TWI835337B - A rapid fresh digital-pathology method - Google Patents

A rapid fresh digital-pathology method Download PDF

Info

Publication number
TWI835337B
TWI835337B TW111138395A TW111138395A TWI835337B TW I835337 B TWI835337 B TW I835337B TW 111138395 A TW111138395 A TW 111138395A TW 111138395 A TW111138395 A TW 111138395A TW I835337 B TWI835337 B TW I835337B
Authority
TW
Taiwan
Prior art keywords
tissue
rfp
staining
patent application
scanning
Prior art date
Application number
TW111138395A
Other languages
Chinese (zh)
Other versions
TW202415949A (en
Inventor
孫啟光
卡地 巴
曾耀賝
Original Assignee
國立台灣大學
Filing date
Publication date
Application filed by 國立台灣大學 filed Critical 國立台灣大學
Application granted granted Critical
Publication of TWI835337B publication Critical patent/TWI835337B/en
Publication of TW202415949A publication Critical patent/TW202415949A/en

Links

Abstract

A rapid fresh digital-pathology (RFP) method for assessing an excised unfixed biological specimen stained with hematoxylin (H) or eosin (E) or both hematoxylin and eosin (HE) staining dyes. The RFP method is assisted by a rapid tissue staining (RTS) procedure which is performed on the excised unfixed biological specimen, involving a short fixation; an H-staining; a rinsing; a bluing; an E-staining; a rinsing; and finally, a covering of a stained specimen with a coverslip. The RFP method is further assisted by a multimodal nonlinear optical laser-raster-scanning approach to provide with a nonlinear multi-harmonic generation and/or a nonlinear multi-photon excitation fluorescence signal(s) for multichannel digitization and real-time digital display of H- or E- or HE-specific histopathological features while providing a centimeter-scale imaging area, a submicron digital resolution, and a sustained effective data throughput of at least 500 Megabits per second (Mbps).

Description

一種快速的新鮮數位病理方法A rapid fresh digital pathology method

本發明涉及一種快速的新鮮數位病理方法(RFP);更具體為一 能協助病理科醫師且無須額外培訓、真實使用H&E的快速新鮮數位病理學方法。其中對用蘇木精 (H) 或伊紅 (E) 或蘇木精和伊紅 (HE)染料染色的切除之未固定生物樣本進行組織病理學評估。 The present invention relates to a rapid fresh digital pathology method (RFP); more specifically, it is a A fast and fresh digital pathology method that can assist pathologists in the practical use of H&E without additional training. Histopathological evaluation is performed on excised unfixed biological specimens stained with hematoxylin (H) or eosin (E) or hematoxylin and eosin (HE) dyes.

儘管福馬林固定石蠟包埋 (FFPE) 病理方法提供了極高的可靠性, 但其不適用於術中腫瘤評估 (ITA),因為它需要長達 1-2 天的處理時間。 而冷凍切片 (FS)-病理方法由於樣品處置與評估時間更短,其目前是 ITA 的全球標準。 然而,冷涷切片涉及要進行樣品的冷凍、切片、染色,其需要相當大的人力需求,並且由於單一輪流程需消耗長達 30 分鐘的持續時間,最終限制了ITA的可行輪次。此外,FS活檢容易受到可能影響評估的幾種偽影的影響。 故一種 FS 替代方案正迫切需要被開發,其必須滿足無需切片、便攜、快速、準確、無偽影、適用於新鮮樣本、與 FFPE 活檢一樣可靠,最重要的是必須基於全球黃金標準的病理染劑-H&E染劑使其技術能更具信賴性,而無需對病理科醫師進行任何深度學習和/或額外的學習培訓。 Although the formalin-fixed paraffin-embedded (FFPE) pathology method offers extremely high reliability, However, it is not suitable for intraoperative tumor assessment (ITA) because it requires processing time of up to 1–2 days. The frozen section (FS)-pathology method is currently the global standard for ITA due to its shorter sample processing and evaluation time. However, cold sectioning involves freezing, slicing, and staining samples, which requires considerable manpower and ultimately limits the feasible rounds of ITA since a single round process consumes up to 30 minutes in duration. Furthermore, FS biopsies are susceptible to several artifacts that may affect assessment. Therefore, an alternative to FS is urgently needed to be developed, which must be section-free, portable, fast, accurate, artifact-free, suitable for fresh samples, as reliable as FFPE biopsy, and most importantly, must be based on global gold standard pathological staining. Agent-H&E stain enables the technology to be more reliable without requiring any deep learning and/or additional training for pathologists.

在現代計算機輔助的數位病理學規範中,全玻片成像 (WSI) 和拼 接全景虛擬切片 (VS) 正在迅速發展,這有助於以數位形式儲存數十億張 FS/FFPE 組織病理切片之影像,以便隨時能重啟評估,並進一步使病理科醫師能夠通過從任何位置輕鬆對於WSI-VS進行快速遠程評估。然而,為了在數位方式的基礎上保持高度的診斷可靠性,重要的是在從樣本到數位顯示系統的取像像素路徑中維持良好的解析度。根據數位病理學協會的指南規範,具有標準 ×20 放大倍率的 WSI-VS 通常可以用於標準觀察和解釋,而具有0.5微米(µm) 數位解析度的基礎; 標準 ×40 放大倍率具滿足奈奎斯特 0.25µm 的數位解析度,而被期待同時能保持 24 位元之色深。這樣的情況需要 1×1 平方毫米 (mm 2) 的區域包含 ≥384M位元,對於1 平方公分 (cm 2) 的區域,這將擴展到 ≥38.4 G 位元或1.6 G像素。對於這種具有高數值孔徑(NA,接近或大於 1)的 ×40 甚至 ×20 物鏡,其系統視野(FOV)通常被限制在小於1mm 2,這需要一系列無偽影的拼接流程,才不會影響診斷的可靠性。 In modern computer-assisted digital pathology specifications, whole slide imaging (WSI) and stitched panoramic virtual sectioning (VS) are rapidly developing, which help to digitally store billions of images of FS/FFPE tissue pathology slides , so that assessment can be restarted at any time, and further enables pathologists to quickly and remotely assess WSI-VS from any location. However, in order to maintain a high degree of diagnostic reliability based on digital methods, it is important to maintain good resolution along the path of the imaging pixels from the sample to the digital display system. According to the Society for Digital Pathology guidelines, WSI-VS with standard ×20 magnification can generally be used for standard observation and interpretation based on 0.5 micron (µm) digital resolution; standard ×40 magnification meets Nyquat It has a digital resolution of 0.25µm, while maintaining a color depth of 24 bits. Such a situation would require an area of 1 × 1 square millimeter (mm 2 ) to contain ≥384M bits, which would extend to ≥38.4 G bits or 1.6 G pixels for an area of 1 square centimeter (cm 2 ). For such ×40 or even ×20 objectives with high numerical aperture (NA, close to or greater than 1), the system field of view (FOV) is usually limited to less than 1mm 2 , which requires a series of artifact-free splicing processes to avoid Will affect the reliability of diagnosis.

