TWI834987B - Method performed by computing device - Google Patents
Method performed by computing device Download PDFInfo
- Publication number
- TWI834987B TWI834987B TW110130724A TW110130724A TWI834987B TW I834987 B TWI834987 B TW I834987B TW 110130724 A TW110130724 A TW 110130724A TW 110130724 A TW110130724 A TW 110130724A TW I834987 B TWI834987 B TW I834987B
- Authority
- TW
- Taiwan
- Prior art keywords
- vision correction
- correction surgery
- model
- surgery
- subject
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 114
- 230000004438 eyesight Effects 0.000 claims abstract description 911
- 238000001356 surgical procedure Methods 0.000 claims abstract description 832
- 238000012937 correction Methods 0.000 claims abstract description 786
- 238000012549 training Methods 0.000 description 75
- 230000004304 visual acuity Effects 0.000 description 73
- 238000010586 diagram Methods 0.000 description 67
- 238000012876 topography Methods 0.000 description 66
- 238000004458 analytical method Methods 0.000 description 31
- 238000002430 laser surgery Methods 0.000 description 26
- 238000004364 calculation method Methods 0.000 description 22
- 210000004087 cornea Anatomy 0.000 description 21
- 238000013473 artificial intelligence Methods 0.000 description 18
- 238000004891 communication Methods 0.000 description 17
- 238000005259 measurement Methods 0.000 description 17
- 238000013215 result calculation Methods 0.000 description 16
- 230000000007 visual effect Effects 0.000 description 14
- 238000007781 pre-processing Methods 0.000 description 13
- 230000004075 alteration Effects 0.000 description 12
- 238000012545 processing Methods 0.000 description 10
- 238000012800 visualization Methods 0.000 description 10
- 230000002068 genetic effect Effects 0.000 description 7
- 238000002513 implantation Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000007689 inspection Methods 0.000 description 5
- 201000009310 astigmatism Diseases 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 4
- 239000007943 implant Substances 0.000 description 4
- 208000001491 myopia Diseases 0.000 description 4
- 230000004379 myopia Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 208000003164 Diplopia Diseases 0.000 description 3
- 201000002287 Keratoconus Diseases 0.000 description 3
- 206010047571 Visual impairment Diseases 0.000 description 3
- 238000002679 ablation Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000004313 glare Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000004297 night vision Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 206010052128 Glare Diseases 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 238000003066 decision tree Methods 0.000 description 2
- 208000029444 double vision Diseases 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000012014 optical coherence tomography Methods 0.000 description 2
- 238000007637 random forest analysis Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000003325 tomography Methods 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 206010010071 Coma Diseases 0.000 description 1
- 235000004035 Cryptotaenia japonica Nutrition 0.000 description 1
- 206010013082 Discomfort Diseases 0.000 description 1
- 208000003923 Hereditary Corneal Dystrophies Diseases 0.000 description 1
- 206010020675 Hypermetropia Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 102000007641 Trefoil Factors Human genes 0.000 description 1
- 235000015724 Trifolium pratense Nutrition 0.000 description 1
- 206010047531 Visual acuity reduced Diseases 0.000 description 1
- 210000002159 anterior chamber Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 238000007635 classification algorithm Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 206010011005 corneal dystrophy Diseases 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 230000004305 hyperopia Effects 0.000 description 1
- 201000006318 hyperopia Diseases 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000004410 intraocular pressure Effects 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012821 model calculation Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 208000014733 refractive error Diseases 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Landscapes
- Eye Examination Apparatus (AREA)
Abstract
Description
本發明是有關於一種視力校正手術推薦方法以及裝置,且更詳細而言是有關於一種使用人工智慧為被檢查者等推薦視力校正手術的方法以及裝置。The present invention relates to a method and device for recommending vision correction surgery, and more specifically, to a method and device for recommending vision correction surgery for a subject or the like using artificial intelligence.
視力校正手術(如雷射角膜原位磨鑲術(laser-assisted in situ keratomileusis,LASIK)及雷射角膜上皮磨鑲術(laser-assisted sub-epithelial keratectomy,LASEK)等)吸引了不論年女老少的視力不佳的人們的很多關注。對視力校正手術的關注正日益增加,據統計,接受視力校正手術的人口已達到了十萬人。Vision correction surgeries such as laser-assisted in situ keratomileusis (LASIK) and laser-assisted sub-epithelial keratectomy (LASEK) attract young and old alike. There is a lot of concern from people with poor vision. Attention to vision correction surgery is increasing day by day, and according to statistics, the number of people undergoing vision correction surgery has reached 100,000.
然而,欲接受視力校正手術的被檢查者難以判斷哪種視力校正手術適合自己。被檢查者應基本地做出對LASIK、LASEK、小切口微透鏡取出術(small incision lenticule extraction,SMILE)、晶狀體植入等手術種類的選擇。並且,被檢查者應根據iLASIK、達芬奇(DaVinci)LASIK、晶體(Crystal)LASIK、Z-LASIK、VISU LASIK、OPTI LASIK等手術設備、或者根據例如精雕近視手術(Contoura Vision)、額外(extra)LASIK、波前(wavefront)LASIK等手術方法選擇一種類型的手術。另外,由於推薦的角膜切削量依醫院及醫生會有所不同,因此現實是被檢查者更難以選擇一種類型的手術,而且不可避免的對於手術後視力的品質或副作用僅能依賴於醫生或諮詢師的話。However, it is difficult for subjects who want to undergo vision correction surgery to determine which vision correction surgery is suitable for them. The examinee should basically make a choice between LASIK, LASEK, small incision lenticule extraction (SMILE), lens implantation and other types of surgery. In addition, the person being examined should use surgical equipment such as iLASIK, DaVinci LASIK, Crystal LASIK, Z-LASIK, VISU LASIK, OPTI LASIK, or other procedures such as Contoura Vision, additional ( Choose a type of surgery such as extra) LASIK, wavefront (wavefront) LASIK and other surgical methods. In addition, since the recommended amount of corneal ablation varies between hospitals and doctors, the reality is that it is more difficult for the examinee to choose one type of surgery, and it is inevitable that the quality or side effects of the vision after surgery can only rely on the doctor or consultation. Teacher's words.
[技術問題][Technical Issue]
一個目的是輔助醫生做出判斷或為醫生、諮詢師及被檢查者等提供客觀的視力校正手術相關資訊。One purpose is to assist doctors in making judgments or to provide objective information related to vision correction surgery to doctors, consultants, and examinees.
另一目的是為醫生、諮詢師及被檢查者推薦視力校正手術。Another purpose is to recommend vision correction surgery to doctors, consultants and patients.
又一目的是為醫生、諮詢師及被檢查者提供推薦視力校正手術的原因。Yet another purpose is to provide physicians, counselors, and subjects with reasons for recommending vision correction surgery.
將提供的目的不限於上述目的,且此項技術中具有通常知識者可根據本說明書及附圖清晰地理解並未提及的目的。 [技術解決方案]The purposes provided are not limited to the above-mentioned purposes, and those with ordinary knowledge in the art can clearly understand the unmentioned purposes based on this description and the drawings. [Technical solutions]
根據一個態樣,可提供一種視力校正手術推薦方法,所述方法使用人工智慧且由計算裝置執行,所述方法包括如下步驟:獲得被檢查者的檢查資料,所述檢查資料包括問診資料及眼睛特性資料測定值;藉由將第一組資料輸入至第一預測模型而預測所述視力校正手術是否適合所述被檢查者,所述第一組資料是自所述被檢查者的所述檢查資料中獲得的;在所述視力校正手術適合所述被檢查者時,藉由將第二組資料輸入至第二預測模型而對所述被檢查者能否進行使用雷射的視力校正手術進行預測,所述第二組資料是自所述被檢查者的所述檢查資料中獲得的;在對所述被檢查者而言能夠進行使用所述雷射的所述視力校正手術時,藉由將第三組資料輸入至第三預測模型而計算所述被檢查者在標準視力校正手術後的角膜形狀因子預測值及在客製視力校正手術後的角膜形狀因子預測值,以用於判斷是否需要客製視力校正手術,所述第三組資料是自所述被檢查者的所述檢查資料中獲得的;以及在對所述被檢查者而言能夠進行使用所述雷射的所述視力校正手術時,藉由將第四組資料輸入至第四預測模型而建議對應於所述被檢查者的視力校正手術,所述第四組資料是自所述被檢查者的所述檢查資料中獲得的,其中所述第四預測模型是基於選自由以下組成的群組中的至少一者進行訓練的:正接受視力校正手術的多個被治療者的檢查資料、與所述多個被治療者對應的視力校正手術及所述多個被治療者進行視力校正手術後的視力。According to one aspect, a method for recommending vision correction surgery can be provided. The method uses artificial intelligence and is executed by a computing device. The method includes the following steps: obtaining examination data of the subject, and the examination data includes consultation data and eyes. Characteristic data measurements; predicting whether the vision correction surgery is suitable for the subject by inputting a first set of data into a first prediction model, the first set of data being derived from the examination of the subject Obtained from the data; when the vision correction surgery is suitable for the subject, by inputting a second set of data into a second prediction model to determine whether the subject can undergo vision correction surgery using laser It is predicted that the second set of data is obtained from the examination data of the subject; when the vision correction surgery using the laser is possible for the subject, by Input the third set of data into the third prediction model to calculate the predicted corneal shape factor value of the subject after standard vision correction surgery and the predicted value of corneal shape factor after customized vision correction surgery for determining whether Customized vision correction surgery is required, the third set of data is obtained from the examination data of the subject; and the vision of the subject using the laser is capable of being performed During correction surgery, a vision correction surgery corresponding to the subject is recommended by inputting a fourth set of data from the examination data of the subject to a fourth prediction model. Obtained, wherein the fourth prediction model is trained based on at least one selected from the group consisting of: examination data of a plurality of subjects undergoing vision correction surgery, and the plurality of subjects being treated The corresponding vision correction surgery and the vision of the plurality of treated subjects after the vision correction surgery.
根據另一態樣,可提供一種視力校正手術推薦方法,所述方法使用人工智慧且由計算裝置執行,所述方法包括如下步驟:獲得被檢查者的檢查資料,所述檢查資料包括問診資料及眼睛特性資料測定值;藉由將第一組資料輸入至第一預測模型而預測所述視力校正手術是否適合所述被檢查者,所述第一組資料是自所述被檢查者的所述檢查資料中獲得的;在所述視力校正手術適合所述被檢查者時,藉由將第二組資料輸入至第二預測模型而對所述被檢查者能否進行使用雷射的視力校正手術進行預測,所述第二組資料是自所述被檢查者的所述檢查資料中獲得的;在對所述被檢查者而言能夠進行使用所述雷射的所述視力校正手術時,藉由將第三組資料輸入至第三預測模型而預測所述被檢查者是否需要客製視力校正手術,所述第三組資料是自所述被檢查者的所述檢查資料中獲得的;以及在對所述被檢查者而言能夠進行使用所述雷射的所述視力校正手術時,藉由將第四組資料輸入至第四預測模型而建議對應於所述被檢查者的視力校正手術,所述第四組資料是自所述被檢查者的檢查資料中獲得的,其中所述對是否需要所述客製視力校正手術進行預測的步驟是基於所述被檢查者進行標準視力校正手術後的角膜形狀因子預測值及進行客製視力校正手術後的角膜形狀因子預測值來預測是否需要所述客製視力校正手術,且其中所述第四預測模型是基於選自由以下組成的群組中的至少一者進行訓練的:正接受視力校正手術的多個被治療者的檢查資料、與所述多個被治療者對應的視力校正手術及所述多個被治療者進行視力校正手術後的視力。According to another aspect, a method for recommending vision correction surgery can be provided. The method uses artificial intelligence and is executed by a computing device. The method includes the following steps: obtaining examination data of the subject, and the examination data includes consultation data and Eye characteristic data measurements; predicting whether the vision correction surgery is suitable for the subject by inputting a first set of data into a first prediction model, the first set of data being derived from the subject's Obtained from examination data; when the vision correction surgery is suitable for the subject, by inputting the second set of data into the second prediction model, whether the subject can undergo vision correction surgery using laser Making a prediction, the second set of data is obtained from the examination data of the subject; when the vision correction surgery using the laser is possible for the subject, by Predicting whether the subject requires customized vision correction surgery by inputting a third set of data into a third prediction model, the third set of data obtained from the examination data of the subject; and When the vision correction surgery using the laser is feasible for the subject, a vision correction surgery corresponding to the subject is recommended by inputting a fourth set of data into a fourth prediction model , the fourth set of data is obtained from the examination data of the subject, wherein the step of predicting whether the customized vision correction surgery is needed is based on the subject undergoing standard vision correction surgery. The predicted value of corneal shape factor after and the predicted value of corneal shape factor after customized vision correction surgery are used to predict whether the customized vision correction surgery is needed, and wherein the fourth prediction model is based on a group selected from the following At least one of the following: examination data of multiple subjects undergoing vision correction surgeries, vision correction surgeries corresponding to the multiple subjects, and post-vision correction surgeries of the multiple subjects vision.
根據又一態樣,可提供一種視力校正手術推薦方法,所述方法使用人工智慧且由計算裝置執行,所述方法包括如下步驟:獲得被檢查者的檢查資料,所述檢查資料包括問診資料及眼睛特性資料測定值;藉由將第一組資料輸入至第一預測模型而預測所述視力校正手術是否適合所述被檢查者,所述第一組資料是自所述被檢查者的所述檢查資料中獲得的;在所述視力校正手術適合所述被檢查者時,藉由將第二組資料輸入至第二預測模型而對所述被檢查者能否進行使用雷射的視力校正手術進行預測,所述第二組資料是自所述被檢查者的所述檢查資料中獲得的;以及在對所述被檢查者而言能夠進行使用所述雷射的所述視力校正手術時,藉由將第三組資料輸入至第三預測模型而建議對應於所述被檢查者的視力校正手術,所述第三組資料是自所述被檢查者的所述檢查資料中獲得的,其中所述建議所述視力校正手術的步驟是基於所述被檢查者在標準視力校正手術後的角膜形狀因子預測值及在客製視力校正手術後的角膜形狀因子預測值來建議所述視力校正手術,且其中所述第三預測模型是基於選自由以下組成的群組中的至少一者進行訓練的:正接受視力校正手術的多個被治療者的檢查資料、與所述多個被治療者對應的視力校正手術及所述多個被治療者進行視力校正手術後的視力。According to another aspect, a method for recommending vision correction surgery can be provided. The method uses artificial intelligence and is executed by a computing device. The method includes the following steps: obtaining examination data of the examinee, and the examination data includes consultation data and Eye characteristic data measurements; predicting whether the vision correction surgery is suitable for the subject by inputting a first set of data into a first prediction model, the first set of data being derived from the subject's Obtained from examination data; when the vision correction surgery is suitable for the subject, by inputting the second set of data into the second prediction model, whether the subject can undergo vision correction surgery using laser Making a prediction, the second set of data is obtained from the examination data of the subject; and when the vision correction surgery using the laser is feasible for the subject, Recommending vision correction surgery corresponding to the subject by inputting a third set of data obtained from the examination data of the subject into a third prediction model, wherein The step of recommending the vision correction surgery is to recommend the vision correction surgery based on the predicted corneal shape factor value of the subject after standard vision correction surgery and the predicted corneal shape factor after customized vision correction surgery. , and wherein the third prediction model is trained based on at least one selected from the group consisting of: examination data of a plurality of subjects undergoing vision correction surgery, and the plurality of subjects The corresponding vision correction surgery and the vision of the plurality of treated subjects after the vision correction surgery.
根據又一態樣,可提供一種視力校正手術推薦方法,所述方法使用人工智慧且由計算裝置執行,所述方法包括如下步驟:獲得被檢查者的檢查資料,所述檢查資料包括問診資料及眼睛特性資料測定值;藉由將第一組資料輸入至第一預測模型而預測所述視力校正手術是否適合所述被檢查者,所述第一組資料是自所述被檢查者的所述檢查資料中獲得的;以及在所述視力校正手術適合所述被檢查者時,藉由將第二組資料輸入至第二預測模型而建議對應於所述被檢查者的視力校正手術,所述第二組資料是自所述被檢查者的所述檢查資料中獲得的,其中所述建議所述視力校正手術的步驟是基於所述被檢查者在標準視力校正手術後的角膜形狀因子預測值及客製視力校正手術後的角膜形狀因子預測值來建議所述視力校正手術,且所述第二預測模型是基於選自由以下組成的群組中的至少一者進行訓練的:正接受視力校正手術的多個被治療者的檢查資料、與所述多個被治療者對應的視力校正手術及所述多個被治療者進行視力校正手術後的視力。According to another aspect, a method for recommending vision correction surgery can be provided. The method uses artificial intelligence and is executed by a computing device. The method includes the following steps: obtaining examination data of the examinee, and the examination data includes consultation data and Eye characteristic data measurements; predicting whether the vision correction surgery is suitable for the subject by inputting a first set of data into a first prediction model, the first set of data being derived from the subject's obtained from examination data; and when the vision correction surgery is suitable for the subject, recommending a vision correction surgery corresponding to the subject by inputting a second set of data into a second prediction model, the A second set of data is obtained from the examination data of the subject, wherein the step of recommending the vision correction surgery is based on the corneal shape factor prediction value of the subject after standard vision correction surgery. and customizing corneal shape factor prediction values after vision correction surgery to recommend the vision correction surgery, and the second prediction model is trained based on at least one selected from the group consisting of: undergoing vision correction Examination data of a plurality of subjects undergoing surgery, vision correction surgeries corresponding to the plurality of subjects being treated, and visual acuity of the plurality of subjects being treated after vision correction surgeries.
根據又一態樣,可提供一種視力校正手術推薦方法,所述方法使用人工智慧且由計算裝置執行,所述方法包括如下步驟:獲得被檢查者的檢查資料,所述檢查資料包括問診資料及眼睛特性資料測定值;以及藉由將一組資料輸入至預測模型而建議對應於所述被檢查者的視力校正手術,所述一組資料是自所述被檢查者的所述檢查資料中獲得的,其中所述建議所述視力校正手術的步驟是基於所述被檢查者在標準視力校正手術後的角膜形狀因子預測值及客製視力校正手術後的角膜形狀因子預測值來建議所述視力校正手術,且其中所述預測模型是基於選自由以下組成的群組中的至少一者進行訓練的:正接受視力校正手術的多個被治療者的檢查資料、與所述多個被治療者對應的視力校正手術及所述多個被治療者進行視力校正手術後的視力。According to another aspect, a method for recommending vision correction surgery can be provided. The method uses artificial intelligence and is executed by a computing device. The method includes the following steps: obtaining examination data of the examinee, and the examination data includes consultation data and Eye characteristic data measurements; and recommending vision correction surgery corresponding to the subject by inputting a set of data obtained from the examination data of the subject into a predictive model , wherein the step of recommending the vision correction surgery is to recommend the vision based on the predicted corneal shape factor value of the subject after standard vision correction surgery and the predicted corneal shape factor after customized vision correction surgery. Correction surgery, and wherein the prediction model is trained based on at least one selected from the group consisting of: examination data of a plurality of subjects undergoing vision correction surgery, and the plurality of subjects The corresponding vision correction surgery and the vision of the plurality of treated subjects after the vision correction surgery.
將提供的解決方案不限於上述解決方案,且此項技術中具有通常知識者可根據本說明書及附圖清晰地理解並未提及的解決方案。 [有利效果]The solutions to be provided are not limited to the above-mentioned solutions, and those with ordinary knowledge in the art can clearly understand the solutions not mentioned based on this description and the accompanying drawings. [Beneficial effect]
根據一個實施例,可提供一種用於輔助醫生做出判斷或為醫生、諮詢師及被檢查者提供客觀的視力校正手術相關資訊的方法以及執行所述方法的裝置。According to one embodiment, a method for assisting a doctor in making a judgment or providing objective information related to vision correction surgery for doctors, consultants, and subjects, and a device for performing the method can be provided.
根據另一實施例,可使用人工智慧為醫生、諮詢師及被檢查者等推薦視力校正手術。According to another embodiment, artificial intelligence may be used to recommend vision correction surgery to doctors, consultants, subjects, etc.
根據又一實施例,可使用人工智慧為醫生、諮詢師及被檢查者等提供推薦視力校正手術的原因。According to yet another embodiment, artificial intelligence may be used to provide doctors, consultants, subjects, etc. with reasons for recommending vision correction surgery.
將提供的效果不限於上述效果,且此項技術中具有通常知識者可根據本說明書及附圖清晰地理解並未提及的效果。The effects to be provided are not limited to the above-mentioned effects, and those with ordinary knowledge in the art can clearly understand the effects not mentioned based on this description and the drawings.
由於在本說明書中闡述的實施例旨在向熟習此項技術者清晰地闡釋本發明的思想,因此本發明並不限於本說明書中闡述的實施例,且本發明的範圍應解釋為包括不背離本發明的精神的修改形式或變形。Since the embodiments set forth in this specification are intended to clearly explain the ideas of the present invention to those skilled in the art, the present invention is not limited to the embodiments set forth in this specification, and the scope of the invention should be construed to include without departing from modifications or variations within the spirit of the present invention.
儘管考量本發明實施例中的功能自當前可廣泛使用的通用用語中選擇了本文中使用的用語,但所述用語可根據熟習此項技術者的意圖、先例或新技術的出現等而變化。然而,在特定情形中,一些用語可由申請者任意選擇。在此種情形中,將在本發明實施例的對應描述中詳細闡述其含義。因此,本說明書中使用的用語應基於所述用語所具有的含義與本說明書的通篇內容進行界定,而非僅基於所述用語自身進行界定。Although the terms used herein are selected from currently widely used common terms in consideration of the functions in the embodiments of the present invention, the terms may change according to the intentions of those skilled in the art, precedents, or the emergence of new technologies, or the like. However, in certain circumstances, some terms may be chosen at the discretion of the applicant. In this case, its meaning will be elaborated in the corresponding description of the embodiment of the present invention. Therefore, terms used in this specification should be defined based on the meanings of the terms and the entire content of this specification, rather than solely on the basis of the terms themselves.
本說明書所附的圖式是為了容易地闡釋本發明,且圖式所示的形狀可根據需要誇大及顯示以幫助理解本發明,且因此本發明並不受圖式限制。The drawings attached to this specification are for the purpose of easily explaining the present invention, and the shapes shown in the drawings can be exaggerated and displayed as needed to help understand the present invention, and therefore the present invention is not limited by the drawings.
在本說明書中,在認為對相關眾所習知的技術的詳細說明會使本發明的主旨含糊不清時,可省略所述詳細說明。另外,在本說明書的說明中所使用的用語「第一」、「第二」可指代不同的配置,但亦可對應於相同的配置。In this specification, when it is considered that the detailed description of related well-known technology will obscure the gist of the present invention, the detailed description may be omitted. In addition, the terms "first" and "second" used in the description of this specification may refer to different configurations, but may also correspond to the same configuration.
以下,對基於檢查資料為被檢查者推薦視力校正手術的方法及裝置進行闡述。具體而言,對生成使用人工智慧推薦視力校正手術的模型並使用所生成的模型為被檢查者推薦視力校正手術的方法及裝置進行闡述。The following describes methods and devices for recommending vision correction surgery to subjects based on examination data. Specifically, a method and device for generating a model that uses artificial intelligence to recommend vision correction surgery and using the generated model to recommend vision correction surgery for a subject are described.
另外,對基於檢查資料為被檢查者提供可視化的視力校正手術相關資訊的方法及裝置進行闡述。具體而言,對生成向被檢查者提供視力校正手術可視化資訊(例如,使用人工智慧提供視力校正手術後預期的視力影像、預測角膜地形影像、或分析預測結果的原因)的模型並使用所生成的模型為被檢查者提供視力校正手術可視化資訊的方法及裝置進行闡述。In addition, methods and devices for providing visual vision correction surgery-related information to subjects based on examination data are described. Specifically, for generating models that provide visualization information for vision correction surgery to subjects (for example, using artificial intelligence to provide images of expected visual acuity after vision correction surgery, predicting corneal topography images, or analyzing the causes of predicted results) and using the generated The model describes the method and device for providing visual information for vision correction surgery to the subject.
在本說明書中,視力校正手術應被寬泛地理解為包括藉由使用雷射的角膜切削(例如,雷射角膜原位磨鑲術(LASIK)、雷射角膜上皮磨鑲術(LASEK)及小切口微透鏡取出術(SMILE)等)為被治療者的視力進行校正的手術,而且應被寬泛地解釋為包括不使用雷射的視力校正手術,例如晶狀體植入。For the purposes of this specification, vision correction surgery should be understood broadly to include corneal ablation through the use of lasers (eg, laser in situ keratomileusis (LASIK), laser epithelial keratomileusis (LASEK), and minor keratomileusis). Incisional lenticule extraction (SMILE, etc.) is a procedure that corrects the vision of the person being treated, and should be interpreted broadly to include vision-correcting procedures that do not use lasers, such as lens implants.
