TWI835176B - Bloodstream infection predicting system and method thereof - Google Patents

Bloodstream infection predicting system and method thereof Download PDF

Info

Publication number
TWI835176B
TWI835176B TW111123493A TW111123493A TWI835176B TW I835176 B TWI835176 B TW I835176B TW 111123493 A TW111123493 A TW 111123493A TW 111123493 A TW111123493 A TW 111123493A TW I835176 B TWI835176 B TW I835176B
Authority
TW
Taiwan
Prior art keywords
data
time
historical medical
bacteremia
medical data
Prior art date
Application number
TW111123493A
Other languages
Chinese (zh)
Other versions
TW202400078A (en
Inventor
白鎧誌
劉伯瑜
陳裕芬
林彥男
王敏嫻
廖建倫
洪大鈞
吳杰亮
許瑞愷
陳倫奇
Original Assignee
臺中榮民總醫院
東海大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 臺中榮民總醫院, 東海大學 filed Critical 臺中榮民總醫院
Priority to TW111123493A priority Critical patent/TWI835176B/en
Publication of TW202400078A publication Critical patent/TW202400078A/en
Application granted granted Critical
Publication of TWI835176B publication Critical patent/TWI835176B/en

Links

Images

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

A bloodstream infection predicting system is proposed. The bloodstream infection predicting system includes a memory unit and a processor. The memory unit stores a plurality of historical medical data, a real-time data to be tested and a machine learning algorithm. The processor is configured to implement the above steps. The first data reading step is performed to read the historical medical data. The model training step is performed to train the historical medical data to generate a bloodstream infection predicting model. The second data reading step is performed to read the real-time data to be tested of a patient. The risk predicting step is performed to input the real-time data to be tested to the bloodstream infection predicting model to generate a bloodstream infection risk probability. The real-time data to be tested includes an intensive care unit (ICU) detecting data which is detected during a feature window period and a hematology feature data. Thus, the bloodstream infection predicting system of the present disclosure can predict the bloodstream infection risk probability after a specific time, and the medical treatment can be given immediately.

Description

菌血症感染風險預測系統及其方法Bacteremia infection risk prediction system and method thereof

本發明係關於一種感染風險預測系統及其方法,特別是關於一種菌血症感染風險預測系統及其方法。The present invention relates to an infection risk prediction system and a method thereof, in particular to a bacteremia infection risk prediction system and a method thereof.

菌血症是加護病房中常見的一種疾病,然而,菌血症無法被即時診斷,醫護人員需對菌血症患者的血液進行細菌培養,待細菌培養完成後才能確認患者是否患有菌血症,並給予對應的醫療處置。由於菌血症是重症病人主要的合併症與致死原因,且患有菌血症的病人的死亡率極高,因此等待細菌培養時間後才給予病人醫療處置極可能已錯過較佳的治療時間。Bacteremia is a common disease in the intensive care unit. However, bacteremia cannot be diagnosed immediately. Medical staff need to conduct bacterial culture on the blood of patients with bacteremia. Only after the bacterial culture is completed can the patient be confirmed to have bacteremia. , and provide corresponding medical treatment. Since bacteremia is the main complication and cause of death in critically ill patients, and the mortality rate of patients with bacteremia is extremely high, waiting for bacterial culture time before providing medical treatment to the patient is likely to miss the best treatment time.

由此可知,目前市場上仍缺乏一種即時對加護病房患者進行健康監測並預測菌血症感染風險的菌血症感染風險預測系統及其方法,實為民眾所殷切企盼,亦係相關業者須努力研發突破之目標及方向。It can be seen that there is still a lack of a bacteremia infection risk prediction system and method on the market that can instantly monitor the health of ICU patients and predict the risk of bacteremia infection. This is indeed something that the public is eagerly waiting for, and it is also the reason why relevant industry players must work hard. The goal and direction of R&D breakthroughs.

因此,本發明之目的在於提供一種菌血症感染風險預測系統及其方法,其透過收集患者的即時待測資料預測患者在特定時間段後可能感染菌血症的風險機率。Therefore, the purpose of the present invention is to provide a bacteremia infection risk prediction system and a method thereof, which predict the patient's risk probability of bacteremia infection after a specific period of time by collecting the patient's real-time test data.

依據本發明的結構態樣之一實施方式提供一種菌血症感染風險預測系統,用以依據一患者之一即時待測資料預測一菌血症感染風險機率。菌血症感染風險預測系統包含一記憶單元及一處理器。記憶單元儲存複數歷史醫療資料、即時待測資料及一機器學習演算法。處理器訊號連接記憶單元,並經配置以實施一第一資料讀取步驟、一模型訓練步驟、一第二資料讀取步驟及一風險預測步驟。第一資料讀取步驟係讀取記憶單元之此些歷史醫療資料。模型訓練步驟係依據機器學習演算法訓練此些歷史醫療資料而產生一菌血症預測模型。第二資料讀取步驟係自記憶單元讀取患者之即時待測資料。風險預測步驟係將即時待測資料輸入至菌血症預測模型而產生菌血症感染風險機率。即時待測資料包含患者於一特徵窗口區間的一加護病房監測資訊及一血液檢驗特徵資訊。According to one embodiment of the structural aspect of the present invention, a bacteremia infection risk prediction system is provided, which is used to predict a bacteremia infection risk probability based on a patient's real-time test data. The bacteremia infection risk prediction system includes a memory unit and a processor. The memory unit stores multiple historical medical data, real-time data to be tested and a machine learning algorithm. The processor signal is connected to the memory unit and is configured to implement a first data reading step, a model training step, a second data reading step and a risk prediction step. The first data reading step is to read the historical medical data in the memory unit. The model training step is to train these historical medical data based on a machine learning algorithm to generate a bacteremia prediction model. The second data reading step is to read the patient's real-time data to be tested from the memory unit. The risk prediction step is to input the real-time test data into the bacteremia prediction model to generate the risk probability of bacteremia infection. The real-time data to be measured includes an intensive care unit monitoring information and a blood test characteristic information of the patient within a characteristic window interval.

藉此,本發明之菌血症感染風險預測系統預測患者於特定時間段後感染菌血症的機率,並及早進行醫療處置。Thereby, the bacteremia infection risk prediction system of the present invention predicts the probability of a patient being infected with bacteremia after a specific period of time and provides early medical treatment.

