TWI834668B - Portable ultrasound system - Google Patents

Portable ultrasound system Download PDF

Info

Publication number
TWI834668B
TWI834668B TW108116961A TW108116961A TWI834668B TW I834668 B TWI834668 B TW I834668B TW 108116961 A TW108116961 A TW 108116961A TW 108116961 A TW108116961 A TW 108116961A TW I834668 B TWI834668 B TW I834668B
Authority
TW
Taiwan
Prior art keywords
ultrasound
image
user
touch
imaging
Prior art date
Application number
TW108116961A
Other languages
Chinese (zh)
Other versions
TW202004774A (en
Inventor
艾利斯 M 江
諾哈 柏格
Original Assignee
美商德拉工業公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商德拉工業公司 filed Critical 美商德拉工業公司
Publication of TW202004774A publication Critical patent/TW202004774A/en
Application granted granted Critical
Publication of TWI834668B publication Critical patent/TWI834668B/en

Links

Abstract

Exemplary embodiments provide systems and methods for portable medical ultrasound imaging. Preferred embodiments utilize a hand portable, battery powered system having a display and a user interface operative to control imaging and display operations. A keyboard control panel can be used alone or in combination with touchscreen controls to actuate a graphical user interface. Exemplary embodiments also provide an ultrasound engine circuit board including one or more multi-chip modules, and a portable medical ultrasound imaging system including an ultrasound engine circuit board.

Description

可移動超音波系統Mobile ultrasound system

醫療超音波成像已成為諸多醫療成像應用之一行業標準。近年來,對可移動且更具使用者親和性的醫療超音波成像裝備之需要日益迫切,可移動性允許醫療人員容易在醫院及/或現場位置之間運輸裝備,且使用者親和性能適應可具備一定技能水平之醫療人員。Medical ultrasound imaging has become an industry standard for many medical imaging applications. In recent years, there has been an increasing need for medical ultrasound imaging equipment that is mobile and more user-friendly. The mobility allows medical personnel to easily transport the equipment between hospitals and/or field locations, and the user-friendly performance can be adapted to the needs of the user. Medical personnel with a certain level of skills.

習用醫療超音波成像裝備通常包含至少一個超音波探針/換能器、一鍵盤及/或一旋鈕、一電腦及一顯示器。在一典型操作模式中,超音波探針/換能器產生可基於頻率位準穿透組織到達不同深度的超音波,且接收自組織反射回的超音波。此外,醫療人員可經由鍵盤及/或旋鈕將系統輸入輸入至電腦,且在顯示器上查看組織結構之超音波影像。Conventional medical ultrasound imaging equipment usually includes at least one ultrasound probe/transducer, a keyboard and/or a knob, a computer and a monitor. In a typical mode of operation, the ultrasound probe/transducer generates ultrasound waves that can penetrate tissue to different depths based on frequency levels and receives ultrasound waves reflected back from the tissue. In addition, medical personnel can enter system input into the computer via the keyboard and/or knobs and view ultrasound images of tissue structures on the monitor.

然而,採用此等鍵盤及/或旋鈕之習用醫療超音波成像裝備可體積龐大,且因此可無法可移動地用於醫院及/或現場位置。此外,由於此等鍵盤及/或旋鈕通常具有不平坦表面,因此其等可難以在醫院及/或現場環境中保持乾淨,而維持一無菌區對患者健康而言可至關重要。某些習用醫療超音波成像裝備已利用觸控螢幕技術來提供一部分性使用者輸入介面。然而,採用此等觸控螢幕技術之習用醫療超音波成像裝備通常提供與一傳統鍵盤及/或旋鈕相結合之有限觸控螢幕功能性,且可因此不僅難以保持乾淨而且使用複雜。However, conventional medical ultrasound imaging equipment employing such keyboards and/or knobs can be bulky and therefore may not be portable for use in hospital and/or field locations. Additionally, since such keyboards and/or knobs often have uneven surfaces, they can be difficult to keep clean in hospital and/or field environments, where maintaining a sterile field can be critical to patient health. Some conventional medical ultrasound imaging equipment already utilize touch screen technology to provide a partial user input interface. However, conventional medical ultrasound imaging equipment employing these touch screen technologies often provide limited touch screen functionality combined with a traditional keyboard and/or knobs, and can therefore be difficult to keep clean and complex to use.

根據本申請案,揭示醫療超音波成像之系統及方法。醫療超音波成像之目前所揭示系統及方法採用醫療超音波成像裝備,該醫療超音波成像裝備包含具有一膝上型電腦或一平板電腦外觀尺寸之一手持式殼體。使用者介面可包含一鍵盤控制面板或一多點觸控式觸控螢幕。該系統可包含在系統殼體內之一圖形處理單元,該圖形處理單元連接至操作以執行超音波成像操作之中央處理器。一較佳實施例可採用複數個機器學習應用,包含(舉例而言)用於由系統產生之處理超音波影像資料及定量資料之神經網路。該觸控螢幕介面經組態以使得能夠自顯示器上之一觸控致動選單選擇一或多個機器學習應用。該系統可利用在該平板電腦殼體內之一共用記憶體來存取資料且利用在該平板電腦殼體中之一或多個處理器上操作之軟體模組來執行如本文中所闡述之一或多個超音波成像操作或資料處理操作。此使得能夠操作在該平板電腦或可移動超音波裝置上運行之第三方應用程式。又一實施例可處理來自諸如一相機或其他醫療成像系統之一第二成像模態之影像資料,其中該系統處理該多模式影像資料以提供一所關注區之覆疊影像,舉例而言。According to this application, systems and methods for medical ultrasound imaging are disclosed. Currently disclosed systems and methods of medical ultrasound imaging employ medical ultrasound imaging equipment that includes a handheld housing having the appearance size of a laptop computer or a tablet computer. The user interface may include a keyboard control panel or a multi-touch touch screen. The system may include a graphics processing unit within the system housing coupled to a central processor operative to perform ultrasound imaging operations. A preferred embodiment may employ a plurality of machine learning applications, including, for example, neural networks for processing ultrasound imaging data and quantitative data generated by the system. The touch screen interface is configured to enable selection of one or more machine learning applications from a touch-activated menu on the display. The system may utilize a shared memory within the tablet housing to access data and utilize software modules operating on one or more processors in the tablet housing to perform one of those described herein or multiple ultrasound imaging operations or data processing operations. This enables operation of third-party applications running on the tablet or mobile ultrasound device. Yet another embodiment may process image data from a second imaging modality, such as a camera or other medical imaging system, where the system processes the multi-modal image data to provide an overlay image of a region of interest, for example.

又一觸控螢幕啟用操作可包含用於不同成像應用之諧波成像。定量方法可利用圖形處理器或核心處理器來對包含諧波分量之超音波資料應用定量分析。Yet another touch screen enabled operation can include harmonic imaging for different imaging applications. Quantitative methods can utilize graphics processors or core processors to apply quantitative analysis to ultrasound data containing harmonic components.

觸控螢幕實施例可辨識且區分在觸控螢幕顯示器之一表面上之一或多個單點觸控、多點觸控及/或同時觸控,藉此允許將範圍介於自簡單單點手勢至複雜多點移動手勢之手勢作為使用者輸入用於醫療超音波成像裝備。Touch screen embodiments can recognize and distinguish one or more single touches, multi-touch and/or simultaneous touches on a surface of the touch screen display, thereby allowing ranges from a simple single touch Gestures ranging from hand gestures to complex multi-point movement gestures are used as user input in medical ultrasound imaging equipment.

根據一項態樣,例示性醫療超音波成像系統包含:一殼體,其具有在平行平面中剛性地安裝至彼此之一前面板及一後面板;一觸控螢幕顯示器;一電腦,其具有至少一個處理器及至少一個記憶體;一超音波波束成形系統;及一電池。該醫療超音波成像裝備之該殼體被實施為一平板電腦外觀尺寸。該觸控螢幕顯示器安置於該殼體之該前面板上,且包含一多點觸控式LCD觸控螢幕,該多點觸控式LCD觸控螢幕可辨識且區分該觸控螢幕顯示器之一表面上之一或多個單點觸控、多點觸控及/或同時觸控或手勢。該電腦、該超音波波束成形系統或引擎及該電池操作地安置於該殼體內。該醫療超音波成像裝備可使用操作地連接於該殼體內之該電腦與該超音波引擎之間的一火線連接及具有一探針附接/拆卸桿以促進至少一個超音波探針/換能器之連接之一探針連接器。另外,例示性醫療超音波成像系統包含一I/O埠連接器及一DC電力輸入。According to one aspect, an exemplary medical ultrasound imaging system includes: a housing having a front panel and a rear panel rigidly mounted to each other in parallel planes; a touch screen display; and a computer having At least one processor and at least one memory; an ultrasonic beamforming system; and a battery. The housing of the medical ultrasound imaging equipment is implemented in the appearance size of a tablet computer. The touch screen display is disposed on the front panel of the housing and includes a multi-touch LCD touch screen. The multi-touch LCD touch screen can identify and distinguish one of the touch screen displays. One or more single touch, multi-touch and/or simultaneous touches or gestures on the surface. The computer, the ultrasonic beamforming system or engine and the battery are operatively disposed within the housing. The medical ultrasound imaging equipment may use a live wire connection between the computer and the ultrasound engine operatively connected within the housing and have a probe attachment/detachment lever to facilitate at least one ultrasound probe/transducer One of the probe connections is the probe connector. Additionally, the exemplary medical ultrasound imaging system includes an I/O port connector and a DC power input.

在一例示性操作模式中,醫療人員可採用簡單單點手勢及/或更複雜多點手勢作為至該多點觸控式LCD觸控螢幕之使用者輸入以用於控制該例示性醫療超音波成像裝備之操作模式及/或功能。此等單點手勢/多點手勢可對應於映射至可由該電腦及/或該超音波引擎執行之一或多個預定操作之單點及/或多點觸控事件。醫療人員可藉由在該觸控螢幕顯示器之該表面上之各種手指、手掌及/或觸控筆運動做出此等單點手勢/多點手勢。該多點觸控式LCD觸控螢幕接收該等單點手勢/多點手勢作為使用者輸入,且將該等使用者輸入提供至該電腦,該電腦使用該處理器來執行儲存於該記憶體中之程式指令以至少在某些時間與該超音波引擎相結合而實施與該等單點手勢/多點手勢相關聯之該等預定操作。在該觸控螢幕顯示器之該表面上之此等單點手勢/多點手勢可包含但不限於一點選手勢、一捏縮手勢、一拂動手勢、一旋轉手勢、一雙點選手勢、一展開手勢、一拖動手勢、一按壓手勢、一按壓與拖動手勢及一手掌手勢。與依賴於由機械開關、鍵盤元件或觸控板軌跡球介面操作之眾多控制特徵之現有超音波系統相比較,本發明之較佳實施例採用一單個接通/關斷開關。已使用觸控螢幕控制實施所有其他操作。此外,較佳實施例採用充分靈敏以偵測由使用者之裸露手指以及使用者之戴手套手指致動之觸控手勢之一電容性觸控螢幕顯示器。通常,醫療人員必須在醫療過程期間穿戴無菌塑膠手套。因此,高度期望提供可由戴手套的手使用之一可移動超音波裝置;然而,此先前已阻止將超音波系統中之觸控螢幕顯示器控制功能用於需要無菌預防之諸多應用。本發明之較佳實施例使用經程式化觸控手勢在該觸控螢幕顯示器上提供由戴手套人員對所有超音波成像操作之控制。In an exemplary operating mode, medical personnel may use simple single-point gestures and/or more complex multi-point gestures as user input to the multi-touch LCD touch screen for controlling the exemplary medical ultrasound Operating modes and/or functions of imaging equipment. These single-point gestures/multi-point gestures may correspond to single-point and/or multi-touch events mapped to one or more predetermined operations that may be performed by the computer and/or the ultrasound engine. Medical personnel can make these single-point gestures/multi-point gestures through various finger, palm and/or stylus movements on the surface of the touch screen display. The multi-touch LCD touch screen receives the single-point gestures/multi-point gestures as user inputs and provides the user inputs to the computer, which uses the processor to execute the operations stored in the memory. The program instructions are combined with the ultrasonic engine at least at certain times to perform the predetermined operations associated with the single-point gesture/multi-point gesture. The single-point gestures/multi-point gestures on the surface of the touch screen display may include, but are not limited to, a one-point gesture, a pinch gesture, a flick gesture, a rotation gesture, a double-point gesture, a A spread gesture, a drag gesture, a press gesture, a press and drag gesture, and a palm gesture. In contrast to existing ultrasound systems that rely on numerous control features operated by mechanical switches, keyboard elements, or trackball trackball interfaces, the preferred embodiment of the present invention utilizes a single on/off switch. All other operations have been performed using touch screen controls. Additionally, preferred embodiments employ a capacitive touch screen display that is sufficiently sensitive to detect touch gestures actuated by the user's bare fingers as well as the user's gloved fingers. Typically, medical personnel must wear sterile plastic gloves during medical procedures. Therefore, it is highly desirable to provide a removable ultrasound device that can be used by gloved hands; however, this has previously prevented the use of touch screen display control functionality in ultrasound systems for many applications requiring sterility precautions. Preferred embodiments of the present invention provide gloved human control of all ultrasound imaging operations on the touch screen display using programmed touch gestures.

根據一例示性態樣,可採用至少一個拂動手勢來控制由超音波探針/換能器產生之超音波之組織穿透深度。舉例而言,該觸控螢幕顯示器表面上之在「向上」方向上之一單個拂動手勢可使穿透深度增大一(1)公分或任何其他適合的量,且該觸控螢幕顯示器表面上之在「向下」方向上之一單個拂動手勢可使穿透深度減小一(1)公分或任何其他適合的量。此外,在該觸控螢幕顯示器表面上之在「向上」或「向下」方向上之一拖動手勢可使穿透深度增大或減小一(1)公分或任何其他適合的量之倍數。受該觸控螢幕顯示器表面上之特定單點手勢/多點手勢控制之額外操作模式及/或功能控制可包含但不限於凍結/儲存操作、二維模式操作、增益控制、色彩控制、分割螢幕控制、PW成像控制、畫面/時間序列影像剪輯捲動控制、縮放與平移控制、全螢幕控制、都卜勒與二維波束操縱控制及/或主體標記控制。該例示性醫療超音波成像裝備之操作模式及/或功能中之至少某些操作模式及/或功能可受在該觸控螢幕顯示器上實施之一或多個觸控控制控制,其中可藉由使觸控手勢移動而重設波束成形參數。醫療人員可提供一或多個特定單點手勢/多點手勢作為使用者輸入以用於規定待視要求及/或視需要在該觸控螢幕顯示器上實施之該等觸控控制之至少一個選定子組。當幾個或更多個虛擬按鈕或圖標加以利用時,當在全螢幕模式中操作時較大數目個觸控螢幕控制達成較大功能性。According to an illustrative aspect, at least one flicking gesture may be employed to control the tissue penetration depth of ultrasound waves generated by the ultrasound probe/transducer. For example, a single flick gesture in the "up" direction on the touch screen display surface can increase the penetration depth by one (1) centimeter or any other suitable amount, and the touch screen display surface A single flick gesture in the "down" direction may reduce the penetration depth by one (1) centimeter or any other suitable amount. Additionally, a dragging gesture in the "up" or "down" direction on the touch screen display surface may increase or decrease the penetration depth by a multiple of one (1) centimeter or any other suitable amount . Additional operating modes and/or functional controls controlled by specific single-point gestures/multi-point gestures on the surface of the touch screen display may include but are not limited to freeze/save operations, 2D mode operations, gain control, color control, split screen control, PW imaging control, frame/time sequence image editing scroll control, zoom and pan control, full screen control, Doppler and 2D beam steering control and/or subject mark control. At least some of the operating modes and/or functions of the exemplary medical ultrasound imaging device may be controlled by one or more touch controls implemented on the touch screen display, which may be controlled by Move the touch gesture to reset the beamforming parameters. The medical personnel may provide one or more specific single-point gestures/multi-point gestures as user input for specifying viewing requirements and/or at least one selection of the touch controls implemented on the touch screen display as needed. Subgroup. When several or more virtual buttons or icons are utilized, a larger number of touch screen controls achieve greater functionality when operating in full screen mode.

根據另一例示性態樣,可在該觸控螢幕顯示器之一區內採用一按壓手勢,且回應於該按壓手勢,可在該觸控螢幕顯示器上提供一虛擬視窗以用於顯示在該觸控螢幕顯示器上顯示之一超音波影像之至少一被擴大部分。根據又一例示性態樣,可在該觸控螢幕顯示器之該區內側採用一按壓與拖動手勢,且回應於該按壓與拖動手勢,可描摹該超音波影像之一預定特徵。此外,可在該觸控螢幕顯示器之該區內側與該按壓與拖動手勢之一部分實質上同時地採用一點選手勢,且回應於該點選手勢,可完成該超音波影像之該預定特徵之該描摹。此等操作可在一單個顯示格式之不同區中操作,使得該影像內之一所關注區內之一移動手勢(舉例而言)可執行與在影像內但在所關注區之外執行之相同手勢不同之一功能。According to another illustrative aspect, a press gesture may be employed within a region of the touch screen display, and in response to the press gesture, a virtual window may be provided on the touch screen display for display on the touch screen display. At least one enlarged portion of an ultrasound image displayed on the control screen display. According to yet another illustrative aspect, a press and drag gesture can be employed within the area of the touch screen display, and in response to the press and drag gesture, a predetermined feature of the ultrasound image can be traced. Additionally, a point gesture can be employed substantially simultaneously with a portion of the press and drag gesture within the area of the touch screen display, and in response to the point gesture, the predetermined characteristics of the ultrasound image can be accomplished The tracing. These operations can operate in different areas of a single display format, so that a movement gesture within an area of interest within the image can (for example) perform the same as if it were performed within the image but outside the area of interest. Gestures have different functions.

藉由提供具有一多點觸控式觸控螢幕之醫療超音波成像裝備,醫療人員可在不需要一傳統鍵盤或旋鈕之情況下使用簡單單點手勢及/或更複雜多點手勢控制該裝備。由於該多點觸控式觸控螢幕不需要一傳統鍵盤或旋鈕,因此此醫療超音波成像裝備更容易在醫院及/或現場環境中保持清潔,提供一直觀使用者親和性介面,同時提供完全功能性操作。此外,藉由以一平板電腦外觀尺寸提供此醫療超音波成像裝備,醫療人員可容易地在醫院及/或現場位置之間運輸該裝備。By providing medical ultrasound imaging equipment with a multi-touch touch screen, medical personnel can control the equipment using simple single-point gestures and/or complex multi-point gestures without the need for a traditional keyboard or knobs. . Since the multi-touch touch screen does not require a traditional keyboard or knob, the medical ultrasound imaging equipment is easier to keep clean in the hospital and/or field environment, provides an intuitive user-friendly interface, and provides complete Functional operation. Additionally, by providing the medical ultrasound imaging device in a tablet form factor, medical personnel can easily transport the device between hospitals and/or field locations.

某些例示性實施例為一可移動醫療超音波成像系統之一超音波引擎提供一多晶片模組,其中一傳輸/接收(TR)晶片、一前置放大器/時間增益補償(TGC)晶片及一波束成形器晶片裝配於一垂直堆疊組態中。該傳輸電路將高電壓電驅動脈衝提供至該等換能器元件以產生一傳輸波束。當該傳輸晶片以大於80V之電壓操作時,利用一1微米設計規則之一CMOS程序已用於傳輸晶片且次微米設計規則已用於低電壓接收電路(小於5V)。Certain exemplary embodiments provide a multi-chip module for an ultrasound engine of a mobile medical ultrasound imaging system, including a transmit/receive (TR) chip, a preamplifier/time gain compensation (TGC) chip, and A beamformer die is assembled in a vertical stack configuration. The transmission circuit provides high voltage electrical drive pulses to the transducer elements to generate a transmission beam. A CMOS program using a 1 micron design rule has been used for the transmission chip and sub-micron design rules have been used for low voltage receiver circuits (less than 5V) when the transmission chip operates at voltages greater than 80V.

本發明之較佳實施例利用次微米程序來提供具有以複數個電壓(舉例而言,2.5V、5V及60V或較高)操作之子電路之積體電路。根據本發明之某些較佳實施例,此等特徵可與一雙平面換能器探針相結合使用。Preferred embodiments of the present invention utilize sub-micron processes to provide integrated circuits with sub-circuits operating at a plurality of voltages (eg, 2.5V, 5V, and 60V or higher). According to certain preferred embodiments of the present invention, these features may be used in conjunction with a dual planar transducer probe.

因此,可利用在一單個晶片中併入有高電壓傳輸、低電壓放大器/TGC及低電壓波束成形電路之一單個IC晶片。使用一0.25微米設計規則,此混合信號電路可在小於0.7×0.7 (0.49) cm2 一晶片面積中容納32個換能器通道之波束成形。因此,可在小於1.5×1.5 (2.25) cm2 之一電路板總面積中使用四個32通道晶片來處理128個通道。Therefore, a single IC chip can be utilized that incorporates high voltage transmission, low voltage amplifier/TGC, and low voltage beamforming circuitry in a single chip. Using a 0.25 micron design rule, this mixed-signal circuit can accommodate beamforming of 32 transducer channels in a die area of less than 0.7 × 0.7 (0.49) cm 2 . Therefore, four 32-channel dies can be used to process 128 channels in a total circuit board area of less than 1.5 × 1.5 (2.25) cm.

如本文中所使用,術語「多晶片模組」係指一電子封裝,其中多個積體電路(IC)與一個一體化基板封裝在一起,從而促進其用作一單個組件,亦即,用作為在一更小體積中之一較高處理容量IC封裝。每一IC可包括在一薄化半導體晶圓中製作之一電路。例示性實施例亦提供:一超音波引擎,其包含一或多個此等多晶片模組;及一可移動醫療超音波成像系統,其包含具有一或多個多晶片模組之一超音波引擎電路板。例示性實施例亦提供用於製作及裝配多晶片模組之方法,如本文中所教示。將該TR晶片、該前置放大器/TGC晶片及該波束成形器晶片垂直地堆疊於一電路板上會最小化封裝大小(例如,長度及寬度)及由電路板上之晶片佔據之佔用面積。As used herein, the term "multi-chip module" refers to an electronic package in which multiple integrated circuits (ICs) are packaged together with an integrated substrate to facilitate their use as a single component, that is, with As one of the higher processing capacity IC packages in a smaller volume. Each IC may include a circuit fabricated in a thinned semiconductor wafer. Exemplary embodiments also provide: an ultrasound engine including one or more such multi-chip modules; and a mobile medical ultrasound imaging system including an ultrasound having one or more multi-chip modules Engine circuit board. Exemplary embodiments also provide methods for fabricating and assembling multi-chip modules, as taught herein. Vertically stacking the TR chip, the preamplifier/TGC chip, and the beamformer chip on a circuit board minimizes package size (eg, length and width) and the footprint occupied by the chips on the circuit board.

在一多晶片模組中之該TR晶片、該前置放大器/TGC晶片及該波束成形器晶片可各自包含多個通道(舉例而言,8個通道/晶片至64個通道/晶片)。在一些實施例中,該高電壓TR晶片、該前置放大器/TGC晶片及該樣本內插接收波束成形器晶片可各自包含8個、16個、32個、64個通道。在一較佳實施例中,一兩層波束成形器模組中之每一電路具有32個波束成形器接收通道以提供一64通道接收波束成形器。一第二64通道兩層模組可用於形成具有小於2cm之一總厚度之一128通道手持式平板式超音波裝置。亦可使用在每一層中具有相同或類似通道密度之一傳輸多晶片波束成形器。The TR chip, the preamplifier/TGC chip, and the beamformer chip in a multi-chip module may each include multiple channels (eg, 8 channels/chip to 64 channels/chip). In some embodiments, the high voltage TR chip, the preamplifier/TGC chip, and the sample interpolation receive beamformer chip may each include 8, 16, 32, or 64 channels. In a preferred embodiment, each circuit in a two-layer beamformer module has 32 beamformer receive channels to provide a 64-channel receive beamformer. A second 64-channel two-layer module may be used to form a 128-channel handheld flat-panel ultrasound device with a total thickness of less than 2 cm. One can also use a transmit multi-chip beamformer with the same or similar channel density in each layer.

垂直地整合於一多晶片模組中之晶片之例示性數目可包含但不限於二、三、四、五、六、七、八等。在一超音波裝置之一項實施例中,在執行超音波特定操作之一超音波引擎之一電路板上提供一單個多晶片模組。在其他實施例中,在一超音波引擎之一電路板上提供複數個多晶片模組。該複數個多晶片模組可彼此垂直堆疊於該超音波引擎之該電路板上以進一步最小化該封裝大小及該電路板之該佔用面積。Exemplary numbers of chips vertically integrated in a multi-chip module may include, but are not limited to, two, three, four, five, six, seven, eight, etc. In one embodiment of an ultrasound device, a single multi-chip module is provided on a circuit board of an ultrasound engine that performs ultrasound specific operations. In other embodiments, a plurality of multi-chip modules are provided on a circuit board of an ultrasonic engine. The plurality of multi-chip modules can be vertically stacked on each other on the circuit board of the ultrasonic engine to further minimize the package size and the occupied area of the circuit board.

在一超音波引擎之一電路板上提供一或多個多晶片模組實現一高通道計數同時將總封裝大小及佔用面積最小化。舉例而言,可使用多晶片模組將一128通道型超音波引擎電路板裝配於約10 cm×約10 cm之例示性平面尺寸內,此係優於習用超音波電路之較大空間要求之一顯著改良。在某些實施例中,一超音波引擎的包含一或多個多晶片模組之一單個電路板可具有16至128個通道。在一些實施例中,一超音波引擎的包含一或多個多晶片模組之一單個電路板可具有16個、32個、64個、128個或192個通道等。Providing one or more multi-chip modules on a circuit board of an ultrasonic engine enables a high channel count while minimizing total package size and footprint. For example, a 128-channel ultrasonic engine circuit board can be assembled using a multi-chip module within an exemplary planar size of approximately 10 cm x approximately 10 cm, which is superior to the larger space requirements of conventional ultrasonic circuits. A significant improvement. In some embodiments, a single circuit board containing one or more multi-chip modules may have 16 to 128 channels for an ultrasound engine. In some embodiments, a single circuit board containing one or more multi-chip modules for an ultrasound engine may have 16, 32, 64, 128, or 192 channels, etc.

平板式超音波系統之較佳實施例利用一圖形處理器,該圖形處理器經組態以使用所獲取影像來執行機器學習操作以執行自動化影像處理及實時成像過程之引導。可對主系統處理器及圖形處理器執行此機器學習操作,其中自動化計算技術利用反覆程序,在反覆程序中一選定度量收斂至一所儲存參考位準或等級以界定用於診斷之一組影像或所計算值。Preferred embodiments of the flat-panel ultrasound system utilize a graphics processor configured to perform machine learning operations using acquired images to perform automated image processing and guidance of real-time imaging procedures. This machine learning operation can be performed on the main system processor and graphics processor, where automated computing techniques utilize an iterative process in which a selected metric converges to a stored reference level or level to define a set of images for diagnosis. or calculated value.

相關申請案之交叉參考 本申請案主張2019年3月15日提出申請之美國臨時申請案第62/819,276號之優先權,主張2019年4月5日提出申請之美國臨時申請案第62/830,200號之優先權,且主張2018年5月17日提出申請之美國臨時申請案第62/673,020號之優先權。上述所有申請案之全部內容併入本案供參考。Cross-references to related applications This application claims the priority of U.S. Provisional Application No. 62/819,276 filed on March 15, 2019, and claims the priority of U.S. Provisional Application No. 62/830,200 filed on April 5, 2019, and Claiming priority over U.S. Provisional Application No. 62/673,020 filed on May 17, 2018. The entire contents of all the above applications are incorporated into this case for reference.

揭示醫療超音波成像之系統及方法。當前所揭示之醫療超音波成像系統及方法採用醫療超音波成像裝備,該醫療超音波成像裝備包含:殼體,其呈一平板電腦外觀尺寸;及一觸控螢幕顯示器,其安置於該殼體之一前面板上。該觸控螢幕顯示器包含一多點觸控式觸控螢幕,該多點觸控式觸控螢幕可辨識到並區分觸控螢幕顯示器之一表面上之一或多個單點觸控、多點觸控及/或同時觸控,藉此允許將範圍介於自簡單單點手勢至複雜多點手勢之手勢作為使用者輸入用於醫療超音波成像裝備。2004年11月11日提出申請之美國申請案第10/997,062號、2003年3月11日提出申請之美國申請案第10/386,360號以及美國專利第6,969,352號中闡述了關於平板式超音波系統及操作之進一步細節,此等專利及申請案之全部內容併入本案供參考。Systems and methods for medical ultrasound imaging are disclosed. The currently disclosed medical ultrasound imaging system and method adopt medical ultrasound imaging equipment. The medical ultrasound imaging equipment includes: a casing, which has the appearance size of a tablet computer; and a touch screen display, which is placed in the casing. one on the front panel. The touch screen display includes a multi-touch touch screen that can recognize and distinguish one or more single-touch, multi-touch touches on a surface of the touch screen display. Touch and/or simultaneous touch, thereby allowing gestures ranging from simple single-point gestures to complex multi-point gestures to be used as user input for medical ultrasound imaging equipment. U.S. Application No. 10/997,062 filed on November 11, 2004, U.S. Application No. 10/386,360 filed on March 11, 2003, and U.S. Patent No. 6,969,352 describe flat-panel ultrasound systems. and further details of operation, the entire contents of these patents and applications are incorporated herein for reference.

圖1A及圖1B繪示根據本申請案之例示性醫療超音波成像裝備10、100之說明性實施例。如圖1A中所展示,醫療超音波成像裝備100包含:一殼體102;一觸控螢幕顯示器104;一電腦,其具有實施於一電腦主機板106上之至少一個處理器及至少一個記憶體;一超音波引擎108;及一電池110。舉例而言,殼體102可實施成一平板電腦外觀尺寸,或任何其他適合之外觀尺寸。殼體102具有一前面板101及一後面板103。觸控螢幕顯示器104安置於殼體102之前面板101上,且包含一多點觸控式LCD觸控螢幕,該多點觸控式LCD觸控螢幕可辨識並區分觸控螢幕顯示器104之一表面105上之一或多個多點觸控及/或同時觸控。電腦主機板106、超音波引擎108及電池110操作地安置於殼體102內。醫療超音波成像裝備100進一步包含:一火線連接112 (亦參見圖2A),其操作地連接於殼體102內之電腦主機板106與超音波引擎108之間;及一探針連接器114,其具有便於連接至少一個超音波探針/換能器之一探針附接/拆卸桿115 (亦參見圖2A及圖2B)。在某些較佳實施例中,換能器探針殼體可包含若干電路組件,該等電路組件包含一換能器陣列、傳輸與接收電路系統以及波束成形器及波束成形器控制電路。另外,醫療超音波成像裝備100具有一或多個I/O埠連接器116 (參見圖2A),I/O埠連接器116可包含但不限於一或多個USB連接器、一或多個SD卡、一或多個網路埠、一或多個迷你顯示器埠及一DC電力輸入。圖1B中所展示之又一實施例採用重量小於15磅之一電池供電型手提式系統,該電池供電型手提式系統具有一摺疊式顯示器12及一鍵盤控制面板14,鍵盤控制面板14具有一鍵盤18及一手柄16。1A and 1B illustrate illustrative embodiments of exemplary medical ultrasound imaging equipment 10, 100 in accordance with the present application. As shown in Figure 1A, medical ultrasound imaging equipment 100 includes: a housing 102; a touch screen display 104; a computer having at least one processor and at least one memory implemented on a computer motherboard 106 ; An ultrasonic engine 108; and a battery 110. For example, the housing 102 may be implemented in the form of a tablet computer, or any other suitable form factor. The housing 102 has a front panel 101 and a rear panel 103 . The touch screen display 104 is disposed on the front panel 101 of the housing 102 and includes a multi-touch LCD touch screen that can recognize and distinguish one surface of the touch screen display 104 One or more multi-touch and/or simultaneous touches on 105. The computer motherboard 106, the ultrasonic engine 108 and the battery 110 are operationally placed in the housing 102. The medical ultrasound imaging equipment 100 further includes: a live wire connection 112 (see also Figure 2A) operatively connected between the computer motherboard 106 and the ultrasound engine 108 within the housing 102; and a probe connector 114. It has a probe attachment/detachment lever 115 that facilitates connection of at least one ultrasound probe/transducer (see also Figures 2A and 2B). In certain preferred embodiments, the transducer probe housing may contain circuit components including a transducer array, transmit and receive circuitry, and beamformer and beamformer control circuitry. In addition, the medical ultrasound imaging equipment 100 has one or more I/O port connectors 116 (see FIG. 2A ). The I/O port connectors 116 may include, but are not limited to, one or more USB connectors, one or more SD card, one or more network ports, one or more mini display ports, and a DC power input. Another embodiment shown in Figure 1B uses a battery-powered portable system weighing less than 15 pounds. The battery-powered portable system has a folding display 12 and a keyboard control panel 14 with a Keyboard 18 and a handle 16.

在一例示性操作模式中,醫療人員(在本文中亦被稱為「使用者」或「使用者們」)可採用簡單單點手勢及/或更複雜多點手勢來作為使用者輸入而輸入至控螢幕顯示器104之多點觸控式LCD觸控螢幕,以控制醫療超音波成像裝備100之一或多個操作模式及/或功能。此一手勢在本文中被定義為至少一個手指、一觸控筆及/或一手掌在觸控螢幕顯示器104之表面105上之一移動、一敲擊或一位置。舉例而言,此種單點手勢/多點手勢可包含靜態手勢或動態手勢、連續手勢或分段式手勢及/或任何其他適合手勢。本文中將一單點手勢定義為可利用一根手指、一觸控筆或一手掌在觸控螢幕顯示器104上之一單個觸控接觸點來執行之一手勢。本文中將一多點手勢定義為可利用多個手指或至少一個手指、觸控筆及一手掌之任何適合組合在觸控螢幕顯示器104上之多個觸控接觸點來執行之一手勢。本文中將一靜態手勢定義為不涉及至少一個手指、一觸控筆或一手掌在觸控螢幕顯示器104之表面105上之移動的一手勢。本文中將一動態手勢定義為涉及至少一個手指、一觸控筆或一手掌之移動(諸如,跨越觸控螢幕顯示器104之表面105拖動一或多個手指所致之移動)的一手勢。本文中將一連續手勢定義為可通過至少一個手指、一觸控筆或一手掌在觸控螢幕顯示器104之表面105上進行一單次移動或敲擊來執行之一手勢。本文中將一分段式手勢定義為可通過至少一個手指、一觸控筆或一手掌在觸控螢幕顯示器104之表面105上進行多次移動或敲擊來執行之一手勢。In an exemplary mode of operation, medical personnel (also referred to herein as "users" or "users") may enter as user input using simple single-point gestures and/or complex multi-point gestures. The multi-touch LCD touch screen of the screen display 104 is used to control one or more operating modes and/or functions of the medical ultrasound imaging equipment 100 . Such a gesture is defined herein as a movement, a tap, or a position of at least one finger, a stylus, and/or a palm on the surface 105 of the touch screen display 104. For example, such single-point gestures/multi-point gestures may include static gestures or dynamic gestures, continuous gestures or segmented gestures, and/or any other suitable gestures. A single-point gesture is defined herein as a gesture that can be performed using a finger, a stylus, or a palm on a single point of touch contact on the touch screen display 104 . A multi-point gesture is defined herein as a gesture that can be performed using multiple touch points of contact on the touch screen display 104 using multiple fingers or any suitable combination of at least one finger, a stylus, and a palm. A static gesture is defined herein as a gesture that does not involve the movement of at least one finger, a stylus, or a palm on the surface 105 of the touch screen display 104 . A dynamic gesture is defined herein as a gesture involving the movement of at least one finger, a stylus, or a palm, such as movement resulting from dragging one or more fingers across the surface 105 of the touch screen display 104 . A continuous gesture is defined herein as one that can be performed by a single movement or tap of at least one finger, a stylus, or a palm on the surface 105 of the touch screen display 104. A segmented gesture is defined herein as one that can be performed by multiple movements or taps of at least one finger, a stylus, or a palm on the surface 105 of the touch screen display 104 .

在觸控螢幕顯示器104之表面105上執行之此等單點手勢/多點手勢可對應於單點或多點觸控事件,該等觸控事件映射至可由電腦及/或超音波引擎108執行之一或多個預定操作。使用者可藉由單手指、多手指、觸控筆及/或手掌在觸控螢幕顯示器104之表面105上之各種運動來形成此等單點手勢/多點手勢。多點觸控式LCD觸控螢幕接收單點手勢/多點手勢作為使用者輸入,且將使用者輸入提供至處理器,該處理器至少有時與超音波引擎108相結合地執行記憶體中所儲存之程式指令以實施與該等單點手勢/多點手勢相關聯之預定操作。如圖3A中所展示,觸控螢幕顯示器104之表面105上之此等單點手勢/多點手勢可包含但不限於:一點選手勢302、一捏縮手勢304、一拂動手勢306、314、一旋轉手勢308、316、一雙點選手勢310、一展開手勢312、一拖動手勢318、一按壓手勢320、一按壓與拖動手勢322及/或一手掌手勢324。舉例而言,此等單點手勢/多點手勢可儲存於在電腦主機板106上實施之記憶體中之至少一個手勢庫中。對系統操作進行操作控制之電腦程式可儲存於一電腦可讀媒體上,且可視情況使用連接至一影像處理器之一觸控處理器及連接至系統波束成形器之一控制處理器來實施。因此,可回應於靜態觸控手勢及移動觸控手勢兩者而調整與傳輸及接收兩者相關聯之波束成形器延遲。Such single/multi-point gestures performed on the surface 105 of the touch screen display 104 may correspond to single or multi-touch events, which are mapped to executable signals that may be executed by the computer and/or ultrasound engine 108 One or more scheduled operations. The user can form these single-point gestures/multi-point gestures through various movements of a single finger, multiple fingers, a stylus and/or a palm on the surface 105 of the touch screen display 104 . The multi-touch LCD touch screen receives single-point gestures/multi-point gestures as user input and provides the user input to a processor that executes in memory at least sometimes in conjunction with the ultrasonic engine 108 The stored program instructions are used to implement the predetermined operations associated with the single-point gestures/multi-point gestures. As shown in FIG. 3A , these single-point gestures/multi-point gestures on the surface 105 of the touch screen display 104 may include, but are not limited to: one-point swipe gesture 302 , a pinch gesture 304 , and a flick gesture 306 , 314 , a rotation gesture 308, 316, a pair of tap gestures 310, a spread gesture 312, a drag gesture 318, a press gesture 320, a press and drag gesture 322 and/or a palm gesture 324. For example, these single-point gestures/multi-point gestures may be stored in at least one gesture library in a memory implemented on the computer motherboard 106 . Computer programs for operational control of system operations may be stored on a computer-readable medium and optionally implemented using a touch processor connected to an image processor and a control processor connected to the system beamformer. Thus, beamformer delays associated with both transmission and reception can be adjusted in response to both static and moving touch gestures.

根據圖1A之說明性實施例,醫療超音波成像裝備100之一使用者可採用至少一個拂動手勢306或314以控制由超音波探針/換能器產生之超音波之組織穿透深度。舉例而言,在觸控螢幕顯示器104之表面105上沿「向上」方向或任何其他適合方向之一動態、連續拂動手勢306或314可將穿透深度增大一(1)公分或任何其他適合的量。此外,在觸控螢幕顯示器104之表面105上沿「向下」方向或任何其他適合方向之一動態、連續拂動手勢306或314可將穿透深度減小一(1)公分或任何其他適合的量。此外,在觸控螢幕顯示器104之表面105上沿「向上」或「向下」方向或任何其他適合方向之一動態、連續拖動手勢318可將穿透深度增大或減小幾公分或任何其他適合的量。According to the illustrative embodiment of FIG. 1A , a user of medical ultrasound imaging apparatus 100 may employ at least one flick gesture 306 or 314 to control the tissue penetration depth of ultrasound waves generated by the ultrasound probe/transducer. For example, a dynamic, continuous flick gesture 306 or 314 in one of the "upward" directions or any other suitable direction on the surface 105 of the touch screen display 104 may increase the penetration depth by one (1) centimeter or any other Suitable amount. Additionally, a dynamic, continuous flick gesture 306 or 314 on the surface 105 of the touch screen display 104 in a "down" direction or any other suitable direction may reduce the penetration depth by one (1) centimeter or any other suitable direction. amount. Additionally, a dynamic, continuous drag gesture 318 on the surface 105 of the touch screen display 104 in one of the "up" or "down" directions, or any other suitable direction, can increase or decrease the penetration depth by a few centimeters or whatever. Other suitable amounts.

通過在觸控螢幕顯示器104之表面105上之特定單點手勢/多點手勢控制之額外操作模式及/或功能可包含但不限於凍結/儲存操作、二維模式操作、增益控制、色彩控制、分割螢幕控制、PW成像控制、畫面/時間序列影像剪輯捲動控制、縮放與平移控制、全螢幕顯示、都卜勒與二維波束操縱控制、及/或主體標記控制。可藉由在觸控螢幕顯示器104上實施之一或多個觸控控制來控制醫療超音波成像裝備100之操作模式及/或功能中之至少某些操作模式及/或功能。此外,使用者可提供一或多個特定單點手勢/多點手勢作為使用者輸入以規定將視要求及/或視需要在觸控螢幕顯示器104上實施之觸控控制之至少一個選定子組。Additional operating modes and/or functions controlled by specific single-point gestures/multi-point gestures on the surface 105 of the touch screen display 104 may include, but are not limited to, freeze/save operations, 2D mode operations, gain control, color control, Split screen control, PW imaging control, frame/time sequence image editing scroll control, zoom and pan control, full screen display, Doppler and 2D beam steering control, and/or subject mark control. At least some of the operating modes and/or functions of medical ultrasound imaging equipment 100 may be controlled by implementing one or more touch controls on touch screen display 104 . Additionally, the user may provide one or more specific single-point gestures/multi-point gestures as user input to specify at least a selected subset of touch controls to be implemented on the touch screen display 104 as desired and/or as needed. .

圖3B中展示回應於在一觸控螢幕上輸入之觸控手勢控制超音波波束成形及成像操作340之一程序序列。已將各種靜態觸控手勢及移動觸控手勢程式化至系統中,以使得資料處理器可操作以控制平板電腦裝置內之波束成形及影像處理操作342。一使用者可選擇344與第一複數個觸控手勢相關聯之一第一顯示操作。使用一靜態或移動手勢,使用者可執行可操作以控制成像操作之該複數個手勢中之一者且可特別選擇可調整波束成形參數346之複數個手勢中之一者,波束成形參數用於產生與第一顯示操作相關聯之影像資料。回應於已更新之波束成形過程而更新並顯示所顯示之影像。使用者可進一步選擇執行具有一不同速度特性(方向或速率或這兩者)之一不同手勢以調整350第一超音波顯示操作之一第二特性。然後,基於第二手勢更新352所顯示影像,此可修改成像處理參數或波束成形參數。本文中更詳細地闡述此程序之實例,其中不同手勢在速度及方向上之改變可與一選定顯示操作之不同成像參數相關聯。Figure 3B shows a sequence of procedures for controlling ultrasound beamforming and imaging operations 340 in response to touch gesture input on a touch screen. Various static touch gestures and mobile touch gestures are programmed into the system such that the data processor is operable to control beamforming and image processing operations 342 within the tablet device. A user may select 344 a first display operation associated with a first plurality of touch gestures. Using a static or moving gesture, the user may perform one of the plurality of gestures operable to control imaging operations and may specifically select one of the plurality of gestures that may adjust the beamforming parameters 346 for Image data associated with the first display operation is generated. The displayed image is updated and displayed in response to the updated beamforming process. The user may further choose to perform a different gesture with a different speed characteristic (direction or velocity or both) to adjust 350 a second characteristic of the first ultrasound display operation. The displayed image is then updated 352 based on the second gesture, which may modify imaging processing parameters or beamforming parameters. Examples of this process are described in more detail herein, where changes in speed and direction of different gestures can be associated with different imaging parameters of a selected display operation.

血流移動或組織移動之超音波影像,無論是彩色血流都卜勒還是頻譜都卜勒,本質上皆係自對移動之量測而獲得。在超音波掃描儀中,傳輸一系列脈衝以偵測血液移動。在不同脈衝之間,來自靜止目標之回波係相同的。來自移動散射體之回波在信號傳回至掃描儀之時間上展現出細微差異。Ultrasound images of blood flow movement or tissue movement, whether color blood flow Doppler or spectral Doppler, are essentially obtained from the measurement of movement. In an ultrasound scanner, a series of pulses are transmitted to detect blood movement. The echoes from stationary targets are identical between pulses. Echoes from moving scatterers exhibit subtle differences in the time it takes for the signal to travel back to the scanner.