另外,在本說明書中,視力包括可基於被檢查者的判斷測定的視力及可藉由眼睛檢查等測定的視力。例如,視力可藉由視力檢查表來測定。作為另一選擇,視力可包括為基本的折射誤差的低階像差(lower-order aberrations)(例如,近視、遠視及散光)以及例如球面像差(spherical aberration)、彗形像差(coma aberration)、三葉草形像差(trefoil aberration)等高階像差(higher-order aberrations)。另外,視力可包括未校正視力及校正視力。In addition, in this specification, visual acuity includes visual acuity that can be measured based on the judgment of the subject and visual acuity that can be measured by eye examination or the like. For example, visual acuity can be measured using an eye chart. Alternatively, vision may include lower-order aberrations (eg, myopia, hyperopia, and astigmatism) that are fundamental refractive errors, as well as spherical aberration, coma aberration, etc. ), trefoil aberration and other higher-order aberrations. Additionally, visual acuity may include uncorrected visual acuity and corrected visual acuity.
根據一個態樣,可提供一種視力校正手術推薦方法,所述方法使用人工智慧且由計算裝置執行,所述方法包括如下步驟:獲得被檢查者的檢查資料,所述檢查資料包括問診資料及眼睛特性資料測定值;藉由將第一組資料輸入至第一預測模型而預測所述視力校正手術是否適合被檢查者,所述第一組資料是自所述被檢查者的檢查資料中獲得的;在所述視力校正手術適合所述被檢查者時,藉由將第二組資料輸入至第二預測模型而對所述被檢查者能否進行使用雷射的視力校正手術進行預測,所述第二組資料是自所述被檢查者的檢查資料中獲得的;在對所述被檢查者而言能夠進行使用雷射的視力校正手術時,藉由將第三組資料輸入至第三預測模型而計算所述被檢查者在標準視力校正手術後的角膜形狀因子預測值及在客製視力校正手術後的角膜形狀因子預測值,以用於判斷是否需要客製視力校正手術,所述第三組資料是自所述被檢查者的檢查資料中獲得的;以及在對所述被檢查者而言能夠進行使用雷射的視力校正手術時,藉由將第四組資料輸入至第四預測模型而建議對應於所述被檢查者的視力校正手術,所述第四組資料是自所述被檢查者的檢查資料中獲得的,其中所述第四預測模型是基於選自由以下組成的群組中的至少一者進行訓練的:正接受視力校正手術的多個被治療者的檢查資料、與所述多個被治療者對應的視力校正手術及所述多個被治療者進行視力校正手術後的視力。According to one aspect, a method for recommending vision correction surgery can be provided. The method uses artificial intelligence and is executed by a computing device. The method includes the following steps: obtaining examination data of the subject, and the examination data includes consultation data and eyes. Characteristic data measurements; predicting whether the vision correction surgery is suitable for the subject by inputting a first set of data into a first prediction model, the first set of data being obtained from the examination data of the subject ; When the vision correction surgery is suitable for the subject, predicting whether the subject can undergo vision correction surgery using laser by inputting the second set of data into the second prediction model, the The second set of data is obtained from the examination data of the subject; when vision correction surgery using laser is possible for the subject, by inputting the third set of data into the third prediction The model is used to calculate the predicted corneal shape factor value of the subject after standard vision correction surgery and the predicted corneal shape factor value after customized vision correction surgery, so as to determine whether customized vision correction surgery is needed. Three sets of data are obtained from examination data of the subject; and when vision correction surgery using laser is possible for the subject, by inputting a fourth set of data into a fourth prediction The model recommends vision correction surgery corresponding to the subject, the fourth set of data is obtained from the examination data of the subject, wherein the fourth prediction model is based on a group selected from the following At least one of the groups is trained: examination data of a plurality of subjects undergoing vision correction surgeries, vision correction surgeries corresponding to the plurality of subjects being treated, and vision correction surgeries performed on the plurality of subjects being treated vision afterward.
在本文中,所述建議視力校正手術的步驟可為基於所述被檢查者進行視力校正手術後的視力預測值來建議視力校正手術。Herein, the step of recommending the vision correction surgery may be to recommend the vision correction surgery based on the predicted vision value of the subject after the vision correction surgery.
在本文中,所述建議視力校正手術的步驟可為藉由計算各自對應於多個視力校正手術的視力校正手術後所述被檢查者的視力預測值來建議視力校正手術。Herein, the step of recommending the vision correction surgery may be to recommend the vision correction surgery by calculating the predicted vision value of the subject after the vision correction surgery respectively corresponding to a plurality of vision correction surgeries.
在本文中,所述建議視力校正手術的步驟可藉由計算與多個不同的時間點對應的多個視力預測值來建議視力校正手術。Herein, the step of recommending vision correction surgery may recommend vision correction surgery by calculating a plurality of vision prediction values corresponding to a plurality of different time points.
在本文中,所述方法可更包括如下步驟:基於所計算的標準視力校正手術後的角膜形狀因子預測值及所計算的客製視力校正手術後的角膜形狀因子預測值,對所述被檢查者是否需要客製視力校正手術進行預測。In this article, the method may further include the step of: based on the calculated corneal shape factor predicted value after standard vision correction surgery and the calculated corneal shape factor predicted value after customized vision correction surgery, calculating the examined corneal shape factor. Predict whether a patient will need customized vision correction surgery.
在本文中,所述建議視力校正手術的步驟可為基於所計算的標準視力校正手術後的角膜形狀因子預測值及所計算的客製視力校正手術後的角膜形狀因子預測值來建議視力校正手術。Herein, the step of recommending the vision correction surgery may be to recommend the vision correction surgery based on the calculated corneal shape factor prediction value after the standard vision correction surgery and the calculated corneal shape factor prediction value after the customized vision correction surgery. .
在本文中,在藉由考量所述多個被治療者對視力校正手術的偏好而對所述第四預測模型進行訓練時,所述第四組資料可包括所述被檢查者對視力校正手術的偏好。Herein, when the fourth prediction model is trained by considering the plurality of subjects' preference for vision correction surgery, the fourth set of data may include the subject's preference for vision correction surgery. Preferences.
在本文中,選自由所述第一預測模型、所述第二預測模型、所述第三預測模型及所述第四預測模型組成的群組中的至少一者可包括多個子模型,並基於所述多個子模型的結果計算結果。Herein, at least one selected from the group consisting of the first prediction model, the second prediction model, the third prediction model and the fourth prediction model may include a plurality of sub-models, and is based on The results of the multiple sub-models are calculated.
在本文中,選自由所述第一組資料、所述第二組資料、所述第三組資料及所述第四組資料組成的群組中的至少一者可照原樣包括所述被檢查者的檢查資料中的至少一部分、或包括根據所述被檢查者的檢查資料中的至少一部分計算的一種新類型的資料。Herein, at least one selected from the group consisting of the first set of data, the second set of data, the third set of data and the fourth set of data may include the inspected At least part of the examination data of the subject, or a new type of data calculated based on at least part of the examination data of the subject.
在本文中,所述角膜形狀因子預測值可包括選自由高度偏心指數(index of height decentration,IHD)預測值、表面變異指數(index of surface variance,ISV)預測值及垂直不對稱指數(index of vertical asymmetry,IVA)預測值組成的群組中的至少一者。In this article, the corneal shape factor prediction value may include a prediction value selected from an index of height decentralization (IHD) prediction value, an index of surface variance (ISV) prediction value, and an index of vertical asymmetry (index of At least one of the groups consisting of vertical asymmetry (IVA) predicted values.
在本文中,所述檢查資料可更包括遺傳資訊。Herein, the examination data may further include genetic information.
根據另一態樣,可提供一種視力校正手術推薦方法,所述方法使用人工智慧且由計算裝置執行,所述方法包括如下步驟:獲得被檢查者的檢查資料,所述檢查資料包括問診資料及眼睛特性資料測定值;藉由將第一組資料輸入至第一預測模型而預測所述視力校正手術是否適合被檢查者,所述第一組資料是自所述被檢查者的檢查資料中獲得的;在所述視力校正手術適合所述被檢查者時,藉由將第二組資料輸入至第二預測模型而對所述被檢查者能否進行使用雷射的視力校正手術進行預測,所述第二組資料是自所述被檢查者的檢查資料中獲得的;在對所述被檢查者而言能夠進行使用雷射的視力校正手術時,藉由將第三組資料輸入至第三預測模型而預測所述被檢查者是否需要客製視力校正手術,所述第三組資料是自所述被檢查者的檢查資料中獲得的;以及在對所述被檢查者而言能夠進行使用雷射的視力校正手術時,藉由將第四組資料輸入至第四預測模型而建議對應於所述被檢查者的視力校正手術,所述第四組資料是自所述被檢查者的檢查資料中獲得的,其中所述對是否需要客製視力校正手術進行預測的步驟是基於所述被檢查者進行標準視力校正手術後的角膜形狀因子預測值及進行客製視力校正手術後的角膜形狀因子預測值來預測是否需要客製視力校正手術,且其中所述第四預測模型是基於選自由以下組成的群組中的至少一者進行訓練的:正接受視力校正手術的多個被治療者的檢查資料、與所述多個被治療者對應的視力校正手術及所述多個被治療者進行視力校正手術後的視力。According to another aspect, a method for recommending vision correction surgery can be provided. The method uses artificial intelligence and is executed by a computing device. The method includes the following steps: obtaining examination data of the subject, and the examination data includes consultation data and Eye characteristic data measurements; predicting whether the vision correction surgery is suitable for the subject by inputting a first set of data into a first prediction model, the first set of data being obtained from the examination data of the subject When the vision correction surgery is suitable for the subject, predicting whether the subject can undergo vision correction surgery using laser by inputting the second set of data into the second prediction model, so The second set of data is obtained from the examination data of the subject; when vision correction surgery using laser is possible for the subject, by inputting the third set of data into the third Predicting the model to predict whether the subject needs customized vision correction surgery, the third set of data is obtained from the examination data of the subject; and can be used for the subject During laser vision correction surgery, a vision correction surgery corresponding to the subject is recommended by inputting a fourth set of data to a fourth prediction model, the fourth set of data being derived from the examination of the subject Obtained from the data, wherein the step of predicting whether customized vision correction surgery is required is based on the predicted corneal shape factor value of the subject after standard vision correction surgery and the corneal shape after customized vision correction surgery. Factor predictive values are used to predict whether customized vision correction surgery is needed, and wherein the fourth prediction model is trained based on at least one selected from the group consisting of: a plurality of subjects undergoing vision correction surgery. The examination data, the vision correction surgeries corresponding to the plurality of treated subjects, and the vision of the plurality of treated subjects after vision correction surgeries.
根據又一態樣,可提供一種視力校正手術推薦方法,所述方法使用人工智慧且由計算裝置執行,所述方法包括如下步驟:獲得被檢查者的檢查資料,所述檢查資料包括問診資料及眼睛特性資料測定值;藉由將第一組資料輸入至第一預測模型而預測所述視力校正手術是否適合所述被檢查者,所述第一組資料是自所述被檢查者的檢查資料中獲得的;在所述視力校正手術適合所述被檢查者時,藉由將第二組資料輸入至第二預測模型而對所述被檢查者能否進行使用雷射的視力校正手術進行預測,所述第二組資料是自所述被檢查者的檢查資料中獲得的;且在對所述被檢查者而言能夠進行使用雷射的視力校正手術時,藉由將第三組資料輸入至第三預測模型而建議對應於所述被檢查者的視力校正手術,所述第三組資料是自所述被檢查者的檢查資料中獲得的,其中所述建議視力校正手術的步驟為基於所述被檢查者在標準視力校正手術後的角膜形狀因子預測值及在客製視力校正手術後的角膜形狀因子預測值來建議視力校正手術,且其中所述第三預測模型是基於選自由以下組成的群組中的至少一者進行訓練的:正接受視力校正手術的多個被治療者的檢查資料、與所述多個被治療者對應的視力校正手術及所述多個被治療者進行視力校正手術後的視力。According to another aspect, a method for recommending vision correction surgery can be provided. The method uses artificial intelligence and is executed by a computing device. The method includes the following steps: obtaining examination data of the examinee, and the examination data includes consultation data and Eye characteristic data measurements; predicting whether the vision correction surgery is suitable for the subject by inputting a first set of data into a first prediction model, the first set of data being derived from examination data of the subject Obtained from; when the vision correction surgery is suitable for the subject, predicting whether the subject can undergo vision correction surgery using laser by inputting a second set of data into a second prediction model , the second set of data is obtained from the examination data of the subject; and when vision correction surgery using laser is possible for the subject, by inputting the third set of data The third prediction model is used to recommend vision correction surgery corresponding to the subject, and the third set of data is obtained from the examination data of the subject, wherein the step of recommending vision correction surgery is based on The predicted value of corneal shape factor of the subject after standard vision correction surgery and the predicted value of corneal shape factor after customized vision correction surgery are used to recommend vision correction surgery, and wherein the third prediction model is based on one selected from the following At least one of the groups formed is trained: examination data of a plurality of subjects undergoing vision correction surgery, vision correction surgeries corresponding to the plurality of subjects, and procedures performed by the plurality of subjects Vision after vision correction surgery.
根據又一態樣,可提供一種視力校正手術推薦方法,所述方法使用人工智慧且由計算裝置執行,所述方法包括如下步驟:獲得被檢查者的檢查資料,所述檢查資料包括問診資料及眼睛特性資料測定值;藉由將第一組資料輸入至第一預測模型而預測所述視力校正手術是否適合被檢查者,所述第一組資料是自所述被檢查者的檢查資料中獲得的;在所述視力校正手術適合所述被檢查者時,藉由將第二組資料輸入至第二預測模型而建議對應於所述被檢查者的視力校正手術,所述第二組資料是自所述被檢查者的檢查資料中獲得的,其中所述建議視力校正手術的步驟為基於所述被檢查者在標準視力校正手術後的角膜形狀因子預測值及在客製視力校正手術後的角膜形狀因子預測值來建議視力校正手術,且其中所述第二預測模型是基於選自由以下組成的群組中的至少一者進行訓練的:正接受視力校正手術的多個被治療者的檢查資料、與所述多個被治療者對應的視力校正手術及所述多個被治療者進行視力校正手術後的視力。According to another aspect, a method for recommending vision correction surgery can be provided. The method uses artificial intelligence and is executed by a computing device. The method includes the following steps: obtaining examination data of the examinee, and the examination data includes consultation data and Eye characteristic data measurements; predicting whether the vision correction surgery is suitable for the subject by inputting a first set of data into a first prediction model, the first set of data being obtained from the examination data of the subject when the vision correction surgery is suitable for the subject, recommending a vision correction surgery corresponding to the subject by inputting a second set of data into a second prediction model, the second set of data being Obtained from the examination data of the subject, wherein the step of recommending vision correction surgery is based on the predicted corneal shape factor of the subject after standard vision correction surgery and the predicted value of corneal shape factor after customized vision correction surgery. corneal shape factor predictive values to recommend vision correction surgery, and wherein the second prediction model is trained based on at least one selected from the group consisting of: examination of a plurality of subjects undergoing vision correction surgery Data, vision correction surgeries corresponding to the plurality of treated subjects, and the vision of the plurality of treated subjects after vision correction surgeries.
根據再一態樣,可提供一種視力校正手術推薦方法,所述方法使用人工智慧且由計算裝置執行,所述方法包括如下步驟:獲得被檢查者的檢查資料,所述檢查資料包括問診資料及眼睛特性資料測定值;以及藉由將一組資料輸入至預測模型而建議對應於所述被檢查者的視力校正手術,所述一組資料是自所述被檢查者的檢查資料中獲得的,其中所述建議視力校正手術的步驟為基於所述被檢查者在標準視力校正手術後的角膜形狀因子預測值及在客製視力校正手術後的角膜形狀因子預測值來建議視力校正手術,且其中所述預測模型是基於選自由以下組成的群組中的至少一者進行訓練的:正接受視力校正手術的多個被治療者的檢查資料、與所述多個被治療者對應的視力校正手術及所述多個被治療者進行視力校正手術後的視力。According to yet another aspect, a method for recommending vision correction surgery can be provided. The method uses artificial intelligence and is executed by a computing device. The method includes the following steps: obtaining examination data of the subject, and the examination data includes consultation data and eye characteristic data measurements; and recommending vision correction surgery corresponding to the subject by inputting a set of data obtained from the examination data of the subject into a predictive model, wherein the step of recommending vision correction surgery is to recommend vision correction surgery based on the predicted corneal shape factor value of the subject after standard vision correction surgery and the predicted corneal shape factor value after customized vision correction surgery, and wherein The prediction model is trained based on at least one selected from the group consisting of: examination data of a plurality of subjects undergoing vision correction surgeries, vision correction surgeries corresponding to the plurality of subjects and the vision of the plurality of subjects after vision correction surgery.
根據又一實施例,可提供一種用於提供視力校正手術後的預期視力影像的方法,所述方法使用人工智慧且由計算裝置執行,所述方法包括如下步驟:獲得被檢查者的檢查資料,所述檢查資料包括問診資料及眼睛特性資料測定值;藉由將自所述被檢查者的檢查資料中獲得的第一組資料輸入至第一預測模型而計算所述被檢查者在視力校正手術後的多條眼睛特性資料的預測值,所述多條眼睛特性資料的所述預測值包括視力預測值及角膜形狀因子預測值中的至少一者;以及基於所述多條眼睛特性資料的預測值生成預期視力影像,其中所述第一預測模型可基於以下中的至少一者進行訓練:已接受視力校正手術的多個被治療者在手術之前的多條眼睛特性資料的測定值、對所述多個被治療者執行的視力校正手術的手術參數、以及所述多個被治療者在手術後的多條眼睛特性資料的測定值。According to yet another embodiment, a method for providing expected vision images after vision correction surgery may be provided. The method uses artificial intelligence and is executed by a computing device. The method includes the following steps: obtaining examination data of a subject, The examination data includes consultation data and eye characteristic data measurements; by inputting a first set of data obtained from the examination data of the examinee into a first prediction model, the examination result of the examinee in vision correction surgery is calculated. The predicted values of the plurality of eye characteristic data include at least one of the visual acuity prediction value and the corneal shape factor prediction value; and the prediction based on the plurality of eye characteristic data Values are used to generate an expected vision image, wherein the first prediction model can be trained based on at least one of the following: measured values of a plurality of eye characteristic data of a plurality of subjects who have undergone vision correction surgery before the surgery, The surgical parameters of the vision correction surgeries performed by the plurality of subjects, and the measured values of the plurality of eye characteristic data of the plurality of subjects after the surgery.
在本文中,所述生成預期視力影像的步驟可包括基於多條眼睛特性資料的預測值來計算或選擇濾波器、以及將所述濾波器應用於原始影像以生成預期視力影像。Herein, the step of generating an expected vision image may include calculating or selecting a filter based on predicted values of a plurality of pieces of eye characteristic data, and applying the filter to the original image to generate the expected vision image.
在本文中,所述多條眼睛特性資料的預測值可包括眼睛特性資料的第一預測值及眼睛特性資料的第二預測值,且所述預期視力影像可包括基於所述眼睛特性資料的第一預測值生成的第一預期視力影像、以及基於所述眼睛特性資料的第二預測值生成且與所述第一預期視力影像不同的第二預期視力影像。Herein, the predicted values of the plurality of pieces of eye characteristic data may include a first predicted value of the eye characteristic data and a second predicted value of the eye characteristic data, and the expected vision image may include a third predicted value based on the eye characteristic data. A first expected vision image generated by a predicted value, and a second expected vision image generated based on a second predicted value of the eye characteristic data and different from the first expected vision image.
在本文中,所述眼睛特性資料的第一預測值及所述眼睛特性資料的第二預測值可分別對應於標準視力校正手術後的眼睛特性資料的預測值及客製視力校正手術後的眼睛特性資料的預測值,且所述第一預期視力影像及所述第二預期視力影像可分別與標準視力校正手術後的預期視力影像及客製視力校正手術後的預期視力影像對應。Herein, the first predicted value of the eye characteristic data and the second predicted value of the eye characteristic data may respectively correspond to the predicted value of the eye characteristic data after standard vision correction surgery and the eye after customized vision correction surgery. Predictive values of the characteristic data, and the first expected vision image and the second expected vision image may respectively correspond to the expected vision image after standard vision correction surgery and the expected vision image after customized vision correction surgery.
在本文中,所述預期視力影像可包括關於選自由以下組成的群組中的至少一者的資訊:所述被檢查者進行視力校正手術後預期的視力的清晰度、光線透射(light bleeding)、對比敏感度、夜間視力、眩光、複視(double vision)、及餘像(afterimage)。As used herein, the expected vision image may include information on at least one selected from the group consisting of: clarity of vision, light bleeding, and light bleeding expected after the subject undergoes vision correction surgery. , contrast sensitivity, night vision, glare, double vision, and afterimage.
在本文中,提供所述預期視力影像的方法可更包括以下步驟:藉由將自所述被檢查者的檢查資料中獲得的第二組資料輸入至第二預測模型而對所述被檢查者進行視力校正手術後的角膜地形影像進行預測,其中所述第二預測模型可基於選自由以下組成的群組中的至少一者來訓練:已接受視力校正手術的多個被治療者在手術之前的角膜地形影像、對所述多個被治療者執行的視力校正手術的手術參數以及所述多個被治療者進行手術後的角膜地形影像。Herein, the method of providing the expected vision image may further include the step of: predicting the subject by inputting a second set of data obtained from the subject's examination data into a second prediction model. Predicting corneal topography images after vision correction surgery, wherein the second prediction model can be trained based on at least one selected from the group consisting of: a plurality of subjects who have undergone vision correction surgery before the surgery The corneal topography image, the surgical parameters of the vision correction surgery performed on the plurality of subjects, and the corneal topography image after the surgery on the plurality of subjects.
在本文中,提供所述預期視力影像的方法可更包括如下步驟:計算所述眼睛特性資料的預測值對所述第一組資料的依賴性。In this article, the method of providing the expected vision image may further include the step of calculating the dependence of the predicted value of the eye characteristic data on the first set of data.
在本文中,所述多條眼睛特性資料的預測值可包括眼睛特性資料的第一預測值及眼睛特性資料的第二預測值,所述依賴性可包括與所述第一組資料的至少一條資料對應的依賴係數,且所述依賴係數可包括與所述眼睛特性資料的第一預測值對應的第一依賴係數及與所述眼睛特性資料的第二預測值對應且與所述第一依賴係數不同的第二依賴係數。In this article, the predicted values of the plurality of pieces of eye characteristic data may include a first predicted value of the eye characteristic data and a second predicted value of the eye characteristic data, and the dependence may include at least one piece of the first set of data. The dependence coefficient corresponding to the data, and the dependence coefficient may include a first dependence coefficient corresponding to the first predicted value of the eye characteristic data and a second predicted value corresponding to the eye characteristic data and corresponding to the first dependence Second dependence coefficient with different coefficients.
在本文中,所述眼睛特性資料的第一預測值及所述眼睛特性資料的第二預測值可分別與標準視力校正手術後的眼睛特性資料的預測值及客製視力校正手術後的眼睛特性資料的預測值對應,且所述第一依賴係數及所述第二依賴係數可分別與標準視力校正手術後眼睛特性資料的預測值對所述第一組資料的依賴性以及客製視力校正手術後眼睛特性資料的預測值對所述第一組資料的依賴性對應。Herein, the first predicted value of the eye characteristic data and the second predicted value of the eye characteristic data may be compared with the predicted value of the eye characteristic data after standard vision correction surgery and the predicted value of the eye characteristic after customized vision correction surgery, respectively. The predicted values of the data correspond to each other, and the first dependence coefficient and the second dependence coefficient may correspond to the dependence of the predicted value of the eye characteristic data after standard vision correction surgery on the first set of data and the customized vision correction surgery, respectively. The predicted value of the posterior eye characteristic data corresponds to the dependence of the first set of data.
在本文中,提供所述預期視力影像的方法可更包括如下步驟:輸出所述依賴係數中大於預定值的依賴係數或輸出預定數目的依賴係數。In this article, the method of providing the expected vision image may further include the step of outputting a dependence coefficient greater than a predetermined value or outputting a predetermined number of dependence coefficients among the dependence coefficients.
在本文中,所述角膜形狀因子預測值可包括高度偏心指數(IHD)預測值、表面變異指數(ISV)預測值及垂直不對稱指數(IVA)預測值中的至少一者。Herein, the corneal shape factor prediction value may include at least one of an index of height decentration (IHD) prediction value, an index of surface variation (ISV) prediction value, and an index of vertical asymmetry (IVA) prediction value.
在本文中,所述視力預測值可包括低階像差(lower-order aberrations)預測值及高階像差(higher-order aberrations)預測值中的至少一者。Herein, the visual acuity prediction value may include at least one of a lower-order aberrations prediction value and a higher-order aberrations prediction value.
根據實施例的視力校正手術輔助系統可包括訓練裝置及預測裝置。此處,訓練裝置及預測裝置可為包括至少一個控制單元的計算裝置。所述計算裝置的實例可包括桌上型電腦(desktop computer)、膝上型電腦(laptop computer)、平板個人電腦(personal computer,PC)以及智慧型電話,但並不限於此。The vision correction surgery assistance system according to the embodiment may include a training device and a prediction device. Here, the training device and the prediction device may be a computing device including at least one control unit. Examples of the computing device may include, but are not limited to, desktop computers, laptop computers, tablet personal computers (PCs), and smart phones.