前述實施方式之其他實施例如下:前述記憶單元儲存一預設數量與一預設數量下限,各歷史醫療資料包含複數特徵資訊。處理器更經配置以實施一資料前處理步驟。資料前處理步驟包含驅動處理器計算各特徵資訊之一平均值及驅動處理器判斷各歷史醫療資料的此些特徵資訊的數量是否小於等於預設數量下限。當此些歷史醫療資料之一者之此些特徵資訊的數量小於等於預設數量下限時,處理器移除此些歷史醫療資料之此者。當此些歷史醫療資料之此者之此些特徵資訊的數量大於預設數量下限且小於預設數量時,處理器依據一插補程序將此些歷史醫療資料之此者缺失的部分此些特徵資訊所對應的此些平均值填入此些歷史醫療資料之此者,使此些歷史醫療資料之此者之此些特徵資訊的數量等於預設數量。Other examples of the aforementioned implementation are as follows: the aforementioned memory unit stores a preset quantity and a preset quantity lower limit, and each historical medical data includes plural feature information. The processor is further configured to perform a data pre-processing step. The data pre-processing step includes the driver processor calculating an average value of each characteristic information and the driver processor determining whether the quantity of these characteristic information of each historical medical data is less than or equal to a preset quantity lower limit. When the quantity of the characteristic information of one of the historical medical data is less than or equal to the preset quantity lower limit, the processor removes this one of the historical medical data. When the quantity of the characteristic information of the historical medical data is greater than the preset quantity lower limit and less than the preset quantity, the processor adds the missing part of the characteristics of the historical medical data according to an interpolation procedure. The average values corresponding to the information are filled in the historical medical data, so that the number of characteristic information in the historical medical data is equal to the preset number.

前述實施方式之其他實施例如下:前述加護病房監測資訊包含一體溫、一呼吸率、一脈搏率、一脈搏壓、一收縮壓、一舒張壓、一昏迷指數及一插管時間資訊。Other examples of the aforementioned embodiments are as follows: the aforementioned intensive care unit monitoring information includes a body temperature, a respiratory rate, a pulse rate, a pulse pressure, a systolic blood pressure, a diastolic blood pressure, a coma index and an intubation time information.

前述實施方式之其他實施例如下:前述血液檢驗特徵資訊包含一乳酸數值、一動脈血液氣體酸鹼值及一碳酸氫鹽數值。Other examples of the aforementioned embodiments are as follows: the aforementioned blood test characteristic information includes a lactate value, an arterial blood gas pH value and a bicarbonate value.

前述實施方式之其他實施例如下:前述機器學習演算法為一邏輯式迴歸、一支持向量機、一多層感知器、一隨機森林演算法及一極限梯度提升演算法之一者。Other examples of the aforementioned implementation are as follows: the aforementioned machine learning algorithm is one of a logistic regression, a support vector machine, a multi-layer perceptron, a random forest algorithm and an extreme gradient boosting algorithm.

依據本發明的方法態樣之一實施方式提供一種菌血症感染風險預測方法,用以依據一患者之一即時待測資料預測一菌血症感染風險機率。菌血症感染風險預測方法包含一第一資料讀取步驟、一模型訓練步驟、一第二資料讀取步驟及一風險預測步驟。第一資料讀取步驟係驅動一處理器讀取一記憶單元之複數歷史醫療資料。模型訓練步驟係驅動處理器依據一機器學習演算法訓練此些歷史醫療資料而產生一菌血症預測模型。第二資料讀取步驟係驅動處理器自記憶單元讀取患者之即時待測資料。風險預測步驟係驅動處理器輸入即時待測資料至菌血症預測模型而產生菌血症感染風險機率。即時待測資料包含患者於一特徵窗口區間的一加護病房監測資訊及一血液檢驗特徵資訊。According to one embodiment of the method aspect of the present invention, a bacteremia infection risk prediction method is provided, which is used to predict a bacteremia infection risk probability based on a patient's real-time test data. The bacteremia infection risk prediction method includes a first data reading step, a model training step, a second data reading step and a risk prediction step. The first data reading step is to drive a processor to read a plurality of historical medical data in a memory unit. The model training step drives the processor to train the historical medical data according to a machine learning algorithm to generate a bacteremia prediction model. The second data reading step is to drive the processor to read the patient's real-time data to be tested from the memory unit. The risk prediction step drives the processor to input real-time data to be tested into the bacteremia prediction model to generate a bacteremia infection risk probability. The real-time data to be measured includes an intensive care unit monitoring information and a blood test characteristic information of the patient within a characteristic window interval.

藉此,本發明之菌血症感染風險預測方法預測患者於特定時間段後感染菌血症的機率,並及早進行醫療處置。Thereby, the bacteremia infection risk prediction method of the present invention predicts the probability of a patient being infected with bacteremia after a specific period of time and provides early medical treatment.

前述實施方式之其他實施例如下:前述記憶單元儲存一預設數量及一預設數量下限,各歷史醫療資料包含複數特徵資訊。菌血症感染風險預測方法更包含一資料前處理步驟。資料前處理步驟包含驅動處理器計算各特徵資訊之一平均值及驅動處理器判斷各歷史醫療資料的此些特徵資訊的數量是否小於等於預設數量下限。當此些歷史醫療資料之一者之此些特徵資訊的數量小於等於預設數量下限時,處理器移除此些歷史醫療資料之此者。當此些歷史醫療資料之此者之此些特徵資訊的數量大於預設數量下限且小於預設數量時,處理器依據一插補程序將此些歷史醫療資料之此者缺失的部分此些特徵資訊所對應的此些平均值填入此些歷史醫療資料之此者,使此些歷史醫療資料之此者之此些特徵資訊的數量等於預設數量。Other examples of the aforementioned implementation are as follows: the aforementioned memory unit stores a preset quantity and a preset quantity lower limit, and each historical medical data includes plural feature information. The bacteremia infection risk prediction method further includes a data pre-processing step. The data pre-processing step includes the driver processor calculating an average value of each characteristic information and the driver processor determining whether the quantity of these characteristic information of each historical medical data is less than or equal to a preset quantity lower limit. When the quantity of the characteristic information of one of the historical medical data is less than or equal to the preset quantity lower limit, the processor removes this one of the historical medical data. When the quantity of the characteristic information of the historical medical data is greater than the preset quantity lower limit and less than the preset quantity, the processor adds the missing part of the characteristics of the historical medical data according to an interpolation procedure. The average values corresponding to the information are filled in the historical medical data, so that the number of characteristic information in the historical medical data is equal to the preset number.

前述實施方式之其他實施例如下:前述加護病房監測資訊包含一體溫、一呼吸率、一脈搏率、一脈搏壓、一收縮壓、一舒張壓、一昏迷指數及一插管時間資訊。Other examples of the aforementioned embodiments are as follows: the aforementioned intensive care unit monitoring information includes a body temperature, a respiratory rate, a pulse rate, a pulse pressure, a systolic blood pressure, a diastolic blood pressure, a coma index and an intubation time information.

