TWI835003B - 用於具有低紅外線輻射損失的無遮蓋太陽能吸收收集板之可變形複合材料 - Google Patents

用於具有低紅外線輻射損失的無遮蓋太陽能吸收收集板之可變形複合材料 Download PDF

Info

Publication number
TWI835003B
TWI835003B TW110135942A TW110135942A TWI835003B TW I835003 B TWI835003 B TW I835003B TW 110135942 A TW110135942 A TW 110135942A TW 110135942 A TW110135942 A TW 110135942A TW I835003 B TWI835003 B TW I835003B
Authority
TW
Taiwan
Prior art keywords
layer
composite material
solar
patent application
item
Prior art date
Application number
TW110135942A
Other languages
English (en)
Other versions
TW202216438A (zh
Inventor
萊因哈德 達斯巴赫
Original Assignee
德商艾爾美科公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP20203830.3A external-priority patent/EP3988859B1/en
Application filed by 德商艾爾美科公司 filed Critical 德商艾爾美科公司
Publication of TW202216438A publication Critical patent/TW202216438A/zh
Application granted granted Critical
Publication of TWI835003B publication Critical patent/TWI835003B/zh

Links

Abstract

本發明係有關一種適於將太陽輻射轉換成熱的複合材料。該複合材料包括一載體(1),該載體本身的至少一面之上設有一個包括至少五層的多層系統,分別是一黏著層(2),一保護層(3),一第一吸收層(4),一第二吸收層(5)以及一抗反射及保護層(6)。此外,本發明另有關一種選擇性太陽輻射吸收牆板或屋頂板,一種包括該太陽輻射吸收牆板或屋頂板的太陽能外牆或屋頂,以及一種對建築物供熱和/或通風的方法。

Description

用於具有低紅外線輻射損失的無遮蓋太陽能吸收收集板之可變形複合材料
本發明係有關一種吸收太陽輻射和適於高效將太陽輻射轉換成熱的複合材料。該複合材料包括一載體,其在本身的至少一面之上設有一個包括至少五層的多層系統。本發明的複合材料特別適合做為一種在太陽能集熱器中所使用的選擇性太陽能吸收體。此外,本發明另指一種選擇性太陽輻射吸收牆板或屋頂板,一種包括該太陽輻射吸收牆板或屋頂板以及紅外線輻射損失低的太陽能外牆或屋頂,和一種對建築物建築物供熱和/或通風的方法。
太陽能集熱器應將入射的太陽輻射轉換成有用的熱。這種熱會被傳導到某種液態或氣態的熱載體媒介,用其將熱傳送給熱的消費者。
通常,太陽能集熱器的構建方式是將太陽能吸收體設於一個隔熱的機殼內,以免經由熱傳導而發生熱損失,另在面向太陽的那一面設有一透明蓋板(玻璃或雙層聚碳酸酯板片),以避免對流損失。另外,導送熱載體媒介的配管或管道一般是被附加到該太陽能吸收體。
然而,對於一些應用來說,宜採用的卻是將太陽能吸收體直接曝露於四周環境中的所謂無遮蓋太陽能收集器。此舉特別適用於可供產生熱的太陽能集熱器,以便,例如,使建築物通氣和對其供熱,和用於太陽熱能活化(thermos solar-active)的外牆元件,或與熱泵系統結合使用(例如,以便熱再生)。
對於這些應用其中的一些,該複合材料較佳為可變形(例如,採取滾壓成型或深引伸方式),使其可直接做為外牆元件。
為求在不用透明蓋板的情況下仍可獲得高產率的太陽能,應使用一種具有選擇性塗層的太陽能吸收體。設有這種塗層的材料稱為選擇性吸收體。
這種選擇性吸收體必須以盡可能最佳的方式吸收0.3到2.5 µm範圍內的入射太陽輻射,再將其轉換成熱;也就是說,在這波長範圍內,吸收體表面的反射應盡可能低。考慮到熱輻射及能量轉換的克希荷夫定律(Kirchhoff’s law),當太陽輻射將吸收體加熱時,為使紅外線輻射造成的損失減至最低程度,選擇性吸收體在2.5 µm到50 µm波長範圍內的反射應盡可能高,以便獲得盡可能最低的熱發射率。這點對該吸收體曝露於太陽輻射的那一面及背面均適用。因此,為能用於太陽能收集器,也很重要的是,所用材料本身的兩面需符合在2.5 µm到50 µm波長範圍內的高反射要求。
目前已知有許多具有選擇性太陽能吸收塗層的材料。然而,這些材料在各種天氣下曝露多年後,例如20年以上,大部份都沒展現出未顯著衰減的充分防蝕性。
已被用於這些應用的分別是具有高度太陽能吸收率(>90%),但熱發射率也高(在吸收體表面溫度為100℃時,>80%)的烤漆(lacquer)系統,具有中度太陽能吸收率(<90%),但熱發射率卻>50%的陽極處理鋁,或是太陽能吸收系數也很高(>90%),但熱發射率卻較低,約12%的黑鉻(black chrome)。然而,由於黑鉻是以會產生鉻(VI)的濕式化學(wet chemical)製程沉積,這種塗層目前在許多國家已被禁止或設限。另外,它也只能沉積在銅或不銹鋼,而非在鋁之上。
圖1所示者係做為表面溫度函數的無遮蓋吸收體的熱輻射損失及吸收材料以史特凡波茲曼(Stefan Boltzmann)定律求出的熱發射率。該圖表顯示出如使用熱發射率>80%的烤漆系統(圖表中具有空心(open)符號的上方三條曲線),會因熱輻射而導致高損失。若使用熱發射率低,亦即<15%的選擇性吸收器(例如,圖表中具有實心(filled)符號的下方三條曲線),這些損失便能顯著減低。
已知用於玻璃式(glazed)收集器的選擇性吸收體塗層如下:
具有這類光學性質的一種複合材料係以TiNOX®之名為人所知,也在WO 95/17533 A1號專利案中載明。這種TiNOX®材料是所謂的反射吸收疊層(tandem) (參照,例如,「Solar Energy, the State of the Art」 by Jeffrey Gordon, 2001 ISES, ISBN 1 902916 23 9的資料)。在此情況下,是將一種可有效吸收太陽輻射,但在紅外線輻射範圍卻極其透明的吸收層施塗到在2.5 µm到50 µm波長範圍內具有高反射的表面,且其較佳為諸如銅、鋁、鉬、金、銀、鉭、釩和鐵之類的金屬或其合金,從而獲得前述各光學性質。於是,因為高反射表面是在吸收層的正下方,所以在紅外線範圍便達到高反射。
於2.5-50 µm波長範圍內具有意欲高反射性能的銅或鋁的金屬載體材料,較佳是在TiNOX複合材料中做為高反射表面(T1)。WO 95/17533 A1號專利案中也揭示若將前述其中一種金屬塗佈到未必具有反射性質的任一載體材料上,即能產製出高反射表面。所以,該載體材料本身或施塗至其上的高反射金屬塗層是造成該等反射性質的原因。
對於TiNOX,施塗到高反射表面(反射鏡層)的第一層(T2),亦即所謂的吸收層,較佳是由TiN xO y(x, y = 0.1-1.7)組成。最上層(T3)是所謂的抗反射及保護層。這層較佳是由為氧化矽、氧化鋯、氧化鉿、氧化鋁或氧化釔的金屬氧化物組成。它的用途是將太陽輻射在該複合材料表面上的反射減至最低程度,從而進一步增進該複合材料對太陽輻射的吸收率。
以反射吸收疊層原理為基礎的若干其他選擇性吸收體,在文獻中均有所說明。大部份情況下,該吸收層是由一種將金屬粒子散佈在介電基材內的次化學計量金屬化合物,或所謂的陶瓷金屬(cermet)組成。除了前述的氮氧化鈦外,氧化鉻(CrOx,相對於Cr(III),具有次化學計量的氧)或在次化學計量氧化鉻(III)中存有鉻粒子的「陶瓷金屬」,常被建議做為曝露到陽光那一面的吸光層,參照,例如C.E. Kennedy, Review of Mid- to High Temperature Solar Selective Absorber Materials, NREL (National Renewable Energy Laboratory), Technical Report, July 2002的資料,以及該資料引用自下列的文獻: O.A. Pancheko et al., in Probl. At. Sci. Technol. Ser.: Plasma Phys., 132 (1999), 253, and in Int. Conf. Coat. Glass, High-Perform. Coat. Transparent Syst. Large-Area High-Vol. Appl., Pulker H. K. et al., Elsevier Science, Amsterdam, 1999, p. 287。各漸變層(gradient layers)在文獻中也曾有所討讑,參照,例如,B.c. Nunes et al., Thin solid films, 442 (2003), pp.173-178的資料。W. Graf等人曾提出一種據稱是氧化鉻與氮化鉻的漸變混合物(gradient mixture),其係以陶瓷金屬形式直接濺鍍到銅基板上。開發這種混合物的理由據説是因在金屬鉻與氧化鉻之間的轉移需有極度的穩定性,縱使生產條件僅有輕微變化,也會導致沉積的是金屬而非金屬氧化物,反之亦然,所以漸變氧化鉻層甚難產製。另外,因為氮化物存有範圍寬廣的各種不同化學計量,若將氮氣添加到氧氣的環境,據說能彌補這種情勢。然而,此刊物當時所描述的是一種「在Cr xO y中存有低百分比氮化鉻的陶瓷金屬」,並無任何漸變的指示。據說此種陶瓷金屬對濕氣及溫度具有充分的耐抗性,而對有遮蓋太陽能集熱器來說,這些正是影響其使用年限的最重要的環境因素。