圖1是示出根據實施例的視力校正手術輔助系統10的圖式。參照圖1,訓練裝置100可基於訓練資料來訓練及/或生成其中生成與視力校正手術相關的資訊的模型(以下稱為「視力校正手術相關模型」)。此處,訓練資料是為訓練及/或生成視力校正手術相關模型所需的資料,例如數字、文字、影像等,且對其表現方式不進行限制。例如,訓練資料可包括已接受視力校正手術的被治療者的檢查資料及手術參數。FIG. 1 is a diagram showing a vision correction
預測裝置300可基於由訓練裝置100生成的視力校正手術相關模型及輸入資料來計算作為與視力校正手術相關的資訊的預測結果。此處,輸入資料是例如數字、文字、影像等作為計算預測結果的基礎的資料,且對其表現方式不進行限制。The
訓練資料、輸入資料、預測結果及視力校正手術相關模型的具體實例將在下文進行描述。Specific examples of training data, input data, prediction results, and vision correction surgery-related models are described below.
在圖1中,訓練裝置100及預測裝置300被示出為單獨的裝置,但訓練裝置100及預測裝置300可為同一裝置。例如,可在同一裝置內訓練及/或生成視力校正手術相關模型,並可使用所述模型計算預測結果。作為另一選擇,訓練裝置100的至少一些組件及預測裝置300的至少一些組件可為相同的。In FIG. 1 , the
另外,根據實施例的視力校正手術輔助系統可包括多個訓練裝置及/或多個預測裝置。In addition, the vision correction surgery assistance system according to the embodiment may include a plurality of training devices and/or a plurality of prediction devices.
圖2是用於闡述根據實施例的訓練裝置/預測裝置的圖式。參照圖2,根據實施例的訓練裝置/預測裝置可包括記憶體單元5000及控制單元1000。FIG. 2 is a diagram for explaining a training device/prediction device according to an embodiment. Referring to FIG. 2 , the training device/prediction device according to the embodiment may include a
根據實施例的訓練裝置/預測裝置可包括用於控制其操作的控制單元1000。控制單元1000可包括中央處理單元(Central Processing Unit,CPU)、隨機存取記憶體(Random Access Memory,RAM)、圖形處理單元(Graphic Processing Unit,GPU)、一或多個微處理器及能夠根據預定邏輯處理輸入資料的一或多個電子零件。The training device/prediction device according to the embodiment may include a
控制單元1000可讀取儲存在記憶體單元5000中的系統程式及各種處理程式。例如,控制單元1000可在RAM中進行用於執行下文將描述的視力校正手術相關模型的訓練及預測操作的資料加工處理等,且根據所進行的程式來執行各種處理。例如,控制單元1000可執行視力校正手術相關模型的訓練。作為另一實例,控制單元1000可使用視力校正手術相關模型來生成預測結果。The
根據實施例的訓練裝置/預測裝置可包括記憶體單元5000。記憶體單元5000可儲存為訓練所需的資料、訓練模型及所訓練的視力校正手術相關模型。記憶體單元5000可儲存視力校正手術相關模型的參數、變數等。The training device/prediction device according to the embodiment may include a
記憶體單元5000可被實作為非揮發性半導體記憶體、硬碟、快閃記憶體、RAM、唯讀記憶體(read-only memory,ROM)、電可擦除可程式唯讀記憶體(electrically erasable programmable read-only memory,EEPROM)或有形(tangible)非揮發性記錄媒體等。The
記憶體單元5000可儲存各種處理程式、用於執行程式處理的參數或所述處理的結果資料等。例如,記憶體單元5000可儲存:下文將描述的用於執行視力校正手術相關模型的訓練及預測操作的資料加工處理程式、診斷處理程式、用於執行各程式的參數以及根據執行所述程式而得到的資料(例如,經處理資料或預測結果)。The
根據實施例的訓練裝置及/或預測裝置可更包括通訊單元9000。通訊單元9000可與外部裝置進行通訊。例如,訓練裝置的通訊單元9000可與預測裝置的通訊單元9000進行通訊。通訊單元9000可執行有線或無線通訊。通訊單元9000可執行雙向(bi-directional)或單向通訊。The training device and/or prediction device according to the embodiment may further include a
圖2中所示的訓練裝置/預測裝置僅是例示性的,且訓練裝置及/或預測裝置的配置並不限於此。The training device/prediction device shown in FIG. 2 is only illustrative, and the configuration of the training device and/or prediction device is not limited thereto.
根據實施例的視力校正手術輔助系統可包括伺服器裝置及客戶端裝置。圖3是用於闡述根據實施例的伺服器裝置500以及客戶端裝置700a及700b的圖式。The vision correction surgery assistance system according to embodiments may include a server device and a client device. FIG. 3 is a diagram illustrating a
根據實施例的伺服器裝置500可對應於上述訓練裝置/預測裝置。根據實施例的伺服器裝置500可訓練、儲存及/或實行視力校正手術相關模型。The
根據實施例的客戶端裝置700a及700b可對應於上述訓練裝置/預測裝置。根據實施例的客戶端裝置700a及700b可訓練、儲存及/或實行視力校正手術相關模型。
根據實施例的客戶端裝置700a及700b可自伺服器裝置500獲得經訓練的視力校正手術相關模型。例如,客戶端裝置700a及700b可經由網路自伺服器裝置500下載視力校正手術相關模型。
根據實施例的伺服器裝置500可基於自客戶端裝置700a及700b獲得的輸入資料計算預測結果。例如,客戶端裝置700a及700b可接收關於被檢查者的資訊並將所述資訊傳送至伺服器裝置500,且伺服器裝置500可基於關於所述被檢查者的資訊使用視力校正手術相關模型計算預測結果。根據實施例的伺服器裝置500可自多個客戶端裝置700a及700b獲得輸入資料。The
根據實施例的伺服器裝置500可將所計算的預測結果傳送至客戶端裝置700a及700b。例如,客戶端裝置700a及700b可將自伺服器裝置500獲得的預測結果提供給醫生、諮詢師及被檢查者。根據實施例的伺服器裝置500可自客戶端裝置700a及700b獲得回饋。根據實施例的伺服器裝置500可將預測結果傳送至所述多個客戶端裝置700a及700b。The
根據實施例的客戶端裝置700a及700b可自伺服器裝置500請求預測結果。
根據實施例的客戶端裝置700a及700b可將所輸入的資料傳送至伺服器裝置500。根據實施例的客戶端裝置700a及700b可改變多條所輸入的資料並將經改變的資料傳送至伺服器裝置500。根據實施例的客戶端裝置700a及700b可將自伺服器裝置500獲得的預測結果提供給醫生、諮詢師及被檢查者。根據實施例的客戶端裝置700a及700b可改變自伺服器裝置500獲得的預測結果的至少一部分並將經改變的預測結果提供給醫生、諮詢師及被檢查者。
在圖3中,示出了一個伺服器裝置500與兩個客戶端裝置700a及700b之間的關係,但並不限於此,且所述關係可應用於一或多個伺服器裝置500及一或多個客戶端裝置700a及700b。In Figure 3, the relationship between one
圖4是示出根據一實施例的伺服器裝置500及客戶端裝置700的配置的圖式。參照圖4,伺服器裝置500及客戶端裝置700可包括記憶體單元5000a及5000b、控制單元1000a及1000b、以及通訊單元9000a及9000b。伺服器裝置500及客戶端裝置700可分別藉由通訊單元9000a及9000b傳送並獲得資訊。例如,客戶端裝置700可藉由其通訊單元9000b自伺服器裝置500的通訊單元9000a獲得經訓練的視力校正手術相關模型。作為另一實例,客戶端裝置700可藉由其通訊單元9000b將輸入資料傳送至伺服器裝置500的通訊單元9000a,且伺服器裝置500可藉由其通訊單元9000a將預測結果傳送至客戶端裝置700的通訊單元9000b。FIG. 4 is a diagram illustrating the configuration of a
如上所述,視力校正手術相關模型是在其中生成可在視力校正手術期間、之前及之後考量的各種資訊的模型。As described above, the vision correction surgery related model is a model in which various information that can be considered during, before, and after the vision correction surgery is generated.
圖5是示出根據實施例的視力校正手術相關模型M的圖式。參照圖5,視力校正手術相關模型M可包括手術適合性預測模型M10、雷射手術可用性預測模型M11、角膜形狀因子預測模型M12、客製視力校正手術必要性預測模型M13、視力校正手術建議模型M14、手術參數建議模型M15、視力預測模型M16、預期視力影像生成模型M17、角膜地形影像預測模型M18及預測結果計算原因分析模型M19。下文將給出各模型的詳細說明。FIG. 5 is a diagram showing the vision correction surgery related model M according to the embodiment. Referring to Figure 5, the vision correction surgery related model M may include a surgical suitability prediction model M10, a laser surgery availability prediction model M11, a corneal shape factor prediction model M12, a customized vision correction surgery necessity prediction model M13, and a vision correction surgery recommendation model. M14, surgical parameter recommendation model M15, visual acuity prediction model M16, expected visual acuity image generation model M17, corneal topography image prediction model M18 and prediction result calculation cause analysis model M19. Detailed descriptions of each model are given below.
可在同一訓練裝置中訓練及/或生成視力校正手術相關模型M中的至少一部分模型。例如,可在同一訓練裝置中訓練及/或生成手術適合性預測模型M10及雷射手術可用性預測模型M11。作為另一選擇,可在不同的訓練裝置中訓練及/或生成視力校正手術相關模型M中的至少一部分模型。At least part of the vision correction surgery related models M may be trained and/or generated in the same training device. For example, the surgical suitability prediction model M10 and the laser surgery availability prediction model M11 may be trained and/or generated in the same training device. As another option, at least some of the vision correction surgery related models M may be trained and/or generated in different training devices.
可在同一預測裝置中實行視力校正手術相關模型M中的至少一部分模型。例如,可在同一預測裝置中實行手術適合性預測模型M10及雷射手術可用性預測模型M11。此外,可在不同的預測裝置中實行視力校正手術相關模型M中的至少一部分模型。At least some of the vision correction surgery related models M may be implemented in the same prediction device. For example, the surgical suitability prediction model M10 and the laser surgery availability prediction model M11 can be implemented in the same prediction device. Furthermore, at least some of the vision correction surgery related models M may be implemented in different prediction devices.
根據實施例的視力校正手術相關模型可使用人工智慧模型/演算法來訓練及/或實作,且對其訓練及/或實作方法不進行限制。例如,視力校正手術相關模型可使用如下各種機器訓練模型/演算法及深度訓練模型/演算法來訓練及/或實作:分類(classification)演算法、迴歸(regression)演算法、監督學習(supervised learning)、無監督學習(unsupervised learning)、強化學習(reinforcement learning)、支持向量機(support vector machine)、決策樹(decision tree)、隨機森林(random forest)、最小絕對值壓縮及選擇運算子(least absolute shrinkage and selection operator,LASSO)、自適應提升(Adaptive Boosting,AdaBoost)、極端梯度提升(eXtreme Gradient Boosting,XGBoost)、人工神經網路(artificial neural network)等。The vision correction surgery-related model according to the embodiment can be trained and/or implemented using artificial intelligence models/algorithms, and the training and/or implementation methods are not limited. For example, vision correction surgery related models can be trained and/or implemented using various machine training models/algorithms and deep training models/algorithms as follows: classification algorithm, regression algorithm, supervised learning learning), unsupervised learning (unsupervised learning), reinforcement learning (reinforcement learning), support vector machine (support vector machine), decision tree (decision tree), random forest (random forest), minimum absolute value compression and selection operator ( least absolute shrinkage and selection operator (LASSO), adaptive boosting (Adaptive Boosting (AdaBoost)), extreme gradient boosting (eXtreme Gradient Boosting (XGBoost)), artificial neural network (artificial neural network), etc.
可藉由訓練操作訓練及/或生成根據實施例的視力校正手術相關模型。藉由訓練操作訓練及/或生成的視力校正手術相關模型可藉由預測操作來計算預測結果。Vision correction surgery related models according to embodiments may be trained and/or generated through training operations. The vision correction surgery related model trained and/or generated by the training operation can calculate the prediction result by the prediction operation.
圖6是用於闡述根據實施例的視力校正手術相關模型的訓練操作S10及預測操作S30的圖式。參照圖6,訓練操作S10可包括訓練資料獲得操作S110及模型訓練操作S150。6 is a diagram for explaining the training operation S10 and the prediction operation S30 of the vision correction surgery related model according to the embodiment. Referring to FIG. 6 , the training operation S10 may include a training data obtaining operation S110 and a model training operation S150.
訓練資料獲得操作S110可為由訓練裝置獲得訓練資料的操作,所述訓練資料是用於訓練及/或生成視力校正手術相關模型的資料。The training data obtaining operation S110 may be an operation of obtaining training data from the training device. The training data is data used for training and/or generating a model related to vision correction surgery.
模型訓練操作S150可為訓練及/或生成視力校正手術相關模型的操作。在模型訓練操作S150中,訓練裝置可基於在訓練資料獲得操作中獲得的訓練資料來訓練及/或生成模型。例如,可在模型訓練操作S150中更改構成視力校正手術相關模型的模型參數。根據所述參數的變化,可提高所述模型的準確度。The model training operation S150 may be an operation of training and/or generating a model related to vision correction surgery. In the model training operation S150, the training device may train and/or generate the model based on the training data obtained in the training data obtaining operation. For example, model parameters constituting a vision correction surgery related model may be changed in the model training operation S150. Depending on changes in the parameters, the accuracy of the model can be improved.
可基於已接受視力校正手術的被治療者的視力校正手術相關的資訊來訓練視力校正手術相關模型。例如,所述模型可基於選自由以下組成的群組中的至少一者進行訓練:已接受視力校正手術的多個被治療者進行視力校正手術之前的檢查資料、對所述多個被治療者執行的視力校正手術的手術參數以及在所述多個被治療者進行視力校正手術之後的檢查資料。A vision correction surgery related model may be trained based on vision correction surgery related information of a subject who has undergone vision correction surgery. For example, the model may be trained based on at least one selected from the group consisting of: examination data of a plurality of subjects who have undergone vision correction surgery before the vision correction surgery, examination data of the plurality of subjects who have undergone vision correction surgery, Surgical parameters of the vision correction surgery performed and examination data after the vision correction surgery of the plurality of subjects.
參照圖6,預測操作S30可包括輸入資料獲得操作S310及模型執行操作S350。Referring to FIG. 6 , the prediction operation S30 may include an input data obtaining operation S310 and a model execution operation S350.
輸入資料獲得操作S310可為由預測裝置獲得輸入資料的操作,所述輸入資料是可用於使用視力校正手術相關模型來計算預測結果的資料。The input data obtaining operation S310 may be an operation of obtaining input data from the prediction device, and the input data is data that can be used to calculate prediction results using a vision correction surgery-related model.
模型執行操作S350可為基於在訓練操作S10中訓練及/或生成的視力校正手術相關模型及輸入資料來計算預測結果的操作。例如,預測裝置可基於輸入資料及自訓練裝置獲得的模型參數來輸出預測結果。The model execution operation S350 may be an operation of calculating a prediction result based on the vision correction surgery-related model trained and/or generated in the training operation S10 and the input data. For example, the prediction device may output prediction results based on input data and model parameters obtained from the training device.
視力校正手術相關模型的輸入資料可包括所獲得的關於被檢查者的所有資訊。作為另一選擇,所述輸入資料可包括所獲得的關於被檢查者的資訊中的至少一部分。另外,所述輸入資料根據視力校正手術相關模型可相同亦可不同。Input data to a vision correction surgery-related model may include all information obtained about the subject. Alternatively, the input data may include at least a portion of the information obtained about the subject. In addition, the input data may be the same or different according to the vision correction surgery related model.
視力校正手術相關模型的預測結果可根據訓練資料而不同。此外,視力校正手術相關模型的準確度可根據訓練資料而不同。The prediction results of models related to vision correction surgery can vary depending on the training data. Additionally, the accuracy of vision correction surgery-related models can vary based on training data.
預測結果可能會根據訓練資料中包含的真實值的類型而不同。例如,預測結果可能會根據真實值是否考量被檢查者的主觀意圖而不同。在本文中,被檢查者的主觀意圖可包括偏好(例如,所述被檢查者是否偏好特定的視力校正手術)及費用支付能力(例如,可為視力校正手術支付多少費用)。在不考量被檢查者的主觀意圖時,預測結果可為醫學上建議的結果。另一方面,在考量被檢查者的主觀意圖時,預測結果可與醫學上建議的結果相同或不同。Predictions may vary depending on the type of real values contained in the training data. For example, prediction results may differ depending on whether the true value takes into account the subject's subjective intentions. In this context, the subject's subjective intentions may include preferences (eg, whether the subject prefers a particular vision correction surgery) and affordability (eg, how much one can pay for vision correction surgery). The predicted result may be a medically recommended result without considering the subject's subjective intention. On the other hand, when taking into account the subject's subjective intentions, the predicted outcome may be the same or different from the medically recommended outcome.
在第一訓練資料及第二訓練資料是自不同的醫院獲得或自不同的醫生獲得或者是不同時期的訓練資料時,基於所述第一訓練資料訓練及/或生成的第一模型與基於所述第二訓練資料訓練及/或生成的第二模型可彼此不同。因此,自所述第一模型輸出的第一預測結果與自所述第二模型輸出的第二預測結果可彼此不同。另外,所述第一模型的準確度與所述第二模型的準確度可彼此不同。When the first training data and the second training data are obtained from different hospitals or from different doctors or are training data from different periods, the first model trained and/or generated based on the first training data is the same as the first model trained and/or generated based on the first training data. The second models trained and/or generated by the second training data may be different from each other. Therefore, the first prediction result output from the first model and the second prediction result output from the second model may be different from each other. Additionally, the accuracy of the first model and the accuracy of the second model may differ from each other.
然而,即使在所述多條訓練資料不同時,亦可訓練及/或生成相同的視力校正手術相關模型。作為另一選擇,即使在基於多條不同的訓練資料訓練及/或生成視力校正手術相關模型時,亦可計算出相同的預測結果。However, even when the pieces of training data are different, the same vision correction surgery-related model can be trained and/or generated. Alternatively, the same prediction results can be calculated even when a vision correction surgery-related model is trained and/or generated based on multiple different pieces of training data.
訓練資料、輸入資料及預測結果(以下稱為「輸入/輸出資料」)可包括檢查資料及例如手術參數等變數。檢查資料及手術參數可以例如數字、文字、影像等以各種方式表現,且對其表現方式不進行限制。另外,影像為二維(two-dimensional,2D)影像或三維(three-dimensional,3D)影像等,對其維度並無限制。Training data, input data and predicted results (hereinafter referred to as "input/output data") may include examination data and variables such as surgical parameters. Examination data and surgical parameters can be expressed in various ways, such as numbers, text, images, etc., and there are no restrictions on the way they are expressed. In addition, the image is a two-dimensional (2D) image or a three-dimensional (3D) image, etc., and its dimensions are not limited.
檢查資料可包括問診資料、眼睛特性資料及遺傳資訊,所述問診資料為藉由在不經受設備或檢查的情況下進行詢問而獲得的資訊,所述眼睛特性資料為藉由設備或檢查而獲得的關於眼睛的資訊。Examination data may include consultation information obtained by questioning without being subjected to equipment or examinations, eye characteristics information obtained by means of equipment or examinations, and genetic information. Information about eyes.
問診資料可包括例如以下變數:人口統計特性,例如性別、年齡、種族;居住環境,例如被檢測者的居住地區;職業;收入;學歷;教育;被檢測者的家庭規模;病史及家族病史,例如高血壓、糖尿病等;以及被檢查者對視力校正手術的偏好。Questionnaire data may include, for example, the following variables: demographic characteristics, such as gender, age, race; living environment, such as the area where the person being tested lives; occupation; income; academic qualifications; education; family size of the person being tested; medical history and family history, For example, hypertension, diabetes, etc.; and the examinee's preference for vision correction surgery.
眼睛特性資料可包括與眼睛相關的所有種類的資訊。例如,眼睛特性資料可包括如視力、眼壓及/或視網膜檢查結果等變數。Eye characteristic data may include all kinds of information related to the eye. For example, eye characteristic data may include variables such as visual acuity, intraocular pressure, and/or retinal examination results.
眼睛特性資料可包括關於眼睛的物理形狀的資訊。例如,眼睛特性資料可包括例如白至白(white-to-white,WTW)距離、角至角(angle-to-angle,ATA)距離、內部前房深度(internal anterior chamber depth,ACD)、溝至溝(sulcus-to-sulcus,STS)距離、瞳孔大小等變數。作為另一實例,眼睛特性資料可包括例如角膜形狀因子、角膜地形影像等關於角膜形狀的資訊。此處,角膜形狀因子是表示角膜的物理形狀的數值,且可包括例如表面變異指數(ISV)、垂直不對稱指數(IVA)、圓錐角膜指數(keratoconus index,KI)、中央圓錐角膜指數(central keratoconus index,CKI)、最小曲率半徑(minimum radius of curvature,Rmin)、高度不對稱指數(index of height asymmetry,IHA)、高度偏心指數(IHD)、中央角膜厚度(central cornea thickness)等變數。另外,角膜地形影像是關於角膜形狀的影像,且可包括角膜地形圖、角膜前曲率影像、角膜後曲率影像、角膜厚度圖等。Eye characteristic data may include information about the physical shape of the eye. For example, eye characteristic data may include, for example, white-to-white (WTW) distance, angle-to-angle (ATA) distance, internal anterior chamber depth (ACD), sulcus Variables such as sulcus-to-sulcus (STS) distance and pupil size. As another example, the eye characteristic data may include information about the shape of the cornea, such as corneal shape factor, corneal topography image, and the like. Here, the corneal shape factor is a numerical value indicating the physical shape of the cornea, and may include, for example, surface variation index (ISV), vertical asymmetry index (IVA), keratoconus index (KI), central keratoconus index (central keratoconus index (CKI), minimum radius of curvature (Rmin), index of height asymmetry (IHA), height decentration index (IHD), central cornea thickness (central cornea thickness) and other variables. In addition, the corneal topography image is an image about the shape of the cornea, and may include a corneal topography map, an anterior corneal curvature image, a posterior corneal curvature image, a corneal thickness map, etc.
眼睛特性資料可藉由例如眼前節分析儀(Pentacam)、CASIA2、AL-Scan、光學品質分析系統(Optical Quality Analysis System,OQAS)等斷層攝影術(tomography)、地形學、光同調斷層掃描(optical coherence tomography,OCT)、超音波生物顯微鏡(ultrasound biomicroscopy,UBM)設備等來獲得,但並不限於此。可藉由上述設備及與其類似的設備獲得的資訊以及源自所述設備的資訊可包括在眼睛特性資料中。Eye characteristics data can be obtained through tomography, topography, optical coherence tomography, etc., such as anterior segment analyzer (Pentacam), CASIA2, AL-Scan, Optical Quality Analysis System (OQAS), etc. coherence tomography (OCT), ultrasound biomicroscopy (UBM) equipment, etc., but are not limited to these. Information obtainable by and derived from the devices described above and similar devices may be included in the eye characteristic data.
遺傳資訊可藉由遺傳測試等獲得。遺傳資訊可用於判斷視力校正手術是否適合被檢查者。此外,遺傳資訊可用於預測視力校正手術後的副作用。例如,可藉由遺傳資訊預測是否存在角膜營養不良。Genetic information can be obtained through genetic testing, etc. Genetic information can be used to determine whether vision correction surgery is appropriate for the person being tested. In addition, genetic information can be used to predict side effects after vision correction surgery. For example, genetic information can be used to predict the presence of corneal dystrophy.
手術參數是與視力校正手術效能相關的變數,且可包括在視力校正手術期間可更改的變數:例如視力校正手術的類型,例如LASIK、LASEK、SMILE、晶狀體植入、標準視力校正手術、客製視力校正手術等;角膜瓣厚度(flap thickness);角膜瓣直徑(flap diameter);瓣側切角(flap side cut angle);角膜切削輪廓;眼睛吸環操作時間(suction time);光學區域(optic zone);鉸鏈結構,例如鉸鏈位置(hinge position)、鉸鏈角度(hinge angle)及鉸鏈寬度(hinge width)等。Surgical parameters are variables related to the performance of vision correction surgery and may include variables that can be changed during vision correction surgery: such as type of vision correction surgery, e.g., LASIK, LASEK, SMILE, lens implant, standard vision correction surgery, custom Vision correction surgery, etc.; corneal flap thickness (flap thickness); corneal flap diameter (flap diameter); flap side cut angle (flap side cut angle); corneal cutting profile; eye suction ring operation time (suction time); optical area (optic zone); hinge structure, such as hinge position, hinge angle, hinge width, etc.
標準視力校正手術可指代用於校正低階像差的視力校正手術,而客製視力校正手術可指代用於校正低階像差及高階像差的視力校正手術。Standard vision correction surgery may refer to vision correction surgery that corrects low-order aberrations, while custom vision correction surgery may refer to vision correction surgery that corrects both low-order aberrations and high-order aberrations.
