訓練影像資料均被標記後,該伺服器使用機器學習演算法對多筆訓練影像資料進行訓練,以便產生機器學習模型。In order to solve the above technical problems, one of the technical solutions adopted by the present invention is to provide a machine learning system for wafer position accuracy, including: wafer positioning equipment; a server, electrically connected to the wafer positioning equipment, and the server positions from the wafer The device obtains multiple pieces of training image data, and the server performs the following operations on each training image data: distinguishes the chip image data and the base image data from the training image data based on the chip brightness characteristics and the base brightness characteristics; based on the chip image data The relative positional relationship between the data and the base image data is used to determine whether position shift occurs; when position shift occurs, the training image data is marked as unqualified data; and when position shift does not occur, training is marked The image data is qualified data; after multiple training image data are marked, the server uses a machine learning algorithm to train the multiple training image data in order to generate a machine learning model.

為了解決上述的技術問題,本發明所採用的其中一技術方案是提供一種晶片位置正確性的機器學習方法,由晶片定位設設備以及伺服器來執行,機器學習方法包括:由晶片定位設備取得多筆訓練影像資料; 由伺服器,從晶片定位設備取得多筆訓練影像資料,而伺服器對每一訓練影像資料執行以下操作:根據晶片亮度特徵以及基座亮度特徵從訓練影像資料之中,區別出晶片影像資料以及基座影像資料;根據晶片影像資料與基座影像資料之間的相對位置關係,判斷是否發生位置偏移現象;當發生位置偏移現象時,標記訓練影像資料為不合格資料;以及當未發生位置偏移現象時,標記訓練影像資料為合格資料;在多筆訓練影像資料均被標記後,該伺服器使用機器學習演算法對該多筆訓練影像資料進行訓練,以產生機器學習模型。In order to solve the above technical problems, one of the technical solutions adopted by the present invention is to provide a machine learning method for the correctness of the wafer position, which is executed by the wafer positioning equipment and the server. The machine learning method includes: obtaining multiple data from the wafer positioning equipment. pieces of training image data; the server obtains multiple pieces of training image data from the chip positioning equipment, and the server performs the following operations on each training image data: distinguishes among the training image data according to the chip brightness characteristics and the base brightness characteristics. The chip image data and the base image data are generated; based on the relative positional relationship between the chip image data and the base image data, it is determined whether a position shift occurs; when a position shift occurs, the training image data is marked as unqualified data. ; and when position deviation does not occur, mark the training image data as qualified data; after multiple training image data are marked, the server uses a machine learning algorithm to train the multiple training image data to generate Machine learning model.

本發明的其中一有益效果在於,本發明所提供的晶片位置正確性的機器學習系統及晶片位置正確性的機器學習方法,根據完整的影像資料進行機器學習訓練,可降低晶片位置的誤判機率。相較於以往在晶片定位設備在將晶片擺放於基座之後,除了進行影像拍攝之後,還需透過雷射測距儀對晶片的兩個對角位置進行距離量測,才能確認晶片的擺放位置是否正確。本發明的機器學習系統只需在晶片擺放於基座之後,直接進行影像拍攝並進行影像處理,行程上會比進行雷射測距還要快速,所以加快了製程速率。One of the beneficial effects of the present invention is that the machine learning system and the machine learning method for the correctness of the chip position provided by the present invention perform machine learning training based on complete image data, which can reduce the probability of misjudgment of the chip position. Compared with the past, after placing the chip on the base of the chip positioning equipment, in addition to taking the image, it is also necessary to measure the distance between the two diagonal positions of the chip through a laser rangefinder to confirm the placement of the chip. Is the placement correct? The machine learning system of the present invention only needs to directly capture and process images after the chip is placed on the base. The process is faster than laser ranging, so the process speed is accelerated.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。In order to further understand the features and technical content of the present invention, please refer to the following detailed description and drawings of the present invention. However, the drawings provided are only for reference and illustration and are not used to limit the present invention.

以下是通過特定的具體實施例來說明本發明所公開有關“晶片位置正確性的機器學習系統及晶片位置正確性的機器學習方法”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。The following is a specific embodiment to illustrate the implementation of the "machine learning system for wafer position accuracy and the machine learning method for wafer position accuracy" disclosed in the present invention. Those skilled in the art can understand from the content disclosed in this specification. Advantages and effects of the present invention. The present invention can be implemented or applied through other different specific embodiments, and various details in this specification can also be modified and changed based on different viewpoints and applications without departing from the concept of the present invention. In addition, the drawings of the present invention are only simple schematic illustrations and are not depictions based on actual dimensions, as is stated in advance. The following embodiments will further describe the relevant technical content of the present invention in detail, but the disclosed content is not intended to limit the scope of the present invention.

應當可以理解的是,雖然本文中可能會使用到“第一”、“第二”、“第三”等術語來描述各種元件或者信號,但這些元件或者信號不應受這些術語的限制。這些術語主要是用以區分一元件與另一元件,或者一信號與另一信號。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。It should be understood that although terms such as “first”, “second” and “third” may be used herein to describe various elements or signals, these elements or signals should not be limited by these terms. These terms are primarily used to distinguish one component from another component or one signal from another signal. In addition, the term "or" used in this article shall include any one or combination of more of the associated listed items depending on the actual situation.