在EP 1 217 394 A1號專利案中所揭示的是一種具有可供用於太陽能集熱器之CrO x吸收層的複合材料,其包括三層的層序列,而上層抗反射塗層所具有的折射率是在1.8以下。
對於有遮蓋太陽能收集器的選擇性太陽能吸收體,用以確定其使用年限的標準測試程序是載於M. Köhl, M. Heck, S. brunold, U. Frei, B. Carlsson, K. Möller: “Advanced procedure for the assessment of the lifetime of solar absorber coatings,” Solar Energy Materials & Solar Cells, 84 (2004), pp. 275-289的資料,和DIN ISO 22975-3:2014標準所定義者。然而,次化學計量層的缺點是會讓玻璃式/有遮蓋太陽能集熱器在停滯(stagnation)狀態下變熱,且熱度高達230℃,於是,不飽和金屬原子就會與大氣中的氧氣起反應,使各層面隨著時間而變氧化(參閱,例如,Holloway, P. H.; Shanker, K.; Pettit, R. B.; wowell, R. R.: 「Oxidation of electrodeposited black chrome selective solar absorber films」, Thin Solid Films, Vol. 72, pp. 121-128, 1980的資料)。吸收率在這過程中便減低。此外,也會讓金屬原子展開從反射鏡層擴散到吸收層的過程(參閱,例如,Holloway, P. H.; Shanker, K.; Alexander, G. A.; de Sedas, L.: Oxidation and diffusion in black chrome selective solar absorber coatings, Thin Solid films, Vol. 177, pp. 95-105, 1989的資料)。反射鏡層也觀察到有氧化情形。另外,吸收層範圍內的擴散過程可能導致漸變減弱(參閱,例如,Christina Hildebrandt: 「High-temperature-resistant absorber layers for linearly concentrating solar thermal power plants,」 Dissertation 2009, University of Stuttgart的資料)。在太陽能收集器平均20年以上的使用年限內,這些過程都會使該複合材料的光學性質產生變化(惡化)。
為克服前述的各種困難,EP 2 499 439 B1號專利案中提出下列的解決方法:將至少五層所組成的一種光學活化多層系統施塗到一種由鋁或鋁合金,銅或不銹鋼製成的載體材料,其中該光學活化多層系統的最上層是做為抗反射及保護層,最下層則是由某種在2.5和50 µm之間的波長範圍內具有80%以上整體反射率(integral reflection)的金屬或金屬合金組成。這層通常稱為紅外線反射鏡層。這光學活化系統的最下層與該載體材料之間可插置一道中間層,以增進該多層系統的黏合和/或抑制金屬從載體材料擴散到該多層系統內。這中間層即為該系統的實際吸收層;它是氧和/或氮和/或碳的一種次化學當量金屬化合物,具有的組分為Me rAl sN xO yC z,其中Me是出自元素週期表(periodic system)之IV副族中的某種金屬(例如鈦)或鉻,其中r及s是記述該金屬與鋁的比。鋁或出自IV、V或VI副族的某種金屬的氧化飽和(化學計量)金屬氧化物,例如氧化鉻或氧化鋁,是設於該中間層與抗氧化及保護層之間,而金屬氮化物或金屬碳化物層,亦即出自元素週期表之IV、V或VI副族中的某種金屬的氮化物、碳氮化物或碳化物,例如氮化鉻或碳化鈦,則是設於該吸收層與紅外線反射鏡層之間。此外,該光學活化系統的最上層是一道折射率在1.3和2.4之間,但較佳者是在1.3和2.2之間的介電層,其具有的組分較佳為MeO vN w。矽、鋅、鍚、鋯、鉿、鉻、鋁、釔或鉍可用來做為金屬Me。氟化物也可用來做為替代品。
分別設在吸收層上方及下方的該二層,其用意是要抑制前述的老化過程,據以保護該吸收層。位在該吸收層下方的金屬氮化物或碳化物是做為一種阻障,據以抑制金屬原子從紅外線反射鏡層,甚或從載體材料擴散。此外,它也做為一道保護層,據以保護該反射鏡層耐抗氧化侵蝕。位在該吸收層上方的那層是一道曝露於高溫之下也不能進一步與大氣中的氧起反應的氧化飽和(化學計量)金屬氧化物層。此外,它也做為一道保護層,據以保護該吸收層耐抗氧化侵蝕。
在EP 2 499 439 B1號專利案中所載的複合材料具有耐高溫性,適用於合乎IEA-SHP, DIN ISO 22975-3:2014標準的有遮蓋太陽能集熱器。
對於太陽能吸收體是直接曝露於四周環境中的無遮蓋收集器而言,在20年的使用期間,會使該選擇性吸收塗層曝露於各種全然不同的負載。該吸收體溫度通常低許多(最高為120℃,對照之下,有遮蓋收集器最高為230℃),濕氣及潤濕負載(wetting load)則高出許多(參閱:Dudita, M., Zenhӓusern, D., Mojic, I., Thissen, B., Brunold, S.; 2016. Durability of Spectrally Selective Absorber Coatings Used for Unglazed Solar Thermal Collectors; EuroSun 2016/ ISES Conference Proceedings 2016的資料)。運作期間也觀察到雨水造成的直接潤濕,這對通常會導致吸收層之色彩印象(color impression)出現局部變化的干擾造成影響。此外,該吸收體表面對油/油脂造成的污染並無保護,而這通常也會導致色彩印象的局部變化。
調查已顯示EP 2 499 439 B1號專利案中所記載的層狀系統在高度曝露於濕氣時,尤其是在冷凝狀態下,會導致紅外線反射鏡層的衰減,從而使得熱發射率大幅增加。當吸收器表面變暖時,這種增加又會因為該表面的紅外線輻射而增加令人不快的損失。於是,這種太陽能熱吸收體的效率減低,從而損及其性能。
因此,本發明的目的是提供一種適於做為選擇性太陽能熱吸收體的複合材料,其係直接曝露於環境之中,並能在諸如20年以上的期間長期耐抗嚴苛與潮濕的天候狀況,不使性能遭致顯著減損。在使用做為無遮蓋太陽能吸收體時,該複合材料應維持其外觀。此外,該複合材料也應能在不使塗層剝離的情況下,採取標準的機械加工技術予以變形、穿孔和/或壓印(embossed)。
為解決這些目的,本發明提供:
1. 一種將太陽輻射轉換成熱的複合材料,其包括:
一個包括一(A)面和一(B)面的載體(1),其係由鋁、鋁合金、銅、電解鍍鉻鋼(ECCS) (TFS(無錫鋼皮)鋼皮)或不銹鋼構成,其中該載體(1)的該(A)面上至少依序形成有下列各層:
一道在該載體之上的黏著層(2),其係由鉻、鈦、鎳、鉬、鎢,或含有這些金屬中的二種或以上的合金,或含有由鉻、鋁、釩和銅所組成之群組中選用的至少一種金屬的一非鐵磁性鎳合金,且其具有1到15 nm的厚度,
一道在該黏著層(2)之上的保護層(3),其係從出自元素週期表(periodic system)之IV、V或VI副族中的一種金屬或二種或以上金屬之混合物的一種氮化物,一種碳化物或一種碳氮化物構成,
一道在該保護層(3)之上、屬於金屬化合物的第一吸收層(4),其具有一(Me rAl 1-r)O xN yC z組分,其中Me代表從鈦、鋯和鉿選用的至少一種金屬,其中r是從0.1到1.0,x是從0到1.9,y是從0到0.95,z是從0到0.5,以及x + y + z是從0.5到1.9,
或一種(Cr rAl 1-r) O xN yC z組分,其中r是從0.1到1.0,x是從0到1.4,y是從0到0.95,z是從0到0.5,和x + y + z是從0.8到1.4,
一道在該第一吸收層(4)之上、屬於金屬化合物的第二吸收層(5),其具有如該第一吸收層(4)適用之定義的(Me rAl 1-r)O xN yC z或(Cr rAl 1-r)O xN yC z組分,但該組分卻與該第一吸收層(4)的不同,以及
一道在該第二吸收層(5)之上的介電和/或氧化抗反射及保護層(6),其在380到780 nm的可見波長範圍內具有1.8到2.5的折射率,且是從氧化鋯(Z ­rO 2)、釔安定氧化鋯、氧化鉻(C r2O 3)、氧化鈮(N b2O 5)、氮化矽(S i3N 4)、氧化釔(Y 2O 3)、氧化鉭(T a2O 5)、以及氧化鋯與氧化鉭混合物構成之群組中所選用者。
2.如第1點所述之複合材料,其中該第二吸收層(5)的折射率是高於該抗反射及保護層(6)的折射率。