前述實施方式之其他實施例如下:前述血液檢驗特徵資訊包含一乳酸數值、一動脈血液氣體酸鹼值及一碳酸氫鹽數值。Other examples of the aforementioned embodiments are as follows: the aforementioned blood test characteristic information includes a lactate value, an arterial blood gas pH value and a bicarbonate value.

前述實施方式之其他實施例如下:前述機器學習演算法為一邏輯式迴歸、一支持向量機、一多層感知器、一隨機森林演算法及一極限梯度提升演算法之一者。Other examples of the aforementioned implementation are as follows: the aforementioned machine learning algorithm is one of a logistic regression, a support vector machine, a multi-layer perceptron, a random forest algorithm and an extreme gradient boosting algorithm.

以下將參照圖式說明本發明之複數個實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之;並且重複之元件將可能使用相同的編號表示之。Several embodiments of the present invention will be described below with reference to the drawings. For the sake of clarity, many practical details will be explained together in the following narrative. However, it will be understood that these practical details should not limit the invention. That is to say, in some embodiments of the present invention, these practical details are not necessary. In addition, in order to simplify the drawings, some commonly used structures and components will be illustrated in a simple schematic manner in the drawings; and repeated components may be represented by the same numbers.

此外,本文中當某一元件(或單元或模組等)「連接」於另一元件,可指所述元件是直接連接於另一元件,亦可指某一元件是間接連接於另一元件,意即,有其他元件介於所述元件及另一元件之間。而當有明示某一元件是「直接連接」於另一元件時,才表示沒有其他元件介於所述元件及另一元件之間。而第一、第二、第三等用語只是用來描述不同元件,而對元件本身並無限制,因此,第一元件亦可改稱為第二元件。且本文中之元件/單元/電路之組合非此領域中之一般周知、常規或習知之組合,不能以元件/單元/電路本身是否為習知,來判定其組合關係是否容易被技術領域中之通常知識者輕易完成。In addition, when a certain component (or unit or module, etc.) is "connected" to another component in this article, it may mean that the component is directly connected to the other component, or it may mean that one component is indirectly connected to the other component. , meaning that there are other elements between the said element and another element. When it is stated that an element is "directly connected" to another element, it means that no other elements are interposed between the element and the other element. Terms such as first, second, third, etc. are only used to describe different components without limiting the components themselves. Therefore, the first component can also be renamed the second component. Moreover, the combination of components/units/circuit in this article is not a combination that is generally known, conventional or customary in this field. Whether the component/unit/circuit itself is common knowledge cannot be used to determine whether its combination relationship is easily understood by those in the technical field. Usually it is easily accomplished by the knowledgeable.

請參閱第1圖及第2圖,第1圖係繪示本發明之第一實施例之菌血症感染風險預測系統100之方塊示意圖;第2圖係繪示依照第1圖實施方式之菌血症感染風險預測系統100之即時待測資料221之示意圖。菌血症感染風險預測系統100用以依據一患者之一即時待測資料221預測一菌血症感染風險機率320。菌血症感染風險預測系統100包含一記憶單元200及一處理器300。記憶單元200儲存複數歷史醫療資料211、即時待測資料221及一機器學習演算法230。即時待測資料221包含患者於一特徵窗口區間T12(見第4圖)的一加護病房監測資訊2211及一血液檢驗特徵資訊2212。Please refer to Figures 1 and 2. Figure 1 is a block diagram illustrating the bacteremia infection risk prediction system 100 according to the first embodiment of the present invention; Figure 2 is a schematic block diagram illustrating the bacteremia infection risk prediction system 100 according to the embodiment of Figure 1. A schematic diagram of the real-time test data 221 of the blood infection risk prediction system 100. The bacteremia infection risk prediction system 100 is used to predict a bacteremia infection risk probability 320 based on a patient's real-time test data 221 . The bacteremia infection risk prediction system 100 includes a memory unit 200 and a processor 300 . The memory unit 200 stores a plurality of historical medical data 211, real-time data to be tested 221 and a machine learning algorithm 230. The real-time data to be tested 221 includes an intensive care unit monitoring information 2211 and a blood test characteristic information 2212 of the patient in a characteristic window interval T12 (see Figure 4).

具體而言,記憶單元200儲存歷史資料庫210、即時資料庫220及機器學習演算法230。記憶單元200可為記憶體或其他資料儲存元件。歷史資料庫210包含歷史醫療資料211。各歷史醫療資料211包含曾住在加護病房的患者的歷史特徵資訊。即時資料庫220包含即時採集的待測患者在特徵窗口區間T12內的加護病房監測資訊2211及血液檢驗特徵資訊2212。在本實施方式中,即時資料庫220儲存待測患者於72小時(即特徵窗口區間T12)內在加護病房內的即時待測資料221。Specifically, the memory unit 200 stores a historical database 210, a real-time database 220 and a machine learning algorithm 230. The memory unit 200 may be a memory or other data storage device. The historical database 210 contains historical medical data 211 . Each historical medical data 211 includes historical characteristic information of patients who have been admitted to the intensive care unit. The real-time database 220 includes real-time collected intensive care unit monitoring information 2211 and blood test characteristic information 2212 of the patient to be tested within the characteristic window interval T12. In this embodiment, the real-time database 220 stores the real-time data 221 of the patient to be tested in the intensive care unit within 72 hours (ie, the characteristic window interval T12).

詳細地說,即時待測資料221包含患者在加護病房時監測的加護病房監測資訊2211、血液檢驗特徵資訊2212及其他特徵資訊。加護病房監測資訊2211可包含一體溫(Temperature)、一呼吸率(Respiration Rate)、一脈搏率(Pulse Rate)、一脈搏壓(Pulse Pressure)、一收縮壓、一舒張壓、一昏迷指數(GCS)及一插管時間資訊。插管時間資訊可包含肺動脈導管(SwanGanze)插管時間、插管(ENDO)時間、尿管(Foley)插管時間、中央靜脈導管(Central Venous Catheter;CVC)插管時間、中心靜脈壓(Central Venous Pressure)插管時間、雙腔靜脈導管(Double Lumen)插管時間、希克曼式靜脈導管(Hickman Catheter)插管時間、週邊置入中心靜脈導管(Peripherally Inserted Central Catheters;PICC)插管時間及植入式靜脈導管(Port A)插管時間,但本發明不以此為限。In detail, the real-time data to be tested 221 includes intensive care unit monitoring information 2211 monitored when the patient is in the intensive care unit, blood test characteristic information 2212 and other characteristic information. The intensive care unit monitoring information 2211 may include a temperature (Temperature), a respiration rate (Respiration Rate), a pulse rate (Pulse Rate), a pulse pressure (Pulse Pressure), a systolic blood pressure, a diastolic blood pressure, and a coma index (GCS). ) and an intubation time information. Intubation time information may include pulmonary artery catheter (SwanGanze) intubation time, intubation (ENDO) time, urinary catheter (Foley) intubation time, central venous catheter (Central Venous Catheter; CVC) intubation time, central venous pressure (Central Venous Pressure) intubation time, Double Lumen (Double Lumen) intubation time, Hickman Catheter (Hickman Catheter) intubation time, Peripherally Inserted Central Catheters (PICC) intubation time and implantable intravenous catheter (Port A) intubation time, but the present invention is not limited thereto.