圖1為本發明的晶片位置正確性的機器學習系統的功能方塊圖。如圖1所示,晶片位置正確性的機器學習系統包括晶片定位設備1以及伺服器2,而伺服器2電性連接於晶片定位設備1。晶片定位設備1包含有攝影機11,攝影機11朝向基座進行拍攝以取得訓練影像資料。當基座上擺放有晶片時,訓練影像資料包含有晶片影像資料以及基座影像資料。晶片定位設備1將訓練影像資料傳送至伺服器2。當伺服器2接收到訓練影像資料時,伺服器2從訓練影像資料中區別出晶片影像資料以及基座影像資料,接著伺服器2根據晶片影像資料與基座影像資料之間的相對位置關係,判斷是否發生位置偏移現象。當發生位置偏移現象時,伺服器2標記訓練影像資料為不合格資料。當未發生位置偏移現象時,伺服器2標記訓練影像資料為合格資料。FIG. 1 is a functional block diagram of the machine learning system for wafer position accuracy of the present invention. As shown in FIG. 1 , the machine learning system for wafer position accuracy includes a wafer positioning device 1 and a server 2 , and the server 2 is electrically connected to the wafer positioning device 1 . The wafer positioning equipment 1 includes a camera 11, and the camera 11 shoots toward the base to obtain training image data. When a chip is placed on the base, the training image data includes chip image data and base image data. The chip positioning device 1 transmits the training image data to the server 2. When the server 2 receives the training image data, the server 2 distinguishes the chip image data and the base image data from the training image data, and then the server 2 based on the relative positional relationship between the chip image data and the base image data, Determine whether position deviation occurs. When the position deviation occurs, server 2 marks the training image data as unqualified data. When no position deviation occurs, server 2 marks the training image data as qualified data.

圖2為本發明的晶片位置正確性的機器學習方法的第一實施例的流程圖。如圖2所示,關於步驟S201,晶片定位設備1的攝影機11取得訓練影像資料。關於步驟S203,伺服器2從晶片定位設備1取得訓練影像資料。關於步驟S205,伺服器2根據晶片亮度特徵以及基座亮度特徵,從訓練影像資料之中,區別出晶片影像資料以及基座影像資料。FIG. 2 is a flow chart of the first embodiment of the machine learning method for wafer position accuracy of the present invention. As shown in FIG. 2 , regarding step S201 , the camera 11 of the wafer positioning equipment 1 acquires training image data. Regarding step S203, the server 2 obtains training image data from the wafer positioning device 1. Regarding step S205, the server 2 distinguishes the chip image data and the base image data from the training image data based on the chip brightness characteristics and the base brightness characteristics.

圖3為伺服器2從訓練影像資料之中區別出晶片影像資料以及基座影像資料的一實施例的示意圖。如圖3所示,當基座上擺放有晶片時,攝影機11朝向基座進行拍攝以取得訓練影像資料,其中晶片的晶片亮度特徵為亮度值高於亮度臨界值的多個資料點集中於矩形區域內,至於基座的基座亮度特徵為亮度值高於亮度臨界值的多個資料點分佈於四個弧形區域C1~C4,其中弧形區域C1與弧形區域C2位於一條對角線上,而弧形區域C3與弧形區域C4位於另一條對角線上,而被弧形區域C1~C4所包圍的區域的亮度值低於亮度臨界值。伺服器2根據晶片亮度特徵以及基座亮度特徵,從訓練影像資料M1之中,區別出晶片影像資料M11以及基座影像資料M12。FIG. 3 is a schematic diagram of an embodiment in which the server 2 distinguishes the chip image data and the base image data from the training image data. As shown in Figure 3, when a chip is placed on the base, the camera 11 shoots toward the base to obtain training image data. The chip brightness characteristic of the chip is that multiple data points with a brightness value higher than the brightness critical value are concentrated at In the rectangular area, as for the base brightness characteristics of the base, multiple data points with brightness values higher than the brightness critical value are distributed in four arc-shaped areas C1 ~ C4, of which arc-shaped areas C1 and arc-shaped areas C2 are located at a diagonal On the line, the arc-shaped area C3 and the arc-shaped area C4 are located on another diagonal line, and the brightness value of the area surrounded by the arc-shaped areas C1 to C4 is lower than the brightness critical value. The server 2 distinguishes the chip image data M11 and the base image data M12 from the training image data M1 based on the chip brightness characteristics and the base brightness characteristics.

關於步驟S207,伺服器2對晶片影像資料進行主成分分析(Principal Component Analysis, PCA)以取得晶片中心點。關於步驟S209,伺服器2對基座影像資料進行主成分分析以取得基座中心點。Regarding step S207, the server 2 performs principal component analysis (PCA) on the wafer image data to obtain the wafer center point. Regarding step S209, the server 2 performs principal component analysis on the base image data to obtain the base center point.

圖4為本發明的伺服器2使用主成分分析取得晶片中心點基座中心點以及晶片與基座之間的偏移角度的一實施例的示意圖。如圖4所示,伺服器2對晶片影像資料M11進行主成分分析之後,得到晶片中心點P1以及通過晶片中心點P1的第一長軸L1以及第一短軸W1,晶片中心點P1的二維座標為(X1,Y1)。同理,伺服器2對基座影像資料M12進行主成分分析之後,得到基座中心點P2以及通過基座中心點P2的第二長軸L2以及第二短軸W2,基座中心點P2的二維座標為(X2,Y2)。FIG. 4 is a schematic diagram of an embodiment in which the server 2 of the present invention uses principal component analysis to obtain the center point of the wafer and the base and the offset angle between the wafer and the base. As shown in Figure 4, after the server 2 performs principal component analysis on the wafer image data M11, it obtains the wafer center point P1 and the first long axis L1 and the first short axis W1 passing through the wafer center point P1. The dimensional coordinates are (X1, Y1). In the same way, after server 2 performs principal component analysis on the base image data M12, it obtains the base center point P2, the second long axis L2 and the second short axis W2 passing through the base center point P2, and the base center point P2 The two-dimensional coordinates are (X2, Y2).

關於步驟S211,伺服器2計算晶片中心點P1與基座中心點P2之間的偏移距離。舉例來說,當晶片中心點P1的二維座標為(X1,Y1),而基座中心點P2的座標為(X2,Y2),則偏移距離的計算式為 Regarding step S211, the server 2 calculates the offset distance between the wafer center point P1 and the base center point P2. For example, when the two-dimensional coordinates of the wafer center point P1 are (X1, Y1) and the coordinates of the base center point P2 are (X2, Y2), the calculation formula of the offset distance is: .