3.如第1或2點所述之複合材料,其中依據DIN ISO 22975-3:2014, Annex A的標準,該載體(1)所具有的熱發射率是在15%以下,較佳為10%以下,更佳為5%以下。
4.如先前第1到3中任一點所述之複合材料,其中該載體(1)是由純度在99.5%或以上的鋁,純度在99.5%或以上的銅,或下列EN AW 3103 (AlMn1),EN AW 3004 (AlMn1Mg1),EN AW 3104 (AlMn1Mg1Cu),EN AW 3005 (AlMn1Mg0.5)和EN AW 5005 A (AlMg1 (C)鋁合金的其中一種,或下列1.4541 (AISI 321),1.4404 (AISI 316L)和1.4301 (AISI 304)不銹鋼的其中一種構成。
5.如先前任一點所述之複合材料,其中該黏著層(2)是由鉻、鉬或一種鎳釩合金構成。
6.如先前任一點所述之複合材料,其中該保護層(3)是由氮化鉻、碳化鉻、碳氮化鉻(CrCN)、氮化鈦或碳化鈦構成。
7.如先前任一點所述之複合材料,其中該第一吸收層(4)是由CrO xN yC z或(Ti rAl 1-r)O xN yC z構成,其中r是從0.2到0.7。
8.如第7點所述之複合材料,其中該第一吸收層(4)是由CrO xN y構成,其中x是從0.8到1.4,並以0.9到1.2為較佳,而y是從0.02到0.4,並以0.05到0.1為較佳。
9.如先前任一點所述之複合材料,其中該第二吸收層(5)是由CrO xN yC z或(Ti rAl 1-r)O xN yC z構成,其中r是從0.2到0.7。
10.如第9點所述之複合材料,其中該第二吸收層(5)是由CrO xN y構成,其中x是從1.0到1.4,並以0.9到1.2為較佳,而y是從0.02到0.4,並以0.05到0.1為較佳。
11.如先前任一點所述之複合材料,其中該抗反射及保護層(6)是由氧化鋯或氧化鈮構成。
12.如先前任一點所述之複合材料,其進一步包括一道在該抗反射及保護層(6)之上的溶膠凝膠保護層(7),其厚度在4 µm以下,較佳為1到3µm,更佳為1.5到2.5 µm。
13.如先前任一點所述之複合材料,其中:
該載體(1)是由純度為99.5%或以上的鋁構成,
該黏著層(2)是由鉻構成,
該保護層(3)是由氮化鉻構成,
該第一吸收層(4)是由CrO xN y構成,其中x是從0.9到1.2,而y是從0.05到0.1,
該第二吸收層(5)是由CrO xN y構成,其中x是從1.1到1.3,而y是從0.05到0.1,以及
該抗反射及保護層(6)是由氧化鋯或氧化鈮構成。
14.如先前任一點所述之複合材料,其中該載體(1)的該(B)面設有一道防蝕層(8),其包含從一烤漆層、一溶膠凝膠塗層、一黏合膜以及從氧化鋯、氧化矽、氧化鋁或氧化鈮中選用的一層所構成之群組中選用的至少一層,其中該防蝕層(8)的厚度較佳為20到400 nm。
15.如先前任一點,尤其是第13點所述之複合材料,其中以75℃的氣溫,95%的相對濕度和70℃的樣本溫度在人工氣候室內進行1000h的冷凝試驗後,太陽能吸收率的變化不超過1%,熱發射率(100℃)的變化則不超過10%。
16.如先前任一點所述之複合材料,其中其中依DIN ISO 22975-3:2014; Annex A的標準,該(A)面的太陽能吸收率是80%以上,較佳為90%以上,最佳為93%以上,而依DIN ISO 22975-3:2014; Annex A的標準,在100℃的表面溫度時,熱發射率是15%以下,較佳為10%以下,更佳為5%以下,以及其中依DIN ISO 22975-3:2014; Annex A的標準,該(B)面在100℃的表面溫度時,熱發射率是20%以下,較佳為15%以下,更佳為5%以下。
17.一種太陽輻射吸收牆板或屋頂板,其包括依先前任一點所述的複合材料,或由該複合材料構成,另在50℃的表面溫度時,(A)面的紅外線熱損失在100W/m 2以下。
18.如先前第17點所述之太陽輻射吸收牆板或屋頂板,其中該板片具有的形狀用以界定出一個讓熱空氣能被收集與導引的空間,所述空間是由所述複合材料的該(B)面圍住。
19.如先前第17或18點所述之太陽輻射吸收牆板或屋頂板,其中該板片設有若干個較佳係以裂縫或孔洞形式呈現的進氣口,讓在該複合材料的該(A)面之表面加熱的空氣可經由該等進氣口從該複合材料的(A)面流到(B)面。
20.如先前第17到19中任一點所述之太陽輻射吸收牆板或屋頂板,其中該板片設有一個安裝在該複合材料的(B)面之上,並與一建築物內部連通的通氣豎管,使熱空氣可供應到該建築物內部。
21.如先前第17到20中任一點所述之太陽輻射吸收牆板或屋頂板,其中該板片具有一梯形板或浪板的形狀。
22.如先前第17點所述之太陽輻射吸收牆板或屋頂板,其中配管或導管被固定在該複合材料的(B)面上,讓那些形成無遮蓋太陽能吸收外牆或屋頂元件,以供用於熱泵系統的管件,以允許對該等管內循環的流體加熱。
23.如先前第22點所述之太陽輻射吸收牆板或屋頂板,其中該等配管或導管是以焊接、軟焊(soldering)、雷射焊接或超音波焊接方式予以附加。
24.如先前第17點所述之太陽能輻射吸收牆板或屋頂板,其中該複合材料的(B)面是用膠帶黏附到外牆元件或屋頂元件上。因此,便能形成一種太陽能活化外牆的板片而可吸收及儲存日間的太陽能,並在夜間的幾小時期間慢慢釋放,從而大幅減低建築物的熱能需求。
25.如先前第24點所述之太陽輻射吸收牆板或屋頂板,其中該外牆元件或屋頂元件是由混凝土製成,另將一組(an array)配管或導管整合到該混凝土內,讓熱能可利用某種流體(亦即諸如空氣之類的氣體,或某種液體)從該牆板或屋頂板提取出。
26.一種太陽能外牆或太陽能屋頂,包括如先前第17到25中任一點所述之太陽輻射吸收牆板或屋頂板,其中較佳是將若干片的該等板片設成與各自鄰接的板片疊合。
27.一種對建築物供熱及通氣的方法,其包括將環境空氣加熱與供應熱空氣給建築物,其中是使用如先前第17到21中任一點所述的太陽輻射吸收牆板或屋頂板。
28.如先前第27點所述之方法,其中是利用風扇將熱空氣吹進建築物內。
29.如先前第27或28點所述之方法,其中熱空氣較佳是利用風扇經由在該太陽輻射吸收牆板或屋頂板上形成的進氣口吸取並供應到建築物內,經由該牆板或屋頂板進氣口而從(B)面吸取到(A)面之熱空氣的流量是在每平方英尺板片面積每分鐘6立方英尺以下(110m 3/h/m 2以下)。
本發明的複合材料在直接曝露於環境之中時,由於能長期耐抗嚴苛與潮濕的天候狀況,因而於其做為太陽能熱吸收體的一般使用年限內,除了性能未顯著減損外,也維持良好的外觀,所以極為適於無遮蓋太陽熱能吸收體的用途。此外,本發明的複合材料還能在不讓塗佈層系統剝離或裂開的情況下,採取標準的機械加工技術予以機械性變形、穿孔和/或壓印(embossed)。
本發明之複合材料的載體是由純度較佳在99.5%或以上的高純度鋁、鋁合金、銅、電解鍍鉻鋼(ECCS) (另或原稱為TFS (無錫鋼皮)鋼材)或不銹鋼組成。
能在本發明中做為載體材料的高鈍度鋁及銅,於2.5到50 µm波長範圍內具有大於95%的極高總反射率(integral reflection)。EP 2 499 439 B1號專利案中所揭示的獨立(separate)紅外線反射層,在本發明可以免除。它可改由厚度在15 nm以下而充分透明的一種薄黏著層(2)取代,以致高鈍度鋁及銅在2.5到50 µm波長範圍內的高反射率可發揮效用,從而能達到5%以下的熱發射率(100℃)。在這紅外線範圍內,電解鍍鉻鋼(ECCS) (或TFS (無錫鋼皮)鋼材)及不銹鋼所具有的反射率較低。因此,雖然熱發射率較高,但仍在15%以下,遠低於採用烤漆(lacquer)層或陽極處理鋁表面的太陽能吸收板。
本發明的另一方面是將該抗反射及保護層(6)設計成用以防止吸收體表面因為雨水或冷凝水的潤濕而產生局部變色以及因為油脂而受到,例如,沾上指紋等之類的污染而使其外觀劣化。該抗反射層(6)如採用折射率在1.8或以上到2.5的材料,是達成此舉的方式。在本發明中,該折射率數值係指380到780 nm的可見波長範圍。
採用折射率在1.8或以上的抗反射及保護層時,EP 2 499 439 B1號專利案中所揭示的化學計量(stoichiometric)保護層就必須改由一種次化學計量吸收層(本發明中的第二吸收層(5)取代,以便獲得高太陽能吸收率(>93%)。由於無遮蓋收集器的熱負載遠低於有遮蓋收集器,因而如EP 2 499 439 B1號專利案中所揭示的一種設於該中間收集層與該抗反射層之間的化學計量保護層,在本發明的層堆疊(layer stack)中不需採用,亦可達到充分的熱穩定性。該抗反射及保護層(6)對各吸收層的氧化侵蝕(oxidic attack)能提供充足的保護。在任何情況下,本文聲稱的材料對熱負載都展現出充分的耐抗性。
在該介電第二吸收層(5)加入一定份量(defined fraction)的不飽和金屬粒子,據以形成一種次化學計量第二吸收層(例如,形成一種陶瓷金屬),就能使該最上方吸收層(5)的折射率增加到一個宜比抗反射層的折疊率還高的程度,以致能進一步提升抗反射效果而達到高太陽能吸收率,並在這層狀系統(layer system)嚴重曝露到雨水或受污染(例如,油脂污染)時,視覺色彩印象(visual color impression)不會出現實質變化。
請參閱圖2,先將該該複合材料面朝太陽之(A)面的該層狀系統說明於後。