血液檢驗特徵資訊2212可包含一乳酸數值(Lactate)、一動脈血液氣體酸鹼值(Arterial Blood Gas_pH)、一碳酸氫鹽數值(HCO 3-A)、一白血球計數(WBC-min)、一血中尿素氮(BUN)、一鹼性磷酯酶(AlkalinePhosphatase;ALKP)、一血紅素(Hb)、一鈉(Sodium(K))、一肌酸酐(Creatinine)及一凝血酵素原時間(ProthrombinTime-C)。在本實施方式中,其他特徵資訊可包含加護病房入住時間及嚴重度評估指標(Acute Physiology and Chronic Health Evaluation;APACHE II score),但本發明不以此為限。 The blood test characteristic information 2212 may include a lactate value (Lactate), an arterial blood gas pH value (Arterial Blood Gas_pH), a bicarbonate value (HCO 3 -A), a white blood cell count (WBC-min), a blood Medium urea nitrogen (BUN), alkaline phospholipase (Alkaline Phosphatase; ALKP), heme (Hb), sodium (K), creatinine (Creatinine) and prothrombin time- C). In this embodiment, other characteristic information may include intensive care unit admission time and severity evaluation index (Acute Physiology and Chronic Health Evaluation; APACHE II score), but the invention is not limited thereto.

處理器300可為微處理器、中央處理器(Central Processing Unit;CPU)或其他電子運算處理器,本發明不以此為限。處理器300訊號連接記憶單元200,並經配置以實施一第一資料讀取步驟S02、一模型訓練步驟S04、一第二資料讀取步驟S06及一風險預測步驟S08。第一資料讀取步驟S02係讀取記憶單元200之此些歷史醫療資料211。模型訓練步驟S04係依據機器學習演算法230訓練此些歷史醫療資料211而產生一菌血症預測模型310。第二資料讀取步驟S06係自記憶單元200讀取患者之即時待測資料221。風險預測步驟S08係將即時待測資料221輸入至菌血症預測模型310而產生菌血症感染風險機率320。藉此,本發明之菌血症感染風險預測系統100蒐集與菌血症感染高度相關的加護病房中監測的特徵參數,進而預測患者於特定時間段T23(見第4圖)後的菌血症感染風險機率320,在菌血症的細菌培養完成之前及早給予患者醫療處置。以下將透過較詳細的實施例說明第一資料讀取步驟S02、模型訓練步驟S04、第二資料讀取步驟S06及風險預測步驟S08之作動。The processor 300 may be a microprocessor, a central processing unit (Central Processing Unit; CPU), or other electronic computing processor, but the invention is not limited thereto. The processor 300 is connected to the memory unit 200 via signals, and is configured to implement a first data reading step S02, a model training step S04, a second data reading step S06 and a risk prediction step S08. The first data reading step S02 is to read the historical medical data 211 of the memory unit 200 . The model training step S04 is based on the machine learning algorithm 230 to train the historical medical data 211 to generate a bacteremia prediction model 310. The second data reading step S06 is to read the patient's real-time data to be tested 221 from the memory unit 200 . The risk prediction step S08 is to input the real-time test data 221 into the bacteremia prediction model 310 to generate a bacteremia infection risk probability 320. Thereby, the bacteremia infection risk prediction system 100 of the present invention collects the characteristic parameters monitored in the intensive care unit that are highly related to bacteremia infection, and then predicts the patient's bacteremia after a specific time period T23 (see Figure 4). The infection risk probability is 320, and the patient should be given early medical treatment before the bacterial culture of bacteremia is completed. The following will describe the operations of the first data reading step S02, the model training step S04, the second data reading step S06 and the risk prediction step S08 through a more detailed embodiment.

請參閱第1圖至第4圖,第3圖係繪示本發明之第二實施例之菌血症感染風險預測方法S10之流程圖;第4圖係繪示依照第3圖實施方式之菌血症感染風險預測方法S10之特徵窗口區間T12之示意圖。菌血症感染風險預測方法S10用以依據患者之即時待測資料221預測菌血症感染風險機率320。菌血症感染風險預測方法S10包含第一資料讀取步驟S02、模型訓練步驟S04、第二資料讀取步驟S06及風險預測步驟S08。Please refer to Figures 1 to 4. Figure 3 is a flow chart illustrating the bacteremia infection risk prediction method S10 according to the second embodiment of the present invention; Figure 4 is a flow chart illustrating the bacteremia infection risk prediction method according to the embodiment of Figure 3. Schematic diagram of the characteristic window interval T12 of the blood infection risk prediction method S10. The bacteremia infection risk prediction method S10 is used to predict the bacteremia infection risk probability 320 based on the patient's real-time test data 221 . The bacteremia infection risk prediction method S10 includes a first data reading step S02, a model training step S04, a second data reading step S06 and a risk prediction step S08.

在第4圖中,時間軸t的時間t0代表患者進入加護病房的時間點,時間t1到時間t2之間的時長為特徵窗口區間T12,時間t2到時間t3之間的時長為特定時間段T23。In Figure 4, time t0 on the timeline t represents the time point when the patient enters the intensive care unit, the time between time t1 and time t2 is the characteristic window interval T12, and the time between time t2 and time t3 is the specific time. Section T23.

第一資料讀取步驟S02係驅動處理器300讀取記憶單元200之複數歷史醫療資料211。The first data reading step S02 is to drive the processor 300 to read the plurality of historical medical data 211 in the memory unit 200 .

模型訓練步驟S04係驅動處理器300依據機器學習演算法230訓練此些歷史醫療資料211而產生菌血症預測模型310。詳細地說,機器學習演算法230可為一邏輯式迴歸、一支持向量機、一多層感知器、一隨機森林演算法及一極限梯度提升演算法之一者,但本發明不以此為限。The model training step S04 is to drive the processor 300 to train the historical medical data 211 according to the machine learning algorithm 230 to generate a bacteremia prediction model 310. Specifically, the machine learning algorithm 230 may be one of a logistic regression, a support vector machine, a multi-layer perceptron, a random forest algorithm, and an extreme gradient boosting algorithm, but the present invention does not take this as an example. limit.