關於步驟S213,伺服器2計算晶片與基座之間的偏移角度。舉例來說,第一長軸L1垂直於第一短軸W1,而第二長軸L2垂直於第二短軸W2。當第一長軸L1與第二長軸L2之間的夾角為10度,第一短軸W1與第二短軸W2之間的夾角也為10度,此時,晶片與基座之間的偏移角度為10度。Regarding step S213, the server 2 calculates the offset angle between the wafer and the susceptor. For example, the first long axis L1 is perpendicular to the first short axis W1, and the second long axis L2 is perpendicular to the second short axis W2. When the angle between the first long axis L1 and the second long axis L2 is 10 degrees, and the angle between the first short axis W1 and the second short axis W2 is also 10 degrees, at this time, the angle between the wafer and the base The offset angle is 10 degrees.

關於步驟S215,伺服器2對晶片中心點P1與基座中心點P2之間的偏移距離進行標準化以得到偏移距離比,其中標準化的公式為(晶片中心點P1與基座中心點P2之間的偏移距離)/(晶片的對角線長度),但本發明不以此為限。藉由標準化的處理,即便攝影機12的解析度發生改變,偏移距離比也能正確反映晶片相對於基座的偏移程度。Regarding step S215, the server 2 normalizes the offset distance between the wafer center point P1 and the base center point P2 to obtain the offset distance ratio, where the standardized formula is (between the wafer center point P1 and the base center point P2 offset distance)/(diagonal length of the wafer), but the present invention is not limited to this. Through standardized processing, even if the resolution of the camera 12 changes, the offset distance ratio can accurately reflect the offset degree of the chip relative to the base.

關於步驟S217,伺服器2判斷偏移距離比是否大於預設的臨界距離比。若是,接著步驟S219。若否,接著步驟S221。關於步驟S219,伺服器2標記訓練影像資料為不合格資料。關於步驟S221,伺服器2判斷偏移角度是否大於臨界偏移角度。若是,接著步驟S223。若否,接著步驟S225。Regarding step S217, the server 2 determines whether the offset distance ratio is greater than a preset critical distance ratio. If yes, proceed to step S219. If not, proceed to step S221. Regarding step S219, server 2 marks the training image data as unqualified data. Regarding step S221, the server 2 determines whether the offset angle is greater than the critical offset angle. If yes, proceed to step S223. If not, proceed to step S225.

關於步驟S223,伺服器2標記訓練影像資料為不合格資料。關於步驟S225,伺服器2標記訓練影像資料為合格資料。Regarding step S223, the server 2 marks the training image data as unqualified data. Regarding step S225, the server 2 marks the training image data as qualified data.

在步驟S219、S223以及S225之後,接著步驟S227。關於步驟S227,伺服器2判斷訓練影像資料的數量是否達到數量臨界值。若是,接著步驟S229。若否,返回步驟S201。After steps S219, S223 and S225, step S227 follows. Regarding step S227, the server 2 determines whether the quantity of training image data reaches a quantity threshold. If yes, proceed to step S229. If not, return to step S201.

關於步驟S229,伺服器2使用機器學習演算法對多筆標記過的訓練影像資料進行訓練,以產生機器學習模型。Regarding step S229, the server 2 uses a machine learning algorithm to train multiple marked training image data to generate a machine learning model.

圖5為本發明的機器學習模型的一實施例的示意圖。如圖5所示,伺服器2使用支持向量機(support vector machine)對多筆標記過的訓練影像資料進行訓練,以產生支持向量機模型。支持向量機模型包含有一資料分群界線L,而資料分群界線L的相對兩側分別為位置合格區域PASS以及位置不合格區域NG。當支持向量機模型接收到測試影像資料時,支持向量機模型可判斷測試影像資料屬於位置合格區域PASS或者位置不合格區域NG。當測試影像資料屬於位置合格區域PASS,表示晶片正確地擺放於基座上。反之,當測試影像資料屬於位置不合格區域時,表示晶片未正確地擺放於基座上。不論測試結果為合格或不合格,伺服器2都會將測試結果回傳給晶片定位設備1,而晶片定位設備1可根據支持向量機模型的測試結果,進行定位參數的調整。Figure 5 is a schematic diagram of an embodiment of the machine learning model of the present invention. As shown in Figure 5, server 2 uses a support vector machine (support vector machine) to train multiple labeled training image data to generate a support vector machine model. The support vector machine model includes a data grouping boundary L, and the opposite sides of the data grouping boundary L are the location qualified area PASS and the location unqualified area NG respectively. When the support vector machine model receives the test image data, the support vector machine model can determine that the test image data belongs to the position qualified area PASS or the position unqualified area NG. When the test image data belongs to the position qualified area PASS, it means that the chip is correctly placed on the base. On the contrary, when the test image data belongs to the unqualified position area, it means that the chip is not correctly placed on the base. Regardless of whether the test result is qualified or unqualified, the server 2 will send the test result back to the chip positioning equipment 1, and the chip positioning equipment 1 can adjust the positioning parameters according to the test results of the support vector machine model.

圖6A及圖6B為本發明的晶片位置正確性的機器學習方法的第二實施例的流程圖。如圖6A所示,關於步驟S601,晶片定位設備1的攝影機11取得訓練影像資料。關於步驟S603,伺服器2從晶片定位設備1取得訓練影像資料。關於步驟S605,伺服器2判斷基座上是否放置有晶片,若是,接著步驟S607。若否,接著步驟S609。關於步驟S607,伺服器2判斷基座上放置的晶片數量是否為單個。關於步驟S609,伺服器2標記訓練影像資料為不合格資料。6A and 6B are flowcharts of a second embodiment of the machine learning method for wafer position accuracy of the present invention. As shown in FIG. 6A , regarding step S601 , the camera 11 of the wafer positioning equipment 1 acquires training image data. Regarding step S603, the server 2 obtains training image data from the wafer positioning device 1. Regarding step S605, the server 2 determines whether there is a wafer placed on the base. If so, step S607 is followed. If not, proceed to step S609. Regarding step S607, the server 2 determines whether the number of wafers placed on the base is single. Regarding step S609, server 2 marks the training image data as unqualified data.