本發明的複合材料包括一種光學活性系統,亦即一種在做為紅外線反射鏡(infrared mirror)之光學活性載體(1)上沉積至少五層(層(2)、(3)、(4)、(5)、(6)的多層系統。最上層是一道介電和/或氧化抗反射及保護層,在可見波長範圍(380到780 nm)內具有1.8到2.5的折射率,且是從氧化鋯(Z ­rO 2)、釔安定氧化鋯、氧化鉻(C r2O 3)、氧化鈮(N b2O 5)、氮化矽(S i3N 4)、氧化釔(Y 2O 3)、氧化鉭(T a2O 5)和氧化鋯與氧化鉭混合物構成之群組中所選用者。所有這些材料對濕氣均具有優良的穩定性,並且極為耐抗機械損傷。
該光學活性系統的最下層(2)是一道用以促進該載體(1)與該保護層(3)之間黏合的黏著層,且是由鉻、鈦、鎳、鉬、鎢,並以鉻、鉬或鎳為較佳,或含有這些金屬中的二種或以上的合金,或含有由鉻、鋁、釩和銅鎖組成之群組中選用的至少一種金屬的一非鐵磁性鎳合金。該黏著層(2)具有1到15 nm的厚度。
該等中間層(4)和(5)是這系統的實際吸收層;它們是金屬化合物,具有(Me rAl 1-r)O xN yC z的組分(composition),其中Me表示從鈦、鋯和鉿選用的至少一種金屬,r是從0.1到1.0,x是從0到1.9,y是從0到0.95,z是從0到0.5,且x+y+z是從0.5到1.9,或(Cr rAl 1-r) O xN yC z的組分,其中r是從0.1到1.0,x是從0到1.4,y是從0到0.95,z是從0到0.5,且x+y+z是從0.8到1.4。
該第一吸收層(4)和該第二吸收層(5)所用的材料能以陶瓷金屬呈現。該陶瓷金屬是那些將金屬粒子,亦即本發明中的鈦、鋯、鉿和/或鉻,或具有金屬性質(例如氮化鉻)、但尺寸遠小於太陽能輻射波長之物質的粒子嵌入(embedded)某個介電基材(matrix)(例如氧化鉻或氮化鋁)的材料。
在本發明中,該等吸收層(4)和(5)的組分有所不同。因此,若與該折射層(6)結合,採取一種能獲得高太陽能吸率及受潮和受污染(例如,油脂污染)時讓整個層狀系統的變色減至最低程度的方式,就能調整折射率。
一種金屬氮化物和/或碳化物層(3),亦即出自元素週期表(periodic system)之IV、V或VI副族(亦即T,Z,鉿,釩,鈮,鉭,鉻,鉬,鎢)中的一種金屬或二種或以上金屬之混合物的氮化物、碳氮化物或碳化物,例如氮化鉻、氮化鈦或碳化鈦,是位在該黏著層(2)之上和該吸收層(4)之下。該下方層(3)的金屬氮化物或碳化物是做為一種阻障(barrier),據以壓制金屬原子從載體材料(1)擴散。此外,它也做為一道防蝕層,據以使載體表面保持高反射性。因此,這一層(3)在本發明中概括稱為保護層。
這種層狀系統的光學性質可用菲涅耳(Fresnel)方程式予以求出。另外,這種層狀系統的反射光譜則可用源自菲涅耳方程式的一種矩陣法予以求出,參閱,例如,E. Hecht “Optik”, Verlag Oldenburg 2001, ISBN 3-486-24917-7, p. 626-630的資料。
依本發明的這種光學活性多層系統在AM 1.5的條件下(亦即空氣質量係數為1.5的條件 – 參閱ASTM G173-03的資料)可吸收90%以上的太陽輻射,而且若是以鋁或銅做為戴體材料,熱發射率可達到5%以下的程度。如果是電解鍍鉻鋼(ECCS) (或TFS (無錫鋼皮)鋼材)或不銹鋼,所獲得的熱發射率是15%以下。本發明的太陽能吸收率及熱發射率是依據DIN ISO 22975-3:2014 Annex A的標準測定。
在約30℃到50℃的較高表面溫度時,本發明之板材的(A)面因紅外線輻射而造成的能量損失是100 W/m 2以下 (參閱圖1)。利用依據DIN ISO 22975-3:2014 Annex A標準所測定的熱發射率,可從特定溫度適用的史特凡波茲曼(Stefan Boltzmann)方程式求出這種因紅外線輻射而造成的能量損失。
對於高濕氣以及吸收體表面因冷凝和/或雨水而受水(潤濕)的影響,跟EP 2 499 439 B1號專利案中所申請的複合材料相比,本發明的複合材料較穩定。此外,受潮或受到油脂污染時,也未發生顯著變色情形。
現將該複合材料各層的實施例詳予說明於後。
載體(1):
依據DIN ISO 22975-3:2014 Annex A的標準,該戴體(1)所具有的熱發射率在20%以下,較佳為15%以下或10%以下,最佳為5%以下。
該載體(1)較佳是由純度在99.5%或以上的鋁,純度在99.5%或以上的銅,或下列EN AW 3103 (AlMn1),EN AW 3004 (AlMn1Mg1),EN AW 3104 (AlMn1Mg1Cu),EN AW 3005 (AlMn1Mg0.5)和EN AW 5005 (AlMg1 (C))鋁合金的其中一種,或下列1.4541 (AISI 321),1.4404 (AISI 316L)和1.4301 (AISI 304)不銹鋼的其中一種構成。
該載體的厚度為0.3 mm到1.5 mm,較佳為0.5到1.0 mm,更佳為0.5到0.8 mm。
黏著層(2):
該黏著層(2)是直接位在該載體(1)之上,且較佳是由鉻、或鎳釩合金構成。
該黏著層的厚度是1到15 nm,並以2到10 nm為較佳,更佳為在4到8 nm的範圍。
保護層(3):
該保護層(3)較佳是由氮化鉻(CrN)或氮化鈦(TiN)構成,但最佳為氮化鉻。
該該保護層(3)的厚度為10到50 nm,較佳為15到45 nm,更佳為20到40 nm。
第一吸收層(4)及第二吸收層(5):
該第一吸收層(4)和該第二吸收層(5)是由一種組分為(Me rAl 1-r)O xN yC z的金屬化合物構成,其中Me表示從鈦、鋯和鉿選用的至少一種金屬,r是從0.1到1.0,x是從0到1.9,y是從0到0.95,z是從0到0.5,且x+y+z是從0.5到1.9。
此外,r的範圍為0.2到0.7或0.2到0.6,較佳為0.3到0.5。
或者,該第一吸收層(4)和該第二吸收層(5)可改由一種組分為(Cr rAl 1-r) O xN yC z的金屬化合物構成,其中r是從0.05到1.0,x是從0.9到1.4,y是從0到0.5,z是從0到0.5,且x+y+z是從0.9到1.9。
此外,r的範圍為0.2到0.7或0.2到0.6,較佳為0.3到0.5。
在本發明的一些較佳實施例中,該第一吸收層(4)和該第二吸收層(5)是由CrO xN y或(Ti rAl 1-r)O xN y構成,其中r是從0.2到0.6,x是從0.9到1.9,y是從0到0.5,和z是從0到0.5。就x而言,當鋁(Al)的比例較高時,亦即r變低時,較佳能將x調整到具有一個小的數值。
更佳者是讓該第一吸收層(4)由CrO xN y構成,其中x是從0.8到1.4,且較佳為0.9到1.3,更佳為0.9到1.2,而y是從0.02到0.4,且較佳為0.05到0.1。該第二吸收層(5)也是由CrO xN y構成,其中x是從1.0到1.4,且較佳為1.0到1.3,更佳為1.1到1.2,而y是從0.02到0.4,且較佳為0.05到0.1。
在本發明中,該第二吸收層(5)的組分與該第一吸收層(4)不同,亦即有所區別。組分不同時,通常表示x、y和z這些指數會不同。此外,金屬的類別和/或以(Me rAl 1-r)O xN yC z而論,該金屬與鋁之間的比例可以不同。
該第一吸收層(4)的厚度較佳為10到150 nm,更佳為20到100 nm,最更為30到70 nm。
此外,該第一吸收層(4)若由CrO xN y構成時,該吸收層(4)的厚度則較佳為20到50 nm,更佳為30到40 nm;另在該第一吸收層(4)如由(Ti rAl 1-r)O xN y構成時,那麼該吸收層(4)的厚度較佳為30到80 nm,更佳為40到70 nm。
該第二吸收層(5)的厚度較佳為10到150 nm,更佳為15到40 nm,最佳為15到30 nm。
此外,該第二吸收層(5)若由CrO xN y構成時,該吸收層(5)的厚度較佳為15到40 nm,更佳為15到30 nm;另在該第二吸收層(5)如由(Ti rAl 1-r)O xN y構成時,那麼該吸收層(5)的厚度較佳為15到40 nm,更佳為20到30 nm。
抗反射及保護層(6):
該抗反射及保護層(6)在380到780 nm的可見波長範圍內具有1.8以上到2.5的折射率,且是從氧化鋯、釔安定氧化鋯、氧化鉻、氧化鈮、氮化矽、氧化釔、氧化鉭和氧化鋯與氧化鉭混合物構成之群組中所選用者。所有這些材料對濕氣均具有優良的穩定性,且極為耐抗機械損傷。該抗反射及保護層(6)較佳是由氧化鋯或氧化鈮構成。
該抗反射及保護層(6)的厚度則為20到150 nm,較佳為30到80 nm,更佳為40到70 nm。
選用層(7):
該複合材料可在抗反射及保護層(6)之上設一道溶膠凝膠(sol-gel)保護層,進一步保護該複合材料的(2)到(6)層耐抗環境衝擊。該溶膠凝膠保護層的厚度應該薄化,以免使該複合材料的熱發射率顯著增加。該厚度較佳在4 µm以下,更佳為1到4 µm或1到3µm,最佳為1.5到2.5 µm或1.5到2 µm。
選用層(8):
依本案之多層系統背向太陽的反面(B)可保持不塗佈;或者,這面也可改為塗佈(例如,採用PVD、CVD或PECVD沉積方法)一道較佳是由氧化鋯、氧化矽、氧化鋁或氧化鈮構成的防蝕層(8)。