根據標準視力校正手術的被治療者及客製視力校正手術的被治療者而要考量的手術參數的類型可能會不同。例如,根據客製視力校正手術的被治療者考量的手術參數的類型可包括根據進行標準視力校正手術的被治療者考量的手術參數的類型。The types of surgical parameters that are considered may differ depending on the subject being treated for standard vision correction surgery and the subject being treated for custom vision correction surgery. For example, the types of surgical parameters considered by a subject undergoing custom vision correction surgery may include the types of surgical parameters considered by a subject undergoing standard vision correction surgery.
根據標準視力校正手術的被治療者而變化的手術參數的數目可與根據客製視力校正手術的被治療者而變化的手術參數的數目不同。可藉由根據被治療者而變化的手術參數的數目來區分標準視力校正手術及客製視力校正手術。根據被治療者而變化的用以區分標準視力校正手術與客製視力校正手術的手術參數的數目(以下稱為「參考值」)可為預定值。例如,在根據被治療者而變化的手術參數的數目大於或等於參考值時,可執行客製視力校正手術,而當手術參數的數目小於參考值時,可執行標準視力校正手術。The number of surgical parameters that vary depending on the subject being treated for standard vision correction surgery may be different from the number of surgical parameters that vary depending on the subject being treated for custom vision correction surgery. Standard vision correction surgery and custom vision correction surgery can be distinguished by the number of surgical parameters that vary depending on the person being treated. The number of surgical parameters used to distinguish standard vision correction surgery from customized vision correction surgery (hereinafter referred to as "reference values") that vary according to the patient may be a predetermined value. For example, when the number of surgical parameters that vary according to the patient is greater than or equal to the reference value, a customized vision correction surgery may be performed, and when the number of surgical parameters is less than the reference value, a standard vision correction surgery may be performed.
標準視力校正手術及客製視力校正手術可根據執行視力校正手術的醫院、醫生及/或時期而不同。例如,參考值可根據醫院、醫生及/或時期而不同。Standard vision correction surgery and custom vision correction surgery may vary depending on the hospital, doctor and/or period in which the vision correction surgery is performed. For example, the reference value may vary based on hospital, doctor, and/or time period.
客製視力校正手術可包括精雕近視手術(Contoura Vision)及波前(wavefront)LASIK。Customized vision correction surgeries can include Contoura Vision and wavefront LASIK.
在執行客製視力校正手術時的視力品質可相較於執行標準視力校正手術時提高。視力的品質是概括性地表示視力好壞的用語,且不僅可基於藉由視力測定表測定的視力、低階像差及高階像差、而且可藉由視力的清晰度、光線透射、對比敏感度、夜間視力、眩光、複視、餘像及其他不適等來判斷。The quality of vision when performing custom vision correction surgery can be improved compared to when performing standard vision correction surgery. The quality of vision is a term that generally expresses the quality of vision, and can be based not only on the visual acuity, low-order aberrations and high-order aberrations measured by an eye test chart, but also on the clarity of vision, light transmission, and contrast sensitivity. degree, night vision, glare, double vision, afterimages and other discomforts.
輸入/輸出資料不僅可包括可藉由問診及檢查而獲得/測定的測定值,而且可包括可藉由視力校正手術相關模型計算的預測值。例如,眼睛特性資料不僅可包括在視力校正手術之前藉由檢查而獲得/測定的眼睛特性資料測定值,而且包括在視力校正手術之後藉由視力校正手術相關模型計算的眼睛特性資料的預測值。Input/output data may include not only measurement values that can be obtained/measured through consultation and examination, but also predictive values that can be calculated by vision correction surgery-related models. For example, the eye characteristic data may include not only measured values of the eye characteristic data obtained/measured by examination before the vision correction surgery, but also include predicted values of the eye characteristic data calculated by the vision correction surgery related model after the vision correction surgery.
輸入/輸出資料可經預處理而被輸入至視力校正手術相關模型中。例如,訓練裝置可將獲得的輸入/輸出資料預處理且然後將其用於視力校正手術相關模型的訓練。作為另一選擇,預測裝置可將獲得的輸入/輸出資料預處理,且然後將所獲得的輸入/輸出資料輸入至視力校正手術相關模型中以計算預測結果。The input/output data can be preprocessed and input into vision correction surgery related models. For example, the training device may preprocess the obtained input/output data and then use it for training of vision correction surgery related models. As another option, the prediction device may pre-process the obtained input/output data, and then input the obtained input/output data into the vision correction surgery related model to calculate the prediction result.
預處理應被寬泛地解釋為包括應用至輸入/輸出資料的所有變化,且不限於本說明書中揭露的實例。Preprocessing should be interpreted broadly to include all changes applied to input/output data and is not limited to the examples disclosed in this specification.
預處理可包括選擇輸入/輸出資料中包含的變數的至少一部分,例如特徵選擇。例如,預處理可包括t-測試(t-test)、基尼指數(Gini index)、資訊增益(information gain)、緩解(relief)、DistAUC,訊號對雜訊(signal to noise)、最小冗餘最大相關(minimum-Redundancy-Maximum-Relevance,MRMR)、費舍爾分數(Fisher score)、拉普拉斯分數(Laplacian score)、譜特徵選擇(spectral feature selection,SPEC)等。Preprocessing may include selection of at least a portion of the variables contained in the input/output data, such as feature selection. For example, preprocessing may include t-test, Gini index, information gain, relief, DistAUC, signal to noise, minimum redundancy and maximum Relevance (minimum-Redundancy-Maximum-Relevance, MRMR), Fisher score (Fisher score), Laplacian score (Laplacian score), spectral feature selection (spectral feature selection, SPEC), etc.
預處理可包括自輸入/輸出資料中包括的變數的至少一部分中生成新變數,例如特徵提取。例如,預處理可包括主成分分析(principle component analysis)、線性判別分析(linear discriminant analysis)、典型相關分析(canonical correlation analysis)、奇異值分解(singular value decomposition)、等距特徵映射(isometric feature mapping,ISOMAP)、局部線性嵌入(locally linear embedding)等。作為另一實例,預處理可包括自數值生成光譜或自數值生成影像。Preprocessing may include generating new variables from at least a portion of the variables included in the input/output data, such as feature extraction. For example, preprocessing may include principal component analysis, linear discriminant analysis, canonical correlation analysis, singular value decomposition, isometric feature mapping , ISOMAP), locally linear embedding (locally linear embedding), etc. As another example, preprocessing may include generating a spectrum from the values or generating an image from the values.
在輸入/輸出資料中不包括視力校正手術相關模型(或訓練裝置及/或預測裝置)所需的變數時,預處理可包括例如缺失值處理(missing value processing)等處理方法。例如,預處理可包括將缺失值處理為相應變數的平均值或將缺失值處理為眾數。When the input/output data does not include variables required for vision correction surgery-related models (or training devices and/or prediction devices), preprocessing may include processing methods such as missing value processing. For example, preprocessing may include treating missing values as the mean of the corresponding variable or treating missing values as the mode.
藉由預處理可提高視力校正手術相關模型的準確度。例如,包括特徵選擇的視力校正手術相關模型的準確度可較不包括特徵選擇的模型的準確度高。作為另一實例,其中自數值生成影像並基於所述影像計算預測結果的視力校正手術相關模型的準確度可較其中基於數值計算預測結果的視力校正手術相關模型的準確度高。Preprocessing can improve the accuracy of vision correction surgery-related models. For example, the accuracy of a vision correction surgery-related model that includes feature selection may be higher than the accuracy of a model that does not include feature selection. As another example, a vision correction surgery-related model in which images are generated from numerical values and predictions are calculated based on the images may be more accurate than a vision correction surgery-related model in which predictions are calculated based on numerical values.
圖7是示出根據實施例的輸入/輸出資料的預處理的圖式。參照圖7,可藉由預處理操作S500將輸入/輸出資料輸入至視力校正手術相關模型中。視力校正手術相關模型可基於經預處理的輸入/輸出資料來計算預測結果(S700)。FIG. 7 is a diagram illustrating preprocessing of input/output data according to an embodiment. Referring to FIG. 7 , the input/output data can be input into the vision correction surgery related model through the preprocessing operation S500. The vision correction surgery related model may calculate prediction results based on the preprocessed input/output data (S700).
視力校正手術相關模型可包括多個子模型。所述多個子模型可基於輸入資料來計算預測結果。A vision correction surgery related model may include multiple sub-models. The plurality of sub-models may calculate predictions based on input data.
視力校正手術相關模型可包括其中串聯及/或並聯連接子模型的模型,例如整體模型(ensemble model)等。Vision correction surgery related models may include models in which sub-models are connected in series and/or parallel, such as an ensemble model, etc.
視力校正手術相關模型可包括串聯連接的多個子模型。此處,串聯連接的子模型可意指至少一個子模型的輸出是基於至少另一個子模型的輸出而計算的,例如第一子模型的輸出是第二子模型的輸入等。作為另一選擇,串聯連接的子模型被可意指多個子模型應被依序執行,以藉由視力校正手術相關模型自輸入資料獲得預測結果。A vision correction surgery related model may include multiple sub-models connected in series. Here, the sub-models connected in series may mean that the output of at least one sub-model is calculated based on the output of at least another sub-model, for example, the output of the first sub-model is the input of the second sub-model, etc. Alternatively, serially connected sub-models may mean that multiple sub-models should be executed sequentially to obtain prediction results from the input data by the vision correction surgery related model.
圖8是示出根據實施例的包括串聯連接的子模型M1及M2的視力校正手術相關模型M的圖式。參照圖8,視力校正手術相關模型M可包括串聯連接的第一子模型M1及第二子模型M2。第一子模型M1可基於輸入/輸出資料來計算輸出,且第二子模型M2可基於第一子模型M1的輸出來計算預測結果。FIG. 8 is a diagram illustrating a vision correction surgery related model M including series-connected sub-models M1 and M2 according to an embodiment. Referring to FIG. 8 , the vision correction surgery related model M may include a first sub-model M1 and a second sub-model M2 connected in series. The first sub-model M1 can calculate the output based on the input/output data, and the second sub-model M2 can calculate the prediction result based on the output of the first sub-model M1.
視力校正手術相關模型可包括並聯連接的多個子模型。此處,並聯連接的子模型可意指一個子模型的輸出不對另一子模型的輸出帶來影響,例如第一子模型的輸出不依賴於第二子模型的輸出等。A vision correction surgery related model may include multiple sub-models connected in parallel. Here, sub-models connected in parallel may mean that the output of one sub-model does not affect the output of another sub-model, for example, the output of the first sub-model does not depend on the output of the second sub-model, etc.
並聯連接的多個子模型的輸入可相同。作為另一選擇,並聯連接的多個子模型的輸入可不同。例如,輸入至第一子模型的第一檢查資料可與輸入至第二子模型的第二檢查資料不同。Multiple submodels connected in parallel can have the same input. As another option, the inputs of multiple sub-models connected in parallel may be different. For example, the first inspection data input to the first sub-model may be different from the second inspection data input to the second sub-model.
第一檢查資料可包括與第二檢查資料的變數不同的至少一些變數。例如,所述第一檢查資料可包括對視力校正手術的偏好,但所述第二檢查資料可不包括對視力校正手術的偏好。The first examination data may include at least some variables that are different from the variables of the second examination data. For example, the first examination profile may include a preference for vision correction surgery, but the second exam profile may not include a preference for vision correction surgery.
所述第一檢查資料可具有與所述第二檢查資料相同類型的變數,但所述變數可具有不同的值。例如,所述第一檢查資料及所述第二檢查資料可包括角膜厚度,但獲得角膜厚度的數值的方法不同(例如,利用不同的裝置測定角膜厚度),因此數值可不同。The first exam profile may have the same type of variables as the second exam profile, but the variables may have different values. For example, the first inspection data and the second inspection data may include corneal thickness, but the methods of obtaining the numerical value of corneal thickness are different (for example, using different devices to measure corneal thickness), so the numerical values may be different.
視力校正手術相關模型可包括其中基於並聯連接的多個子模型的輸出來計算輸出的輸出子模型。例如,在所述多個子模型的輸出相同時,輸出子模型可提供所述相同的輸出。作為另一實例,在所述多個子模型的輸出不同時,輸出子模型可輸出以預定比率考量所述多個子模型的輸出的結果,或者可提供所述多個輸出中的特定輸出。作為又一實例,輸出子模型可輸出基於所述多個子模型的輸出而生成的結果。The vision correction surgery related model may include an output sub-model in which the output is calculated based on the output of a plurality of sub-models connected in parallel. For example, when the outputs of the multiple sub-models are the same, an output sub-model may provide the same output. As another example, when the outputs of the plurality of sub-models are different, the output sub-model may output a result considering the outputs of the plurality of sub-models at a predetermined ratio, or may provide a specific output among the plurality of outputs. As yet another example, an output sub-model may output results generated based on outputs of the plurality of sub-models.
圖9是示出根據實施例的包括並聯連接的子模型M1及M2的視力校正手術相關模型M的圖式。參照圖9,視力校正手術相關模型M可包括並聯連接的第一子模型M1及第二子模型M2。另外,視力校正手術相關模型M可包括其中基於第一子模型M1及第二子模型M2的輸出來計算輸出的輸出子模型M3。第一子模型M1及第二子模型M2可基於輸入/輸出資料來分別計算第一輸出及第二輸出,且輸出子模型M3可基於第一輸出及第二輸出來計算預測結果。FIG. 9 is a diagram illustrating a vision correction surgery related model M including parallel-connected sub-models M1 and M2 according to an embodiment. Referring to FIG. 9 , the vision correction surgery related model M may include a first sub-model M1 and a second sub-model M2 connected in parallel. In addition, the vision correction surgery related model M may include an output sub-model M3 in which the output is calculated based on the outputs of the first sub-model M1 and the second sub-model M2. The first sub-model M1 and the second sub-model M2 can respectively calculate the first output and the second output based on the input/output data, and the output sub-model M3 can calculate the prediction result based on the first output and the second output.
作為包括並聯連接的子模型的視力校正手術相關模型的實例可包括整體模型,但不限於此。An example of a vision correction surgery-related model including sub-models connected in parallel may include an overall model, but is not limited thereto.
以下,將闡述視力校正手術相關模型的個別實例。In the following, individual examples of models related to vision correction surgery will be described.
手術適合性預測模型可預測視力校正手術是否適合被檢查者。手術適合性預測模型可基於輸入資料來預測手術適合性。The surgical suitability prediction model predicts whether vision correction surgery is appropriate for the person being examined. Surgical suitability prediction models predict surgical suitability based on input data.
視力校正手術的適合性可指代醫學適合性。因此,手術適合性預測模型的輸入資料可不包括被檢查者對視力校正手術的偏好。作為另一選擇,手術適合性預測模型可在不考量被檢查者對視力校正手術偏好的情況下預測手術適合性。Suitability for vision correction surgery may refer to medical suitability. Therefore, the input data to the surgical suitability prediction model may not include the subject's preference for vision correction surgery. Alternatively, a surgical suitability prediction model may predict suitability for surgery without taking into account the subject's preference for vision correction surgery.
手術適合性可包括是否可進行手術以及是否需要進行手術。例如,手術適合性預測模型可將視力良好而不需要進行手術的被檢查者判斷為不適合手術。作為另一實例,手術適合性預測模型可將不能藉由視力校正手術來提高其視力的被檢查者判斷為不適合手術。Suitability for surgery may include whether surgery is possible and whether surgery is needed. For example, a surgical suitability prediction model may determine that a subject with good vision who does not require surgery is not suitable for surgery. As another example, a surgical suitability prediction model may determine that a subject whose vision cannot be improved by vision correction surgery is not suitable for surgery.
可將手術適合性輸出為適合或不適合手術。作為另一選擇,可藉由將手術適合度量化或可視化來輸出手術適合性。Suitability for surgery can be output as suitable or unsuitable for surgery. As another option, surgical suitability may be output by quantifying or visualizing surgical suitability.
雷射手術可用性預測模型可預測使用雷射的視力校正手術對被檢查者而言是否可進行。此處,使用雷射的視力校正手術可指代藉由使用雷射的角膜切削來校正視力的手術。雷射手術可用性預測模型可基於輸入資料來預測是否可進行雷射手術。The laser surgery availability prediction model predicts whether vision correction surgery using lasers will be available for a subject. Here, vision correction surgery using laser may refer to surgery to correct vision by corneal ablation using laser. Laser surgery availability prediction models predict the availability of laser surgery based on input data.
使用雷射的視力校正手術的可用性可指代醫學可用性。因此,雷射手術可用性預測模型的輸入資料可不包括被檢查者對視力校正手術的偏好。作為另一選擇,雷射手術可用性預測模型可不考量被檢查者對視力校正手術的偏好而預測雷射手術可用性。The availability of vision correction surgery using lasers may refer to medical availability. Therefore, the input data to the laser surgery availability prediction model may not include the subject's preference for vision correction surgery. Alternatively, a laser surgery availability prediction model may predict laser surgery availability regardless of the subject's preference for vision correction surgery.
可將雷射手術可用性輸出為可進行/不可進行雷射手術。作為另一選擇,可藉由將手術可用度數值化或可視化來輸出雷射手術可用性。Laser surgery availability can be exported as laser surgery available/unavailable. As another option, laser surgery availability can be output by numericizing or visualizing the surgery availability.
角膜形狀因子預測模型可預測被檢查者進行視力校正手術後的角膜形狀因子。所述模型可預測一或多個角膜形狀因子。角膜形狀因子預測模型可基於輸入資料來預測角膜形狀因子。The corneal shape factor prediction model can predict the corneal shape factor of subjects after vision correction surgery. The model can predict one or more corneal shape factors. The corneal shape factor prediction model predicts corneal shape factor based on input data.
角膜形狀因子預測模型的輸入資料可包括手術參數。例如,所述輸入資料可包括手術類型作為手術參數。所述模型可預測與輸入的手術參數對應的角膜形狀因子。例如,在輸入資料包括LASIK、LASEK及SMILE作為手術參數時,所述模型的輸出可包括在進行LASIK後的角膜形狀因子預測值、在進行LASEK後的角膜形狀因子預測值以及在進行SMILE後的角膜形狀因子預測值。作為另一實例,在輸入資料包括標準視力校正手術及客製視力校正手術作為手術參數時,所述模型的輸出可包括在進行標準視力校正手術後的角膜形狀因子預測值及在進行客製視力校正手術後的角膜形狀因子預測值。Input data to the corneal shape factor prediction model may include surgical parameters. For example, the input data may include the type of surgery as a surgical parameter. The model predicts corneal shape factors corresponding to input surgical parameters. For example, when the input data includes LASIK, LASEK, and SMILE as surgical parameters, the output of the model may include the predicted corneal shape factor after LASIK, the predicted corneal shape factor after LASEK, and the predicted corneal shape factor after SMILE. Predictive value of corneal shape factor. As another example, when the input data includes standard vision correction surgery and customized vision correction surgery as surgical parameters, the output of the model may include predicted values of corneal shape factor after performing standard vision correction surgery and after performing customized vision correction. Predictive value of corneal shape factor after corrected surgery.
不論輸入資料是否包括手術參數,角膜形狀因子預測模型均可預測與預定手術參數對應的角膜形狀因子。例如,在所述模型進行訓練以預測進行標準視力校正手術後的角膜形狀因子及進行客製視力校正手術後的角膜形狀因子的情形中,即使所述模型的輸入資料不包括手術參數,所述模型亦可輸出進行標準視力校正手術後的角膜形狀因子預測值、以及進行客製視力校正手術後的角膜形狀因子預測值。Regardless of whether the input data includes surgical parameters, the corneal shape factor prediction model can predict the corneal shape factor corresponding to the predetermined surgical parameters. For example, in the case where the model is trained to predict corneal shape factor after standard vision correction surgery and corneal shape factor after custom vision correction surgery, the model's input data does not include surgical parameters. The model can also output the predicted corneal shape factor after standard vision correction surgery and the predicted corneal shape factor after customized vision correction surgery.
表1示出根據實施例的角膜形狀因子預測模型的輸出。參照表1,角膜形狀因子預測模型可輸出被檢查者的IHD、ISV及IVA值。此外,角膜形狀因子預測模型可包括在視力校正手術之前獲得的被檢查者的IHD、ISV及IVA測定值、在標準視力校正手術之後預測的IHD、ISV及IVA值、以及在客製視力校正手術之後預測的IHD、ISV及IVA值。
[表1]
客製視力校正手術必要性預測模型可預測被檢查者是否需要客製視力校正手術。客製視力校正手術必要性預測模型可基於輸入資料預測客製視力校正手術必要性。The prediction model for the necessity of customized vision correction surgery can predict whether the examinee needs customized vision correction surgery. The prediction model for the necessity of customized vision correction surgery can predict the necessity of customized vision correction surgery based on the input data.
客製視力校正手術必要性預測模型可預測客製視力校正手術必要性,而無需考量被檢查者對於視力校正手術的偏好。作為另一選擇,客製視力校正手術必要性預測模型可考量被檢查者對於視力校正手術的偏好來預測客製視力校正手術必要性。客製視力校正手術必要性預測模型的輸出可根據是否考量被檢查者對於視力校正手術的偏好而變化。The prediction model for the need for customized vision correction surgery can predict the need for customized vision correction surgery without taking into account the subject's preference for vision correction surgery. As another option, a customized vision correction surgery necessity prediction model may consider the subject's preference for vision correction surgery to predict the necessity of customized vision correction surgery. The output of the customized vision correction surgery necessity prediction model may vary depending on whether the subject's preference for vision correction surgery is taken into account.
客製視力校正手術必要性預測模型可基於例如角膜形狀因子及角膜地形影像等眼睛特性資料來判斷被檢查者是否需要客製視力校正手術。The prediction model for the necessity of customized vision correction surgery can determine whether the subject needs customized vision correction surgery based on eye characteristics data such as corneal shape factor and corneal topography image.
客製視力校正手術必要性預測模型可基於角膜形狀因子的絕對數值來確定客製視力校正手術必要性。例如,當角膜形狀因子超出某一範圍時,客製視力校正手術必要性預測模型可預測被檢查者需要客製視力校正手術。The prediction model for the necessity of customized vision correction surgery can determine the necessity of customized vision correction surgery based on the absolute value of the corneal shape factor. For example, when the corneal shape factor exceeds a certain range, the prediction model for the necessity of customized vision correction surgery can predict that the subject needs customized vision correction surgery.
客製視力校正手術必要性預測模型可基於角膜形狀因子的相對數值來確定客製視力校正手術必要性。例如,客製視力校正手術必要性預測模型可將標準視力校正手術後的角膜形狀因子與客製視力校正手術後的角膜形狀因子進行比較,以確定客製視力校正手術必要性。The prediction model for the necessity of customized vision correction surgery can determine the necessity of customized vision correction surgery based on the relative value of the corneal shape factor. For example, a prediction model for the need for customized vision correction surgery may compare the corneal shape factor after standard vision correction surgery with the corneal shape factor after custom vision correction surgery to determine the need for customized vision correction surgery.
視力校正手術建議模型可建議對應於被檢查者的視力校正手術。例如,所述模型可輸出一個視力校正手術。作為另一實例,所述模型可輸出多個視力校正手術。作為又一實例,所述模型可輸出多個視力校正手術以及關於其優先級的資訊。The vision correction surgery recommendation model may recommend vision correction surgery corresponding to the subject. For example, the model may output a vision correction surgery. As another example, the model may output multiple vision correction surgeries. As yet another example, the model may output multiple vision correction surgeries and information regarding their priority.
視力校正手術建議模型可基於輸入資料建議視力校正手術。The vision correction surgery recommendation model can recommend vision correction surgery based on the input data.
對應於被檢查者的視力校正手術可指在不考量被檢查者對於視力校正手術的偏好的情況下由視力校正手術建議模型確定的視力校正手術。作為另一選擇,對應於被檢查者的視力校正手術可指在考量被檢查者對於視力校正手術的偏好的情況下由視力校正手術建議模型確定的視力校正手術。視力校正手術建議模型的輸出可根據是否考量被檢查者對於視力校正手術的偏好而變化。The vision correction surgery corresponding to the subject may refer to the vision correction surgery determined by the vision correction surgery recommendation model without considering the subject's preference for the vision correction surgery. Alternatively, the vision correction surgery corresponding to the subject may refer to the vision correction surgery determined by the vision correction surgery recommendation model taking into account the subject's preference for the vision correction surgery. The output of the vision correction surgery recommendation model may vary depending on whether the subject's preference for vision correction surgery is considered.
視力校正手術建議模型的輸出可考量客製視力校正手術必要性來確定。例如,可考量客製視力校正手術必要性(例如標準LASIK、客製LASIK、標準LASEK、客製LASEK、標準SMILE、客製SMILE等)來確定輸出。The output of the vision correction surgery recommendation model may be determined taking into account the necessity for customized vision correction surgery. For example, the output may be determined by considering the necessity of customized vision correction surgery (eg, standard LASIK, customized LASIK, standard LASEK, customized LASEK, standard SMILE, customized SMILE, etc.).
作為另一選擇,可在不考量客製視力校正手術必要性的情況下確定視力校正手術建議模型的輸出。例如,可在不考量客製視力校正手術必要性(例如LASIK、LASEK、SMILE、晶狀體植入等)的情況下確定輸出。Alternatively, the output of the vision correction surgery recommendation model may be determined without considering the need for customized vision correction surgery. For example, output can be determined without considering the need for custom vision correction surgery (eg, LASIK, LASEK, SMILE, lens implants, etc.).