第二資料讀取步驟S06係驅動處理器300自記憶單元200讀取患者之即時待測資料221。具體而言,第二資料讀取步驟S06係驅動處理器300讀取記憶單元200之即時資料庫220中儲存的患者於特徵窗口區間T12內的即時待測資料221,在本實施方式中,第二資料讀取步驟S06在時間t2時讀取由時間t1到時間t2之間的患者的即時待測資料221,特徵窗口區間T12為72小時,亦即,第二資料讀取步驟S06讀取待測的患者自72小時前(即時間t1)到當前時間t2的所有的即時待測資料221,但本發明不以此為限。The second data reading step S06 is to drive the processor 300 to read the patient's real-time data to be tested 221 from the memory unit 200 . Specifically, the second data reading step S06 is to drive the processor 300 to read the real-time test data 221 of the patient within the characteristic window interval T12 stored in the real-time database 220 of the memory unit 200. In this embodiment, the The second data reading step S06 reads the patient's real-time test data 221 from time t1 to time t2 at time t2. The characteristic window interval T12 is 72 hours, that is, the second data reading step S06 reads the patient's real-time data to be tested 221 from time t1 to time t2. All the real-time test data 221 of the tested patient from 72 hours ago (i.e., time t1) to the current time t2, but the present invention is not limited to this.

風險預測步驟S08係驅動處理器300輸入即時待測資料221至菌血症預測模型310而產生菌血症感染風險機率320。即時待測資料221包含患者於特徵窗口區間T12的加護病房監測資訊2211及血液檢驗特徵資訊2212。具體而言,菌血症預測模型310用以預測患者在時間t3時確診菌血症的菌血症感染風險機率320。在本實施方式中,時間t3與時間t2之間的特定時間段T23為24小時,但本發明不以此為限。The risk prediction step S08 drives the processor 300 to input the real-time test data 221 into the bacteremia prediction model 310 to generate a bacteremia infection risk probability 320. The real-time data to be tested 221 includes the patient's intensive care unit monitoring information 2211 and blood test characteristic information 2212 in the characteristic window interval T12. Specifically, the bacteremia prediction model 310 is used to predict the bacteremia infection risk probability 320 of a patient diagnosed with bacteremia at time t3. In this embodiment, the specific time period T23 between time t3 and time t2 is 24 hours, but the invention is not limited thereto.

藉此,本發明之菌血症感染風險預測方法S10透過第二資料讀取步驟S06持續讀取患者在特徵窗口區間T12的即時待測資料221,並經由風險預測步驟S08預測患者於特定時間段T23後的菌血症感染風險機率320,即時產生警示提醒,以供加護病房之醫療人員提供及時、精準的醫療處置。Thereby, the bacteremia infection risk prediction method S10 of the present invention continues to read the patient's real-time test data 221 in the characteristic window interval T12 through the second data reading step S06, and predicts the patient's specific time period through the risk prediction step S08. The risk probability of bacteremia infection after T23 is 320, and an immediate warning reminder is generated for medical staff in the intensive care unit to provide timely and accurate medical treatment.

菌血症感染風險預測方法S10更包含一資料前處理步驟S01。各歷史醫療資料211包含複數特徵資訊。記憶單元200儲存一預設數量與一預設數量下限。資料前處理步驟S01包含驅動處理器300計算各特徵資訊之一平均值及驅動處理器300判斷各歷史醫療資料211的此些特徵資訊的數量是否小於等於預設數量下限。The bacteremia infection risk prediction method S10 further includes a data preprocessing step S01. Each historical medical data 211 includes plural feature information. The memory unit 200 stores a preset quantity and a preset quantity lower limit. The data preprocessing step S01 includes driving the processor 300 to calculate an average value of each feature information and driving the processor 300 to determine whether the number of the feature information of each historical medical data 211 is less than or equal to a preset lower limit.

詳細地說,各歷史醫療資料211的此些特徵資訊對應即時待測資料221的加護病房監測資訊2211及血液檢驗特徵資訊2212。資料前處理步驟S01計算出此些歷史醫療資料211中的各個特徵資訊的平均值。In detail, the characteristic information of each historical medical data 211 corresponds to the intensive care unit monitoring information 2211 and blood test characteristic information 2212 of the real-time data to be tested 221 . The data preprocessing step S01 calculates the average value of each characteristic information in the historical medical data 211 .

當此些歷史醫療資料211之一者之此些特徵資訊的數量小於等於預設數量下限時,處理器300移除此些歷史醫療資料211之此者。換句話說,資料前處理步驟S01用以確認各筆歷史醫療資料211中的此些特徵資訊是否有缺失,同時在缺失的特徵資訊數量過多時,將所述的歷史醫療資料211移除,不將此筆歷史醫療資料211作為菌血症預測模型310的訓練樣本。在本實施方式中,當各歷史醫療資料211的此些特徵資訊沒有缺失時,此些特徵資訊的數量等於預設數量,各歷史醫療資料211的特徵資訊的預設數量為20個,預設數量下限可為此些特徵資訊的預設數量的60%(即12個特徵資訊)。當一筆歷史醫療資料211中缺失的特徵資訊大於40%(即8個特徵資訊)時,此歷史醫療資料211將被移除,但本發明不以此為限。When the quantity of the characteristic information of one of the historical medical data 211 is less than or equal to the preset quantity lower limit, the processor 300 removes this one of the historical medical data 211 . In other words, the data preprocessing step S01 is used to confirm whether the characteristic information in each piece of historical medical data 211 is missing. At the same time, when the amount of missing characteristic information is too much, the historical medical data 211 is removed. This historical medical data 211 is used as a training sample for the bacteremia prediction model 310. In this embodiment, when the characteristic information of each historical medical data 211 is not missing, the number of these characteristic information is equal to the preset number. The default number of characteristic information of each historical medical data 211 is 20. The default The lower limit of the quantity can be 60% of the default quantity of these feature information (ie, 12 feature information). When the missing feature information in a piece of historical medical data 211 is greater than 40% (ie, 8 feature information), the historical medical data 211 will be removed, but the present invention is not limited to this.

當此些歷史醫療資料211之此者之此些特徵資訊的數量大於預設數量下限且小於預設數量時,處理器300依據一插補程序將此些歷史醫療資料211之此者缺失的部分此些特徵資訊所對應的此些平均值填入此些歷史醫療資料211之此者,使此些歷史醫療資料211之此者之此些特徵資訊的數量等於預設數量。具體而言,當一筆歷史醫療資料211中有少部分特徵資訊缺失時,資料前處理步驟S01將缺失的特徵資訊對應的平均值帶入此筆歷史醫療資料211,以進行模型訓練。在本實施方式中,當其中一筆歷史醫療資料211的其中一個特徵資訊缺失時,資料前處理步驟S01計算所有歷史醫療資料211的前述缺失的特徵資訊的平均值,並將前述缺失的特徵資訊的平均值填入此歷史醫療資料211。When the quantity of the characteristic information of the historical medical data 211 is greater than the preset quantity lower limit and less than the preset quantity, the processor 300 adds the missing part of the historical medical data 211 according to an interpolation procedure. The average values corresponding to the characteristic information are filled in the historical medical data 211, so that the number of the characteristic information in the historical medical data 211 is equal to the preset quantity. Specifically, when a small amount of feature information is missing in a historical medical data 211, the data preprocessing step S01 brings the average value corresponding to the missing feature information into the historical medical data 211 for model training. In this embodiment, when one of the characteristic information of a piece of historical medical data 211 is missing, the data preprocessing step S01 calculates the average of the missing characteristic information of all historical medical data 211, and calculates the average value of the missing characteristic information. The average value is filled in this historical medical data 211.