這層(8)的各選用參數在選取時,是以不使金屬載體材料在紅外線範圍內的高反射率受到重大減損為原則,例如,要在20%以下。由於這層可防止該金屬反面受蝕,縱使在太陽能收集器長期使用該複合材料的期間,反射實質未減低。結果,熱輻射損失仍然低,而在做為外牆(facade)收集器元件時,建築物牆壁散發出的紅外線輻射會再度朝向該牆壁反射(參閱圖12,下半部)。因此,以這複合材料做為熱反射鏡(heat mirror),就可減低建築物的熱損失。相比之下,如使用具有高熱反射率(依熱輻射的克希荷夫定律(Kirchhoff’s law),相當於紅外線範圍內的高吸收率)的烤漆或陽極處理材料時,該建築物牆壁的該紅外線輻射將會被這太陽能外牆收集器元件吸收並消散到周圍環境中(參閱圖12,上半部)。這層的厚度較佳為20到400 nm,更佳為50到300 nm,最佳為100到200 nm。是以,這材料仍能輕易成型,不會在保護層產生剝落(flaking)或顯著的裂痕。
或者或另外,該(B)面也能以烤漆層或黏合膜(adhesive film)予以防蝕。
本發明的複合材料可由該載體(1)以及該等(2)、(3)、(4)、(5)和(6)層,加上(7)與(8)中選用的一或二層組成;也就是說,在此情況下未添加或插入其他層面。
該複合材料如欲用於外牆元件的太陽能活化,可對其施用雙面膠帶或較佳的壓克力黏合劑轉貼膜(transfer film)。此舉可讓該複合材料直接黏附到該等外牆元件上。
在本發明的一極佳實施例中,該複合材料的詳情如後:
該載體(1)是由純度在99.5%或以上的鋁構成,而在該載體的(A)面,
該黏著層(2)是由鉻構成,
該保護層(3)是由氮化鉻構成,
該第一吸收層(4)是由CrO xN y構成,其中x是從0.9到1.2,而y是從0.05到0.1,
該第二吸收層(5)是由CrO xN y構成,其中x是從1.1到1.3,而y是從0.05到0.1,以及
該抗反射及保護層(6)是由氧化鉻或氧化鈮構成。
在此實施例中,該抗反射及保護層(6)之上可存有或不存有一道溶膠凝膠塗層(7),該複合材料反面(B)之上也可存有或不存有前述那一層(8)。
依本發明的複合材料能以習用方法生產。例如,商業化的PVD (物理氣相沉積)製程可用於沉積如本發明所述的各吸收層與其他層面,不過,像CVD (化學氣相沉積)或PECVD (電漿輔助化學氣相沉積)的製程也可使用。該抗反射及保護層(6)較佳是用電子束蒸鍍予以塗布。在真空室內,是利用捲繞機構讓金屬扁條(metal strip)按照定速移動經過不同的PVD塗布站,以便使這多層系統的個別層能依序被施塗到該載體材料的(A)面。
塗布前,可先將該金屬扁條捲成卷狀儲放。準備塗布時,可在正要將該金屬扁條送入真空室之前將其鬆捲,接著塗布和在塗布後移出(批次處理),或取決於塗布製程,可經由真空鎖定系統將其從大氣環境(atmosphere)引入真空室,其後再經由第二真空鎖定系統送返到大氣環境(空氣對空氣製程)。
該金屬扁條在塗布前,較佳是先通過一個或以上的電漿清洗站,清除該金屬基板的表面污染(例如,水、油、油脂、氧化物),從而確保該多層系統的良好黏合性。該載體上的原始氧化層雖不必去除,但也可部分或完全去除。該載體(1)不應有陽極氧化處理的表面,否則若是鋁時,這種表面通常會有以µm計算的厚度。
舉例來說,磁控濺鍍、氣流(gas flow)濺鍍、離子束濺鍍、電子束氣相沉積、熱氣相沉積或電弧蒸鍍(arc vapor deposition)均可用於PVD製程。個別層可以只用一種特定(specific)的PVD製程來施塗。因為特定的PVD通常是特別適於沉積特定的材料,所以並非不可採用不同的PVD製程。
反應性PVD通常是用來沉積金屬氧化物、氮化物和/或碳化物。金屬是以所述製程其中的一種來沉積,氧氣和/或氮氣和/或某種含碳的氣體則是經由氣體配送系統按指定的流速添加到PVD腔體(chamber),以致該金屬形成意欲的化合物。
反應性PVD製程以採用反應性磁控濺鍍為較佳。如使用氧氣做為反應氣體,便能用含氧感測器(Lambda sensor)來自動控制沉積層的組分,但若為氧氣、氮氣和/或含碳氣體的混合體,就要用電漿-放射-監測(PEM)系統來自動控制。
改變金屬扁條的速率或引入各個PVD塗布站的功率(power),便能用已知方式來控制個別層的厚度。沉積率可依照不同的方法予以控制及調節。反射量測術、橢圓偏光術、晶體法或X射線螢光法等,都是業界對此所採用者,在本發明也能適用。
該載體材料(B)面的光學活化層可用前述PVD (以及CVD和PECVD)製程其中的一種予以施塗。
本發明亦指一種包括本發明所述複合材料或由其組成的太陽能輻射吸收牆板與屋頂板。
這類牆板或屋頂板的優點是能做為太陽熱能吸收器,以便對建築物內部供熱。圖11所示者即為可應用本發明之牆板或屋頂板而對建築物供熱的典型系統。該等板片是用來對環境空氣加熱,熱空氣是用該等板片所形成或附加到該等板片的管道予以導引,再用風扇之類的裝置傳送到建築物內部。
在對環境空氣加熱及導引空氣這方面,本發明之板片的優點是具有能界定出一空間的形狀,例如一管道,從而可收集與導引熱空氣,該空間是由該複合材料的(B)面圍住。
此外,該等板片還設有若干個較佳是以裂縫(slit)或孔洞形式呈現的進氣口,讓那些被本發明之板片表面加熱的環境空氣可經由該等進氣口從該複合材料的(A)面流到(B)面。此舉較佳是由諸如風扇之類的通氣裝置予以輔助,且其對熱空氣宜確立指定的流速。再者,該等進氣口較佳是均勻分佈在該板片表面,以便在該板片的整個表面產生均勻的氣流,從而可受控及有效的將熱從該板片傳送到環境空氣。
在本發明的一些較佳實施例中,該等板片設有安裝在該複合材料(B)面之上並與建築物內部連通的通氣豎管(stack),讓熱空氣可供應到該建築物的內部。在圖11中,該通氣豎管是設在該風扇的下游。
在本發明的一些較佳實施例中,該太陽能輻射吸收牆板或屋頂板具有界定出一空間的形狀,以供容置待加熱的環境空氣。為此,該板片較佳具有如圖8及圖9所示的梯形板形狀或如圖10所示的浪板形狀。可應用於本發明之牆板或屋頂板的適宜形狀已在,例如,DIN 18808 (1987)標準及US 2005/0252507 A1號專利案中揭示。
為獲得本發明的該等板片,可將該複合材料予以機械變形,通常是用滾壓成型或深引伸(deep drawing)方式為之,使其形成一種梯形板或浪板。該等做為進氣口的穿孔則可用諸如衝孔、鑽孔、銑孔(milling)或雷射切割之類的標準方法使其形成。
在本發明的其他一些實施例中,可利用膠帶將該複合材料或該等太陽能輻射吸收牆板或屋頂板的該(B)面黏附到外牆或屋頂元件上,從而形成可供用於太陽能熱活化的板片。在這些實施例中,該等牆板、屋頂板或複合材料都不必為了形成導引空氣的空間而予成型處理。反之,如圖13所示,熱是被直接傳送到該建築物的外牆元件或屋頂元件。用於太陽能熱活化的該外牆元件較佳包括混凝土,並將一組(an array)配管或導管整合到該混凝土內。此舉讓熱能可從該複合材料抽出和經由該外牆元件材料送至該等管件內的流體(以空氣為較佳的氣體,或液體) (參閱圖13)。
在本發明的另一些實施例中,該等太陽能輻射吸收牆板或屋頂板或複合材料可設有附加到該複合材料的(B)面之上的配管或導管,使其內循環流動的流體變熱(參閱圖14b)。該等配管或導管可排列成蛇形(參閱圖14b)或豎琴狀(參閱圖14c)的幾何形狀。這些配管的幾何形狀讓幾片板片的管件可連接而形成一種太陽能外牆或屋頂。
通常,前述配管或導管是以焊接、軟焊(soldering)、雷射焊接或超音波焊接方式予以附加。如需要時,可將熱從該等配管或導管抽出,因而能,例如,與熱泵浦結合而對建築物供熱。
本發明另指一種太陽能外牆或屋頂,包括依本發明的太陽能輻射吸收牆板或屋頂板,其中較佳將若干片的該等板片設成與鄰接的板片疊合,據以形成一種太陽能吸收外牆或屋頂。
本發發也指一種對建築物供熱及通氣的方法,包括將環境空氣加熱與供應熱空氣給建築物,其中所使用的即為依本發明的太陽能輻射吸收牆板或屋頂板。
在依本發明一實施例的方法中,由曝露於太陽能輻射之牆板或屋頂板表面所加熱的環境空氣,是以諸如風扇之類的通氣裝置經由進氣口抽吸,再吹入建築物內。
對於做為外牆太陽能空氣集熱器的那些熱發射率高的太陽能吸收板(例如,烤漆或陽極處理板),所用系統或方法的氣流率如達到每平方英尺吸收體面積每分鐘6立方英尺以上(6 cfm/ft 2= 110m 3/h/m 2),即為高效率(70%以上)(參閱US 2005/0252507 A1號專利案中第1頁第0006段的資料),因為在此情況下,經由該板片吸進的空氣會將該板片冷卻到讓紅外線輻射損失變低的20℃以下的表面溫度(參閱圖1)。氣流率較低時,習用系統會因吸收板的表面溫度上升到讓紅外線輻射損失變重大的程度,致使其效能顯著減低。
然而,如使用本發明的選擇性太陽輻射能吸收體複合材料,縱使在板片的表面溫度較高時,也會因為該複合材料的熱發射率低,使輻射損失可以保持在低水準(小於100 W/m 2,參閱圖1)。於是,縱使氣流率低,也能達到高效能的熱傳導(於2 cfm/ft 2= 36m 3/h/m 2的流率時約60%)。此外,在1000 W/m 2的太陽輻射和諸如2 cfm/ft 2= 36m 3/h/m 2的流率下,依然能達到比環境氣溫增加高達50℃的溫度。
實施例
實施例1a)
使用厚度為0.7mm和寬度為1250mm,並經化學純化予以脫脂及鈍化的鋁扁條(純度為99.5% - 99.8%的鋁)做為載體材料。
隨後以商用的空氣對空氣扁條塗佈裝置(air to air strip coating unit)將這種預處理的鋁扁條塗層。將這類扁條塗佈裝置在,例如,下列叢書「Vakuumbeschichtung」,Volume 5, pp. 187-199, VDI-Verlag 1993, editor: Gerhard Kienel, ISBN 3-18-401315-4中已予說明。