視力校正手術建議模型可基於視力校正手術後的視力品質來建議視力校正手術。例如,所述模型可基於視力校正手術之後的視力預測值來建議視力校正手術,其對應於多個視力校正手術。The vision correction surgery recommendation model can recommend vision correction surgery based on the quality of vision after the vision correction surgery. For example, the model can recommend vision correction surgery based on the predicted value of vision after the vision correction surgery, which corresponds to multiple vision correction surgeries.
表2示出根據實施例的視力校正手術建議模型的輸出。參照表2,視力校正手術建議模型可輸出LASIK、LASEK及SMILE以及關於其優先級的資訊,例如適合性。在表2中,對應於SMILE的值大於對應於LASIK及LASEK的值,此可意指視力校正手術建議模型優先建議SMILE。除了表2的方法之外,可以各種方式輸出關於優先級的資訊,以指示優先級。
[表2]
手術參數建議模型可建議手術參數。所述模型可建議一或多個手術參數。手術參數建議模型可基於輸入資料建議手術參數。The surgical parameter recommendation model may recommend surgical parameters. The model may recommend one or more surgical parameters. The surgical parameter recommendation model can recommend surgical parameters based on input data.
手術參數建議模型的輸入資料可包括影像形式的資料。此處,影像可為藉由使用設備進行量測及/或監查而獲得的影像,例如角膜地形圖。作為另一選擇,影像可為基於量測的數值藉由內插、外推、人工智慧等獲得的影像。例如,影像可為自角膜形狀因子生成的影像。The input data of the surgical parameter recommendation model may include data in the form of images. Here, the image may be an image obtained by using a device for measurement and/or monitoring, such as a corneal topography map. Alternatively, the image may be an image obtained by interpolation, extrapolation, artificial intelligence, etc. based on measured values. For example, the image may be an image generated from a corneal shape factor.
基於由手術參數建議模型基於影像建議的手術參數執行的視力校正手術之後的手術結果可能優於基於依據數值建議的手術參數執行的視力校正手術之後的手術結果。例如,基於由模型基於角膜地形影像建議的手術參數執行的視力校正手術之後的手術結果可能優於基於依據角膜形狀因子(例如IHD、ISV、IVA等)建議的手術參數執行的視力校正手術之後的手術結果。此處,手術結果可指手術後的視力品質。作為另一選擇,手術結果可指手術後的角膜形狀。Surgical outcomes following vision correction surgery performed based on surgical parameters suggested by the surgical parameter recommendation model based on imaging may be better than surgical outcomes following vision corrective surgery performed based on surgical parameters suggested based on numerical values. For example, surgical outcomes following vision correction surgery based on surgical parameters suggested by a model based on corneal topography images may be better than those after visual correction surgery based on surgical parameters suggested based on corneal shape factors (e.g., IHD, ISV, IVA, etc.) Surgery results. Here, surgical results may refer to the quality of vision after surgery. Alternatively, surgical results may refer to the shape of the cornea after surgery.
視力預測模型可預測被檢查者在視力校正手術後的視力。視力預測模型可基於輸入資料輸出視力預測值。所述模型可預測一或多個視力。The vision prediction model predicts the subject's vision after vision correction surgery. The vision prediction model can output vision prediction values based on input data. The model can predict one or more visual acuities.
視力預測模型的輸入資料可包括手術參數。例如,輸入資料可包括手術類型作為手術參數。所述模型可預測對應於輸入手術參數的視力。例如,當輸入資料包括LASIK、LASEK及SMILE作為手術參數時,模型的輸出可包括LASIK之後的視力預測值、LASEK之後的視力預測值及SMILE之後的視力預測值。作為另一實例,當輸入資料包括標準視力校正手術及客製視力校正手術作為手術參數時,模型的輸出可包括標準視力校正手術後的視力預測值及客製視力校正手術後的視力預測值。Input data to the vision prediction model may include surgical parameters. For example, the input data may include the type of surgery as a surgery parameter. The model predicts visual acuity corresponding to input surgical parameters. For example, when the input data includes LASIK, LASEK, and SMILE as surgical parameters, the output of the model may include the predicted value of visual acuity after LASIK, the predicted value of visual acuity after LASEK, and the predicted value of visual acuity after SMILE. As another example, when the input data includes standard vision correction surgery and customized vision correction surgery as surgical parameters, the output of the model may include the predicted value of vision after the standard vision correction surgery and the predicted value of vision after the customized vision correction surgery.
視力預測模型可預測對應於預定手術參數的視力,而無論輸入資料是否包括手術參數。例如,在對模型進行訓練以預測標準視力校正手術後的視力及客製視力校正手術後的視力的情形中,即使當模型的輸入資料不包括手術參數時,模型亦可輸出標準視力校正手術後的視力預測值及客製視力校正手術後的視力預測值。The vision prediction model predicts vision corresponding to predetermined surgical parameters regardless of whether the input data includes surgical parameters. For example, in a scenario where a model is trained to predict visual acuity after standard vision correction surgery and visual acuity after custom vision correction surgery, the model can output visual acuity after standard vision correction surgery even when the input data to the model does not include surgical parameters. The predicted value of visual acuity and the predicted value of visual acuity after customized vision correction surgery.
視力預測模型可預測對應於多個不同時間點的視力。例如,所述模型可預測對應於視力校正手術後的第一時間及第二時間的視力。多個不同時間點的實例可包括視力校正手術後的一天、一周、一個月、六個月、一年等,但不限於此。Vision prediction models predict vision corresponding to multiple different points in time. For example, the model may predict vision corresponding to a first time and a second time after vision correction surgery. Examples of multiple different time points may include, but are not limited to, one day, one week, one month, six months, one year, etc. after vision correction surgery.
視力預測模型可基於對應於多個不同時間點的視力預測值來預測被檢查者的視力恢復率。例如,所述模型可基於視力校正手術後的第一時間及第二時間來預測視力恢復率。The vision prediction model can predict the vision recovery rate of the subject based on vision prediction values corresponding to multiple different time points. For example, the model may predict the rate of vision recovery based on a first time and a second time after vision correction surgery.
預期視力影像生成模型可預測視力校正手術後被檢查者的視野。所述模型可生成藉由可視化被檢查者在視力校正手術後的視力品質而獲得的影像(以下稱為「預期視力影像」)。所述模型輸出預期的視力影像,使得可更容易地向被檢查者解釋視力校正手術。所述模型可視化並輸出視力校正手術後的視野,使得被檢查者可更清楚地理解視力校正手術後的預期結果,並因此可在選擇視力校正手術時獲得幫助。Anticipated visual acuity image generation model predicts a subject's visual field after vision correction surgery. The model can generate an image obtained by visualizing the subject's vision quality after vision correction surgery (hereinafter referred to as the "expected vision image"). The model outputs an expected vision image, making it easier to explain vision correction surgery to the subject. The model visualizes and outputs the visual field after vision correction surgery, so that the examinee can more clearly understand the expected results after vision correction surgery, and thus can get help when choosing vision correction surgery.
預期視力影像生成模型的輸入資料可包括手術參數。例如,輸入資料可包括手術類型作為手術參數。所述模型可預測對應於輸入的手術參數的預期視力影像。例如,當輸入資料包括LASIK、LASEK及SMILE作為手術參數時,模型的輸出可包括LASIK後的預期視力影像、LASEK後的預期視力影像及SMILE後的預期視力影像。作為另一實例,當輸入資料包括標準視力校正手術及客製視力校正手術作為手術參數時,模型的輸出可包括標準視力校正手術後的預期視力影像及客製視力校正手術後的預期視力影像。作為又一實例,當輸入資料包括多個視區時,模型的輸出可包括對應於所述多個視區的多個預期視力影像。Input data to the expected visual acuity image generation model may include surgical parameters. For example, the input data may include the type of surgery as a surgery parameter. The model predicts expected visual acuity images corresponding to input surgical parameters. For example, when the input data includes LASIK, LASEK, and SMILE as surgical parameters, the output of the model may include an expected visual acuity image after LASIK, an expected visual acuity image after LASEK, and an expected visual acuity image after SMILE. As another example, when the input data includes standard vision correction surgery and customized vision correction surgery as surgical parameters, the output of the model may include expected visual acuity images after standard vision correction surgery and expected visual acuity images after customized vision correction surgery. As yet another example, when the input data includes multiple view zones, the output of the model may include multiple expected visual acuity images corresponding to the multiple view zones.
預期視力影像生成模型可生成對應於預定手術參數的預期視力影像,而無論輸入資料是否包括手術參數。例如,在對模型進行訓練以生成標準視力校正手術後的預期視力影像及客製視力校正手術後的預期視力影像的情形中,即使當模型的輸入資料不包括手術參數時,模型亦可輸出標準視力校正手術後的預期視力影像及客製視力校正手術後的預期視力影像。The expected visual acuity image generation model can generate expected visual acuity images corresponding to predetermined surgical parameters, regardless of whether the input data includes surgical parameters. For example, in a scenario where a model is trained to generate images of expected visual acuity after standard vision correction surgery and images of expected visual acuity after custom vision correction surgery, the model can output standard images even when the input data to the model does not include surgical parameters. Expected visual acuity images after vision correction surgery and expected visual acuity images after customized vision correction surgery.
預期視力影像可包括關於選自由以下組成的群組中的至少一者的資訊:被檢查者進行視力校正手術後預期的視力的清晰度、光線透射、對比敏感度、夜間視力、眩光、複視、及餘像。The expected vision image may include information about at least one selected from the group consisting of: clarity of vision, light transmission, contrast sensitivity, night vision, glare, diplopia, expected after the subject undergoes vision correction surgery. , and afterimages.
圖10示出根據實施例的預期視力影像的視圖。參照圖10的a,預期視力影像I1及I2可藉由將關於視力清晰度的資訊可視化來表達。參照圖10的b,預期視力影像I3、I4、I5及I6可藉由將關於光線模糊的資訊可視化來表達。Figure 10 shows a view of an expected visual acuity image according to an embodiment. Referring to a of FIG. 10 , expected visual acuity images I1 and I2 can be expressed by visualizing information about visual acuity clarity. Referring to b of FIG. 10 , expected visual acuity images I3, I4, I5, and I6 can be expressed by visualizing information about light blur.
多個預期視力影像可對應於不同的手術參數。參照圖10的a,第一預期視力影像I1可對應於客製視力校正手術後的視力清晰度,且第二預期視力影像I2可對應於標準視力校正手術後的視力清晰度。參照圖10的b,第三預期視力影像I3至第六預期視力影像I6可為對應於不同視區的預期視力影像。例如,第三預期視力影像I3的視區可大於第四預期視力影像I4至第六預期視力影像I6的視區。Multiple expected visual acuity images may correspond to different surgical parameters. Referring to a of FIG. 10 , the first expected vision image I1 may correspond to the vision clarity after customized vision correction surgery, and the second expected vision image I2 may correspond to the vision clarity after standard vision correction surgery. Referring to b of FIG. 10 , the third to sixth expected vision images I3 to I6 may be expected vision images corresponding to different viewing zones. For example, the viewing area of the third expected vision image I3 may be larger than the viewing areas of the fourth to sixth expected vision images I4 to I6.
根據實施例的預期視力影像可藉由使用濾波器進行濾波來生成。此處,濾波是在一般影像處理領域中使用的概念,並且可指藉由影像及濾波器的卷積來生成經濾波影像。濾波器的實例可包括平均濾波器、加權平均濾波器、低通濾波器、高斯濾波器(Gaussian filter)、中值濾波器、雙邊濾波器、模糊濾波器、高通濾波器、反銳化遮罩、高頻提升濾波器(high-boost filter)、銳化濾波器等,但不限於此。Anticipated visual acuity images according to embodiments may be generated by filtering using a filter. Here, filtering is a concept used in the general image processing field, and may refer to generating a filtered image by convolution of an image and a filter. Examples of filters may include average filter, weighted average filter, low pass filter, Gaussian filter, median filter, bilateral filter, blur filter, high pass filter, unsharp mask , high-boost filter, sharpening filter, etc., but not limited to these.
圖11是示出根據實施例的使用濾波器的預期視力影像生成模型M17的圖式。參照圖11,預期視力影像生成模型M17可包括第一子模型M171及第二子模型M172。FIG. 11 is a diagram illustrating an expected vision image generation model M17 using a filter according to an embodiment. Referring to FIG. 11 , the expected visual acuity image generation model M17 may include a first sub-model M171 and a second sub-model M172.
第一子模型M171可基於輸入資料計算及/或選擇濾波器。例如,輸入資料可包括視力校正手術後被檢查者的眼睛特性資料的預測值,並且第一子模型M171可基於眼睛特性資料的預測值來計算及/或選擇濾波器。作為另一實例,輸入資料可包括被檢查者的眼睛特性資料的測定值及手術參數,並且第一子模型M171可基於眼睛特性資料的測定值及手術參數來計算及/或選擇濾波器。The first sub-model M171 may calculate and/or select filters based on the input data. For example, the input data may include predicted values of the subject's eye characteristic data after vision correction surgery, and the first sub-model M171 may calculate and/or select filters based on the predicted values of the eye characteristic data. As another example, the input data may include measured values of the subject's eye characteristic data and surgical parameters, and the first sub-model M171 may calculate and/or select the filter based on the measured values of the eye characteristic data and the surgical parameters.
第二子模型M172可基於由第一子模型M171計算及/或選擇的濾波器來生成預期視力影像。例如,第二子模型M172可藉由將濾波器應用於原始影像來生成預期視力影像。此處,原始影像是用作生成預期視力影像的基礎的影像,並且可自預期視力影像生成模型M17外部輸入,或者可包括在模型M17中。The second sub-model M172 may generate an expected vision image based on the filters calculated and/or selected by the first sub-model M171. For example, the second sub-model M172 may generate an expected vision image by applying a filter to the original image. Here, the original image is an image used as a basis for generating the expected visual acuity image, and may be input from outside the expected visual acuity image generation model M17, or may be included in the model M17.
角膜地形影像預測模型可預測視力校正手術後被檢查者的角膜地形影像。所述模型可預測一或多個角膜地形影像。角膜地形影像預測模型可基於輸入資料生成角膜地形影像。The corneal topography image prediction model can predict the corneal topography image of subjects after vision correction surgery. The model can predict one or more corneal topographic images. The corneal topography image prediction model can generate corneal topography images based on input data.
角膜地形影像預測模型的輸入資料可包括手術參數。例如,輸入資料可包括手術類型作為手術參數。所述模型可預測對應於輸入的手術參數的角膜地形影像。例如,當輸入資料包括LASIK、LASEK及SMILE作為手術參數時,模型的輸出可包括LASIK後的角膜地形影像、LASEK後的角膜地形影像及SMILE後的角膜地形影像。作為另一實例,當輸入資料包括標準視力校正手術及客製視力校正手術作為手術參數時,模型的輸出可包括標準視力校正手術後的角膜地形影像及客製視力校正手術後的角膜地形影像。The input data of the corneal topography image prediction model may include surgical parameters. For example, the input data may include the type of surgery as a surgery parameter. The model predicts corneal topography images corresponding to input surgical parameters. For example, when the input data includes LASIK, LASEK, and SMILE as surgical parameters, the output of the model may include corneal topography images after LASIK, corneal topography images after LASEK, and corneal topography images after SMILE. As another example, when the input data includes standard vision correction surgery and customized vision correction surgery as surgical parameters, the output of the model may include corneal topography images after standard vision correction surgery and corneal topography images after custom vision correction surgery.
角膜地形影像預測模型可生成對應於預定手術參數的角膜地形影像,而無論輸入資料是否包括手術參數。例如,在對模型進行訓練以生成標準視力校正手術後的角膜地形影像及客製視力校正手術後的角膜地形影像的情形中,即使當模型的輸入資料不包括手術參數時,模型亦可輸出標準視力校正手術後的角膜地形影像及客製視力校正手術後的角膜地形影像。The corneal topography image prediction model can generate corneal topography images corresponding to predetermined surgical parameters, regardless of whether the input data includes surgical parameters. For example, in a scenario where a model is trained to generate corneal topography images after standard vision correction surgery and corneal topography images after custom vision correction surgery, the model can output standard corneal topography images even when the model's input data does not include surgical parameters. Corneal topography image after vision correction surgery and corneal topography image after customized vision correction surgery.
角膜地形影像預測模型的輸入資料可包括在視力校正手術之前量測的被檢查者的角膜地形影像。圖12是示出根據實施例的角膜地形影像的圖式。參照圖12,角膜地形影像預測模型M18可基於視力校正手術之前被檢查者的角膜地形影像CI1來預測視力校正手術之後被檢查者的角膜地形影像CI2。在圖12中,僅將角膜地形影像CI1示出為輸入至模型M18,但亦可輸入其他多條輸入資料。The input data of the corneal topography image prediction model may include the subject's corneal topography image measured before the vision correction surgery. 12 is a diagram illustrating a corneal topography image according to an embodiment. Referring to FIG. 12 , the corneal topography image prediction model M18 can predict the corneal topography image CI2 of the subject after the vision correction surgery based on the cornea topography image CI1 of the subject before the vision correction surgery. In FIG. 12 , only the corneal topography image CI1 is shown as input to the model M18 , but other pieces of input data may also be input.
預測結果計算原因分析模型可分析由視力校正手術相關模型生成的預測結果的計算原因。所述模型可計算視力校正手術相關模型對輸入資料的依賴性。此處,依賴性可包括輸入資料的特定變數對預測結果的影響。The prediction result calculation cause analysis model can analyze the calculation cause of the prediction result generated by the vision correction surgery related model. The model calculates the dependence of vision correction surgery-related models on input data. Here, dependencies may include the impact of specific variables of the input data on the predicted results.
預測結果計算原因分析模型可輸出預測結果的計算原因。所述模型可輸出預測結果的一或多個計算原因。在下文中,為便於闡述,將預測結果的計算原因表示為數值,例如依賴係數(dependency coefficient),但預測結果的計算原因不限於此,並且對其例如數值、影像、文本及其組合等表示方法並無限制。The prediction result calculation reason analysis model can output the calculation reason of the prediction result. The model may output one or more computational reasons for the predicted results. In the following, for the convenience of explanation, the calculation reason of the prediction result is expressed as a numerical value, such as a dependency coefficient. However, the calculation reason of the prediction result is not limited to this, and it can be represented by numerical values, images, texts, and combinations thereof. There are no restrictions.
預測結果計算原因分析模型可輸出至少一些依賴係數。例如,所述模型可輸出所有所計算的依賴係數。The prediction result calculation cause analysis model may output at least some dependence coefficients. For example, the model may output all calculated dependence coefficients.
預測結果計算原因分析模型可輸出所計算的依賴係數中落在特定範圍內的依賴係數。例如,所述模型可輸出所計算的依賴係數中大於預定值的依賴係數。作為另一選擇,所述模型可輸出所計算的依賴係數中絕對值大於預定值的依賴係數。The prediction result calculation cause analysis model can output the dependence coefficients that fall within a specific range among the calculated dependence coefficients. For example, the model may output a dependence coefficient greater than a predetermined value among the calculated dependence coefficients. Alternatively, the model may output a dependence coefficient whose absolute value is greater than a predetermined value among the calculated dependence coefficients.
預測結果計算原因分析模型可輸出一定數量的依賴係數。例如,所述模型可輸出預定數量的依賴係數。The prediction result calculation cause analysis model can output a certain number of dependency coefficients. For example, the model can output a predetermined number of dependency coefficients.
預測結果計算原因分析模型可包括手術適合性預測分析模型、雷射手術可用性預測分析模型、角膜形狀因子預測分析模型、客製視力校正手術必要性預測分析模型、視力校正手術建議分析模型、手術參數建議分析模型、視力預測分析模型、預期視力影像生成分析模型及角膜地形影像預測分析模型。例如,視力預測分析模型可計算視力預測模型的輸入資料中包括的變數對預測視力預測模型的視力的影響。作為另一選擇,視力預測分析模型可計算由視力預測模型計算的視力預測值對視力預測模型的輸入資料的依賴性。The prediction result calculation cause analysis model may include a surgical suitability prediction analysis model, a laser surgery availability prediction analysis model, a corneal shape factor prediction analysis model, a customized vision correction surgery necessity prediction analysis model, a vision correction surgery recommendation analysis model, and surgical parameters. Suggestion analysis model, visual acuity prediction analysis model, expected visual acuity image generation analysis model and corneal topography image prediction analysis model. For example, a vision prediction analytic model may calculate the impact of variables included in input data to the vision prediction model on predicting vision in the vision prediction model. Alternatively, the vision prediction analysis model may calculate the dependence of the vision prediction value calculated by the vision prediction model on the input data of the vision prediction model.
預測結果計算原因分析模型可包括視力校正手術相關模型的至少一部分模型。例如,視力預測分析模型可包括視力預測模型。The prediction result calculation cause analysis model may include at least a part of a model related to vision correction surgery. For example, a vision prediction analysis model may include a vision prediction model.
圖13是示出根據實施例的包括視力校正手術相關模型M192的預測結果計算原因分析模型M19的圖式。參照圖13,預測結果計算原因分析模型M19可包括輸入資料擾動模型M191、視力校正手術相關模型M192及預測結果分析模型M193。FIG. 13 is a diagram illustrating the prediction result calculation cause analysis model M19 including the vision correction surgery related model M192 according to the embodiment. Referring to FIG. 13 , the prediction result calculation cause analysis model M19 may include an input data disturbance model M191, a vision correction surgery related model M192, and a prediction result analysis model M193.
輸入資料擾動模型M191可輸出基於輸入資料擾動的輸入資料。模型M191可輸出一或多條擾動輸入資料。此處,輸入資料的擾動可指輸入資料的改變,例如輸入資料中包括的至少部分變數的改變。例如,當變數是數值時,擾動可指值的增加或減少。作為另一選擇,當變數是影像時,擾動可指影像的至少部分畫素的畫素值的增加或減少。The input data perturbation model M191 can output input data based on the input data perturbation. Model M191 can output one or more disturbance input data. Here, the perturbation of the input data may refer to a change in the input data, such as a change in at least part of the variables included in the input data. For example, when the variable is numeric, a perturbation can refer to an increase or decrease in value. Alternatively, when the variable is an image, the perturbation may refer to an increase or decrease in the pixel value of at least some of the pixels of the image.
視力校正手術相關模型M192可基於輸入資料及擾動輸入資料輸出對應於輸入資料的第一預測結果及對應於擾動輸入資料的第二預測結果。例如,當預測結果計算原因分析模型M19中包括的視力校正手術相關模型M192是視力預測模型時,第一預測結果及第二預測結果可為不同的視力預測值。此外,當擾動輸入資料被設置有多條擾動輸入資料時,模型可輸出對應於所述多條擾動輸入資料的多個預測結果。The vision correction surgery related model M192 can output a first prediction result corresponding to the input data and a second prediction result corresponding to the perturbation input data based on the input data and the perturbation input data. For example, when the vision correction surgery related model M192 included in the prediction result calculation cause analysis model M19 is a vision prediction model, the first prediction result and the second prediction result may be different vision prediction values. In addition, when the disturbance input data is provided with multiple pieces of disturbance input data, the model can output multiple prediction results corresponding to the multiple pieces of disturbance input data.
預測結果分析模型M193可基於預測結果輸出預測結果的計算原因。例如,模型M193可基於自未擾動輸入資料計算的第一預測結果及自擾動輸入資料計算的第二預測結果來計算預測結果的計算原因。具體而言,第一預測結果對第一變數的依賴性可基於第一預測結果與自其中第一變數被擾動的輸入資料計算的第二預測結果之間的差來計算。The prediction result analysis model M193 can output the calculation reason of the prediction result based on the prediction result. For example, model M193 may calculate the calculated cause of the predicted result based on a first predicted result calculated from the unperturbed input data and a second predicted result calculated from the perturbed input data. Specifically, the dependence of the first prediction on the first variable may be calculated based on the difference between the first prediction and a second prediction calculated from the input data in which the first variable is perturbed.
圖14是示出根據實施例計算的預測結果的計算原因的視圖,且具體而言,是示出視力預測的原因的視圖。參照圖14,預測結果的計算原因可表示為數值及影像。圖14中示出的例如Cornea_Back_Rmin V1、散光(Astigmatism)V2、單眼(Mono)V3、近視(Nearsightedness)V4、Op_flag V5及Pupil_Dia V6等字符可對應於輸入資料中包括的變數。表示為對應於字符的5.95 N1、-0.5 N2、0 N3、-1.37 N4、2 N5及3.1 N6可對應於輸入資料中包括的變數的數值。14 is a view showing the calculation reason of the prediction result calculated according to the embodiment, and specifically, is a view showing the reason of the vision prediction. Referring to FIG. 14 , the calculation cause of the prediction result can be expressed as a numerical value and an image. Characters such as Cornea_Back_Rmin V1, Astigmatism V2, Mono V3, Nearsightedness V4, Op_flag V5 and Pupil_Dia V6 shown in Figure 14 may correspond to variables included in the input data. Expressed as corresponding characters, 5.95 N1, -0.5 N2, 0 N3, -1.37 N4, 2 N5, and 3.1 N6 may correspond to the numerical values of the variables included in the input data.