如可自圖3C至圖3H看到,在波束方向上必須存在運動;若血流垂直於波束,則脈衝與脈衝接收之間不存在相對運動,因此無法偵測到血流。可以一直接時間差異之形式或更通常鑒於獲得「都卜勒頻率」之一相移來量測此等差異。然後,對該等差異進行處理以產生一彩色血流顯像或一都卜勒聲譜圖。在圖3C至圖3D中,血流方向垂直於波束方向,脈衝波頻譜都卜勒未量測到血流。在圖3G至圖3H中,當將超音波波束操縱至與血流更好地對準之一角度時,彩色血流圖中展示出微弱的血流,且另外脈衝波都卜勒量測到血流。在圖3H中,當回應於一移動而將超音波波束操縱至與血流方向更對準之一角度時,彩色血流圖更清晰,另外當PWD之校正角度放置為與血流對準時,PWD量測到強血流。As can be seen from Figure 3C to Figure 3H, there must be motion in the direction of the beam; if the blood flow is perpendicular to the beam, there is no relative motion between the pulse and the pulse reception, so the blood flow cannot be detected. These differences can be measured as a direct time difference or more commonly as a phase shift in terms of obtaining a "Doppler frequency". The differences are then processed to produce a color flow image or a Doppler spectrogram. In Figures 3C to 3D, the blood flow direction is perpendicular to the beam direction, and no blood flow is measured by Doppler of the pulse wave spectrum. In Figures 3G to 3H, when the ultrasound beam is steered to an angle that better aligns with the blood flow, weak blood flow is demonstrated in the color blood flow map and additionally measured by pulse wave Doppler Blood flow. In Figure 3H, the color blood flow map is clearer when the ultrasound beam is steered to an angle more aligned with the blood flow direction in response to a movement, and when the correction angle of the PWD is placed to align with the blood flow direction, PWD measured strong blood flow.

在此平板式超音波系統中,亦使用一ROI (所關注區)來回應於一移動手勢而界定超音波傳輸波束之方向。由於ROI直接來自換能器,圖3I中以彩色血流模式展示具有腎臟血流之一分支之一肝臟影像,血流方向幾乎法向於超音波波束,因此偵測到極微弱之腎臟血流。因此,彩色血流模式用於對肝臟中之一腎臟血流進行成像。如可看到,波束幾乎法向於血流,且偵測到極微弱之血流。使用手指在ROI之外的情況下做出之一拂動手勢來操縱波束。在圖3J中可看到,藉由重設波束成形參數來操縱ROI,使得波束方向與血流方向更對準,在ROI內偵測到更強之血流。在圖3J中,使用手指在ROI之外的情況下做出之一拂動手勢來將超音波波束操縱至與血流方向更對準之方向上。在ROI內可看到更強之血流。手指在ROI內之情況下做出之一平移手勢將移動ROI方塊至覆蓋整個腎臟區之一位置中,亦即平移允許ROI方塊進行一平移移動,使得方塊覆蓋目標區域。In this flat-panel ultrasound system, a ROI (Region of Interest) is also used to define the direction of the ultrasound transmission beam in response to a moving gesture. Since the ROI comes directly from the transducer, Figure 3I shows a liver image with a branch of renal blood flow in color blood flow mode. The blood flow direction is almost normal to the ultrasound beam, so extremely weak renal blood flow is detected. . Therefore, color flow mode is used to image blood flow in the liver or kidneys. As can be seen, the beam is almost normal to the blood flow and very weak blood flow is detected. Use a flick gesture with your finger outside the ROI to steer the beam. As can be seen in Figure 3J, by resetting the beamforming parameters to manipulate the ROI, the beam direction is more aligned with the blood flow direction, and stronger blood flow is detected in the ROI. In Figure 3J, a flicking gesture with a finger outside the ROI is used to steer the ultrasound beam in a direction more aligned with the direction of blood flow. Stronger blood flow can be seen within the ROI. A panning gesture made with the finger within the ROI will move the ROI block to a position covering the entire kidney area, that is, panning allows the ROI block to perform a translational movement so that the block covers the target area.

圖3K說明一平移手勢。手指在ROI內可將ROI方塊移動至影像平面內之任何地方。在以上實施例中,容易區別開如下兩種情況:一手指在一「ROI」方塊之外的情況下做出之一「拂動」手勢旨在操縱一波束;及一手指在「ROI」內之情況下做出之一「拖動與移動、平移」手勢旨在移動ROI方塊。然而,在一些應用中,不存在ROI作為一參考區,則容易瞭解到,難以將一「拂動」或一「平移」手勢區別開,在此種情形中,觸控螢幕程式需要追蹤手指之初始速度或加速度以判定其是一「拂動」手勢還是或一「拖動與移動」手勢。因此,自觸控螢幕感測器裝置接收資料之觸控引擎經程式化以在指示不同手勢之速度臨限值之間加以辨別。因此,與不同移動手勢相關聯之時間、速率及方向可具有預設臨限值。兩個及三個手指靜態手勢及移動手勢可具 有各自的臨限值以區別此等控制操作。注意,預設顯示圖標或虛擬按鈕可具有不同靜態壓力或持續時間臨限值。當在全螢幕模式中操作時,觸控螢幕處理器關斷靜態圖標,該觸控螢幕處理器較佳地在執行其他成像操作(諸如,掃描轉換)之系統中央處理單元上操作。Figure 3K illustrates a pan gesture. By placing your finger within the ROI, you can move the ROI block to anywhere in the image plane. In the above embodiments, it is easy to distinguish the following two situations: a finger outside an "ROI" block making a "flick" gesture intended to control a beam; and a finger within the "ROI" In this case, make one of the "drag and move, pan" gestures to move the ROI box. However, in some applications, there is no ROI as a reference area, and it is easy to understand that it is difficult to distinguish a "flick" or a "pan" gesture. In this case, the touch screen program needs to track the finger. Initial velocity or acceleration to determine if it is a "flick" gesture or a "drag and move" gesture. Therefore, the touch engine that receives data from the touch screen sensor device is programmed to distinguish between speed thresholds indicating different gestures. Therefore, the time, rate, and direction associated with different movement gestures may have preset thresholds. Two- and three-finger static gestures and mobile gestures may have their own thresholds to distinguish these control operations. Note that preset display icons or virtual buttons can have different static pressure or duration thresholds. When operating in full screen mode, static icons are turned off by the touch screen processor, which preferably operates on the system's central processing unit that performs other imaging operations, such as scan conversion.

圖4A至圖4C繪示觸控控制之例示性子組402、404、406,醫療超音波成像裝備100之使用者可在觸控螢幕顯示器104上實施該等觸控控制。注意,可視要求及/或視需要在觸控螢幕顯示器104上實施觸控控制之任何其他適合子組。如圖4A中所展示,子組402包含用於執行二維(2D)模式操作之一觸控控制408、用於執行增益控制操作之一觸控控制410、用於執行色彩控制操作之一觸控控制412及用於執行影像/剪輯、凍結/儲存操作之一觸控控制414。舉例而言,一使用者可採用按壓手勢320來致動觸控控制408,從而使醫療超音波成像裝備100返回至2D模式。此外,使用者可對觸控控制410之一側採用按壓手勢320來減小一增益位準,且對觸控控制410之另一側採用按壓手勢320來增大增益位準。此外,使用者可對觸控控制412採用拖動手勢318以使用一預定色碼來標識一2D影像上之密度範圍。另外,使用者可採用按壓手勢320來致動觸控控制414以凍結/儲存一靜止影像或獲取一畫面影像剪輯。4A-4C illustrate exemplary subsets 402, 404, 406 of touch controls that a user of medical ultrasound imaging apparatus 100 can implement on touch screen display 104. Note that any other suitable subset of touch controls may be implemented on touch screen display 104 as desired and/or as needed. As shown in Figure 4A, subgroup 402 includes a touch control 408 for performing two-dimensional (2D) mode operations, a touch control 410 for performing gain control operations, a touch control for performing color control operations. A touch control 412 and a touch control 414 for performing imaging/editing, freezing/storing operations. For example, a user may use press gesture 320 to actuate touch control 408 to return medical ultrasound imaging equipment 100 to 2D mode. Additionally, the user can use a press gesture 320 on one side of the touch control 410 to decrease a gain level, and use a press gesture 320 on the other side of the touch control 410 to increase the gain level. Additionally, the user can use a drag gesture 318 on the touch control 412 to use a predetermined color code to identify density ranges on a 2D image. In addition, the user can use the press gesture 320 to activate the touch control 414 to freeze/save a still image or obtain a frame image clip.

如圖4B中所展示,子組404包含用於執行分割螢幕控制操作之一觸控控制416、用於執行PW成像控制操作之一觸控控制418、用於執行都卜勒及二維波束操縱控制操作之一觸控控制420及用於執行註解操作之一觸控控制422。舉例而言,一使用者可對觸控控制416採用按壓手勢320,從而允許使用者藉由在分割螢幕之每一側上交替地採用點選手勢302而在分割觸控螢幕顯示器104之相對側上雙態切換。此外,使用者可採用按壓手勢320來致動觸控控制418且進入PW模式,此允許(1)使用者控制角度校正,(2)藉由採用按壓與拖動手勢322來移動(例如,「向上」或「向下」)可顯示於觸控螢幕顯示器104上之一基線,及/或(3)藉由對可顯示於觸控螢幕顯示器104上之一標尺列採用點選手勢302來增大或減小尺度。此外,使用者可對觸控控制420之一側採用按壓手勢320以執行向「左」或向任何其他適合方向以五(5)之增量或任何其他適合增量之2D波束操縱,且對觸控控制420之另一側採用按壓手勢320以執行向「右」或向任何其他適合方向以五個(5)之增量或任何其他適合增量之2D波束操縱。另外,使用者可對觸控控制422採用點選手勢302,從而允許使用者經由可顯示於觸控螢幕顯示器104上之一彈出式鍵盤來輸入註解資訊。As shown in Figure 4B, subgroup 404 includes a touch control 416 for performing split screen control operations, a touch control 418 for performing PW imaging control operations, a touch control 418 for performing Doppler and 2D beam steering A touch control 420 is used to control the operation and a touch control 422 is used to perform the annotation operation. For example, a user may employ a press gesture 320 with the touch control 416, allowing the user to alternately employ a tap gesture 302 on opposite sides of the split touch screen display 104 by alternately employing a tap gesture 302 on each side of the split screen. Upper two-state switching. Additionally, the user can use press gesture 320 to actuate touch control 418 and enter PW mode, which allows (1) the user to control angle correction, (2) move (e.g., " up" or "down") that may be displayed on the touch screen display 104, and/or (3) increase by using a tapping gesture 302 on a ruler bar that may be displayed on the touch screen display 104. Increase or decrease the size. Additionally, the user may employ a press gesture 320 on one side of the touch control 420 to perform 2D beam steering "left" or in any other suitable direction in increments of five (5) or any other suitable increment, and A press gesture 320 is employed on the other side of the touch control 420 to perform 2D beam steering "right" or in any other suitable direction in increments of five (5) or any other suitable increment. Additionally, the user may employ a tapping gesture 302 with the touch control 422, allowing the user to enter annotation information via a pop-up keyboard that may be displayed on the touch screen display 104.

如圖4C中所展示,子組406包含用於執行動態範圍操作之一觸控控制424、用於執行Teravision™軟體操作之一觸控控制426、用於執行映射操作之一觸控控制428及用於執行針引導操作之一觸控控制430。舉例而言,一使用者可對觸控控制424採用按壓手勢320及/或按壓與拖動手勢322以控制或設定動態範圍。此外,使用者可對觸控控制426採用點選手勢302以藉由電腦主機板106上之處理器自記憶體選擇待執行Teravision™軟體之一所要位準。此外,使用者可對觸控控制428採用點選手勢302以執行一所期望映射操作。另外,使用者可對觸控控制430採用按壓手勢320以執行一所期望針引導操作。As shown in Figure 4C, subgroup 406 includes a touch control 424 for performing dynamic range operations, a touch control 426 for performing Teravision™ software operations, a touch control 428 for performing mapping operations, and One touch control 430 for performing needle guidance operations. For example, a user may use press gesture 320 and/or press and drag gesture 322 with touch control 424 to control or set dynamic range. In addition, the user can use a tapping gesture 302 on the touch control 426 to select a desired level of the Teravision™ software to be executed from the memory by the processor on the computer motherboard 106 . Additionally, the user can use a tapping gesture 302 on the touch control 428 to perform a desired mapping operation. Additionally, the user can use press gesture 320 on touch control 430 to perform a desired needle guidance operation.

根據本申請案,可使用觸控螢幕顯示器104之表面105上之單點手勢/多點手勢對物體(諸如器官、組織等)執行作為超音波影像顯示於醫療超音波成像裝備100 (參見圖1)之觸控螢幕顯示器104上的各種量測及/或描摹。使用者可直接基於觸控螢幕顯示器104上之一虛擬視窗506 (參見圖5C及圖5D)內之所顯示物體之一原始超音波影像、基於所顯示物體之超音波影像之一擴大版本及/或基於超音波影像之一被擴大部分來對物體執行此等量測及/或描摹。According to the present application, single-point gestures/multi-point gestures on the surface 105 of the touch screen display 104 can be performed on objects (such as organs, tissues, etc.) as ultrasound images displayed on the medical ultrasound imaging equipment 100 (see Figure 1 ) various measurements and/or tracings on the touch screen display 104. The user can directly create an original ultrasound image based on the displayed object in a virtual window 506 (see FIG. 5C and FIG. 5D ) on the touch screen display 104 , an enlarged version of the ultrasound image based on the displayed object, and/or Or perform such measurements and/or mapping of the object based on an enlarged portion of the ultrasound image.

圖5A及圖5B繪示一例示性物體(亦即,具有一囊性病變504之肝臟502)之一原始超音波影像,該原始超音波影像顯示於醫療超音波成像裝備100 (參見圖1)之觸控螢幕顯示器104上。注意,醫療超音波成像裝備100可回應於由操作連接至裝備100之一超音波探針/換能器產生之超音波穿透肝臟組織而產生此一超音波影像。可直接基於在觸控螢幕顯示器104 (參見圖5A及圖5B)上顯示之原始超音波影像或基於該超音波影像之一擴大版本來對具有囊性病變504之肝臟502執行量測及/或描摹。舉例而言,使用者可藉由如下方式使用一展開手勢(例如,參見圖3之展開手勢312)來獲得超音波影像之此一擴大版本:將兩個(2)手指放置於觸控螢幕顯示器104之表面105上並將其展開以擴大原始超音波影像。亦可基於觸控螢幕顯示器104上之虛擬視窗506 (參見圖5C及圖5D)內之超音波影像之一被擴大部分來對肝臟502及囊性病變504執行此等量測及/或描摹。5A and 5B illustrate a raw ultrasound image of an exemplary object (i.e., a liver 502 having a cystic lesion 504) displayed on a touch screen display 104 of a medical ultrasound imaging device 100 (see FIG. 1 ). Note that the medical ultrasound imaging device 100 may generate such an ultrasound image in response to ultrasound waves penetrating liver tissue generated by an ultrasound probe/transducer operatively connected to the device 100. Measurements and/or delineation of the liver 502 having a cystic lesion 504 may be performed directly based on the raw ultrasound image displayed on the touch screen display 104 (see FIGS. 5A and 5B ) or based on an expanded version of the ultrasound image. For example, the user may obtain such an enlarged version of the ultrasound image by using an expand gesture (e.g., see expand gesture 312 of FIG. 3 ) by placing two (2) fingers on the surface 105 of the touch screen display 104 and expanding them to enlarge the original ultrasound image. Such measurements and/or tracing may also be performed on the liver 502 and the cystic lesion 504 based on an enlarged portion of the ultrasound image in a virtual window 506 (see FIGS. 5C and 5D ) on the touch screen display 104.

舉例而言,使用其手指(例如,參見圖5A至圖5D之手指508),使用者可藉由在一所關注區(諸如,與囊性病變504對應之區)附近對觸控螢幕顯示器104 (參見圖5B)之表面105採用一按壓手勢(例如,參見圖3之按壓手勢320)來獲得虛擬視窗506。回應於該按壓手勢,在觸控螢幕顯示器104上顯示可能至少部分地重疊於原始超音波影像上之虛擬視窗506 (參見圖5C及圖5D),藉此為使用者提供肝臟502在囊性病變504附近之一被擴大部分之一視圖。舉例而言,圖5C之虛擬視窗506可提供囊性病變504之超音波影像之一被擴大部分之一視圖,該囊性病變504被按壓於觸控螢幕顯示器104之表面105上之手指508覆蓋。為在虛擬視窗506內重新定位擴大的囊性病變504,使用者可對觸控螢幕顯示器104 (參見圖5D)之表面105採用一按壓與拖動手勢(例如,參見圖3之按壓與拖動手勢322),藉此將囊性病變504之影像移動至虛擬視窗506內之一所期望位置。在一項實施例中,醫療超音波成像裝備100可經組態以允許使用者在虛擬視窗506內將一擴大位準選擇為原始超音波影像之2倍大、4倍大或任何其他適合倍數。使用者可藉由自觸控螢幕顯示器104之表面105抬起手指(例如,參見圖5A至圖5D之手指508)而自觸控螢幕顯示器104移除虛擬視窗506。For example, using their finger (eg, see finger 508 in FIGS. 5A-5D ), the user can touch the touch screen display 104 by touching the touch screen display 104 near an area of interest, such as the area corresponding to the cystic lesion 504 . The virtual window 506 is obtained using a press gesture (eg, see press gesture 320 of FIG. 3 ) on the surface 105 (see FIG. 5B ). In response to the pressing gesture, a virtual window 506 that may at least partially overlap the original ultrasound image is displayed on the touch screen display 104 (see FIGS. 5C and 5D ), thereby providing the user with information about the cystic lesions of the liver 502 A view of one of the expanded sections near 504. For example, virtual window 506 of FIG. 5C may provide a view of an enlarged portion of an ultrasound image of cystic lesion 504 covered by finger 508 pressing on surface 105 of touch screen display 104 . To reposition the enlarging cystic lesion 504 within the virtual window 506, the user may use a press and drag gesture (e.g., see Press and Drag in FIG. 3) on the surface 105 of the touch screen display 104 (see FIG. 5D). Gesture 322), thereby moving the image of the cystic lesion 504 to a desired position within the virtual window 506. In one embodiment, the medical ultrasound imaging device 100 may be configured to allow the user to select a magnification level within the virtual window 506 to be 2 times larger, 4 times larger, or any other suitable multiple of the original ultrasound image. . The user may remove virtual window 506 from touch screen display 104 by lifting a finger from surface 105 of touch screen display 104 (eg, see finger 508 in FIGS. 5A-5D ).

圖6A繪示另一例示性物體之一超音波影像,亦即,一心臟602之心尖四(4)腔視圖,該超音波影像顯示於醫療超音波成像裝備100 (參見圖1)之觸控螢幕顯示器104上。注意,醫療超音波成像裝備100可回應於操作連接至裝備100之一超音波探針/換能器產生之超音波穿透心臟組織而產生此一超音波影像。可直接基於顯示於觸控螢幕顯示器104 (參見圖6A至圖6E)上之原始超音波影像或基於該超音波影像之一擴大版本來對心臟602執行量測及/或描摹。舉例而言,使用其手指(例如,參見圖6B至圖6E之手指610、612),使用者可藉由對觸控螢幕顯示器104之表面105採用一或多個多手指手勢來對心臟602之一左心室606 (參見圖6B至圖6E)之一心內膜緣604 (參見圖6B)執行一手動描摹。在一項實施例中,使用其手指(例如,參見圖6B至圖6E之手指610、612),使用者可藉由對觸控螢幕顯示器104之表面105採用一雙點選手勢(例如,參見圖3A之雙點選手勢310)來獲得一游標607 (參見圖6B),且可藉由使用一根手指(諸如,手指610)採用一拖動手勢(例如,參見圖3A之拖動手勢318)來移動游標607,藉此將游標607移動至觸控螢幕顯示器104上之一所期望位置。本文中所闡述之系統及方法可用於對心臟壁運動進行定量量測且具體而言用於量測心室不同步,2004年4月2日提出申請之美國申請案第10/817,316號中對此進行了詳細闡述,該美國申請案之全部內容併入本案供參考。FIG. 6A illustrates an ultrasound image of another exemplary object, namely, an apical four (4) chamber view of a heart 602 , displayed on a touch panel of the medical ultrasound imaging device 100 (see FIG. 1 ). on screen display 104. Note that the medical ultrasound imaging device 100 may generate this ultrasound image in response to ultrasound generated by an ultrasound probe/transducer operatively connected to the device 100 penetrating cardiac tissue. Measurements and/or mapping of the heart 602 may be performed directly based on the original ultrasound image displayed on the touch screen display 104 (see FIGS. 6A-6E) or based on an enlarged version of the ultrasound image. For example, using their fingers (eg, see fingers 610, 612 of Figures 6B-6E), the user can move the heart 602 by using one or more multi-finger gestures on the surface 105 of the touch screen display 104. A manual tracing is performed on an endocardial border 604 (see Figure 6B) of a left ventricle 606 (see Figures 6B-6E). In one embodiment, using their fingers (eg, see fingers 610, 612 of FIGS. 6B-6E), the user can perform a dual-click gesture on the surface 105 of the touch screen display 104 (eg, see Double-tap gesture 310 of Figure 3A) to obtain a cursor 607 (see Figure 6B), and a drag gesture (e.g., see drag gesture 318 of Figure 3A) can be employed by using one finger (such as finger 610) ) to move the cursor 607, thereby moving the cursor 607 to a desired position on the touch screen display 104. The systems and methods described herein may be used to quantitatively measure cardiac wall motion and, in particular, ventricular dyssynchrony, as described in U.S. Application No. 10/817,316, filed April 2, 2004. was elaborated in detail, and the entire content of the U.S. application is incorporated into this case for reference.

一旦游標607位於觸控螢幕顯示器104上的手指610之位置所確定之所期望位置處,使用者便可使用另一手指(諸如手指612)採用一點選手勢(例如,參見參見圖3之點選手勢302)來將游標607固定於彼位置處。為對心內膜緣604 (參見圖6B)執行一手動描摹,使用者可使用手指610採用一按壓與拖動手勢(例如,參見圖3之按壓與拖動手勢322),如圖6C及圖6D中所圖解說明。可在觸控螢幕顯示器104上以任何適合方式(諸如,藉由一虛線608 (參見圖6C至圖6E))突出顯示對心內膜緣604之此一手動描摹。心內膜緣604之手動描摹可繼續進行直至手指610到達觸控螢幕顯示器104上之任何適合位置為止,或直至手指610返回至游標607之位置為止,如圖6E中所圖解說明。一旦手指610處於游標607之位置處或處於任何其他適合位置處,使用者可藉由使用手指612採用一點選手勢(例如,參見參見圖3之點選手勢302)完成手動描摹操作。注意,此一手動描摹操作可用於描摹任何其他適合特徵及/或波形,諸如一脈衝波都卜勒(PWD)波形。在一項實施例中,醫療超音波成像裝備100可經組態以至少部分地基於對各別特徵/波形之一(若干)手動描摹來執行與此(等)特徵及/或波形相關之任何適合計算及/或量測。Once the cursor 607 is at the desired location as determined by the position of finger 610 on the touch screen display 104, the user can use another finger, such as finger 612, to employ a point gesture (eg, see the point gesture of FIG. 3 Potential 302) to fix the cursor 607 at that position. To perform a manual tracing of the endocardial margin 604 (see FIG. 6B ), the user can use a finger 610 to perform a press and drag gesture (e.g., see press and drag gesture 322 of FIG. 3 ), as shown in FIG. 6C and FIG. Illustrated in 6D. This manual tracing of the endocardial border 604 may be highlighted on the touch screen display 104 in any suitable manner, such as by a dashed line 608 (see Figures 6C-6E). Manual tracing of the endocardial margin 604 may continue until the finger 610 reaches any suitable position on the touch screen display 104, or until the finger 610 returns to the position of the cursor 607, as illustrated in Figure 6E. Once finger 610 is at the position of cursor 607 or at any other suitable position, the user can complete the manual tracing operation by using finger 612 using a one-click gesture (see, for example, point gesture 302 in FIG. 3 ). Note that this manual tracing operation can be used to trace any other suitable features and/or waveforms, such as a pulse wave Doppler (PWD) waveform. In one embodiment, the medical ultrasound imaging apparatus 100 may be configured to perform any feature(s) related to the feature(s) and/or waveform(s) based at least in part on manual tracing of the respective feature(s)/waveform(s). Suitable for calculation and/or measurement.

如上文所闡述,使用者可基於在觸控螢幕顯示器104上之一虛擬視窗內所顯示之一物體之一原始超音波影像之一被擴大部分來對物體執行量測及/或描摹。圖7A至圖7C繪示一例示性物體(亦即,具有一囊性病變704之肝臟702)之一原始超音波影像,該原始超音波影像顯示於醫療超音波成像裝備100 (參見圖1)之觸控螢幕顯示器104上。圖7A至圖7C進一步繪示一虛擬視窗706,虛擬視窗706提供囊性病變704之超音波影像之一被擴大部分之一視圖,囊性病變704被按壓在觸控螢幕顯示器104之表面105上之使用者手指(諸如一手指710)覆蓋。使用者可使用其手指(例如,參見圖7A至圖7C之手指710、712)對觸控螢幕顯示器104之表面105採用一或多個多手指手勢來對虛擬視窗706內之囊性病變704執行一大小量測。As explained above, a user may perform measurements and/or traces of an object based on an enlarged portion of an original ultrasound image of an object displayed within a virtual window on the touch screen display 104 . 7A-7C illustrate raw ultrasound images of an exemplary object, namely, liver 702 with a cystic lesion 704, as displayed on medical ultrasound imaging equipment 100 (see FIG. 1) on the touch screen display 104. 7A-7C further illustrate a virtual window 706 that provides a view of an enlarged portion of an ultrasound image of a cystic lesion 704 that is pressed against the surface 105 of the touch screen display 104 covered by the user's finger (such as finger 710). The user may perform one or more multi-finger gestures on the surface 105 of the touch screen display 104 using their fingers (eg, see fingers 710, 712 of FIGS. 7A-7C) to perform actions on the cystic lesion 704 within the virtual window 706. A big measurement.

舉例而言,使用者可使用其手指(例如,參見圖7A至圖7C之手指710、712)對表面105採用一點選手勢(例如,參見圖3之雙點選手勢310)來獲得一第一游標707 (參見圖7B、圖7C),且可使用一根手指(諸如,手指710)採用一拖動手勢(例如,參見圖3之拖動手勢318)來移動第一游標707,藉此將第一游標707移動至一所期望位置。一旦第一游標707處於由手指710之位置確定之所期望位置處,使用者便可使用另一手指(諸如手指712)採用一點選手勢(例如,參見參見圖3之點選手勢302)來將第一游標707固定於彼位置處。類似地,使用者可對表面105採用一雙點選手勢(例如,參見圖3之雙點選手勢310)來獲得一第二游標709 (參見圖7C),且可使用手指710採用一拖動手勢(例如,參見圖3之拖動手勢318)來移動第二游標709,藉此將第二游標709移動至一所期望位置。一旦第二游標709處於由手指710之位置確定之所期望位置處,使用者便可使用手指712採用一點選手勢(例如,參見點選手勢302,參見圖3)來將第二游標709固定於彼位置處。在一項實施例中,醫療超音波成像裝備100可經組態以至少部分地基於第一游標707及第二游標709之位置來執行與囊性病變704相關之任何適合大小計算及/或量測。For example, the user may use his or her fingers (eg, see fingers 710, 712 in FIGS. 7A-7C) to perform a one-point gesture (eg, see the two-point gesture 310 in FIG. 3) on the surface 105 to obtain a first Cursor 707 (see FIG. 7B, FIG. 7C), and a finger (such as finger 710) can be used to move the first cursor 707 using a drag gesture (eg, see drag gesture 318 of FIG. 3), thereby moving the first cursor 707. The first cursor 707 moves to a desired position. Once the first cursor 707 is at the desired location determined by the position of finger 710, the user may use another finger, such as finger 712, to move the cursor using a one-click gesture (eg, see point gesture 302 of FIG. 3). The first cursor 707 is fixed at that position. Similarly, the user can use a double-tap gesture on surface 105 (eg, see double-tap gesture 310 of Figure 3) to obtain a second cursor 709 (see Figure 7C), and can use finger 710 to use a drag A gesture (eg, see drag gesture 318 in FIG. 3 ) is used to move the second cursor 709 , thereby moving the second cursor 709 to a desired position. Once the second cursor 709 is at the desired position determined by the position of the finger 710, the user can use the finger 712 to employ a one-click gesture (eg, see click gesture 302, see Figure 3) to secure the second cursor 709 to That's where it is. In one embodiment, medical ultrasound imaging equipment 100 may be configured to perform any suitable size calculations and/or quantities associated with cystic lesion 704 based at least in part on the positions of first cursor 707 and second cursor 709 Test.

圖8A至圖8C繪示一例示性物體(亦即,具有一囊性病變804之一肝臟802)之一原始超音波影像,該原始超音波影像顯示於醫療超音波成像裝備100 (參見圖1)之觸控螢幕顯示器104上。圖8A至圖8C進一步繪示一虛擬視窗806,虛擬視窗806提供囊性病變804之超音波影像之一被擴大部分之一視圖,囊性病變804被按壓在觸控螢幕顯示器104之表面105上之使用者手指(諸如,一手指810)覆蓋。使用者可使用手指(例如,參見圖8A至圖8C之手指810、812)對觸控螢幕顯示器104之表面105採用一或多個多手指手勢來對虛擬視窗806內之囊性病變804執行一測徑量測。8A-8C illustrate raw ultrasound images of an exemplary object, namely, a liver 802 having a cystic lesion 804, as displayed on the medical ultrasound imaging device 100 (see FIG. 1 ) on the touch screen display 104. 8A-8C further illustrate a virtual window 806 that provides a view of an enlarged portion of an ultrasound image of a cystic lesion 804 that is pressed against the surface 105 of the touch screen display 104 The user's finger (such as one finger 810) covers. The user may perform one or more multi-finger gestures on the surface 105 of the touch screen display 104 using fingers (eg, see fingers 810, 812 of FIGS. 8A-8C) to perform a procedure on the cystic lesion 804 within the virtual window 806. Diameter measurement.

舉例而言,使用者可使用手指(例如,參見圖8A至圖8C之手指810、812)對表面105採用一雙點選手勢(例如,參見圖3之雙點選手勢310)來獲得一第一游標807 (參見圖8B、8C),且可使用一根手指(諸如,手指810)採用一拖動手勢(例如,參見圖3之拖動手勢318)來移動游標807,藉此將游標807移動至一所期望位置。一旦游標807處於由手指810之位置確定之所期望位置處,使用者便可使用另一手指(諸如,手指812)採用一點選手勢(例如,參見參見圖3之點選手勢302)來將游標807固定於彼位置處。然後,使用者可採用一按壓與拖動手勢(例如,參見圖3之按壓與拖動手勢322)獲得一連接線811 (參見圖8B、圖8C),並將連接線811自第一游標807跨越囊性病變804延伸至囊性病變804之另一側上之一所期望位置。一旦連接線811跨越囊性病變804延伸至囊性病變804之另一側上之所期望位置,使用者便可使用手指812採用一點選手勢(例如,參見點選手勢302;參見圖3)來獲得一第二游標809 (參見圖8C)並將第二游標809 (參見圖8C)固定於彼所期望位置處。在一項實施例中,醫療超音波成像裝備100可經組態以至少部分地基於在第一游標807及第二游標809之位置之間延伸之連接線811執行與囊性病變804相關之任何適合測徑計算及/或量測。For example, the user may use fingers (eg, see fingers 810, 812 in FIGS. 8A to 8C) to perform a double-click gesture (eg, see double-click gesture 310 in FIG. 3) on the surface 105 to obtain a first A cursor 807 (see FIGS. 8B and 8C ), and a finger (such as finger 810 ) can be used to move the cursor 807 using a drag gesture (eg, see drag gesture 318 of FIG. 3 ), thereby moving the cursor 807 Move to a desired location. Once the cursor 807 is at the desired position determined by the position of finger 810, the user may use another finger, such as finger 812, to move the cursor using a one-click gesture (eg, see point gesture 302 of FIG. 3). 807 is fixed in that position. Then, the user can use a press and drag gesture (for example, see the press and drag gesture 322 of Figure 3) to obtain a connection line 811 (see Figures 8B and 8C), and connect the connection line 811 from the first cursor 807 Extend across the cystic lesion 804 to a desired location on the other side of the cystic lesion 804 . Once the connecting line 811 has been extended across the cystic lesion 804 to a desired location on the other side of the cystic lesion 804, the user can use a finger 812 to perform a one-click gesture (eg, see point gesture 302; see Figure 3). A second cursor 809 (see Figure 8C) is obtained and fixed at the desired position. In one embodiment, medical ultrasound imaging equipment 100 may be configured to perform any operation related to cystic lesion 804 based at least in part on connecting line 811 extending between the locations of first cursor 807 and second cursor 809 . Suitable for diameter calculation and/or measurement.

圖9A展示一系統140,在系統140中具有一換能器元件陣列152之一換能器殼體150可在連接器114處附接至殼體102。每一探針150可具有專門識別所附接探針之一探針識別電路154。當使用者插入具有一不同陣列之一不同探針時,系統識別探針操作參數。注意,較佳實施例可包含具有一觸控感測器107之一顯示器104,觸控感測器107可連接至一觸控處理器109,觸控處理器109分析來自感測器107之觸控螢幕資料並將命令傳輸至影像處理操作及一波束成形器控制處理器(1116、1124)。在一較佳實施例中,觸控處理器可包含儲存指令之一電腦可讀媒體,該等指令操作一超音波觸控螢幕引擎,該超音波觸控螢幕引擎可操作以控制本文中所闡述之顯示及成像操作。Figure 9A shows a system 140 in which a transducer housing 150 having an array of transducer elements 152 can be attached to the housing 102 at a connector 114. Each probe 150 may have one probe identification circuit 154 that specifically identifies the attached probe. When the user inserts a different probe with a different array, the system identifies the probe operating parameters. Note that preferred embodiments may include a display 104 having a touch sensor 107. The touch sensor 107 may be connected to a touch processor 109. The touch processor 109 analyzes touches from the sensor 107. Control screen data and transmit commands to image processing operations and a beamformer control processor (1116, 1124). In a preferred embodiment, the touch processor may include a computer-readable medium storing instructions that operate an ultrasonic touch screen engine operable to control the processes described herein. display and imaging operations.

圖9B展示超音波應用程式內之一典型換能器管理模組902之一軟體流程圖900。當偵測到一TRANSDUCER ATTACH 904事件時,換能器管理軟體模組902首先自IDENTIFICATION分段讀取換能器類型ID 906及硬體修正資訊。資訊用於自硬碟提取換能器設定檔資料之特定集合並將其載入至應用程式之記憶體中,908。然後,軟體自FACTORY分段讀取調整資料,910,並對剛剛載入至記憶體中之設定檔資料施加調整,912。然後,軟體模組將一TRANSDUCER ATTACH訊息發送至主超音波應用程式,914,該主超音波應用程式使用已載入之換能器設定檔。在得到應答916之後,執行一超音波成像序列並更新USAGE分段,918。然後,換能器管理軟體模組等待一TRANSDUCER DETACH事件或逝去5分鐘,920。若偵測921到一TRANSDUCER DETACH事件,則發送訊息924並做出應答926,自記憶體移除928換能器設定檔資料集,且模組返回以等待另一TRANSDUCER ATTACH事件。若5分鐘時間週期截止卻未偵測到一TRANSDUCER DETACH事件,則軟體模組在USAGE分段922中使累計使用量計數器遞增,且再等待5分鐘的週期或一TRANSDUCER DETACH事件。累計使用量記錄於記憶體中作為維護及替換記錄。Figure 9B shows a software flow diagram 900 of a typical transducer management module 902 within an ultrasound application. When a TRANSDUCER ATTACH 904 event is detected, the transducer management software module 902 first reads the transducer type ID 906 and hardware modification information from the IDENTIFICATION section. The information is used to retrieve a specific set of transducer profile data from the hard disk and load it into the application's memory, 908. The software then reads the adjustment data from the FACTORY segment, 910, and applies the adjustment to the profile data just loaded into memory, 912. The software module then sends a TRANSDUCER ATTACH message to the host ultrasound application, 914, which uses the loaded transducer profile. After getting the response 916, an ultrasound imaging sequence is performed and the USAGE segment is updated, 918. The transducer management software module then waits for a TRANSDUCER DETACH event or for the elapse of 5 minutes, 920. If a TRANSDUCER DETACH event is detected 921, a message 924 is sent and a response 926 is made, the transducer profile data set is removed 928 from memory, and the module returns to wait for another TRANSDUCER ATTACH event. If the 5-minute period expires without detecting a TRANSDUCER DETACH event, the software module increments the cumulative usage counter in USAGE segment 922 and waits for another 5-minute period or a TRANSDUCER DETACH event. The accumulated usage is recorded in the memory as a maintenance and replacement record.

存在諸多類型之超音波換能器。該等超音波換能器在幾何形狀、元件數目及頻率回應上有所不同。舉例而言,中心頻率為10至15百萬赫之一線性陣列較適合於進行乳腺成像,且中心頻率為3至5百萬赫之一彎曲陣列較適合於進行腹部成像。There are many types of ultrasonic transducers. These ultrasonic transducers differ in geometry, number of components and frequency response. For example, a linear array with a center frequency of 10 to 15 MHz is better for breast imaging, and a curved array with a center frequency of 3 to 5 MHz is better for abdominal imaging.

通常必須針對相同或不同之超音波掃描工作階段使用不同類型之換能器。對於僅具有一個換能器連接之超音波系統而言,操作員將在開始一新掃描工作階段之前改換換能器。Often different types of transducers must be used for the same or different stages of ultrasound scanning. For ultrasound systems with only one transducer connection, the operator will change the transducer before starting a new scan session.

在某些應用中,在一個超音波掃描工作階段期間亦需要在不同類型之換能器之間進行切換。在此種情形中,將多個換能器連接至同一超音波系統更為方便,且操作員可藉由按下操作員控制台上之一按鈕迅速地在此等連接換能器之間進行切換,而不必花費一較長時間實體地拆卸及重新附接換能器。本發明之較佳實施例可在平板電腦殼內包含一多工器,該多工器可在平板電腦殼體內之複數個探針連接器埠之間做出選擇,或另一選擇係,平板電腦殼體可連接至一外部多工器,該外部多工器可安裝於如本文中所闡述之一搬運車上。In some applications, it is also necessary to switch between different types of transducers during an ultrasound scan session. In this case, it is more convenient to connect multiple transducers to the same ultrasound system, and the operator can quickly switch between these connected transducers by pressing a button on the operator console. Switch without having to spend a long time physically detaching and reattaching the transducer. Preferred embodiments of the present invention may include a multiplexer within the tablet case that can select between a plurality of probe connector ports within the tablet case, or alternatively, the tablet The computer case can be connected to an external multiplexer, which can be mounted on a truck as described herein.

圖9C係使用超音波換能器之一例示性針感測定位系統之一透視圖,其中感測器總成中不需要任何主動電子裝置。感測器換能器可包含一被動超音波換能器元件。該等元件與一典型換能器探針可具有類似之使用方式,即利用超音波引擎電子裝置。系統958包含添加至一針引導件962之額外超音波換能器元件960,針引導件962係如圖9C中所表示,但可具有任何適合之外觀尺寸。可使用一針引導件安裝托架966將超音波換能器元件960及針引導件962安裝至一超音波換能器探針聲波手柄或具有換能器陣列968之一超音波成像探針總成970。在暴露端上安裝有一盤(超音波反射器盤964)之針反射超音波。Figure 9C is a perspective view of an exemplary needle sensing positioning system using an ultrasonic transducer without any active electronics in the sensor assembly. The sensor transducer may include a passive ultrasonic transducer element. These elements can be used in a similar manner to a typical transducer probe, using ultrasonic engine electronics. System 958 includes additional ultrasonic transducer elements 960 added to a needle guide 962 as shown in Figure 9C, but may have any suitable external dimensions. A needle guide mounting bracket 966 may be used to mount the ultrasound transducer element 960 and needle guide 962 to an ultrasound transducer probe sonic handle or an ultrasound imaging probe assembly having a transducer array 968 into 970. A disk (ultrasonic reflector disk 964) of needles is mounted on the exposed end to reflect ultrasonic waves.

位於針引導件962上之超音波換能器元件960可連接至超音波引擎。可透過一單獨纜線實現與引擎上之一專用探針連接器的連接,該專用探針連接器類似於一共用筆形CW探針連接器。在一替代實施例中,可將短小纜線插接至較大影像換能器探針手柄,或將一分股纜線連接至引擎處之同一探針連接器。在另一替代實施例中,可經由在影像探針手柄與針引導件之間的一電連接器而非其之間的一纜線實現連接。在一替代實施例中,可藉由將針引導件及換能器元件封圍於成像探針手柄之同一機械外殼中來將針引導件上之超音波換能器元件連接至超音波引擎。An ultrasound transducer element 960 located on the needle guide 962 can be connected to the ultrasound engine. Connection is made via a separate cable to a dedicated probe connector on the engine, which is similar to a common pencil CW probe connector. In an alternative embodiment, a short cable can be plugged into the larger image transducer probe handle, or a split cable can be connected to the same probe connector at the engine. In another alternative embodiment, the connection may be made via an electrical connector between the imaging probe handle and the needle guide rather than a cable therebetween. In an alternative embodiment, the ultrasound transducer element on the needle guide can be connected to the ultrasound engine by enclosing the needle guide and transducer element in the same mechanical housing of the imaging probe handle.

圖9D係與換能器元件960及超音波反射器盤964定位在一起之一針引導件962之一透視圖。將反射器盤964之位置定位成自針引導件962上之換能器元件960傳輸超音波972。超音波972穿過空氣朝向反射器盤964行進並被反射器盤964反射。經反射超音波974到達針引導件962上之換能器元件960。依據經過之時間及音波在空氣中之速率來計算反射器盤964與換能器元件960之間的距離976。Figure 9D is a perspective view of the needle guide 962 positioned with the transducer element 960 and the ultrasonic reflector disk 964. The reflector disk 964 is positioned to transmit ultrasound waves 972 from the transducer element 960 on the needle guide 962. Ultrasonic waves 972 travel through the air toward and are reflected by reflector disk 964 . The reflected ultrasound 974 reaches the transducer element 960 on the needle guide 962. The distance 976 between the reflector disk 964 and the transducer element 960 is calculated based on the elapsed time and the speed of sound waves in the air.

圖9E係使用超音波換能器之例示性針感測定位系統之一替代實施例之一透視圖,其中感測器總成中不需要任何主動電子裝置。感測器換能器可包含一被動超音波換能器元件。該等元件與一典型換能器探針可具有類似之使用方式,即利用超音波引擎電子裝置。9E is a perspective view of an alternative embodiment of an exemplary needle sensing positioning system using an ultrasonic transducer, where no active electronics are required in the sensor assembly. The sensor transducer may include a passive ultrasonic transducer element. These elements can be used in a similar manner to a typical transducer probe, using ultrasonic engine electronics.

系統986包含可安裝至一針引導件安裝托架966之針引導件962,針引導件安裝托架966可耦合至用於對患者身體進行成像之一超音波成像探針總成982,或替代適合外觀尺寸。超音波反射器盤964可安裝於針956之暴露端處。在此實施例中,一線性超音波聲學陣列978安裝成與針956之移動方向平行。線性超音波聲學陣列978包含定位成與針956平行之一超音波換能器陣列980。在此實施例中,一超音波成像探針總成982經定位以對患者身體進行成像。用於對患者身體進行成像之超音波成像探針總成982組態有一超音波換能器陣列984。System 986 includes a needle guide 962 mountable to a needle guide mounting bracket 966 that can be coupled to an ultrasound imaging probe assembly 982 for imaging the patient's body, or instead Fits the exterior dimensions. Ultrasonic reflector disk 964 may be mounted at the exposed end of needle 956. In this embodiment, a linear ultrasonic acoustic array 978 is mounted parallel to the direction of movement of needle 956. Linear ultrasonic acoustic array 978 includes an array of ultrasonic transducers 980 positioned parallel to needle 956 . In this embodiment, an ultrasound imaging probe assembly 982 is positioned to image the patient's body. An ultrasonic imaging probe assembly 982 for imaging a patient's body is configured with an ultrasonic transducer array 984.