該鋁扁條是經由若干個條鎖(strip lock)進入真空室,再通過若干個電漿清洗站。隨後,將該扁條進給通過若干個由平鎖(flat lock)彼此隔開的磁控濺鍍站。
在該第一濺鍍站,利用濺鍍法施塗一道厚度為5 nm的鉻層,以形成該黏著層(2)。
在下一濺鍍站,將鉻及指定添加量的氮氣利用反應性濺鍍法沉積一道厚度為35 nm的氮化鉻層;以此氮化鉻層形成該保護層(3)。
在下一濺鍍站,將鉻及指定添加量的氧氮混合氣體利用反應性濺鍍法沉積一道厚度為36 nm的次化學計量CrO 1.0N 0.08層,以形成該第一吸收層(4)。該組分是用含氧感測器予以自動控制。
接著,在下一濺鍍站,將鉻及指定添加量的氧氮混合氣體利用反應性濺鍍法沉積另一道厚度為26 nm的次化學計量CrO 1.2N 0.08層,以形成該第二吸收層(5)。該組分是用含氧感測器予以自動控制。
該濺鍍製程是在1e-3到6e-3毫巴(mbar)的壓力範圍進行。濺鍍氣體是使用氬氣。
通過另一個平鎖後,該扁條即進入電子束氣相沉積室。在這室內,是利用電子束技術使氧化鋯(ZrO 2)氣相沉積。在此過程當中,係以指定方式添加氧氣,以便在1e-4到6e-4毫巴的範圍調整工作壓力。此過程施塗的氧化鋯層係形成該多層系統的該抗反射及保護層(6),厚度則為60 nm。
該多層系統中各層的厚度是利用橢圓偏光系統予以測定及控制。
隨後,該扁條會經由一個多段式的條鎖送返到大氣環境,再將其捲繞。
如圖3所示者係這材料的反射光譜,太陽能吸收率和熱發射率(於100℃時)。
接著,讓這複合材料接受室外耐候試驗。該材料是以該塗層面(A)朝向天空的姿態被水平固定在位於德國伯恩堡(Bernburg)的耐候試驗架上並未受保護地在各種天氣下曝露3年。
如圖4示者係原始狀態與經過3年風化(weathering)後的反射光譜及吸收率。該複合材料的光學特性實質並未改變,亦未觀察到侵蝕跡象。
此外,該複合材料也曾接受有關無遮蓋外牆太陽能吸收體在20年的使用年限內,其吸收體表面預期對高濕氣及因冷凝和/或下雨產生之水的耐抗穩定性試驗。這些試驗是以下列所開發出方法為基礎:國際能源署太陽能供熱製冷計劃(IEA SHC Program)之任務10 (Task 10) (Carlsson, B., Frei, U., Köhl, M., Möller, K.; 1994. Accelerated Life Testing of Solar Energy Materials - Case Study of some Selective Solar Absorber Coating Materials for DHW Systems; A report of IEA Task X; Solar Materials Research and Development; SP Report 94:13; ISBN91-7848-472-3),以及應用於位在瑞士蘇黎世之無遮蓋太陽能外牆收集器的吸收體表面所確定的室外負載配置(load profile) (D, M.,Zenhӓusem, D., Mojic, I., Thissen, B., Brunold, S.; 2016. Durability of Spectrally Selective Absorber Coatings Used for Unglazed Solar Thermal Collectors; EuroSun 2016 / ISES Conference Proceedings 2016)。為能模擬合理期限內所測定的高濕氣及潤濕負載,是在70和80℃溫度條件下以吸收體表面的冷凝來測試濕度及濕潤的影響,對照起來,依IEA-SHP, DIN ISO 22975-3標準,遮蓋的太陽能收集器是在40℃或60℃的試驗溫度條件下測試。因此,已用二種複合材料樣本同時在氣候室內,分別按照75℃的氣溫與95%的相對濕度以及70℃的樣本溫度進行長達1900 h和按照75℃的氣溫與95%的相對濕度以及80℃的樣本溫度進行長達807 h的恆定負載冷凝試驗。
如圖6所示者係太陽能吸收率的衰減結果。試驗時間,在兩種試驗溫度條件下的太陽能吸收率均未觀察到顯著變化。
如圖7所示者則顯示出熱發射率隨著試驗時間增加。採用一種從阿瑞尼斯定律(Arrhenius law)衍生出的方法(IEA-SHP, DIN ISO 22975-3標準有所說明),就能根據熱發射率在兩種試驗溫度的不同衰減率來推估衰減過程的活化能。根據這活化能及負載資料(load profile),就能推估做為外牆收集器的該複合材料作具有30年以上的使用年限。
此外,如圖5b所示者係實施例1a的材料於300℃接受100小時溫度試驗後的反射光譜。各光學性質未觀察到顯著變化。此舉表示該材料展現出良好的耐熱性。
因而取得的吸收體扁條先貼合(laminated)一層保護膜,再經加工成一板片,方法是以衝孔處理而形成矩形進氣口,接著以滾壓成型處理而獲得如圖8所示的板片。在衝孔及滾壓成型處理後,表面並未觀察到因機械加工而導致的變質情形(deterioration)。
因而取得的外牆元件以史特凡波茲曼(Stefan Boltzmann)方程式計算,顯示出紅外線損失在100 W/m 2以下,而依DIN ISO 22975-3:2014 Annex A標準所測定的熱發射率,則高達100℃的表面溫度。
實施例1b)
使用厚度為0.6mm和寬度為1250mm,並經化學純化予以脫脂的不銹鋼(EN 14541; AISI 321)扁條做為載體材料。
隨後以商用的空氣對空氣扁條塗佈裝置將這種預處理的不銹鋼扁條塗層。
不銹鋼扁條是經由若干個條鎖進入真空室,再通過若干個電漿清洗站。隨後,將該扁條進給通過若干個由平鎖彼此隔開的磁控濺鍍站。
在該第一濺鍍站,利用濺鍍法施塗一道厚度為5 nm的鉻層,以形成該黏著層(2)。
在下一濺鍍站,將鉻及指定添加量的氮氣利用反應性濺鍍法沉積一道厚度為35 nm的氮化鉻層;以此氮化鉻層形成該保護層(3)。
在下一濺鍍站,將鉻及指定添加量的氧氮混合氣體利用反應性濺鍍法沉積一道厚度為32 nm的次化學計量CrO 1.0N 0.08層,以形成該第一吸收層(4)。該組分是用含氧感測器予以自動控制。
接著,在下一濺鍍站,將鉻及指定添加量的氧氮混合氣體利用反應性濺鍍法沉積另一道厚度為24 nm的次化學計量CrO 1.2N 0.08層,以形成該第二吸收層(5)。該組分是用含氧感測器予以自動控制。
該濺鍍製程是在1e-3到6e-3 毫巴的壓力範圍進行。該濺鍍氣體是使用氬氣。
通過另一個平鎖後,該扁條即進入電子束氣相沉積室。在這室內,是利用電子束技術使氧化鋯(ZrO 2)氣相沉積。在此過程當中,係以指定方式添加氧氣,以便在1e-4到5e-4毫巴的範圍調整工作壓力。此過程施塗的氧化鋯層係形成該多層系統的該抗反射及保護層(6),厚度則為68 nm。
該多層系統中各層的厚度是利用橢圓偏光系統予以測定及控制。
隨後,該扁條會經由一個多段式的條鎖送返到大氣環境,再將其捲繞。
如圖3所示者係這材料的反射光譜,太陽能吸收率和熱發射率(100℃)。
這材料也展現出優異的耐濕及耐蝕穩定性。採用深引伸及滾壓成型方式,可讓這材料在不損及塗層的情況下變形。
實施例2)
使用厚度為0.7mm和寬度為1250mm,並經化學純化予以脫脂及鈍化的鋁片(純度為99.5% - 99.8%的鋁)做為載體材料。
隨後以商用的空氣對空氣扁條塗佈裝置將這種預處理的鋁扁條塗層。鋁扁條是經由若干個條鎖進入真空室,再通過若干個電漿清洗站。隨後,將該扁條進給通過若干個由平鎖彼此隔開的磁控濺鍍站。
在該第一濺鍍站,利用濺鍍法施塗一道厚度為5 nm的鉻層,以形成該黏著層(2)。
在下一濺鍍站,將鉻及指定添加量的氮氣利用反應性濺鍍法沉積一道厚度為31 nm的氮化鉻層;以此氮化鉻層形成該保護層(3)。
在下一濺鍍站,將鉻及指定添加量的氧氮混合氣體利用反應性濺鍍法沉積一道厚度為34 nm的次化學計量CrO 1.0N 0.05層,以形成該第一吸收層(4)。該組分是用含氧感測器予以自動控制。
接著,在下一濺鍍站,將鉻及指定添加量的氧氮混合氣體利用反應性濺鍍法沉積另一道厚度為16 nm的次化學計量CrO 1.1N 0.05層,以形成該第二吸收層(5)。該組分是用含氧感測器予以自動控制。
通過另一平鎖後,該扁條即進入一組設有氧化鈮靶材的連續式濺鍍站,在該處是將氧化鈮(Nb 2O 5)添加氧氣予以濺鍍。此過程施塗的氧化鈮層係形成該多層系統的該抗反射及保護層(6),厚度則為55 nm。
該濺鍍製程是在1e-3到6e-3毫巴的壓力範圍進行。該濺鍍氣體是使用氬氣。
該多層系統中各層的厚度是利用橢圓偏光系統予以測定及控制。
隨後,該扁條會經由一個多段式的條鎖送返到大氣環境,再將其捲繞。
如圖4所示者係這材料的反射光譜,太陽能吸收率和熱發射率(100℃)。圖中也顯示出實施例1a、1b和3的光譜,以便比較。
將膠帶貼合到實施例2之該複合材料的(B)面上,使該複合材料黏附到外牆元件,以便實施太陽能熱活化。
實施例3)
使用厚度為0.7mm和寬度為1250mm,並經化學純化予以脫脂及鈍化的鋁扁條(純度為99.5% - 99.8%的鋁)做為載體材料。
隨後以商用的空氣對空氣扁條塗佈裝置將這種預處理的鋁扁條塗層。鋁扁條是經由若干個條鎖進入真空室,再通過若干個電漿清洗站。隨後,將該扁條進給通過若干個由平鎖彼此隔開的磁控濺鍍站。
在該第一濺鍍站,利用濺鍍法施塗一道厚度為5 nm的钛層,以形成該黏著層(2)。
在下一濺鍍站,將鉻及指定添加量的氮氣利用反應性濺鍍法沉積一道厚度為20 nm的氮化鈦層;以此氮化鈦層形成該保護層(3)。