預測結果對變數的依賴性可被可視化及表達。例如,所述依賴性可用箭頭的長度、顏色及方向來表達。參照圖14,箭頭的長度可對應於依賴係數的絕對值。此外,箭頭的方向及顏色可對應於依賴係數的符號。在圖14中,可解釋為視力預測值OV為1.18,Cornea_Back_Rmin V1、散光V2、單眼V3及近視V4對視力預測值有積極影響,而Op_flag V5及Pupil_Dia V6對視力預測值有消極影響。The dependence of prediction results on variables can be visualized and expressed. For example, the dependence can be expressed by the length, color and direction of the arrow. Referring to FIG. 14 , the length of the arrow may correspond to the absolute value of the dependence coefficient. Furthermore, the direction and color of the arrow can correspond to the sign of the dependence coefficient. In Figure 14, it can be explained that the predicted visual acuity value OV is 1.18, Cornea_Back_Rmin V1, astigmatism V2, monocular V3 and myopia V4 have a positive impact on the predicted visual acuity value, while Op_flag V5 and Pupil_Dia V6 have a negative impact on the predicted visual acuity value.
預測結果計算原因分析模型的實例可包括模型無關的局部可解釋性闡述(local interpretable model-agnostic explanation,LIME)等,但不限於此。Examples of the prediction result calculation cause analysis model may include model-independent local interpretable explanation (local interpretable model-agnostic explanation, LIME), etc., but are not limited thereto.
視力校正手術相關模型可彼此組合。所述模型可以串聯連接方式或並聯連接方式中的至少一種方式進行組合。Vision correction surgery related models can be combined with each other. The models may be combined in at least one of a series connection or a parallel connection.
串聯連接的視力校正手術相關模型可意指至少一個視力校正手術相關模型的輸出是基於至少另一視力校正手術相關模型的輸出來計算的。Vision correction surgery-related models connected in series may mean that the output of at least one vision correction surgery-related model is calculated based on the output of at least one other vision correction surgery-related model.
並聯連接的視力校正手術相關模型可意指一個視力校正手術相關模型的輸出不影響另一視力校正手術相關模型的輸出。Vision correction surgery related models connected in parallel may mean that the output of one vision correction surgery related model does not affect the output of another vision correction surgery related model.
在下文中,將闡述視力校正手術相關模型的組合的實例。In the following, examples of combinations of vision correction surgery related models will be illustrated.
圖15是示出根據實施例串聯連接的視力校正手術相關模型的圖式。參照圖15,第一視力校正手術相關模型Ma與第二視力校正手術相關模型Mb可以串聯方式組合。第一視力校正手術相關模型Ma可基於第一輸入資料及由接收第二輸入資料的第二視力校正手術相關模型Mb輸出的第二預測結果來計算第一預測結果。15 is a diagram illustrating vision correction surgery-related models connected in series according to an embodiment. Referring to FIG. 15 , the first vision correction surgery related model Ma and the second vision correction surgery related model Mb may be combined in series. The first vision correction surgery related model Ma may calculate the first prediction result based on the first input data and the second prediction result output by the second vision correction surgery related model Mb receiving the second input data.
圖16至圖19是示出根據實施例的基於角膜形狀因子預測模型的輸出而計算視力校正手術相關模型的輸出的圖式。16 to 19 are diagrams illustrating calculation of the output of a vision correction surgery-related model based on the output of the corneal shape factor prediction model, according to an embodiment.
參照圖16,客製視力校正手術必要性預測模型M13可基於由接收第二輸入資料及第一輸入資料的角膜形狀因子預測模型M12輸出的角膜形狀因子來預測被檢查者的客製視力校正手術必要性。Referring to FIG. 16 , the customized vision correction surgery necessity prediction model M13 may predict the subject's customized vision correction surgery based on the corneal shape factor output by the corneal shape factor prediction model M12 that receives the second input data and the first input data. necessity.
參照圖17,視力校正手術建議模型M14可基於由接收第二輸入資料及第一輸入資料的角膜形狀因子預測模型M12輸出的角膜形狀因子來建議對應於被檢查者的視力校正手術。Referring to FIG. 17 , the vision correction surgery recommendation model M14 may recommend a vision correction surgery corresponding to the subject based on the cornea shape factor output by the cornea shape factor prediction model M12 that receives the second input data and the first input data.
參照圖18,預期視力影像生成模型M17可基於由接收第二輸入資料及第一輸入資料的角膜形狀因子預測模型M12輸出的角膜形狀因子來生成視力校正手術後被檢查者的預期視力影像。18 , the expected vision image generation model M17 may generate an expected vision image of the examinee after vision correction surgery based on the corneal shape factor output by the corneal shape factor prediction model M12 that receives the second input data and the first input data.
參照圖19,角膜地形影像預測模型M18可基於由接收第二輸入資料及第一輸入資料的角膜形狀因子預測模型M12輸出的角膜形狀因子來預測視力校正手術後被檢查者的角膜地形影像。Referring to FIG. 19 , the corneal topography image prediction model M18 may predict the corneal topography image of the subject after the vision correction surgery based on the corneal shape factor output by the corneal shape factor prediction model M12 that receives the second input data and the first input data.
圖20是示出根據實施例基於客製視力校正手術必要性預測模型的輸出來計算視力校正手術相關模型的輸出的圖式。參照圖20,視力校正手術建議模型M14可基於由接收第二輸入資料及第一輸入資料的客製視力校正手術必要性預測模型M13輸出的客製視力校正手術必要性來建議對應於被檢查者的視力校正手術。20 is a diagram illustrating calculation of the output of a vision correction surgery related model based on the output of a customized vision correction surgery necessity prediction model, according to an embodiment. Referring to FIG. 20 , the vision correction surgery recommendation model M14 may suggest the necessity of the customized vision correction surgery corresponding to the subject based on the customized vision correction surgery necessity prediction model M13 that receives the second input data and the first input data. vision correction surgery.
圖21及圖22是示出根據實施例的基於視力校正手術建議模型的輸出來計算視力校正手術相關模型的輸出的圖式。21 and 22 are diagrams illustrating calculation of the output of a vision correction surgery-related model based on the output of a vision correction surgery recommendation model according to an embodiment.
參照圖21,角膜形狀因子預測模型M12可基於由接收第二輸入資料及第一輸入資料的視力校正手術建議模型M14輸出的視力校正手術來預測視力校正手術後被檢查者的角膜形狀因子。Referring to FIG. 21 , the corneal shape factor prediction model M12 may predict the corneal shape factor of the subject after the vision correction surgery based on the vision correction surgery output by the vision correction surgery recommendation model M14 that receives the second input data and the first input data.
參照圖22,視力預測模型M16可基於由接收第二輸入資料及第一輸入資料的視力校正手術建議模型M14輸出的視力校正手術來計算視力校正手術後被檢查者的視力預測值。Referring to FIG. 22 , the vision prediction model M16 may calculate the vision prediction value of the subject after the vision correction surgery based on the vision correction surgery output by the vision correction surgery recommendation model M14 that receives the second input data and the first input data.
預期視力影像生成模型可基於由接收第二輸入資料及第一輸入資料的視力校正手術建議模型輸出的視力校正手術來生成視力校正手術後被檢查者的預期視力影像。The expected vision image generation model may generate an expected vision image of the subject after the vision correction surgery based on the vision correction surgery output by the vision correction surgery recommendation model that receives the second input data and the first input data.
角膜地形影像預測模型可基於由接收第二輸入資料及第一輸入資料的視力校正手術建議模型輸出的視力校正手術來預測視力校正手術後被檢查者的角膜地形影像。The corneal topography image prediction model can predict the corneal topography image of the subject after the vision correction surgery based on the vision correction surgery output by the vision correction surgery recommendation model that receives the second input data and the first input data.
圖23是示出根據實施例的基於手術參數建議模型的輸出來計算視力校正手術相關模型的輸出的圖式。23 is a diagram illustrating calculation of output of a vision correction surgery-related model based on output of a surgical parameter recommendation model, according to an embodiment.
參照圖23,視力預測模型M16可基於由接收第二輸入資料及第一輸入資料的手術參數建議模型M15輸出的手術參數來計算視力校正手術後被檢查者的視力預測值。Referring to FIG. 23 , the vision prediction model M16 may calculate the vision prediction value of the subject after the vision correction surgery based on the surgical parameters output by the surgical parameter recommendation model M15 that receives the second input data and the first input data.
角膜形狀因子預測模型可基於由接收第二輸入資料及第一輸入資料的手術參數建議模型輸出的手術參數來預測視力校正手術後被檢查者的角膜形狀因子。The corneal shape factor prediction model can predict the corneal shape factor of the subject after vision correction surgery based on the surgical parameters output by the surgical parameter recommendation model that receives the second input data and the first input data.
預期視力影像生成模型可基於由接收第二輸入資料及第一輸入資料的手術參數建議模型輸出的手術參數來生成視力校正手術後被檢查者的預期視力影像。The expected visual acuity image generation model may generate an expected visual acuity image of the subject after the vision correction surgery based on the surgical parameters output by the surgical parameter recommendation model that receives the second input data and the first input data.
角膜地形影像預測模型可基於由接收第二輸入資料及第一輸入資料的手術參數建議模型輸出的手術參數來預測視力校正手術後被檢查者的角膜地形影像。The corneal topography image prediction model can predict the corneal topography image of the subject after the vision correction surgery based on the surgical parameters output by the surgical parameter recommendation model that receives the second input data and the first input data.
圖24及圖25是示出根據實施例的基於視力預測模型的輸出來計算視力校正手術相關模型的輸出的圖式。24 and 25 are diagrams illustrating calculation of the output of a vision correction surgery-related model based on the output of a vision prediction model according to an embodiment.
參照圖24,視力校正手術建議模型M14可基於由接收第二輸入資料及第一輸入資料的視力預測模型M16輸出的視力預測值來建議對應於被檢查者的視力校正手術。Referring to FIG. 24 , the vision correction surgery recommendation model M14 may recommend a vision correction surgery corresponding to the subject based on the vision prediction value output by the vision prediction model M16 that receives the second input data and the first input data.
參照圖25,預期視力影像生成模型M17可基於由接收第二輸入資料及第一輸入資料的視力預測模型M16輸出的視力預測值來生成視力校正手術後被檢查者的預期視力影像。Referring to FIG. 25 , the expected vision image generation model M17 may generate an expected vision image of the subject after the vision correction surgery based on the vision prediction value output by the vision prediction model M16 that receives the second input data and the first input data.
圖26及圖27是示出根據實施例的基於角膜地形影像預測模型的輸出來計算視力校正手術相關模型的輸出的圖式。26 and 27 are diagrams illustrating calculation of the output of a vision correction surgery-related model based on the output of the corneal topography image prediction model according to an embodiment.
參照圖26,客製視力校正手術必要性預測模型M13可基於由接收第二輸入資料及第一輸入資料的角膜地形影像預測模型M18輸出的角膜地形影像來預測被檢查者的客製視力校正手術必要性。Referring to FIG. 26 , the customized vision correction surgery necessity prediction model M13 can predict the subject's customized vision correction surgery based on the corneal topography image output by the corneal topography image prediction model M18 that receives the second input data and the first input data. necessity.
參照圖27,視力校正手術建議模型M14可基於由接收第二輸入資料及第一輸入資料的角膜地形影像預測模型M18輸出的角膜地形影像來建議對應於被檢查者的視力校正手術。Referring to FIG. 27 , the vision correction surgery recommendation model M14 may recommend a vision correction surgery corresponding to the subject based on the cornea topography image output by the cornea topography image prediction model M18 that receives the second input data and the first input data.
角膜形狀因子預測模型可基於由接收第二輸入資料及第一輸入資料的角膜地形影像預測模型輸出的角膜地形影像來預測視力校正手術後被檢查者的角膜形狀因子。The corneal shape factor prediction model can predict the corneal shape factor of the subject after the vision correction surgery based on the corneal topography image output by the corneal topography image prediction model that receives the second input data and the first input data.
預期視力影像生成模型可基於由接收第二輸入資料及第一輸入資料的角膜地形影像預測模型輸出的角膜地形影像來生成視力校正手術後被檢查者的預期視力影像。The expected visual acuity image generation model may generate an expected visual acuity image of the subject after the vision correction surgery based on the corneal topography image output by the corneal topography image prediction model that receives the second input data and the first input data.
三或更多個視力校正手術相關模型可串聯及/或並聯組合。圖28是用於闡述根據實施例的三或更多個視力校正手術相關模型的組合的圖式。參照圖28,第一視力校正手術相關模型Ma可藉由輸入由接收第二輸入資料的第二視力校正手術相關模型Mb輸出的第二預測結果、由接收第三輸入資料的第三視力校正手術相關模型Mc輸出的第三預測結果以及第一輸入資料來計算第一預測結果。此處,第一視力校正手術相關模型Ma可被視為串聯連接至第二視力校正手術相關模型Mb及第三視力校正手術相關模型Mc。此外,第二視力校正手術相關模型Mb與第三視力校正手術相關模型Mc可被視為彼此並聯連接。Three or more vision correction surgery related models can be combined in series and/or parallel. 28 is a diagram illustrating a combination of three or more vision correction surgery related models according to an embodiment. Referring to FIG. 28 , the first vision correction surgery-related model Ma can be configured by inputting the second prediction result output by the second vision correction surgery-related model Mb that receives the second input data, and the third vision correction surgery related model that receives the third input data. The third prediction result output by the relevant model Mc and the first input data are used to calculate the first prediction result. Here, the first vision correction surgery related model Ma may be regarded as being connected in series to the second vision correction surgery related model Mb and the third vision correction surgery related model Mc. Furthermore, the second vision correction surgery related model Mb and the third vision correction surgery related model Mc may be regarded as being connected in parallel with each other.
圖29及30是示出根據實施例的基於角膜形狀因子預測模型及視力預測模型的輸出來計算視力校正手術相關模型的輸出的圖式。29 and 30 are diagrams illustrating calculation of the output of a vision correction surgery-related model based on the output of the corneal shape factor prediction model and the vision prediction model, according to an embodiment.
參照圖29,視力校正手術建議模型M14可基於由接收第二輸入資料的角膜形狀因子預測模型M12輸出的角膜形狀因子、由接收第三輸入資料的視力預測模型M16輸出的視力預測值及第一輸入資料來建議對應於被檢查者的視力校正手術。29 , the vision correction surgery recommendation model M14 may be based on the cornea shape factor output by the cornea shape factor prediction model M12 that receives the second input data, the vision prediction value output by the vision prediction model M16 that receives the third input data, and the first Data is entered to recommend vision correction surgery for the person being examined.
參照圖30,預期視力影像生成模型M17可基於由接收第二輸入資料的角膜形狀因子預測模型M12輸出的角膜形狀因子、由接收第三輸入資料的視力預測模型M16輸出的視力預測值及第一輸入資料來生成視力校正手術後被檢查者的預期視力影像。30 , the expected visual acuity image generation model M17 may be based on the corneal shape factor output by the corneal shape factor prediction model M12 that receives the second input data, the visual acuity prediction value output by the visual acuity prediction model M16 that receives the third input data, and the first Data is entered to generate an image of the subject's expected vision after vision correction surgery.
視力校正手術相關模型可彼此合併。多個視力校正手術相關模型可被合併成一個模型,以執行所述多個個別模型的至少部分功能。Vision correction surgery related models can be merged with each other. Multiple vision correction surgery related models may be combined into one model to perform at least some of the functions of the multiple individual models.
圖31是用於闡述根據實施例的視力校正手術相關模型的合併的圖式。參照圖31,第一視力校正手術相關模型與第二視力校正手術相關模型可被合併以形成一個模型Mab。所述一個模型Mab可基於輸入資料計算預測結果。此處,預測結果可包括與對應於第一視力校正手術相關模型的輸出的第一預測結果或對應於第二視力校正手術相關模型的輸出的第二預測結果中的至少一者對應的資訊。例如,預測結果可包括第一預測結果或第二預測結果中的至少一者。作為另一選擇,預測結果可包括關於第一預測結果或第二預測結果中的至少一者的資訊。31 is a diagram for explaining the incorporation of vision correction surgery related models according to the embodiment. Referring to FIG. 31 , a first vision correction surgery related model and a second vision correction surgery related model may be merged to form one model Mab. The one model Mab can calculate prediction results based on input data. Here, the prediction result may include information corresponding to at least one of a first prediction result corresponding to the output of the first vision correction surgery-related model or a second prediction result corresponding to the output of the second vision correction surgery-related model. For example, the prediction result may include at least one of a first prediction result or a second prediction result. As another option, the prediction result may include information about at least one of the first prediction result or the second prediction result.
在圖31中,闡述了合併兩個模型的情形,但不限於此,並且可合併三或更多個模型。In FIG. 31 , the case of merging two models is illustrated, but it is not limited thereto, and three or more models may be merged.
圖32至34是示出根據實施例的視力校正手術相關模型的合併的實施實例的圖式。32 to 34 are diagrams illustrating an implementation example of the merger of vision correction surgery-related models according to the embodiment.
參照圖32,可合併角膜形狀因子預測模型與客製視力校正手術必要性預測模型。合併的模型M25可基於輸入資料計算預測結果。預測結果可包括與角膜形狀因子或客製視力校正手術必要性中的至少一者對應的資訊。例如,預測結果可包括角膜形狀因子或客製視力校正手術必要性中的至少一者。Referring to Figure 32, the corneal shape factor prediction model and the customized vision correction surgery necessity prediction model can be combined. The combined model M25 calculates predictions based on the input data. The predicted results may include information corresponding to at least one of corneal shape factor or necessity for customized vision correction surgery. For example, the predicted results may include at least one of corneal shape factor or necessity for customized vision correction surgery.
參照圖33,可合併客製視力校正手術必要性預測模型與視力校正手術建議模型。合併的模型M27可基於輸入資料計算預測結果。預測結果可包括與客製視力校正手術必要性或視力校正手術中的至少一者對應的資訊。例如,預測結果可包括客製視力校正手術必要性或視力校正手術中的至少一者。Referring to Figure 33, a customized vision correction surgery necessity prediction model and a vision correction surgery recommendation model can be combined. The combined model M27 calculates predictions based on input data. The predicted results may include information corresponding to at least one of the need for customized vision correction surgery or vision correction surgery. For example, the predicted outcome may include at least one of customizing the need for vision correction surgery or vision correction surgery.
參照圖34,可合併雷射手術可用性預測模型、客製視力校正手術必要性預測模型及視力校正手術建議模型。合併的模型M38可基於輸入資料計算預測結果。預測結果可包括與選自由雷射手術可用性、客製視力校正手術必要性及視力校正手術組成的群組中的至少一者對應的資訊。例如,預測結果可包括選自由雷射手術可用性、客製視力校正手術必要性及視力校正手術組成的群組中的至少一者。Referring to FIG. 34 , a laser surgery availability prediction model, a customized vision correction surgery necessity prediction model, and a vision correction surgery recommendation model can be combined. The combined model M38 calculates predictions based on input data. The predicted results may include information corresponding to at least one selected from the group consisting of availability of laser surgery, necessity of customized vision correction surgery, and vision correction surgery. For example, the predicted results may include at least one selected from the group consisting of availability of laser surgery, necessity of customized vision correction surgery, and vision correction surgery.
在下文中,將闡述視力校正手術的推薦方法的實例。In the following, examples of recommended approaches to vision correction surgery will be described.
視力校正手術的推薦方法可使用一或多個視力校正手術相關模型來實施。當使用多個視力校正手術相關模型來實施所述方法時,是否執行至少一個視力校正手術相關模型可取決於至少另一視力校正手術相關模型的預測結果。例如,是否執行第二視力校正手術相關模型可取決於第一視力校正手術相關模型的預測結果。The recommended approach to vision correction surgery may be performed using one or more vision correction surgery related models. When the method is implemented using multiple vision correction surgery-related models, whether to perform at least one vision correction surgery-related model may depend on the predicted results of at least one other vision correction surgery-related model. For example, whether to execute the second vision correction surgery-related model may depend on the predicted results of the first vision correction surgery-related model.
以下將闡述的視力校正手術的推薦方法的操作可由預測裝置來執行。The operations of the recommended method of vision correction surgery to be explained below can be performed by the prediction device.
圖35是示出根據實施例的視力校正手術的推薦方法的第一實例的圖式。35 is a diagram illustrating a first example of a recommended method of vision correction surgery according to the embodiment.
參照圖35,根據實施例的視力校正手術的推薦方法可包括獲得被檢查者的檢查資料的操作S1100、預測視力校正手術是否適合被檢查者的操作S1200、預測被檢查者能否進行使用雷射的視力校正手術的操作S1300、計算被檢查者的角膜形狀因子預測值的操作S1400、以及建議對應於被檢查者的視力校正手術的操作S1500。Referring to FIG. 35 , the method for recommending vision correction surgery according to the embodiment may include the operation of obtaining the examination data of the subject S1100, the operation of predicting whether the vision correction surgery is suitable for the subject S1200, and the operation of predicting whether the subject can use laser. The operation S1300 of the vision correction surgery, the operation S1400 of calculating the predicted corneal shape factor value of the subject, and the operation S1500 of recommending the vision correction surgery corresponding to the subject.
獲得被檢查者的檢查資料的操作S1100可包括由計算裝置獲得包括問診資料及眼睛特性資料的測定值的檢查資料。The operation S1100 of obtaining the examination data of the subject may include obtaining, from the computing device, examination data including measurement values of consultation data and eye characteristic data.
預測視力校正手術是否適合被檢查者的操作S1200可包括藉由將自被檢查者的檢查資料獲得的第一組資料輸入至第一預測模型來預測視力校正手術是否適合被檢查者。第一預測模型可為手術適合性預測模型。手術適合性預測模型可基於第一組資料預測視力校正手術是否適合被檢查者。The operation S1200 of predicting whether the vision correction surgery is suitable for the subject may include predicting whether the vision correction surgery is suitable for the subject by inputting a first set of data obtained from the examination data of the subject into a first prediction model. The first prediction model may be a surgical suitability prediction model. The surgical suitability prediction model can predict whether vision correction surgery is suitable for the subject based on the first set of data.
預測被檢查者能否進行使用雷射的視力校正手術的操作S1300可包括藉由將自被檢查者的檢查資料獲得的第二組資料輸入至第二預測模型來預測被檢查者能否進行使用雷射的視力校正手術。是否執行操作S1300可取決於視力校正手術是否適合被檢查者。例如,當視力校正手術適合於被檢查者時,可執行操作S1300。第二預測模型可為雷射手術可用性預測模型。雷射手術可用性預測模型可基於第二組資料預測被檢查者的雷射手術可用性。The operation S1300 of predicting whether the subject can undergo vision correction surgery using laser may include predicting whether the subject can perform vision correction surgery by inputting a second set of data obtained from the examination data of the subject into a second prediction model. Laser vision correction surgery. Whether to perform operation S1300 may depend on whether vision correction surgery is suitable for the subject. For example, when vision correction surgery is suitable for the subject, operation S1300 may be performed. The second prediction model may be a laser surgery availability prediction model. The laser surgery availability prediction model can predict the examinee's laser surgery availability based on the second set of data.
計算被檢查者的角膜形狀因子預測值的操作S1400可包括藉由將自被檢查者的檢查資料獲得的第三組資料輸入至第三預測模型來計算被檢查者在標準視力校正手術之後的角膜形狀因子預測值及被檢查者在客製視力校正手術之後的角膜形狀因子預測值。是否執行操作S1400可取決於被檢查者能否進行使用雷射的視力校正手術。例如,當被檢查者能夠進行使用雷射的視力校正手術時,可執行操作S1400。第三預測模型可為角膜形狀因子預測模型。第三預測模型可基於第三組資料預測角膜形狀因子。在此種情形中,可基於角膜形狀因子來確定客製視力校正手術必要性。The operation S1400 of calculating the cornea shape factor prediction value of the subject may include calculating the cornea of the subject after standard vision correction surgery by inputting a third set of data obtained from the examination data of the subject into a third prediction model. Predictive value of shape factor and predicted value of corneal shape factor in subjects after customized vision correction surgery. Whether to perform operation S1400 may depend on whether the examinee can undergo vision correction surgery using laser. For example, when the subject is capable of vision correction surgery using laser, operation S1400 may be performed. The third prediction model may be a cornea shape factor prediction model. The third prediction model may predict the corneal shape factor based on the third set of data. In this case, the need for customized vision correction surgery may be determined based on the corneal shape factor.
建議對應於被檢查者的視力校正手術的操作S1500可包括藉由將自被檢查者的檢查資料獲得的第四組資料輸入至第四預測模型來建議對應於被檢查者的視力校正手術。是否執行操作S1500可取決於被檢查者能否進行使用雷射的視力校正手術。例如,當被檢查者能夠進行使用雷射的視力校正手術時,可執行操作S1500。第四預測模型可基於選自由以下組成的群組中的至少一者進行訓練:已接受視力校正手術的多個被治療者的檢查資料、與所述多個被治療者對應的視力校正手術及所述多個被治療者進行視力校正手術後的視力。第四預測模型可為視力校正手術建議模型。第四預測模型可基於第四組資料建議對應於被檢查者的視力校正手術。The operation S1500 of recommending a vision correction surgery corresponding to the subject may include recommending a vision correction surgery corresponding to the subject by inputting a fourth set of data obtained from the examination data of the subject into a fourth prediction model. Whether to perform operation S1500 may depend on whether the examinee can undergo vision correction surgery using laser. For example, when the subject is capable of vision correction surgery using laser, operation S1500 may be performed. The fourth prediction model may be trained based on at least one selected from the group consisting of: examination data of a plurality of subjects who have undergone vision correction surgeries, vision correction surgeries corresponding to the plurality of subjects, and The vision of the plurality of subjects after vision correction surgery. A fourth predictive model may suggest a model for vision correction surgery. The fourth prediction model may recommend vision correction surgery corresponding to the subject based on the fourth set of data.