在此實施例中,可使用耦合至用於進行成像之一超音波成像探針總成978之超音波換能器陣列980來偵測超音波反射器盤964之位置。反射器盤964之位置被定位成自用於進行成像之超音波成像探針總成978上之換能器元件980傳輸超音波972。超音波972穿過空氣朝向反射器盤964行進並被反射器盤964反射。經反射超音波974到達用於進行成像之超音波成像探針總成978上之換能器元件980。依據經過之時間及音波在空氣中之速率來計算反射器盤964與換能器元件980之間的距離976。在一替代實施例中,可使用一替代演算法來依序掃描換能器陣列中之元件之極性並分析每個換能器陣列元件所產生之反射波。在一替代實施例中,在形成一超音波影像之前可發生複數次掃描。In this embodiment, the position of the ultrasonic reflector disk 964 may be detected using an ultrasonic transducer array 980 coupled to an ultrasonic imaging probe assembly 978 for imaging. The reflector disk 964 is positioned to transmit ultrasound waves 972 from the transducer element 980 on the ultrasound imaging probe assembly 978 for imaging. Ultrasonic waves 972 travel through the air toward and are reflected by reflector disk 964 . The reflected ultrasound 974 reaches the transducer element 980 on the ultrasound imaging probe assembly 978 for imaging. The distance 976 between the reflector disk 964 and the transducer element 980 is calculated based on the elapsed time and the speed of sound waves in the air. In an alternative embodiment, an alternative algorithm may be used to sequentially scan the polarity of elements in the transducer array and analyze the reflected waves generated by each transducer array element. In an alternative embodiment, a plurality of scans may occur before an ultrasound image is formed.

圖9F圖解說明可使用一SIM卡120來提供無線36/46蜂巢服務以與如本文中所闡述之可移動超音波系統進行通信的一系統,可移動超音波系統包含圖1A及圖1B中所圖解說明之系統。卡120可插入至一殼體埠119中,殼體埠119使用電路系統118與系統處理器106進行通信。Figure 9F illustrates a system that can use a SIM card 120 to provide wireless 36/46 cellular service to communicate with a mobile ultrasound system as described herein, including those of Figures 1A and 1B Illustrated system. Card 120 may be inserted into a housing port 119 that communicates with system processor 106 using circuitry 118 .

圖10A圖解說明根據例示性實施例的用於監測一心臟之同步性之一例示性方法。通過該方法,將一參考模板載入至記憶體中並用於引導一使用者識別一成像平面(根據步驟930)。接下來,一使用者識別一所期望成像平面(根據步驟932)。通常,使用心臟之一心尖四腔視圖;然而,可在不背離本發明之精神之情況下使用其他視圖。Figure 10A illustrates an exemplary method for monitoring synchrony of a heart, according to an exemplary embodiment. Through this method, a reference template is loaded into the memory and used to guide a user to identify an imaging plane (according to step 930). Next, a user identifies a desired imaging plane (per step 932). Typically, an apical four-chamber view of the heart is used; however, other views may be used without departing from the spirit of the invention.

有時,可能難以識別心內膜緣,且遇到此類困難時,可對同一視角採用組織都卜勒成像(根據步驟934)。提供用於識別中隔壁及外游離壁之一參考模板(根據步驟936)。接下來,可使用具有預設速度尺度(即,±30公分/秒)之標準組織都卜勒成像(TDI) (根據步驟938)。Sometimes, it may be difficult to identify the endocardial rim, and when such difficulties are encountered, tissue Doppler imaging of the same view may be used (per step 934). A reference template for identifying the medial partition wall and the outer free wall is provided (per step 936). Next, standard tissue Doppler imaging (TDI) with a preset velocity scale (ie, ±30 cm/sec) may be used (per step 938).

然後,可提供所期望三工影像之一參考(根據步驟940)。可使用B模式或TDI來引導範圍閘(根據步驟942)。可使用B模式來引導範圍閘(根據步驟944)或者可使用TDI來引導範圍閘(根據步驟946)。使用TDI或B模式來引導範圍閘亦允許使用一方向校正角度,以允許頻譜都卜勒顯示中隔壁之徑向平均速度。然後,使用雙工模式或三工模式,使用一第一脈衝波頻譜都卜勒來量測中隔壁平均速度(根據步驟948)。用於處理資料並計算不同步性之軟體可利用一位置(例如,一中心點)來自動地設定一心臟壁上之過往位置之間的一角度以輔助將參數之設定簡化。Then, a reference to one of the desired three-dimensional images may be provided (per step 940). B-mode or TDI may be used to guide the range gate (per step 942). B-mode may be used to direct the range gate (per step 944) or TDI may be used to direct the range gate (per step 946). Using TDI or B mode to guide the range gate also allows the use of a directional correction angle to allow the spectral Doppler display of the radial average velocity of the partition. Then, using the duplex mode or the triplex mode, a first pulse wave spectrum Doppler is used to measure the average velocity of the mid-barrel (according to step 948). Software used to process the data and calculate asynchrony can use a location (eg, a center point) to automatically set an angle between past locations on the heart wall to help simplify parameter setting.

亦使用一雙重影像或一TDI (根據步驟950)來引導一第二範圍閘位置,且可視需要使用一方向性校正角度。在步驟950之後,系統追蹤中隔壁及外游離壁之平均速度。然後,關注區(例如,中隔壁及左心室游離壁)處之頻譜都卜勒平均速度之時間積分952提供中隔及左游離壁各自之位移。A dual image or a TDI (per step 950) is also used to guide a second range gate position, and a directional correction angle is optionally used. After step 950, the system tracks the average velocity of the middle bulkhead and the outer free wall. The time integration 952 of the spectral Doppler mean velocity at the region of interest (eg, the septum and the left ventricular free wall) then provides the respective displacements of the septum and left free wall.

以上方法步驟可與相關技術中已知之一高通濾波手段(類比高通濾波手段或數位高通濾波手段)相結合地用於移除所收集信號中存在之任何基線擾動。另外,所揭示方法採用多個同時PW頻譜都卜勒來追蹤室間隔及左心室游離壁之移動。另外,可沿著每一頻譜線採用一多閘結構,因此允許定量地量測局部壁運動。對多個閘求平均值可允許量測全域壁移動。The above method steps may be used in combination with one of the high-pass filtering methods known in the related art (analog high-pass filtering method or digital high-pass filtering method) to remove any baseline disturbance present in the collected signal. In addition, the disclosed method uses multiple simultaneous PW spectral Doppler to track the movement of the interventricular septum and left ventricular free wall. Additionally, a multi-gate structure can be employed along each spectral line, thus allowing quantitative measurement of local wall motion. Averaging multiple gates allows full range wall motion to be measured.

圖10B係整合式超音波探針1040之一例示性實施例之一詳細示意性方塊圖1000,該整合式超音波探針1040可透過一介面單元1020連接至任何PC 1010。超音波探針1040經組態以將超音波傳輸至一或多個影像目標1064且減少自一或多個影像目標1064反射之超音波。可使用一或多個纜線1066、1068將換能器1040耦合至介面單元1020。介面單元1020可定位於整合式超音波探針1040與主機電腦1010之間。兩級波束成形系統1040及1020可透過一USB連接1022、1012連接至任何PC。FIG. 10B is a detailed schematic block diagram 1000 of an exemplary embodiment of an integrated ultrasound probe 1040 that can be connected to any PC 1010 through an interface unit 1020 . Ultrasound probe 1040 is configured to transmit ultrasound waves to one or more imaging targets 1064 and reduce ultrasound waves reflected from one or more imaging targets 1064 . One or more cables 1066, 1068 may be used to couple the transducer 1040 to the interface unit 1020. The interface unit 1020 may be positioned between the integrated ultrasound probe 1040 and the host computer 1010 . Two-stage beamforming systems 1040 and 1020 can be connected to any PC via a USB connection 1022, 1012.

超音波探針1040可包含子陣列/孔隙1052,由一孔隙比整個陣列之孔隙小之鄰近元件組成。1D換能器陣列1062接收傳回的回波並傳輸至控制器1044。該控制器藉由將信號傳輸至記憶體1058、1046來起始形成一粗波束。記憶體1058、1046將一信號傳輸至一傳輸驅動器1 1050及傳輸驅動器m 1054。然後,傳輸驅動器1 1050及傳輸驅動器m 1054將信號分別發送至多工器1 1048及多工器m 1056。該信號被傳輸至子陣列波束成形器1 1052及子陣列波束成形器n 1060。The ultrasonic probe 1040 may include a sub-array/aperture 1052 consisting of adjacent elements with a smaller pore than the entire array. The ID transducer array 1062 receives the returned echoes and transmits them to the controller 1044 . The controller initiates formation of a coarse beam by transmitting signals to memory 1058, 1046. The memory 1058, 1046 transmits a signal to a transmission driver 1 1050 and a transmission driver m 1054. Then, transmit driver 1 1050 and transmit driver m 1054 send signals to multiplexer 1 1048 and multiplexer m 1056 respectively. The signal is transmitted to subarray beamformer 1 1052 and subarray beamformer n 1060.

可在介面單元1020中透過一第二級波束成形進一步處理每一粗波束成形操作之輸出,以將波束成形輸出轉換成數位表示。可將粗波束成形操作同調地求和,以形成陣列之一細窄波束輸出。可將信號自超音波探針1040之子陣列波束成形器1 1052及子陣列波束成形器n 1060傳輸至介面單元1020內之A/D轉換器1030及1028。在介面單元1020內存在用於將第一級波束成形輸出轉換成數位表示之A/D轉換器1028、1030。一客戶ASIC (諸如,一FPGA 1026)可自A/D轉換器1030、1028接收數位轉換,以完成第二級波束成形。FPGA數位波束成形1026可將資訊傳輸至系統控制器1024。該系統控制器可將資訊傳輸至一記憶體1032,記憶體1032可將一信號發送回至FPGA數位波束成形1026。另一選擇係,系統控制器1024可將資訊傳輸至定製USB3晶片組1022。然後,USB3晶片組1022可將資訊傳輸至一DC-DC轉換器1034。繼而,DC-DC轉換器1034可將電力自介面單元1020傳輸至超音波探針1040。在超音波探針1040內,一電源供應器1042可接收電力信號且與傳輸驅動器1 1050介接,以將電力提供至前端整合式探針。The output of each coarse beamforming operation may be further processed through a second-stage beamforming in the interface unit 1020 to convert the beamforming output into a digital representation. Coarse beamforming operations can be coherently summed to form one of the narrow beam outputs of the array. Signals can be transmitted from sub-array beamformer 1 1052 and sub-array beamformer n 1060 of ultrasound probe 1040 to A/D converters 1030 and 1028 in interface unit 1020. Within the interface unit 1020 are A/D converters 1028, 1030 for converting the first stage beamforming output into a digital representation. A client ASIC (such as an FPGA 1026) can receive the digital conversions from the A/D converters 1030, 1028 to complete the second stage beamforming. FPGA digital beamforming 1026 can transmit information to system controller 1024. The system controller can transmit information to a memory 1032, and the memory 1032 can send a signal back to the FPGA digital beamforming 1026. Alternatively, system controller 1024 can transmit information to custom USB3 chipset 1022. The USB3 chipset 1022 can then transmit the information to a DC-DC converter 1034. In turn, the DC-DC converter 1034 can transmit power from the interface unit 1020 to the ultrasound probe 1040 . Within the ultrasonic probe 1040, a power supply 1042 can receive the power signal and interface with the transmission driver 1 1050 to provide power to the front-end integrated probe.

介面單元1020定製或USB3晶片組1022可用於提供介面單元1020與主機電腦1010之間的一通信鏈路。定製或USB3晶片組1022將一信號傳輸至主機電腦1010之定製或USB3晶片組1012。然後,定製或USB3晶片組1012與微處理器1014介接。然後,微處理器1014可顯示資訊或將資訊發送至一裝置1075。The interface unit 1020 customization or the USB3 chipset 1022 may be used to provide a communication link between the interface unit 1020 and the host computer 1010 . The custom or USB3 chipset 1022 transmits a signal to the custom or USB3 chipset 1012 of the host computer 1010 . The custom or USB3 chipset 1012 then interfaces with the microprocessor 1014. Microprocessor 1014 can then display the information or send the information to a device 1075.

在一替代實施例中,可使用一窄頻帶波束成形器。舉例而言,對所接收到回波中之每一者應用一個別類比移相器。然後,將每一子陣列內之移相輸出求和以形成一粗波束。可使用A/D轉換來將粗波束中之每一者數位化;然後,使用一數位波束成形器來形成細窄波束。In an alternative embodiment, a narrowband beamformer may be used. For example, one analog phase shifter is applied to each of the received echoes. The phase-shifted outputs within each sub-array are then summed to form a coarse beam. Each of the coarse beams can be digitized using A/D conversion; then, a digital beamformer can be used to form the narrow beams.

在另一實施例中,形成一64元件線性陣列可使用8個毗鄰元件來形成一粗波束輸出。此配置可利用將整合式探針之輸出連接至介面單元之8個輸出類比纜線。可透過纜線將粗波束發送至位於介面單元中之對應A/D轉換器。使用數位延遲來形成一細窄波束輸出。可需要8個A/D轉換器來形成數位表示。In another embodiment, forming a 64-element linear array may use 8 adjacent elements to form a coarse beam output. This configuration utilizes 8 output analog cables connecting the outputs of the integrated probes to the interface unit. The coarse beam can be sent via cable to the corresponding A/D converter located in the interface unit. Use digital delay to form a narrow beam output. Eight A/D converters may be required to form a digital representation.

在另一實施例中,形成一128元件陣列可使用16個子陣列波束成形電路。每一電路可由設置於通往介面單元之第一級輸出中之一毗鄰八元件陣列形成一粗波束。此配置可利用16個輸出類比纜線,該等輸出類比纜線將整合式探針之輸出連接至介面單元以將該輸出數位化。可使用一PC微處理器或一DSP來執行降頻轉換、基頻化、掃描轉換及後影像處理功能。亦可使用微處理器或DSP來執行所有都卜勒處理功能。In another embodiment, 16 sub-array beamforming circuits may be used to form a 128-element array. Each circuit may form a coarse beam from an adjacent eight-element array disposed in the first stage output to the interface unit. This configuration can utilize 16 output analog cables that connect the output of the integrated probe to the interface unit to digitize the output. A PC microprocessor or a DSP can be used to perform down-conversion, basebanding, scan conversion and post-image processing functions. A microprocessor or DSP can also be used to perform all Doppler processing functions.

圖10C係具有第一子陣列波束成形電路之整合式超音波探針1040之一例示性實施例之一詳細示意性方塊圖1080,且第二級波束成形電路整合於主機電腦1082內部。具有第二級波束成形電路之後端電腦可係一PDA、平板電腦或行動裝置殼體。超音波探針1040經組態以將超音波傳輸至一或多個影像目標1064且減少自該一或多個影像目標1064反射之超音波。使用一或多個纜線1066、1068將換能器1040耦合至主機電腦1082。注意,A/D電路元件亦可放置於換能器探針殼體中。10C is a detailed schematic block diagram 1080 of an exemplary embodiment of an integrated ultrasound probe 1040 with a first sub-array beamforming circuit and a second-level beamforming circuit integrated within the host computer 1082. With the second-stage beamforming circuit, the back-end computer can be a PDA, tablet computer or mobile device case. Ultrasound probe 1040 is configured to transmit ultrasound waves to one or more imaging targets 1064 and reduce ultrasound waves reflected from the one or more imaging targets 1064 . The transducer 1040 is coupled to the host computer 1082 using one or more cables 1066, 1068. Note that the A/D circuit components can also be placed in the transducer probe housing.

超音波探針1040包含子陣列/孔隙1052,子陣列/孔隙1052由一孔隙小於整個陣列之孔隙之鄰近元件組成。1D換能器陣列1062接收傳回的回波並傳輸至控制器1044。控制器藉由將信號傳輸至記憶體1058、1046起始形成一粗波束。記憶體1058、1046將一信號傳輸至一傳輸驅動器1 1050及傳輸驅動器m 1054。然後,傳輸驅動器1 1050及傳輸驅動器m 1054將信號分別發送至多工器1 1048及多工器 m 1056。將信號傳輸至子陣列波束成形器1 1052及子陣列波束成形器n 1060。The ultrasonic probe 1040 includes a subarray/aperture 1052 consisting of adjacent elements whose pores are smaller than those of the entire array. The ID transducer array 1062 receives the returned echoes and transmits them to the controller 1044 . The controller initially forms a coarse beam by transmitting the signal to memory 1058, 1046. The memory 1058, 1046 transmits a signal to a transmission driver 1 1050 and a transmission driver m 1054. Then, transmit driver 1 1050 and transmit driver m 1054 send signals to multiplexer 1 1048 and multiplexer m 1056 respectively. The signal is transmitted to subarray beamformer 1 1052 and subarray beamformer n 1060.

然後,每一粗波束成形操作之輸出在介面單元1020中經歷一第二級波束成形以將波束成形輸出轉換成數位表示。將粗波束成形操作相關地求和匯總以形成陣列之一細窄波束輸出。將信號自超音波探針1040子陣列波束成形器1 1052及子陣列波束成形器n 1060傳輸至主機電腦1082內之A/D轉換器1030及1028。在主機電腦1082內存在用於將第一級波束成形輸出轉換成數位表示之A/D轉換器1028、1030。一客戶ASIC (諸如,一FPGA 1026)自A/D轉換器1030、1028接收數位轉換以完成第二級波束成形。FPGA數位波束成形1026將資訊傳輸至系統控制器1024。系統控制器將資訊傳輸至一記憶體1032,可記憶體1032將一信號發送回至FPGA數位波束成形1026。另一選擇係,系統控制器1024可將資訊傳輸至定製USB3晶片組1022。然後,USB3晶片組1022可將資訊傳輸至一DC-DC轉換器1034。繼而,DC-DC轉換器1034可將電力自介面單元1020傳輸至超音波探針1040。在超音波探針1040內,一電源供應器1042可接收電力信號且與傳輸驅動器1 1050介接以將電力提供至前端整合式探針。電源供應器可包含達成換能器總成之無線操作之一電池。可將一無線收發器整合至控制器電路或一單獨通信電路中以使得能夠無線傳送影像資料及控制信號。The output of each coarse beamforming operation then undergoes a second stage of beamforming in interface unit 1020 to convert the beamformed output into a digital representation. The coarse beamforming operations are correlated and summed to form one of the narrow beam outputs of the array. The signals are transmitted from the ultrasonic probe 1040 sub-array beamformer 1 1052 and sub-array beamformer n 1060 to the A/D converters 1030 and 1028 in the host computer 1082. Within the host computer 1082 are A/D converters 1028, 1030 for converting the first stage beamforming output into a digital representation. A client ASIC (such as an FPGA 1026) receives the digital conversions from the A/D converters 1030, 1028 to complete the second stage beamforming. FPGA digital beamforming 1026 transmits information to system controller 1024. The system controller transmits the information to a memory 1032, which sends a signal back to the FPGA digital beamforming 1026. Alternatively, system controller 1024 can transmit information to custom USB3 chipset 1022. The USB3 chipset 1022 can then transmit the information to a DC-DC converter 1034. In turn, the DC-DC converter 1034 can transmit power from the interface unit 1020 to the ultrasound probe 1040 . Within the ultrasound probe 1040, a power supply 1042 can receive the power signal and interface with the transmission driver 1 1050 to provide power to the front-end integrated probe. The power supply may include a battery to enable wireless operation of the transducer assembly. A wireless transceiver can be integrated into the controller circuit or into a separate communications circuit to enable wireless transmission of image data and control signals.

可使用主機電腦1082之定製或USB3晶片組1022來提供定製或USB3晶片組1012之間的一通信鏈路以將一信號傳輸至微處理器1014。然後,微處理器1014可顯示資訊或將資訊發送至一裝置1075。The custom or USB3 chipset 1022 of the host computer 1082 may be used to provide a communication link between the custom or USB3 chipset 1012 to transmit a signal to the microprocessor 1014 . Microprocessor 1014 can then display the information or send the information to a device 1075.

圖11係圖1及圖2A中所圖解說明的超音波引擎108 (亦即,前端超音波特殊電路系統)之一例示性實施例及超音波裝置之電腦主機板106 (亦即,主機電腦)之一例示性實施例的一詳細示意性方塊圖。可以特殊應用積體電路(ASIC)之形式來實施超音波引擎108及/或電腦主機板106之組件。在某些例示性實施例中,例示性ASIC具有一高通道計數且每晶片可打包32個或32個以上通道。熟習此項技術者將認識到,超音波引擎108及電腦主機板106可包含比所展示之模組多或少之模組。舉例而言,超音波引擎108及電腦主機板106可包含圖17中所展示之模組。FIG. 11 is an exemplary embodiment of the ultrasound engine 108 (ie, front-end ultrasound special circuit system) illustrated in FIGS. 1 and 2A and the computer motherboard 106 (ie, host computer) of the ultrasound device A detailed schematic block diagram of an exemplary embodiment. The components of ultrasonic engine 108 and/or computer motherboard 106 may be implemented in the form of application specific integrated circuits (ASICs). In certain exemplary embodiments, the exemplary ASIC has a high channel count and may pack 32 or more channels per die. Those skilled in the art will recognize that the ultrasonic engine 108 and the computer motherboard 106 may include more or fewer modules than those shown. For example, the ultrasonic engine 108 and the computer motherboard 106 may include the module shown in FIG. 17 .

一換能器陣列152經組態以將超音波傳輸至一或多個影像目標1102且自一或多個影像目標1102接收反射之超音波。使用一或多個纜線1104將換能器陣列152耦合至超音波引擎108。A transducer array 152 is configured to transmit ultrasound waves to and receive reflected ultrasound waves from one or more imaging targets 1102 . Transducer array 152 is coupled to ultrasound engine 108 using one or more cables 1104 .

超音波引擎108包含一高電壓傳輸/接收(TR)模組1106,高電壓傳輸/接收(TR)模組1106用於對換能器陣列152施加驅動信號且用於自換能器陣列152接收傳回回波信號。超音波引擎108包含一前置放大器/時間增益補償(TGC)模組1108,該模組1108用於放大傳回回波信號並對信號應用適合TGC函數。超音波引擎108包含一取樣資料波束成形器1110,在前置放大器/TGC模組1108已放大並處理了傳回回波信號之後,在每一通道中使用延遲係數。The ultrasonic engine 108 includes a high voltage transmit/receive (TR) module 1106 for applying driving signals to the transducer array 152 and for receiving from the transducer array 152 Send back the echo signal. The ultrasonic engine 108 includes a preamplifier/time gain compensation (TGC) module 1108 that amplifies the returned echo signal and applies a suitable TGC function to the signal. The ultrasound engine 108 includes a sampled data beamformer 1110 that uses delay coefficients in each channel after the return echo signal has been amplified and processed by the preamplifier/TGC module 1108.

在某些例示性實施例中,高電壓TR模組1106、前置放大器/TGC模組1108及樣本內插接收波束成形器1110可各自係每晶片具有8至64個通道之一矽晶片,但例示性實施例並不僅限於此範圍。在一些實施例中,高電壓TR模組1106、前置放大器/TGC模組1108及樣本內插接收波束成形器1110可各自係具有8個、16個、32個、64個通道等之一矽晶片。如圖11中所圖解說明,一例示性TR模組1106、一例示性前置放大器/TGC模組1108及例示性波束成形器1110可各自採取包含32個通道之一矽晶片之形式。In certain exemplary embodiments, high voltage TR module 1106, preamplifier/TGC module 1108, and sample interpolation receive beamformer 1110 may each be a silicon die having between 8 and 64 channels per die, but The exemplary embodiments are not limited to this scope. In some embodiments, the high voltage TR module 1106, the preamplifier/TGC module 1108, and the sample interpolation receive beamformer 1110 may each be one of silicon with 8, 16, 32, 64 channels, etc. wafer. As illustrated in Figure 11, an exemplary TR module 1106, an exemplary preamplifier/TGC module 1108, and an exemplary beamformer 1110 may each take the form of a silicon die containing 32 channels.

超音波引擎108包含用於緩衝波束成形器1110所處理之資料輸出之一先進先出(FIFO)緩衝器模組1112。超音波引擎108亦包含用於儲存程式指令及資料之一記憶體1114以及用於控制超音波引擎模組之操作之一系統控制器1116。The ultrasound engine 108 includes a first-in, first-out (FIFO) buffer module 1112 for buffering the data output processed by the beamformer 1110 . The ultrasonic engine 108 also includes a memory 1114 for storing program instructions and data and a system controller 1116 for controlling the operation of the ultrasonic engine module.

超音波引擎108經由一通信鏈路112與電腦主機板106介接,通信鏈路112可遵循一標準高速通信協定,諸如火線(IEEE 1394標準串列介面)或快速(例如,200 – 400百萬位元/秒或更快)通用串列匯流排(USB 2.0 USB 3.0)協定。通往電腦主機板之標準通信鏈路至少在400百萬位元/秒或高於400百萬位元/秒下、較佳地在800百萬位元/秒下或高於800百萬位元/秒下操作。另一選擇係,鏈路112可係一無線連接,諸如一紅外線(IR)鏈路。超音波引擎108包含用以建立並維持通信鏈路112之一通信晶片組1118 (例如,一火線晶片組)。The ultrasonic engine 108 interfaces with the computer motherboard 106 via a communication link 112, which may follow a standard high-speed communication protocol, such as FireWire (IEEE 1394 standard serial interface) or Fast (e.g., 200-400 million bits/second or faster) Universal Serial Bus (USB 2.0 USB 3.0) protocol. Standard communication link to computer motherboard at least 400 million bits/second or higher, preferably at or higher than 800 million bits/second Operating at yuan/second. Alternatively, link 112 may be a wireless connection, such as an infrared (IR) link. Ultrasonic engine 108 includes a communications chipset 1118 (eg, a FireWire chipset) for establishing and maintaining communications link 112.

類似地,電腦主機板106亦包含用以建立並維持通信鏈路112之一通信晶片組1120 (例如,一火線晶片組)。電腦主機板106包含用於儲存資料及/或電腦可執行指令之一核心電腦可讀記憶體1122,該等資料及/或電腦可執行指令用於執行超音波成像操作。記憶體1122形成電腦之主記憶體,且在一例示性實施例中可儲存約4 GB之DDR3記憶體。電腦主機板106亦包含一微處理器1124,該微處理器1124用於執行儲存於核心電腦可讀記憶體1122上之電腦可執行指令以執行超音波成像處理操作。一例示性微處理器1124可係一現成商用電腦處理器,諸如一Intel Core-i5處理器。另一例示性微處理器1124可係一基於數位信號處理器(DSP)之處理器,諸如德州儀器公司(Texas Instruments)之一或多個DaVinciTM 處理器。電腦主機板106亦包含一顯示器控制器1126,顯示器控制器1126用於控制可用於顯示器超音波資料、掃描及圖之一顯示裝置。Similarly, computer motherboard 106 also includes a communications chipset 1120 (eg, a FireWire chipset) for establishing and maintaining communications link 112 . The computer motherboard 106 includes a core computer readable memory 1122 for storing data and/or computer executable instructions for performing ultrasound imaging operations. Memory 1122 forms the main memory of the computer and can store approximately 4 GB of DDR3 memory in an exemplary embodiment. The computer motherboard 106 also includes a microprocessor 1124 for executing computer-executable instructions stored in the core computer-readable memory 1122 to perform ultrasound imaging processing operations. An exemplary microprocessor 1124 may be an off-the-shelf computer processor, such as an Intel Core-i5 processor. Another exemplary microprocessor 1124 may be a digital signal processor (DSP)-based processor, such as one or more DaVinci processors from Texas Instruments. The computer motherboard 106 also includes a display controller 1126 for controlling a display device that can be used to display ultrasound data, scans, and images.

由微處理器1124執行之例示性操作包含但不限於:降頻轉換(用於自所接收到超音波資料產生I, Q樣本)、掃描轉換(用於將超音波資料轉換成一顯示裝置之一顯示格式)、都卜勒處理(用於判定來自超音波資料之移動及/或血流資訊及/或對該資訊進行成像)、彩色血流處理(在一項實施例中,用於使用自相關來產生都卜勒頻移之彩色編碼圖,該彩色編碼圖疊加於一B模式超音波影像上)、功率都卜勒處理(用於判定功率都卜勒資料及/或產生一功率都卜勒圖)、頻譜都卜勒處理(用於判定頻譜都卜勒資料及/或產生一頻譜都卜勒圖)及後信號處理。2003年3月11日提出申請之標題為「Ultrasound Probe with Integrated Electronics」之WO 03/079038 A2中詳細地闡述了此等操作,該案之全部內容明確併入本案供參考。Exemplary operations performed by microprocessor 1124 include, but are not limited to: down conversion (for generating I, Q samples from received ultrasound data), scan conversion (for converting ultrasound data to one of a display device) display format), Doppler processing (for determining and/or imaging motion and/or blood flow information from ultrasound data), color flow processing (in one embodiment, for using automatic correlation to produce a color-coded map of the Doppler shift that is superimposed on a B-mode ultrasound image), power Doppler processing (used to determine power Doppler data and/or generate a power Doppler Doppler plot), spectral Doppler processing (used to determine spectral Doppler data and/or generate a spectral Doppler plot) and post-signal processing. Such operations are described in detail in WO 03/079038 A2, filed on March 11, 2003, titled "Ultrasound Probe with Integrated Electronics", the entire contents of which are expressly incorporated herein by reference.

為實現一更小巧且輕便之可移動超音波裝置,超音波引擎108包含一電路板之總封裝大小及佔用面積之減小,從而提供超音波引擎108。為此,例示性實施例提供將總封裝大小及佔用面積最小化同時提供一高通道計數的一小巧且輕便之可移動超音波裝置。在某些實施例中,一例示性超音波引擎之一高通道計數電路板可包含一或多個多晶片模組,其中每一晶片提供多個通道,舉例而言32個通道。本文中所使用之術語「多晶片模組」係指一電子封裝,其中多個積體電路(IC)封裝至一個一體化基板中,從而便於將其用作一單個組件,亦即用作一較大IC。一多晶片模組可用於一例示性電路板中以使得兩個或兩個以上主動IC組件能夠整合於一高密度互連(HDI)基板上,以減小總封裝大小。在一例示性實施例中,可藉由垂直地堆疊一超音波引擎的一傳輸/接收(TR)矽晶片、一放大器矽晶片及一波束成形器矽晶片來裝配一多晶片模組。超音波引擎之一單個電路板可包含此等多晶片模組中之一或多者以提供一高通道計數,同時將電路板之總封裝大小及佔用面積最小化。To achieve a more compact and lightweight portable ultrasound device, the ultrasound engine 108 includes a reduction in the overall package size and footprint of the circuit board, thereby providing the ultrasound engine 108 . To this end, exemplary embodiments provide a compact and lightweight mobile ultrasound device that minimizes overall package size and footprint while providing a high channel count. In certain embodiments, a high channel count circuit board of an exemplary ultrasound engine may include one or more multi-chip modules, where each chip provides multiple channels, for example 32 channels. The term "multi-chip module" as used herein refers to an electronic package in which multiple integrated circuits (ICs) are packaged into an integrated substrate to facilitate their use as a single component, that is, as a Larger IC. A multi-chip module may be used in an exemplary circuit board to enable integration of two or more active IC components on a high-density interconnect (HDI) substrate to reduce overall package size. In an exemplary embodiment, a multi-chip module may be assembled by vertically stacking a transmit/receive (TR) silicon die of an ultrasound engine, an amplifier silicon die, and a beamformer silicon die. A single circuit board of an ultrasound engine may contain one or more of these multi-chip modules to provide a high channel count while minimizing the overall package size and footprint of the circuit board.

圖12繪示一電路板1200之一部分之一示意性側視圖,該電路板1200包含裝配成一垂直堆疊組態之一多晶片模組。兩層或兩層以上的主動電子積體電路組件被垂直地整合成一單個電路。IC層定向於間隔開平面中,該等間隔開平面在一垂直堆疊組態中實質上彼此平行地延伸。在圖12中,電路板包含用於支援多晶片模組之一HDI基板1202。使用任何適合耦合機制(舉例而言,環氧樹脂施塗及固化)將包含例如一第一波束成形器裝置之一第一積體電路晶片1204耦合至基板1202。使用例如環氧樹脂施塗及固化將一第一間隔件層1206耦合至第一積體電路晶片1204的與基板1202相對之表面。使用例如環氧樹脂施塗及固化將具有例如第二波束成形器裝置之一第二積體電路晶片1208耦合至第一間隔件層1206的與第一積體電路晶片1204相對之表面。提供一金屬框架1210來實現積體電路晶片之間的機械連接及/或電連接。一例示性金屬框架1210可採取一引線框架形式。可使用配線1212將第一積體電路晶片1204耦合至金屬框架1210。可使用配線1214將第二積體電路晶片1208耦合至同一金屬框架1210。提供一封裝1216來囊封多晶片模組總成且將多個積體電路晶片維持成相對於彼此實質上平行之配置。Figure 12 illustrates a schematic side view of a portion of a circuit board 1200 containing multi-chip modules assembled in a vertically stacked configuration. Two or more layers of active electronic integrated circuit components are vertically integrated into a single circuit. The IC layers are oriented in spaced planes that extend substantially parallel to each other in a vertical stacking configuration. In Figure 12, the circuit board includes an HDI substrate 1202 for supporting a multi-chip module. A first integrated circuit die 1204 including, for example, a first beamformer device is coupled to the substrate 1202 using any suitable coupling mechanism (eg, epoxy application and curing). A first spacer layer 1206 is coupled to the surface of the first integrated circuit die 1204 opposite the substrate 1202 using, for example, epoxy application and curing. A second integrated circuit die 1208 having, for example, a second beamformer device is coupled to the surface of the first spacer layer 1206 opposite the first integrated circuit die 1204 using, for example, epoxy application and curing. A metal frame 1210 is provided to realize mechanical connection and/or electrical connection between integrated circuit chips. An exemplary metal frame 1210 may take the form of a lead frame. Wiring 1212 may be used to couple the first integrated circuit die 1204 to the metal frame 1210 . Wiring 1214 may be used to couple the second integrated circuit die 1208 to the same metal frame 1210 . A package 1216 is provided to encapsulate the multi-chip module assembly and maintain the plurality of integrated circuit dies in a substantially parallel configuration relative to each other.

如圖12中所圖解說明,第一積體電路晶片1204、第一間隔件層1206及第二積體電路晶片1208之垂直三維堆疊提供電路板上之高密度功能性,同時將總封裝大小及佔用面積最小化(與未採用一垂直堆疊多晶片模組之一超音波引擎電路板相比)。熟習此項技術者將認識到,一例示性多晶片模組並不僅限於兩個堆疊式積體電路晶片。垂直地整合成一多晶片模組之例示性晶片數目可包含但不限於兩個、三個、四個、五個、六個、七個、八個等。As illustrated in Figure 12, the vertical three-dimensional stacking of first integrated circuit die 1204, first spacer layer 1206, and second integrated circuit die 1208 provides high density functionality on the circuit board while reducing total package size and Minimized area footprint (compared to an ultrasonic engine circuit board that does not use a vertically stacked multi-chip module). Those skilled in the art will recognize that an exemplary multi-chip module is not limited to two stacked integrated circuit dies. Exemplary numbers of chips vertically integrated into a multi-chip module may include, but are not limited to, two, three, four, five, six, seven, eight, etc.

在一超音波引擎電路板之一項實施例中,提供圖12中所圖解說明之一單個多晶片模組。在其他實施例中,圖12中亦圖解說明複數個多晶片模組。在一例示性實施例中,複數個多晶片模組(舉例而言,兩個多晶片模組)可彼此垂直地堆疊於一超音波引擎之一電路板上,以將電路板之封裝大小及佔用面積進一步最小化。In one embodiment of an ultrasonic engine circuit board, a single multi-chip module as illustrated in Figure 12 is provided. In other embodiments, a plurality of multi-chip modules are also illustrated in FIG. 12 . In an exemplary embodiment, a plurality of multi-chip modules (for example, two multi-chip modules) can be stacked vertically on each other on a circuit board of an ultrasonic engine to reduce the package size and size of the circuit board. The occupied area is further minimized.

除需要減小佔用面積之外,亦需要減小多晶片模組之總封裝高度。例示性實施例可將晶圓薄化至小於幾百微米,以減小多晶片模組之封裝高度。In addition to the need to reduce the occupied area, the total package height of the multi-chip module also needs to be reduced. Exemplary embodiments may thin wafers to less than a few hundred microns to reduce the packaging height of multi-chip modules.

可使用任何適合技術來將一多晶片模組裝配於一基板上。例示性裝配技術包含但不限於:層壓式MCM (MCM-L),其中基板係一多層層壓印刷電路板;沈積式MCM (MCM-D),其中使用薄膜技術將多晶片模組沈積於基底基板上;及陶瓷基板MCM (MCM-C),其中數個導電層沈積於一陶瓷基板上且嵌入於玻璃層中,彼等層在高溫(HTCC)或低溫(LTCC)下接受共燒。Any suitable technique may be used to assemble a multi-chip module onto a substrate. Exemplary assembly techniques include, but are not limited to: laminated MCM (MCM-L), where the substrate is a multi-layer laminated printed circuit board; deposition MCM (MCM-D), where multi-die modules are deposited using thin film technology on a base substrate; and ceramic substrate MCM (MCM-C), in which several conductive layers are deposited on a ceramic substrate and embedded in a glass layer, and these layers are co-fired at high temperature (HTCC) or low temperature (LTCC) .

圖13係製作一電路板之一例示性方法之一流程圖,該電路板包含裝配成一垂直堆疊組態之一多晶片模組。在步驟1302中,製作或提供一HDI基板。在步驟1304中,提供一金屬框架(例如,引線框架)。在步驟1306中,舉例而言,使用環氧樹脂施塗及固化將一第一IC層耦合或接合至基板。將第一IC層線接合至金屬框架。在步驟1308中,使用例如環氧樹脂施塗及固化將一間隔件層耦合至第一IC層,使得層垂直地堆疊且實質上彼此平行地延伸。在步驟1310中,使用例如環氧樹脂施塗及固化將一第二IC層耦合至間隔件層,使得所有的層垂直地堆疊且實質上彼此平行地延伸。將第二IC層線接合至金屬框架。在步驟1312中,使用一封裝來囊封多晶片模組總成。13 is a flowchart of an exemplary method of fabricating a circuit board including multi-chip modules assembled in a vertically stacked configuration. In step 1302, an HDI substrate is produced or provided. In step 1304, a metal frame (eg, leadframe) is provided. In step 1306, a first IC layer is coupled or bonded to the substrate using, for example, epoxy application and curing. Wire bond the first IC layer to the metal frame. In step 1308, a spacer layer is coupled to the first IC layer using, for example, epoxy application and curing such that the layers stack vertically and extend substantially parallel to each other. In step 1310, a second IC layer is coupled to the spacer layer using, for example, epoxy application and curing such that all layers stack vertically and extend substantially parallel to each other. Wire bond the second IC layer to the metal frame. In step 1312, a package is used to encapsulate the multi-chip module assembly.

可使用任何適合技術將一多晶片模組中之例示性晶片層彼此耦合。舉例而言,在圖12中所圖解說明之實施例中,可在晶片層之間設置間隔件層以間隔開晶片層。被動矽層、晶粒附接膏層及/或晶粒附接膜層可用作間隔件層。美國弗羅裡達(2008年5月27日至30日)的第58期Electronic Components and Technology Conference (ECTC2008)第1538至1543頁的Toh CH等人的「Die Attach Adhesives for 3D Same-Sized Dies Stacked Packages」中詳細地闡述了可用於製作一多晶片模組之例示性間隔件技術,該文獻之全部內容明確併入本案供參考。The exemplary chip layers in a multi-chip module may be coupled to each other using any suitable technique. For example, in the embodiment illustrated in Figure 12, a spacer layer may be provided between the wafer layers to separate the wafer layers. Passive silicon layers, die attach paste layers, and/or die attach film layers may be used as spacer layers. "Die Attach Adhesives for 3D Same-Sized Dies Stacked" by Toh CH et al., pages 1538 to 1543 of the 58th Electronic Components and Technology Conference (ECTC2008), Florida, USA (May 27-30, 2008) Exemplary spacer technologies that may be used to fabricate a multi-chip module are described in detail in "Packages", the entire contents of which are expressly incorporated herein by reference.

對晶粒附接(DA)膏或膜之重要要求係對毗鄰晶粒之鈍化材料具有出色的黏合性。此外,一大型晶粒應用需要一均勻的接合聯結厚度(BLT)。另外,在高溫及低吸濕性下之高黏結強度對可靠性而言係較佳的。An important requirement for a die attach (DA) paste or film is excellent adhesion to the passivation material adjacent to the die. Additionally, a large die application requires a uniform bond link thickness (BLT). In addition, high bonding strength at high temperatures and low moisture absorption is better for reliability.

圖14A至圖14C係可根據例示性實施例使用之包含垂直堆疊晶粒之例示性多晶片模組之示意性側視圖。圖解說明周邊墊及中心墊導線接合(WB)封裝且可將其用於一多晶片模組中之導線接合例示性晶片層。圖14A係包含四個垂直堆疊晶粒之一多晶片模組之一示意性側視圖,其中晶粒彼此由具有一2合1切割晶粒附接膜(D-DAF)之被動矽層間隔開。圖14B係包含四個垂直堆疊晶粒之一多晶片模組之一示意性側視圖,其中晶粒彼此由用作晶粒間間隔件之DA膜型黏合劑間隔開。圖14C係包含四個垂直堆疊晶粒之一多晶片模組之一示意性側視圖,其中晶粒彼此由用作晶粒間間隔件之DA膏或膜型黏合劑間隔開。在某些例示性實施例中,DA膏或膜型黏合劑可具有導線穿透能力。在圖14C之例示性多晶片模組中,使用導線上膜(FOW)來實現長導線接合及中心接合墊堆疊晶粒封裝。FOW採用具有導線穿透能力之一晶粒附接膜,其允許相同或類似大小之導線接合晶粒彼此直接堆疊而無需被動矽間隔件。此解決了相同或類似大小的晶粒彼此直接堆疊的問題,而這本來會因下部晶粒的接合導線無餘隙或餘隙不夠而成為一挑戰。14A-14C are schematic side views of exemplary multi-chip modules including vertically stacked dies that may be used in accordance with exemplary embodiments. Illustration of peripheral pad and center pad wire bonding (WB) packages and their use for wire bonding exemplary die layers in a multi-chip module. Figure 14A is a schematic side view of a multi-die module containing four vertically stacked dies separated from each other by a passive silicon layer with a 2-in-1 diced die attach film (D-DAF) . 14B is a schematic side view of a multi-die module containing four vertically stacked dies separated from each other by a DA film adhesive used as an inter-die spacer. 14C is a schematic side view of a multi-die module containing four vertically stacked dies separated from each other by DA paste or film adhesive used as inter-die spacers. In certain exemplary embodiments, the DA paste or film adhesive may have wire penetrating capabilities. In the exemplary multi-die module of Figure 14C, a film-on-wire (FOW) is used to achieve long wire bonding and center bond pad stacked die packaging. FOW uses a die attach film with wire penetrating capabilities, which allows same or similar sized wire bond dies to be stacked directly on top of each other without the need for passive silicon spacers. This solves the problem of identical or similar sized dies being stacked directly on top of each other, which would otherwise be a challenge due to no or insufficient clearance for the bonding wires of the lower die.

圖14B及圖14C中所圖解說明之DA材料較佳地維持一接合線厚度(BLT),在裝配程序始終很少甚至不存在空洞及滲出。在裝配完成之後,夾持於晶粒之間的DA材料與晶粒維持一出色黏合性。對DA材料之材料性質進行調節以維持高黏結強度,以在不發生塊體斷裂之情況下達成高溫可靠性加應力。對DA材料之材料性質進行調節以亦最小化或較佳地消除濕氣積聚,而濕氣積聚可導致封裝失去可靠性(例如,由於封裝中之濕氣所致之壓力累積而發生爆裂,因此發生界面斷裂或塊體斷裂)。The DA material illustrated in Figures 14B and 14C preferably maintains a bond line thickness (BLT) with little to no voiding and bleeding throughout the assembly process. After assembly is completed, the DA material clamped between the dies maintains excellent adhesion to the dies. The material properties of DA materials are adjusted to maintain high bonding strength to achieve high temperature reliability and stress without block fracture. The material properties of the DA material are adjusted to also minimize or better eliminate moisture accumulation, which can lead to a loss of package reliability (e.g., bursting due to pressure buildup due to moisture in the package). Interface fracture or block fracture occurs).

圖15係使用(a)具有一2合1切割晶粒附接膜(D-DAF)之被動矽層、(b) DA膏、(c)厚DA膜及(d)導線上膜(FOW)進行晶粒間堆疊之某些例示性方法之一流程圖,該導線上膜採用具有導線穿透能力之一晶粒附接膜,其允許相同或類似大小的導線接合晶粒彼此直接堆疊而無需被動矽間隔件。每一方法皆對晶圓執行背面研磨以減小晶圓厚度,以使得能夠成堆疊且高密度地封裝出積體電路。晶圓被鋸割以分離成個別晶粒。在一烘箱中使用(例如)環氧樹脂施塗及固化將一第一晶粒接合至一多晶片模組之一基板。使用導線接合將第一晶粒耦合至一金屬框架。Figure 15 Using (a) passive silicon layer with a 2-in-1 cut die attach film (D-DAF), (b) DA paste, (c) thick DA film, and (d) over-wire (FOW) A flow diagram of one of some illustrative methods of performing die-to-die stacking using a die attach film with wire penetrating capabilities that allows same or similar sized wire bond dies to be directly stacked on each other without the need for Passive silicon spacers. Each method performs back grinding on the wafer to reduce the thickness of the wafer to enable stacked and high-density packaging of integrated circuits. The wafers are sawed to separate into individual dies. A first die is bonded to a substrate of a multi-chip module using, for example, epoxy resin application and curing in an oven. The first die is coupled to a metal frame using wire bonding.