關於伺服器2如何判斷基座上是否放置有晶片,具體而言,若伺服器2於訓練影像資料中偵測到晶片亮度特徵,表示基座上放置有晶片。反之,若伺服器2無法於訓練影像資料中偵測到晶片亮度特徵,表示基座上沒有放置晶片。Regarding how the server 2 determines whether there is a chip placed on the base, specifically, if the server 2 detects the brightness characteristics of the chip in the training image data, it means that there is a chip placed on the base. On the contrary, if the server 2 cannot detect the brightness characteristics of the chip in the training image data, it means that the chip is not placed on the base.

若伺服器2判斷基座上放置的晶片的數量為單個,接著步驟S611。若伺服器2判斷基座上放置的晶片的數量並非單個,接著步驟S613。If the server 2 determines that the number of wafers placed on the base is single, step S611 follows. If the server 2 determines that the number of wafers placed on the base is not single, step S613 follows.

關於步驟S611,伺服器2根據晶片亮度特徵以及基座亮度特徵,從訓練影像資料之中,區別出晶片影像資料以及基座影像資料。關於步驟S613,伺服器2標記訓練影像資料為不合格資料。Regarding step S611, the server 2 distinguishes the chip image data and the base image data from the training image data based on the chip brightness characteristics and the base brightness characteristics. Regarding step S613, server 2 marks the training image data as unqualified data.

在步驟S611之後,接著步驟S615。關於步驟S615,伺服器2對晶片影像資料進行主成分分析以取得晶片中心點。關於步驟S617,伺服器2對基座影像資料進行主成分分析以取得基座中心點。After step S611, step S615 follows. Regarding step S615, the server 2 performs principal component analysis on the wafer image data to obtain the wafer center point. Regarding step S617, the server 2 performs principal component analysis on the base image data to obtain the base center point.

如圖6B所示,關於步驟S619,伺服器2計算晶片中心點P1與基座中心點P2之間的偏移距離。關於步驟S621,伺服器2計算晶片與基座之間的偏移角度。As shown in FIG. 6B , regarding step S619, the server 2 calculates the offset distance between the wafer center point P1 and the base center point P2. Regarding step S621, the server 2 calculates the offset angle between the wafer and the susceptor.

關於步驟S623,伺服器2對晶片中心點P1與基座中心點P2之間的偏移距離進行標準化,以得到偏移距離比。Regarding step S623, the server 2 normalizes the offset distance between the wafer center point P1 and the base center point P2 to obtain an offset distance ratio.

關於步驟S625,伺服器2判斷偏移距離比是否大於臨界距離比。若是,接著步驟S627。若否,接著步驟S629。關於步驟S627,伺服器2標記訓練影像資料為不合格資料。關於步驟S629,伺服器2判斷偏移角度是否大於臨界角度。若是,接著步驟S631。若否,接著步驟S633。Regarding step S625, the server 2 determines whether the offset distance ratio is greater than the critical distance ratio. If yes, proceed to step S627. If not, proceed to step S629. Regarding step S627, server 2 marks the training image data as unqualified data. Regarding step S629, the server 2 determines whether the offset angle is greater than the critical angle. If yes, proceed to step S631. If not, proceed to step S633.

關於步驟S631,伺服器2標記訓練影像資料為不合格資料。關於步驟S633,伺服器2標記訓練影像資料為合格資料。Regarding step S631, server 2 marks the training image data as unqualified data. Regarding step S633, server 2 marks the training image data as qualified data.

在步驟S609、S613、S627、S631以及S633之後,接著步驟S635。關於步驟S635,伺服器2判斷訓練影像資料的數量是否達到數量臨界值。若是,接著步驟S637。若否,返回步驟S601。After steps S609, S613, S627, S631 and S633, step S635 follows. Regarding step S635, the server 2 determines whether the quantity of training image data reaches a quantity threshold. If yes, proceed to step S637. If not, return to step S601.

關於步驟S637,伺服器2使用機器學習演算法對多筆標記過的訓練影像資料進行訓練,以便產生機器學習模型。Regarding step S637, the server 2 uses a machine learning algorithm to train multiple marked training image data to generate a machine learning model.

圖7為伺服器2判斷基座上是否放置有多個晶片的方法流程圖,意即圖7進一步描述圖6的步驟S607的子步驟。如圖7所示,關於步驟S701,伺服器2建立包圍晶片影像資料的框線。關於步驟S703,伺服器2取得框線所包圍的第一面積以及晶片影像資料的第二面積。關於步驟S705,伺服器2計算第一面積與第二面積之面積差。關於步驟S707,伺服器2計算面積差與第二面積之面積比。關於步驟S709,伺服器2判斷面積比是否小於或等於臨界面積比。若是,接著步驟S711。若否,接著步驟S713。關於步驟S711,伺服器2判斷基座上只有放置一個晶片,接著步驟S611。關於步驟S713,伺服器2判斷基座上放置有多個晶片,接著步驟S613 。FIG. 7 is a flowchart of a method for the server 2 to determine whether multiple wafers are placed on the base, which means that FIG. 7 further describes the sub-steps of step S607 of FIG. 6 . As shown in FIG. 7 , regarding step S701 , the server 2 creates a frame surrounding the wafer image data. Regarding step S703, the server 2 obtains the first area enclosed by the frame and the second area of the wafer image data. Regarding step S705, the server 2 calculates the area difference between the first area and the second area. Regarding step S707, the server 2 calculates the area ratio of the area difference and the second area. Regarding step S709, the server 2 determines whether the area ratio is less than or equal to the critical area ratio. If yes, proceed to step S711. If not, proceed to step S713. Regarding step S711, the server 2 determines that only one wafer is placed on the base, and then proceeds to step S611. Regarding step S713, the server 2 determines that multiple wafers are placed on the base, and then proceeds to step S613.