在外科病理學ITA的運作環境下,最主要的需求,即快速的評估 是最小化手術時間的辦法,得以保證患者安全。與 FS/FFPE中涉及的物理切片不同,與具有ITA能力的數位成像模式相關的一些現有技術使用了能夠更快評估的光學虛擬切片。然而,現有技術可能無法達到滿足最新WSI標準的奈奎斯特滿足的十億像素採樣之半微米數位解析度,和/或可能無法實現實時大視野、無偽影之拼接/馬賽克功能,和/或亞分鐘十億像素採集和數位顯示能力,在“樣本到數位顯示”之像素路徑上具有不折不扣的解析度。此外,國際多方在使用不同核染色之染劑替代黃金標準-蘇木精時,病理科醫師可能需要進行特定的解釋培訓,才能進行判讀。與 FS/FFPE 活檢相比,此重要因素可能導致準確性降低。然而,為了對不透明且細胞核被蘇木精染料染色的三維生物樣本進行光學切片,需要一種非線性多諧波的生成方法來可視化高對比度的細胞核。 In the context of surgical pathology ITA, the primary need is rapid evaluation to minimize operative time and ensure patient safety. Some existing technologies associated with ITA-capable digital imaging modalities use optical virtual slides that enable faster evaluation, as opposed to the physical slides involved in FS/FFPE. However, existing technologies may not be able to achieve half-micron digital resolution with billion-pixel sampling that meets the Nyquist requirements of the latest WSI standards, and/or may not be able to achieve real-time large field of view, artifact-free stitching/mosaicing capabilities, and/or sub-minute billion-pixel acquisition and digital display capabilities with uncompromised resolution on the pixel path from "sample to digital display". In addition, when different nuclear stains are used internationally instead of the gold standard, hematoxylin, pathologists may need specific interpretation training to make interpretations. This important factor may lead to reduced accuracy compared to FS/FFPE biopsies. However, in order to optically section three-dimensional biological specimens with opaque nuclei stained with hematoxylin dyes, a nonlinear multiharmonic generation method is required to visualize high-contrast nuclei.

值得注意的是,一些先前公開的免物理切片快速 ITA方法能夠應 用於某些特定的外科病理學應用。受激拉曼顯微術提供有用的化學信息來檢查細胞異常;但是,它經常遇到低訊雜比 (SNR),可能不適合快速檢測公分級大小的檢體。光學干涉斷層掃描術儘管提供了高速成像,但仍會遇到空間解析度差、訊雜比差和對比度差的問題。螢光光學顯微術、共軛焦顯微術和紫外光表面激發顯微術是值得注意的,能夠進行光學切片的有效方法;但是可能不適用於沒有螢光的染料,例如黃金標準-蘇木精,特別是在如果生物樣品本質上是有一定厚度且不透明的情況。簡而言之,在對HE染色的整體生物樣本進行光學切片、高解析度、高通量公分級的雷射掃描的情況下,現有技術並不能滿足所有使用者實際使用上的需求。 It is worth noting that some previously published physical sectioning-free fast ITA methods can cope with For use in certain specific surgical pathology applications. Stimulated Raman microscopy provides useful chemical information to examine cellular abnormalities; however, it often suffers from low signal-to-noise ratio (SNR) and may not be suitable for rapid detection of centimeter-sized specimens. Although optical interference tomography provides high-speed imaging, it still suffers from poor spatial resolution, poor signal-to-noise ratio, and poor contrast. Fluorescence optical microscopy, conjugate focus microscopy, and UV surface excitation microscopy are noteworthy, effective methods that enable optical sectioning; but may not be suitable for dyes that are not fluorescent, such as the gold standard hematoxylin , especially if the biological sample is inherently thick and opaque. In short, when performing optical sectioning and high-resolution, high-throughput laser scanning on HE-stained whole biological samples, the existing technology cannot meet the actual needs of all users.

本發明為介紹一種稱為快速新鮮數位病理學或簡稱為 RFP 的方 法,為全樣本表面成像 (WSSI) 的數位 ITA 解決方案,與全球 FS活檢標準相比,其樣品評估速度提高了4倍,其中RFP與類似於傳統FS-或FFPE-活檢的標準H和E染劑相容。 This invention introduces a method called Rapid Fresh Digital Pathology or RFP for short. method, a digital ITA solution for whole-specimen surface imaging (WSSI) that provides 4x faster sample evaluation compared to global FS biopsy standards, with RFP compared to standards H and E similar to conventional FS- or FFPE-biopsies Dye compatible.