在方法(A)中,使用一切割晶粒附接膜(D-DAF)將一第一被動矽層堆疊式地接合至第一晶粒。使用D-DAF將一第二晶粒堆疊式地接合至第一被動層。使用導線接合將第二晶粒耦合至金屬框架。使用D-DAF將一第二被動矽層堆疊式地接合至第二晶粒。使用D-DAF將一第三晶粒堆疊式地接合至第二被動層。使用導線接合將第三晶粒耦合至金屬框架。使用D-DAF將一第三被動矽層堆疊式地接合至第三晶粒。使用D-DAF將一第四晶粒堆疊式地接合至第三被動層。使用導線接合將第四晶粒耦合至金屬框架。In method (A), a first passive silicon layer is stack-bonded to the first die using a diced die attach film (D-DAF). A second die is stack-bonded to the first passive layer using D-DAF. The second die is coupled to the metal frame using wire bonding. A second passive silicon layer is stack-bonded to the second die using D-DAF. A third die is stack-bonded to the second passive layer using D-DAF. The third die is coupled to the metal frame using wire bonding. A third passive silicon layer is stack-bonded to the third die using D-DAF. A fourth die is stack-bonded to the third passive layer using D-DAF. The fourth die is coupled to the metal frame using wire bonding.

在方法(B)中,重複進行晶粒附接(DA)膏施配及固化以得到多層薄晶粒堆疊應用。將DA膏施配至一第一晶粒上,且將一第二晶粒設置於DA膏上並固化至第一晶粒。使用導線接合將第二晶粒耦合至金屬框架。將DA膏施配至第二晶粒上,且將一第三晶粒設置於DA膏上並固化至第二晶粒。使用導線接合將第三晶粒耦合至金屬框架。將DA膏施配至第三晶粒上,且將一第四晶粒設置於DA膏上並固化至第三晶粒。使用導線接合將第四晶粒耦合至金屬框架。In method (B), die attachment (DA) paste application and curing are repeated for multi-layer thin die stack applications. The DA paste is applied to a first die, and a second die is disposed on the DA paste and solidified to the first die. The second die is coupled to the metal frame using wire bonding. DA paste is applied to the second die, and a third die is disposed on the DA paste and solidified to the second die. The third die is coupled to the metal frame using wire bonding. The DA paste is applied to the third die, and a fourth die is disposed on the DA paste and solidified to the third die. The fourth die is coupled to the metal frame using wire bonding.

在方法(C)中,將晶粒附接膜(DAF)切割並按壓至一底部晶粒,且然後將一頂部晶粒放置並熱壓縮至DAF上。舉例而言,將一DAF按壓至第一晶粒,且將一第二晶粒熱壓縮至DAF上。使用導線接合將第二晶粒耦合至金屬框架。類似地,將一DAF按壓至第二晶粒且將一第三晶粒熱壓縮至DAF上。使用導線接合將第三晶粒耦合至金屬框架。將一DAF按壓至第三晶粒且將一第四晶粒熱壓縮至DAF上。使用導線接合將第四晶粒耦合至金屬框架。In method (C), a die attach film (DAF) is cut and pressed to a bottom die, and a top die is then placed and heat compressed onto the DAF. For example, a DAF is pressed onto a first die, and a second die is thermally compressed onto the DAF. The second die is coupled to the metal frame using wire bonding. Similarly, a DAF is pressed to the second die and a third die is thermally compressed onto the DAF. The third die is coupled to the metal frame using wire bonding. A DAF is pressed onto the third die and a fourth die is heat compressed onto the DAF. The fourth die is coupled to the metal frame using wire bonding.

在方法(D)中,導線上膜(FOW)採用具有導線穿透能力之一晶粒附接膜,其允許相同或類似大小的導線接合晶粒彼此直接堆疊而無需被動矽間隔件。將一第二晶粒堆疊式地接合並固化至第一晶粒。使用導線上膜接合將第二晶粒耦合至金屬框架。將一第三晶粒堆疊式地接合並固化至第一晶粒。使用導線上膜接合將第三晶粒耦合至金屬框架。將一第四晶粒堆疊式地接合並固化至第一晶粒。使用導線上膜接合將第四晶粒耦合至金屬框架。In method (D), the film-on-wire (FOW) employs a die attach film with wire penetrating capabilities that allows same or similar sized wire bond dies to be stacked directly on top of each other without the need for passive silicon spacers. A second die is stacked and bonded to the first die. The second die is coupled to the metal frame using over-wire bonding. A third die is stacked and bonded to the first die. The third die is coupled to the metal frame using over-wire bonding. A fourth die is stacked and bonded to the first die. The fourth die is coupled to the metal frame using over-wire bonding.

在完成上述步驟之後,在每一方法(a)至(d)中,執行晶圓模塑及模塑後固化 (PMC)。隨後,執行植球及單粒化。After completing the above steps, in each method (a) to (d), wafer molding and post-molding curing (PMC) are performed. Subsequently, ball planting and single graining are performed.

美國弗羅裡達(2008年5月27日至30日)第58期Electronic Components and Technology Conference (ECTC2008)第1538至1543頁的TOH CH等人的「Die Attach Adhesives for 3D Same-Sized Dies Stacked Packages」中提供了上述晶粒附件技術之其他細節,該文獻之全部內容明確併入本案供參考。"Die Attach Adhesives for 3D Same-Sized Dies Stacked Packages" by TOH CH et al., pages 1538 to 1543 of the 58th Electronic Components and Technology Conference (ECTC2008), Florida, USA (May 27-30, 2008) Additional details of the die attachment technology described above are provided in "The entire contents of this document are expressly incorporated by reference into this application."

圖16係一多晶片模組1600之一示意性側視圖,多晶片模組1600包含以一垂直堆疊組態垂直地整合於一基板1614上之一TR晶片1602、一放大器晶片1604及一波束成形器晶片1606。可使用圖12至圖15中所圖解說明之任何適合技術來製作該多晶片模組。熟習此項技術者將認識到,在其他實施例中晶片堆疊之特定次序可有所不同。提供第一間隔件層1608及第二間隔件層1610來間隔開晶片1602、1604、1606。每一晶片耦合至一金屬框架(例如,一引線框架) 1612。在某些例示性實施例中,可在多晶片模組中設置傳熱及散熱機構以維持高溫可靠性加應力,消除塊體故障。圖16之其他組件已參考圖12及圖14予以闡述。Figure 16 is a schematic side view of a multi-chip module 1600. The multi-chip module 1600 includes a TR chip 1602, an amplifier chip 1604 and a beamformer vertically integrated on a substrate 1614 in a vertical stacking configuration. device chip 1606. The multi-chip module may be fabricated using any suitable technique illustrated in Figures 12-15. Those skilled in the art will recognize that the specific order of die stacking may vary in other embodiments. A first spacer layer 1608 and a second spacer layer 1610 are provided to separate the wafers 1602, 1604, 1606. Each die is coupled to a metal frame (eg, a lead frame) 1612 . In some exemplary embodiments, heat transfer and heat dissipation mechanisms can be provided in multi-chip modules to maintain high temperature reliability and stress, and eliminate block failures. Other components of Figure 16 have been described with reference to Figures 12 and 14 .

在此例示性實施例中,每一多晶片模組可針對大數目個通道(例如,32個通道)處置完整的傳輸、接收、TGC放大及波束成形操作。藉由將三個矽晶片垂直地整合至一單個多晶片模組中,印刷電路板所需之空間及佔用面積得以進一步減小。可將複數個多晶片模組設置於一單個超音波引擎電路板上以在將封裝大小及佔用面積最小化的同時進一步增大通道數目。舉例而言,128通道型超音波引擎電路板108可被製作於約10 cm ×約10 cm之例示性平面尺寸內,此係對習用超音波電路之空間要求之一顯著改良。在較佳實施例中,包含一或多個多晶片模組之一超音波引擎之一單個電路板可具有16個至128個通道。在一些實施例中,包含一或多個多晶片模組之一超音波引擎之一單個電路板可具有16個、32個、64個、128個通道等。In this exemplary embodiment, each multi-chip module can handle complete transmit, receive, TGC amplification and beamforming operations for a large number of channels (eg, 32 channels). By vertically integrating three silicon dies into a single multi-chip module, the required space and footprint of the printed circuit board can be further reduced. Multiple multi-chip modules can be placed on a single ultrasonic engine circuit board to further increase the number of channels while minimizing package size and footprint. For example, the 128-channel ultrasonic engine circuit board 108 can be fabricated within an exemplary planar dimension of about 10 cm by about 10 cm, which is a significant improvement over the space requirements of conventional ultrasonic circuits. In preferred embodiments, a single circuit board containing an ultrasonic engine of one or more multi-chip modules may have 16 to 128 channels. In some embodiments, a single circuit board containing an ultrasonic engine of one or more multi-chip modules may have 16, 32, 64, 128 channels, etc.

圖17係提供為一單板式完整超音波系統的超音波引擎108 (亦即,前端超音波特殊電路系統)之一例示性實施例及電腦主機板106 (亦即,主機電腦)之一例示性實施例的一詳細示意性方塊圖。圖17中所圖解說明之一例示性單板式超音波系統可具有約25 cm × 約18 cm之例示性平面尺寸,但可存在其他尺寸。圖17之單板式完整超音波系統可實施於圖1、圖2A、圖2B及圖9A中所圖解說明之超音波裝置中,且可用於執行圖3至圖8、圖9B及圖10中所繪示之操作。FIG. 17 provides an illustrative embodiment of an ultrasound engine 108 (ie, front-end ultrasound special circuit system) and an illustrative computer motherboard 106 (ie, host computer) as a single-board complete ultrasound system. A detailed schematic block diagram of an embodiment. An exemplary single-panel ultrasound system illustrated in Figure 17 may have exemplary planar dimensions of approximately 25 cm by approximately 18 cm, although other dimensions may exist. The single-board complete ultrasound system of Figure 17 can be implemented in the ultrasound device illustrated in Figures 1, 2A, 2B, and 9A, and can be used to perform the tasks shown in Figures 3-8, 9B, and 10 The operation of drawing.

超音波引擎108包含一探針連接器114以便於連接至少一個超音波探針/換能器。在超音波引擎108中,一TR模組、一放大器模組及一波束成形器模組可經垂直堆疊以形成圖16中所展示之一多晶片模組,藉此將超音波引擎108之總封裝大小及佔用面積最小化。超音波引擎108可包含一第一多晶片模組1710及一第二多晶片模組1712,該兩個多晶片模組各自包含垂直地整合成圖16中所展示之一堆疊組態之一TR晶片、一超音波脈衝器與接收器、包含一時間增益控制放大器之一放大器晶片及一樣本資料波束成形器晶片。第一多晶片模組1710及第二多晶片模組1712可彼此垂直地堆疊以將在電路板上所需之面積進一步最小化。另一選擇係,第一多晶片模組1710及第二多晶片模組1712可水平地安置於電路板上。在一例示性實施例中,TR晶片、放大器晶片及波束成形器晶片各自係一32通道晶片,且每一多晶片模組1710、1712具有32個通道。熟習此項技術者將認識到,例示性超音波引擎108可包含但不限於一個、兩個、三個、四個、五個、六個、七個、八個多晶片模組。注意,在一較佳實施例中,系統可組態有位於換能器殼體中之一第一波束成形器及位於平板電腦殼體中之一第二波束成形器。The ultrasound engine 108 includes a probe connector 114 to facilitate connection of at least one ultrasound probe/transducer. In the ultrasonic engine 108, a TR module, an amplifier module, and a beamformer module can be vertically stacked to form a multi-chip module as shown in Figure 16, thereby integrating the overall structure of the ultrasonic engine 108. Package size and footprint are minimized. The ultrasonic engine 108 may include a first multi-chip module 1710 and a second multi-chip module 1712 that each include a TR vertically integrated into a stacked configuration as shown in Figure 16 chip, an ultrasonic pulser and receiver, an amplifier chip including a temporal gain control amplifier, and a sample data beamformer chip. The first multi-chip module 1710 and the second multi-chip module 1712 may be vertically stacked on each other to further minimize the area required on the circuit board. Alternatively, the first multi-chip module 1710 and the second multi-chip module 1712 can be placed horizontally on the circuit board. In an exemplary embodiment, the TR chip, amplifier chip, and beamformer chip are each a 32-channel chip, and each multi-chip module 1710, 1712 has 32 channels. Those skilled in the art will recognize that the exemplary ultrasonic engine 108 may include, but is not limited to, one, two, three, four, five, six, seven, or eight multi-chip modules. Note that in a preferred embodiment, the system may be configured with a first beamformer located in the transducer housing and a second beamformer located in the tablet housing.

ASIC及多晶片模組組態使得能夠將一128通道型完整超音波系統實施於一平板電腦格式大小之一小巧單個板上。舉例而言,一例示性128通道型超音波引擎108可容納於約10 cm ×約10 cm之例示性平面尺寸內,此係對習用超音波電路之空間要求之一顯著改良。一例示性128通道型超音波引擎108亦可容納於約一100 cm2 例示性面積內。ASIC and multi-chip module configurations enable the implementation of a complete 128-channel ultrasound system on a small, single board the size of a tablet computer format. For example, an exemplary 128-channel ultrasonic engine 108 can be accommodated within exemplary planar dimensions of about 10 cm by about 10 cm, which is a significant improvement over the space requirements of conventional ultrasound circuits. An exemplary 128-channel ultrasonic engine 108 may also be accommodated within an exemplary area of approximately 100 cm2 .

超音波引擎108亦包含用於產生計時時脈之一時脈產生複雜可程式化邏輯裝置(CPLD) 1714,該等計時時脈用於使用換能器陣列執行一超音波掃描。超音波引擎108包含一類比轉數位轉換器(ADC) 1716,類比轉數位轉換器1716用於將自換能器陣列接收到之類比超音波信號轉換成數位RF成形波束。超音波引擎108亦包含一或多個延遲分佈與波形產生器現場可程式化閘陣列(FPGA) 1718,該(等)延遲分佈與波形產生器現場可程式化閘陣列(FPGA) 1718用於管理接收延遲分佈且產生傳輸波形。超音波引擎108包含一記憶體1720,記憶體1720用於儲存用於超音波掃描之延遲分佈。一例示性記憶體1720可係一單個DDR3記憶體晶片。超音波引擎108包含一掃描序列控制現場可程式化閘陣列(FPGA) 1722,掃描序列控制現場可程式化閘陣列1722經組態以管理超音波掃描序列、傳輸/接收時序、往來於記憶體1720之分佈儲存/提取、以及數位RF資料串流之緩衝及數位RF資料串流經由一高速串列介面112去往電腦主機板106之移動。高速串列介面112包含電腦主機板106與超音波引擎108之間的火線或其他串列或並列匯流排介面。超音波引擎108包含用以建立並維持通信鏈路112之一通信晶片組1118 (例如,一火線晶片組)。The ultrasound engine 108 also includes a clock generation complex programmable logic device (CPLD) 1714 for generating timing clocks for performing an ultrasound scan using the transducer array. The ultrasound engine 108 includes an analog-to-digital converter (ADC) 1716 for converting analog ultrasound signals received from the transducer array into digital RF shaped beams. The ultrasonic engine 108 also includes one or more delay profile and waveform generator field programmable gate arrays (FPGAs) 1718 for management. The delay profile is received and a transmission waveform is generated. The ultrasound engine 108 includes a memory 1720 for storing delay profiles for ultrasound scanning. An exemplary memory 1720 may be a single DDR3 memory chip. The ultrasound engine 108 includes a scan sequence control field programmable gate array (FPGA) 1722 configured to manage ultrasound scan sequences, transmit/receive timing, and to and from memory 1720 Distributed storage/retrieval, buffering of the digital RF data stream and movement of the digital RF data stream to the computer motherboard 106 through a high-speed serial interface 112. The high-speed serial interface 112 includes a FireWire or other serial or parallel bus interface between the computer motherboard 106 and the ultrasonic engine 108 . Ultrasonic engine 108 includes a communications chipset 1118 (eg, a FireWire chipset) for establishing and maintaining communications link 112.

提供一電力模組1724以為超音波引擎108供電,管理一電池充電環境且執行電力管理操作。電力模組1724可為超音波電路系統產生經調節低雜訊電力且可為TR模組中之超音波傳輸脈衝器產生高電壓。A power module 1724 is provided to power the ultrasonic engine 108, manage a battery charging environment and perform power management operations. The power module 1724 can generate regulated low-noise power for the ultrasound circuit system and can generate high voltage for the ultrasound transmission pulser in the TR module.

電腦主機板106包含一核心電腦可讀記憶體1122,該核心電腦可讀記憶體1122用於儲存用於執行超音波成像操作之資料及/或電腦可執行指令。記憶體1122形成電腦之主記憶體,且在一例示性實施例中可儲存約4 Gb之DDR3記憶。記憶體1122可包含用於儲存一作業系統、電腦可執行指令、程式及影像資料之一固態硬碟機(SSD)。一例示性SSD可具有約128 GB之一容量。The computer motherboard 106 includes a core computer readable memory 1122 for storing data and/or computer executable instructions for performing ultrasound imaging operations. Memory 1122 forms the computer's main memory and can store approximately 4 Gb of DDR3 memory in an exemplary embodiment. Memory 1122 may include a solid state drive (SSD) for storing an operating system, computer-executable instructions, programs, and image data. An exemplary SSD may have a capacity of approximately 128 GB.

電腦主機板106亦包含一微處理器1124,微處理器1124用於執行儲存於核心電腦可讀記憶體1122上之電腦可執行指令以執行超音波成像處理操作。例示性操作包含但不限於降頻轉換、掃描轉換、都卜勒處理、彩色血流處理、功率都卜勒處理、頻譜都卜勒處理及後信號處理。一例示性微處理器1124可係一現成商用電腦處理器,諸如一Intel Core-i5處理器。另一例示性微處理器1124可係一數位信號處理器(DSP)型處理器,諸如德州儀器之DaVinciTM 處理器。The computer motherboard 106 also includes a microprocessor 1124, which is used to execute computer-executable instructions stored in the core computer-readable memory 1122 to perform ultrasound imaging processing operations. Exemplary operations include, but are not limited to, down conversion, scan conversion, Doppler processing, color flow processing, power Doppler processing, spectral Doppler processing, and post-signal processing. An exemplary microprocessor 1124 may be an off-the-shelf computer processor, such as an Intel Core-i5 processor. Another exemplary microprocessor 1124 may be a digital signal processor (DSP) type processor, such as the DaVinci processor from Texas Instruments.

電腦主機板106包含一輸入/輸出(I/O)與圖形晶片組1704,輸入/輸出(I/O)與圖形晶片組1704包含一共處理器,該共處理器經組態以控制I/O及圖形周邊器件(諸如USB埠、視訊顯示器埠等)。電腦主機板106包含經組態以提供一無線網路連接之一無線網路配接器1702。一例示性配接器1702支援802.11g及802.11n標準。電腦主機板106包含一顯示器控制器1126,顯示器控制器1126經組態以將電腦主機板106介接至顯示器104。電腦主機板106包含一通信晶片組1120 (例如,一火線晶片組或介面),通信晶片組1120經組態以提供電腦主機板106與超音波引擎108之間的一快速資料通信。一例示性通信晶片組1120可係一IEEE 1394b 800百萬位元/秒之介面。可替代地提供其他串列或並列介面1706,諸如USB3、Thunder-Bolt、PCIe等。提供一電力模組1708以為電腦主機板106供電,管理一電池充電環境且執行電力管理操作。The computer motherboard 106 includes an input/output (I/O) and graphics chipset 1704 that includes a coprocessor configured to control the I/O. and graphics peripherals (such as USB ports, video display ports, etc.). Computer motherboard 106 includes a wireless network adapter 1702 configured to provide a wireless network connection. An exemplary adapter 1702 supports the 802.11g and 802.11n standards. The computer motherboard 106 includes a display controller 1126 configured to interface the computer motherboard 106 to the display 104 . Computer motherboard 106 includes a communications chipset 1120 (eg, a FireWire chipset or interface) configured to provide a fast data communication between computer motherboard 106 and ultrasound engine 108 . An exemplary communications chipset 1120 may be an IEEE 1394b 800 Mbit/s interface. Other serial or parallel interfaces 1706 may be provided instead, such as USB3, Thunder-Bolt, PCIe, etc. A power module 1708 is provided to power the computer motherboard 106, manage a battery charging environment and perform power management operations.

一例示性電腦主機板106可容納於約12 cm ×約10 cm之例示性平面尺寸內。一例示性電腦主機板106可容納於約120 cm2 之一例示性面積內。An exemplary computer motherboard 106 may fit within exemplary planar dimensions of about 12 cm by about 10 cm. An exemplary computer motherboard 106 may be accommodated within an exemplary area of approximately 120 cm 2 .

圖18係根據例示性實施例提供之一例示性可移動超音波系統100之一透視圖。系統100包含一殼體102,殼體102呈圖18中所圖解說明之一平板電腦外觀尺寸,但可呈任何其他適合外觀尺寸。一例示性殼體102之一厚度可低於2 cm且較佳地介於0.5 cm與1.5 cm之間。殼體102之一前面板包含一多點觸控式LCD觸控螢幕顯示器104,顯示器104經組態以辨識並區分觸控螢幕顯示器104之一表面上之一或多次多點觸控及/或同時觸控。可使用一使用者手指、一使用者手或一選用性觸控筆1802中之一或多者來觸控顯示器104之表面。殼體102包含一或多個I/O埠連接器116,I/O埠連接器116可包含但不限於一或多個USB連接器、一或多個SD卡、一或多個網路迷你顯示器埠以及一DC電力輸入。圖18中之殼體102之實施例亦可被組態成在一手提外觀尺寸內,該外觀尺寸具有150 mm × 100 mm × 15 mm (225000 mm3 之一體積)或更小之尺寸。殼體102可具有小於200 g之一重量。視情況,換能器陣列與顯示器殼體之間的佈纜可包含本文中所闡述之介面電路系統1020。舉例而言,介面電路系統1020可包含在自平板電腦懸掛之盒中之波束成形電路系統及/或A/D電路系統。單獨連接器1025、1027可用於將懸掛盒連接至換能器探針纜線。連接器1027可包含本文中所闡述之探針識別電路系統。單元102可包含一相機、一麥克風及一揚聲器以及用於進行語音及資料通信之無線電話電路系統及語音啟動式軟體,該語音啟動式軟體可用於控制本文中所闡述之超音波成像操作。Figure 18 is a perspective view of an exemplary mobile ultrasound system 100 provided in accordance with an exemplary embodiment. The system 100 includes a housing 102 in one of the tablet computer form factors illustrated in Figure 18, but may be in any other suitable form factor. An exemplary housing 102 may have a thickness less than 2 cm and preferably between 0.5 cm and 1.5 cm. A front panel of the housing 102 contains a multi-touch LCD touch screen display 104 configured to recognize and distinguish one or more multi-touch and/or Or touch simultaneously. The surface of display 104 may be touched using one or more of a user's finger, a user's hand, or an optional stylus 1802 . The housing 102 includes one or more I/O port connectors 116. The I/O port connectors 116 may include, but are not limited to, one or more USB connectors, one or more SD cards, one or more network mini display port and a DC power input. The embodiment of the housing 102 in Figure 18 may also be configured in a handheld form factor having dimensions of 150 mm × 100 mm × 15 mm (a volume of 225,000 mm3 ) or less. Housing 102 may have a weight of less than 200 g. Optionally, the cabling between the transducer array and the display housing may include the interface circuitry 1020 described herein. For example, interface circuitry 1020 may include beamforming circuitry and/or A/D circuitry in a box suspended from the tablet. Separate connectors 1025, 1027 can be used to connect the suspension box to the transducer probe cable. Connector 1027 may include probe identification circuitry as described herein. Unit 102 may include a camera, a microphone, and a speaker as well as wireless telephone circuitry for voice and data communications and voice-activated software that may be used to control the ultrasound imaging operations described herein.

殼體102包含或耦合至便於連接至少一個超音波探針/換能器150之一探針連接器114。超音波探針150包含一換能器殼體,該換能器殼體包含一或多個換能器陣列152。可使用沿著一撓性纜線1806設置之一殼體連接器1804將超音波探針150耦合至探針連接器114。熟習此項技術者將認識到,可使用任何其他適合機構(舉例而言,一介面殼體)將超音波探針150耦合至殼體102,該介面殼體包含用於執行如波束成形等超音波特定操作之電路系統。2003年3月11日提出申請之標題為「Ultrasound Probe with Integrated Electronics」之WO 03/079038 A2中詳細地闡述了超音波系統之其他例示性實施例,該專利之全部內容明確併入本案供參考。較佳實施例可採用手持式換能器探針150與顯示器殼體之間的一無線連接。可將波束成形器電子裝置併入至探針殼體150中以使本文中所闡述之一1D或2D換能器陣列中之子陣列實現波束成形。顯示器殼體可經設定大小以握持於使用者手之手掌中,且可包含與公共存取網路(諸如網際網路)之無線網路連接性。Housing 102 contains or is coupled to a probe connector 114 that facilitates connection of at least one ultrasound probe/transducer 150 . Ultrasonic probe 150 includes a transducer housing that includes one or more transducer arrays 152 . Ultrasonic probe 150 may be coupled to probe connector 114 using a housing connector 1804 disposed along a flexible cable 1806 . Those skilled in the art will recognize that any other suitable mechanism may be used to couple the ultrasonic probe 150 to the housing 102, such as an interface housing that includes means for performing ultrasound, such as beamforming. Circuit system for specific operation of sound waves. Other exemplary embodiments of ultrasound systems are described in detail in WO 03/079038 A2, filed on March 11, 2003, entitled "Ultrasound Probe with Integrated Electronics", the entire contents of which are expressly incorporated herein by reference. . Preferred embodiments may employ a wireless connection between the handheld transducer probe 150 and the display housing. Beamformer electronics may be incorporated into the probe housing 150 to enable beamforming of a sub-array of one of the ID or 2D transducer arrays described herein. The display housing may be sized to fit in the palm of a user's hand and may include wireless network connectivity to a public access network, such as the Internet.

圖19圖解說明呈現於圖18之可移動超音波系統100之觸控螢幕顯示器104上之一主圖形使用者介面(GUI) 1900之一例示性視圖。當起動超音波系統100時,可顯示主GUI 1900。為輔助一使用者瀏覽主GUI 1900,GUI可被視為包含四個例示性工作區:一選單列1902、一影像顯示視窗1904、一影像控制列1906及一工具列1908。可在主GUI 1900上設置額外GUI組件以例如使得一使用者能夠關閉、改變大小及退出GUI及/或GUI中之視窗。Figure 19 illustrates an exemplary view of the main graphical user interface (GUI) 1900 presented on the touch screen display 104 of the mobile ultrasound system 100 of Figure 18. When the ultrasound system 100 is started, the main GUI 1900 may be displayed. To assist a user in navigating the main GUI 1900, the GUI may be considered to include four exemplary workspaces: a menu bar 1902, an image display window 1904, an image control bar 1906, and a toolbar 1908. Additional GUI components may be provided on the main GUI 1900 to, for example, enable a user to close, resize, and exit the GUI and/or windows within the GUI.

選單列1902使得一使用者能夠選擇超音波資料、影像及/或視訊以在影像顯示視窗1904中進行顯示。舉例而言,選單列1902可包含用於選擇一患者資料夾目錄及一影像資料夾目錄中之一或多個檔案的GUI組件。影像顯示視窗1904顯示超音波資料、影像及/或視訊,且可視情況提供患者資訊。工具列1908提供與一影像顯示或視訊顯示相關聯之功能性,該等功能性包含但不限於:一保存按鈕,其用於將當前影像及/或視訊保存至一檔案;一保存循環按鈕,其保存一最大允許數目的先前圖框作為一畫面循環;一列印按鈕,其用於列印當前影像;一凍結影像按鈕,其用於凍結一影像;一回放工具列,其用於控制一畫面循環之回放態樣等。2003年3月11日提出申請的標題為「Ultrasound Probe with Integrated Electronics」WO 03/079038 A2中詳細地闡述了可提供於主GUI 1900中之例示性GUI功能性,該專利之全部內容明確併入本案供參考。Menu bar 1902 enables a user to select ultrasound data, images and/or videos for display in image display window 1904 . For example, menu bar 1902 may include a GUI component for selecting one or more files in a patient folder directory and an image folder directory. The image display window 1904 displays ultrasound data, images and/or videos, and optionally provides patient information. Toolbar 1908 provides functionality associated with an image display or video display, which functionality includes, but is not limited to: a save button for saving the current image and/or video to a file; a save loop button, It saves a maximum allowed number of previous frames as a frame loop; a print button for printing the current image; a freeze image button for freezing an image; a playback toolbar for controlling a frame Loop playback modes, etc. Exemplary GUI functionality that may be provided in the main GUI 1900 is described in detail in WO 03/079038 A2, filed March 11, 2003, the entire contents of which is expressly incorporated by reference. This case is for reference only.

影像控制列1906包含可由一使用者直接施加至顯示器104之表面之觸控及觸控手勢來操作的觸控控制。例示性觸控控制可包含但不限於一2D觸控控制408、一增益觸控控制410、一色彩觸控控制412、一儲存裝置觸控控制414、一分割觸控控制416、一PW成像觸控控制418、一波束操縱觸控控制420、一註解觸控控制422、一動態範圍操作觸控控制424、一TeravisionTM 觸控控制426、一圖操作觸控控制428及一針引導件觸控控制428。結合圖4a至圖4c詳細地闡述此等例示性觸控控制。Image control column 1906 includes touch controls operable by touch and touch gestures that a user applies directly to the surface of display 104 . Exemplary touch controls may include, but are not limited to, a 2D touch control 408, a gain touch control 410, a color touch control 412, a storage device touch control 414, a split touch control 416, a PW imaging touch control 418, a beam steering touch control 420, an annotation touch control 422, a dynamic range operation touch control 424, a Teravision TM touch control 426, a picture operation touch control 428, and a needle guide touch Control 428. These exemplary touch controls are described in detail in conjunction with Figures 4a-4c.

圖20A繪示根據本發明的實施為一平板電腦外觀尺寸之例示性醫療超音波成像裝備2000之一說明性實施例。平板電腦可具有12.5" × 1.25"× 8.75"或31.7 cm × 3.175 cm × 22.22 cm之尺寸,但其亦可呈一體積小於2500 cm3 及一重量小於8磅之任何其他適合外觀尺寸。如圖20中所展示,醫療超音波成像裝備2000包含一殼體2030、一觸控螢幕顯示器2010,其中可顯示超音波影像及超音波資料2040,且超音波控制2020經組態以由一觸控螢幕顯示器2010控制。殼體2030可具有一前面板2060及一後面板2070。觸控螢幕顯示器2010形成前面板2060且包含一多點觸控式LCD觸控螢幕,該多點觸控式LCD觸控螢幕可辨識並區分使用者在觸控螢幕顯示器2010上之一或多次多點觸控或同時觸控。觸控螢幕顯示器2010可具有一電容性多點觸控與AVAH LCD螢幕。舉例而言,電容性多點觸控與AVAH LCD螢幕可使得一使用者能夠自多角度查看影像而不會損失解析度。在另一實施例中,使用者可利用一觸控筆在觸控螢幕上輸入資料。平板電腦可包含一整合式可摺疊支架,該整合式可摺疊支架准許一使用者自與平板電腦外觀尺寸相符之一儲存裝置位置轉動該支架,使得裝置可平躺於後面板上,或另一選擇係,使用者可轉動該支架以使得平板電腦相對於一支撐表面以複數個傾斜角度中的一者而立在一直立位置處。20A illustrates an illustrative embodiment of an exemplary medical ultrasound imaging device 2000 implemented in a tablet form factor in accordance with the present invention. The tablet may have dimensions of 12.5" × 1.25" × 8.75" or 31.7 cm × 3.175 cm × 22.22 cm, but it may also have any other suitable form factor with a volume less than 2500 cm3 and a weight less than 8 pounds. As shown in the figure As shown in 20, the medical ultrasound imaging equipment 2000 includes a housing 2030 and a touch screen display 2010, which can display ultrasound images and ultrasound data 2040, and the ultrasound control 2020 is configured to be controlled by a touch screen Display 2010 controls. Housing 2030 may have a front panel 2060 and a rear panel 2070. Touch screen display 2010 forms front panel 2060 and includes a multi-touch LCD touch screen. The screen can recognize and distinguish one or more multi-touch or simultaneous touches by the user on the touch screen display 2010. The touch screen display 2010 can have a capacitive multi-touch and AVAH LCD screen. For example , capacitive multi-touch and AVAH LCD screens allow a user to view images from multiple angles without losing resolution. In another embodiment, the user can use a stylus to input on the touch screen Information. The tablet computer may include an integrated foldable stand that allows a user to rotate the stand from a storage device position that matches the external dimensions of the tablet computer so that the device lies flat on the rear panel, or Alternatively, the user can rotate the stand so that the tablet stands in an upright position at one of a plurality of tilt angles relative to a support surface.

電容性觸控螢幕模組包括塗佈有一透明導體(諸如,氧化銦錫)之一絕緣體(舉例而言,玻璃)。製造程序可包含玻璃、x感測器膜、y感測器膜及一液晶材料之間的一接合處理。平板電腦經組態以允許一使用者在戴著一乾手套或一濕手套時執行多點觸控手勢,諸如捏縮及張開。螢幕之表面套準與螢幕接觸之電導體。接觸使螢幕靜電場發生畸變,從而導致電容發生可量測的改變。然後,一處理器解釋靜電場之改變。藉由減少層且利用「熱室內」技術生產觸控螢幕來達成增加回應位準。「熱室內」技術藉由將電容器放置於顯示器內部來去除若干層。應用「熱室內」技術減小使用者手指與觸控螢幕目標之間的視覺距離,藉此形成與所顯示之內容之一更針對性接觸且使得對點選及手勢之回應性增大。Capacitive touch screen modules include an insulator (eg, glass) coated with a transparent conductor (such as indium tin oxide). The manufacturing process may include a bonding process between glass, x-sensor film, y-sensor film, and a liquid crystal material. The tablet is configured to allow a user to perform multi-touch gestures, such as pinching and pinching, while wearing a dry glove or a wet glove. The surface of the screen registers the electrical conductors in contact with the screen. Contact distorts the screen's electrostatic field, causing a measurable change in capacitance. A processor then interprets the changes in the electrostatic field. Increased response levels are achieved by reducing layers and using "hot chamber" technology to produce touch screens. "Hot chamber" technology removes several layers by placing capacitors inside the display. The application of "hot room" technology reduces the visual distance between the user's finger and the touch screen target, thereby forming a more targeted contact with one of the displayed content and increasing the responsiveness to clicks and gestures.

圖20A圖解說明具有一埠2080之一平板電腦系統2000,埠2080接收上面安裝有一SIM電路2084之一卡2082。Figure 20A illustrates a tablet computer system 2000 having a port 2080 that receives a card 2082 with a SIM circuit 2084 mounted thereon.

圖21圖解說明根據本發明之一模組化超音波成像系統之一較佳搬運車系統。搬運車系統2100使用一基座總成2122,基座總成2122包含接納平板電腦之一插接座。搬運車組態2100經組態以將包含一觸控螢幕顯示器2102之平板電腦2104插接至一搬運車2108,搬運車2108可包含一全操作員控制台2124。在將平板電腦2104插接至搬運車支架2108之後,系統形成一全特徵滾動式系統。全特徵滾動式系統可包含一可調整高度裝置2106、一凝膠固持器2110及一儲存箱2114、複數個輪2116、一熱探針固持器2120以及操作員控制台2124。控制裝置可包含在操作員控制台2124上之一鍵盤2112,操作員控制台2124亦可添加有其他周邊裝置,諸如一列印機或一視訊介面或其他控制裝置。Figure 21 illustrates a preferred truck system according to a modular ultrasound imaging system of the present invention. The truck system 2100 uses a base assembly 2122 that includes a socket for receiving a tablet computer. Truck configuration 2100 is configured to dock a tablet 2104 including a touch screen display 2102 to a truck 2108 which may include a full operator console 2124. After docking the tablet 2104 to the truck mount 2108, the system forms a fully featured rolling system. The fully featured rolling system may include an adjustable height device 2106, a gel holder 2110 and a storage bin 2114, wheels 2116, a thermal probe holder 2120, and an operator console 2124. The control device may include a keyboard 2112 on the operator console 2124. The operator console 2124 may also be equipped with other peripheral devices, such as a printer or a video interface or other control devices.

圖22圖解說明在實施例中與根據本發明之一模組化超音波成像系統搭配使用之一較佳搬運車系統。搬運車系統2200可組態有一垂直支撐部件2212,垂直支撐部件2212耦合至一水平支撐部件2028。具有用於輔助裝置附件2014之一位置之一輔助裝置連接器2018可經組態以連接至垂直支撐部件2212。一3埠探針MUX連接裝置2016亦可經組態以連接至平板電腦。一儲存箱2224可經組態以藉由一儲存箱附接機構2222附接至垂直支撐部件2212。搬運車系統亦可包含經組態以附接至垂直支撐部件之一繩索管理系統2226。搬運車總成2200包含支撐樑2212,支撐樑2212安裝於具有輪2232及一電池2230之一基座2228上,電池2230為平板電腦之擴展操作提供電力。該總成亦可包含與高度調整裝置2226安裝在一起之一配件固持器2224。固持器2210、2218可安裝於樑2212上或安裝於控制台面板2214上。多埠探針多工裝置2216連接至平板電腦以與數個換能器探針同時連接,使用者可利用所顯示之虛擬切換器來依序選擇該數個換能器探針。一移動觸控手勢(諸如,在所顯示影像上進行三手指拂動或觸控一所顯示虛擬按鈕或圖標)可在所連接探針之間切換。Figure 22 illustrates a preferred truck system for use with a modular ultrasound imaging system in accordance with the present invention, in an embodiment. The truck system 2200 may be configured with a vertical support member 2212 coupled to a horizontal support member 2028. An accessory connector 2018 having a location for an accessory accessory 2014 may be configured to connect to the vertical support member 2212 . A 3-port probe MUX connection device 2016 can also be configured to connect to a tablet. A storage bin 2224 may be configured to attach to the vertical support member 2212 via a storage bin attachment mechanism 2222. The truck system may also include a rope management system 2226 configured to attach to the vertical support members. The truck assembly 2200 includes a support beam 2212 mounted on a base 2228 having wheels 2232 and a battery 2230 that provides power for extended operations of the tablet computer. The assembly may also include an accessory holder 2224 mounted with the height adjustment device 2226. Retainers 2210, 2218 may be mounted on the beam 2212 or mounted on the console panel 2214. The multiport probe multiplexer 2216 is connected to the tablet computer to connect with several transducer probes simultaneously, and the user can select the several transducer probes sequentially using the displayed virtual switch. A mobile touch gesture, such as a three-finger flick on the displayed image or touching a displayed virtual button or icon, can switch between connected probes.

圖23A圖解說明用於根據本發明之一模組化超音波成像系統之較佳搬運車安裝系統。配置2300繪示耦合至插接站2304之平板電腦2302。插接站2304附著至附接機構2306。附接機構2306可包含一鉸接部件2308,鉸接部件2308允許使用者顯示器傾斜成一使用者所期望位置。附接機構2306附接至垂直部件2312。如本文中所闡述之一平板電腦2302可安裝於基座插接單元2304上,基座插接單元2304在樑2212之頂部上安裝至一安裝總成2306。基座單元2304包含搖台2310、電連接器2305及一埠2307,埠2307將系統2302連接至電池2230及多工器裝置2216。Figure 23A illustrates a preferred truck mounting system for a modular ultrasound imaging system in accordance with the present invention. Configuration 2300 shows tablet computer 2302 coupled to docking station 2304. Docking station 2304 is attached to attachment mechanism 2306. Attachment mechanism 2306 may include a hinge component 2308 that allows the user to tilt the display into a user-desired position. Attachment mechanism 2306 attaches to vertical member 2312. A tablet computer 2302 as described herein may be mounted on a base docking unit 2304 that is mounted to a mounting assembly 2306 on top of the beam 2212. Base unit 2304 includes a cradle 2310, electrical connectors 2305, and a port 2307 that connects system 2302 to battery 2230 and multiplexer device 2216.

圖23B圖解說明一SIM卡2084插入至單元2304中之一卡安裝系統。Figure 23B illustrates a SIM card 2084 inserted into a card installation system in unit 2304.

圖24圖解說明根據本發明之較佳搬運車系統2400模組化超音波成像系統,其中平板電腦2402連接於具有連接器2404之安裝總成2406上。配置2400繪示平板電腦2402,平板電腦2402經由不具有插接元件2304之附接機構2404耦合至垂直支撐部件2408。附接機構2404可包含用於進行顯示器調整之一鉸接部件2406。Figure 24 illustrates a preferred truck system 2400 modular ultrasound imaging system in which a tablet computer 2402 is connected to a mounting assembly 2406 having a connector 2404 in accordance with the present invention. Configuration 2400 depicts tablet computer 2402 coupled to vertical support member 2408 via attachment mechanism 2404 without plug element 2304 . Attachment mechanism 2404 may include a hinge 2406 for display adjustment.

圖25A及圖25B圖解說明一多功能插接站。圖25A圖解說明插接站2502及具有一基座總成2506之平板電腦2504,基座總成2506配接至插接站2502。平板電腦2504與插接站2502可電連接。可藉由將平板電腦2504與釋放機構2508嚙合自插接站2502釋放平板電腦2504。插接站2502可含有用於連接一換能器探針2510之一換能器埠2512。插接站2502可含有3個USB 3.0埠、一LAN埠、一耳機插孔及用於充電之一電力連接器。圖25B圖解說明根據本發明之較佳實施例之平板電腦2504及插接站2502之一側視圖,插接站2502具有一支架。插接站可包含一可調整支架/手柄2526。可調整支架/手柄2526可傾斜以實現多種查看角度。可調整支架/手柄2526可向上翻以達成運輸目的。側視圖亦圖解說明一換能器埠2512及一換能器探針連接器2510。Figures 25A and 25B illustrate a multifunctional docking station. Figure 25A illustrates a docking station 2502 and a tablet computer 2504 having a base assembly 2506 mated to the docking station 2502. Tablet computer 2504 and docking station 2502 may be electrically connected. Tablet 2504 may be released from docking station 2502 by engaging tablet 2504 with release mechanism 2508. Docking station 2502 may contain a transducer port 2512 for connecting a transducer probe 2510. Docking station 2502 may contain three USB 3.0 ports, a LAN port, a headphone jack, and a power connector for charging. Figure 25B illustrates a side view of a tablet computer 2504 and a docking station 2502 having a stand in accordance with a preferred embodiment of the present invention. The docking station may include an adjustable bracket/handle 2526. The adjustable stand/handle 2526 tilts for a variety of viewing angles. Adjustable stand/handle 2526 flips up for transportation purposes. The side view also illustrates a transducer port 2512 and a transducer probe connector 2510.

圖26圖解說明根據本發明之一模組化超音波成像系統之一2D成像操作模式。平板電腦2504之觸控螢幕可顯示由二維換能器探針使用一256個數位波束成形器通道獲得之影像。二維影像視窗2602繪示一個二維影像掃描2604。二維影像可使用靈活頻率掃描2606來獲得,其中控制參數表示於平板電腦上。Figure 26 illustrates a 2D imaging operating mode of a modular ultrasound imaging system in accordance with the present invention. The touch screen of tablet 2504 can display images obtained by a two-dimensional transducer probe using a 256 digital beamformer channel. 2D image window 2602 illustrates a 2D image scan 2604. Two-dimensional images can be obtained using flexible frequency scanning 2606, with control parameters represented on the tablet.

圖27圖解說明根據本發明之一模組化超音波成像系統之一運動操作模式。平板電腦2700之觸控螢幕顯示器可顯示藉由一運動操作模式獲得之影像。平板電腦2700之觸控螢幕顯示器可同時顯示二維2706及運動模式成像2708。平板電腦2700之觸控螢幕顯示器可顯示一個二維影像視窗2704,二維影像視窗2704具有一個二維影像2706。利用圖形使用者介面顯示之靈活頻率控制2702可用於將頻率自2百萬赫調整至12百萬赫。Figure 27 illustrates a motion operating mode of a modular ultrasound imaging system in accordance with the present invention. The touch screen display of the tablet computer 2700 can display images obtained through a motion operation mode. The touch screen display of tablet computer 2700 can display two-dimensional 2706 and motion mode imaging 2708 simultaneously. The touch screen display of the tablet computer 2700 can display a two-dimensional image window 2704, and the two-dimensional image window 2704 has a two-dimensional image 2706. The flexible frequency control 2702 using the graphical user interface display can be used to adjust the frequency from 2 MHz to 12 MHz.