圖8為建立包圍晶片影像資料的框線的一實施例的示意圖,如圖8所示,伺服器2建立一個將晶片影像資料M11包圍在內的最小的框線C,當晶片影像資料M11相較於框線C所包圍的面積的百分比大於一臨界百分比時,表示基座上有很大的機率只有放置一個晶片。反之,當晶片影像資料M11的面積相較於框線C所包圍的面積的百分比小於臨界百分比時,表示基座上有很大的機率放置有多個晶片。Figure 8 is a schematic diagram of an embodiment of establishing a frame surrounding the chip image data. As shown in Figure 8, the server 2 creates a minimum frame C surrounding the chip image data M11. When the chip image data M11 is When the percentage of the area enclosed by the frame line C is greater than a critical percentage, it means that there is a high probability that only one chip is placed on the base. On the contrary, when the percentage of the area of the wafer image data M11 compared to the area enclosed by the frame line C is less than the critical percentage, it means that there is a high probability that multiple wafers are placed on the base.

圖9為本發明的晶片位置正確性的機器學習方法的第三實施例的流程圖。圖9的機器學習方法包括步驟S901~步驟S927,其中步驟S901~S913分別相同於圖2的步驟S201~S213,步驟S917~S927分別相同於圖2的步驟S219~步驟S229,差異在於步驟S915。關於步驟S915, 伺服器2判斷偏移距離是否大於臨界距離。若是,接著步驟S917。若否,接著步驟S919。FIG. 9 is a flow chart of the third embodiment of the machine learning method for wafer position accuracy of the present invention. The machine learning method of Figure 9 includes steps S901 to S927, where steps S901 to S913 are respectively the same as steps S201 to S213 of Figure 2, and steps S917 to S927 are respectively the same as steps S219 to S229 of Figure 2, with the difference being step S915. Regarding step S915, the server 2 determines whether the offset distance is greater than the critical distance. If yes, proceed to step S917. If not, proceed to step S919.

再者,關於晶片定位設備1與伺服器2之間的資料傳輸,舉例來說,晶片定位設備1可透過base 64編碼規則,先對訓練影像資料進行編碼以形成字串資料。接著,晶片定位設備1透過傳輸控制協定(Transmission Control Protocol)將字串資料傳送至伺服器2。當伺服器2接收到來自晶片定位設備1的字串資料時,對字串資料進行解碼而取得訓練影像資料,藉此解決跨平台物件無法辨識的問題。上述的資料傳輸方式,僅為舉例,而本發明並不以此為限。Furthermore, regarding the data transmission between the chip positioning device 1 and the server 2, for example, the chip positioning device 1 can first encode the training image data to form string data through base 64 encoding rules. Then, the chip positioning device 1 transmits the string data to the server 2 through the Transmission Control Protocol. When the server 2 receives the string data from the chip positioning device 1, it decodes the string data to obtain training image data, thereby solving the problem of unrecognizable cross-platform objects. The above data transmission methods are only examples, and the present invention is not limited thereto.

[實施例的有益效果][Beneficial effects of the embodiment]

本發明的其中一有益效果在於,本發明所提供的晶片位置正確性的機器學習系統及晶片位置正確性的機器學習方法,伺服器根據完整的影像資料進行機器學習訓練,可降低晶片位置的誤判機率。相較於以往在晶片訂位設備在將晶片擺放於基座之後,除了進行影像拍攝之後,還需透過雷射測距儀晶片的兩個對角位置進行距離量測,才能確認晶片的擺放位置是否正確。本發明的機器學習系統只需在晶片擺放於基座之後,直接進行影像拍攝並進行影像處理,行程上會比進行雷射測距還要快速,所以加快了製程速率本發明所提供的晶片位置正確性的機器學習系統及晶片位置正確性的機器學習方法,根據完整的影像資料訓練得到的評估模型,可以降低誤判率。One of the beneficial effects of the present invention is that in the machine learning system and the machine learning method for the correctness of the chip position provided by the present invention, the server performs machine learning training based on complete image data, which can reduce misjudgments of the chip position. Probability. Compared with the past, after placing the chip on the base of the chip positioning equipment, in addition to taking the image, it is also necessary to measure the distance through the two diagonal positions of the laser rangefinder chip to confirm the placement of the chip. Is the placement correct? The machine learning system of the present invention only needs to directly capture and process images after the chip is placed on the base. The process is faster than laser ranging, so the process speed is accelerated. The chip provided by the present invention The machine learning system for position accuracy and the machine learning method for chip position accuracy can reduce the misjudgment rate by training an evaluation model based on complete image data.

以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。The contents disclosed above are only preferred and feasible embodiments of the present invention, and do not limit the scope of the patent application of the present invention. Therefore, all equivalent technical changes made by using the description and drawings of the present invention are included in the application of the present invention. within the scope of the patent.

1:晶片定位設備 2:伺服器 11:攝影機 C1~C4:弧形區域 P1:晶片中心點 L1:第一長軸 W1:第一短軸 P2:基座中心點 L2:第二長軸 W2:第二短軸 L:資料分群界線 PASS:位置合格區域 NG:位置不合格區域 M1:訓練影像資料 M11:晶片影像資料 M12:基座影像資料 C:框線 S201~S229:步驟 S601~S637:步驟 S701~S713:步驟 S901~S927:步驟1: Wafer positioning equipment 2:Server 11:Camera C1~C4: Arc area P1: wafer center point L1: first long axis W1: first short axis P2: base center point L2: second long axis W2: Second short axis L: data grouping boundary PASS: location qualified area NG: location unqualified area M1: training image data M11: chip image data M12: Base image data C: frame line S201~S229: steps S601~S637: steps S701~S713: steps S901~S927: steps

圖1為本發明的晶片位置正確性的機器學習系統的功能方塊圖。FIG. 1 is a functional block diagram of the machine learning system for wafer position accuracy of the present invention.