藉此,本發明之菌血症感染風險預測方法S10藉由資料前處理步驟S01過濾不完整的歷史醫療資料211,降低菌血症預測模型310的預測誤差值,提升菌血症感染風險機率320的正確率,進而降低加護病房的菌血症感染率,提升照護品質,並縮短患者在加護病房的住院天數。Thereby, the bacteremia infection risk prediction method S10 of the present invention filters the incomplete historical medical data 211 through the data preprocessing step S01, reduces the prediction error value of the bacteremia prediction model 310, and increases the bacteremia infection risk probability 320 The accuracy rate can thereby reduce the bacteremia infection rate in the ICU, improve the quality of care, and shorten the length of stay of patients in the ICU.

由上述實施方式可知,本發明之菌血症感染風險預測系統及其方法具有下列優點,其一,蒐集與菌血症感染高度相關的加護病房中監測的特徵參數,進而預測患者於特定時間段後的菌血症感染風險機率,在菌血症的細菌培養完成之前及早給予患者醫療處置;其二,透過第二資料讀取步驟持續讀取患者在特徵窗口區間的即時待測資料,並經由風險預測步驟預測患者於特定時間段後的菌血症感染風險機率,即時產生警示提醒,以供加護病房之醫療人員提供及時、精準的醫療處置;其三,藉由資料前處理步驟過濾不完整的歷史醫療資料,降低菌血症預測模型的預測誤差值,提升菌血症感染風險機率的正確率,進而降低加護病房的菌血症感染率,提升照護品質,並縮短患者在加護病房的住院天數。It can be seen from the above embodiments that the bacteremia infection risk prediction system and method of the present invention have the following advantages. First, it collects characteristic parameters monitored in the intensive care unit that are highly related to bacteremia infection, and then predicts the risk of patients in a specific time period. The risk probability of bacteremia infection in the future is determined, and medical treatment is given to the patient as early as possible before the bacterial culture of bacteremia is completed; secondly, the patient's real-time test data in the characteristic window interval is continuously read through the second data reading step, and the The risk prediction step predicts the patient's risk probability of bacteremia infection after a specific period of time, and generates an immediate warning reminder to provide timely and accurate medical treatment to the medical staff in the intensive care unit; thirdly, the filtering through the data pre-processing step is incomplete. historical medical data, reduce the prediction error of the bacteremia prediction model, and improve the accuracy of the risk probability of bacteremia infection, thus reducing the bacteremia infection rate in the ICU, improving the quality of care, and shortening the patient's hospitalization in the ICU Number of days.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone skilled in the art can make various modifications and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention is The scope shall be determined by the appended patent application scope.

100:菌血症感染風險預測系統 200:記憶單元 210:歷史資料庫 211:歷史醫療資料 220:即時資料庫 221:即時待測資料 2211:加護病房監測資訊 2212:血液檢驗特徵資訊 230:機器學習演算法 300:處理器 310:菌血症預測模型 320:菌血症感染風險機率 S01:資料前處理步驟 S02:第一資料讀取步驟 S04:模型訓練步驟 S06:第二資料讀取步驟 S08:風險預測步驟 S10:菌血症感染風險預測方法 t:時間軸 t0,t1,t2,t3:時間 T12:特徵窗口區間 T23:特定時間段 100:Bacteremia infection risk prediction system 200:Memory unit 210:Historical database 211: Historical medical data 220:Real-time database 221: Real-time data to be tested 2211: Intensive care unit monitoring information 2212: Blood test characteristics information 230:Machine Learning Algorithm 300:processor 310:Bacteremia prediction model 320:Bacteremia infection risk probability S01: Data pre-processing steps S02: First data reading step S04: Model training steps S06: Second data reading step S08: Risk prediction step S10: Methods for predicting the risk of bacteremia infection t: time axis t0,t1,t2,t3: time T12: Feature window interval T23: specific time period

第1圖係繪示本發明之第一實施例之菌血症感染風險預測系統之方塊示意圖; 第2圖係繪示依照第1圖實施方式之菌血症感染風險預測系統之即時待測資料之示意圖; 第3圖係繪示本發明之第二實施例之菌血症感染風險預測方法之流程圖;及 第4圖係繪示依照第3圖實施方式之菌血症感染風險預測方法之特徵窗口區間之示意圖。 Figure 1 is a block diagram illustrating a bacteremia infection risk prediction system according to the first embodiment of the present invention; Figure 2 is a schematic diagram illustrating real-time data to be tested in the bacteremia infection risk prediction system according to the implementation of Figure 1; Figure 3 is a flow chart illustrating a bacteremia infection risk prediction method according to the second embodiment of the present invention; and Figure 4 is a schematic diagram illustrating the characteristic window interval of the bacteremia infection risk prediction method according to the embodiment of Figure 3.

100:菌血症感染風險預測系統 100:Bacteremia infection risk prediction system

200:記憶單元 200:Memory unit

210:歷史資料庫 210:Historical database

211:歷史醫療資料 211: Historical medical data

220:即時資料庫 220:Real-time database

221:即時待測資料 221: Real-time data to be tested

230:機器學習演算法 230:Machine Learning Algorithm

300:處理器 300:processor

310:菌血症預測模型 310:Bacteremia prediction model

320:菌血症感染風險機率 320:Bacteremia infection risk probability

S02:第一資料讀取步驟 S02: First data reading step

S04:模型訓練步驟 S04: Model training steps

S06:第二資料讀取步驟 S06: Second data reading steps

S08:風險預測步驟 S08: Risk prediction step

Claims (6)