圖28圖解說明根據本發明之一模組化超音波成像系統之一彩色都卜勒操作模式。平板電腦2800之觸控螢幕顯示器顯示藉由彩色都卜勒操作模式獲得之影像。一個二維影像視窗2806用作主顯示器。色彩編碼資訊2808覆疊於二維影像2810上。自所傳輸信號之所接收到回波導出紅色血液細胞之基於超音波之成像。回波信號之主要特性係頻率及振幅。振幅取決於由超音波波束取樣之容積內之移動血液量。可透過顯示器調整一高圖框速率或高解析度以控制掃描品質。較高頻率可由迅速血流產生且可以淺色來顯示,而較低頻率以暗色顯示。靈活頻率控制2804及彩色都卜勒掃描資訊2802可顯示於平板電腦顯示器2800上。Figure 28 illustrates a color Doppler operating mode of a modular ultrasound imaging system in accordance with the present invention. The touch screen display of the tablet computer 2800 displays images obtained by the color Doppler mode of operation. A two-dimensional image window 2806 serves as the primary display. Color-coded information 2808 is overlaid on the two-dimensional image 2810. Ultrasound-based imaging of red blood cells is derived from the received echo of the transmitted signal. The main characteristics of the echo signal are frequency and amplitude. The amplitude depends on the amount of moving blood within the volume sampled by the ultrasound beam. Scan quality can be controlled through the monitor by adjusting a high frame rate or high resolution. Higher frequencies can result from rapid blood flow and can be shown in light colors, while lower frequencies are shown in dark colors. Flexible frequency control 2804 and color Doppler scan information 2802 can be displayed on the tablet computer display 2800.

圖29圖解說明根據本發明之一模組化超音波成像系統之一脈衝波都卜勒操作模式。平板電腦2900之觸控螢幕顯示器可顯示由脈衝波都卜勒操作模式獲得之影像。脈衝波都卜勒掃描產生一系列脈衝,該等脈衝用於分析在一小的區中血流沿著一所期望超音波游標之運動,該超音波游標被稱為樣本體積或樣本閘2912。平板電腦顯示器2900可繪示一個二維影像2902,樣本體積/樣本閘2012覆疊於二維影像2902中。平板電腦顯示器2900可使用一混合操作模式2906,以繪示一個二維影像2902及一時間/都卜勒頻移2910。若波束與血流之間的一適當角度係已知的,則可將時間/都卜勒頻移2910轉換成速度及血流。時間/都卜勒頻移2910中之灰色陰影2908可表示信號強度。頻譜信號之厚度可指示層流或紊流。平板電腦顯示器2900可繪示可調整頻率控制2904。Figure 29 illustrates a pulse wave Doppler mode of operation of a modular ultrasound imaging system in accordance with the present invention. The touch screen display of Tablet PC 2900 can display images obtained by pulse wave Doppler operation mode. Pulsed wave Doppler scanning generates a series of pulses that are used to analyze the movement of blood flow in a small area along a desired ultrasonic cursor, called a sample volume or sample gate 2912. The tablet display 2900 may display a two-dimensional image 2902 with the sample volume/sample gate 2012 overlaid in the two-dimensional image 2902 . The tablet display 2900 may use a hybrid operating mode 2906 to display a two-dimensional image 2902 and a time/Doppler shift 2910. If an appropriate angle between the beam and blood flow is known, the time/Doppler shift 2910 can be converted into velocity and blood flow. The gray shading 2908 in the time/Doppler shift 2910 may represent signal strength. The thickness of the spectral signal can indicate laminar or turbulent flow. Tablet computer display 2900 may depict adjustable frequency control 2904.

圖30圖解說明根據本發明之一模組化超音波成像系統之一個三工掃描操作模式。平板電腦顯示器3000可包含一個二維視窗3002,二維視窗3002能夠單獨地或與彩色都卜勒或方向性都卜勒特徵組合地顯示二維影像。平板電腦3000之觸控螢幕顯示器可顯示藉由彩色都卜勒操作模式獲得之影像。一個二維影像視窗3002用作主顯示器。色彩編碼資訊3004覆疊3006於二維影像3016上。脈衝波都卜勒特徵可被單獨使用或者與二維成像或彩色都卜勒成像組合地使用。平板電腦顯示器3000可包含由一樣本體積/樣本閘3008表示之一脈衝波都卜勒掃描,該脈衝波都卜勒掃描單獨地或組合地覆疊於2維影像3016之上,或色碼覆疊3006。平板電腦顯示器3000可繪示表示時間/都卜勒頻移3012之一分割螢幕。若波束與血流之間的一適當角度係已知的,則可將時間/都卜勒頻移3012轉換成速度及血流。時間/都卜勒頻移3012中之灰色陰影3014可表示信號強度。頻譜信號之厚度可指示層流或紊流。平板電腦顯示器3000亦可繪示靈活頻率控制3010。Figure 30 illustrates a three-way scan operation mode of a modular ultrasound imaging system in accordance with the present invention. Tablet display 3000 may include a 2D window 3002 capable of displaying 2D images alone or in combination with color Doppler or directional Doppler features. The touch screen display of Tablet PC 3000 can display images obtained by color Doppler operation mode. A two-dimensional image window 3002 is used as the main display. Color-coded information 3004 is overlaid 3006 on the two-dimensional image 3016. Pulsed wave Doppler features can be used alone or in combination with two-dimensional imaging or color Doppler imaging. Tablet computer display 3000 may include a pulsed wave Doppler scan represented by a sample volume/sample gate 3008 that is overlaid on a 2D image 3016, alone or in combination, or color coded. Stack 3006. Tablet computer display 3000 may depict a split screen representing time/Doppler shift 3012. If an appropriate angle between the beam and the blood flow is known, the time/Doppler shift 3012 can be converted into velocity and blood flow. The gray shading 3014 in the time/Doppler shift 3012 may represent signal strength. The thickness of the spectral signal can indicate laminar or turbulent flow. Tablet computer display 3000 may also illustrate flexible frequency control 3010.

圖31圖解說明根據本發明之一模組化超音波成像系統的在一使用者操作模式下之一GUI主螢幕介面3100。當起動超音波系統時,可顯示在一使用者操作模式下之螢幕介面3100。為輔助一使用者瀏覽GUI主頁螢幕3100,主螢幕可被視為包含三個例示性工作區:一選單列3104、一影像顯示視窗3102及一影像控制列3106。可在主GUI主螢幕3100上設置額外GUI組件,以使得一使用者能夠關閉、重新設定大小及退出GUI主螢幕及/或GUI主螢幕中之視窗。Figure 31 illustrates a GUI main screen interface 3100 in a user operating mode of a modular ultrasound imaging system according to the present invention. When the ultrasound system is started, a screen interface 3100 in a user operation mode may be displayed. To assist a user in navigating the GUI home screen 3100, the home screen may be considered to include three exemplary workspaces: a menu bar 3104, an image display window 3102, and an image control bar 3106. Additional GUI components may be provided on the main GUI home screen 3100 to enable a user to close, resize, and exit the GUI home screen and/or windows within the GUI home screen.

選單列3104使得使用者能夠選擇超音波資料、影像及/或視訊以供顯示於影像顯示視窗3102中。選單列可包含用於在一患者資料夾目錄及一影像資料夾目錄中選擇一或多個檔案的組件。The menu bar 3104 enables the user to select ultrasound data, images and/or videos for display in the image display window 3102 . The menu bar may contain components for selecting one or more files in a patient folder directory and an image folder directory.

影像控制列3106包含可由使用者直接對顯示器之表面施加之觸控及觸控手勢來操作之觸控控制。例示性觸控控制可包含但不限於一深度控制觸控控制3108、一個二維增益觸控控制3110、一全螢幕觸控控制3112、一文字觸控控制3114、一分割螢幕觸控控制3116、一ENV觸控控制3118、一CD觸控控制3120、一PWD觸控控制3122、一凍結觸控控制3124、一儲存觸控控制3126及一最佳化觸控控制3128。Image control column 3106 includes touch controls that can be operated by touch and touch gestures applied directly by the user to the surface of the display. Exemplary touch controls may include, but are not limited to, a depth control touch control 3108, a 2D gain touch control 3110, a full screen touch control 3112, a text touch control 3114, a split screen touch control 3116, a ENV touch control 3118, a CD touch control 3120, a PWD touch control 3122, a freeze touch control 3124, a save touch control 3126 and an optimization touch control 3128.

圖32圖解說明根據本發明之一模組化超音波成像系統的在一使用者操作模式下之一GUI選單螢幕介面3200。當自選單列3204觸發選單選擇模式藉此起始超音波系統之操作時,可顯示在一使用者操作模式下之螢幕介面3200。為輔助一使用者瀏覽GUI主螢幕3100,主螢幕可被視為包含三個例示性工作區:一選單列3204、一影像顯示視窗3202及一影像控制列3220。可在主GUI選單螢幕3200上設置額外GUI組件以使得一使用者關閉、重新設定大小、滾動影像3130、及退出GUI選單螢幕及/或GUI選單螢幕中之視窗(舉例而言)。Figure 32 illustrates a GUI menu screen interface 3200 in a user operating mode of a modular ultrasound imaging system according to the present invention. When the menu bar 3204 triggers the menu selection mode to initiate operation of the ultrasound system, the screen interface 3200 in a user operation mode may be displayed. To assist a user in navigating the GUI main screen 3100, the main screen may be considered to include three exemplary workspaces: a menu bar 3204, an image display window 3202, and an image control bar 3220. Additional GUI components may be provided on the main GUI menu screen 3200 to allow a user to close, resize, scroll the image 3130, and exit the GUI menu screen and/or windows within the GUI menu screen (for example).

選單列3204使得使用者能夠選擇超音波資料、影像3218及/或視訊以供顯示於影像顯示視窗3202中。選單列3204可包含用於在一患者資料夾目錄及一影像資料夾目錄中選擇一或多個檔案之觸控控制組件。以一展開格式3206繪示,選單列可包含例示性觸控控制,諸如一患者觸控控制3208、一預設觸控控制3210、一審閱觸控控制3212、一報告觸控控制3214及一設置觸控控制3216。Menu bar 3204 enables the user to select ultrasound data, images 3218 and/or video for display in image display window 3202. Menu bar 3204 may include touch control components for selecting one or more files in a patient folder directory and an image folder directory. Shown in an expanded format 3206, the menu bar may include exemplary touch controls such as a patient touch control 3208, a default touch control 3210, a review touch control 3212, a report touch control 3214, and a settings Touch control3216.

影像控制列3220包含可由使用者直接對顯示器之表面施加之觸控及觸控手勢來操作的觸控控制。例示性觸控控制可包含但不限於深度控制觸控控制3222、一個二維增益觸控控制3224、一全螢幕觸控控制3226、一文字觸控控制3228、一分割螢幕觸控控制3230、一針可視化ENV觸控控制3232、一CD觸控控制3234、一PWD觸控控制3236、一凍結觸控控制3238、一儲存觸控控制3240及一最佳化觸控控制3242。Image control column 3220 includes touch controls that can be operated by touch and touch gestures applied directly by the user to the surface of the display. Exemplary touch controls may include, but are not limited to, depth control touch control 3222, a 2D gain touch control 3224, a full screen touch control 3226, a text touch control 3228, a split screen touch control 3230, a pin Visual ENV touch control 3232, a CD touch control 3234, a PWD touch control 3236, a freeze touch control 3238, a storage touch control 3240 and an optimization touch control 3242.

圖33圖解說明根據本發明之一模組化超音波成像系統的在一使用者操作模式下之一GUI患者資料螢幕介面3300。當起動超音波系統時,當自選單列3302觸發患者選擇模式時,可顯示在一使用者操作模式3300下之螢幕介面。為輔助一使用者瀏覽GUI患者資料螢幕3300,患者資料螢幕可被視為包含五個例示性工作區域:一新患者觸控螢幕控制3304、一新研究觸控螢幕控制3306、一研究清單觸控螢幕控制3308、一工作清單觸控螢幕控制3310及一編輯觸控螢幕控制3312。在每一觸控螢幕控制內,可使用3314、3316其他資訊條目欄位。舉例而言,可使用患者資訊區段3314及研究資訊區段3316來記錄資料。Figure 33 illustrates a GUI patient information screen interface 3300 in a user operating mode for a modular ultrasound imaging system in accordance with the present invention. When the ultrasound system is started, when the menu bar 3302 triggers the patient selection mode, a screen interface in a user operation mode 3300 may be displayed. To assist a user in navigating the GUI patient information screen 3300, the patient information screen may be viewed as containing five exemplary work areas: a new patient touch screen control 3304, a new study touch screen control 3306, and a study list touch screen Screen control 3308, a work list touch screen control 3310 and an edit touch screen control 3312. Within each touch screen control, 3314, 3316 other information entry fields are available. For example, patient information section 3314 and study information section 3316 may be used to record data.

在患者資料螢幕3300內,影像控制列3318包含可由使用者直接對顯示器之表面施加之觸控及觸控手勢來操作的觸控控制。例示性觸控控制可包含但不限於接受研究觸控控制3320、嚴密研究觸控控制3322、列印觸控控制3324、列印預覽觸控控制3326、取消觸控控制3328、一個二維觸控控制3330、凍結觸控控制3332及一儲存觸控控制3334。Within patient information screen 3300, image control column 3318 contains touch controls operable by touch and touch gestures applied directly by the user to the surface of the display. Exemplary touch controls may include, but are not limited to, accept study touch control 3320, rigorous study touch control 3322, print touch control 3324, print preview touch control 3326, cancel touch control 3328, a two-dimensional touch control Control 3330, freeze touch control 3332 and a save touch control 3334.

圖34圖解說明根據本發明之一模組化超音波成像系統的在一使用者操作模式下之一GUI患者資料螢幕介面3400。當自選單列3402觸發預設選擇模式3404時,當起動超音波系統時,可顯示一使用者操作模式之螢幕介面3400。Figure 34 illustrates a GUI patient information screen interface 3400 in a user operating mode for a modular ultrasound imaging system in accordance with the present invention. When the menu bar 3402 triggers the default selection mode 3404, a user operation mode screen interface 3400 may be displayed when the ultrasound system is started.

在預設螢幕3400內,影像控制列3408包含可由使用者直接對顯示器之表面施加之觸控及觸控手勢操作的觸控控制。例示性觸控控制可包含但不限於:一保存設定觸控控制3410、一刪除觸控控制3412、CD觸控控制3414、PWD觸控控制3416、一凍結觸控控制3418、一儲存觸控控制3420及一最佳化觸控控制3422。Within default screen 3400, image control bar 3408 includes touch controls that can be operated by touch and touch gestures directly applied by the user to the surface of the display. Exemplary touch controls may include, but are not limited to: a save settings touch control 3410, a delete touch control 3412, a CD touch control 3414, a PWD touch control 3416, a freeze touch control 3418, and a save touch control. 3420 and an optimized touch control 3422.

圖35圖解說明根據本發明之一模組化超音波成像系統的在一使用者操作模式下之一GUI審閱螢幕介面3500。當自選單列3502觸發預設展開審閱3504、選擇模式3404時,當起動超音波系統時,可顯示一使用者操作模式之螢幕介面3500。Figure 35 illustrates a GUI review screen interface 3500 in a user operating mode for a modular ultrasound imaging system in accordance with the present invention. When the select menu 3502 triggers the default expansion review 3504 and the selection mode 3404, when the ultrasound system is started, a user operation mode screen interface 3500 may be displayed.

在審閱螢幕3500內,影像控制列3516包含可由使用者直接對顯示器之表面施加之觸控及觸控手勢操作的觸控控制。例示性觸控控制可包含但不限於:一縮圖設定觸控控制3518、同步觸控控制3520、選擇觸控控制3522、一先前影像觸控控制3524、下一影像觸控控制3526、一個二維影像觸控控制3528、一暫停影像觸控控制3530及一儲存影像觸控控制3532。Within review screen 3500, image control bar 3516 includes touch controls that can be operated by touch and touch gestures applied directly by the user to the surface of the display. Exemplary touch controls may include, but are not limited to: a thumbnail setting touch control 3518, a sync touch control 3520, a selection touch control 3522, a previous image touch control 3524, a next image touch control 3526, a two dimensional image touch control 3528, a pause image touch control 3530 and a save image touch control 3532.

一影像顯示視窗3506可允許使用者以複數個格式審閱影像。影像顯示視窗3506可允許一使用者以組合或子組查看影像3508、3510、3512、3514,或允許個別地查看任何影像3508、3510、3512、3514。影像顯示視窗3506可經組態以顯示多達四個影像3508、3510、3512、3514以供同時查看。An image display window 3506 may allow the user to review images in a plurality of formats. Image display window 3506 may allow a user to view images 3508, 3510, 3512, 3514 in combinations or subgroups, or to view any image 3508, 3510, 3512, 3514 individually. Image display window 3506 can be configured to display up to four images 3508, 3510, 3512, 3514 for simultaneous viewing.

圖36圖解說明根據本發明之一模組化超音波成像系統的在一使用者操作模式下之一GUI報告螢幕介面。當自選單列3602觸發報告展開審閱3604時,當起動超音波系統時,可顯示一使用者操作模式之螢幕介面3600。顯示器螢幕3606含有超音波報告資訊3626。使用者可使用超音波報告3626內之工作單區段來輸入註解、患者資訊及研究資訊。Figure 36 illustrates a GUI reporting screen interface in a user operating mode of a modular ultrasound imaging system according to the present invention. When the optional list 3602 triggers the report expansion review 3604, a user operation mode screen interface 3600 may be displayed when the ultrasound system is activated. Monitor screen 3606 contains ultrasound report information 3626. Users can use the work order section within Ultrasound Report 3626 to enter comments, patient information, and study information.

在報告螢幕3600內,影像控制列3608包含可由使用者直接對顯示器之表面施加之觸控及觸控手勢操作的觸控控制。例示性觸控控制可包含但不限於:一保存觸控控制3610、一另存新檔觸控控制3612、一列印觸控控制3614、一列印預覽觸控控制3616、一嚴密研究觸控控制3618、一二維影像觸控控制3620、一凍結影像觸控控制3622及一儲存影像觸控控制3624。Within report screen 3600, image control bar 3608 includes touch controls that can be operated by touch and touch gestures applied directly by the user to the surface of the display. Exemplary touch controls may include, but are not limited to: a save touch control 3610, a save new file touch control 3612, a print touch control 3614, a print preview touch control 3616, a close study touch control 3618, A two-dimensional image touch control 3620, a freeze image touch control 3622 and a save image touch control 3624.

圖37A圖解說明根據本發明的一模組化超音波成像系統的在一使用者操作模式下之一GUI設置螢幕介面。當自選單列3702觸發報告展開審閱3704時,當起動超音波系統時,可顯示一使用者操作模式之螢幕介面3700。Figure 37A illustrates a GUI setup screen interface in a user operating mode of a modular ultrasound imaging system according to the present invention. When the optional list 3702 triggers the report expansion review 3704, a user operation mode screen interface 3700 may be displayed when the ultrasound system is activated.

在設置展開螢幕3704內,設置控制列3744包含可由使用者直接對顯示器之表面施加之觸控及觸控手勢操作的觸控控制。例示性觸控控制可包含但不限於:一般觸控控制3706、一顯示觸控控制3708、一量測觸控控制3710、註解觸控控制3712、一列印觸控控制3714、一儲存/獲取觸控控制3716、一DICOM觸控控制3718、一導出觸控控制3720及一研究資訊影像觸控控制3722。該等觸控控制可含有允許使用者輸入組態資訊之一顯示器螢幕。舉例而言,一般觸控控制3706含有一組態螢幕3724,其中使用者可輸入組態資訊。另外,一般觸控控制3706含有允許使用者組態軟鍵插接位置3726之一區段。圖37B繪示具有一右側對準之軟鍵控制3752。圖37B進一步圖解說明啟動軟鍵控制箭頭3750將把鍵對準改變至相對側(在此種情形中,左側)對準。圖37C繪示軟鍵控制3762之左側對準,使用者可藉由使用軟鍵控制箭頭3760啟動一定向改變以將位置改變為右側對準。Within the settings expansion screen 3704, the settings control bar 3744 includes touch controls that can be operated by touch and touch gestures directly applied by the user to the surface of the display. Exemplary touch controls may include, but are not limited to: a general touch control 3706, a display touch control 3708, a measure touch control 3710, an annotation touch control 3712, a print touch control 3714, a save/get touch control 3714. touch control 3716, a DICOM touch control 3718, an export touch control 3720 and a research information image touch control 3722. The touch controls may include a display screen that allows the user to enter configuration information. For example, general touch control 3706 includes a configuration screen 3724 where the user can enter configuration information. Additionally, the general touch control 3706 contains a section that allows the user to configure the soft key docking locations 3726. Figure 37B illustrates soft key control 3752 with a right-side alignment. Figure 37B further illustrates that activating soft key control arrow 3750 will change the key alignment to the opposite side (in this case, left) alignment. Figure 37C illustrates left alignment of soft key control 3762. The user can initiate a direction change using soft key control arrow 3760 to change the position to right alignment.

在審閱螢幕3700內,影像控制列3728包含可由使用者直接對顯示器之表面施加之觸控及觸控手勢操作的觸控控制。例示性觸控控制可包含但不限於一縮圖設定觸控控制3730、同步觸控控制3732、選擇觸控控制3734、一先前影像觸控控制3736、下一影像觸控控制3738、一個二維影像觸控控制3740及一暫停影像觸控控制3742。Within review screen 3700, image control bar 3728 includes touch controls that can be operated by touch and touch gestures applied directly by the user to the surface of the display. Exemplary touch controls may include, but are not limited to, a thumbnail setting touch control 3730, a synchronization touch control 3732, a selection touch control 3734, a previous image touch control 3736, a next image touch control 3738, a 2D Image touch control 3740 and a pause image touch control 3742.

圖38圖解說明根據本發明之一模組化超音波成像系統的在一使用者操作模式下之一GUI設置螢幕介面。當自選單列3802觸發報告展開審閱3804時,當起動超音波系統時,可顯示一使用者操作模式之螢幕介面3800。Figure 38 illustrates a GUI setup screen interface in a user operating mode of a modular ultrasound imaging system according to the present invention. When the optional list 3802 triggers the report expansion review 3804, a user operating mode screen interface 3800 may be displayed when the ultrasound system is activated.

在設置展開螢幕3804內,設置控制列3844包含可由使用者直接對顯示器之表面施加之觸控及觸控手勢來操作之觸控控制。例示性觸控控制可包含但不限於:複數個圖標,諸如一般觸控控制3806、一顯示觸控控制3808、一量測觸控控制3810、註解觸控控制3812、一列印觸控控制3814、一儲存/獲取觸控控制3816、一DICOM觸控控制3818、一導出觸控控制3820及一研究資訊影像觸控控制3822。觸控控制可含有允許使用者輸入儲存/獲取資訊之一顯示器螢幕。舉例而言,儲存/獲取觸控控制3816含有一組態螢幕3802,其中使用者可輸入組態資訊。使用者可致動一虛擬鍵盤,從而允許使用者在不同觸控啟動欄位中輸入英數字元。另外,儲存/獲取觸控控制3802含有允許使用者能夠回溯獲取3804之一區段。當使用者啟用儲存功能時,系統經預設以儲存預期畫面循環。若使用者啟用啟用回溯擷取,則儲存功能可回溯性地收集畫面循環。Within settings expansion screen 3804, settings control bar 3844 includes touch controls that can be operated by touch and touch gestures applied directly by the user to the surface of the display. Exemplary touch controls may include, but are not limited to: a plurality of icons, such as a general touch control 3806, a display touch control 3808, a measure touch control 3810, an annotation touch control 3812, a print touch control 3814, A store/retrieve touch control 3816, a DICOM touch control 3818, an export touch control 3820 and a research information image touch control 3822. Touch controls may include a display screen that allows user input to store/retrieve information. For example, the save/get touch control 3816 includes a configuration screen 3802 where the user can enter configuration information. The user can activate a virtual keyboard, thereby allowing the user to enter alphanumeric characters in different touch-activated fields. In addition, the save/retrieve touch control 3802 contains a section that allows the user to retrieve 3804 retroactively. When the user enables the save function, the system is preset to save the expected screen loop. If the user enables retrospective capture, the save function can retroactively collect frame loops.

在設置螢幕3800內,影像控制列3828包含可由使用者直接對顯示器之表面施加之觸控及觸控手勢來操作之觸控控制。例示性觸控控制可包含但不限於:一縮圖設定觸控控制3830、同步化觸控控制3832、選擇觸控控制3834、一先前影像觸控控制3836、下一影像觸控控制3838、二維影像觸控控制3840及一暫停影像觸控控制3842。Within settings screen 3800, image control bar 3828 contains touch controls that can be operated by touch and touch gestures applied directly by the user to the surface of the display. Exemplary touch controls may include, but are not limited to: a thumbnail setting touch control 3830, a synchronization touch control 3832, a selection touch control 3834, a previous image touch control 3836, a next image touch control 3838, two dimensional image touch control 3840 and a pause image touch control 3842.

圖39A及圖39B圖解說明由兩個一維多元件陣列組成之一XY雙平面探針。該等陣列可被構造成一個陣列位於另一陣列之頂部上,其中每一陣列之一偏振軸在同一方向上對準。該兩個陣列之仰角軸可成一直角或彼此正交。舉例而言,例示性實施例可採用換能器總成(諸如美國專利第7,066,887號中所闡述之換能器總成,該美國專利之全部內容併入本案供參考)或法國Vernon of Tours Cedex所銷售之換能器。圖39A中圖解說明由配置3900表示陣列定向。兩個陣列之偏振軸3908皆指向z軸3906。底部陣列之仰角軸指向y方向3902,且頂部陣列之仰角軸指向x方向3904。Figures 39A and 39B illustrate an XY biplanar probe consisting of two one-dimensional multi-element arrays. The arrays may be configured with one array on top of another array, with the polarization axes of each array aligned in the same direction. The elevation axes of the two arrays may be at right angles or orthogonal to each other. For example, exemplary embodiments may employ a transducer assembly such as that set forth in U.S. Patent No. 7,066,887, the entire contents of which is incorporated herein by reference, or the French Vernon of Tours Cedex Transducers sold. Array orientation represented by configuration 3900 is illustrated in Figure 39A. The polarization axes 3908 of both arrays point toward the z-axis 3906. The elevation axis of the bottom array points in the y direction 3902 and the elevation axis of the top array points in the x direction 3904.

圖39B進一步圖解說明一維多元件陣列形成配置3912中所繪示之一影像。一仰角軸3910在一y方向3902上之一維陣列在x軸3904、z軸3906平面上形成超音波影像3914。仰角軸3910在x方向3904上之一維陣列在y軸3902、z軸3906上形成超音波影像3914。仰角軸3910沿著一y軸3902且偏振軸3908沿著一z軸3906之一維換能器陣列將形成一超音波影像3914,該超音波影像3914係沿著x 3904與z 3906平面形成。圖39C所圖解說明之一替代實施例繪示一仰角軸3920在一x軸904上且一偏振軸3922在z軸3906方向上之一維換能器陣列。超音波影像3924形成於y 3902與z 3906平面上。Figure 39B further illustrates an image shown in a one-dimensional multi-element array forming configuration 3912. A one-dimensional array of an elevation axis 3910 in a y direction 3902 forms an ultrasonic image 3914 on the x-axis 3904 and z-axis 3906 planes. The one-dimensional array of the elevation axis 3910 in the x direction 3904 forms an ultrasonic image 3914 on the y axis 3902 and the z axis 3906. A one-dimensional transducer array with an elevation axis 3910 along a y-axis 3902 and a polarization axis 3908 along a z-axis 3906 will form an ultrasound image 3914 along the x 3904 and z 3906 planes. An alternative embodiment illustrated in Figure 39C shows a one-dimensional transducer array with an elevation axis 3920 on an x-axis 904 and a polarization axis 3922 in the z-axis 3906 direction. The ultrasonic image 3924 is formed on the y 3902 and z 3906 planes.

圖40圖解說明一雙平面影像形成xy探針之操作,其中陣列4012被施加有一高電壓以形成影像。可將高電壓驅動脈衝4006、4008、4010施加至具有一y軸仰角之底部陣列4004。此施加可使得產生用於在XZ平面上形成所接收到影像之傳輸脈衝,同時將頂部陣列4002之元件保持於一接地位準下。此等探針啟用使用比一全2D換能器陣列簡單之電子裝置的一3D成像模式。如本文中所闡述之一觸控螢幕啟動式使用者介面可採用螢幕圖標及手勢以致動3D成像操作。可藉由在平板電腦資料處理器上運行之軟體增強此等成像操作,該軟體將影像資料處理成3D超音波影像。此影像處理軟體可採用此項技術中已知之濾波平滑及及/或內插操作。亦可使用波束操縱來達成3D成像操作。一較佳實施例使用經配置以用於雙平面成像之複數個1D子陣列換能器。Figure 40 illustrates the operation of a pair of planar image forming xy probes in which a high voltage is applied to array 4012 to form an image. High voltage drive pulses 4006, 4008, 4010 may be applied to the bottom array 4004 with a y-axis elevation angle. This application allows generation of transmission pulses used to form the received image in the XZ plane while maintaining the elements of top array 4002 at a ground level. These probes enable a 3D imaging mode using simpler electronics than a fully 2D transducer array. A touch screen activated user interface, as described herein, may employ on-screen icons and gestures to initiate 3D imaging operations. These imaging operations can be enhanced by software running on the tablet data processor, which processes the image data into 3D ultrasound images. The image processing software may employ filter smoothing and/or interpolation operations known in the art. Beam steering can also be used to achieve 3D imaging operations. A preferred embodiment uses a plurality of 1D sub-array transducers configured for biplane imaging.

圖41圖解說明一雙平面影像形成xy探針之操作。圖41圖解說明一陣列4110,其被施加有一高電壓以用於形成影像。可將高電壓脈衝4102、4104、4106施加至仰角在x軸上之頂部陣列4112,從而產生用於在yz平面上形成所接收到影像之傳輸脈衝,同時將底部陣列4108之元件保持為接地。此實施例亦可利用使用如本文中所闡述之子陣列波束成形操作之正交1D換能器陣列。Figure 41 illustrates the operation of a pair of planar image forming xy probes. Figure 41 illustrates an array 4110 to which a high voltage is applied for forming an image. High voltage pulses 4102, 4104, 4106 can be applied to the top array 4112 with an elevation angle in the x-axis, thereby generating transmission pulses used to form the received image in the yz plane, while keeping the elements of the bottom array 4108 grounded. This embodiment may also utilize orthogonal ID transducer arrays using sub-array beamforming operations as described herein.

圖42圖解說明一雙平面影像形成xy探針之電路要求。針對一雙平面探針繪示接收波束成形要求。形成與接收電子裝置4202之一連接。然後,選擇底部陣列4204及選擇頂部陣列4208之元件經連接以共用一個連接至接收電子裝置4202之通道。可將二對一多工器電路整合於高電壓驅動器4206、4210上。可將二對一多工器電路整合至高電壓驅動器4206、4212中。針對每一傳輸波束形成一個接收波束。雙平面系統需要總共256個傳輸波束,其中128個傳輸波束用於形成一XZ平面影像且另外128個傳輸波束用於形成一YZ平面影像。一多接收波束成形技術可用於提高圖框速率。針對每一傳輸波束具有雙接收波束能力之一超音波系統提供可形成兩個接收波束之一系統。雙平面探針僅需要總共128個傳輸波束來形成兩個正交平面影像,其中64個傳輸波束用於形成一XZ平面影像,另外64個傳輸波束用於形成YZ平面影像。類似地,對於具有一四重或4接收波束能力之一超音波系統而言,探針需要64個傳輸波束來形成兩個正交平面影像。Figure 42 illustrates the circuit requirements for a pair of planar image forming xy probes. Receive beamforming requirements are shown for a pair of planar probes. A connection is made with the receiving electronic device 4202. The elements of the selected bottom array 4204 and the selected top array 4208 are then connected to share a channel to the receiving electronics 4202. A two-to-one multiplexer circuit can be integrated on the high voltage drivers 4206, 4210. A two-to-one multiplexer circuit can be integrated into the high voltage drivers 4206, 4212. One receive beam is formed for each transmit beam. A dual-plane system requires a total of 256 transmission beams, of which 128 are used to form an XZ plane image and another 128 are used to form a YZ plane image. A multi-receive beamforming technique can be used to increase the frame rate. An ultrasound system with dual receive beam capability for each transmit beam provides a system that can form two receive beams. The biplane probe only requires a total of 128 transmission beams to form two orthogonal plane images, of which 64 transmission beams are used to form an XZ plane image, and the other 64 transmission beams are used to form a YZ plane image. Similarly, for an ultrasound system with a quadruple or 4 receive beam capability, the probe requires 64 transmit beams to form two orthogonal plane images.

圖43A至圖43B圖解說明用於同時進行雙平面評估之一應用。利用回波心動描記器量測LV機械不同步之能力可有助於識別更可能得益於心臟再同步化治療之患者。需要被量化之LV參數係Ts-(橫中隔)、Ts-SD、Ts-peak等。可在一2D心尖四腔視圖回波影像上量測Ts-(橫中隔),而可在兩個分開之胸骨旁短軸視圖上獲得Ts-SD、Ts-peak (內側)、Ts-onset (內側)、Ts-peak (基部)、Ts-onset (基部),其中在二尖瓣高度處且在乳突肌高度處分別具有6個分段,從而提供總共12個分段。圖43A至圖43B繪示一xy探針,該xy探針提供將被同時查看之心尖四腔4304及心尖兩腔4302影像。Figures 43A-43B illustrate one application for simultaneous bi-plane evaluation. The ability to measure LV mechanical dyssynchrony with echocardiography may help identify patients who are more likely to benefit from cardiac resynchronization therapy. The LV parameters that need to be quantified are Ts-(transverse septum), Ts-SD, Ts-peak, etc. Ts-(transverse septum) can be measured on a 2D apical four-chamber echo image, while Ts-SD, Ts-peak (medial), and Ts-onset can be obtained on two separate parasternal short-axis views. (medial), Ts-peak (basal), Ts-onset (basal), with 6 segments each at the mitral valve level and at the mastoid muscle level, giving a total of 12 segments. 43A-43B illustrate an xy probe that provides apical four-chamber 4304 and apical two-chamber 4302 images that are to be viewed simultaneously.

圖44A至圖44B圖解說明博出分率探針量測技術。雙平面探針提供EF量測,此乃因兩個正交平面之可視化確保獲得軸上視圖。自動邊界偵測演算法將定量回波結果提供至選擇植入回應器且引導AV延遲參數設定。如圖44A中所繪示,XY探針自兩個正交平面獲取實時同時影像且影像4402、4404顯示於一分割螢幕上。一人工輪廓描摹或自動邊界描摹技術可用於在收縮末期及舒張末期兩者處描摹心內膜邊界,由此計算出EF。在舒張末期及收縮末期分別量測心尖2CH 4402圖及心尖4CH 4404圖、A1及A2中的LV面積。使用公式計算左心室舒張末期容積(LVEDV)及左心室收縮末期容積(LVESV)。且由計算博出分率。Figures 44A-44B illustrate the extraction fraction probe measurement technique. Biplane probes provide EF measurements because visualization of two orthogonal planes ensures an on-axis view. Automatic boundary detection algorithms provide quantitative echo results to select implantable responders and guide AV delay parameter setting. As shown in Figure 44A, the XY probe acquires real-time simultaneous images from two orthogonal planes and images 4402, 4404 are displayed on a split screen. A manual contour tracing or automated border tracing technique can be used to trace the endocardial border at both end-systole and end-diastole, from which the EF can be calculated. The LV areas in the apical 2CH 4402 map and the apical 4CH 4404 map, A1 and A2 were measured at end-diastole and end-systole respectively. Use formula Calculate left ventricular end-diastolic volume (LVEDV) and left ventricular end-systolic volume (LVESV). And by Calculate the winning percentage.

在醫療超音波行業中,幾乎每一超音波系統可進行諧波成像,但此皆係藉由使用二次諧波或fo 來進行,其中fo 係基波頻率。本發明之較佳實施例使用高次諧波(亦即,3fo 、4fo 、5fo 等)來進行超音波成像。高於二次之諧波提供實質上提高之影像品質及空間解析度。高次諧波之優勢包含提高空間解析度、將雜波最小化及提供具有不同組織結構之間的清晰對比度及更清晰邊緣清晰度之影像品質。此技術係基於在一超音波傳播穿過組織時所產生之諧波頻率。諧波頻率之產生與由於組織中之非線性音波傳播所致之波衰減相關,組織中之非線性音波傳播會導致出現所傳輸波中並不存在之諧波頻率。用於實現此超諧波成像之要求係:1)低雜訊寬頻寬度線性的放大器;2)高電壓線性傳輸器;3)寬頻寬換能;及4)進階信號處理。In the medical ultrasound industry, almost every ultrasound system can perform harmonic imaging, but this is done by using the second harmonic, or fo , where fo is the fundamental frequency. Preferred embodiments of the present invention use higher harmonics (ie, 3fo , 4fo , 5fo , etc.) for ultrasound imaging. Harmonics higher than the second provide substantially improved image quality and spatial resolution. The advantages of higher harmonics include improved spatial resolution, minimization of clutter, and image quality with clear contrast between different tissue structures and sharper edge definition. This technology is based on the harmonic frequencies produced when an ultrasound wave propagates through tissue. The generation of harmonic frequencies is related to wave attenuation due to nonlinear sound wave propagation in tissues, which results in the appearance of harmonic frequencies that do not exist in the transmitted waves. The requirements for achieving this superharmonic imaging are: 1) low-noise linear bandwidth amplifiers; 2) high voltage linear transmitters; 3) wide bandwidth transducers; and 4) advanced signal processing.

由於聲波傳播穿過組織之非線性,因此波形逐漸衰減且導致出現原始所傳輸波中不存在之諧波波形。可使用Khokhlov-Zabolotskaya-Kuznetsov(KZK)方程式在理論上計算超音波在一組織樣介質中之非線性傳播。舉例而言,參見1997年J. Acoust. Soc. Am.第101卷第143至163頁的B. Ward、A. C. Baker 及V.F. Humphrey之「Nonlinear propagation applied to the improvement of resolution in Diagnostic medical ultrasound」,上述文獻之全部內容併入本案供參考。該計算係基於有限差分近似且在時域及頻域中執行。KZK方程式併入波束繞射、由於介質衰減引起之能量耗散及波形失真的綜合影響。如2003年IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control第50卷第730至735頁的A. Bouakaz、C.T. Lancee及N. de Jong之「Harmonic Ultrasonic Field of Medical Phased Arrays: Simulations and Measurements」中所示,在時域中求解繞射項及非線性度項兩者,而在頻域中解釋衰減,上述文獻之全部內容併入本案供參考。圖45中展示隨著橫向距離(以mm為單位)而變化的在焦距處在組織中之基波頻率、二次諧波頻率及三次諧波頻率下所計算之聲壓位準2Due to the nonlinearity of sound waves propagating through tissue, the waveform gradually attenuates and results in the appearance of harmonic waveforms that were not present in the original transmitted wave. The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation can be used to theoretically calculate the nonlinear propagation of ultrasound in a tissue-like medium. For example, see "Nonlinear propagation applied to the improvement of resolution in Diagnostic medical ultrasound" by B. Ward, AC Baker and VF Humphrey, J. Acoust. Soc. Am., Vol. 101, pp. 143-163, 1997, above The entire contents of the document are incorporated into this case for reference. The calculation is based on finite difference approximation and is performed in the time and frequency domains. The KZK equation incorporates the combined effects of beam diffraction, energy dissipation due to medium attenuation, and waveform distortion. As shown in "Harmonic Ultrasonic Field of Medical Phased Arrays: Simulations and Measurements" by A. Bouakaz, CT Lancee and N. de Jong in 2003 IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Volume 50, Pages 730 to 735, Both the diffraction term and the nonlinearity term are solved in the time domain, and the attenuation is explained in the frequency domain. The entire contents of the above-mentioned documents are incorporated into this case for reference. The calculated sound pressure levels 2 at the fundamental, second and third harmonic frequencies in the tissue at the focal length are shown as a function of lateral distance in mm in Figure 45.

該計算係基於一3週期高斯脈衝,其中傳輸波形之一基波頻率係1.7百萬赫。使用一帶通濾波器提取二次諧波分量,該帶通濾波器在分別為2.75百萬赫及4.02百萬赫的低截止頻率與高截止頻率之間具有一平坦回應。帶通濾波器用於提取具有在4.35百萬赫與9.35百萬赫之間的一平坦頻率回應的超諧波分量。該等分佈已被比例縮放為具有0分貝之軸上振幅。自圖45可看出,超諧波分量之產生實質上被侷限於基波波束之最強部分,甚至比二次諧波輪廓更多。此具有有益效應,即超諧波波束寬度遠遠窄於二次諧波波束寬度。發現超諧波頻率下之波束寬度係所傳輸基波波束寬度之一半,而二次諧波波束寬度僅窄30%。如圖45中所展示,對於在焦點附近為5.3 mm且在二次諧波下為3.5 mm之一基波波束寬度而言,超諧波分量具有小於2.6 mm之一波束寬度。圖46繪示在基波頻率、二次諧波頻率及三次諧波頻率下之正規化軸向聲束輪廓。重要的是應注意,所產生之三次諧波與基波振幅及二次諧波分量之振幅的積成比例。因此,三次諧波主要在聚焦區中產生,其中基波頻率及二次諧波頻率達到其最高位準。此具有有益效應,即超諧波波束寬度遠遠窄於二次諧波波束寬度。此外,由於超諧波能量實質上集中於波束之中心部分,因此這表明旁瓣能量不相稱地減少。此性質使超諧波技術具有極大地移除來自位於波束之邊緣處之散射體之離軸回波的優勢。顯然此性質對診斷極其有利,此乃因大多數成像假影及像差可能是由超音波波束與波束輪廓邊緣處之旁瓣的相互作用導致。The calculation is based on a 3-cycle Gaussian pulse in which one of the fundamental frequencies of the transmitted waveform is 1.7 MHz. The second harmonic component is extracted using a bandpass filter with a flat response between low and high cutoff frequencies of 2.75 MHz and 4.02 MHz respectively. A bandpass filter is used to extract superharmonic components with a flat frequency response between 4.35 MHz and 9.35 MHz. The distributions have been scaled to have an on-axis amplitude of 0 dB. It can be seen from Figure 45 that the generation of superharmonic components is essentially limited to the strongest part of the fundamental wave beam, even more than the second harmonic profile. This has the beneficial effect that the superharmonic beamwidth is much narrower than the second harmonic beamwidth. It was found that the beam width at superharmonic frequency is half of the beam width of the transmitted fundamental wave, while the second harmonic beam width is only 30% narrower. As shown in Figure 45, for a fundamental beamwidth of 5.3 mm near the focus and 3.5 mm at the second harmonic, the superharmonic component has a beamwidth less than 2.6 mm. Figure 46 shows the normalized axial beam profile at the fundamental frequency, the second harmonic frequency and the third harmonic frequency. It is important to note that the third harmonic generated is proportional to the product of the amplitude of the fundamental wave and the amplitude of the second harmonic component. Therefore, the third harmonic is mainly generated in the focus area, where the fundamental frequency and the second harmonic frequency reach their highest levels. This has the beneficial effect that the superharmonic beamwidth is much narrower than the second harmonic beamwidth. Furthermore, since the superharmonic energy is essentially concentrated in the central portion of the beam, this represents a disproportionate reduction in side lobe energy. This property gives superharmonic technology the advantage of greatly removing off-axis echoes from scatterers located at the edge of the beam. Obviously this property is extremely beneficial for diagnosis, since most imaging artifacts and aberrations may be caused by the interaction of the ultrasound beam with side lobes at the edges of the beam profile.

由於不同組織結構產生不同超諧波回應且超諧波波束具備最小旁瓣筆形波束輪廓之性質,因此超諧波影像具備在不同組織類型之間且利用一更好的邊緣偵測提供一明顯更清晰且更鮮明對比度之影像的優勢。超諧波能更好地抑制混響及假影,尤其是出現於波束之邊緣處之混響及假影。利用超諧波,橫向解析度及軸向解析度得以提高。Since different tissue structures produce different superharmonic responses and the superharmonic beam has the characteristic of a pencil beam profile with minimal side lobes, superharmonic imaging can provide a significantly better image between different tissue types and with better edge detection. Advantages of clearer and more contrasting images. Superharmonics can better suppress reverberation and artifacts, especially those that appear at the edges of the beam. Using superharmonics, lateral resolution and axial resolution can be improved.

可使用一高解析度幻影、GAMMEX 404GS來評估系統之空間解析度。嵌入於404GS幻影中之反射器之大小(直徑)係100 um。首先,使用一15百萬赫傳輸波形來產生404GS 15百萬赫基波幻影影像。圖47中展示基波影像之A模式曲線圖,該曲線圖亦包含15百萬赫傳輸波形及15百萬赫所接收A模式波形。A high-resolution phantom, the GAMMEX 404GS, can be used to evaluate the spatial resolution of the system. The size (diameter) of the reflector embedded in the 404GS Phantom is 100 um. First, a 15 MHz transmission waveform is used to generate the 404GS 15 MHz fundamental phantom image. Figure 47 shows the A-mode curve of the fundamental image, which also includes the 15 MHz transmitted waveform and the 15 MHz received A-mode waveform.