為了實現上述目的,本發明是一種用於對用蘇木精(H)或伊紅 (E)或蘇木精和伊紅(HE)染劑染色的經切除之未固定生物樣品進行組織病理學評估的RFP方法,包括通過多模態非線性光學雷射光柵掃描進行光學虛擬切片,收集生成之非線性多諧波和/或非線性多光子激發螢光信號,用於 H或 E或 HE的多通道數位化和實時數位顯示之特定組織病理學特徵;至少 1 平方毫米的雷射光柵掃描單張影像視野 (FOV),有效數位橫向解析度小於 1 微米 (μm),FOV解析度比大於 1000;以及在 1 mm 2到 400 mm 2範圍內的單張影像或多張影像組合的累積成像區域,具有至少每秒500M 位元 (Mbps) 的持續有效數據輸出入量。 In order to achieve the above object, the present invention is a method for performing histopathology on excised unfixed biological samples stained with hematoxylin (H) or eosin (E) or hematoxylin and eosin (HE) stains. RFP methods evaluated include optical virtual slicing through multimodal nonlinear optical laser raster scanning to collect the generated nonlinear multiharmonic and/or nonlinear multiphoton excitation fluorescence signals for H or E or HE Multi-channel digitization and real-time digital display of specific histopathological characteristics; laser raster scanning single image field of view (FOV) of at least 1 square millimeter, effective digital lateral resolution less than 1 micrometer (μm), FOV resolution ratio greater than 1000 ; and the cumulative imaging area of a single image or a combination of multiple images in the range of 1 mm 2 to 400 mm 2 , with a continuous effective data input and output volume of at least 500M bits per second (Mbps).

其中經切除之未固定生物樣本是不透明的完整體積組織,沒有 經過固定、冷凍、物理切片及組織透明化;可來自肝組織、乳腺組織、胰腺組織織、腦組織、胸腺組織、前列腺組織、結腸組織、淋巴組織和實體組織等。 The resected unfixed biological sample is an opaque intact volume of tissue without After fixation, freezing, physical sectioning and tissue transparency; it can come from liver tissue, breast tissue, pancreatic tissue, brain tissue, thymus tissue, prostate tissue, colon tissue, lymphoid tissue and solid tissue, etc.

在 RFP 方法中,快速組織染色 (RTS) 流程可以對切除之未固定生 物樣本進行 H 或 E 或 HE 染色。 對切除之未固定生物樣本進行 RTS 流程,以將其放入組織室或組織容器中。對切除之未固定生物樣本進行RTS流程,其中 用固定液進行固定過程; 使用 Gill 蘇木精溶液和/或 Mayer 蘇木精溶液進行 H 染色過程; 用蒸餾水和/或清洗液進行清洗過程; 用氨溶液進行藍化處理; 用伊紅溶液進行E染色過程; 用酒精溶液和/或清潔溶液進行漂洗過程; 用蓋玻片對切除的未固定生物樣本進行加蓋處理。 而RTS流程所消耗的HE染色時間少於 6 分鐘。 In the RFP method, the Rapid Tissue Staining (RTS) process allows the resection of unfixed tissue. Samples were stained with H, E, or HE. Performs an RTS process on excised, unfixed biological specimens to place them into tissue chambers or tissue containers. Perform RTS procedures on resected unfixed biological samples, in which Use fixative to perform the fixation process; H staining procedure using Gill's hematoxylin solution and/or Mayer's hematoxylin solution; Use distilled water and/or cleaning fluid for the cleaning process; Blue treatment with ammonia solution; Use eosin solution to perform the E staining process; Perform a rinsing process with alcohol solutions and/or cleaning solutions; Cover the excised unfixed biological specimen with a coverslip. The RTS process consumes less than 6 minutes of HE staining time.

多模態非線性光學雷射光柵掃描能夠在不到2分鐘的時間內完成 10×10 mm 2區域的點掃描,並同時保持小於170 奈米 (nm)的像素尺寸。而RFP方法對 1 cm 2大小的樣本進行表面的光學切片雷射光柵掃描,其染色時間小於 6 分鐘,掃描時間小於 2 分鐘,因此對於切除之未固定生物樣本所能提供的總評估時間小於 8分鐘。 Multimodal nonlinear optical laser raster scanning is able to complete point scanning of a 10 × 10 mm area in less than 2 minutes while maintaining a pixel size of less than 170 nanometers (nm). The RFP method performs laser raster scanning of optical sections on the surface of a 1 cm 2 sample. The staining time is less than 6 minutes and the scanning time is less than 2 minutes. Therefore, the total evaluation time provided for the resected unfixed biological samples is less than 8 minutes. minute.

多模態非線性光學雷射光柵掃描利用 (1) 基於光纖的脈衝雷射源,其發射光譜在 1000 nm 至 1100 nm 範圍內,其中收集源自H染色的三次諧波生成 (THG) 信號,以及/或收集源自E染色的雙光子激發螢光 (TPEF) 信號; (2) 或者,發射光譜在1200nm到1300nm範圍內的鉻鎂橄欖石(Cr:F)的脈衝雷射源,其中THG信號是從H染色收集的,和/或三光子從 E染色收集激發螢光 (3PEF) 信號。 Multimodal nonlinear optical laser raster scanning utilization (1) Fiber-based pulsed laser sources with emission spectra in the 1000 nm to 1100 nm range, where third harmonic generation (THG) signals from H staining are collected, and/or two-photons from E staining are collected Excited fluorescence (TPEF) signal; (2) Alternatively, a pulsed laser source of chromium forsterite (Cr:F) with an emission spectrum in the range of 1200 nm to 1300 nm, in which the THG signal is collected from H staining, and/or the three-photon excitation fluorescence is collected from E staining. Light (3PEF) signal.

多模態非線性光學雷射光柵掃描使用之聚焦物鏡,其具體需求為 數值孔徑至少0.7的物鏡。 The specific requirements for focusing objectives used in multi-modal nonlinear optical laser raster scanning are as follows: Objective lens with a numerical aperture of at least 0.7.

多模態非線性光學雷射光柵掃描利用共振掃描器或多邊形掃描 器進行快軸掃描,必須提供至少4 kHz的線速率。 Multimodal nonlinear optical laser raster scanning utilizing resonant scanners or polygon scanning For fast-axis scanning, the device must provide a line rate of at least 4 kHz.

多張影像組合所得之累積成像區域是由二維電控平台單元輔助, 該電控平台單元由至少兩個相互垂直連接的電子線性平移平台組成。 The cumulative imaging area obtained by combining multiple images is assisted by a two-dimensional electronic control platform unit. The electronic control platform unit is composed of at least two electronic linear translation platforms that are vertically connected to each other.