一種菌血症感染風險預測系統,用以依據一患者之一即時待測資料預測一菌血症感染風險機率,該菌血症感染風險預測系統包含:一記憶單元,儲存複數歷史醫療資料、該即時待測資料及一機器學習演算法;以及一處理器,訊號連接該記憶單元,並經配置以實施包含以下步驟:一第一資料讀取步驟,係讀取該記憶單元之該些歷史醫療資料;一模型訓練步驟,係依據該機器學習演算法訓練該些歷史醫療資料而產生一菌血症預測模型;一第二資料讀取步驟,係自該記憶單元讀取該患者之該即時待測資料;及一風險預測步驟,係將該即時待測資料輸入至該菌血症預測模型而產生該菌血症感染風險機率;其中,該即時待測資料包含該患者於一特徵窗口區間的一加護病房監測資訊及一血液檢驗特徵資訊;其中,該第二資料讀取步驟持續讀取該患者在該特徵窗口區間的該即時待測資料,並經由該風險預測步驟預測該患者於一特定時間段後的該菌血症感染風險機率;其中,該血液檢驗特徵資訊包含一乳酸數值、一動脈血液氣體酸鹼值及一碳酸氫鹽數值;其中,該加護病房監測資訊包含一插管時間資訊,該插 管時間資訊包含一插管時間、一尿管插管時間及一中央靜脈導管插管時間;其中該記憶單元儲存一預設數量與一預設數量下限,各該歷史醫療資料包含複數特徵資訊,且該處理器更經配置以實施:一資料前處理步驟,包含:驅動該處理器計算各該特徵資訊之一平均值;及驅動該處理器判斷各該歷史醫療資料的該些特徵資訊的數量是否小於等於該預設數量下限;其中,當該些歷史醫療資料之一者之該些特徵資訊的數量小於等於該預設數量下限時,該處理器移除該些歷史醫療資料之該者;及其中,當該些歷史醫療資料之該者之該些特徵資訊的數量大於該預設數量下限且小於該預設數量時,該處理器依據一插補程序將該些歷史醫療資料之該者中缺失的部分該些特徵資訊所對應的該些平均值填入該些歷史醫療資料之該者,使該些歷史醫療資料之該者之該些特徵資訊的數量等於該預設數量。 A bacteremia infection risk prediction system is used to predict a bacteremia infection risk probability based on real-time test data of a patient. The bacteremia infection risk prediction system includes: a memory unit that stores a plurality of historical medical data, the Real-time data to be tested and a machine learning algorithm; and a processor, the signal is connected to the memory unit, and is configured to implement the following steps: a first data reading step, which is to read the historical medical treatments of the memory unit data; a model training step, which is based on the machine learning algorithm to train the historical medical data to generate a bacteremia prediction model; a second data reading step, which is to read the patient's immediate treatment from the memory unit The test data; and a risk prediction step is to input the real-time test data into the bacteremia prediction model to generate the risk probability of bacteremia infection; wherein the real-time test data includes the patient's risk probability within a characteristic window interval. An intensive care unit monitoring information and a blood test characteristic information; wherein, the second data reading step continuously reads the real-time test data of the patient in the characteristic window interval, and predicts the patient in a specific period through the risk prediction step. The bacteremia infection risk probability after the time period; wherein the blood test characteristic information includes a lactate value, an arterial blood gas pH value and a bicarbonate value; wherein the intensive care unit monitoring information includes an intubation time Information should be inserted The catheter time information includes an intubation time, a urinary catheter intubation time and a central venous catheter intubation time; wherein the memory unit stores a preset quantity and a preset quantity lower limit, and each historical medical data includes plural characteristic information, And the processor is further configured to implement: a data pre-processing step, including: driving the processor to calculate an average value of each of the characteristic information; and driving the processor to determine the quantity of the characteristic information of each of the historical medical data. Whether it is less than or equal to the preset lower limit of quantity; wherein, when the quantity of the characteristic information of one of the historical medical data is less than or equal to the preset lower limit of quantity, the processor removes that one of the historical medical data; And wherein, when the quantity of the characteristic information of the historical medical data is greater than the preset quantity lower limit and less than the preset quantity, the processor uses an interpolation procedure to add the quantity of the historical medical data to the The missing part of the characteristic information corresponding to the average value is filled in the historical medical data, so that the quantity of the characteristic information in the historical medical data is equal to the preset quantity. 如請求項1所述之菌血症感染風險預測系統,其中該加護病房監測資訊更包含一體溫、一呼吸率、一脈搏率、一脈搏壓、一收縮壓、一舒張壓及一昏迷指數。 The bacteremia infection risk prediction system as described in claim 1, wherein the intensive care unit monitoring information further includes a body temperature, a respiratory rate, a pulse rate, a pulse pressure, a systolic blood pressure, a diastolic blood pressure and a coma index. 如請求項1所述之菌血症感染風險預測系統, 其中該機器學習演算法為一邏輯式迴歸、一支持向量機、一多層感知器、一隨機森林演算法及一極限梯度提升演算法之一者。 Bacteremia infection risk prediction system as described in request 1, The machine learning algorithm is one of a logistic regression, a support vector machine, a multi-layer perceptron, a random forest algorithm and an extreme gradient boosting algorithm. 一種菌血症感染風險預測方法,用以依據一患者之一即時待測資料預測一菌血症感染風險機率,該菌血症感染風險預測方法包含:一第一資料讀取步驟,係驅動一處理器讀取一記憶單元之複數歷史醫療資料;一模型訓練步驟,係驅動該處理器依據一機器學習演算法訓練該些歷史醫療資料而產生一菌血症預測模型;以及一第二資料讀取步驟,係驅動該處理器自該記憶單元讀取該患者之該即時待測資料;以及一風險預測步驟,係驅動該處理器輸入該即時待測資料至該菌血症預測模型而產生該菌血症感染風險機率;其中,該即時待測資料包含該患者於一特徵窗口區間的一加護病房監測資訊及一血液檢驗特徵資訊;其中,該第二資料讀取步驟持續讀取該患者在該特徵窗口區間的該即時待測資料,並經由該風險預測步驟預測該患者於一特定時間段後的該菌血症感染風險機率;其中,該血液檢驗特徵資訊包含一乳酸數值、一動脈血液氣體酸鹼值及一碳酸氫鹽數值;其中,該加護病房監測資訊包含一插管時間資訊,該插管時間資訊包含一插管時間、一尿管插管時間及一中央靜 脈導管插管時間;其中該記憶單元儲存一預設數量及一預設數量下限,各該歷史醫療資料包含複數特徵資訊,且該菌血症感染風險預測方法更包含:一資料前處理步驟,包含:驅動該處理器計算各該特徵資訊之一平均值;及驅動該處理器判斷各該歷史醫療資料的該些特徵資訊的數量是否小於等於該預設數量下限;其中,當該些歷史醫療資料之一者之該些特徵資訊的數量小於等於該預設數量下限時,該處理器移除該些歷史醫療資料之該者;及其中,當該些歷史醫療資料之該者之該些特徵資訊的數量大於該預設數量下限且小於該預設數量時,該處理器依據一插補程序將該些歷史醫療資料之該者中缺失的部分該些特徵資訊所對應的該些平均值填入該些歷史醫療資料之該者,使該些歷史醫療資料之該者之該些特徵資訊的數量等於該預設數量。 A bacteremia infection risk prediction method is used to predict a bacteremia infection risk probability based on real-time test data of a patient. The bacteremia infection risk prediction method includes: a first data reading step, which drives a The processor reads a plurality of historical medical data from a memory unit; a model training step drives the processor to train the historical medical data according to a machine learning algorithm to generate a bacteremia prediction model; and a second data read A fetching step is to drive the processor to read the real-time data to be tested of the patient from the memory unit; and a risk prediction step is to drive the processor to input the real-time data to be tested into the bacteremia prediction model to generate the The risk probability of bacteremia infection; wherein, the real-time data to be measured includes an intensive care unit monitoring information and a blood test characteristic information of the patient in a characteristic window interval; wherein, the second data reading step continuously reads the patient's The real-time test data in the characteristic window interval is used to predict the patient's risk probability of bacteremia infection after a specific period of time through the risk prediction step; wherein the blood test characteristic information includes a lactate value, an arterial blood Gas pH value and a bicarbonate value; wherein, the intensive care unit monitoring information includes an intubation time information, and the intubation time information includes an intubation time, a urinary catheter intubation time and a central static Vascular catheter intubation time; wherein the memory unit stores a preset quantity and a preset quantity lower limit, each of the historical medical data includes plural feature information, and the bacteremia infection risk prediction method further includes: a data pre-processing step, It includes: driving the processor to calculate an average value of each feature information; and driving the processor to determine whether the quantity of the feature information of each historical medical data is less than or equal to the preset lower limit of quantity; wherein, when the historical medical data When the quantity of the characteristic information of one of the data is less than or equal to the preset quantity lower limit, the processor removes the characteristic of the historical medical data; and wherein, when the characteristic of the historical medical data When the amount of information is greater than the preset lower limit and less than the preset amount, the processor fills in the missing portion of the historical medical data with the average values corresponding to the feature information based on an interpolation procedure. Enter the historical medical data so that the number of characteristic information of the historical medical data is equal to the preset number. 如請求項4所述之菌血症感染風險預測方法,其中該加護病房監測資訊更包含一體溫、一呼吸率、一脈搏率、一脈搏壓、一收縮壓、一舒張壓及一昏迷指數。 The bacteremia infection risk prediction method described in claim 4, wherein the intensive care unit monitoring information further includes a body temperature, a respiratory rate, a pulse rate, a pulse pressure, a systolic blood pressure, a diastolic blood pressure and a coma index. 如請求項4所述之菌血症感染風險預測方法,其中該機器學習演算法為一邏輯式迴歸、一支持向量機、 一多層感知器、一隨機森林演算法及一極限梯度提升演算法之一者。The bacteremia infection risk prediction method as described in claim 4, wherein the machine learning algorithm is a logistic regression, a support vector machine, One of a multilayer perceptron, a random forest algorithm, and an extreme gradient boosting algorithm.
TW111123493A 2022-06-23 2022-06-23 Bloodstream infection predicting system and method thereof TWI835176B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111123493A TWI835176B (en) 2022-06-23 2022-06-23 Bloodstream infection predicting system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111123493A TWI835176B (en) 2022-06-23 2022-06-23 Bloodstream infection predicting system and method thereof