使用15百萬赫影像之一半高寬曲線圖來指示100 um接腳幻影影像之空間解析度。圖48展示幻影A模式影像、一15百萬赫所接收基波影像及一15百萬赫傳輸波形之半高寬(FWHM)曲線圖。Use the FWHM plot of the 15 MHz image to indicate the spatial resolution of the 100 um pin phantom image. Figure 48 shows the half-maximum (FWHM) plots of a phantom A-mode image, a 15 MHz received fundamental wave image, and a 15 MHz transmitted waveform.

下表中列示基波、二次諧波及超諧波影像的GAMMAX 404GS幻影量測結果、半峰全寬(FWHM)之空間解析度比較: The following table lists the GAMMAX 404GS phantom measurement results and full width at half maximum (FWHM) spatial resolution comparison of fundamental, second harmonic and superharmonic images:

由於一身體中之組織具有不均勻性質,因此眾所周知自組織中之聲波反射接收到之回波信號具有極高的非線性度。組織身體之非線性回應導致傳輸-接收主波束之寬度以及旁瓣位準增大,這繼而會顯著地減小組織超音波成像之橫向及對比解析度。又一方法(本文中稱為組織高頻率成像(THI)或組織混合成像(TMI)或超諧波成像)使用組織中之傳播波之非線性回應,從而使得可將此等散焦效應最小化。在醫療超音波成像中,需要諧波成像,其中傳輸波形係一個基波頻率F0 ,且所關注接收信號係一較高諧波,該較高諧波通常係二次諧波(2F0 )或三次諧波(3F0 )。超諧波影像模式組合所有的高次諧波(>=3f0 )。所關注諧波信號係由身體中之影像目標產生,且傳輸波形中之諧波不在關注範圍內。因此,抑制傳輸波形中之諧波至關重要。Due to the inhomogeneous nature of tissues in a body, it is well known that the echo signals received from the reflection of sound waves in the tissues have extremely high non-linearity. The nonlinear response of the tissue body leads to an increase in the width of the transmit-receive main beam and the level of side lobes, which in turn significantly reduces the lateral and contrast resolution of tissue ultrasound imaging. Yet another approach, referred to herein as tissue high-frequency imaging (THI) or tissue hybrid imaging (TMI) or superharmonic imaging, uses the nonlinear response of propagating waves in tissue, thereby minimizing these defocusing effects. . In medical ultrasound imaging, harmonic imaging is required where the transmitted waveform is a fundamental frequency F 0 and the received signal of interest is a higher harmonic, typically the second harmonic (2F 0 ) Or the third harmonic (3F 0 ). The superharmonic image mode combines all higher harmonics (>=3f 0 ). The harmonic signal of concern is generated by the image target in the body, and the harmonics in the transmitted waveform are not within the scope of concern. Therefore, it is crucial to suppress harmonics in the transmitted waveform.

闡述具有習用3個方形波循環之一超音波脈衝器。此一波形之頻譜在低於基波頻率約-4分貝處具有一三次諧波分量,在常規方形波中具有高三次諧波分量,因此習用方形波不適合用作實現高次諧波成像之傳輸波形。Describes an ultrasonic pulser with one of three conventional square wave cycles. The spectrum of this waveform has a third harmonic component at about -4 dB below the fundamental frequency. There is a higher third harmonic component in the conventional square wave. Therefore, the conventional square wave is not suitable for realizing high-order harmonic imaging. Transmission waveform.

圖51A及圖51B圖解說明一方形波及方形波形之一頻譜,該頻譜在低於基波頻率約-4分貝處具有三次諧波分量,一高三次諧波分量;因此該方形波不適合於用作實現高次諧波成像之傳輸波形。Figure 51A and Figure 51B illustrate a square wave and a spectrum of the square waveform. The spectrum has a third harmonic component and a higher third harmonic component at about -4 dB below the fundamental frequency; therefore, the square wave is not suitable for use as Realize the transmission waveform of high-order harmonic imaging.

本文之較佳實施例藉由將脈衝高時間及脈衝低時間減小至常規方形波之三分之二來使用一經修改方形波。此經修改波形具有比一常規方形波之三次諧波分量更低之一個三次諧波分量,且近似於一純正弦波。舉例而言參見圖52,圖52圖解說明一個三分之二波形。圖53圖解說明一第三方形波形及一正弦波之一頻譜。此經修改波形具有比一常規方形波之三次諧波分量更低之三次諧波分量,且近似於一純正弦波。該方法利用兩個連續傳輸波形;對交替傳輸至組織中之第一超音波脈衝及第二超音波脈衝進行成像。該兩個超音波脈衝係三分之二方形波形,其中第一超音波脈衝與第二超音波脈衝之不同在於將傳輸波形反相。量測此等脈衝所產生之接收超諧波回波信號,且藉由添加超音波傳輸脈衝中之每一者所產生之回波信號來組合。The preferred embodiment herein uses a modified square wave by reducing the pulse high time and pulse low time to two-thirds of a conventional square wave. This modified waveform has a third harmonic component that is lower than that of a conventional square wave and approximates a pure sine wave. See, for example, Figure 52, which illustrates a two-thirds waveform. Figure 53 illustrates a third square waveform and a spectrum of a sine wave. This modified waveform has a lower third harmonic component than that of a conventional square wave and approximates a pure sine wave. This method utilizes two continuous transmission waveforms to image the first ultrasonic pulse and the second ultrasonic pulse alternately transmitted into the tissue. The two ultrasonic pulses are two-thirds square waveforms, and the difference between the first ultrasonic pulse and the second ultrasonic pulse is that the transmission waveform is inverted. The received superharmonic echo signals produced by these pulses are measured and combined by adding the echo signals produced by each of the ultrasonic transmission pulses.

一超音波成像系統包含一寬頻放大器,該寬頻放大器具有之雜訊基底,頻寬>22百萬赫、4.5百萬赫傳輸波形下之三分之二高電壓、脈衝相消以及包含三次諧波、四次諧波及五次諧波頻率之一接收波形。An ultrasound imaging system includes a wideband amplifier having Noise base, bandwidth >22 MHz, two-thirds of high voltage under 4.5 MHz transmission waveform, pulse cancellation, and reception of one of the third harmonic, fourth harmonic and fifth harmonic frequencies waveform.

圖54A及圖54B中展示一基波影像與超諧波成像比較。由於不同組織結構(諸如脂肪、肌肉、腫瘤細胞)使聲波傳播發生不同畸變(亦即,不同組織結構使聲波發生不同衰減)的性質,因此諧波影像可比基波影像更好地區分不同的組織結構。在圖54A及圖54B中可看到,超諧波影像提供不同結構之間的明顯更清晰且更鮮明的對比,即成像性質。超諧波影像係係通過脈衝相消技術使用4.5百萬赫傳輸三分之二經修改波形而產生且由三次高諧波、四次高諧波及五次高諧波組成。A comparison of fundamental wave imaging and superharmonic imaging is shown in Figure 54A and Figure 54B. Due to the nature of different tissue structures (such as fat, muscle, tumor cells) causing different distortions in sound wave propagation (that is, different tissue structures causing different attenuation of sound waves), harmonic images can distinguish different tissues better than fundamental wave images. structure. As can be seen in Figures 54A and 54B, superharmonic images provide significantly clearer and sharper contrast between different structures, ie, imaging properties. The superharmonic image is generated by transmitting two-thirds of the modified waveform at 4.5 MHz using pulse cancellation technology and consists of the third, fourth and fifth harmonics.

由於聲波在傳播穿過組織時具有非線性性質,因此波形逐漸衰減且導致出現原始傳輸波中不存在之諧波波形。可使用Khokhlov-Zabolotskaya-Kuznetsov或KZK方程式來在理論上計算超音波在一組織樣介質中之非線性傳播。該計算係基於有限差分近似且在時域及頻域中執行。KZK方程式併入波束繞射、由於介質衰減引起之能量耗散及波形失真的綜合影響。在時域中求解繞射項及非線性度項兩者,而在頻域中解釋衰減。超音波系統大部分可執行諧波成像,但此諧波成像全部係使用二次諧波2fo 來進行,其中fo 係基波頻率。然而,使用高於二次諧波之高次諧波(亦即3fo 、4fo 、5fo 、… )可顯著地提高影像品質及空間解析度。高次諧波之優勢係:提高空間解析度、將雜波最小化及提供具有不同組織結構之間的清晰對比以及更清晰之邊界/邊緣清晰度的影像品質。自圖54A及圖54B之軟組織超音波影像可看到,超諧波影像提供之視覺解剖及病理資訊可為臨床醫師提供額外資訊以幫助臨床醫師做出關於介入過程之診斷決策。Due to the nonlinear nature of sound waves as they propagate through tissue, the waveform gradually attenuates and results in harmonic waveforms that were not present in the original transmitted wave. The nonlinear propagation of ultrasound in a tissue-like medium can be theoretically calculated using the Khokhlov-Zabolotskaya-Kuznetsov or KZK equations. The calculation is based on finite difference approximation and is performed in the time and frequency domains. The KZK equation incorporates the combined effects of beam diffraction, energy dissipation due to medium attenuation, and waveform distortion. Both the diffraction and nonlinearity terms are solved in the time domain, while attenuation is accounted for in the frequency domain. Most ultrasound systems can perform harmonic imaging, but this harmonic imaging is all performed using the second harmonic 2f o , where f o is the fundamental frequency. However, using higher harmonics higher than the second harmonic (ie, 3f o , 4f o , 5f o , ...) can significantly improve image quality and spatial resolution. The advantages of higher harmonics are: improved spatial resolution, minimization of clutter, and image quality with clear contrast between different tissue structures and sharper boundary/edge definition. As can be seen from the soft tissue ultrasound images in Figures 54A and 54B, the visual anatomy and pathological information provided by superharmonic images can provide clinicians with additional information to help clinicians make diagnostic decisions regarding interventional procedures.

除視覺資訊之外,本文闡述可提供成像中組織之定量診斷資訊之一技術。美國專利5,361,767已開發出基於超音波影像之一組織表徵技術,該基於超音波影像之一組織表徵技術可用於無創性地量測成像中的不同類型組織之吸收係數,亦即一無創性超音波成像技術可用於提供定量組織表徵以及成像中組織之解剖與病理診斷資訊,該美國專利之全部內容併入本案供參考。已對約190個乳腺異常患者測試了該方法。結果指示將乳腺異常患者總結為以下特點。 • 正常乳房組織在0.3至0.6分貝/Cm/MHz之一範圍(根據年齡及月經週期)中; • 癌在0.9至1.2分貝/Cm/MHz之一範圍(根據癌類型)中; • 纖維瘤在2.25至4.5分貝/Cm/MHz之一範圍(根據纖維組織形成類型)中 • 囊腫接近0分貝/Cm/MHzIn addition to visual information, this article describes a technique that can provide quantitative diagnostic information of the tissue being imaged. U.S. Patent 5,361,767 has developed a tissue characterization technology based on ultrasound images. This tissue characterization technology based on ultrasound images can be used to non-invasively measure the absorption coefficients of different types of tissues in imaging, that is, a non-invasive ultrasound Imaging technology can be used to provide quantitative tissue characterization as well as anatomical and pathological diagnostic information of the tissue being imaged. The entire content of this U.S. patent is incorporated into this case for reference. The method has been tested on about 190 patients with breast abnormalities. The results indicate that patients with breast abnormalities can be summarized as having the following characteristics. • Normal breast tissue is in the range of 0.3 to 0.6 dB/Cm/MHz (depending on age and menstrual cycle); • Cancer in a range of 0.9 to 1.2 dB/Cm/MHz (depending on cancer type); • Fibroids in a range of 2.25 to 4.5 dB/Cm/MHz (depending on the type of fibrous tissue formation) • Cysts close to 0 dB/Cm/MHz

如下闡述一超諧波影像引導之頻率組織表徵過程,一旦獲取一超諧波組織影像且在影像上識別到一病理學所關注區(ROI),操作員便會穿過ROI繪出一所關注線5490,參見圖54C。A superharmonic image-guided frequency tissue characterization process is described below. Once a superharmonic tissue image is acquired and a pathological region of interest (ROI) is identified on the image, the operator will draw a pathological region of interest through the ROI. Line 5490, see Figure 54C.

超音波系統沿著所關注線自動地傳輸在f1 下之一正單脈衝傳輸波形。包絡偵測之後傳回之回波之形狀具有兩個峰值,該兩個峰值分別與來自所關注區之前邊界及後邊界之反射波對應,圖54D中展示邊界之間的距離,其中 The ultrasound system automatically transmits a positive single pulse transmission waveform at f 1 along the line of interest. The shape of the echo returned after envelope detection has two peaks, which correspond to the reflected waves from the front boundary and the rear boundary of the area of interest. The distance between the boundaries is shown in Figure 54D, where

接下來,重複同一程序,但沿著所關注線傳輸在f2 下之一負單脈衝傳輸波形。圖54E中展示包絡偵測之後傳回之回波,其中兩個峰值分別與來自所關注區之前邊界及後邊界之反射對應,邊界之間的距離係相同的,其中:(1)Next, repeat the same procedure, but transmit a negative single-pulse transmission waveform at f2 along the line of interest. Figure 54E shows the echo returned after envelope detection. Two of the peaks correspond to reflections from the front boundary and the rear boundary of the area of interest. The distance between the boundaries is the same, where: (1)

吸收係數係頻率之一線性函數α=kf。接下來,邊界之間的吸收係數可表達為:(2)The absorption coefficient is a linear function of frequency α=kf. Next, the absorption coefficient between boundaries can be expressed as: (2)

在沿著所關注區存在N個平行線之情況下軟體自動地重複該程序N次,然後基於依據N個平行線5492(圖54F)之量測計算平均k值。(3)In the case where there are N parallel lines along the region of interest, the software automatically repeats this process N times and then calculates an average k value based on measurements based on the N parallel lines 5492 (Fig. 54F). (3)

軟體報告與沿著所關注N線之組織表徵對應之N個所量測吸收係數值,此外,軟體亦報告平均kavg 值,其中kavg (4)The software reports the N measured absorption coefficient values corresponding to the tissue representation along the N line of interest. Additionally, the software reports the average k avg value, where k avg (4)

總之,已闡述了可用於為臨床醫生提供定量病理組織診斷資訊之一無創性超音波成像技術。In summary, one of the noninvasive ultrasound imaging techniques that can be used to provide clinicians with quantitative pathological tissue diagnostic information has been described.

可在1997年J. Acoust. Soc. Am.第101卷第143至163頁的B. Ward、A. C. Baker及V.F. Humphrey之「Nonlinear propagation applied to the improvement of resolution in Diagnostic medical ultrasound」中且亦在2003年的IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.第50卷第730至735頁的A. Bouakaz、C.T. Lancee及N. de Jong之「Harmonic Ultrasonic Field of Medical Phased Arrays: Simulations and Measurements」找到關於超音波成像之諧波特性之其他細節。此等公開案之全部內併入供參考。Available in "Nonlinear propagation applied to the improvement of resolution in Diagnostic medical ultrasound" by B. Ward, A. C. Baker and V.F. Humphrey, J. Acoust. Soc. Am. 1997, Vol. 101, pp. 143-163 and also in 2003 Find out about ultrasound in "Harmonic Ultrasonic Field of Medical Phased Arrays: Simulations and Measurements" by A. Bouakaz, C.T. Lancee and N. de Jong in the IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Volume 50, Pages 730 to 735 Additional details of the harmonic properties of imaging. These publications, in their entirety, are incorporated by reference.

重要的是應注意,乳腺超音波成像非常依賴於操作員。在此提出具有軟體監測之一簡單工具以引導一超音波醫師徒手進行乳房掃描,以使得掃描完全覆蓋整個乳腺區域而不遺漏任何區域且係可再現的。一乳腺超音波換能器可係約50 mm寬。在掃描期間,操作員在一線性方向上徒手移動換能器會覆蓋約50 mm × 200 mm乳腺面積且然後將探針移動至開始點,在一內側橫向位置中將探針偏移約50 mm,再次重複線性掃描。成像過程重複進行直至覆蓋整個乳腺面積。可使用一聲學透明水凝膠墊來確保覆蓋總乳腺面積且過程可重複。在圖55A中可看到,水凝膠墊標記有四個重疊矩形,該四個重疊矩形具有換能器放置及掃描方向指示。每一矩形係50 mm寬且200 mm 長,中心圓點用於與乳頭對準。掃描係自頭至腳進行,其中平行徒手掃描覆蓋整個乳房。在此實例中,四個平行重疊掃描可覆蓋整個乳腺區域。It is important to note that breast ultrasound imaging is very operator dependent. A simple tool with software monitoring is proposed to guide a sonographer in performing a breast scan manually so that the scan completely covers the entire breast area without missing any area and is reproducible. A breast ultrasound transducer can be approximately 50 mm wide. During the scan, the operator manually moves the transducer in a linear direction covering approximately 50 mm × 200 mm breast area and then moves the probe to the starting point, offset the probe by approximately 50 mm in a medial lateral position , repeat the linear scan again. The imaging process is repeated until the entire breast area is covered. Acoustically clear hydrogel pads can be used to ensure total breast area is covered and the process is reproducible. As can be seen in Figure 55A, the hydrogel pad is marked with four overlapping rectangles with transducer placement and scan direction indications. Each rectangle is 50 mm wide and 200 mm long, with a central dot for nipple alignment. The scan is performed from head to toe, with parallel freehand scans covering the entire breast. In this example, four parallel overlapping scans cover the entire breast area.

圖55A展示標記有掃描方向及探針放置之水凝膠墊。換能器被放置於第一矩形之頂部處且被徒手移動至底部。然後,將探針移動至第二矩形之開始點且手動地或藉由一自動化控制器來反覆。重要的是在掃描期間徒手移動係足夠慢以使得可將超音波圖框擷取為各自間隔開一亞毫米之影像之一串流。系統將自每一掃描列之開始點追蹤時序,若移動太快則該系統將提供「警告嗶嗶聲」。Figure 55A shows a hydrogel pad marked with scanning direction and probe placement. The transducer was placed at the top of the first rectangle and moved to the bottom by hand. Then, move the probe to the start point of the second rectangle and repeat manually or by an automated controller. It is important that the freehand movements during scanning are slow enough to capture the ultrasound frames as a stream of images each spaced a sub-millimeter apart. The system will track the timing from the beginning of each scan sequence and provide a "warning beep" if the movement is too fast.

圖55B中展示具有1D影像陣列之一換能器設計,該1D影像陣列嵌入於在法向於中心成像陣列之方向上安裝之兩個運動引導陣列之間。此圖解說明嵌入於用於運動引導之兩個垂直陣列5102之間的線性成像陣列5101。該線性陣列可嵌入於位置法向於中心陣列之兩個較小換能器陣列之間。中心成像陣列之元件之數目可係128、192或256。側陣列中之每一者可具有介於16、24至32等範圍中之元件。側陣列可用於監測徒手移動之速率,以確保操作員正使用一恆定速率且速率足夠慢以產生可被擷取為各自間隔開約1 mm或更小之影像之一串流之超音波圖框。陣列亦可用於確保掃描係一直線向前移動。當移動太快或速率在變化或探針以一圓形運動移動時,軟體將一警告信號發送給操作員以調整移動。A transducer design with a 1D imaging array embedded between two motion guide arrays mounted in a direction normal to the central imaging array is shown in Figure 55B. This illustration illustrates a linear imaging array 5101 embedded between two vertical arrays 5102 for motion guidance. The linear array can be embedded between two smaller transducer arrays positioned normal to the central array. The number of elements of the central imaging array may be 128, 192 or 256. Each of the side arrays may have elements in the range of 16, 24 to 32, etc. The side array can be used to monitor the rate of freehand movement to ensure that the operator is using a constant rate and that the rate is slow enough to produce a stream of ultrasound frames that can be captured as a stream of images each spaced approximately 1 mm or less apart. . Arrays can also be used to ensure that the scanning system moves forward in a straight line. When the movement is too fast or the velocity is changing or the probe moves in a circular motion, the software sends a warning signal to the operator to adjust the movement.

圖55C圖解說明使用一換能器探針之位置追蹤之一成像序列5200。序列5200包含相對於將被掃描之一所關注區來對一換能器探針進行定位,換能器探針連接至一可移動超音波成像裝置(步驟5202)。序列5200包含使用一觸控螢幕圖標、選單或鍵盤輸入來致動一成像過程之操作(步驟5204)。序列5200包含在對所關注區進行超音波成像期間監測換能器探針之移動(步驟5206)。序列5200包含使用一觸控螢幕特徵或音波來發信號給控制換能器探針之移動之操作員以調整換能器探針之移動以引導對所關注區之成像(步驟5208)。序列5200視情況包含致動在可移動超音波成像裝置之一處理器上操作之一自動化機器學習程式以執行一計算診斷程序(步驟5210)。序列5200包含在顯示器上顯示一診斷影像或值(步驟5212)。Figure 55C illustrates an imaging sequence 5200 using position tracking of a transducer probe. Sequence 5200 includes positioning a transducer probe coupled to a movable ultrasound imaging device relative to a region of interest to be scanned (step 5202). Sequence 5200 includes the operation of activating an imaging process using a touch screen icon, menu, or keyboard input (step 5204). Sequence 5200 includes monitoring movement of the transducer probe during ultrasound imaging of a region of interest (step 5206). Sequence 5200 includes using a touch screen feature or sound waves to signal an operator controlling the movement of the transducer probe to adjust the movement of the transducer probe to guide imaging of the region of interest (step 5208). Sequence 5200 optionally includes activating an automated machine learning program operating on a processor of the mobile ultrasound imaging device to perform a computational diagnostic procedure (step 5210). Sequence 5200 includes displaying a diagnostic image or value on the display (step 5212).

人工智慧(AI)及擴增實境(AR)變換醫療超音波。使用AI及AR之醫療超音波應用可解決在諸多診斷及治療應用中影響患者治療成效之關鍵問題。超音波成像所帶來之問題通過深度學習解決,此乃因花費數年訓練深度學習以學習如何讀取超音波影像。已報告了基於深度學習AI演算法來自動地偵測腫瘤區且偵測心臟病之臨床研究,從而以高靈敏性及專一性輔助醫療診斷。增強現實(AR)將光學視覺視訊與超音波影像融合在一起,為外科醫生提供實時影像引導,以改良外科手術過程中解剖結構的識別且增強可視化。用於影像獲取之超音波系統可採用具有1000GFLOP (千兆次浮點運算/秒)以上處理能力之電腦系統來實施深度學習演算法所提出之數學計算,或將一超音波影像融合/疊加於一解剖特徵之一使用者光學視圖上所需之計算。AI及/或AR可極大地增強或擴展超音波成像應用。可獲取實時超音波影像且亦可實施彼等演算法強制執行之大量計算之一計算增強型超音波系統可推進癌治療以及癌及心臟病診斷上的臨床護理實施。超音波系統之較佳實施例中提供超音波系統之可攜性、可靠性、迅速、易用性及可購性以及用於進階成像之計算能力之改良之整合。Artificial intelligence (AI) and augmented reality (AR) transform medical ultrasound. Medical ultrasound applications using AI and AR can solve key issues that affect patient outcomes in many diagnostic and treatment applications. The problems posed by ultrasound imaging are solved by deep learning, which takes years to train deep learning to learn how to read ultrasound images. Clinical research has been reported on using deep learning AI algorithms to automatically detect tumor areas and detect heart disease, thereby assisting medical diagnosis with high sensitivity and specificity. Augmented reality (AR) integrates optical visual video and ultrasound images to provide surgeons with real-time image guidance to improve the recognition and enhanced visualization of anatomical structures during surgical procedures. The ultrasound system used for image acquisition can use a computer system with a processing capacity of 1000 GFLOP (giga floating point operations per second) or above to implement the mathematical calculations proposed by the deep learning algorithm, or to fuse/superimpose an ultrasound image on An anatomical feature is calculated on a user's optical view. AI and/or AR can greatly enhance or expand ultrasound imaging applications. Computationally enhanced ultrasound systems that can acquire real-time ultrasound images and can also perform the massive computations forced by their algorithms can advance clinical care in cancer treatment and diagnosis of cancer and heart disease. Preferred embodiments of the ultrasound system provide improved integration of portability, reliability, speed, ease of use, and affordability of the ultrasound system with computing power for advanced imaging.

超音波(US)影像已廣泛地用於診斷及偵測癌症及心臟病等。應用此等診斷技術來進行癌症偵測之缺陷係一受過培訓的放射科醫師人工診斷每一影像圖案會消耗大量的時間。雖然有經驗的醫生可在一US影像中人工定位腫瘤區,但仍非常期望採用自動地偵測腫瘤區之演算法以輔助醫療診斷。自動化分類器藉由自動地區分良性圖案及惡性圖案來在準確度及時間要求方面實質上升級診斷程序。神經網路(NN)在此方面發揮著重要作用,舉例而言尤其是在乳腺癌及前列腺癌偵測應用中。Ultrasound (US) imaging has been widely used to diagnose and detect cancer, heart disease, etc. A drawback of using these diagnostic techniques for cancer detection is that manual diagnosis of each image pattern by a trained radiologist consumes a large amount of time. Although experienced doctors can manually locate tumor areas in a US image, it is still highly desirable to use algorithms that automatically detect tumor areas to assist medical diagnosis. Automated classifiers substantially upgrade diagnostic procedures in terms of accuracy and time requirements by automatically distinguishing between benign and malignant patterns. Neural networks (NN) play an important role in this, for example in breast and prostate cancer detection applications.

脈衝耦合神經網路(PCNN)係一生物學啟發類型之神經網路。其係局部連接至其他神經元之貓視覺皮質之一簡化模型。PCNN能夠自影像提取邊緣、分段及紋理資訊。對不同類型之資料進行有效操作僅需要對PCNN參數做出些許改變。此係優於已發佈影像處理演算法之一優勢,該等已發佈影像處理演算法通常在發揮作用之前需要關於目標之資訊。可獲得超音波影像中之前列腺之一準確邊界偵測演算法來輔助放射科醫師做出一診斷。為增大超音波前列腺影像之對比度,首先使用具有一中值濾波器之PCNN來調整原始影像之強度值。此後,可執行PCNN分段演算法以偵測影像之邊界。組合強度調整與分段使得PCNN靈敏度降低至各種PCNN參數之設定,PCNN參數之最佳選擇可係困難的且可甚至對於同一問題仍有變化。結果表明與包含Fuzzy C-mean及Fuzzy Type-II在內的其他機器學習技術相比,所採用PCNN方法提供之總邊界偵測重疊準確度高。Pulse-coupled neural network (PCNN) is a biologically inspired type of neural network. It is a simplified model of the cat visual cortex with local connections to other neurons. PCNN can extract edge, segmentation and texture information from images. Efficient manipulation of different types of data requires only slight changes in PCNN parameters. This is an advantage over published image processing algorithms, which usually require information about the target before they can work. An accurate boundary detection algorithm of the prostate in ultrasound images can be obtained to assist radiologists in making a diagnosis. In order to increase the contrast of ultrasound prostate images, PCNN with a median filter is first used to adjust the intensity value of the original image. Thereafter, the PCNN segmentation algorithm can be executed to detect the boundaries of the image. Combining strength adjustment and segmentation reduces PCNN sensitivity to various PCNN parameter settings. The optimal choice of PCNN parameters can be difficult and may vary even for the same problem. The results show that compared with other machine learning techniques including Fuzzy C-mean and Fuzzy Type-II, the overall boundary detection overlap accuracy provided by the adopted PCNN method is high.

特定而言,超音波(US)影像已廣泛用於診斷乳腺癌。雖然有經驗的醫生可人工定位一US影像中之腫瘤區,但仍非常期望開發出自動地偵測腫瘤區之演算法以輔助醫療診斷。Peng Jiang、Jingliang Peng、Guoquan Zhang、Erkang Cheng、Vasileios Megalooikonomou、Haibin Ling已開發出在US影像中自動偵測乳腺腫瘤之一演算法:「Learning-based Automatic Breast Tumor detection and Segmentation in Ultrasound Images」,該文獻之全部內容併入本案供參考。腫瘤偵測程序被公式化為一兩步學習問題:定界框進行腫瘤定位及準確邊界描繪。具體而言,一例示性方法使用基於類Harr特徵之一AdaBoost分類器來偵測一組初步腫瘤區。使用量化強度特徵利用一支援向量機(SVM)來進一步篩選初步偵測到之腫瘤區。最後,對US影像執行隨機漫步分段演算法以擷取每一所偵測腫瘤區之邊界。基於含有112個乳腺US影像之一資料集來評估較佳方法,該資料集包含組織學確認之80個患病患者及32個正常患者。資料集含有每一患者之一個影像且患者在31歲至75歲之間。此等量測證明所提出之演算法可自動地偵測乳腺腫瘤以及其位置與邊界。In particular, ultrasound (US) imaging has been widely used to diagnose breast cancer. Although experienced doctors can manually locate the tumor area in a US image, it is still highly desirable to develop algorithms for automatically detecting tumor areas to assist medical diagnosis. Peng Jiang, Jinliang Peng, Guoquan Zhang, Erkang Cheng, Vasileios Megalooikonomou, and Haibin Ling have developed an algorithm for automatically detecting breast tumors in US images: "Learning-based Automatic Breast Tumor detection and Segmentation in Ultrasound Images". The entire contents of the document are incorporated into this case for reference. The tumor detection procedure is formulated as a one-two-step learning problem: bounding boxes for tumor localization and accurate boundary delineation. Specifically, an exemplary method uses an AdaBoost classifier based on Harr-like features to detect a preliminary set of tumor regions. The initially detected tumor areas are further screened using a support vector machine (SVM) using quantitative intensity features. Finally, a random walk segmentation algorithm is performed on the US image to capture the boundaries of each detected tumor area. The preferred method was evaluated based on a dataset of 112 breast US images, including 80 histologically confirmed diseased patients and 32 normal patients. The data set contains one image per patient and the patients are between 31 and 75 years old. These measurements demonstrate that the proposed algorithm can automatically detect breast tumors as well as their locations and boundaries.

風濕性心臟病(RHD)係25歲以下年輕人最常患上的心臟病。風濕性心臟病通常在童年時期以鏈球菌性咽喉炎形式出現,且可演變成導致青少年及年輕人死亡或使其衰弱之嚴重心臟損傷,且使妊娠危險。Rheumatic heart disease (RHD) is the most common heart disease among young people under the age of 25. Rheumatic heart disease often presents in childhood as strep throat and can progress into severe heart damage that kills or debilitates teenagers and young adults and makes pregnancy dangerous.

儘管在歐洲及北美幾乎消滅了這種疾病,但這種疾病在非洲、中東、中亞和南亞、南太平洋以及發達國家的貧困地區仍然很常見。全球有三千三百萬人受RHD影響。雖然可藉由超音波影像診斷RHD,但此等超音波影像對使用者有很大依賴性。通常,其需要經驗豐富的超音波醫師來獲取診斷品質超音波影像。藉由利用GPU加速之深度學習軟體訓練一系統來提供診斷超音波影像,採用一基於AI之深度學習演算法來使全科醫師利用超音波系統來診斷RHD對患者係有益的。Although nearly eradicated in Europe and North America, the disease remains common in Africa, the Middle East, Central and South Asia, the South Pacific, and in poor areas of developed countries. RHD affects 33 million people worldwide. Although RHD can be diagnosed through ultrasound images, these ultrasound images are highly dependent on the user. Typically, it requires an experienced sonographer to obtain diagnostic quality ultrasound images. By using GPU-accelerated deep learning software to train a system to provide diagnostic ultrasound images, it would be beneficial for general practitioners to use the ultrasound system to diagnose RHD using an AI-based deep learning algorithm.

圖56A中展示具有全連接人工神經節點之一計算神經網路模型。該模型包括L個層,在每一隱藏層內存在K個節點。下層中之每一節點之輸出以一可訓練連接權重完全連接至上層中之對應節點。One computational neural network model with fully connected artificial neural nodes is shown in Figure 56A. The model includes L layers, and there are K nodes in each hidden layer. The output of each node in the lower layer is fully connected to the corresponding node in the upper layer with a trainable connection weight.

在圖56A中可看到,每一節點係一個二維影像,其中(i,j)表示像素元件位置;Nl ,k (i,j)表示l層的第k個位置之(i,j)像素值;Wl ,k k’ (i,j)表示l層中之第k個位置之第(i,j)元件與l+1上層之第k’個位置中之(i,j)元件之間的連接權重。可藉由將對下層處之每一對應節點之連接權重Wl.k 之積與下l層中之節點中之每一者之輸出值Nl,k (i,j)求和來計算上層之第k’個位置處之像素值Nl+1 ,k’ (i,j),其中i=1、2、…、I;j=1、2、…、J(5)As can be seen in Figure 56A, each node is a two-dimensional image, where (i, j) represents the position of the pixel element; N l , k (i, j) represents the k-th position of layer l (i, j ) pixel value; W l ,k k' (i,j) represents the (i,j)-th element at the k-th position in the l layer and (i,j) at the k'-th position in the l+1 upper layer Connection weights between elements. The upper layer can be calculated by summing the product of the connection weight W lk of each corresponding node at the lower layer and the output value N l,k (i,j) of each node in the lower l layer. Pixel values N l+1 ,k' (i,j) at k' positions, where i=1, 2,...,I; j=1, 2,...,J (5)

在此實例中,假定在隱藏層中之神經節點中之每一者之一影像大小係(1000, 1000),亦即i=1000,j=1000,且在每一隱藏層內存在500個節點,k=500。可直接計算需要實施之數學運算,以依據來自下層之輸入計算上層上之節點之值,亦即1 × 109 次浮點運算。對於具有1000層(亦即,l=1000)之一神經網路而言,所需之計算總數目係1 × 1012 次浮點運算,亦即,在發展中國家中實施RHD臨床評估時,需要具有1000GFLOP之一處理器來使用此深度學習人工神經網路計算所需資料。除超音波系統之外,臨床醫師可攜帶具有Nvidia GPU之76台高端linux膝上型電腦,其中Nvidia GPU之處理能力超過1000GFLOP。本申請案之較佳實施例包含本文中所闡述之一平板式超音波系統,其中一圖形處理單元整合至平板電腦或可移動系統殼體中且經由匯流排或其他高速/資料速率連接而連接至超音波系統之中央處理器。In this example, assume that the image size of each of the neural nodes in the hidden layer is (1000, 1000), that is, i=1000, j=1000, and there are 500 nodes in each hidden layer ,k=500. It can directly calculate the mathematical operations that need to be performed to calculate the value of the node on the upper layer based on the input from the lower layer, that is, 1 × 10 9 floating point operations. For a neural network with 1000 layers (i.e., l = 1000), the total number of calculations required is 1 × 10 12 floating point operations, that is, when conducting clinical evaluation of RHD in developing countries, A processor with 1000GFLOP is used to calculate the required data using this deep learning artificial neural network. In addition to the ultrasound system, clinicians can carry 76 high-end Linux laptops with Nvidia GPUs capable of over 1,000 GFLOPs. Preferred embodiments of the present application include a tablet ultrasound system as described herein, in which a graphics processing unit is integrated into the tablet or removable system housing and connected via a bus or other high speed/data rate connection to the central processing unit of the ultrasound system.

一神經網路包括配置於若干層中之單元(神經元),該等單元一將輸入向量轉換成某些輸出。每一單元接受一輸入,對該輸入應用一(通常非線性)函數,且然後將輸出傳遞至下一層。通常,網路被界定為前饋式的:一單元將其輸出饋送至下一層上之所有單元,但不回饋至先前層。對自一個單元傳遞至另一單元之信號應用加權,且在訓練階段調諧此等加權以使一神經網路適應所面臨之特定問題。此係學習階段。神經網路圖案辨識之目標係將所觀測到之輸入圖案分群成一組已知類別中之一者。反向傳播分類器係一個最深入研究之NN分類器(NNC)且已應用於例如面部、字元及語音辨識以及信號預測的問題中。徑向基底函數(RBF)分類器在高維空間中有效推廣且提供低誤差率,其訓練時間遠遠小於反向傳播分類器之訓練時間。另外,RBF分類器形成平滑表現良好之決策區且在訓練資料很少之情況下效能良好。接下來,闡述一反向傳播演算法及一RBF演算法之實時實施。另外,闡述反向傳播及RBF訓練演算法。A neural network consists of units (neurons) arranged in several layers, which convert input vectors into certain outputs. Each unit accepts an input, applies a (usually non-linear) function to the input, and then passes the output to the next layer. Typically, networks are defined as feedforward: a unit feeds its output to all units on the next layer, but not to previous layers. Weights are applied to the signals passed from one unit to another, and these weights are tuned during the training phase to adapt a neural network to the specific problem faced. This is the learning stage. The goal of neural network pattern recognition is to group observed input patterns into one of a set of known categories. The backpropagation classifier is one of the most intensively studied NN classifiers (NNC) and has been applied to problems such as face, character and speech recognition and signal prediction. Radial basis function (RBF) classifiers effectively generalize in high-dimensional spaces and provide low error rates, and their training time is much shorter than that of backpropagation classifiers. In addition, the RBF classifier forms a smooth decision region with good performance and performs well when there is little training data. Next, the real-time implementation of a backpropagation algorithm and an RBF algorithm is described. In addition, the back propagation and RBF training algorithms are explained.

反向傳播係在人工神經網路中廣泛用於遠端感測影像分類之一方法,其用以在處理一批資料(影像辨識、多個影像)之後計算每一神經元之誤差貢獻。在機器學習情境中,反向傳播通常由梯度下降最佳化演算法用來藉由計算損失函數之梯度而調整神經元之權重。此技術有時亦被稱為誤差反向傳播,此乃因誤差係在輸出處計算且透過網路層散佈回來。Backpropagation is a method widely used in artificial neural networks for remote sensing image classification. It is used to calculate the error contribution of each neuron after processing a batch of data (image recognition, multiple images). In the context of machine learning, backpropagation is often used by gradient descent optimization algorithms to adjust the weights of neurons by calculating the gradient of the loss function. This technique is sometimes called error backpropagation because errors are calculated at the output and spread back through the network layer.

反向傳播需要每一輸入值之一已知所期望輸出。因此其被視為一監督學習方法(儘管其用於某些無監督網路中,諸如自動編碼器)。反向傳播亦係差量規則至多層前饋網路之一推廣,藉由使用連鎖規則來反覆地計算每一層之梯度來達成。其與Gauss–Newton演算法密切相關,且係繼續神經反向傳播之研究之一部分。反向傳播可與任何基於梯度之最佳化器一起使用,諸如L-BFGS或截斷式Newton。Backpropagation requires that the desired output is known for each input value. It is therefore considered a supervised learning method (although it is used in some unsupervised networks, such as autoencoders). Backpropagation is also a generalization of the delta rule to multi-layer feedforward networks, achieved by using chain rules to iteratively calculate the gradient of each layer. It is closely related to the Gauss–Newton algorithm and is part of the ongoing research on neural backpropagation. Backpropagation can be used with any gradient-based optimizer, such as L-BFGS or truncated Newton.

反向傳播神經網路由Rumelhart等人開發出來以作為訓練多層感知器問題之一解決方案。反向傳播通常用於訓練深度神經網路,深度神經網路係用於闡述具有一個以上隱藏層之神經網路之一術語。研究已表明,用於對遠端感測影像進行監督分類之神經網路模型極大提高了影像分類之精確性,此乃因神經網路分類器可研究非連續非線性分類模型。另外,神經網路模型具有良好的穩健性及自適應性且能夠在特定條件下解決問題。最後,神經網路能夠組合對遠端感測影像之多個參數(諸如形狀、譜相、紋理等)之分析以提取潛在資訊。Backpropagation neural networks were developed by Rumelhart et al. as a solution to the problem of training multi-layer perceptrons. Backpropagation is often used to train deep neural networks, a term used to describe neural networks with more than one hidden layer. Research has shown that neural network models used for supervised classification of remotely sensed images greatly improve the accuracy of image classification because neural network classifiers can study discontinuous non-linear classification models. In addition, the neural network model has good robustness and adaptability and can solve problems under specific conditions. Finally, the neural network can combine the analysis of multiple parameters (such as shape, spectrum, texture, etc.) of the remote sensing image to extract potential information.

反向傳播訓練演算法係一反覆梯度下降方法,該方法經設計以將一多層前饋之實際輸出與所期望輸出之間的均方誤差最小化。該演算法開始於具有隨機權重之一網路。對網路重複應用訓練向量,且在每一訓練向量之後根據演算法所規定之一組方程式來調整權重,直至將權重收斂及誤差函數減小至一可接受值為止。The backpropagation training algorithm is an iterative gradient descent method designed to minimize the mean square error between the actual output and the desired output of a multi-layer feedforward. The algorithm starts with a network with random weights. Training vectors are repeatedly applied to the network, and the weights are adjusted after each training vector according to a set of equations specified by the algorithm until the weights converge and the error function is reduced to an acceptable value.

接下來,綜述計算演算法。如圖56B中所指示,xi 表示輸入向量,wij h 表示輸入層與隱藏層之間的連接權重,且wij o 表示隱藏層與輸出層之間的連接權重。另外,uj = f(yj )表示隱藏層之激勵,其中係點積輸出,且vj =係網路所產生之實際輸出圖案之第j個元件。在兩種情形中,f(.)係一節點之非線性激勵函數。在權重更新階段中,權重wij o (t)及wij h (t)之更新量分別由以下公式給出:(6) 及(7) 其中t係一時間指數。差量項由以下方程式規定:(8)(9)Next, the calculation algorithm is reviewed. As indicated in Figure 56B, xi represents the input vector, wijh represents the connection weight between the input layer and the hidden layer, and wijo represents the connection weight between the hidden layer and the output layer. In addition, u j = f(y j ) represents the excitation of the hidden layer, where is the dot product output, and v j = is the j-th element of the actual output pattern generated by the network. In both cases, f(.) is the nonlinear activation function of a node. In the weight update stage, the update amounts of weights w ij o (t) and w ij h (t) are given by the following formulas: (6) and (7) where t is a time index. The difference term is specified by the following equation: (8) (9)

在方程式(8)中,Tj 係目標輸出型樣之第j個分量。因此,反向傳播訓練規則之實施方案涉及兩個階段。在第一階段期間,呈現輸入並通過網路向前傳播該輸入以計算輸出值uj 及vj 。在第二階段期間,在輸出節點處開始,將向後傳播誤差項至下層中之節點且相應地調整權重。In equation (8), T j is the j-th component of the target output pattern. Therefore, the implementation of backpropagation training rules involves two stages. During the first phase, the input is presented and propagated forward through the network to calculate the output values u j and v j . During the second phase, starting at the output node, the error term is propagated backward to nodes in the lower layer and the weights are adjusted accordingly.

一RBF分類器具有與三層前饋網之架構極其類似之一架構。圖56B展示一RBF分類器,其中輸入層與隱藏層之間的連接具有單位權重且因此不必被訓練。隱藏層中被稱為基底函數(BF)節點之節點可具有由一特定平均向量µi 及變異數向量σi 2 規定之一高斯脈衝非線性度,其中i=1、2、…、F,且F係BF節點之數目。給定一N維輸入向量X,每一BF節點i輸出反映輸入所引起之BF激勵之一張量值yi(10) 其中h 係變異數之一比例常數,xk 係輸入向量X =[x1 、x2 、…、xN ]之第k個分量,且µik 及σk 2 分別係基底函數節點i之平均向量及變異數向量之第k個分量。接近徑向BF之中心(在歐幾裡德意義上而言)之輸入形成一較高激勵,而遠離該中心之輸入形成低激勵。由於RBF網路之每一輸出節點形成BF節點激勵之一線性組合,因此中間層與輸出層的網路連接係線性的:(11) 其中zj 係第j個輸出節點之輸出,yi 係第i個BF節點之激勵,wij 係將第i個BF節點連接至第j個輸出節點之權重,且woj 係第j個輸出節點之偏差或臨限值。此偏差係由與不論輸入如何皆具有一恆定單位輸出之一BF節點相關聯之權重所致(在此種情形中,BF節點i = 0)。一未知輸入向量X被分類為屬與具有最大輸出zj 之輸出節點j相關聯之類別。An RBF classifier has an architecture very similar to that of a three-layer feedforward network. Figure 56B shows an RBF classifier where the connection between the input layer and the hidden layer has unit weight and therefore does not have to be trained. Nodes in the hidden layer, called basis function (BF) nodes, may have a Gaussian impulse nonlinearity specified by a specific mean vector µ i and variation vector σ i 2 , where i=1, 2,...,F, And F is the number of BF nodes. Given an N-dimensional input vector X, each BF node i outputs a tensor value y i that reflects the BF excitation caused by the input: (10) where h is a proportional constant of the variation, x k is the k-th component of the input vector X = [x 1 , x 2 ,..., x N ], and µ ik and σ k 2 are basis function nodes respectively The mean vector of i and the k-th component of the variation vector. Inputs close to the center of the radial BF (in the Euclidean sense) form a higher excitation, while inputs far from the center form a low excitation. Since each output node of the RBF network forms a linear combination of BF node excitations, the network connection between the middle layer and the output layer is linear: (11) where z j is the output of the j-th output node, y i is the excitation of the i-th BF node, w ij is the weight connecting the i-th BF node to the j-th output node, and w oj is the The deviation or threshold value of j output nodes. This bias is caused by the weight associated with a BF node that has a constant unit output regardless of input (in this case, BF node i = 0). An unknown input vector X is classified as belonging to the class associated with the output node j having the maximum output z j .