提供以下對優選實施例的描述以理解本發明的特徵和結構,請參 閱『第1圖至第4圖』所示,係分別為表示RFP方法的示意圖、表示由多模態非線性光學雷射光柵掃描方法輔助的 RFP 方法的流程示意圖、表示RTS方法的工作流程示意圖、以及表示利用RFP法得到的影像例示意圖。如圖所示:本發明是一種RFP方法[1],用於對用蘇木精(H)或伊紅(E)或蘇木精和伊紅(HE)染劑染色的經切除之未固定生物樣本進行組織病理學評估,包括: (a) 通過多模態非線性光學雷射光柵掃描進行光學虛擬切片 [15],以提供用於多通道數位化和實時數位化顯示非線性多諧波和/或非線性多光子激發螢光信號H 或 E 或 HE 之特異性組織病理學特徵 [17]、[27]; (b) 至少 1 mm 2的雷射光柵掃描單張影像視野 (FOV) [161],有效數位橫向解析度小於 1 微米 (μm) [163] 和FOV解析度 [164] 大於 1000;和 (c) 單張或多張影像組合的累積成像區域 [162],範圍為 1 mm 2至 400 mm 2, 持續有效數據輸出入量 [165] 至少為每秒500M位元(Mbps)。 The following description of preferred embodiments is provided to understand the features and structure of the present invention. Please refer to Figures 1 to 4, which are respectively a schematic diagram representing the RFP method, a flow diagram representing the RFP method assisted by a multi-modal nonlinear optical laser grating scanning method, a workflow diagram representing the RTS method, and a schematic diagram representing an image example obtained using the RFP method. As shown in the figure: The present invention is an RFP method [1] for performing tissue pathology assessment on resected unfixed biological specimens stained with hematoxylin (H) or eosin (E) or hematoxylin and eosin (HE) stains, comprising: (a) optical virtual sections by multimodal nonlinear optical laser grating scanning [15] to provide specific tissue pathology features for multi-channel digitization and real-time digitization display of nonlinear multiharmonic and/or nonlinear multiphoton excited fluorescence signals H or E or HE [17], [27]; (b) a laser grating scanning single image field of view (FOV) of at least 1 mm2 [161], with an effective digital lateral resolution of less than 1 micrometer (μm) [163] and FOV resolution[164] greater than 1000; and (c) a cumulative imaging area[162] of 1 mm 2 to 400 mm 2 for a single image or a combination of images, with a continuous effective data throughput[165] of at least 500 Mbits per second (Mbps).

切除之未固定生物標本[11]是不透明的完整體積組織,沒有經固 定、冷凍、物理切片、組織透明化,可來自肝組織、乳腺組織、胰腺組織、腦組織、胸腺組織、前列腺組織、結腸組織、淋巴組織和實體組織等。 The resected unfixed biological specimen [11] is an opaque complete volume of tissue without fixation. Determination, freezing, physical sectioning, and tissue transparency can be obtained from liver tissue, breast tissue, pancreatic tissue, brain tissue, thymus tissue, prostate tissue, colon tissue, lymphoid tissue, and solid tissue, etc.

在 RFP 方法 [1] 中,RTS [3] 流程可以對切除之未固定生物樣本進 行 H 或 E 或 HE 染色 [13]。RTS [3] 流程是對切除之未固定生物樣本執行的,經將其放入組織室或組織容器 [12]。 In the RFP method [1], the RTS [3] process can be performed on resected unfixed biological samples. Perform H or E or HE staining [13]. The RTS [3] process is performed on excised, unfixed biological specimens, which are placed into tissue chambers or tissue containers [12].

在圖 2 和圖 3 中,由不到 6 分鐘的RTS流程輔助的 RFP [1] 方法將 切除的組織安置在與顯微鏡載玻片的 iSpacer形成的空間中。 RTS [3] 流程的總時間不到 6 分鐘,包括短時間的固定 [131]、兩階段對細胞核的 H染色 [132]、中間漂洗 [133]、藍化 [134]、E染色 [ 135],最後清洗 [136]。一旦 RTS [3] 流程完成後,將添加蓋玻片[137],並在多模態非線性光學雷射光柵掃描系統 [33] 下進行成像。 In Figures 2 and 3, the RFP [1] approach assisted by an RTS process of less than 6 minutes The excised tissue is placed in the space formed by the iSpacer with the microscope slide. The total time of the RTS [3] process is less than 6 minutes, including short-term fixation [131], two-stage H staining of cell nuclei [132], intermediate rinsing [133], bluening [134], and E staining [135] , final cleaning [136]. Once the RTS [3] process is complete, a coverslip is added [137] and imaged under a multimodal nonlinear optical laser raster scanning system [33] .

RFP方法 [1] 對 1 cm 2樣本區域的表面光學切片雷射光柵掃描消耗 的染色時間少於 6 分鐘,掃描時間少於 2 分鐘,因此對切除之未固定生物樣本之總評估時間為少於 8 分鐘。 The RFP method [1] laser raster scanning of surface optical sections of a 1 cm sample area consumes less than 6 minutes of staining time and less than 2 minutes of scanning time, so the total evaluation time of the resected unfixed biological specimen is less than 8 minutes.

值得注意的是,多模態非線性光學雷射光柵掃描系統 [14] 用於檢 測產生之非線性多諧波和/或非線性多光子激發螢光信號 [25],用於多通道數位化和實時數位化顯示 H 或 E 或 HE 之特異性組織病理學特徵 [17]。 It is worth noting that the multi-modal nonlinear optical laser grating scanning system [14] is used to detect The non-linear multi-harmonic and/or non-linear multi-photon excitation fluorescence signals generated by the measurement are used for multi-channel digitalization and real-time digital display of specific histopathological characteristics of H, E or HE [17].