參照圖35,視力校正手術可為在不考量角膜形狀因子預測值及/或客製視力校正手術必要性的情況下確定的手術。例如,視力校正手術可包括LASIK、LASEK及SMILE。此外,由於即使當能夠進行雷射視力校正手術時亦並非不能進行晶狀體植入,因此視力校正手術可包括晶狀體植入,其在本說明書的其他實例及實施實例中是相同的。在此種情形中,可由醫生及/或諮詢師確定其中考量了角膜形狀因子預測值及/或客製視力校正手術必要性的視力校正手術。例如,醫生及/或諮詢師可考量客製視力校正手術的必要性基於由圖35的視力校正手術的推薦方法輸出的角膜形狀因子預測值及視力校正手術來確定視力校正手術,例如標準LASIK、標準LASEK、標準SMILE、客製LASIK、客製LASEK、客製SMILE等。Referring to FIG. 35 , vision correction surgery may be a surgery determined without considering the predicted value of corneal shape factor and/or the need for customized vision correction surgery. For example, vision correction surgeries may include LASIK, LASEK, and SMILE. In addition, since lens implantation is not impossible even when laser vision correction surgery is possible, the vision correction surgery may include lens implantation, which is the same in other examples and implementation examples of this specification. In this case, vision correction surgery may be determined by the physician and/or consultant that takes into account the predictive value of the corneal shape factor and/or the need for customized vision correction surgery. For example, the physician and/or consultant may consider the need for customized vision correction surgery and determine the vision correction surgery based on the corneal shape factor prediction output from the recommended method for vision correction surgery in Figure 35 and the vision correction surgery, such as standard LASIK, Standard LASEK, standard SMILE, customized LASIK, customized LASEK, customized SMILE, etc.
圖36是示出根據實施例的視力校正手術的推薦方法的第二實例的圖式。36 is a diagram illustrating a second example of a recommended method of vision correction surgery according to the embodiment.
參照圖36,根據實施例的視力校正手術的推薦方法可包括獲得被檢查者的檢查資料的操作S2100、預測視力校正手術是否適合被檢查者的操作S2200、預測被檢查者能否進行使用雷射的視力校正手術的操作S2300、計算被檢查者的角膜形狀因子預測值的操作S2400、以及建議對應於被檢查者的視力校正手術的操作S2500。Referring to FIG. 36 , the method for recommending vision correction surgery according to the embodiment may include the operation of obtaining the examination data of the subject S2100, the operation of predicting whether the vision correction surgery is suitable for the subject S2200, and the operation of predicting whether the subject can use laser. The operation S2300 of the vision correction surgery, the operation S2400 of calculating the predicted corneal shape factor value of the subject, and the operation S2500 of recommending the vision correction surgery corresponding to the subject.
由於圖36的視力校正手術的推薦方法類似於圖35,因此將主要闡述與圖35的區別。Since the recommended method of vision correction surgery of Fig. 36 is similar to Fig. 35, the differences from Fig. 35 will be mainly explained.
參照圖36,在建議對應於被檢查者的視力校正手術的操作S2500中,可基於在計算被檢查者的角膜形狀因子預測值的操作中計算的標準視力校正手術之後的角膜形狀因子預測值及客製視力校正手術之後的角膜形狀因子預測值來建議視力校正手術。視力校正手術可為考量客製視力校正手術必要性而確定的手術。例如,視力校正手術可包括標準LASIK、標準LASEK、標準SMILE、客製LASIK、客製LASEK及客製SMILE。此外,視力校正手術可包括晶狀體植入。Referring to FIG. 36 , in the operation S2500 of recommending a vision correction surgery corresponding to the subject, the cornea shape factor prediction value after the standard vision correction surgery calculated in the operation of calculating the cornea shape factor prediction value of the subject and Customized prediction of corneal shape factor after vision correction surgery to recommend vision correction surgery. Vision correction surgery may be a surgery determined by considering the need for customized vision correction surgery. For example, vision correction surgery may include standard LASIK, standard LASEK, standard SMILE, custom LASIK, custom LASEK, and custom SMILE. In addition, vision correction surgery may include lens implantation.
圖37是示出根據實施例的視力校正手術的推薦方法的第三實例的圖式。37 is a diagram illustrating a third example of a recommended method of vision correction surgery according to the embodiment.
參照圖37,根據實施例的視力校正手術的推薦方法可包括獲得被檢查者的檢查資料的操作S3100、預測視力校正手術是否適合被檢查者的操作S3200、預測被檢查者能否進行使用雷射的視力校正手術的操作S3300、預測被檢查者是否需要客製視力校正手術的操作S3400、以及建議對應於被檢查者的視力校正手術的操作S3500。Referring to FIG. 37 , the method for recommending vision correction surgery according to the embodiment may include the operation of obtaining the examination data of the subject S3100, the operation of predicting whether the vision correction surgery is suitable for the subject S3200, and the operation of predicting whether the subject can use laser. The operation S3300 of vision correction surgery, the operation S3400 of predicting whether the subject needs customized vision correction surgery, and the operation S3500 of recommending vision correction surgery corresponding to the subject.
由於圖37的視力校正手術的推薦方法類似於圖35,因此將主要闡述與圖35的區別。Since the recommended method of vision correction surgery of Fig. 37 is similar to Fig. 35, the differences from Fig. 35 will be mainly explained.
參照圖37,預測被檢查者是否需要客製視力校正手術的操作S3400可包括藉由將自被檢查者的檢查資料獲得的第三組資料輸入至第三預測模型來預測被檢查者是否需要客製視力校正手術。是否執行操作S3400可取決於被檢查者能否進行使用雷射的視力校正手術。例如,當被檢查者能夠進行使用雷射的視力校正手術時,可執行操作S3400。第三預測模型可為客製視力校正手術必要性預測模型。第三預測模型可基於第三組資料預測客製視力校正手術必要性。在操作中,可基於標準視力校正手術後被檢查者的角膜形狀因子預測值及客製視力校正手術後被檢查者的角膜形狀因子預測值來預測客製視力校正手術必要性。37 , the operation S3400 of predicting whether the subject needs customized vision correction surgery may include predicting whether the subject needs custom vision correction surgery by inputting a third set of data obtained from the subject's examination data into a third prediction model. vision correction surgery. Whether to perform operation S3400 may depend on whether the examinee can undergo vision correction surgery using laser. For example, when the subject is capable of vision correction surgery using laser, operation S3400 may be performed. The third prediction model may be a customized prediction model for the necessity of vision correction surgery. The third prediction model can predict the necessity of customized vision correction surgery based on the third set of data. In operation, the necessity of customized vision correction surgery can be predicted based on the predicted corneal shape factor value of the subject after standard vision correction surgery and the predicted corneal shape factor value of the subject after customized vision correction surgery.
可連接預測被檢查者是否需要客製視力校正手術的操作S3400及建議對應於被檢查者的視力校正手術的操作S3500。例如,建議對應於被檢查者的視力校正手術的操作S3500的輸出可基於預測被檢查者是否需要客製視力校正手術的操作S3400的輸出來計算。作為另一選擇,預測被檢查者是否需要客製視力校正手術的操作S3400的輸出可基於建議對應於被檢查者的視力校正手術的操作S3500的輸出來計算。The operation S3400 of predicting whether the subject needs customized vision correction surgery and the operation S3500 of recommending vision correction surgery corresponding to the subject may be connected. For example, the output of operation S3500 of recommending vision correction surgery for the subject may be calculated based on the output of operation S3400 of predicting whether the subject requires customized vision correction surgery. Alternatively, the output of operation S3400 of predicting whether the subject requires customized vision correction surgery may be calculated based on the output of operation S3500 of recommending vision correction surgery corresponding to the subject.
例如,在建議對應於被檢查者的視力校正手術的操作S3500中,可基於在預測被檢查者是否需要客製視力校正手術的操作S3400中確定的客製視力校正手術必要性來建議視力校正手術。例如,視力校正手術可包括標準LASIK、標準LASEK、標準SMILE、客製LASIK、客製LASEK及客製SMILE。此外,視力校正手術可包括晶狀體植入。For example, in the operation S3500 of recommending a vision correction surgery corresponding to the subject, the vision correction surgery may be recommended based on the necessity of the customized vision correction surgery determined in the operation S3400 of predicting whether the subject needs the customized vision correction surgery. . For example, vision correction surgery may include standard LASIK, standard LASEK, standard SMILE, custom LASIK, custom LASEK, and custom SMILE. In addition, vision correction surgery may include lens implantation.
作為另一實例,在預測被檢查者是否需要客製視力校正手術的操作S3400中,可基於在建議對應於被檢查者的視力校正手術的操作S3500中確定的第一視力校正手術來輸出第二視力校正手術。此處,第一視力校正手術可為不考量客製視力校正手術必要性而確定的手術,且第二視力校正手術可為考量客製視力校正手術必要性而確定的手術。As another example, in the operation S3400 of predicting whether the subject needs customized vision correction surgery, a second vision correction surgery may be output based on the first vision correction surgery determined in the operation S3500 of recommending a vision correction surgery corresponding to the subject. Vision correction surgery. Here, the first vision correction surgery may be a surgery determined without considering the necessity of customized vision correction surgery, and the second vision correction surgery may be a surgery determined considering the necessity of customized vision correction surgery.
作為又一實例,可基於在建議對應於被檢查者的視力校正手術的操作S3500中確定的第一視力校正手術的類型來判斷是否執行預測被檢查者是否需要客製視力校正手術的操作S3400。例如,當第一視力校正手術是第一類型的視力校正手術時,可不執行客製視力校正手術必要性預測模型,並且當第一視力校正手術是第二類型的視力校正手術時,可執行客製視力校正手術必要性預測模型。As yet another example, it may be determined whether to perform the operation S3400 of predicting whether the subject needs a customized vision correction surgery based on the type of the first vision correction surgery determined in the operation S3500 of recommending a vision correction surgery corresponding to the subject. For example, when the first vision correction surgery is a first type of vision correction surgery, a customized vision correction surgery necessity prediction model may not be performed, and when the first vision correction surgery is a second type of vision correction surgery, a custom vision correction surgery necessity prediction model may be performed. Developing a predictive model for the necessity of vision correction surgery.
可根據是否使用雷射切削角膜來區分第一類型與第二類型。例如,第一類型可為非雷射視力校正手術(例如,晶狀體植入),且第二類型可為雷射視力校正手術(例如LASIK、LASEK、SMILE)。The first type can be distinguished from the second type based on whether laser ablation of the cornea is used. For example, the first type may be non-laser vision correcting surgery (eg, lens implantation), and the second type may be laser vision correcting surgery (eg, LASIK, LASEK, SMILE).
可根據是否可進行客製手術來區分第一類型與第二類型。例如,第一類型可為其中不可進行客製手術的視力校正手術,且第二類型可為其中可進行客製手術的視力校正手術。此處,對於視力校正手術是否是可進行客製手術的手術,可存在預定的標準。然而,所述標準可根據技術進步、醫院、手術裝置、醫生的情況及決定等而變化。例如,當不可進行客製SMILE手術時,第一類型可包括SMILE及晶狀體植入,且第二類型可包括LASIK及LASEK。另一方面,當可進行客製SMILE手術時,第一類型可包括晶狀體植入,且第二類型可包括LASIK、LASEK及SMILE。Type 1 can be distinguished from type 2 based on whether customized surgery is possible. For example, a first type may be a vision correction surgery in which custom surgery is not possible, and a second type may be a vision correction surgery in which custom surgery is possible. Here, there may be predetermined criteria for whether vision correction surgery is a customizable surgery. However, the criteria may vary based on technological advances, hospital, surgical device, physician's circumstances and decisions, etc. For example, when custom SMILE surgery is not possible, the first type may include SMILE and lens implantation, and the second type may include LASIK and LASEK. On the other hand, when custom SMILE procedures are available, the first type may include lens implants, and the second type may include LASIK, LASEK, and SMILE.
圖38是示出根據實施例的視力校正手術的推薦方法的第四實例的圖式。38 is a diagram illustrating a fourth example of a recommended method of vision correction surgery according to the embodiment.
參照圖38,根據實施例的視力校正手術的推薦方法可包括獲得被檢查者的檢查資料的操作S4100、預測視力校正手術是否適合被檢查者的操作S4200、預測被檢查者能否進行使用雷射的視力校正手術的操作S4300、以及建議對應於被檢查者的視力校正手術的操作S4400。Referring to Figure 38, the method for recommending vision correction surgery according to the embodiment may include the operation of obtaining the examination data of the subject S4100, the operation of predicting whether the vision correction surgery is suitable for the subject S4200, and the operation of predicting whether the subject can use laser. The operation S4300 of vision correction surgery, and the operation S4400 of recommending vision correction surgery corresponding to the subject.
由於圖38的獲得被檢查者的檢查資料的操作S4100、預測視力校正手術是否適合被檢查者的操作S4200、以及預測被檢查者能否進行使用雷射的視力校正手術的操作S4300與圖35相同,因此對其不再予以贅述。Since the operation S4100 of obtaining the examination data of the subject, the operation S4200 of predicting whether the subject is suitable for vision correction surgery, and the operation S4300 of predicting whether the subject can undergo vision correction surgery using laser in FIG. 38 are the same as in FIG. 35 , so they will not be described again.
建議對應於被檢查者的視力校正手術的操作S4400可包括藉由將自被檢查者的檢查資料獲得的第三組資料輸入至第三預測模型來建議對應於被檢查者的視力校正手術。The operation S4400 of recommending a vision correction surgery corresponding to the subject may include recommending a vision correction surgery corresponding to the subject by inputting a third set of data obtained from the examination data of the subject into a third prediction model.
是否執行操作S4400可取決於被檢查者能否進行使用雷射的視力校正手術。例如,當被檢查者能夠進行使用雷射的視力校正手術時,可執行操作S4400。在操作S4400中,可基於標準視力校正手術後被檢查者的角膜形狀因子預測值及客製視力校正手術後被檢查者的角膜形狀因子預測值來建議視力校正手術。Whether to perform operation S4400 may depend on whether the examinee can undergo vision correction surgery using laser. For example, when the subject is capable of vision correction surgery using laser, operation S4400 may be performed. In operation S4400, a vision correction surgery may be recommended based on the predicted corneal shape factor value of the subject after the standard vision correction surgery and the predicted corneal shape factor value of the subject after the customized vision correction surgery.
第三預測模型可為其中客製視力校正手術必要性預測模型與視力校正手術建議模型彼此合併的模型。第三預測模型可基於選自由以下組成的群組中的至少一者進行訓練:已接受視力校正手術的多個被治療者的多條檢查資料、與所述多個被治療者對應的視力校正手術及所述多個被治療者進行視力校正手術後的視力。第三預測模型可基於第三組資料輸出關於客製視力校正手術必要性或視力校正手術中的至少一者的資訊。例如,第三預測模型的輸出可包括客製視力校正手術必要性或視力校正手術中的至少一者。The third prediction model may be a model in which a customized vision correction surgery necessity prediction model and a vision correction surgery recommendation model are merged with each other. The third prediction model may be trained based on at least one selected from the group consisting of: a plurality of examination data of a plurality of subjects who have undergone vision correction surgery, and vision correction corresponding to the plurality of subjects. Surgery and the vision of the plurality of subjects following vision correction surgery. The third predictive model may output information regarding at least one of the need for customized vision correction surgery or vision correction surgery based on the third set of data. For example, the output of the third predictive model may include at least one of customizing the need for vision correction surgery or vision correction surgery.
圖39是示出根據實施例的視力校正手術的推薦方法的第五實例的圖式。39 is a diagram illustrating a fifth example of a recommended method of vision correction surgery according to the embodiment.
參照圖39,根據實施例的視力校正手術的推薦方法可包括獲得被檢查者的檢查資料的操作S5100、預測視力校正手術是否適合被檢查者的操作S5200、以及建議對應於被檢查者的視力校正手術的操作S5300。Referring to FIG. 39 , the recommendation method for vision correction surgery according to the embodiment may include an operation of obtaining examination data of the subject S5100, an operation of predicting whether the vision correction surgery is suitable for the subject S5200, and recommending a vision correction corresponding to the subject. Surgical Operation S5300.
由於圖39所示的獲得被檢查者的檢查資料的操作S5100及預測視力校正手術是否適合被檢查者的操作S5200與圖35相同,因此對其不再予以贅述。Since the operation S5100 of obtaining the examination data of the subject and the operation S5200 of predicting whether the vision correction surgery is suitable for the subject shown in Fig. 39 are the same as those shown in Fig. 35, they will not be described again.
建議對應於被檢查者的視力校正手術的操作S5300可包括藉由將自被檢查者的檢查資料獲得的第二組資料輸入至第二預測模型來建議對應於被檢查者的視力校正手術。The operation S5300 of recommending a vision correction surgery corresponding to the subject may include recommending a vision correction surgery corresponding to the subject by inputting a second set of data obtained from the examination data of the subject into a second prediction model.
是否執行操作S5300可取決於視力校正手術是否適合被檢查者。例如,當視力校正手術適合被檢查者時,可執行操作S5300。在操作S5300中,可基於被檢查者在標準視力校正手術後的角膜形狀因子預測值及被檢查者在客製視力校正手術後的角膜形狀因子預測值來建議視力校正手術。Whether to perform operation S5300 may depend on whether vision correction surgery is suitable for the subject. For example, when vision correction surgery is suitable for the subject, operation S5300 may be performed. In operation S5300, a vision correction surgery may be recommended based on the predicted corneal shape factor value of the subject after the standard vision correction surgery and the predicted corneal shape factor value of the subject after the customized vision correction surgery.
第二預測模型可為其中雷射手術可用性預測模型、客製視力校正手術必要性預測模型及視力校正手術建議模型被合併的模型。第二預測模型可基於選自由以下組成的群組中的至少一者進行訓練:已接受視力校正手術的多個被治療者的多條檢查資料、與所述多個被治療者對應的視力校正手術及所述多個被治療者進行視力校正手術後的視力。第二預測模型可基於第二組資料輸出與選自由以下組成的群組中的至少一者有關的資訊:雷射手術可用性、客製視力校正手術必要性及視力校正手術。例如,第二預測模型的輸出可包括選自由以下組成的群組中的至少一者:雷射手術可用性、客製視力校正手術必要性及視力校正手術。The second prediction model may be a model in which a laser surgery availability prediction model, a customized vision correction surgery necessity prediction model, and a vision correction surgery recommendation model are combined. The second prediction model may be trained based on at least one selected from the group consisting of: a plurality of examination data of a plurality of subjects who have undergone vision correction surgery, and vision correction corresponding to the plurality of subjects. Surgery and the vision of the plurality of subjects following vision correction surgery. The second predictive model may output information related to at least one selected from the group consisting of laser surgery availability, custom vision correction surgery necessity, and vision correction surgery based on the second set of data. For example, the output of the second predictive model may include at least one selected from the group consisting of laser surgery availability, custom vision correction surgery necessity, and vision correction surgery.
圖40是示出根據實施例的視力校正手術的推薦方法的第六實例的圖式。40 is a diagram illustrating a sixth example of a recommended method of vision correction surgery according to the embodiment.
參照圖40,根據實施例的視力校正手術的推薦方法可包括獲得被檢查者的檢查資料的操作S6100、以及建議對應於被檢查者的視力校正手術的操作S6200。Referring to FIG. 40 , the recommending method for vision correction surgery according to the embodiment may include an operation S6100 of obtaining examination data of the subject, and an operation S6200 of recommending a vision correction surgery corresponding to the subject.
由於圖40的獲得被檢查者的檢查資料的操作S6100與圖35相同,因此對其不再予以贅述。Since the operation S6100 of obtaining the examination data of the subject in Fig. 40 is the same as that in Fig. 35, it will not be described again.
建議對應於被檢查者的視力校正手術的操作S6200可包括藉由將自被檢查者的檢查資料獲得的一組資料輸入至預測模型來建議對應於被檢查者的視力校正手術。在操作S6200中,可基於被檢查者在標準視力校正手術後的角膜形狀因子預測值及被檢查者在客製視力校正手術後的角膜形狀因子預測值來建議視力校正手術。The operation S6200 of recommending a vision correction surgery corresponding to the subject may include recommending a vision correction surgery corresponding to the subject by inputting a set of data obtained from the examination data of the subject into a prediction model. In operation S6200, a vision correction surgery may be recommended based on the predicted corneal shape factor value of the subject after the standard vision correction surgery and the predicted corneal shape factor value of the subject after the customized vision correction surgery.
預測模型可為其中將手術適合性預測模型、雷射手術可用性預測模型、客製視力校正手術必要性預測模型及視力校正手術建議模型合併的模型。所述預測模型可基於選自由以下組成的群組中的至少一者進行訓練:已接受視力校正手術的多個被治療者的多條檢查資料、與所述多個被治療者對應的視力校正手術及所述多個被治療者進行視力校正手術後的視力。所述預測模型可基於輸入資料輸出與選自由以下組成的群組中的至少一者有關的資訊:手術適合性、雷射手術可用性、客製視力校正手術必要性及視力校正手術。例如,所述預測模型的輸出可包括選自由以下組成的群組中的至少一者:手術適合性、雷射手術可用性、客製視力校正手術必要性及視力校正手術。The prediction model may be a model that combines a surgical suitability prediction model, a laser surgery availability prediction model, a customized vision correction surgery necessity prediction model, and a vision correction surgery recommendation model. The prediction model may be trained based on at least one selected from the group consisting of: a plurality of examination data of a plurality of subjects who have undergone vision correction surgery, and vision correction corresponding to the plurality of subjects. Surgery and the vision of the plurality of subjects following vision correction surgery. The predictive model may output information related to at least one selected from the group consisting of suitability for surgery, availability of laser surgery, necessity for custom vision correction surgery, and vision correction surgery based on the input data. For example, the output of the predictive model may include at least one selected from the group consisting of suitability for surgery, availability of laser surgery, necessity for custom vision correction surgery, and vision correction surgery.
視力校正手術的推薦方法及視力校正手術相關模型的組合及/或合併僅為示例性的,且此外,可實施視力校正手術的推薦方法,或者可以各種方式組合及/或合併視力校正手術相關模型。The combination and/or merging of the recommended methods for vision correction surgery and the models related to vision correction surgery are exemplary only, and in addition, the recommended methods for vision correction surgery may be performed, or the models related to vision correction surgery may be combined and/or combined in various ways .
在下文中,將闡述提供視力校正手術可視化資訊的方法的實例。In the following, examples of methods of providing visual information for vision correction surgery will be described.
提供視力校正手術可視化資訊的方法可使用一或多個視力校正手術相關模型來實施。當使用多個視力校正手術相關模型實施所述方法時,是否實行至少一個視力校正手術相關模型可取決於至少另一視力校正手術相關模型的預測結果。例如,是否實行第二視力校正手術相關模型可取決於第一視力校正手術相關模型的預測結果。Methods of providing vision correction surgery visualization information may be implemented using one or more vision correction surgery related models. When the method is implemented using multiple vision correction surgery-related models, whether to implement at least one vision correction surgery-related model may depend on the prediction results of at least one other vision correction surgery-related model. For example, whether to implement the second vision correction surgery-related model may depend on the prediction results of the first vision correction surgery-related model.
提供視力校正手術可視化資訊的方法可包括提供預期視力影像的方法、提供角膜地形影像的方法及提供預測結果計算原因的方法。Methods of providing visualization information for vision correction surgery may include methods of providing expected visual acuity images, methods of providing corneal topography images, and methods of providing reasons for calculating predicted results.
提供預期視力影像的方法可使用預期視力影像生成模型來實施。提供角膜地形影像的方法可使用角膜地形影像預測模型來實施。提供預測結果計算原因的方法可使用預測結果計算原因分析模型來實施。The method of providing an expected visual acuity image may be implemented using an expected visual acuity image generation model. Methods of providing corneal topography images may be implemented using corneal topography image prediction models. The method of providing the cause of the prediction result calculation may be implemented using a prediction result calculation cause analysis model.
下面將闡述的提供視力校正手術可視化資訊的方法的操作可由預測裝置來執行。The operations of the method of providing visual information for vision correction surgery described below may be performed by a prediction device.
圖41是示出根據實施例的提供視力校正手術可視化資訊的方法的第一實例的圖式。Figure 41 is a diagram showing a first example of a method for providing visualization information for vision correction surgery according to an embodiment.