重要的是應注意,在方程式(10)中,RBF (0被選為一高斯函數)。通常,若一函數之第一導數係完全單調的,則此函數可用作一徑向基底函數。以下給出可實際上用於分類之一系列函數(12) 其中It is important to note that in equation (10), RBF(0) is chosen as a Gaussian function. In general, if the first derivative of a function is completely monotonic, the function can be used as a radial basis function. The following gives a series of functions that can actually be used for classification (12) in .

可使用一反覆梯度下降方法來訓練線性網路中之權重Wij ,以將一RBF網路之實際輸出與所期望輸出之間的均方誤差最小化。為圖解說明此方法,使在輸出節點j處具有類別標籤C的一給定輸入向量X之實際RBF分類器輸出為zj ,且一給定實例中之所期望輸出係例如4,其中 dj =0,而j = I,…,M (13) 且M係類別數目。在方程式 (13)中,dj 係所期望目標輸出型樣之第j分量。將最佳權重界定為將淨輸出之平方誤差最小化之權重。(14) 可藉由在與此誤差函數之梯度相反之方向上選擇權重改變來實現最小誤差,因此執行誤差函數之一梯度下降。 亦即:(15) 接下來(16) 演算法開始於具有隨機權重之一網路。對該網路重複應用訓練向量且在每一訓練向量之後根據方程式(16)來調整權重直至將權重收斂及誤差函數減小至一可接受值為止。An iterative gradient descent method can be used to train the weights W ij in the linear network to minimize the mean square error between the actual output and the desired output of an RBF network. To illustrate this approach , let the actual RBF classifier output for a given input vector =0, and j = I,…,M (13) and M is the number of categories. In equation (13), d j is the j-th component of the desired target output pattern. Define the optimal weight as the weight that minimizes the squared error of the net output. (14) Minimum error can be achieved by choosing weight changes in the opposite direction of the gradient of this error function, thus performing a gradient descent of the error function. that is: (15) Next (16) The algorithm starts with a network with random weights. Training vectors are repeatedly applied to the network and the weights are adjusted according to equation (16) after each training vector until the weights converge and the error function is reduced to an acceptable value.

接下來,綜述計算演算法。如圖56B中所展示之網路結構中所指示,Xi 表示輸入向量,而wij 表示隱藏BF節點與輸出層之間的連接權重。因此,RBF訓練規則之實施方案涉及兩個階段。在第一階段期間,呈現輸入且將透過網路向前傳播該輸入以計算輸出值yi 及zj 。在第二階段期間,所根據方程式(16)調整權重。重複進行該過程直至權重收斂及誤差項達到一可接受值為止。Next, the calculation algorithm is reviewed. As indicated in the network structure shown in Figure 56B, Xi represents the input vector, and wij represents the connection weight between the hidden BF node and the output layer. Therefore, the implementation plan of RBF training rules involves two stages. During the first phase, the input is presented and propagated forward through the network to calculate the output values y i and z j . During the second phase, the weights are adjusted according to equation (16). This process is repeated until the weights converge and the error term reaches an acceptable value.

習用腹腔鏡提供三維(3D)手術區域之一平面表示且無法將位於可視器官表面下之內部結構可視化。由於軟組織器官之可變形性質,電腦斷層攝影(CT)及磁性共振(MR)影像難以與腹腔鏡視圖實時融合。利用新興相機技術,已開發出一實時立體擴增實境(AR)系統來藉由將實時腹腔鏡超音波(LUS)與立體視訊合併來進行腹腔鏡外科手術。該系統執行兩個重要視覺線索:(1)真實深度之感知,使得更好地理解解剖結構之間的3D空間關係,及(2)關鍵內部結構之可視化以及手術區域之一更全面可視化。使用腹腔鏡超音波檢查法(LUS)對於新手及有經驗超音波檢查師而言皆頗具挑戰性。由於現在將高畫質(HD)相機整合至腹腔鏡系統中,因此腹腔鏡相機近年來已在影像品質取得顯著進步。然而,習用腹腔鏡係單眼的且僅能夠提供一單個相機視圖。因此,所得顯示器係三維(3D)手術區域之一平面表示且不能使外科醫生良好地理解解剖結構之間的3D空間關係。另外,儘管表面紋理豐富,但腹腔鏡視訊未提供位於可視器官表面下之內部結構之資訊。良好深度感知及內部結構之知識兩者皆對腹腔鏡過程之安全性及有效性及提高外科手術效果至關重要。Conventional laparoscopy provides a planar representation of the three-dimensional (3D) surgical field and cannot visualize internal structures located beneath the surface of visible organs. Due to the deformable nature of soft tissue organs, real-time fusion of computed tomography (CT) and magnetic resonance (MR) images with laparoscopic views is difficult. Taking advantage of emerging camera technology, a real-time stereoscopic augmented reality (AR) system has been developed to perform laparoscopic surgery by merging real-time laparoscopic ultrasound (LUS) with stereoscopic video. The system performs two important visual cues: (1) true depth perception, allowing for a better understanding of the 3D spatial relationships between anatomical structures, and (2) visualization of key internal structures and a more comprehensive visualization of the surgical area. Using laparoscopic ultrasonography (LUS) can be challenging for both novice and experienced sonographers. Laparoscopic cameras have made significant improvements in image quality in recent years as high-definition (HD) cameras are now integrated into laparoscopic systems. However, conventional laparoscopes are monocular and can only provide a single camera view. Therefore, the resulting display is a planar representation of the three-dimensional (3D) surgical field and does not provide the surgeon with a good understanding of the 3D spatial relationships between anatomical structures. In addition, despite the rich surface texture, laparoscopic video does not provide information about the internal structures located beneath the surface of the visible organ. Good depth perception and knowledge of internal structures are both critical to the safety and effectiveness of laparoscopic procedures and to improving surgical outcomes.

腹腔鏡擴增實境(AR)係一種將腹腔鏡超音波視訊覆疊至光學視訊上之方法,提供增強之手術中可視化,如Xin Kang、Mahdi Azizian、Emmanuel Wilson、Kyle Wu、Aaron D.Martin、Timothy D.Kane、Craig A.Peters、Kevin Cleary、Raj Shekhar的「Stereoscopic augmented reality for laparoscopic surgery」,Surg Endosc (2014) 28:2227–2235中及Xinyang Liu、Sukryool Kang、William Plishker. George Zaki. Timothy D.Kane、Raj Shekhar的「Laparoscopic stereoscopic augmented reality: toward a clinically viable, electromagnetic tracking solution」;J. Med. Imag.3(4),045001 (2016),doi:10.1117/1.JMI.3.4.045001中更詳細地闡述,該等公開案中之兩者的全部內容全文併入本案供參考。Laparoscopic augmented reality (AR) is a method of overlaying laparoscopic ultrasound video onto optical video to provide enhanced intraoperative visualization, such as Xin Kang, Mahdi Azizian, Emmanuel Wilson, Kyle Wu, Aaron D.Martin , "Stereoscopic augmented reality for laparoscopic surgery" by Timothy D. Kane, Craig A. Peters, Kevin Cleary, Raj Shekhar, Surg Endosc (2014) 28:2227–2235 and Xinyang Liu, Sukryool Kang, William Plishker. George Zaki. "Laparoscopic stereoscopic augmented reality: toward a clinically viable, electromagnetic tracking solution" by Timothy D. Kane and Raj Shekhar; J. Med. Imag.3(4),045001 (2016), doi:10.1117/1.JMI.3.4. 045001, the entire contents of both of these public cases are incorporated into this case for reference.

手術中成像具有以下優勢:提供外科手術區域之實時更新且能夠AR繪示位於腹部、胸部及骨盆中之移動器官及可變形器官。可使用一基於EM追蹤之臨床上可行腹腔鏡AR系統。EM-AR系統之性能已經過嚴格驗證,具有臨床上可接受配準準確度及可視化延時。Intraoperative imaging has the advantage of providing real-time updates of the surgical field and enabling AR rendering of moving and deformable organs located in the abdomen, chest, and pelvis. A clinically feasible laparoscopic AR system based on EM tracking can be used. The performance of the EM-AR system has been rigorously verified, with clinically acceptable registration accuracy and visualization delay.

圖58A中所展示之本發明系統可執行圖57中所圖解說明之過程,其中具有一EM感測器4952之一腹腔鏡換能器探針4950可使用如本文中所闡述之觸控螢幕操作來致動4902。可視情況校準4904裝置以用於一特定成像應用,且可同時或依序擷取4906光學影像及超音波影像。影像可以分割螢幕格式呈現或合併(覆疊)成視訊格式4908。可使用一神經網路處理4910資料以產生診斷資料。該系統包含一核心處理器及記憶體4954,核心處理器可包括本文中先前所闡述之一Nvidia圖形處理器單元,該Nvidia圖形處理器單元可經程式化或經組態以用作一神經網路。一或多個神經網路可經組態以用於離散學習演算法,該等離散學習演算法與用於單獨解剖結構(諸如,心臟、肺、腎臟、胃腸成像)的使用一超音波腹腔鏡探針之成像協定相關聯。探針4950可包含一成像相機,諸如一CMOS或CCD成像裝置。另一選擇係,一成像導管或探針可用於產生直接連接至可移動超音波系統之影像資料。The inventive system shown in Figure 58A can perform the process illustrated in Figure 57, wherein a laparoscopic transducer probe 4950 having an EM sensor 4952 can be operated using a touch screen as described herein. Come activate 4902. The 4904 device can be optionally calibrated for a specific imaging application and can capture 4906 optical and ultrasound images simultaneously or sequentially. Images can be presented in split-screen format or merged (overlaid) into video format 4908. A neural network can be used to process the 4910 data to generate diagnostic data. The system includes a core processor and memory 4954. The core processor may include one of the Nvidia graphics processor units previously described herein, which may be programmed or configured to function as a neural network. road. One or more neural networks can be configured for discrete learning algorithms that are consistent with the use of an ultrasound laparoscope for individual anatomy (such as heart, lung, kidney, gastrointestinal imaging) The probe is associated with the imaging protocol. Probe 4950 may include an imaging camera, such as a CMOS or CCD imaging device. Alternatively, an imaging catheter or probe can be used to generate imaging data directly connected to the mobile ultrasound system.

圖58B之實施例包含一圖形處理器4956,諸如包含一6GB視訊記憶體之一Nuidia Quadro P3000圖形卡。此圖形處理器經組態以執行本文中所闡述之機器學習方法,諸如可自加利福尼亞的聖弗朗西斯科Bay Labs, Inc購買且如2017年12月4日提出申請之美國專利申請案US2018/0153505中所闡述之軟體產品,該美國專利申請案之全部內容併入本案供參考。The embodiment of Figure 58B includes a graphics processor 4956, such as a Nuidia Quadro P3000 graphics card including a 6GB video memory. This graphics processor is configured to perform the machine learning methods described herein, such as may be purchased from Bay Labs, Inc. of San Francisco, California and as described in U.S. patent application US2018/0153505 filed on December 4, 2017. The entire contents of this U.S. patent application for the software product described are hereby incorporated by reference.

需要大數目個數學計算來將一腹腔鏡超音波視訊覆疊或映射於光學視訊上。使pus = [x y 0 1]表示LUS,腹腔鏡超音波影像座標中之一點,其中z座標係0。使pLap u 表示在未失真腹腔鏡光學視訊影像中與pus 對應之點。若將TA B 標示為自A之座標系至B之座標系之4x4變換矩陣,則pus 與pLap u 之間的關係可藉由以下方程式表達。(17) 其中US係指腹腔鏡超音波影像;EMSus 係指附接至腹腔鏡超音波探針之感測器;EMT係指EM追蹤系統;EMSLap 係指附接至3D光學視域範圍之感測器;透鏡係指3D範圍之相機透鏡;I3 係大小3之單元矩陣;且K係相機矩陣。Tus EMSus 可自超音波校準獲得;TEMSus EMT 及TEMT EMSLap 可自追蹤資料獲得;TEMSLap lens 可係手眼校準獲得;且K可自相機校準獲得。可使用亦自相機校準獲得之透鏡失真係數使plap us 失真。A large number of mathematical calculations are required to overlay or map a laparoscopic ultrasound video onto an optical video. Let p us = [xy 0 1] represent LUS, a point in the laparoscopic ultrasound image coordinates, where the z coordinate system is 0. Let p Lap u represent the point corresponding to p us in the undistorted laparoscopic optical video image. If T A B is denoted as a 4x4 transformation matrix from the coordinate system of A to the coordinate system of B, then the relationship between p us and p Lap u can be expressed by the following equation. (17) Among them, US refers to the laparoscopic ultrasound image; EMS us refers to the sensor attached to the laparoscopic ultrasound probe; EMT refers to the EM tracking system; EMS Lap refers to the 3D optical field of view attached to The sensor; the lens refers to the camera lens in the 3D range; I 3 is the unit matrix of size 3; and K is the camera matrix. T us EMSus can be obtained from ultrasound calibration; T EMSus EMT and T EMT EMSLap can be obtained from tracking data; T EMSLap lens can be obtained from hand-eye calibration; and K can be obtained from camera calibration. P lap us can be distorted using lens distortion coefficients also obtained from camera calibration.

藉由基於方程式(17)將腹腔鏡超音波影像之一個點映射至腹腔鏡光學視訊影像中之對應點來直接計算使用複合超音波與光學視訊影像之擴增實境成像之計算要求。使相機矩陣大小係(500,500)像素且超音波影像大小係(500,500)像素。依據方程式(17),所需計算總數目係約1x1012 次浮點運算,亦即1000GFLOP,其中圖形處理器用於實時提供解決方案。The computational requirements for augmented reality imaging using composite ultrasound and optical video images are directly calculated by mapping a point in the laparoscopic ultrasound image to a corresponding point in the laparoscopic optical video image based on equation (17). Let the camera matrix size be (500,500) pixels and the ultrasound image size be (500,500) pixels. According to equation (17), the total number of calculations required is approximately 1x10 12 floating point operations, or 1000GFLOPs, where the graphics processor is used to provide the solution in real time.

除用於獲取腹腔鏡超音波影像之超音波系統之外,亦藉由具有一NVidia GPU Quadro K2100M、576個核心、具有972.8 GFLOP處理能力之一膝上型電腦(Precision M4800,Dell;4核2.9 GHz Intel CPU)實施光學影像與超音波影像融合工作。然而,本文中所闡述之一較佳設計使用一計算增強超音波系統。除Intel 處理器CPU之外,系統可併入能夠提供1000GFLOP以上處理能力之一多核心GPU以適應上文所例示之AI、AR應用所提出之計算要求。In addition to the ultrasound system used to acquire laparoscopic ultrasound images, a laptop (Precision M4800, Dell; 4-core 2.9 GHz Intel CPU) to implement the fusion of optical imaging and ultrasonic imaging. However, one of the better designs described in this article uses a computationally enhanced ultrasound system. In addition to Intel processor CPUs, the system can be incorporated into a multi-core GPU that can provide processing capabilities of more than 1000 GFLOP to adapt to the computing requirements of the AI and AR applications illustrated above.

本文中所闡述之較佳實施例提供處理超音波資料之一靈活系統。如圖58C中所繪示,系統可處理經由匯流排5404自波束成形引擎5402傳輸至處理器5406之波束成形影像資料,處理器5406運行包含掃描轉換及都卜勒處理在內之若干個超音波軟體操作5405。使用者在觸控螢幕介面處藉由語音命令或鍵盤所選擇之選定成像模式界定傳輸至顯示器之資料及影像5408。The preferred embodiments described herein provide a flexible system for processing ultrasound data. As shown in Figure 58C, the system can process beamformed image data transmitted from the beamforming engine 5402 to the processor 5406 via the bus 5404. The processor 5406 runs a number of ultrasound processes including scan conversion and Doppler processing. Software operation 5405. The selected imaging mode selected by the user via voice command or keyboard at the touch screen interface defines the data and images 5408 transmitted to the display.

當使用者選擇需要更複雜計算或成像處理功能之一成像模式時,處理器5406將存取本文中所闡述之機器學習及/或影像處理應用5410,如圖58D中所展示。此可包含處理由換能器產生之RF資料之可選選項,RF資料亦可自引擎5402經由匯流排5404轉送至處理器5410。超音波應用5405可利用RF資料或格式化為點陣圖影像資料之資料以藉由處理應用程式5410處理,處理應用程式5410將所需資料傳輸至圖形處理單元5420。處理器5420可利用記憶體5422在儲存顯示或有線/無線傳輸至一網路之前儲存供進一步處理或傳輸回至中央處理器應用程式5410之資料。When the user selects an imaging mode that requires more complex computing or imaging processing capabilities, the processor 5406 will access the machine learning and/or image processing applications 5410 described herein, as shown in Figure 58D. This may include optional options for processing RF data generated by the transducer, which may also be transferred from engine 5402 to processor 5410 via bus 5404. Ultrasound application 5405 may utilize RF data or data formatted as bitmap image data for processing by processing application 5410 , which transmits the required data to graphics processing unit 5420 . Processor 5420 may utilize memory 5422 to store data for further processing or transmission back to CPU application 5410 before storing the display or wired/wireless transmission to a network.

圖58E繪示一平板電腦組態之一電路板佈局之一圖片,其中處理器5406與圖形處理單元5420安裝於一單個電路板上。平板電腦可具有在8至16英吋之一範圍中之一顯示器直徑,其中所有操作可藉由觸控操作致動。另一選擇係,平板電腦亦可顯示用於語音啟動之一觸控致動型圖標,可藉由一外部鍵盤操作或經由一網路藉由有線或無線連接遠端地操作。Figure 58E shows an image of a circuit board layout of a tablet computer configuration in which the processor 5406 and the graphics processing unit 5420 are mounted on a single circuit board. Tablet computers can have a display diameter in the range of 8 to 16 inches, where all operations can be actuated by touch operations. Alternatively, the tablet may display a touch-activated icon for voice activation, which may be operated via an external keyboard or remotely via a wired or wireless connection over a network.

圖59圖解說明使用一共用記憶體來提供與一外部應用之通信。在利用如本文中所闡述之一共用記憶體之平板電腦或其他可移動超音波裝置中,同一或不同處理器上之複數個不同應用程式可存取所儲存資料。可在美國專利第9,402,601號中且在2003年3月11日提出申請之美國公開申請案第2004/015079號中找到關於超音波裝置中之共用記憶體操作之其他細節,此專利及申請案之全部內容併入本案供參考。可使用平板電腦或膝上型電腦中之一控制電路5960來存取共用記憶體5920,控制電路5960將資料封包發送至遠端地運行或在如本文中所闡述之平板電腦或可移動超音波裝置內部運行之一第三方應用程式5940且接收資料封包。共用記憶體5920可用於使用一第三方應用程式來傳輸個別影像圖框或串流視訊以供處理,該處理可包含機器學習或擴增實境操作。圖60A繪示整合至一平板電腦或膝上型電腦超音波系統中之一散佈式處理器系統或GPU 4954。可經由匯流排6060將複數個核心處理器6020連接至複數個GPU 6040及一共用記憶體6050。採用超音波成像操作之觸控螢幕致動之平板電腦裝置可包含由圖形處理器執行之操作之一觸控致動選單。舉例而言,可藉由平板電腦觸控螢幕上之一觸控致動圖標或選單清單打開可自Bay Labs,Inc.購得之一軟體程式。與一成像過程搭配使用之一例示性程式可係可自Bay Labs,Inc.購得之EchoMD Auto EF產品,該產品用以自一回波心動研究自動地選擇影像或視訊且亦執行自動化博出分率截斷術。Figure 59 illustrates the use of a shared memory to provide communication with an external application. In a tablet or other removable ultrasound device utilizing a shared memory as described herein, stored data may be accessed by multiple different applications on the same or different processors. Additional details regarding shared memory operation in ultrasound devices can be found in U.S. Patent No. 9,402,601 and U.S. Published Application No. 2004/015079, filed March 11, 2003, both of which All contents are incorporated into this case for reference. Shared memory 5920 may be accessed using one of the control circuits 5960 in a tablet or laptop computer, which sends data packets to the tablet or portable ultrasound system running remotely or as described herein. A third-party application 5940 runs inside the device and receives data packets. Shared memory 5920 can be used to use a third-party application to transfer individual image frames or streaming video for processing, which processing can include machine learning or augmented reality operations. Figure 60A illustrates a distributed processor system or GPU 4954 integrated into a tablet or laptop ultrasound system. A plurality of core processors 6020 can be connected to a plurality of GPUs 6040 and a shared memory 6050 via a bus 6060. Tablet computer devices employing touch screen actuation of ultrasound imaging operations may include a touch actuation menu of operations performed by a graphics processor. For example, a software program available from Bay Labs, Inc. may be opened via a touch-activated icon or menu list on the tablet's touch screen. An exemplary program for use with an imaging procedure may be the EchoMD Auto EF product available from Bay Labs, Inc., which is used to automatically select images or videos from an echocardiographic study and also perform automated extraction. Fractional truncation.

圖60B中展示展示於一平板電腦之一觸控螢幕顯示器上之一Bay Labs, Inc.軟體引擎之一螢幕截圖,其中複數個圖形視覺指示器7002、7004使得一系統操作員能夠基於一水平條之大小調整一探針之位置及/或移動,該水平條指示使用者手動操控探針之有效性,藉此提供回饋。另一產品可自DIA Imaging Analysis, Ltd (Be’er Sheva, Israel)購得,諸如與本文中所闡述之雙峰換能器探針搭配使用之LVIVO EF博出分率評估工具。Shown in Figure 60B is a screenshot of a Bay Labs, Inc. software engine displayed on a touch screen display of a tablet computer, in which a plurality of graphical visual indicators 7002, 7004 enable a system operator to control the system based on a horizontal bar. The size adjusts the position and/or movement of a probe, and the horizontal bar provides feedback by indicating to the user the effectiveness of manual manipulation of the probe. Another product is available from DIA Imaging Analysis, Ltd (Be’er Sheva, Israel), such as the LVIVO EF fractionation evaluation tool for use with the bimodal transducer probe described in this article.

其他定量特徵包含可自台灣台北之AmCad Biomed Corporation獲得之甲狀腺癌偵測方法。在美國專利第8,948,474號中且亦在2016年10月的Nature Scientific Reports,V6:35632;DOI 10.1038/srep v 35632的Wu等人之「Quantitative analysis of echogenicity for patients with thyroid nodules」中闡述此等方法,該美國專利之全部內容併入本案供參考。Other quantitative features include thyroid cancer detection methods available from AmCad Biomed Corporation in Taipei, Taiwan. Such methods are described in U.S. Patent No. 8,948,474 and also in "Quantitative analysis of echogenicity for patients with thyroid nodules" by Wu et al., Nature Scientific Reports, V6:35632; DOI 10.1038/srep v 35632, October 2016 , the entire contents of this U.S. patent are incorporated into this case for reference.

根據本發明之一機器學習技術之一項實施例如下: 1. 獲得超音波影像資料:I(x) 2. 在影像上之每一所關注區周圍放置一定界框來標注此資料,因此形成一訓練資料集。 3. 針對每一影像且針對每一圖,基於其sobel梯度形成一組特徵:go (I(x)) 4. 使用此等梯度使用哈爾(haar)小波及一AdaBoost演算法來在病變或其他所關注目標組織與正常組織之間做出辨別。哈爾小波係一影像位置之周圍上之特徵之積分之差異。AdaBoost藉由基於一訓練資料集之經驗誤差最小化選擇最佳地辨別病變或其他選定及未選定區的一組哈爾小波以及經由此等小波最佳地組合此等小波與一組臨限值的一組權重。更確切而言,AdaBoost學習函數:(18) 其中ht (x)係一弱分類器且對應於:(19) 5. 使用用於偵測選定影像中之病變之f(x)。An example of a machine learning technology according to the present invention is as follows: 1. Obtain ultrasound image data: I(x) 2. Place a certain bounding box around each area of interest on the image to mark this data, thus forming A training data set. 3. For each image and for each map, form a set of features based on its sobel gradient: g o (I(x)) 4. Use these gradients to use Haar wavelets and an AdaBoost algorithm to detect lesions Or distinguish between other target tissues of interest and normal tissues. Haar wavelet is the integral difference of features around an image position. AdaBoost works by selecting a set of Haar wavelets that best distinguish lesions or other selected and unselected regions by minimizing the empirical error based on a training data set and by optimally combining these wavelets with a set of threshold values. a set of weights. More precisely, the AdaBoost learning function: (18) where h t (x) is a weak classifier and corresponds to: (19) 5. Use f(x) for detecting lesions in the selected image.

本文中所呈現之系統及方法可包含具有相關聯可執行指令之一或多個可程式化處理單元,該等可執行指令保存於一或多個電腦可讀媒體、RAM、ROM、硬碟機及/或硬體上。在例示性實施例中,硬體、韌體及/或可執行碼可提供為(舉例而言)升級模組以與本文中所闡述之處理系統結合使用。舉例而言,硬體可包含用於執行本文中教示為一計算程序之實施例之組件及/或邏輯電路系統,例如以控制一或多個超音波成像序列。The systems and methods presented herein may include one or more programmable processing units having associated executable instructions stored on one or more computer readable media, RAM, ROM, hard drive and/or hardware. In exemplary embodiments, hardware, firmware, and/or executable code may be provided, for example, as upgrade modules for use with the processing systems described herein. For example, hardware may include components and/or logic circuitry for executing embodiments taught herein as a computing program, such as to control one or more ultrasound imaging sequences.

包含顯示器及處理單元以輸送所計算/所處理之資料,例如形貌2D或3D影像資料。在例示性實施例中,顯示器及/或計算裝置用於將相對於一習用二維影像覆疊之所導出超音波成像資訊可視化,如本文中所闡述。在例示性實施例中,顯示器可係便於將成像資訊可視化之一個三維顯示器。Contains a display and a processing unit to transmit calculated/processed data, such as topographic 2D or 3D image data. In an exemplary embodiment, a display and/or computing device is used to visualize the derived ultrasound imaging information relative to a conventional two-dimensional image overlay, as described herein. In an exemplary embodiment, the display may be a three-dimensional display that facilitates visualizing imaging information.

可用於實施本發明實施例中之某些之實際軟體碼或控制硬體不旨在限制此等實施例之範疇。舉例而言,可使用任何適合程式化語言類型(諸如,組譯碼、C、C#或C++)使用例如習用或物體導向程式化技術以碼來實施本文中所闡述之實施例之某些態樣。此碼儲存或保存於一或多個任何類型之適合非暫時性電腦可讀媒體上,諸如磁性儲存裝置媒體或光學儲存裝置媒體。The actual software code or control hardware that may be used to implement some of the embodiments of the invention is not intended to limit the scope of such embodiments. For example, certain aspects of the embodiments set forth herein may be implemented in code using any suitable programming language type, such as assembly coding, C, C#, or C++, using, for example, conventional or object-oriented programming techniques. . This code is stored or preserved on one or more suitable non-transitory computer-readable media of any type, such as magnetic storage device media or optical storage device media.

除上述內容之外,現在進一步闡述適合由本發明實施例使用且在圖1B中所展示之一例示性可移動超音波系統。應明白,下文所陳述之例示性系統之說明旨在圖解說明且闡釋系統特徵且不具限制意義。亦應明白,對下文所闡述之例示性系統所做出的與本文中所含有之說明一致的修改亦被視為在本發明之範疇內。In addition to the above, an exemplary mobile ultrasound system suitable for use by embodiments of the present invention and shown in Figure IB is now further described. It should be understood that the descriptions of the illustrative systems set forth below are intended to illustrate and explain features of the systems and are not intended to be limiting. It will also be understood that modifications to the illustrative systems described below that are consistent with the description contained herein are deemed to be within the scope of the present invention.

例示性可移動超音波系統產生高解析度影像,該等高解析度影像旨在由藉由超音波成像或人體流體流執行分析之合格醫師使用。具體臨床應用及檢查類型包含但不限於:胎兒、腹部、手術中(腹部、器官及血管)、小兒科、小器官(甲狀腺、乳房、睾丸);新生兒及成人頭顱;經直腸、經陰道、肌肉骨骼(習用及淺層);心臟(成人&小兒);周邊血管。Exemplary mobile ultrasound systems produce high-resolution images intended for use by qualified physicians performing analysis by ultrasound imaging or body fluid flow. Specific clinical applications and examination types include but are not limited to: fetus, abdomen, surgery (abdomen, organs and blood vessels), pediatrics, small organs (thyroid, breast, testicles); neonatal and adult skull; transrectal, transvaginal, muscle Bones (common and superficial); Heart (adults &children); Peripheral blood vessels.

通常,超音波主要係一依賴操作員之成像技術。影像品質和基於掃描做出正確診斷之能力取決於在檢查期間應用之精確影像調整及適當控制設定。例示性可移動超音波系統提供工具以在所有影像模式之患者掃描期間改良或最佳化影像品質。此系統併入本文中先前所闡述之一圖形處理單元,舉例而言如圖9A至圖9F及圖46至圖60B中所闡述,但不具限制性。Typically, ultrasound is primarily an operator-dependent imaging technology. Image quality and the ability to make a correct diagnosis based on the scan depend on the precise image adjustments and appropriate control settings applied during the examination. An exemplary mobile ultrasound system provides tools to improve or optimize image quality during patient scans in all imaging modalities. This system incorporates one of the graphics processing units previously described herein, for example, but not limiting, as illustrated in Figures 9A-9F and Figures 46-60B.

可移動超音波系統可包含具有不同特徵級別之版本。Mobile ultrasound systems are available in versions with different feature levels.

下表列示每一版本附帶之掃描模式。 The following table lists the scan modes included with each version.

可移動超音波系統可使用256個數位波束成形通道來實現二維數位成像。此成像模式在自2百萬赫至12百萬赫之頻率中實現出色的影像均勻性、組織對比解析度及操縱靈活性。高通道計數支援真正的相位陣列及高元件計數成像探針。2D掃描資料在2D成像視窗中顯示。The mobile ultrasound system can use 256 digital beamforming channels to achieve two-dimensional digital imaging. This imaging mode achieves excellent image uniformity, tissue contrast resolution and maneuverability at frequencies from 2 MHz to 12 MHz. High channel count supports true phased arrays and high component count imaging probes. The 2D scan data is displayed in the 2D imaging window.

可移動超音波系統可同時實現二維(2D模式)成像及M模式成像。此組合對高效地評定移動結構很有價值。M模式可用於判定超音波波束內之物體之運動型樣。此模式可用於查看心臟之運動型樣。M模式在2D成像視窗中顯示解剖結構之掃描資料,且在時間序列視窗中顯示運動掃描。The movable ultrasound system can simultaneously achieve two-dimensional (2D mode) imaging and M-mode imaging. This combination is valuable for efficient assessment of mobile structures. M mode can be used to determine the movement pattern of objects within the ultrasonic beam. This mode can be used to view heart movement patterns. M mode displays scan data of anatomical structures in a 2D imaging window and motion scans in a time series window.

彩色都卜勒模式用於藉由對此等參數指派色彩碼資訊來偵測存在、方向及相對血流速度。在覆疊於2D影像上之一所關注區(ROI)上繪示色彩。朝向探針之非反向血流被指派紅色陰影,且遠離探針顯示器之血流以藍色陰影顯示。然後對照對結構之一灰階掃描顯示平均都卜勒頻移。紅血球之所有形式之基於超音波之成像係自傳輸信號之所接收回波導出。此回波信號之主要特性係其頻率及其振幅(或功率)。藉由紅血球相對於探針之移動而確定頻移–朝向探針之血流產生比遠離探針之血流高之一頻率信號。振幅取決於由超音波波束樣本之體積內之移動血液量。可應用一高圖框速率或高解析度來控制掃描品質。以淺色顯示由迅速血流產生之較高頻率,且以暗色顯示較低頻率。舉例而言,近端頸動脈通常以亮紅色及橘色顯示,此乃因血流朝向探針,且此動脈中之血流頻率(速度)相對高。相比之下,頸靜脈中之血流顯示為藍色,此乃因其遠離探針流動。在2D成像視窗中顯示彩色都卜勒掃描資料。Color Doppler mode is used to detect presence, direction and relative blood flow velocity by assigning color code information to these parameters. Plots color on a region of interest (ROI) overlaid on a 2D image. Non-reverse flow toward the probe is assigned a red shading, and flow away from the probe display is shown in blue shading. The average Doppler shift is then displayed against a grayscale scan of one of the structures. Ultrasound-based imaging of all forms of red blood cells is derived from the received echoes of the transmitted signal. The main characteristics of this echo signal are its frequency and its amplitude (or power). The frequency shift is determined by the movement of red blood cells relative to the probe - blood flow toward the probe produces a higher frequency signal than blood flow away from the probe. The amplitude depends on the amount of blood moved within the volume sampled by the ultrasound beam. A high frame rate or high resolution can be used to control scan quality. Higher frequencies resulting from rapid blood flow are shown in lighter colors, and lower frequencies are shown in darker colors. For example, the proximal carotid artery is often shown in bright red and orange because blood flow is toward the probe and the frequency (velocity) of blood flow in this artery is relatively high. In contrast, blood flow in the jugular vein appears blue because it flows away from the probe. Display color Doppler scan data in the 2D imaging window.

一脈衝波都卜勒(PWD)掃描產生一系列脈衝,該一系列脈衝用於研究在一小的區中血流沿著一所期望掃描向量之運動,稱之為樣本體積或樣本閘。A pulse wave Doppler (PWD) scan generates a series of pulses that are used to study the movement of blood flow along a desired scan vector in a small area, called the sample volume or sample gate.

圖表中之X軸表示時間,且Y軸表示都卜勒頻移。若受音波作用之波束與血流之間的一適當角度係已知的,則可將主要由移動紅血球所致的連續超音波脈衝之間的頻移轉換成速度及血流。頻譜顯示器中之灰色陰影表示信號強度。頻譜信號之厚度指示層流或紊流(層流通常展示血流資訊之一窄頻帶)。在可移動超音波系統中,在一混合模式顯示中一起展示脈衝波都卜勒及2D。此組合使得系統之一使用者能夠在2D成像視窗中之2D影像上監測樣本體積之確切位置,同時在時間序列視窗中獲取脈衝波都卜勒資料。The X-axis in the chart represents time, and the Y-axis represents Doppler shift. If an appropriate angle between the sonicated beam and the blood flow is known, the frequency shift between successive ultrasound pulses caused primarily by moving red blood cells can be converted into velocity and blood flow. Gray shading in the spectrum display indicates signal strength. The thickness of the spectral signal indicates laminar or turbulent flow (laminar flow usually displays a narrow frequency band of blood flow information). In a mobile ultrasound system, pulse wave Doppler and 2D are displayed together in a mixed mode display. This combination enables a user of the system to monitor the exact location of the sample volume on a 2D image in the 2D imaging window while simultaneously acquiring pulse wave Doppler data in the time series window.

在2D掃描中,場線使一使用者調整超音波游標位置,兩個平行線(相似)使使用者調整樣本體積(SV)大小及深度,且與上述線交叉之線使使用者調整校正角度。In 2D scanning, the field lines allow a user to adjust the ultrasound cursor position, the two parallel lines (similar) allow the user to adjust the sample volume (SV) size and depth, and the line crossing the above lines allows the user to adjust the correction angle .

連續波都卜勒掃描顯示在超音波游標之整個長度上呈現之所有速度。此模式用於對極高速度(諸如由一洩漏心臟瓣膜所導致)進行成像。關於脈衝波都卜勒掃描,圖表之X軸表示時間,且Y軸表示都卜勒頻移。A continuous wave Doppler scan displays all velocities present over the entire length of the ultrasonic cursor. This mode is used for imaging extremely high velocities, such as those caused by a leaking heart valve. Regarding pulse wave Doppler scanning, the X-axis of the graph represents time, and the Y-axis represents Doppler frequency shift.

三工掃描模式將同時都卜勒成像或非同時都卜勒成像(彩色都卜勒)與脈衝波都卜勒成像組合起來,以查看動脈或靜脈速度及血流資料。三工掃描模式允許一使用者執行範圍閘血流評定。三工應用包含血管研究、靜脈學、產期及放射學。圖61中之以下三工影像展示較大的影靜脈。Triple scan mode combines simultaneous Doppler imaging or non-simultaneous Doppler imaging (color Doppler) with pulsed wave Doppler imaging to view arterial or venous velocity and blood flow data. The triple scan mode allows a user to perform range gate blood flow assessments. Tertiary applications include vascular research, phlebology, peripartum and radiology. The lower three-dimensional image in Figure 61 shows the larger shadow vein.

例示性可移動超音波系統亦可包含銳化影像之一選用性影像最佳化封裝。可移動超音波系統可組態有針引導件,該針引導件用於組織生檢、流體吸入、羊膜穿刺及導管放置。亦可將該系統併入至其他生產商之冷凍剝脫(或靶向消融)產品及近程治療產品中。可移動超音波系統掃描解剖結構或血管以得到大小、位置及通暢度且提供引導線,針將出現於該等引導線之間。對於生檢及血管穿刺應用而言,一針引導套件將針導引至經皮血管穿刺及神經阻滯之適當位置。針引導件允許一使用者將針導引至一血管或組織塊之中心,從而有助於避開毗鄰重要組織。一使用者可在過程之前、期間及之後實時地看到解剖結構,且可保存影像及畫面循環以供未來參考之用。The exemplary mobile ultrasound system may also include an optional image optimization package that sharpens images. The removable ultrasound system can be configured with a needle guide for tissue biopsy, fluid aspiration, amniocentesis and catheter placement. The system can also be incorporated into other manufacturers' cryoablation (or targeted ablation) products and brachytherapy products. The mobile ultrasound system scans the anatomy or blood vessels for size, location and patency and provides guide lines between which the needle will appear. For biopsy and vascular puncture applications, a needle guide set guides the needle to the appropriate location for percutaneous vascular puncture and nerve block. The needle guide allows a user to guide the needle to the center of a blood vessel or tissue mass, thereby helping to avoid adjacent vital tissue. A user can see the anatomy in real time before, during and after the procedure, and images and frame loops can be saved for future reference.

對於冷凍剝脫或近程治療應用而言,該系統可包含一插入模板以及一步進器或穩定器。提供彼等系統之公司界定此等應用之過程。系統軟體在掃描中顯示插入網格及針以展示過程進度。For cryoablation or brachytherapy applications, the system may include an insertion template and a stepper or stabilizer. The companies providing these systems define the process for these applications. The system software displays inserted grids and pins during the scan to demonstrate process progress.

一使用者可在以下模式中使用針引導件:2D模式;彩色都卜勒;M模式(運動模式)。可移動超音波系統由探針、電子裝置封套及系統軟體組成。在例示性可移動超音波系統中,所有探針皆可用於所有掃描模式。A user can use the needle guide in the following modes: 2D mode; Color Doppler; M mode (movement mode). The movable ultrasound system consists of a probe, an electronic device envelope and system software. In the exemplary movable ultrasound system, all probes can be used in all scan modes.

當一使用者起動系統軟體時,顯示成像視窗。成像視窗可包含在時間序列視窗上方之2D視窗(若選定掃描模式產生一時間序列視窗)。2D視窗在所有掃描模式中顯示;時間序列視窗僅在以M模式、PWD模式、CWD模式或三工模式進行掃描時才顯示。若一控制、按鈕、鍵或選單展示為灰色,則其可指示功能不可用於當前情況。成像螢幕可包含在下部隅角處之一狀態列。When a user starts the system software, the imaging window is displayed. The imaging window can contain a 2D window above the time series window (if the scan mode is selected to produce a time series window). The 2D view window is displayed in all scan modes; the time series view window is only displayed when scanning in M mode, PWD mode, CWD mode or triplex mode. If a control, button, key, or menu is grayed out, it indicates that the function is not available for the current situation. The imaging screen may include a status bar in the lower corner.

狀態列可顯示指示器,包含在電腦連接至一網路之情況下展示之網路連接。若不存在連接,紅色X展示於指示器上且DICOM狀態(其展示與一DICOM伺服器之連接是否有效且是否將任何研究發送至DICOM伺服器)失效。系統電源展示系統電池之剩餘電量及AC電源供應器是否連接。在圖解說明中,電池是完全充電的,且系統連接至一AC電源。當電池放電時,綠色帶自右至左消失。當電池幾乎完全放電時,一單個紅色帶展示在指示器之左端處。當電池部分地放電且AC電源供應器連接時,電池圖標上展示一黃色發光球。當電池完全充電且AC電源供應器連接時,電池圖標下方會顯示一電力插頭圖標。成像視窗包含展示關於當前掃描之資訊之一文字顯示器。所顯示影像控制設定根據掃描模式及其他因素而變化。The status bar displays indicators including network connectivity when the computer is connected to a network. If there is no connection, a red System Power displays the remaining power of the system battery and whether the AC power supply is connected. In the illustration, the battery is fully charged and the system is connected to an AC power source. As the battery discharges, the green band disappears from right to left. When the battery is almost completely discharged, a single red band appears at the left end of the indicator. When the battery is partially discharged and the AC power supply is connected, a yellow glowing ball appears on the battery icon. When the battery is fully charged and the AC power supply is connected, a power plug icon will appear below the battery icon. The imaging window contains a text display showing information about the current scan. The image control settings displayed vary based on scan mode and other factors.

如圖62中所描繪,一例示性顯示器可包含一機械指數、熱指數、參考列類型、影像控制設定:圖/持久性/掃描頻率//2D增益/動態範圍、一深度設定、圖框速率、掃描模式、PRF設定、壁濾波器設定、色彩頻率及焦點。在例示性可移動超音波系統中,2D增益顯示最初係50。此並非係一絕對值;實際增益隨著不同預設而改變,但最初始終顯示為50。當一使用者使用增益旋鈕改變增益時,所顯示值升高或降低。當選擇了心臟檢查類型時,深度尺及焦深指示器位於超音波游標上,如成像視窗圖中所展示。As depicted in Figure 62, an exemplary display may include a mechanical index, thermal index, reference column type, image control settings: graph/persistence/scan frequency//2D gain/dynamic range, a depth setting, frame rate , scan mode, PRF settings, wall filter settings, color frequency and focus. In the exemplary mobile ultrasound system, the 2D gain is initially shown to be 50. This is not an absolute value; the actual gain varies from preset to preset, but is always shown as 50 initially. When a user changes the gain using the gain knob, the displayed value increases or decreases. When the cardiac exam type is selected, the depth gauge and focus indicator are located on the ultrasound cursor, as shown in the imaging window image.

一使用者可在審閱視窗中查看一所保存研究。當審閱一所保存研究時,一使用者可按照與在成像視窗上相同之方式添加註解及量測。A user can view a saved study in the review window. When reviewing a saved study, a user can add annotations and measurements in the same manner as on the imaging window.