多模態非線性光學雷射光柵掃描系統 [14] 的特性包括: (1) 雷射光柵掃描單張影像 FOV [161] 至少為 1 mm 2,有效數位橫向解析度 [163] 小於 1 μm 和大於 1000 的 FOV 解析度[164]; (2) 1 mm 2至 400 mm 2範圍內的單張或多張影像組合的總成像區域 [162],持續有效數據輸出入量 [165] 至少為每秒500M 位元 (Mbps); (3) 在不到 2 分鐘的時間內進行且完成 10×10 mm 2區域的點掃描[166],同時保 持小於 170 奈米 (nm) 的像素尺寸。並且值得注意的是,多影像組合過程是通過實時馬賽克拼接[16]、[26]進行的,用於無後處理公分級雷射掃描。 The characteristics of the multi-modal nonlinear optical laser raster scanning system [14] include: (1) The laser raster scanning single image FOV [161] is at least 1 mm 2 , the effective digit lateral resolution [163] is less than 1 μm and FOV resolution greater than 1000 [164]; (2) The total imaging area of a single or multiple images within the range of 1 mm 2 to 400 mm 2 [162], and the continuous effective data input and output volume [165] is at least per 500M bits per second (Mbps); (3) Perform and complete point scanning of a 10 × 10 mm 2 area in less than 2 minutes [166] while maintaining a pixel size of less than 170 nanometers (nm). And it is worth noting that the multi-image combination process is performed through real-time mosaic stitching [16], [26] for centimeter-level laser scanning without post-processing.

多模態非線性光學雷射光柵掃描使用之聚焦物鏡[23],其具體需 求為數值孔徑至少0.7的物鏡。 The focusing objective lens used in multi-modal nonlinear optical laser grating scanning [23] has specific requirements. Find an objective lens with a numerical aperture of at least 0.7.

多模態非線性光學雷射光柵掃描系統 [14] 利用共振掃描器或多 邊形掃描器 [22] 進行快軸掃描,必須提供至少 4 kHz 的線速率。 A multimodal nonlinear optical laser grating scanning system [14] utilizes a resonant scanner or multiple Edge scanners [22] perform fast-axis scanning and must provide a line rate of at least 4 kHz.

多張影像組合所得之累積成像區域是由二維電控平台單元[24] 輔 助,該電控平台單元由至少兩個相互垂直連接的電子線性平移平台組成。 The cumulative imaging area obtained by combining multiple images is assisted by a two-dimensional electronic control platform unit [24] The electronic control platform unit is composed of at least two electronic linear translation platforms that are vertically connected to each other.

多模態非線性光學雷射光柵掃描系統[14]利用 (a) 一種基於光纖的脈衝雷射源 [21],其發射光譜範圍為 1000 nm 至 1100 nm,其中收集源自H染色和/或E 染色之雙光子激發螢光 (TPEF)之信號 [25];或者 (b) 鉻鎂橄欖石 (Cr:F) 的脈衝雷射源 [21],其發射光譜範圍為 1200 nm 至 1300 nm,其中收集源自H染色的三次諧波產生 (THG) 信號和/或源自E染色的三光子激發螢光 (3PEF) 信號 [25]。 Multimodal nonlinear optical laser grating scanning system [14] utilizes (a) A fiber-based pulsed laser source [21] with an emission spectrum ranging from 1000 nm to 1100 nm, in which signals from two-photon excited fluorescence (TPEF) derived from H staining and/or E staining are collected [25 ];or (b) Pulsed laser source of chromium forsterite (Cr:F) [21] with an emission spectrum ranging from 1200 nm to 1300 nm, where third harmonic generation (THG) signals originating from H staining are collected and/or Three-photon excited fluorescence (3PEF) signal derived from E staining [25].

在第4圖中,影像示例是通過對新鮮的人類神經膠質瘤組織進行 RFP [1] 方法所獲得的。在公分級大小之影像和其放大影像中可以看到一些特定的組織病理學特徵,其中(A)是 1.3 Gigapixel 經顏色轉換後之 RFP影像,比例尺為 0.5 mm,FOV為 6.4×5.6 mm 2,經總共44秒成像時間,具約30 M/s的有效像素率,大於 1 mm 2/s 的有效掃描率。 (B)-(I)是(A)中標記的R1-8經裁剪和放大的Region of interest (ROI),其中每個ROI的像素數為6700×3300,比例尺為150μm。 (J)-(Q)是(B)-(I)中標記的R9-16經裁剪和放大的Region of interest (ROI),其中每個ROI的像素數為3200×2500,比例尺為70μm。細胞核和其他結構細節(如血管)的分佈、形狀和大小在 (B)-(Q) 中皆可視化。白色虛線曲線標記血管結構。白色虛線圓圈顯示顯著細胞數量增多區域的示例。 (K)、(M)、(N)、(Q)中一些非典型血管內的非典型細胞結構顯著,表明微血管增生之現象。 In Figure 4, an example image was obtained by performing RFP [1] on fresh human glioma tissue. Some specific histopathological features can be seen in the centimeter-sized images and their magnified images. (A) is a 1.3 Gigapixel color-converted RFP image. The scale bar is 0.5 mm and the FOV is 6.4×5.6 mm 2 . After a total imaging time of 44 seconds, it has an effective pixel rate of approximately 30 M/s and an effective scan rate of greater than 1 mm 2 /s. (B)-(I) are cropped and enlarged Regions of interest (ROI) labeled R1-8 in (A), where the number of pixels in each ROI is 6700×3300 and the scale bar is 150 μm. (J)-(Q) are cropped and enlarged Regions of interest (ROI) labeled R9-16 in (B)-(I), where the number of pixels in each ROI is 3200 × 2500 and the scale bar is 70 μm. The distribution, shape, and size of cell nuclei and other structural details such as blood vessels are visualized in (B)-(Q). White dashed curves mark vascular structures. White dashed circles show examples of areas of significant increased cell number. The atypical cell structure in some atypical blood vessels in (K), (M), (N), and (Q) is obvious, indicating the phenomenon of microvascular proliferation.