Publications (2)

Publication Number Publication Date
TW202400078A TW202400078A (en) 2024-01-01
TWI835176B true TWI835176B (en) 2024-03-11

Family

ID=90457809

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111123493A TWI835176B (en) 2022-06-23 2022-06-23 Bloodstream infection predicting system and method thereof

Country Status (1)

Country Link
TW (1) TWI835176B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190354814A1 (en) * 2017-01-08 2019-11-21 Henry M. Jackson Foundation For The Advancement Of Military Medicine Systems and methods for using supervised learning to predict subject-specific bacteremia outcomes
US20200066415A1 (en) * 2018-04-10 2020-02-27 Hill-Rom Services, Inc. Interfaces displaying patient data

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190354814A1 (en) * 2017-01-08 2019-11-21 Henry M. Jackson Foundation For The Advancement Of Military Medicine Systems and methods for using supervised learning to predict subject-specific bacteremia outcomes
US20200066415A1 (en) * 2018-04-10 2020-02-27 Hill-Rom Services, Inc. Interfaces displaying patient data

Also Published As

Publication number Publication date
TW202400078A (en) 2024-01-01

Similar Documents

Publication Publication Date Title
JP6684302B2 (en) Method of controlling a device for determining susceptibility to cardiopulmonary insufficiency, computer readable storage medium
Ge et al. An Interpretable ICU Mortality Prediction Model Based on Logistic Regression and Recurrent Neural Networks with LSTM units.
RU2630122C2 (en) Method for continuous forecasting of disease severity, death and hospitalization duration
US20090149724A1 (en) System and method for predicting septic shock
JP3081043B2 (en) Diagnosis method of cerebral infarction
JP2008178675A (en) Patient monitoring apparatus for determining parameter representing intrathoracic volume compartment of patient
JP2002529873A (en) Diagnostic tools using predictive equipment
CN113171059B (en) Postoperative END risk early warning of multi-modal monitoring information and related equipment
JP2022508221A (en) Prediction of critical alarm
TWI796228B (en) Acute kidney injury predicting system and method thereof
CN113057587A (en) Disease early warning method and device, electronic equipment and storage medium
TWI835176B (en) Bloodstream infection predicting system and method thereof
US20210257102A1 (en) Method for determining vascular access risk in a hemodialysis patient population
US20230420126A1 (en) Bloodstream infection predicting system and method thereof
TWM632034U (en) Bloodstream infection predicting system
Wan et al. A pilot study of pulse contour cardiac output monitoring in patients with septic shock
US11224350B2 (en) Apparatus and method for detecting artifact of blood pressure signal, and computer readable recording medium storing the method
US20090138252A1 (en) Method and system of evaluating disease severity
Yang et al. A deep learning method for intraoperative age-agnostic and disease-specific cardiac output monitoring from arterial blood pressure
Bond et al. Relationship between microcirculatory perfusion and arterial elastance: A pilot study
Vega et al. Comparison of urea recirculation and thermodilution for monitoring of vascular access in patients undergoing hemodialysis
TWI803893B (en) Artificial intelligence assisted medical diagnosis method for sepsis and system thereof
Gulati et al. Comparative analysis of machine learning techniques based on chronic kidney disease dataset
CN114550855A (en) Venous thromboembolism prediction method, device, terminal and medium based on artificial intelligence
Robert et al. Residents and ICU nurses get reliable static and dynamic haemodynamic assessments with aortic oesophageal D oppler