圖2為本發明的晶片位置正確性的機器學習方法的第一實施例的流程圖。FIG. 2 is a flow chart of the first embodiment of the machine learning method for wafer position accuracy of the present invention.

圖3為經由亮度特徵區別出晶片影像資料以及基座影像資料的示意圖。Figure 3 is a schematic diagram of distinguishing wafer image data and base image data through brightness characteristics.

圖4為經由主要成分分析取得晶片中心點、基座中心點以及晶片與基座之間的偏移角度的示意圖。FIG. 4 is a schematic diagram of obtaining the center point of the wafer, the center point of the base, and the offset angle between the wafer and the base through principal component analysis.

圖5為本發明的完成訓練的機器學習模型的一實施例。Figure 5 is an embodiment of a trained machine learning model of the present invention.

圖6A及圖6B為本發明的晶片位置正確性的機器學習方法的第二實施例的流程圖。6A and 6B are flowcharts of a second embodiment of the machine learning method for wafer position accuracy of the present invention.

圖7為伺服器判斷基座上是否堆疊多個晶片的方法流程圖。Figure 7 is a flowchart of a method for the server to determine whether multiple wafers are stacked on the base.

圖8為建立包圍晶片影像資料的框線的一實施例的示意圖。FIG. 8 is a schematic diagram of an embodiment of establishing a frame surrounding the wafer image data.

圖9為本發明的晶片位置正確性的機器學習方法的第三實施例的流程圖。FIG. 9 is a flow chart of the third embodiment of the machine learning method for wafer position accuracy of the present invention.

S201~S229:步驟 S201~S229: steps

Claims (11)