在本發明中,引入了一種稱為快速新鮮數位病理學或簡稱RFP的 方法,其為一種整體樣本表面成像數位ITA之解決方案,與全球FS活檢標準相比,其評估速度提高了4倍,且RFP與類似於傳統 FS/FFPE活檢的標準H 和 E染劑兼容。值得注意的是,此技術在涉及到總共50個人體腦部組織樣本(正常和神經膠質瘤)的無訓練盲測顯示 100%的腫瘤判讀正確率,顯示了其與FS/FFPE可比的準確性和 100% 的敏感性和特異性。 In the present invention, a method called Rapid Fresh Digital Pathology or RFP for short is introduced. method, a digital ITA solution for whole-specimen surface imaging that provides a 4x increase in evaluation speed compared to global FS biopsy standards, and the RFP is compatible with standard H and E stains similar to traditional FS/FFPE biopsies. Notably, this technology demonstrated 100% tumor interpretation accuracy in a no-training blind test involving a total of 50 human brain tissue samples (normal and glioma), demonstrating comparable accuracy to FS/FFPE. and 100% sensitivity and specificity.

在本發明中,其1cm 2面積的染色、掃描和顯示的總時間約為8分 鐘,其中快速染色過程不到6分鐘,後續的掃描和顯示過程耗時2分鐘左右。通過後續優化染色參數的方法,可以進一步減少累積評估時間。 In the present invention, the total time for dyeing, scanning and displaying an area of 1cm2 is about 8 minutes, of which the rapid dyeing process takes less than 6 minutes, and the subsequent scanning and displaying process takes about 2 minutes. Through subsequent optimization of staining parameters, the cumulative evaluation time can be further reduced.

在本發明中,RFP方法特別能使用於切除的新鮮人體腦部組織樣 本以研究腫瘤組織。特別是對於柔軟易碎的新鮮腦樣本,而RTS流程使用傳統的H&E 染劑。值得注意的是,RFP具有巨大的潛力,可以應用於其他類型的生物樣本,例如但不限於乳房、前列腺、皮膚等,即可提供快速、準確和可靠ITA。本文公開的優選實施例並非旨在不必要地限制本發明的範圍。因此,凡屬於權利要求的範圍和專利說明書所公開的範圍的簡單修改或變化,均在本發明的範圍內。 In the present invention, the RFP method is particularly applicable to resected fresh human brain tissue samples. To study tumor tissue. Especially for soft and fragile fresh brain samples, the RTS process uses traditional H&E stains. It is worth noting that RFP has great potential and can be applied to other types of biological samples, such as but not limited to breast, prostate, skin, etc., to provide fast, accurate and reliable ITA. The preferred embodiments disclosed herein are not intended to unnecessarily limit the scope of the invention. Therefore, any simple modifications or changes that fall within the scope of the claims and the scope disclosed in the patent specification are within the scope of the present invention.

[1]:RFP方法[1]:RFP method

[11]:切除之未固定生物標本[11]: Resection of unfixed biological specimens

[12]:放入組織室或組織容器[12]: Place in tissue chamber or tissue container

[13]:進行 H 或 E 或 HE 染色[13]: Perform H or E or HE staining

[131]:短時間固定[131]: Fixed for short time

[132]:H染色[132]:H staining

[133]:漂洗[133]:rinse

[134]:藍化[134]:Blue

[135]:E染色[135]:E staining

[136]:漂洗[136]:rinse

[137]:添加蓋玻片[137]:Add coverslip

[14]:多模態非線性光學雷射光柵掃描系統[14]: Multi-modal nonlinear optical laser grating scanning system

[15]:多模態非線性光學雷射光柵掃描進行光學虛擬切片[15]: Multi-modal nonlinear optical laser raster scanning for optical virtual slicing

[16]:通過實時馬賽克拼接進行多影像組合[16]: Multi-image combination through real-time mosaic stitching

[161]:視野[161]:View

[162]:成像區域[162]:Imaging area

[163]:有效數位橫向解析度[163]: Significant digit lateral resolution

[164]:FOV解析度[164]:FOV resolution

[165]:有效數據輸出入量[165]: Valid data input and output amount

[166]:點掃描[166]: Point scan

[17]:多通道數位化和實時數位化顯示H 或 E 或 HE 之特異性組織病理學特徵[17]: Multi-channel digitization and real-time digitization display the specific histopathological characteristics of H or E or HE

[21]:脈衝雷射源[21]: Pulse laser source

[22]:掃描器[22]:Scanner

[23]:聚焦物鏡[23]: Focusing objective lens

[24]:電控平台單元[24]:Electronic control platform unit

[25]:多模態非線性光學雷射光柵掃描系統[25]: Multi-modal nonlinear optical laser grating scanning system

[26]:實時馬賽克拼接[26]: Real-time mosaic stitching

[27]RTS[3]:多通道數位化和實時數位化顯示H 或 E 或 HE 之特異性組織病理學特徵[27]RTS[3]: Multi-channel digitization and real-time digitization display the specific histopathological characteristics of H or E or HE

[33]:多模態非線性光學雷射光柵掃描系統[33]: Multi-modal nonlinear optical laser grating scanning system

第1圖,係表示快速新鮮數位病理學(RFP)方法示意圖。 第2圖,係表示由多模態非線性光學雷射光柵掃描方法輔助的 RFP 方法的流程 示意圖。 第3圖,係表示快速組織染色(RTS)方法的工作流程示意圖。 第4圖,係利用RFP法得到的影像例示意圖。 Figure 1 is a schematic diagram showing the rapid fresh digital pathology (RFP) method. Figure 2 shows the flow of the RFP method assisted by the multi-modal nonlinear optical laser raster scanning method. Schematic diagram. Figure 3 is a schematic workflow diagram showing the rapid tissue staining (RTS) method. Figure 4 is a schematic diagram of an image example obtained using the RFP method.