在下一濺鍍站,將鈦鋁(TiAl)及指定添加量的氮氣利用反應性濺鍍法沉積一道厚度為68 nm的次化學計量Ti 0.3Al 0.7N 0.85層,以形成該第一吸收層(4)。
接著,在下一濺鍍站,將鈦鋁及指定添加量的氮氣利用反應性濺鍍法沉積另一道厚度為24 nm的次化學計量Ti 0.3Al 0.7N 0.95層,以形成該第二吸收層(5)。
該濺鍍製程是在1e-3到6e-3毫巴的壓力範圍進行。該濺鍍氣體是使用氬氣。
通過另一個平鎖後,該扁條即進入電子束氣相沉積室。在這室內,是利用電子束技術使氧化鋯氣相沉積。在此過程當中,係以指定方式添加氧氣,以便在1e-4到5e-4毫巴的範圍調整工作壓力。此過程施塗的氧化鋯層係形成該多層系統的該抗反射及保護層(6),厚度則為55 nm。
該多層系統中各層的厚度是利用橢圓偏光系統予以測定及控制。
隨後,該扁條會經由一個多段式的條鎖送返到大氣環境,再將其捲繞。
如圖4所示者係這材料的反射光譜,太陽能吸收率和熱發射率(100℃)。圖中也顯示出實施例1a、1b和3的光譜,以便比較。
因而取得的吸收器扁條先貼合一層保護膜,再經加工成一板片,方法是以衝孔處理而形成矩形進氣口,接著以滾壓成型處理而獲得如圖8所示的板片。在衝孔及滾壓成型處理後,表面並未觀察到因機械加工而導致的變質情形。
這些實施例顯示出本發明的複合材料適於無遮蓋太陽能外牆及屋頂板片的各種應用。
下列表1是相關實驗的摘要內容。 表1
(1):載體 (2):黏著層 (3):保護層 (4):第一吸收層 (5):第二吸收層 (6):抗反涉及保護層 (7):溶膠凝膠保護層 (8):防蝕層 (A):面 (B):面
圖1所示者係太陽能熱吸收體表面取決於熱發射率而定的紅外線輻射損失,以及從史特凡波茲曼(Stefan Boltzmann)定律求出的吸收體表面溫度。 圖2所示者係本發明之複合材料層狀結構的示意圖。 圖3所示者係依本發明實施例1的一種較佳之選擇性吸收體材料在鋁載體上(實施例1a)和在不銹鋼載體上(實施例1b)的反射光譜。此外,圖中也指明依DIN ISO 22975-3:2014; Annex A之標準的各反射光譜而求出的太陽能吸收率及熱發射率(100℃)。 圖4所示者係依本發明各實施例的各選擇性吸收體材料的反射光譜。此外,圖中也指明太陽能吸收率及熱發射率(100℃)。 圖5a所示者係依本發明實施例1a之選擇性吸收體材料在曝露於環境(德國Bernburg)之前及三年後的反射光譜。 圖5b所示者係依實施例1a的材料於300℃接受100小時溫度試驗之前與之後的反射光譜。各光學性質未觀察到顯著變化。 圖6所示者係依本發明實施例1a之選擇性吸收體材料的二種樣本於70℃及80℃接受冷凝試驗時,隨著試驗時間呈現的太陽能吸收率。 圖7所示者係依本發明實施例1a之選擇性吸收體材料的二種樣本於70℃及80℃接受冷凝試驗時,隨著試驗時間呈現的熱發射率。 圖8至圖10所示者係依本發明各實施例而具有不同型式進氣口之太陽輻射吸收牆板或屋頂板的不同形狀。 圖11所示者係使用太陽輻射吸收牆板對建築物內部提供太陽能加熱空氣的示意圖。 圖12所示者係兩面均為烤漆板的太陽能牆板(上部)及依本發明各實施例之複合材料(下部)的紅外線輻射平衡示意圖。 圖13所示者係依本發明之複合材料或太陽能牆板附加到外牆元件,以便使建築物的太陽能熱活化的示意圖。 圖14a所示者係配置含有氣體或液體傳熱媒介之附加管件,以供做為無保護太陽能收集器,尤其是以供用於熱泵系統的太陽能牆板或屋頂板。 圖14b所示者係本發明的複合材料或太陽能牆或屋頂板與蛇形幾何形狀之附加管件的示意圖。 圖14c所示者係本發明的複合材料或太陽能牆或屋頂板與豎琴狀幾何形狀之附加管件的示意圖。
(1):載體
(2):黏著層
(3):保護層
(4):第一吸收層
(5):第二吸收層
(6):抗反涉及保護層
(7):溶膠凝膠保護層
(8):防蝕層
(A):面
(B):面

Claims (22)

  1. 一種將太陽輻射轉換成熱的複合材料,其包括:一個包括一(A)面和一(B)面的載體(1),其係由鋁、鋁合金、銅、電解鍍鉻鋼(ECCS)或不銹鋼構成,其中該載體(1)的該(A)面上至少依序形成有下列各層:一道在該載體之上的黏著層(2),其係由鉻、鈦、鎳、鉬、鎢,或含有這些金屬中的二種或以上的合金,或含有由鉻、鋁、釩和銅所組成之群組中選用的至少一種金屬的一非鐵磁性鎳合金,且其具有1到15nm的厚度,一道在該黏著層(2)之上的保護層(3),其係從出自元素週期表(periodic system)之IV、V或VI副族中的一種金屬或二種或以上金屬之混合物的一種氮化物,一種碳化物或一種碳氮化物構成,一道在該保護層(3)之上、屬於金屬化合物的第一吸收層(4),其具有一(MerAl1-r)OxNyCz組分,其中Me代表從鈦、鋯和鉿選用的至少一種金屬,其中r是從0.1到1.0,x是從0到1.9,y是從0到0.95,z是從0到0.5,以及x+y+z是從0.5到1.9,或一種(CrrAl1-r)OxNyCz組分,其中r是從0.1到1.0,x是從0到1.4,y是從0到0.95,z是從0到0.5,和x+y+z是從0.8到1.4,一道在該第一吸收層(4)之上、屬於金屬化合物的第二吸收層(5),其具有如該第一吸收層(4)適用之定義的(MerAl1-r)OxNyCz或(CrrAl1-r)OxNyCz組分,但該組分卻與該第一吸收層(4)的不同,以及一道在該第二吸收層(5)之上的介電和/或氧化抗反射及保護層(6),其在380到780nm的可見波長範圍內具有1.8到2.5的折射率,且是從氧化鋯(ZrO2)、釔安定氧化鋯、氧化鉻(Cr2O3)、氧化鈮(Nb2O5)、氮化矽(Si3N4)、氧化釔(Y2O3)、氧化鉭(Ta2O5)、以及氧化鋯與氧化鉭混合物構成之群組中所選用者。
  2. 如申請專利範圍第1項所述之複合材料,其中該載體(1)是由純度在99.5%或以上的鋁,純度在99.5%或以上的銅,或下列EN AW 3103(AlMn1),EN AW 3004(AlMn1Mg1),EN AW 3104(AlMn1Mg1Cu),EN AW 3005 (AlMn1Mg0.5)和EN AW 5005 A(AlMg1(C)鋁合金的其中一種,或下列1.4541(AISI 321),1.4404(AISI 316L)和1.4301(AISI 304)不銹鋼的其中一種構成。
  3. 如申請專利範圍第1至2項中任一項所述之複合材料,其中:該黏著層(2)是由鉻、鉬或一種鎳釩合金構成,該保護層(3)是由氮化鉻、碳化鉻、碳氮化鉻(CrCN)、氮化鈦或碳化鈦構成,該第一吸收層(4)是由CrOxNyCz或(TirAl1-r)OxNyCz構成,其中r是從0.2到0.7,該第二吸收層(5)是由CrOxNyCz或(TirAl1-r)OxNyCz構成,其中r是從0.2到0.7,和/或該抗反射及保護層(6)是由氧化鋯或氧化鈮構成。
  4. 如申請專利範圍第3項所述之複合材料,其中該第一吸收層(4)是由CrOxNy構成,其中x是從0.8到1.4,而y是從0.02到0.4。
  5. 如申請專利範圍第3項所述之複合材料,其中該第一吸收層(4)是由CrOxNy構成,其中x是從0.9到1.2,而y是從0.05到0.1。
  6. 如申請專利範圍第3項所述之複合材料,其中該第二吸收層(5)是由CrOxNy構成,其中x是從1.0到1.4,而y是從0.02到0.4。
  7. 如申請專利範圍第3項所述之複合材料,其中該第二吸收層(5)是由CrOxNy構成,其中x是從0.9到1.2,而y是從0.05到0.1。
  8. 如申請專利範圍第1項所述之複合材料,其進一步包括一道在該抗反射及保護層(6)之上的溶膠凝膠保護層(7),其厚度在4μm以下。
  9. 如申請專利範圍第1項所述之複合材料,其進一步包括一道在該抗反射及保護層(6)之上的溶膠凝膠保護層(7),其厚度為1到3μm。
  10. 如申請專利範圍第1項所述之複合材料,其進一步包括一道在該抗反射及保護層(6)之上的溶膠凝膠保護層(7),其厚度為1.5到2.5μm。
  11. 如申請專利範圍第1項所述之複合材料,其中: 該載體(1)是由純度為99.5%或以上的鋁構成,該黏著層(2)是由鉻構成,該保護層(3)是由氮化鉻構成,該第一吸收層(4)是由CrOxNy構成,其中x是從0.9到1.2,而y是從0.05到0.1,該第二吸收層(5)是由CrOxNy構成,其中x是從1.1到1.3,而y是從0.05到0.1,以及該抗反射及保護層(6)是由氧化鋯或氧化鈮構成。
  12. 如申請專利範圍第1項所述之複合材料,其中該載體(1)的該(B)面設有一道防蝕層(8),其包含從一烤漆層、一溶膠凝膠塗層、一黏合膜以及從氧化鋯、氧化矽、氧化鋁或氧化鈮中選用的一層所構成之群組中選用的至少一層,其中該防蝕層(8)的厚度為20到400nm。
  13. 如申請專利範圍第1項所述之複合材料,其中依DIN ISO 22975-3:2014;Annex A的標準,該(A)面的太陽能吸收率是80%以上,而依DIN ISO 22975-3:2014;Annex A的標準,在100℃的表面溫度時,熱發射率是15%以下,以及其中依DIN ISO 22975-3:2014;Annex A的標準,該(B)面在100℃的表面溫度時,熱發射率是20%以下。
  14. 如申請專利範圍第1項所述之複合材料,其中依DIN ISO 22975-3:2014;Annex A的標準,該(A)面的太陽能吸收率是90%以上,而依DIN ISO 22975-3:2014;Annex A的標準,在100℃的表面溫度時,熱發射率是10%以下,以及其中依DIN ISO 22975-3:2014;Annex A的標準,該(B)面在100℃的表面溫度時,熱發射率是15%以下。