一種晶片位置正確性的機器學習系統,包括:一晶片定位設備;一伺服器,電性連接於該晶片定位設備,該伺服器從該晶片定位設備取得多筆訓練影像資料,而該伺服器對每一訓練影像資料執行以下操作:根據一晶片亮度特徵以及一基座亮度特徵,從該訓練影像資料中區別出一晶片影像資料以及一基座影像資料,其中該晶片亮度特徵為亮度值高於一亮度臨界值的多個資料點集中於一矩形區域內,該基座亮度特徵為亮度值高於該亮度臨界值的多個資料點分佈於四個弧形區域,其中兩個所述弧形區域位於所述矩形區域的一對角線上,而另外兩個所述弧形區域位於所述矩形區域的另一對角線上;根據該晶片影像資料與該基座影像資料之間的相對位置關係,判斷是否發生一位置偏移現象;當發生該位置偏移現象時,標記該訓練影像資料為一不合格資料;以及當未發生該位置偏移現象時,標記該訓練影像資料為一合格資料;在該多筆訓練影像資料均被標記後,該伺服器使用一機器學習演算法對該多筆訓練影像資料進行訓練,以便產生一機器學習模型。 A machine learning system for chip position accuracy, including: a chip positioning device; a server electrically connected to the chip positioning device, the server obtains a plurality of training image data from the chip positioning device, and the server Each training image data performs the following operations: distinguishing a chip image data and a base image data from the training image data according to a chip brightness characteristic and a base brightness characteristic, wherein the chip brightness characteristic has a brightness value higher than A plurality of data points with a brightness threshold value are concentrated in a rectangular area. The base brightness characteristic is that multiple data points with a brightness value higher than the brightness threshold value are distributed in four arc-shaped areas, two of which are arc-shaped. The area is located on one diagonal line of the rectangular area, and the other two arc-shaped areas are located on the other diagonal line of the rectangular area; according to the relative positional relationship between the wafer image data and the base image data , determine whether a position shift phenomenon occurs; when the position shift phenomenon occurs, mark the training image data as unqualified data; and when the position shift phenomenon does not occur, mark the training image data as qualified data ; After the plurality of training image data are marked, the server uses a machine learning algorithm to train the plurality of training image data to generate a machine learning model. 如請求項1所述之晶片位置正確性的機器學習系統,其中該伺服器判斷是否發生該位置偏移現象包括:對該晶片影像資料進行主成分分析以取得一晶片中心點;對該基座影像資料進行主成分分析以取得一基座中心點;計算該晶片中心點與 該基座中心點之間的一偏移距離;計算該晶片與該基座之間的一偏移角度;對該偏移距離進行標準化以得到一偏移距離比;當該偏移距離比大於一臨界距離比或該偏移角度大於一臨界角度時,標記該訓練影像資料為該不合格資料;以及當該偏移距離比小於或等於該臨界距離比且該偏移角度小於或等於該臨界角度時,標記該訓練影像資料為該合格資料。 A machine learning system for chip position accuracy as described in claim 1, wherein the server's determination of whether the position deviation occurs includes: performing principal component analysis on the chip image data to obtain a chip center point; Perform principal component analysis on the image data to obtain a base center point; calculate the wafer center point and an offset distance between the center points of the base; calculate an offset angle between the wafer and the base; normalize the offset distance to obtain an offset distance ratio; when the offset distance ratio is greater than When a critical distance ratio or the offset angle is greater than a critical angle, mark the training image data as unqualified data; and when the offset distance ratio is less than or equal to the critical distance ratio and the offset angle is less than or equal to the critical angle, mark the training image data as qualified data. 如請求項1所述之晶片位置正確性的機器學習系統,其中該機器學習演算法為支持向量機,而該機器學習模型為一支持向量機模型,該支持向量機模型包含一資料分群界線,該資料分群界線的相對兩側分別為一位置合格區域以及一位置不合格區域。 The machine learning system for chip position accuracy as described in claim 1, wherein the machine learning algorithm is a support vector machine, and the machine learning model is a support vector machine model, and the support vector machine model includes a data grouping boundary, The opposite sides of the data grouping boundary are respectively a position qualified area and a position unqualified area. 如請求項1所述之晶片位置正確性的機器學習系統,其中該伺服器對每一筆訓練影像資料還執行以下操作:建立包圍該晶片影像資料的一框線;取得該框線所包圍的一第一面積以及該晶片影像資料的第二面積;取得該第一面積與該第二面積之面積差;取得該面積差與該第二面積之面積比;當該面積比大於一臨界面積比時,判斷該基座上放置有多個晶片;當該面積比小於或等於該臨界面積比時,判斷該基座上只有放置單個該晶片。 The machine learning system for chip position accuracy as described in claim 1, wherein the server also performs the following operations for each piece of training image data: creates a frame surrounding the chip image data; obtains a frame surrounded by the frame The first area and the second area of the chip image data; obtain the area difference between the first area and the second area; obtain the area ratio between the area difference and the second area; when the area ratio is greater than a critical area ratio , it is judged that multiple wafers are placed on the base; when the area ratio is less than or equal to the critical area ratio, it is judged that only a single wafer is placed on the base. 如請求項1所述之晶片位置正確性的機器學習系統,其中該伺服器對每一訓練影像資料還執行以下操作:該伺服器判斷該訓練影像資料是否存在該晶片亮度特徵;當該訓練影像資料之中不存在該晶片亮度特徵,標記該訓練影像資料為該不合格資料。 The machine learning system for chip position accuracy as described in request item 1, wherein the server also performs the following operations on each training image data: the server determines whether the training image data has the chip brightness feature; when the training image The chip brightness feature does not exist in the data, and the training image data is marked as unqualified data. 如請求項1所述之晶片位置正確性的機器學習系統,其中該晶片定位設備取得該些訓練影像資料且將該些訓練影像資料編碼為多筆字串資料,當該伺服器接收到該多筆字串資料 時,該伺服器解碼該多筆字串資料以取得該多筆訓練影像資料。 The machine learning system for chip position accuracy as described in claim 1, wherein the chip positioning device obtains the training image data and encodes the training image data into multiple string data. When the server receives the multiple string data, Pen string data At this time, the server decodes the plurality of string data to obtain the plurality of training image data. 一種晶片位置正確性的機器學習方法,由一晶片定位設備以及一伺服器來執行,該機器學習方法包括:由該晶片定位設備取得多筆訓練影像資料;由該伺服器,從該晶片定位設備取得該多筆訓練影像資料,而該伺服器對每一訓練影像資料執行以下操作:根據一晶片亮度特徵以及一基座亮度特徵從該訓練影像資料之中,區別出一晶片影像資料以及一基座影像資料,其中該晶片亮度特徵為亮度值高於一亮度臨界值的多個資料點集中於一矩形區域內,該基座亮度特徵為亮度值高於該亮度臨界值的多個資料點分佈於四個弧形區域,其中兩個所述弧形區域位於所述矩形區域的一對角線上,而另外兩個所述弧形區域位於所述矩形區域的另一對角線上;根據該晶片影像資料與該基座影像資料之間的相對位置關係,判斷是否發生一位置偏移現象;當發生該位置偏移現象時,標記該訓練影像資料為一不合格資料;以及當未發生該位置偏移現象時,標記該訓練影像資料為一合格資料;在該多筆訓練影像資料均被標記後,該伺服器使用一機器學習演算法對該多筆訓練影像資料進行訓練,以產生一機器學習模型。 A machine learning method for chip position accuracy is executed by a chip positioning device and a server. The machine learning method includes: obtaining a plurality of training image data from the chip positioning device; and using the server to obtain a plurality of training image data from the chip positioning device. The multiple pieces of training image data are obtained, and the server performs the following operations on each training image data: distinguishes a chip image data and a base from the training image data based on a chip brightness feature and a base brightness feature. Base image data, in which the chip brightness feature is a plurality of data points with a brightness value higher than a brightness critical value concentrated in a rectangular area, and the base brightness feature is a distribution of multiple data points with a brightness value higher than the brightness critical value In four arc-shaped areas, two of the arc-shaped areas are located on one diagonal line of the rectangular area, and the other two arc-shaped areas are located on the other diagonal line of the rectangular area; according to the wafer The relative position relationship between the image data and the base image data is used to determine whether a position shift phenomenon occurs; when the position shift phenomenon occurs, the training image data is marked as unqualified data; and when the position shift phenomenon does not occur, When the offset phenomenon occurs, the training image data is marked as qualified data; after the multiple training image data are marked, the server uses a machine learning algorithm to train the multiple training image data to generate a machine Learning model. 如請求項7所述之晶片位置正確性的機器學習方法,其中該伺服器判斷是否發生該位置偏移現象包括:對該晶片影像資料進行主成分分析以取得一晶片中心點;對該基座影像資料 進行主成分分析以取得一基座中心點;計算該晶片中心點與該基座中心點之間的一偏移距離;計算該晶片與該基座之間的一偏移角度;對該偏移距離進行標準化以得到一偏移距離比;當該偏移距離比大於一臨界距離比或該偏移角度大於一臨界角度時,標記該訓練影像資料為該不合格資料;以及當該偏移距離比小於或等於該臨界距離比且該偏移角度小於或等於該臨界角度時,標記該訓練影像資料為該合格資料。 The machine learning method for chip position accuracy as described in claim 7, wherein the server's determination of whether the position deviation occurs includes: performing principal component analysis on the chip image data to obtain a chip center point; Image data Perform principal component analysis to obtain a base center point; calculate an offset distance between the wafer center point and the base center point; calculate an offset angle between the wafer and the base; calculate the offset The distance is normalized to obtain an offset distance ratio; when the offset distance ratio is greater than a critical distance ratio or the offset angle is greater than a critical angle, the training image data is marked as unqualified data; and when the offset distance When the ratio is less than or equal to the critical distance ratio and the offset angle is less than or equal to the critical angle, the training image data is marked as qualified data. 如請求項7所述之晶片位置正確性的機器學習方法,其中該伺服器還對每一訓練影像資料執行以下操作:建立包圍該晶片影像資料的一框線;取得該框線所包圍的一第一面積以及該晶片影像資料的第二面積;取得該第一面積與該第二面積之面積差;取得該面積差與該第二面積之面積比;當該面積比大於一臨界面積比時,判斷該基座上放置有多個晶片;當該面積比小於或等於該臨界面積比時,判斷該基座上只有放置有單個該晶片。 The machine learning method for chip position accuracy as described in claim 7, wherein the server also performs the following operations on each training image data: creates a frame surrounding the chip image data; obtains a frame surrounded by the frame The first area and the second area of the chip image data; obtain the area difference between the first area and the second area; obtain the area ratio between the area difference and the second area; when the area ratio is greater than a critical area ratio , it is judged that multiple wafers are placed on the base; when the area ratio is less than or equal to the critical area ratio, it is judged that only a single wafer is placed on the base. 如請求項7所述之晶片位置正確性的機器學習方法,其中該伺服器還對每一訓練影像資料執行以下操作:該伺服器判斷該訓練影像資料是否存在該晶片亮度特徵;當該訓練影像資料之中不存在該晶片亮度特徵,標記該訓練影像資料為該不合格資料。 The machine learning method for chip position accuracy as described in request item 7, wherein the server also performs the following operations on each training image data: the server determines whether the training image data has the chip brightness feature; when the training image The chip brightness feature does not exist in the data, and the training image data is marked as unqualified data. 如請求項7所述之晶片位置正確性的機器學習方法,其中該伺服器判斷是否發生該位置偏移現象包括:對該晶片影像資料進行主成分分析以取得一晶片中心點;對該基座影像資料進行主成分分析以取得一基座中心點;計算該晶片中心點與該基座中心點之間的一偏移距離;計算該晶片與該基座之間的一偏移角度;判斷該偏移距離是否大於一臨界距離;當該偏移距離比大於該臨界距離時,標記該訓練影像資料為該不 合格資料;當該偏移距離未大於該臨界距離時,判斷該偏移角度是否大於一臨界角度;當該偏移角度大於該臨界角度時,標記該訓練影像資料為該不合格資料;當該偏移角度未大於該臨界角度,標記該訓練影像資料為該合格資料。 The machine learning method for chip position accuracy as described in claim 7, wherein the server's determination of whether the position deviation occurs includes: performing principal component analysis on the chip image data to obtain a chip center point; Perform principal component analysis on the image data to obtain a base center point; calculate an offset distance between the chip center point and the base center point; calculate an offset angle between the chip and the base; determine the Whether the offset distance is greater than a critical distance; when the offset distance ratio is greater than the critical distance, mark the training image data as incorrect Qualified data; when the offset distance is not greater than the critical distance, determine whether the offset angle is greater than a critical angle; when the offset angle is greater than the critical angle, mark the training image data as unqualified data; when the offset angle is greater than the critical angle, If the offset angle is not greater than the critical angle, the training image data is marked as qualified data.
TW112101668A 2022-12-26 2023-01-16 Machine training system of chip position correctness and machine training method of chip position correctness TWI835524B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2022116774115 2022-12-26