[1]:RFP方法 [1]:RFP method

[11]:切除之未固定生物標本 [11]: Resection of unfixed biological specimens

[12]:放入組織室或組織容器 [12]: Place in tissue chamber or tissue container

[13]:進行H或E或HE染色 [13]: Perform H or E or HE staining

[131]:短時間固定 [131]: Fixed for short time

[132]:H染色 [132]:H staining

[133]:漂洗 [133]:rinse

[134]:藍化 [134]:Blue

[135]:E染色 [135]:E staining

[136]:漂洗 [136]:rinse

[137]:添加蓋玻片 [137]:Add coverslip

[14]:多模態非線性光學雷射光柵掃描系統 [14]: Multi-modal nonlinear optical laser grating scanning system

[15]:多模態非線性光學雷射光柵掃描進行光學虛擬切片 [15]: Multi-modal nonlinear optical laser raster scanning for optical virtual slicing

[16]:通過實時馬賽克拼接進行多影像組合 [16]: Multi-image combination through real-time mosaic stitching

[161]:視野 [161]:View

[162]:成像區域 [162]:Imaging area

[163]:有效數位橫向解析度 [163]: Significant digit lateral resolution

[164]:FOV解析度 [164]:FOV resolution

[165]:有效數據輸出入量 [165]: Valid data input and output amount

[166]:點掃描 [166]: Point scan

[17]:多通道數位化和實時數位化顯示H或E或HE之特異性組織病理學特徵 [17]: Multi-channel digitization and real-time digitization display the specific histopathological characteristics of H, E or HE

Claims (11)

一種快速的新鮮數位病理學(RFP)方法,用於經蘇木精(H)或伊紅(E)或蘇木精和伊紅(HE)染劑染色的切除之未固定生物樣本進行組織病理學評估,包括:通過多模態非線性光學雷射光柵掃描進行光學虛擬切片,以收集非線性多諧波和/或非線性多光子激發螢光信號,用於多通道數位化及實時數位化顯示H或E或HE之特異性組織病理學特徵,其中所述多模態非線性光學雷射光柵掃描係在不到2分鐘的時間內完成10×10平方毫米區域的點掃描,同時保持小於170奈米(nm)的像素尺寸;至少1平方毫米(mm2)的雷射光柵掃描單張影像視野(FOV),有效數位橫向解析度小於1微米(μm),FOV解析度比大於1000;和單張影像或多張影像組合的累積成像區域,範圍為1mm2至400mm2,持續有效數據輸出入量至少為每秒500M位元(Mbps)。 A rapid fresh pathology (RFP) method for histopathology of resected unfixed biological specimens stained with hematoxylin (H) or eosin (E) or hematoxylin and eosin (HE) stains Optical virtual sectioning via multimodal nonlinear optical laser raster scanning to collect nonlinear multiharmonic and/or nonlinear multiphoton excited fluorescence signals for multichannel digitization and real-time digitization Showing specific histopathological features of H or E or HE, wherein the multi-modal nonlinear optical laser raster scan completes point scanning of a 10×10 mm2 area in less than 2 minutes while maintaining less than Pixel size of 170 nanometers (nm); laser raster scanning single image field of view (FOV) of at least 1 square millimeter (mm 2 ), effective digital lateral resolution less than 1 micron (μm), and FOV resolution ratio greater than 1000; The cumulative imaging area of a single image or a combination of multiple images ranges from 1mm 2 to 400mm 2 , and the continuous effective data input and output is at least 500M bits per second (Mbps). 依申請專利範圍第1項所述之RFP方法,其特徵在於,所述切除的之未固定生物樣標本是不透明的完整體積組織,沒有經固定、冷凍、物理切片、組織透明化;並且可來自肝組織、乳腺組織、胰腺組織、腦組織、胸腺組織、前列腺組織、結腸組織、淋巴組織和實體組織等。 The RFP method according to item 1 of the patent application, is characterized in that the resected unfixed biological sample is an opaque complete volume of tissue, which has not been fixed, frozen, physically sectioned, or tissue transparent; and can be obtained from Liver tissue, breast tissue, pancreatic tissue, brain tissue, thymus tissue, prostate tissue, colon tissue, lymphoid tissue and solid tissue, etc. 依申請專利範圍第1項所述之RFP方法,係由快速組織染色(RTS)流程對所述切除之未固定生物標本進行H或E或HE染色。 According to the RFP method described in item 1 of the patent application, the resected unfixed biological specimen is stained with H, E, or HE through a rapid tissue staining (RTS) process. 依申請專利範圍第3項所述之RFP方法,其中,所述RTS流程是對所述切除之未固定生物樣本進行,將其放入組織空間或組織容器中。 According to the RFP method described in item 3 of the patent application, the RTS process is performed on the resected unfixed biological sample and puts it into a tissue space or tissue container. 依申請專利範圍第3項所述之RFP方法,其中對所述切除之未固定生物樣本執行所述RTS流程,包含下列步驟: 用固定液進行短時間固定;使用Gill蘇木精溶液和/或Mayer蘇木精溶液進行H染色;用蒸餾水和/或清洗液進行漂洗;用氨溶液進行藍化處理;用伊紅溶液進行E染色;用酒精溶液和/或清潔溶液進行漂洗;和使用蓋玻片對所述切除之未固定生物樣本進行加蓋。 According to the RFP method described in item 3 of the patent application, the RTS process is performed on the resected unfixed biological sample, including the following steps: Use fixative for short-term fixation; use Gill's hematoxylin solution and/or Mayer's hematoxylin solution for H staining; rinse with distilled water and/or cleaning solution; use ammonia solution for blue treatment; use eosin solution for E staining; rinsing with alcohol solution and/or cleaning solution; and covering the excised unfixed biological specimen with a coverslip. 依申請專利範圍第3項及第5項所述之RFP方法,其中,所述RTS流程消耗小於6分鐘的總HE染色時間。 According to the RFP method described in items 3 and 5 of the patent application, the RTS process consumes a total HE staining time of less than 6 minutes. 依申請專利範圍第1項所述之RFP方法,對1平方公分的樣本區域進行表面光學切片的雷射光柵掃描,其所消耗的染色時間小於6分鐘並且掃描時間小於2分鐘,因此其對切除之未固定生物樣本能提供少於8分鐘的總評估時間。 According to the RFP method described in item 1 of the patent application, laser raster scanning of surface optical sections is performed on a sample area of 1 square centimeter. The staining time consumed is less than 6 minutes and the scanning time is less than 2 minutes. Therefore, it is suitable for resection. Unfixed biological samples provide a total evaluation time of less than 8 minutes. 依申請專利範圍第1項所述之RFP方法,其中,所述多模態非線性光學雷射光柵掃描利用:發射光譜在1000nm到1100nm範圍內的基於光纖之脈衝雷射源,其中收集源自H染色的三次諧波產生(THG)信號和/或源自E染色的雙光子激發螢光(TPEF)信號;或者,一種鉻鎂橄欖石(Cr:F)的脈衝雷射源,其發射光譜範圍為1200nm至1300nm,其中收集源自H染色的三次諧波產生(THG)信號和/或源自E染色的三光子激發螢光(3PEF)。 According to the RFP method described in item 1 of the patent application, the multi-modal nonlinear optical laser grating scanning utilizes: an optical fiber-based pulse laser source with an emission spectrum in the range of 1000nm to 1100nm, wherein the collection source is A third harmonic generation (THG) signal from H staining and/or a two-photon excited fluorescence (TPEF) signal derived from E staining; alternatively, a pulsed laser source of chromium forsterite (Cr:F) with an emission spectrum The range is 1200 nm to 1300 nm, where third harmonic generation (THG) signals originating from H staining and/or three-photon excited fluorescence (3PEF) originating from E staining are collected. 依申請專利範圍第1項所述之RFP方法,其中,所述多模態非線性光學雷射光柵掃描使用之聚焦物鏡,其具體需求為數值孔徑至少0.7的物鏡。 According to the RFP method described in item 1 of the patent application, the specific requirement for the focusing objective lens used in the multi-modal nonlinear optical laser grating scanning is an objective lens with a numerical aperture of at least 0.7. 依申請專利範圍第1項所述之RFP方法,其中,所述多模態非線性光學雷射光柵掃描利用共振掃描器或多邊形掃描器進行快軸掃描,必須提供至少4kHz的線速率。 According to the RFP method described in item 1 of the patent application, the multi-modal nonlinear optical laser grating scanning uses a resonant scanner or a polygon scanner to perform fast-axis scanning, which must provide a linear rate of at least 4 kHz. 依申請專利範圍第1項所述之RFP方法,其中,所述多張影像組合所得之累積成像區域是由二維電控平台單元輔助,該電控平台單元由至少兩個相互垂直連接的電子線性平移平台組成。 According to the RFP method described in item 1 of the patent application, the cumulative imaging area obtained by combining the multiple images is assisted by a two-dimensional electronic control platform unit. The electronic control platform unit is composed of at least two electronic devices that are vertically connected to each other. Composed of linear translation platform.
TW111138395A 2022-10-11 A rapid fresh digital-pathology method TWI835337B (en)