參照圖41,根據實施例的提供視力校正手術可視化資訊的方法可包括獲得被檢查者的檢查資料的操作S7100、計算視力校正手術後被檢查者的眼睛特性資料的預測值的操作S7200、以及生成預期視力影像的操作S7300。此外,儘管未示出,但根據實施例的提供視力校正手術可視化資訊的方法可更包括輸出預期視力影像。Referring to FIG. 41 , a method for providing visualization information for vision correction surgery according to an embodiment may include an operation S7100 of obtaining inspection data of the subject, an operation S7200 of calculating a predicted value of the eye characteristic data of the subject after the vision correction surgery, and generating Operation S7300 of expected visual acuity image. In addition, although not shown, the method of providing vision correction surgery visualization information according to embodiments may further include outputting an expected vision image.
獲得被檢查者的檢查資料的操作S7100可包括由計算裝置獲得包括問診資料及眼睛特性資料的測定值的檢查資料。The operation S7100 of obtaining the examination data of the subject may include obtaining, from the computing device, examination data including measurement values of the examination data and the eye characteristic data.
計算視力校正手術後被檢查者的眼睛特性資料的預測值的操作S7200可包括藉由將自被檢查者的檢查資料獲得的第一組資料輸入至第一預測模型來計算眼睛特性資料的預測值,所述眼睛特性資料包括被檢查者的視力預測值或在視力校正手術後的角膜形狀因子預測值中的至少一者。The operation S7200 of calculating the predicted value of the eye characteristic data of the subject after the vision correction surgery may include calculating the predicted value of the eye characteristic data by inputting a first set of data obtained from the examination data of the subject into a first prediction model. , the eye characteristic data includes at least one of the predicted value of the subject's vision or the predicted value of the corneal shape factor after vision correction surgery.
第一預測模型可基於選自由以下組成的群組中的至少一者進行訓練:已接受視力校正手術的多個被治療者在手術前的多條眼睛特性資料的測定值、對所述多個被治療者執行的視力校正手術的手術參數、以及所述多個被治療者手術後的多條眼睛特性資料的測定值。第一預測模型可包括視力預測模型或角膜形狀因子預測模型中的至少一者。作為另一選擇,第一預測模型可為視力預測模型與角膜形狀因子預測模型被合併的模型。第一預測模型可基於第一組資料計算視力校正手術後被檢查者的眼睛特性資料的預測值。The first prediction model may be trained based on at least one selected from the group consisting of: measured values of a plurality of eye characteristic data of a plurality of subjects who have undergone vision correction surgery before the surgery, a measurement of the plurality of eye characteristic data of the plurality of subjects who have undergone vision correction surgery. The surgical parameters of the vision correction surgery performed by the subject, and the measured values of a plurality of pieces of eye characteristic data after the surgery of the plurality of subjects. The first prediction model may include at least one of a vision prediction model or a corneal shape factor prediction model. As another option, the first prediction model may be a model in which a vision prediction model and a corneal shape factor prediction model are merged. The first prediction model can calculate the prediction value of the subject's eye characteristic data after the vision correction surgery based on the first set of data.
生成預期視力影像的操作S7300可包括基於眼睛特性資料的預測值生成預期視力影像。The operation S7300 of generating the expected vision image may include generating the expected vision image based on the predicted value of the eye characteristic data.
圖42是示出根據實施例的提供視力校正手術可視化資訊的方法的第二實例的圖式。42 is a diagram illustrating a second example of a method of providing visual information for vision correction surgery according to an embodiment.
參照圖42,根據實施例的提供視力校正手術可視化資訊的方法可更包括基於眼睛特性資料的預測值計算及/或選擇濾波器的操作S7600、以及將濾波器應用於原始影像的操作S7700。Referring to FIG. 42 , the method of providing vision correction surgery visualization information according to the embodiment may further include the operation of calculating and/or selecting a filter based on predicted value of the eye characteristic data S7600, and the operation of applying the filter to the original image S7700.
基於眼睛特性資料的預測值來計算及/或選擇濾波器的操作S7600可由圖11的第一子模型M171來執行。The operation S7600 of calculating and/or selecting a filter based on the predicted value of the eye characteristic data may be performed by the first sub-model M171 of FIG. 11 .
將濾波器應用於原始影像的操作S7700可包括將濾波器應用於原始影像以生成預期視力影像。操作S7700可由圖11的第二子模型M172來執行。The operation of applying the filter to the original image S7700 may include applying the filter to the original image to generate an expected vision image. Operation S7700 may be performed by the second sub-model M172 of FIG. 11 .
圖43是示出根據實施例的提供視力校正手術可視化資訊的方法的第三實例的圖式。43 is a diagram illustrating a third example of a method of providing visual information for vision correction surgery according to an embodiment.
參照圖43,根據實施例的提供視力校正手術可視化資訊的方法可更包括預測視力校正手術後被檢查者的角膜地形影像的操作S7400。Referring to FIG. 43 , the method for providing vision correction surgery visualization information according to the embodiment may further include an operation S7400 of predicting the corneal topography image of the subject after the vision correction surgery.
預測視力校正手術後被檢查者的角膜地形影像的操作S7400可包括藉由將自被檢查者的檢查資料獲得的第二組資料輸入至第二預測模型來預測視力校正手術後被檢查者的角膜地形影像。The operation S7400 of predicting the subject's corneal topography image after the vision correction surgery may include predicting the subject's cornea after the vision correction surgery by inputting a second set of data obtained from the examination data of the subject into a second prediction model. Terrain images.
第二預測模型可基於選自由以下組成的群組中的至少一者進行訓練:已接受視力校正手術的多個被治療者在手術前的角膜地形影像、對所述多個被治療者執行的視力校正手術的手術參數、以及所述多個被治療者在手術後的角膜地形影像。第二預測模型可為角膜地形影像預測模型。第二預測模型可基於第二組資料預測被檢查者在視力校正手術後的角膜地形影像。The second prediction model may be trained based on at least one selected from the group consisting of: pre-surgery corneal topography images of a plurality of subjects who have undergone vision correction surgery, images performed on the plurality of subjects The surgical parameters of the vision correction surgery, and the corneal topography images of the plurality of treated subjects after the surgery. The second prediction model may be a corneal topography image prediction model. The second prediction model can predict the corneal topography image of the subject after vision correction surgery based on the second set of data.
圖44是示出根據實施例的提供視力校正手術可視化資訊的方法的第四實例的圖式。44 is a diagram illustrating a fourth example of a method of providing visual information for vision correction surgery according to an embodiment.
參照圖44,根據實施例的提供視力校正手術可視化資訊的方法可更包括計算眼睛特性資料的預測值對第一組資料的依賴性的操作S7500。此外,儘管未示出,但根據實施例的提供視力校正手術可視化資訊的方法可更包括輸出依賴係數。Referring to FIG. 44 , the method for providing vision correction surgery visualization information according to the embodiment may further include an operation S7500 of calculating the dependence of the predicted value of the eye characteristic data on the first set of data. In addition, although not shown, the method of providing vision correction surgery visualization information according to the embodiment may further include outputting a dependence coefficient.
依賴係數的輸出可包括輸出依賴係數中大於預定值的依賴係數,或者輸出預定數量的依賴係數。The output of the dependence coefficients may include outputting a dependence coefficient greater than a predetermined value among the dependence coefficients, or outputting a predetermined number of dependence coefficients.
根據實施例的方法可以程式指令的形式實施,所述程式指令可藉由各種電腦單元執行並記錄在電腦可讀取媒體中。電腦可讀取媒體可包括程式指令、資料文件、資料結構或其組合。記錄在電腦可讀取媒體中的程式指令可針對實施例專門設計及準備,或者可為熟習電腦軟體領域者可能習知的指令。電腦可讀取媒體的實例包括例如硬碟、軟碟及磁帶等磁性媒體、例如光碟只讀記憶體(compact disc read-only memory,CD-ROM)及數位視訊光碟(digital video disc,DVD)等光學媒體、例如軟磁光碟等磁光媒體、以及專門製作用於儲存及執行程式指令的硬體裝置,例如ROM、隨機存取記憶體(random access memory,RAM)或快閃記憶體。程式指令的實例可包括由編譯器生成的機器代碼及可在電腦中使用解譯器執行的高級語言代碼。此種硬體裝置可被配置為至少一個軟體模組以便執行實施例的操作,反之亦可。Methods according to embodiments may be implemented in the form of program instructions executable by various computer units and recorded in computer-readable media. Computer-readable media may include program instructions, data files, data structures, or combinations thereof. The program instructions recorded in the computer-readable medium may be specially designed and prepared for the embodiments, or may be instructions that may be familiar to those skilled in the computer software field. Examples of computer-readable media include magnetic media such as hard disks, floppy disks and magnetic tapes, such as compact disc read-only memory (CD-ROM) and digital video disc (DVD), etc. Optical media, such as magneto-optical media such as soft magnetic optical disks, and hardware devices specially designed to store and execute program instructions, such as ROM, random access memory (random access memory, RAM) or flash memory. Examples of program instructions may include machine code generated by a compiler and high-level language code that may be executed on a computer using an interpreter. Such hardware devices may be configured as at least one software module to perform the operations of the embodiments, and vice versa.
以上已基於實施例闡述了本發明的配置及特徵,但本發明不限於此,並且對熟習此項技術者而言顯而易見的是,可在本發明的精神及範圍內進行各種改變或修改。因此,揭示了此類改變或修改落在隨附申請專利範圍的範圍內。 [發明實施方式]The configuration and features of the present invention have been described above based on the embodiments, but the present invention is not limited thereto, and it is obvious to those skilled in the art that various changes or modifications can be made within the spirit and scope of the present invention. Accordingly, it is disclosed that such changes or modifications fall within the scope of the appended claims. [Embodiments of the invention]
如上所述,在本發明的技術解決方案中,已闡述了相關事項。As mentioned above, in the technical solution of the present invention, relevant matters have been explained.
10:視力校正手術輔助系統 100:訓練裝置 300:預測裝置 500:伺服器裝置 700、700a、700b:客戶端裝置 1000、1000a、1000b:控制單元 5000、5000a、5000b:記憶體單元 9000、9000a、9000b:通訊單元 CI1、CI2:角膜地形影像 I1:第一預期視力影像 I2:第二預期視力影像 I3:第三預期視力影像 I4:第四預期視力影像 I5:第五預期視力影像 I6:第六預期視力影像 M:視力校正手術相關模型 M1:子模型/第一子模型 M2:子模型/第二子模型 M3:輸出子模型 M10:手術適合性預測模型 M11:雷射手術可用性預測模型 M12:角膜形狀因子預測模型 M13:客製視力校正手術必要性預測模型 M14:視力校正手術建議模型 M15:手術參數建議模型 M16:視力預測模型 M17:預期視力影像生成模型 M18:角膜地形影像預測模型 M19:預測結果計算原因分析模型 M25、M27、M38:合併的模型 M171:第一子模型 M172:第二子模型 M191:輸入資料擾動模型 M192:視力校正手術相關模型 M193:預測結果分析模型 Ma:第一視力校正手術相關模型 Mb:第二視力校正手術相關模型 Mab:模型 Mc:第三視力校正手術相關模型 OV:視力預測值 S10:訓練操作 S30:預測操作 S110:訓練資料獲得操作 S150:模型訓練操作 S310:輸入資料獲得操作 S350:模型執行操作 S500:預處理操作 S700:操作 S1100、S1200、S1300、S1400、S1500:操作 S2100、S2200、S2300、S2400、S2500:操作 S3100、S3200、S3300、S3400、S3500:操作 S4100、S4200、S4300、S4400:操作 S5100、S5200、S5300:操作 S6100、S6200:操作 S7100、S7200、S7300、S7400、S7500、S7600、S7700:操作 V1:Cornea_Back_Rmin V2:散光 V3:單眼 V4:近視 V5:Op_flag V6:Pupil_Dia10: Vision correction surgery assistance system 100:Training device 300: Prediction device 500:Server device 700, 700a, 700b: client device 1000, 1000a, 1000b: control unit 5000, 5000a, 5000b: memory unit 9000, 9000a, 9000b: Communication unit CI1, CI2: Corneal topography image I1: First expected visual acuity image I2: second expected visual acuity image I3: Third expected visual acuity image I4: fourth expected vision image I5: fifth expected visual acuity image I6: sixth expected visual acuity image M: Vision correction surgery related models M1: sub-model/first sub-model M2: Sub-model/Second sub-model M3: Output sub-model M10: Surgical suitability prediction model M11: Laser surgery availability prediction model M12: Corneal shape factor prediction model M13: Customized vision correction surgery necessity prediction model M14: Vision Correction Surgery Recommendation Model M15: Surgical parameter recommendation model M16: Vision prediction model M17: Expected visual acuity image generation model M18: Corneal topography image prediction model M19: Reason analysis model for prediction result calculation M25, M27, M38: merged models M171: First sub-model M172: Second sub-model M191: Input data perturbation model M192: Vision correction surgery related models M193: Prediction result analysis model Ma: First vision correction surgery related model Mb: Second vision correction surgery related model Mab: model Mc: Third vision correction surgery related models OV: predicted visual acuity value S10: Training operations S30: Prediction operation S110: Training data acquisition operation S150: Model training operation S310: Enter data to obtain operation S350: Model execution operation S500: Preprocessing operation S700: Operation S1100, S1200, S1300, S1400, S1500: Operation S2100, S2200, S2300, S2400, S2500: Operation S3100, S3200, S3300, S3400, S3500: Operation S4100, S4200, S4300, S4400: Operation S5100, S5200, S5300: Operation S6100, S6200: Operation S7100, S7200, S7300, S7400, S7500, S7600, S7700: Operation V1:Cornea_Back_Rmin V2: astigmatism V3: Single eye V4: Myopia V5:Op_flag V6:Pupil_Dia
圖1是示出根據實施例的視力校正手術輔助系統的圖式。 圖2是用於闡述根據實施例的訓練裝置/預測裝置的圖式。 圖3是用於闡述根據實施例的伺服器裝置及客戶端裝置的圖式。 圖4是示出根據實施例的伺服器裝置及客戶端裝置的配置的圖式。 圖5是示出根據實施例的視力校正手術相關模型的圖式。 圖6是用於闡述根據實施例的視力校正手術相關模型的訓練操作及預測操作的圖式。 圖7是示出根據實施例的輸入/輸出資料的預處理的圖式。 圖8是示出根據實施例的包括串聯連接的子模型的視力校正手術相關模型的圖式。 圖9是示出根據實施例的包括並聯連接的子模型的視力校正手術相關模型的圖式。 圖10示出根據實施例的預期視力影像的視圖。 圖11是示出根據實施例的使用濾波器的預期視力影像生成模型的圖式。 圖12是示出根據實施例的角膜地形影像的圖式。 圖13是示出根據實施例的包括視力校正手術相關模型的預測結果計算原因分析模型的圖式。 圖14是示出根據實施例計算的預測結果的計算原因的圖式。 圖15是示出根據實施例串聯連接的視力校正手術相關模型的圖式。 圖16至圖19是示出根據實施例的基於角膜形狀因子預測模型的輸出而計算視力校正手術相關模型的輸出的圖式。 圖20是示出根據一實施例的基於客製視力校正手術的必要性預測模型的輸出來計算視力校正手術相關模型的輸出的圖式。 圖21至圖22是示出根據實施例的基於視力校正手術建議模型的輸出來計算視力校正手術相關模型的輸出的圖式。 圖23是示出根據實施例的基於手術參數建議模型的輸出來計算視力校正手術相關模型的輸出的圖式。 圖24至圖25是示出根據實施例的基於視力預測模型的輸出來計算視力校正手術相關模型的輸出的圖式。 圖26至圖27是示出根據實施例的基於角膜地形影像預測模型的輸出來計算視力校正手術相關模型的輸出的圖式。 圖28是用於闡述根據實施例的三或更多個視力校正手術相關模型的組合的圖式。 圖29至圖30是示出根據實施例的基於角膜形狀因子預測模型及視力預測模型的輸出來計算視力校正手術相關模型的輸出的圖式。 圖31是用於闡述根據實施例的視力校正手術相關模型的合併的圖式。 圖32至圖34是示出根據實施例的視力校正手術相關模型的合併的實施實例的圖式。 圖35是示出根據實施例的視力校正手術推薦方法的第一實例的圖式。 圖36是示出根據實施例的視力校正手術推薦方法的第二實例的圖式。 圖37是示出根據實施例的視力校正手術推薦方法的第三實例的圖式。 圖38是示出根據實施例的視力校正手術推薦方法的第四實例的圖式。 圖39是示出根據實施例的視力校正手術推薦方法的第五實例的圖式。 圖40是示出根據實施例的視力校正手術推薦方法的第六實例的圖式。 圖41是示出根據實施例的提供視力校正手術可視化資訊的方法的第一實例的圖式。 圖42是示出根據實施例的提供視力校正手術可視化資訊的方法的第二實例的圖式。 圖43是示出根據實施例的提供視力校正手術可視化資訊的方法的第三實例的圖式。 圖44是示出根據實施例的提供視力校正手術可視化資訊的方法的第四實例的圖式。FIG. 1 is a diagram showing a vision correction surgery assisting system according to an embodiment. FIG. 2 is a diagram for explaining a training device/prediction device according to an embodiment. FIG. 3 is a diagram illustrating a server device and a client device according to an embodiment. 4 is a diagram showing the configuration of a server device and a client device according to an embodiment. FIG. 5 is a diagram showing a vision correction surgery related model according to the embodiment. 6 is a diagram for explaining the training operation and the prediction operation of the vision correction surgery related model according to the embodiment. FIG. 7 is a diagram illustrating preprocessing of input/output data according to an embodiment. 8 is a diagram illustrating a vision correction surgery related model including sub-models connected in series, according to an embodiment. 9 is a diagram illustrating a vision correction surgery related model including sub-models connected in parallel, according to an embodiment. Figure 10 shows a view of an expected visual acuity image according to an embodiment. 11 is a diagram illustrating an expected vision image generation model using a filter according to an embodiment. 12 is a diagram illustrating a corneal topography image according to an embodiment. 13 is a diagram illustrating a prediction result calculation cause analysis model including a vision correction surgery related model according to an embodiment. FIG. 14 is a diagram showing calculation reasons for prediction results calculated according to the embodiment. 15 is a diagram illustrating vision correction surgery-related models connected in series according to an embodiment. 16 to 19 are diagrams illustrating calculation of the output of a vision correction surgery-related model based on the output of the corneal shape factor prediction model, according to an embodiment. 20 is a diagram illustrating the calculation of the output of a vision correction surgery-related model based on the output of a customized vision correction surgery necessity prediction model, according to one embodiment. 21 to 22 are diagrams illustrating calculation of an output of a vision correction surgery-related model based on an output of a vision correction surgery recommendation model, according to an embodiment. 23 is a diagram illustrating calculation of output of a vision correction surgery-related model based on output of a surgical parameter recommendation model, according to an embodiment. 24 to 25 are diagrams illustrating calculation of an output of a vision correction surgery-related model based on an output of a vision prediction model according to an embodiment. 26 to 27 are diagrams illustrating calculation of an output of a vision correction surgery-related model based on an output of a corneal topography image prediction model according to an embodiment. 28 is a diagram illustrating a combination of three or more vision correction surgery related models according to an embodiment. 29 to 30 are diagrams illustrating calculation of the output of a vision correction surgery-related model based on the output of the corneal shape factor prediction model and the vision prediction model, according to an embodiment. 31 is a diagram for explaining the incorporation of vision correction surgery related models according to the embodiment. 32 to 34 are diagrams illustrating an implementation example of the merger of vision correction surgery-related models according to the embodiment. 35 is a diagram illustrating a first example of a vision correction surgery recommendation method according to an embodiment. 36 is a diagram illustrating a second example of the vision correction surgery recommendation method according to the embodiment. 37 is a diagram illustrating a third example of the vision correction surgery recommendation method according to the embodiment. 38 is a diagram illustrating a fourth example of the vision correction surgery recommendation method according to the embodiment. 39 is a diagram illustrating a fifth example of the vision correction surgery recommendation method according to the embodiment. 40 is a diagram illustrating a sixth example of the vision correction surgery recommendation method according to the embodiment. 41 is a diagram illustrating a first example of a method of providing visual information for vision correction surgery according to an embodiment. 42 is a diagram illustrating a second example of a method of providing visual information for vision correction surgery according to an embodiment. 43 is a diagram illustrating a third example of a method of providing visual information for vision correction surgery according to an embodiment. 44 is a diagram illustrating a fourth example of a method of providing visual information for vision correction surgery according to an embodiment.
S1100、S1200、S1300、S1400、S1500:操作 S1100, S1200, S1300, S1400, S1500: Operation
Claims (1)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0105458 | 2019-08-27 | ||
KR10-2019-0105459 | 2019-08-27 | ||
KR1020190105459A KR102320267B1 (en) | 2019-08-27 | 2019-08-27 | Method and device for providing vision correction surgery visualization information |
KR1020190105458A KR102320250B1 (en) | 2019-08-27 | 2019-08-27 | Method and device for recommending vision correction surgery |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202147338A TW202147338A (en) | 2021-12-16 |
TWI834987B true TWI834987B (en) | 2024-03-11 |
Family
ID=76604406
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109129362A TWI741762B (en) | 2019-08-27 | 2020-08-27 | Method performed by computing deviceand recording medium |
TW110130724A TWI834987B (en) | 2019-08-27 | 2020-08-27 | Method performed by computing device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109129362A TWI741762B (en) | 2019-08-27 | 2020-08-27 | Method performed by computing deviceand recording medium |
Country Status (1)
Country | Link |
---|---|
TW (2) | TWI741762B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113499033A (en) * | 2021-05-20 | 2021-10-15 | 北京鹰瞳科技发展股份有限公司 | Medical data method and system |
CN114642502B (en) * | 2022-02-21 | 2023-07-14 | 北京工业大学 | Auxiliary design method and device for strabismus operation scheme |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201229494A (en) * | 2010-08-02 | 2012-07-16 | Johnson & Johnson Vision Care | System for in vitro analysis of fluid dynamics on contact lenses via phase shifting interferometry |
TW201521675A (en) * | 2013-12-13 | 2015-06-16 | Crystalvue Medical Corp | Optical device for measuring corneal and method for measuring corneal |
CN109036510A (en) * | 2018-09-30 | 2018-12-18 | 陈新戈 | Training for vision correction scheduling method, apparatus and system |
-
2020
- 2020-08-27 TW TW109129362A patent/TWI741762B/en active
- 2020-08-27 TW TW110130724A patent/TWI834987B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201229494A (en) * | 2010-08-02 | 2012-07-16 | Johnson & Johnson Vision Care | System for in vitro analysis of fluid dynamics on contact lenses via phase shifting interferometry |
TW201521675A (en) * | 2013-12-13 | 2015-06-16 | Crystalvue Medical Corp | Optical device for measuring corneal and method for measuring corneal |
CN109036510A (en) * | 2018-09-30 | 2018-12-18 | 陈新戈 | Training for vision correction scheduling method, apparatus and system |
Also Published As
Publication number | Publication date |
---|---|
TW202147338A (en) | 2021-12-16 |
TWI741762B (en) | 2021-10-01 |
TW202115739A (en) | 2021-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102520600B1 (en) | Method and device for recommending vision correction surgery | |
Kim et al. | Effects of hypertension, diabetes, and smoking on age and sex prediction from retinal fundus images | |
EP4049580B1 (en) | Ametropia treatment tracking methods and system | |
Xu et al. | Repeatability and reproducibility of a double-pass optical quality analysis device | |
CN108836626B (en) | Ametropia treatment tracking method and system | |
KR20210031872A (en) | Method and apparatus for engaging and providing vision correction options to patients from a remote location | |
JP6672529B2 (en) | Apparatus and computer program for determining predicted subjective refraction data or predicted correction value | |
US10141075B2 (en) | Predicting and mitigating risk of ectasia and optimizing therapeutic outcomes | |
JP2023145613A (en) | Using deep learning to process images of eye to predict visual acuity | |
KR20100018518A (en) | Determination of optical adjustments for retarding myopia progression | |
US20180296320A1 (en) | Forecasting cataract surgery effectiveness | |
TWI834987B (en) | Method performed by computing device | |
JP2024079709A (en) | Recommendation method and apparatus of eyesight correction surgery | |
KR102320267B1 (en) | Method and device for providing vision correction surgery visualization information | |
Asawaworarit et al. | Agreement of total corneal power between 2 swept-source optical coherence tomography and Scheimpflug tomography in normal and keratoconic patients | |
Ravikumar et al. | Image quality metric derived refractions predicted to improve visual acuity beyond habitual refraction for patients with Down syndrome | |
Moore et al. | Limbus misrepresentation in parametric eye models | |
Rementería-Capelo et al. | Automated refraction after trifocal and trifocal toric intraocular lens implantation | |
Langenbucher et al. | Customized aspheric IOL design by raytracing through the eye containing quadric surfaces | |
Doll et al. | Which feature influences on-eye power change of soft toric contact lenses: Design or corneal shape? | |
Leube et al. | Individual neural transfer function affects the prediction of subjective depth of focus | |
Petelczyc et al. | The Light Sword Lens-A novel method of presbyopia compensation: Pilot clinical study | |
Del Águila-Carrasco et al. | Assessment of modifications in thickness, curvatures, and volume upon the cornea caused by disposable soft contact lens wear | |
CN115087913B (en) | Apparatus for recommending optical devices | |
Pérez–Bartolomé et al. | Agreement between anterior segment swept source-OCT and Scheimpflug imaging corneal aberration measurements in healthy eyes |