Publications (1)

Publication Number Publication Date
TWI835524B true TWI835524B (en) 2024-03-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018102748A1 (en) 2016-12-01 2018-06-07 Berkeley Lights, Inc. Automated detection and repositioning of micro-objects in microfluidic devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018102748A1 (en) 2016-12-01 2018-06-07 Berkeley Lights, Inc. Automated detection and repositioning of micro-objects in microfluidic devices

Similar Documents

Publication Publication Date Title
US8395673B2 (en) Shooting device and method with function for guiding an object to be shot
US11002839B2 (en) Method and apparatus for measuring angular resolution of multi-beam lidar
TWI708210B (en) 3d model reconstruction method, electronic device, and non-transitory computer readable storage medium
Hile et al. Positioning and orientation in indoor environments using camera phones
US9787960B2 (en) Image processing apparatus, image processing system, image processing method, and computer program
US10964057B2 (en) Information processing apparatus, method for controlling information processing apparatus, and storage medium
CN112258567B (en) Visual positioning method and device for object grabbing point, storage medium and electronic equipment
Zhou et al. Accurate and robust estimation of camera parameters using RANSAC
US20060273268A1 (en) Method for detecting 3D measurement data using allowable error zone
CN103512548A (en) Range measurement apparatus and range measurement method
US11859999B2 (en) Device for calibrating laser level
Tianyu et al. Position and orientation measurement system based on monocular vision and fixed target
US20230154048A1 (en) Method and Apparatus for In-Field Stereo Calibration
Petricek et al. Point cloud registration from local feature correspondences—Evaluation on challenging datasets
TWI835524B (en) Machine training system of chip position correctness and machine training method of chip position correctness
Zhuo et al. Machine vision detection of pointer features in images of analog meter displays
CN114628301A (en) Positioning precision determination method of wafer transmission system
Wang et al. Accurate detection and localization of curved checkerboard-like marker based on quadratic form
Li et al. Efficient lookup table based camera pose estimation for augmented reality
EP3827223A1 (en) Verifying map data using challenge questions
KR20230028316A (en) Systems and methods for processing captured images
CN105423916B (en) A kind of measurement method and measuring system of dimension of object
Sun et al. An improvement of pose measurement method using global control points calibration
Grimson et al. Computer vision applications
CN115860145A (en) Machine learning system and machine learning method for chip position correctness