Publications (2)

Publication Number Publication Date
TWI835337B true TWI835337B (en) 2024-03-11
TW202415949A TW202415949A (en) 2024-04-16

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021133847A1 (en) 2019-12-23 2021-07-01 The Regents Of The University Of California Method and system for digital staining of microscopy images using deep learning

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021133847A1 (en) 2019-12-23 2021-07-01 The Regents Of The University Of California Method and system for digital staining of microscopy images using deep learning

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
網路文獻 Baylor College of Medicine Hematoxylin and Eosin (H&E) Staining- Manual Protocol Baylor College of Medicine 2017/05 chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://research.unityhealth.to/wp-content/uploads/2017/05/Hematoxylin-and-Eosin-HE-Staining-%E2%80%93-Manual-Protocol.pdf

Similar Documents

Publication Publication Date Title
US10642019B2 (en) Method and apparatus for imaging unsectioned tissue specimens
US9964489B2 (en) System and method for controlling depth of imaging in tissues using fluorescence microscopy under ultraviolet excitation following staining with fluorescing agents
Wang et al. High-resolution rapid diagnostic imaging of whole prostate biopsies using video-rate fluorescence structured illumination microscopy
US6187289B1 (en) Acetic acid as a contrast in reflectance confocal imaging of tissue
US20160077007A1 (en) System and method for controlling depth of imaging in tissues using fluorescence microscopy under ultraviolet excitation following staining with fluorescing agents
Le Goualher et al. Towards optical biopsies with an integrated fibered confocal fluorescence microscope
Kang et al. Deep learning enables ultraviolet photoacoustic microscopy based histological imaging with near real-time virtual staining
Yoshitake et al. Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue
Schenke-Layland et al. Imaging of cardiovascular structures using near-infrared femtosecond multiphoton laser scanning microscopy
WO2018175565A1 (en) System and method for controlling depth of imaging in tissues using fluorescence microscopy under ultraviolet excitation following staining with fluorescing agents
Jafree et al. Tissue clearing and deep imaging of the kidney using confocal and two-photon microscopy
Li et al. Ultraviolet photoacoustic microscopy with tissue clearing for high-contrast histological imaging
Matsui et al. Nonlinear optics with near-infrared excitation enable real-time quantitative diagnosis of human cervical cancers
Miao et al. Dual-modal three-dimensional imaging of single cells with isometric high resolution using an optical projection tomography microscope
Matsui et al. Label‐free multiphoton excitation imaging as a promising diagnostic tool for breast cancer
TWI835337B (en) A rapid fresh digital-pathology method
JP7406846B1 (en) A fast and vivid digital pathology method
Utino et al. Second-harmonic generation imaging analysis can help distinguish sarcoidosis from tuberculoid leprosy
Borowsky et al. A pilot validation study comparing FIBI, a slide-free imaging method, with standard FFPE H&E tissue section histology for primary surgical pathology diagnosis
Breunig et al. Rapid vertical tissue imaging with clinical multiphoton tomography
EP4354197A1 (en) A rapid fresh digital-pathology method
US20240118202A1 (en) Rapid fresh digital-pathology method
Rangrez et al. Fluorescence in vivo endomicroscopy: High-resolution, 3-dimensional confocal laser endomicroscopy (Part 1)
CN117912722A (en) Quick fresh digital pathology method
Lemercier et al. Microtome-integrated microscope system for high sensitivity tracking of in-resin fluorescence in blocks and ultrathin sections for correlative microscopy