  15. 如申請專利範圍第1項所述之複合材料,其中依DIN ISO 22975-3:2014;Annex A的標準,該(A)面的太陽能吸收率是93%以上,而依DIN ISO 22975-3:2014;Annex A的標準,在100℃的表面溫度時,熱發射率是5%以下,以 及其中依DIN ISO 22975-3:2014;Annex A的標準,該(B)面在100℃的表面溫度時,熱發射率是5%以下。
  16. 一種太陽輻射吸收牆板或屋頂板,其包括依申請專利範圍第1項所述的複合材料,或由該複合材料構成。
  17. 如申請專利範圍第16項所述之太陽輻射吸收牆板或屋頂板,其中該板片具有的形狀用以界定出一個讓熱空氣能被收集與導引的空間,所述空間是由所述複合材料的該(B)面圍住。
  18. 如申請專利範圍第16項所述之太陽輻射吸收牆板或屋頂板,其中該板片設有若干個以裂縫或孔洞形式呈現的進氣口,讓在該複合材料的該(A)面之表面加熱的空氣可經由該等進氣口從該複合材料的(A)面流到(B)面。
  19. 如申請專利範圍第16項所述之太陽輻射吸收牆板或屋頂板,其中該板片具有一梯形板或浪板的形狀。
  20. 如申請專利範圍第16項所述之太陽輻射吸收牆板或屋頂板,其中配管或導管被固定在該複合材料的(B)面上,以允許對該等管內循環的流體加熱。
  21. 如申請專利範圍第16項所述之太陽輻射吸收牆板或屋頂板,其中該複合材料的該(B)面是用一膠帶黏附到一外牆元件或屋頂元件上,據以形成一種太陽能熱活化外牆的一板片。
  22. 一種太陽能外牆或太陽能屋頂,其包括如申請專利範圍第16到21項中任一項所述的太陽輻射吸收牆板或屋頂板,其是將若干片的該等板片設成與各自鄰接的板片疊合,據以形成該太陽能外牆或太陽能屋頂。
TW110135942A 2020-10-26 2021-09-28 用於具有低紅外線輻射損失的無遮蓋太陽能吸收收集板之可變形複合材料 TWI835003B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20203830.3A EP3988859B1 (en) 2020-10-26 2020-10-26 Deformable composite material for uncovered solar energy absorbent collector panels with low infrared radiation losses
EP20203830.3 2020-10-26

Publications (2)

Publication Number Publication Date
TW202216438A TW202216438A (zh) 2022-05-01
TWI835003B true TWI835003B (zh) 2024-03-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104173A1 (de) 2004-04-20 2005-11-03 Peter Lazarov Selektiver absorber zur umwandlung von sonnenlicht in wärme, ein verfahren und eine vorrichtung zu dessen herstellung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104173A1 (de) 2004-04-20 2005-11-03 Peter Lazarov Selektiver absorber zur umwandlung von sonnenlicht in wärme, ein verfahren und eine vorrichtung zu dessen herstellung

Similar Documents

Publication Publication Date Title
Xu et al. A review of high-temperature selective absorbing coatings for solar thermal applications
US8555871B2 (en) Radiation-selective absorber coating and absorber tube with said radiation-selective absorber coating
Bello et al. Achievements in mid and high-temperature selective absorber coatings by physical vapor deposition (PVD) for solar thermal Application-A review
Selvakumar et al. Review of physical vapor deposited (PVD) spectrally selective coatings for mid-and high-temperature solar thermal applications
Jamali Investigation and review of mirrors reflectance in parabolic trough solar collectors (PTSCs)
US9222703B2 (en) Optically active multilayer system for solar absorption
US10774426B2 (en) Radiation-selective absorber coating and absorber tube with radiation-selective absorber coating
CN103162452B (zh) 抗氧化性太阳光谱选择性吸收涂层及其制备方法
EP2217865A1 (en) High temperature solar selective coatings
US9890972B2 (en) Method for providing a thermal absorber
Kennedy et al. Optical performance and durability of solar reflectors protected by an alumina coating
Kotilainen et al. Influence of microstructure on temperature-induced ageing mechanisms of different solar absorber coatings
Heras et al. Design of high-temperature solar-selective coatings based on aluminium titanium oxynitrides AlyTi1− y (OxN1− x). Part 1: Advanced microstructural characterization and optical simulation
Al-Rjoub et al. W/AlSiTiNx/SiAlTiOyNx/SiAlOx multilayered solar thermal selective absorber coating
JP2018525681A (ja) アルミニウムキャリアと銀反射層とを有する反射性複合材料
TWI835003B (zh) 用於具有低紅外線輻射損失的無遮蓋太陽能吸收收集板之可變形複合材料
CN106500374A (zh) 一种双相纳米复合太阳能吸收涂层及制造方法
EP3988859B1 (en) Deformable composite material for uncovered solar energy absorbent collector panels with low infrared radiation losses
Ibáñez et al. Oxide barrier coatings on steel strip by spray pyrolysis
Platzer et al. Absorber materials for solar thermal receivers in concentrating solar power (CSP) systems
EP3433546B1 (en) Solar selective coating
Lai et al. Optical properties, contour map and fabrication of Al2O3/Pt/Al2O3/Ta multilayer films for solar selective absorptance layer
Platzer et al. Absorber materials for solar thermal receivers in concentrating solar power systems
Fan Wavelength-selective surfaces for solar energy utilization
CN102706018B (zh) 一种太阳能中高温选择性吸收涂层