例示性可移動超音波系統包含圖63中所展示之一控制台6310,該控制台含有組態且操作可移動超音波系統之控制6320。 1:電源按鈕 13:彩色模式鍵 2:基線鍵 14:2D模式鍵 3:尺度鍵 15:CW模式鍵 4:翻頁鍵 16:增益/主動控制 5:未指派 17:清除鍵 6:操縱鍵 18:計算鍵 7:分割鍵 19:測徑器鍵 8:聚焦鍵 20:選擇鍵 9:深度鍵 21:游標鍵 10:主體標記鍵 22:M模式鍵 11:文字鍵 23:縮放控制 12:PW模式鍵 24:更新鍵The exemplary mobile ultrasound system includes a console 6310 shown in Figure 63 that contains controls 6320 for configuring and operating the mobile ultrasound system. 1: Power button 13: Color mode key 2: Baseline key 14: 2D mode key 3: Standard key 15: CW mode key 4: Page turning key 16: Gain/active control 5: Not assigned 17: Clear key 6: Operation keys 18: Calculation keys 7: Split key 19: Caliper key 8: Focus key 20: Select key 9: Depth key 21: Cursor key 10: Main body mark key 22: M mode key 11: Text keys 23: Zoom control 12: PW mode key 24: Update key

控制台包含一文數鍵盤、一組系統鍵、TGC滑塊、軟鍵控制及超音波成像功能之眾多控制。例示性控制台中之帶編號超音波成像控制執行下列功能: 1.電源:起動系統及關機。 2.基線:改變PW、CW及彩色都卜勒模式中之都卜勒基線。按壓鍵頂部將基線上移,且按壓鍵底部將基線下移。 3.尺度:在PW、CW及彩色都卜勒模式中改變速度尺度(藉由改變PRF)。按壓鍵頂部增大PRF,且按壓鍵底部減小PRF。 4.翻頁:改變所顯示之一組作用軟鍵。 5.此鍵可未被指派。 6.操縱:在2D、彩色都卜勒或PWD模式中,此鍵操縱超音波信號。按壓鍵之左端向左操縱,且按壓右端向右操縱。 7.分割:在左側螢幕作用之情況下按壓鍵的左端打開分割螢幕,或當分割螢幕已開啟時,使螢幕作用。在右側螢幕作用之情況下按壓鍵之右端打開分割螢幕或使右側螢幕作用。按壓鍵的與作用螢幕對應之一端退出分割螢幕。 8.聚焦:改變信號焦點之深度。按壓鍵頂部將焦點上移,且按壓鍵底部將焦點下移。 9.深度:改變總影像深度。按壓鍵頂部將影像深度上移,且按壓鍵底部將影像深度下移。 10.主體標記:在掃描中插入主體標記。 11.文字:在掃描中啟用文字條目及註解。 12. PW:進入及退出脈衝波都卜勒模式。 13.彩色:進入及退出彩色都卜勒模式。 14. 2D:進入2D模式。 15. CW:進入及退出連續波都卜勒模式。 16. 增益/主動:轉動旋鈕改變增益。按下主動按鈕會在主動掃描模式與跟彼等模式相關聯之軟鍵之間進行切換。 17.清除:抹除當前選定註解或量測。 18.計算:打開計算選單。 19.測徑器:開始一般性量測。按壓該鍵以重複地循環進行可用計算。 20.選擇:選擇一軌跡球功能。在軟鍵顯示器上方以藍色突出顯示選定函數。 21.游標:選擇並顯示或者取消選擇並隱藏超音波游標。 22. M模式:進入及退出M模式。 23.縮放:按下以進入ROI方塊縮放或退出縮放模式。轉向快速縮放 24.更新:在PWD及CW模式中打開及關閉2D影像之更新。 25.左輸入:選擇及取消選擇項目。當視窗螢幕啟動時,左輸入鍵充當一滑鼠上之左按鈕。 26.軌跡球:控制游標、ROI及其他特徵之移動。 27.右輸入:打開情境選單。當視窗螢幕啟動時,右輸入鍵充當一滑鼠上之右按鈕。 28.凍結:凍結及取消凍結掃描。 29.儲存:儲存一單圖框影像。 30.記錄:儲存一循環。The console contains a numeric keyboard, a set of system keys, TGC sliders, soft key controls and numerous controls for ultrasound imaging functions. The numbered ultrasound imaging controls in the exemplary console perform the following functions: 1. Power: start the system and shut down. 2. Baseline: Change the Doppler baseline in PW, CW and color Doppler modes. Pressing the top of the key moves the baseline up, and pressing the bottom of the key moves the baseline down. 3. Scale: Change the velocity scale (by changing the PRF) in PW, CW and Color Doppler modes. Pressing the top of the key increases the PRF, and pressing the bottom of the key decreases the PRF. 4. Page turning: Change the displayed set of functional soft keys. 5. This key may not be assigned. 6. Control: In 2D, Color Doppler or PWD mode, this key controls the ultrasonic signal. Press the left end of the key to operate left, and press the right end to operate right. 7. Split: Press the left end of the key to open the split screen when the left screen is active, or enable the screen when the split screen is turned on. With the right screen active, press the right end of the key to open split screen or enable the right screen. Press the end of the key corresponding to the active screen to exit split screen. 8. Focus: Change the depth of signal focus. Pressing the top of the key moves the focus up, and pressing the bottom of the key moves the focus down. 9. Depth: Change the total image depth. Pressing the top of the key moves the image depth up, and pressing the bottom of the key moves the image depth down. 10. Subject Marker: Insert subject mark in the scan. 11. Text: Enable text entries and annotations during scanning. 12. PW: Enter and exit pulse wave Doppler mode. 13. Color: Enter and exit color Doppler mode. 14. 2D: Enter 2D mode. 15. CW: Enter and exit continuous wave Doppler mode. 16. Gain/Active: Turn the knob to change the gain. Pressing the active button toggles between active scan modes and the softkeys associated with those modes. 17. Clear: Erase the currently selected annotation or measurement. 18. Calculation: Open the calculation menu. 19. Caliper: Start general measurement. Press this key to repeatedly cycle through the available calculations. 20.Select: Select a trackball function. The selected function is highlighted in blue above the softkey display. 21. Cursor: Select and show or deselect and hide the ultrasonic cursor. 22. M mode: Enter and exit M mode. 23. Zoom: Press to enter ROI square zoom or exit zoom mode. Move to quick zoom 24. Update: Turn on and off the update of 2D images in PWD and CW modes. 25. Left input: select and deselect items. When the window screen is activated, the left input key acts as the left button on a mouse. 26. Trackball: Control the movement of cursors, ROI and other features. 27. Right input: Open the context menu. When the window screen is activated, the right input key acts as the right button on a mouse. 28. Freeze: Freeze and unfreeze scans. 29. Save: Save a single frame image. 30. Record: Store for one cycle.

在控制台之頂部左側係控制啟動哪些視窗之一組系統鍵。其包含:Patient - 打開患者視窗、Preset – 打開預設選單、Review – 打開審閱視窗、Report– 打開報告視窗、End Study– 關閉當前研究、Probe– 打開成像視窗、Setup – 打開設置視窗。On the top left side of the console is a set of system keys that control which windows are launched. It includes: Patient - opens the patient window, Preset - opens the default menu, Review - opens the review window, Report - opens the report window, End Study - closes the current study, Probe - opens the imaging window, Setup - opens the settings window.

在鍵盤正下方之鍵控制跨越成像視窗之底部顯示之軟鍵之功能。軟鍵功能取決於所連接之探針、所選擇之掃描模式及掃描是活動的還是凍結的。以下圖解說明展示在影像活動及凍結時軟鍵之實例。系統顯示之軟鍵取決於所連接之探針、選定掃描模式及選定檢查。一使用者觀看之顯示器可不同於所展示之圖解說明。The keys directly below the keyboard control the functions of the softkeys displayed across the bottom of the imaging window. Softkey functionality depends on the connected probe, the scan mode selected, and whether the scan is active or frozen. The following illustrations show examples of soft keys when the image is active and frozen. The softkeys displayed by the system depend on the connected probe, selected scan mode, and selected exam. The display viewed by a user may differ from the illustrations displayed.

應明白,在某些實施例中,可經由一觸控螢幕顯示器來提供控制台控制,而非將其組態為一單獨實體殼體之物件。It will be appreciated that in some embodiments, console controls may be provided via a touch screen display rather than being configured as a separate physical housing.

系統可包含一ECG模組、一ECG引導設定 – 10個電極設定、一腳踏開關(Kinessis FS20A-USB-UL)、一醫療級列印機以及一或多個換能器探針。例示性可移動超音波系統符合與診斷超音波設備有關之熱指數及機械聲學輸出指數之實時顯示標準(UD3-98)( Standard for Real-Time Display of Thermal and Mechanical Acoustic Output Indices on Diagnostic Ultrasound Equipment (UD3-98))。當相關輸出指數低於1.0,不顯示指數值。The system can include an ECG module, an ECG guide set - 10 electrode settings, a foot switch (Kinessis FS20A-USB-UL), a medical grade printer and one or more transducer probes. The exemplary mobile ultrasound system complies with Standard for Real-Time Display of Thermal and Mechanical Acoustic Output Indices on Diagnostic Ultrasound Equipment (UD3-98). UD3-98)). When the relevant output index is below 1.0, the index value is not displayed.

當在凍結功能停用之任何模式中操作時,視窗顯示與當前作用之探針及操作模式相關之聲學輸出指數。將實時顯示之指數值最小化允許實施ALARA原則(將患者暴露於如合理可達到之位準一樣低之超音波能量)。When operating in any mode in which the freeze function is disabled, the window displays the acoustic output index associated with the currently active probe and operating mode. Minimizing the index value displayed in real time allows implementation of the ALARA principle (exposing the patient to ultrasound energy as low as reasonably achievable).

在例示性可移動超音波系統中,為選擇一掃描模式,一使用者按壓控制台上之適當鍵: 針對2D,按壓2D鍵;針對M模式,按壓M模式鍵;針對彩色都卜勒,按壓彩色鍵;針對脈衝波都卜勒,按壓PW鍵;針對連續波都卜勒,按壓CW鍵。In the exemplary mobile ultrasound system, to select a scan mode, a user presses the appropriate key on the console: For 2D, press the 2D key; for M mode, press the M mode key; for color Doppler, press the color key; for pulse wave Doppler, press the PW key; for continuous wave Doppler, press the CW key.

在例示性可移動超音波系統中,為在2D模式、彩色都卜勒模式或M模式中進行一超音波檢查,使用者完成此等步驟: 1 載入或形成患者資訊。 2 按壓控制台鍵以獲得所需掃描模式: 3 按壓預設鍵,然後自預設選單選擇一預設。 系統軟體載入針對選定預設及連接探針而最佳化之預設影像控制設定。一使用者現在可使用探針來進行一超音波檢查。參考一使用者正在進行之適當臨床檢查過程。 4 若需要,使用軟鍵來調整影像控制。 5 按壓凍結鍵。改變軟鍵控制以允許列印、量測及其他功能。In the exemplary mobile ultrasound system, to perform an ultrasound examination in 2D mode, color Doppler mode, or M mode, the user completes these steps: 1 Load or form patient information. 2 Press the console key for the desired scan mode: 3 Press the Preset button and select a preset from the preset menu. The system software loads the default image control settings optimized for the selected default and connected probe. A user can now use the probe to perform an ultrasound examination. Refer to the appropriate clinical examination process being performed by a user. 4 If necessary, use the soft keys to adjust the image controls. 5 Press the Freeze key. Change softkey controls to allow printing, measurement, and other functions.

為在脈衝波都卜勒模式中進行一檢查,一使用者可完成此等例示性步驟: 1 在2D模式中進行一檢查, 2 按壓控制台上之PW鍵。 3 將範圍閘移動至恰當位置,然後按壓控制台上之左輸入鍵。 4 使用軟鍵來視需要調整任何影像控制設定。 5 按壓凍結鍵。軟鍵控制改變以允許列印、量測及其他功能。To perform a check in pulsed wave Doppler mode, a user can complete these exemplary steps: 1 Make a check in 2D mode, 2 Press the PW key on the console. 3 Move the range gate to the appropriate position and press the left input key on the console. 4 Use the soft keys to adjust any image control settings as needed. 5 Press the Freeze key. Softkey controls change to allow printing, measurement, and other functions.

為在三工模式中進行一檢查,一使用者可完成此等例示性步驟: 1 在彩色都卜勒模式中(不凍結掃描)進行一檢查。 2 按壓控制台上之PW鍵。軟體開啟三工模式。 3 將範圍閘移動至恰當位置,然後按壓控制台上之左輸入鍵。 4 使用軟鍵來視需要調整任何影像控制設定。 5 按壓凍結鍵。改變軟鍵控制以允許列印、量測及其他功能。To perform a check in three-worker mode, a user can complete these illustrative steps: 1 Perform a check in Color Doppler mode (scan without freezing). 2 Press the PW key on the console. The software turns on the triple mode. 3 Move the range gate to the appropriate position and press the left input key on the console. 4 Use the soft keys to adjust any image control settings as needed. 5 Press the Freeze key. Change softkey controls to allow printing, measurement, and other functions.

當一使用者切換至三工模式時,原始2D掃描模式及PWD模式兩者皆有效。此取決於選項是否被設定為同時模式。When a user switches to triple mode, both the original 2D scanning mode and the PWD mode are valid. This depends on whether the option is set to simultaneous mode.

通過圖框記錄實時影像且將該等實時影像暫時儲存於電腦上。取決於一使用者選擇之模式,系統記錄某些數目個圖框。舉例而言,2D模式允許一使用者在一畫面循環中擷取高達10秒。Record real-time images through the frame and temporarily store the real-time images on the computer. Depending on the mode selected by a user, the system records a certain number of frames. For example, 2D mode allows a user to capture up to 10 seconds in a frame loop.

脈衝波都卜勒(包含三工)及M模式掃描僅保存2D影像之一單個圖框,且一使用者不能保存此等掃描模式之循環。Pulse wave Doppler (including triplex) and M-mode scans only save a single frame of the 2D image, and a user cannot save cycles of these scan modes.

當一使用者在一掃描期間凍結一實時影像時,所有移動懸停於成像視窗中。凍結圖框可保存為一單個影像檔案或一影像循環。對於M模式、PWD及三工模式,軟體保存時間序列資料及一單個2D影像。When a user freezes a live image during a scan, all movement hovers within the imaging window. Freeze frames can be saved as a single image file or as an image loop. For M mode, PWD and triple mode, the software saves time series data and a single 2D image.

一使用者可取消凍結圖框且在任何時間返回至實時影像影像顯示。若一使用者在未保存影像或影像循環之情況下按壓凍結鍵,則一使用者丟失暫時儲存之圖框。A user can unfreeze the frame and return to the live image display at any time. If a user presses the freeze key without saving the image or while the image is looping, the user loses the temporarily saved frame.

為在執行一超音波掃描時凍結所顯示影像,一使用者按壓凍結鍵。當掃描被凍結時,一凍結圖標在成像螢幕上出現於左軟鍵正上方。然後,一使用者可使用增益旋鈕或鍵盤箭頭鍵來在掃描期間獲取之圖框上移動。To freeze the displayed image while performing an ultrasound scan, a user presses the freeze key. When a scan is frozen, a freeze icon appears on the imaging screen directly above the left soft key. A user can then use the gain knob or keyboard arrow keys to move around the frame acquired during the scan.

為開始一新掃描,一使用者再次按壓凍結鍵。若一使用者未保存所凍結影像或循環,則開始實時影像掃描會抹除圖框資料。在一使用者獲取新掃描資料之前,使用者保存或列印任何所需影像。To start a new scan, a user presses the freeze key again. If a user does not save the frozen image or loop, starting a real-time image scan will erase the frame data. Before a user obtains new scanned data, the user saves or prints any desired images.

審閱一影像循環對於在一掃描工作階段之短暫片段期間聚焦影像非常有用。當一使用者凍結一影像時,一使用者可使用增益旋鈕來逐個圖框地審閱一整個循環以找到一特定圖框。一使用者亦可在查看一所保存循環時藉由轉動增益旋鈕直至所期望圖框顯示為止,且按壓儲存鍵來實現此目的。Reviewing an image loop is useful for focusing images during brief segments of a scan session. When a user freezes an image, a user can use the gain knob to go through the cycle frame by frame to find a specific frame. A user can also do this by turning the Gain knob until the desired frame is displayed and pressing the Save key while viewing a saved loop.

為保存整個循環,一使用者不需要選擇一不同圖框。當一使用者按壓儲存鍵時,所有所獲取之圖框保存於循環中。To save the entire cycle, a user does not need to select a different frame. When a user presses the save key, all retrieved frames are saved in the loop.

為查看一循環,使用者凍結影像且按壓播放軟鍵。播放軟鍵標注發生改變而暫停。循環連續播放直至一使用者按壓凍結鍵或暫停軟鍵為止。一使用者可在成像視窗底部處之進度列中追蹤圖框及當前圖框之數目。To view a loop, the user freezes the image and presses the play soft key. The playback soft key label changes and is paused. Play continuously in a loop until a user presses the freeze key or pause soft key. A user can track the number of frames and the current frame in the progress bar at the bottom of the imaging window.

在2D及彩色模式中,系統可預期地或回溯地獲取循環。預期性獲取會擷取在獲取命令之後實時掃描資料之一循環,而回溯性獲取保存一凍結掃描之一循環。In 2D and color modes, the system can acquire loops prospectively or retroactively. Prospective retrieval captures a cycle of real-time scan data after the capture command, while retrospective retrieval saves a cycle of frozen scans.

在實時成像期間,按壓儲存鍵通知系統在鍵點擊之後獲取並保存掃描之一循環。在主螢幕一側處之縮圖視窗中顯示循環。循環之預設長度係3秒,但此係可調整,舉例而言,設置儲存/獲取視窗之獲取長度區段中介於1與10秒之間。During live imaging, pressing the Store key instructs the system to acquire and save a cycle of scans after a key click. Displays the loop in a thumbnail window to the side of the main screen. The default length of the loop is 3 seconds, but this can be adjusted, for example, by setting the Get Length section of the Save/Get window to be between 1 and 10 seconds.

當選擇「設置」視窗之「儲存/獲取」索引標籤上之跳動選項按鈕且系統偵測到ECG信號時,所獲取之循環係心跳數目。一預設可係2次跳動,但此亦可調整,諸如在獲取長度區段中介於1與10次跳動之間。若未偵測到ECG信號,則即使選擇了跳動選項按鈕,所獲取循環可係在時間欄位中設定之長度。一使用者可在獲取長度區段中施加一R波延遲。一使用者亦可在獲取完成時啟用響起之一嗶聲提示。如此一來,所獲取之循環之預設格式係.dcm,然而,其等亦可保存為任何其他可用格式。一使用者可利用設置視窗上之導出索引標籤來選擇一不同檔案格式。When the beat option button on the Save/Acquire tab of the Settings window is selected and the system detects an ECG signal, the number of cycles acquired is the number of heartbeats. A default can be 2 ticks, but this can also be adjusted, such as between 1 and 10 ticks in the acquisition length section. If no ECG signal is detected, even if the Bounce option button is selected, the acquired loops will be of the length set in the Time field. A user can apply an R-wave delay in the acquisition length section. A user can also enable a beep to sound when retrieval is complete. As such, the default format of the loops retrieved is .dcm, however, they can be saved in any other available format. A user can use the Export Index tab on the settings window to select a different file format.

當一使用者查看一凍結影像或實時影像時,一使用者可使用縮放工具來放大2D影像之一區。在時間序列視窗中,一使用者無法使用縮放工具。為放大影像之中間部分,使用者: 1 按壓增益旋鈕直至在增益旋鈕選單中選定縮放為止。 2 轉動增益旋鈕以放大或縮小成一使用者期望之大小。為使縮放遠離影像之中間部分之區域:When a user is viewing a frozen image or a live image, a user can use the zoom tool to zoom in on a region of the 2D image. In the time series view, a user cannot use the zoom tool. To zoom in on the middle part of the image, the user: 1 Press the Gain knob until Zoom is selected in the Gain knob menu. 2 Turn the gain knob to zoom in or out to a size desired by the user. To zoom away from an area in the middle of the image:

為縮放遠離影像之中間部分之一區域,使用者: 1 按壓縮放開關軟鍵。 2 使用軌跡球將縮放方塊移動至一使用者期望更大之區域,且按壓左輸入鍵。 3 使用增益旋鈕來放大或縮小所述區域。To zoom into an area away from the center of the image, the user: 1 Press the Compression and Amplification switch soft key. 2. Use the trackball to move the zoom box to an area that the user desires to be larger, and press the left enter key. 3 Use the Gain knob to zoom in or out on the area.

在例示性可移動超音波系統中,在M模式頻譜模式中,一使用者可使得2D顯示器相對於時間序列顯示器變大,且反之亦然。In the exemplary mobile ultrasound system, in M-mode spectrum mode, a user can make the 2D display larger relative to the time series display, and vice versa.

為重新設定掃描顯示器之大小: 1. 按壓設置鍵。 2. 點擊顯示器索引標籤。 為使時間序列顯示器變大且使2D成像顯示器變小,在M模式格式或頻譜格式區域中點擊S/L選項按鈕。為使2D顯示器變大且使時間序列成像顯示器變小,在M模式格式或頻譜格式區域中點擊L/S選項按鈕。 3.點擊OK以應用改變。 注意:每當一使用者使用在一使用者做出改變時所選擇之預設時,應用此選擇。當一使用者使用一不同預設時,選擇不適用,除非一使用者亦在彼預設中做出改變。To resize the scanning monitor: 1. Press the Set key. 2. Click the Monitor Index tab. To make the time series display larger and the 2D imaging display smaller, click the S/L option button in the M Mode Format or Spectral Format area. To make the 2D display larger and the time-series imaging display smaller, click the L/S option button in the M-Mode Format or Spectral Format area. 3. Click OK to apply the changes. Note: This selection applies whenever a user uses a default that was selected when a user made changes. When a user uses a different default, the selection does not apply unless a user also makes changes in that default.

在例示性可移動超音波系統中,一選用性影像最佳化封裝將可移動超音波系統所產生之影像銳化。當可移動超音波系統起動時,預設組態起動軟體。為改變此以便在最佳化軟體關閉之情況下起動系統,一使用者可做出以下一預設:將TV位準軟鍵控制設定為0。最佳化軟體位準數目介於0至3之間。0設定不應用影像處理。數目愈大,對影像施加之處理愈多。為調整最佳化位準,當進行實時成像時,一使用者可按壓TV位準軟鍵直至設定所要的位準為止。In the exemplary mobile ultrasound system, an optional image optimization package sharpens images produced by the mobile ultrasound system. When the mobile ultrasound system is started, the default configuration starts the software. To change this so that the system boots up with the optimization software turned off, a user can make the following default: Set the TV Level softkey control to 0. The number of optimized software levels is between 0 and 3. 0 setting does not apply image processing. The larger the number, the more processing is applied to the image. To adjust the optimization level, while performing live imaging, a user can press the TV Level soft key until the desired level is set.

設定視窗上常規索引標籤之視圖選項區段使一使用者在所掃描影像上添加或刪除數個引導。此等引導提供關於患者、探針及影像控制設定之細節。The View Options section of the General Index tab on the Settings window enables a user to add or delete several guides on a scanned image. These guides provide details about patient, probe, and image control settings.

系統軟體使一使用者將成像螢幕分割成兩個區段以查看一患者之兩個當前掃描。一使用者可獲取患者之一個掃描、選擇分割螢幕,且然後獲取來自一不同角度或位置之另一掃描。分割螢幕模式與2D掃描模式(2D及彩色都卜勒)協同工作。The system software enables a user to split the imaging screen into two sections to view two current scans of a patient. A user can acquire one scan of the patient, choose to split the screen, and then acquire another scan from a different angle or position. Split screen mode works together with 2D scanning mode (2D and Color Doppler).

當一使用者進入分割螢幕模式時,系統軟體將影像控制視窗之當前設定複製至新螢幕。然後,一使用者可獨立於任一螢幕應用任何影像控制設定。一使用者可激活或凍結螢幕(一次僅一個螢幕可係作用的),且一使用者可使用關於任一螢幕之工具及選單中之任一者。另外,一使用者可在每一螢幕中以不同模式進行掃描。舉例而言,一使用者可獲取一2D掃描,進入分割螢幕模式,然後在第二螢幕中獲取一彩色都卜勒掃描。下圖展示一分割螢幕之一實例。When a user enters split-screen mode, the system software copies the current settings of the image control window to the new screen. A user can then apply any image control setting independently of any screen. A user can activate or freeze screens (only one screen can be active at a time), and a user can use any of the tools and menus on either screen. Additionally, a user can scan in different modes on each screen. For example, a user can acquire a 2D scan, enter split screen mode, and then acquire a color Doppler scan on the second screen. The figure below shows an example of a split screen.

作用螢幕在頂部及底部處具有青色列。為啟動其他螢幕,一使用者執行此等動作中之一者: 將箭頭游標移動至所要的螢幕且按壓左輸入鍵。The active screen has cyan columns at the top and bottom. To activate other screens, a user performs one of these actions: Move the arrow cursor to the desired screen and press the left enter key.

按壓雙態切換螢幕軟鍵。為退出分割螢幕模式,使用此等方法中之任一者: 按壓2D鍵。 選擇一不同檢查 選擇M模式、PWD或三工掃描模式 按壓分割軟鍵Press the toggle screen soft key. To exit split-screen mode, use any of these methods: Press the 2D key. Choose a different check Select M mode, PWD or triple scan mode Press the Split soft key

當一使用者藉由按壓分割軟鍵退出分割螢幕模式時,系統軟體保存作用螢幕(在頂部及底部處具有青色線之螢幕)所獲取之資料且摒棄另一螢幕所獲取之資料。When a user exits split-screen mode by pressing the Split softkey, the system software saves the data captured by the active screen (the screen with cyan lines at the top and bottom) and discards the data captured by the other screen.

文字模式允許一使用者使用軟鍵將文字及標號添加至一影像。Text mode allows a user to add text and labels to an image using soft keys.

在文字模式中可用之軟鍵控制包含: 「偏側化」將字組放置於影像上之左側或右側。按壓偏側化軟鍵在左側、右側及無文字之間循環。 「位置」打開主體位置之一選單或遞增主體位置之一清單。若一選單打開,則可點擊適當項目以將其放置於影像上。 「註解」打開不同解剖結構之一名稱選單,或遞增一解剖清單。若一選單打開,則點擊適當項目以將其放置於影像上。 「情況介紹」打開患者情況介紹之一選單或遞增一患者情況介紹清單。若一選單打開,點擊適當項目以將其放置於影像上。 「主體標記」打開主體標記選單。 「新文字」在原位置處開始一新文字行。 「文字清除」自影像刪除所有文字(包含手動打入文字及箭頭) 「原位」將文字游標或選定文字移動至文字原位置。 「箭頭」將一箭頭放置於文字原位置處,或若影像上不存在文字,將箭頭放置於最後一行文字之中間部分 「設定原位」設定文字原位置。將文字游標移動至所期望位置,然後按壓「設定原位」軟鍵。Softkey controls available in text mode include: Lateralize places the text on the left or right side of the image. Press the Lateralization softkey to cycle between left, right, and no text. Position opens a menu of subject locations or increments a list of subject locations. If a menu is open, you can click on the appropriate item to place it on the image. Annotation opens a menu of names for different anatomical structures, or increments a list of anatomy. If a menu is open, click on the appropriate item to place it on the image. "Briefing" opens a menu of patient briefings or increments a list of patient briefings. If a menu is open, click on the appropriate item to place it on the image. "Subject Mark" opens the subject mark menu. "New Text" starts a new line of text at the original position. "Text Clear" deletes all text from the image (including manually typed text and arrows) "Original" moves the text cursor or selected text to the original position of the text. "Arrow" places an arrow at the original position of the text, or if there is no text on the image, places the arrow in the middle of the last line of text. "Set original position" sets the original position of the text. Move the text cursor to the desired position and press the "Set Home Position" soft key.

為進入文字模式,按壓文字鍵。系統軟體將一文字游標(I波束)放置於成像螢幕上。軌跡球用於將文字游標移動至一使用者期望有新文字之位置,並鍵入文字,或使用模式軟鍵中之任一者。當文字完成時,按壓左輸入鍵。若一使用者添加定製文字使用設置視窗之註解索引標籤,則文字展示於其被添加至的軟鍵清單中。To enter text mode, press the text key. The system software places a text cursor (I-beam) on the imaging screen. The trackball is used to move the text cursor to a location where the user desires new text and type the text, or use any of the mode soft keys. When the text is complete, press the left enter key. If a user adds custom text using the Annotation Index tab of the Settings window, the text appears in the softkey list to which it was added.

一使用者亦可使用軟鍵添加預定文字。此使一使用者添加一使用者經常需要之標籤及訊息,而不必每次皆鍵入。 1 按壓控制台上之文字鍵,或按壓鍵盤上之空格列。 2 針對預定文字按壓軟鍵中之一者: 偏側化將字組放置放置於影像上之左側或右側。按壓偏側化軟鍵以在左側、右側及無文字之間循環。 「位置」打開一主體位置選單或遞增一主體位置清單。若一選單打開,點擊適當項目以將其放置於影像上。 「解剖」打開不同解剖結構之一名稱選單,或遞增一解剖結構清單。若一選單打開,點擊適當項目以將其放置於影像上。 「情況介紹」打開一患者情況介紹選單,或遞增一患者情況介紹清單。若一選單打開,點擊適當項目以將其放置於影像上。利用軟鍵放置中之一者選擇一項目來將其放置於影像上。A user can also add predetermined text using soft keys. This allows a user to add a label and information that the user needs frequently without having to type it every time. 1 Press the text key on the console, or press the space bar on the keyboard. 2 Press one of the soft keys for the predetermined text: Lateralization places words on the left or right side of the image. Press the Lateralization softkey to cycle between left, right, and no text. Position opens a menu of subject locations or increments a list of subject locations. If a menu is open, click on the appropriate item to place it on the image. Anatomy opens a menu of names for one of the different anatomical structures, or increments a list of anatomical structures. If a menu is open, click on the appropriate item to place it on the image. "Briefing" opens a patient briefing menu, or increments a patient briefing list. If a menu is open, click on the appropriate item to place it on the image. Use one of the Place soft keys to select an item to place it on the image.

一使用者可將兩種箭頭放置於一凍結影像上:標記箭頭及文字箭頭。預設係標記箭頭。一使用者可將如一使用者之期望一樣多之箭頭放置於一影像上。標記箭頭係短小中空箭頭,其指示影像上之一點。當一使用者放置一箭頭(參見以下過程),箭頭係綠色的。當箭頭係綠色時,一使用者可使用軌跡球來移動箭頭。一使用者可點擊一箭頭來對箭頭做出選擇。當選定一箭頭時,一使用者可利用軌跡球移動箭頭且藉由按壓「選擇」鍵來旋轉箭頭,然後移動軌跡球。為將一標記箭頭放置於一影像上,完成此等步驟: 1 按壓「箭頭」軟鍵。 2 使用軌跡球來將箭頭移動至一使用者所期望之位置 3 為旋轉箭頭,按壓「選擇」鍵且移動軌跡球。 4 為將另一箭頭放置於影像上,按壓「箭頭」軟鍵。 5 按壓「左輸入」鍵來設定箭頭且退出文字模式。A user can place two types of arrows on a frozen image: marker arrows and text arrows. The default is to mark the arrow. A user can place as many arrows on an image as the user desires. Marker arrows are short, hollow arrows that indicate a point on the image. When a user places an arrow (see procedure below), the arrow is green. When the arrow is green, a user can use the trackball to move the arrow. A user can click on an arrow to make a selection for the arrow. When an arrow is selected, a user can move the arrow with the trackball and rotate the arrow by pressing the "Select" key and then move the trackball. To place a marker arrow on an image, complete these steps: 1 Press the "Arrow" soft key. 2 Use the trackball to move the arrow to a desired location 3 is the rotation arrow, press the "Select" key and move the trackball. 4. To place another arrow on the image, press the Arrow soft key. 5 Press the Left Enter key to set the arrow and exit text mode.

文字箭頭係一使用者可自文字至掃描解剖結構上之一點繪製之虛線箭頭。一使用者亦可添加一箭頭而不添加文字。為使用文字箭頭,一使用者必須對「設定/註解」視窗做出一選擇。A text arrow is a dashed arrow that the user can draw from the text to a point on the scanned anatomy. A user can also add an arrow without adding text. To use text arrows, a user must make a selection in the Settings/Annotations window.

在將文字放置於一影像上之後,一使用者可容易地將其移動至影像顯示器內之任何位置。為移動文字,點擊文字,將其移動至一新位置,並按壓「左輸入」鍵。若一箭頭附加至文字,箭頭之原點亦會移動。After placing text on an image, a user can easily move it to any location within the image display. To move text, click on the text, move it to a new location, and press the Left Enter key. If an arrow is attached to text, the origin of the arrow will also move.

一使用者可將一圖標添加至識別掃描解剖結構之2D影像。「註解」選單中之主體標記打開一視窗,該視窗含有數個基於當前檢查之解剖結構視圖。為將一主體標記添加至一影像,一使用者完成此等步驟: 1 按壓文字鍵。 2 按壓主體標記軟鍵。一主體標記顯示於影像上。 3 若一使用者所期望之標記未顯示,則按壓「下一標記」或「先前標記」軟鍵。若另一標記可用,則替換第一游標記。 4 當一使用者所期望之標記顯示時,按壓「左輸入」鍵。A user can add an icon to a 2D image that identifies the scanned anatomy. Subject Marking in the Annotation menu opens a window containing several views of the anatomy based on the current examination. To add a subject mark to an image, a user completes these steps: 1 Press the text key. 2 Press the Body Mark soft key. A subject marker is displayed on the image. 3. If a user's desired mark is not displayed, press the "Next Mark" or "Previous Mark" soft key. If another marker is available, the first travel marker is replaced. 4. When a user's desired mark is displayed, press the "Left Enter" key.

為改變主體標記,完成此等步驟: 1 點擊主體標記。標記變為綠色且軟鍵改變為主體標記設定。 2 按壓「下一標記」或「先前標記」軟鍵。 3 當顯示一使用者所期望之標記時,按壓「左輸入」鍵。To change body tags, complete these steps: 1 Click the body mark. The marker turns green and the soft key changes to Body Mark Settings. 2 Press the Next Mark or Previous Mark soft key. 3. When a mark desired by the user is displayed, press the "Left Enter" key.

一使用者可將主體標記移動至影像上之任何位置。為移動主體標記,完成此等步驟: 1 點擊主體標記以將其選定。 2 按壓「標記位置」軟鍵。 3 使用軌跡球來移動主體標記。 4 當標記處於一使用者所期望之位置時,按壓「左輸入」鍵兩次。A user can move the subject marker to any location on the image. To move the subject marker, complete these steps: 1 Click on the subject marker to select it. 2 Press the Marker Position soft key. 3 Use the trackball to move the subject marker. 4 When the marker is at a user desired location, press the Left Enter key twice.

一使用者可將橘色探針指示器移動至圖標上之任何位置以更精確地指示掃描解剖結構。A user can move the orange probe indicator to any position on the icon to more accurately indicate the scanned anatomy.

為移動橘色標記,完成此等步驟: 1 點擊主體標記。軟鍵上方之文字顯示改變以展示探針位置被選定。 2 使用軌跡球將探針指示器移動至主體標記上之所期望位置。 3 當標記處於一使用者所期望之位置時,按壓「左輸入」鍵。To move the orange marker, complete these steps: 1 Click the body mark. The text display above the soft key changes to show that the probe position is selected. 2 Use the trackball to move the probe pointer to the desired location on the body mark. 3. When the mark is at a position desired by the user, press the "Left Enter" key.

為將探針指示器旋轉至更多位置,完成此等步驟: 1 在主體標記上方移動視窗指標。指標改變至指向手。 2 按壓「選擇」鍵以在軟鍵顯示器上方之線中突出顯示探針定向。 3 使用軌跡球將探針指示器旋轉至主體標記上所期望情況介紹。 4 按壓「左輸入鍵」以將指示器鎖定於適當位置。To rotate the probe pointer to more positions, complete these steps: 1 Move the viewport pointer above the body marker. The pointer changes to point at the hand. 2 Press the Select key to highlight the probe orientation in the line above the softkey display. 3 Use the trackball to rotate the probe pointer to the desired profile on the body mark. 4 Press the Left Enter Key to lock the pointer in place.

在成像視窗下方之一組軟鍵控制顯示當前可用成像控制。控制台上之鍵或者使用一觸控螢幕顯示器來操作軟鍵。當一使用者選擇一掃描模式,軟體針對彼模式對軟鍵進行組態。所顯示之控制根據所連接之探針且根據其他選擇而變化。在控制台之左側處按壓左箭頭鍵及右箭頭鍵來改變對選定模式中可用之其他控制之顯示。A set of softkey controls below the imaging window displays the currently available imaging controls. keys on the console or use a touch screen display to operate the soft keys. When a user selects a scan mode, the software configures the soft keys for that mode. The controls displayed vary depending on the probe connected and based on other selections. Press the left and right arrow keys on the left side of the console to change the display of other controls available in the selected mode.

為改變一設定,使用控制台上之雙態切換鍵。每一雙態切換鍵控制成像視窗之底部處之軟鍵中之一者之設定。鍵組之位置對應於螢幕上按鈕之位置–最左側鍵控制最左側軟鍵之設定等等。To change a setting, use the toggle key on the console. Each toggle key controls the setting of one of the soft keys at the bottom of the imaging window. The position of the key group corresponds to the position of the buttons on the screen - the leftmost key controls the settings of the leftmost softkey, etc.

圖64圖解說明軟鍵6420,軟鍵6420展示為可用2D影像控制之一實例。一使用者可僅在實時掃描期間調整此等影像控制。當一使用者凍結一掃描時,系統軟體以一不同組來替換軟鍵,以列印掃描影像且在掃描影像上進行註解及量測。Figure 64 illustrates soft keys 6420, showing one example of available 2D image controls. A user can adjust these image controls only during live scanning. When a user freezes a scan, the system software replaces the softkeys with a different set to print the scanned image and perform annotations and measurements on the scanned image.

軟鍵顯示取決於所連接之探針、選定掃描模式及選定檢查。一使用者可在實時掃描期間調整以下2D影像控制:頻率、掃描深度、焦深、增益、時間增益補償(TGC)、影像格式、Omni波束、左/右及上/下反向、色彩化、持久性,影像圖、針引導件、動態範圍、軟體最佳化控制。The softkey display depends on the connected probe, the selected scan mode, and the selected exam. A user can adjust the following 2D image controls during real-time scanning: Frequency, Scan Depth, Depth of Focus, Gain, Temporal Gain Compensation (TGC), Image Format, Omni Beam, Left/Right and Up/Down Inversion, Colorization, Durability, imaging, needle guide, dynamic range, software optimization control.

當一使用者選擇一檢查時,系統軟體為彼檢查設定適當的頻率。一使用者可選擇一替代頻率以更好地適應特定情況。通常,一較高傳輸頻率實現較佳的2D解析度,而一較低頻率實現最佳穿透性。使用「頻率」軟鍵來選擇高、中、低頻率。準確頻率根據所連接之探針而變化。每一頻率具有若干個其他參數與其相關聯,具體參數根據檢查類型而定。選定頻率在成像視窗右側之資訊中以一字元串展示為H、M或L。在以下實例中,選擇中等頻率。When a user selects a test, the system software sets the appropriate frequency for that test. A user can select an alternative frequency to better suit a particular situation. Typically, a higher transmission frequency achieves better 2D resolution, while a lower frequency achieves optimal penetration. Use the Frequency softkey to select high, medium, or low frequencies. The exact frequency varies depending on the probe connected. Each frequency has several other parameters associated with it, depending on the type of examination. The selected frequency is displayed as a character string as H, M or L in the information on the right side of the imaging window. In the following example, select Medium Frequency.

「深度」鍵調整視場。一使用者可增大深度以觀看更大或更深的結構。一使用者可減小深度以放大靠近皮膚線之結構之顯示,或者不顯示視窗底部處之不需要區域。當一使用者選擇了一檢查類型,系統軟體針對特定檢查類型及探針而輸入一預設深度值。為設定掃描深度,使用「深度」鍵。在調整深度之後,一使用者可期望調整增益、時間增益補償(TGC)曲線、及焦點控制設定。一使用者可藉由選擇設置視窗之一般索引標籤上之深度尺來查看影像上之一深度尺。The "Depth" key adjusts the field of view. A user can increase the depth to view larger or deeper structures. A user can reduce the depth to magnify the display of structures near the skin line, or not display unwanted areas at the bottom of the window. When a user selects an exam type, the system software enters a preset depth value for the specific exam type and probe. To set the scan depth, use the "Depth" key. After adjusting the depth, a user may wish to adjust the gain, temporal gain compensation (TGC) curve, and focus control settings. A user can view a depth gauge on the image by selecting Depth Gauge on the General tab of the Settings window.

焦點藉由提高一特定區域之解析度來將影像最佳化。圖65展示沿著影像右側之深度尺。深度尺上之一色彩三角形指示焦深。只有在一使用者展示深度尺之情況下才可看到此指示符。亦在掃描資訊區域中以文字形式顯示深度。當一使用者選擇一檢查類型時,軟體針對特定檢查類型、探針及頻率而將焦點值更新為一預設值。在2D模式中,一使用者可使用「聚焦區帶」軟鍵設置多達四個焦深。在所有其他模式中,一使用者可僅設定一個焦深。當一使用者使用一個以上焦深時,一使用者可選擇焦深分佈。Focus optimizes the image by increasing the resolution of a specific area. Figure 65 shows the depth gauge along the right side of the image. A colored triangle on the depth scale indicates depth of focus. This indicator is only visible if a user is displaying a depth gauge. Also displays depth as text in the scanned information area. When a user selects an exam type, the software updates the focus value to a default value for the specific exam type, probe, and frequency. In 2D mode, a user can set up to four depths of focus using the "Focus Zone" soft key. In all other modes, a user can set only one focus depth. When a user uses more than one depth of focus, a user can select a focus depth distribution.

為設定焦深,一使用者使用「聚焦」鍵。為在2D中設定多個焦深,一使用者完成此等步驟: 1. 使用「聚焦區帶」軟鍵選擇所期望之聚焦區帶數目。 2. 使用「聚焦範圍」軟鍵選擇焦點區帶之一分佈。To set the depth of focus, a user uses the "focus" key. To set multiple depths of focus in 2D, a user completes these steps: 1. Use the "Focus Zone" soft key to select the desired number of focus zones. 2. Use the "Focus Range" soft key to select one of the focus zone distributions.

藉由深度尺上深度指示符之間的間隔來展示該分佈。焦深之實際間隔取決於選定點之數目及深度。增大焦點區帶之數目會減小圖框速率。The distribution is shown by the intervals between depth indicators on the depth scale. The actual spacing of the depth of focus depends on the number and depth of selected points. Increasing the number of focus zones reduces frame speed.

2D增益允許一使用者增大或減小傳回回波之放大倍率,此會增大或減小一影像中所顯示之回波資訊量。若產生足夠回波資訊,則調整增益可使影像變亮或變暗。當一使用者調整增益時,系統軟體在維持TGC曲線之形狀不變的同時會增加或減小總增益。當一使用者選擇一預設時,系統軟體針對特定預設及探針而將增益設定為一預設值。為增大或減小增益,使用者向右或向左轉動增益旋鈕。2D gain allows a user to increase or decrease the magnification of the returned echo, which increases or decreases the amount of echo information displayed in an image. If enough echo information is generated, adjusting the gain can brighten or darken the image. When a user adjusts the gain, the system software increases or decreases the overall gain while maintaining the shape of the TGC curve. When a user selects a preset, the system software sets the gain to a default value for the specific preset and probe. To increase or decrease gain, the user turns the gain knob to the right or left.

掃描處於較大深度處之組織導致傳回的信號衰減。TGC滑塊調整傳回信號之放大倍率以校正衰減。TGC平衡影像以等化自近場至遠場之回波之亮度。當一使用者改變深度、載入一新檢查類型、選擇一不同頻率或調整增益設定時,系統軟體重新調節TGC設定。Scanning tissue at greater depths causes the returned signal to attenuate. The TGC slider adjusts the amplification of the returned signal to correct for attenuation. The TGC balances the image to equalize the brightness of the echoes from the near field to the far field. When a user changes depth, loads a new exam type, selects a different frequency, or adjusts gain settings, the system software re-adjusts TGC settings.

TGC滑塊列間隔與深度成比例。影像顯示器上之TGC曲線表示TGC設定,且當一使用者移動滑塊中之一者時出現。每一滑塊控制曲線上之一圓點。一使用者可視需要個別地調整TGC滑塊。一使用者向左拖動一滑塊以減小增益,或者向右拖動滑塊以增大增益。為展示或隱藏TGC曲線,按壓「設置」鍵,然後點擊一般索引標籤,且在TGC方塊中選擇「展示」、「隱藏」或「超時」。選擇「展示」以始終展示曲線,或者選擇「隱藏」以始終隱藏曲線。若一使用者選擇「超時」(預設設定),曲線主要在一使用者起動應用或調整一個別TGC滑塊時顯示。TGC slider column spacing is proportional to depth. The TGC curve on the video display represents the TGC setting and appears when a user moves one of the sliders. Each slider controls a point on the curve. A user can individually adjust the TGC sliders as needed. A user drags a slider to the left to decrease the gain, or to the right to increase the gain. To show or hide the TGC curve, press the "Settings" button, then click on the General index tab and select "Show", "Hide" or "Timeout" in the TGC box. Select Show to always show the curve, or Hide to always hide the curve. If a user selects "Timeout" (the default setting), the curve is primarily displayed when a user launches the application or adjusts an individual TGC slider.

當使用一線性探針時,「影像格式」軟鍵使一使用者選擇矩形(Rect)或梯形(Trap)之一影像格式。Omni准許電子操縱超音波波束以自數個方向獲取一ROI之掃描。Omni與線性及曲線線性陣列探針協同工作。當Omni開啟時,碼OM展示於掃描資訊顯示中,且深度尺上之焦點標記改變。為開啟或關閉Omni波束,按壓Omni波束軟鍵。When using a linear probe, the "Image Format" softkey allows a user to select an image format of Rectangle or Trap. Omni allows electronic steering of ultrasound beams to acquire scans of an ROI from several directions. Omni works with linear and curved linear array probes. When the Omni is turned on, the code OM is displayed in the scan information display and the focus mark on the depth scale changes. To turn the Omni Beam on or off, press the Omni Beam soft key.

持久性係指實時影像或循環之影像圖框平均化。當持久性率高時,影像不分散且更平滑。然而,若在一使用者凍結影像時組織移動,則增大持久性率可產生一模糊影像。當持久性低時,出現相反情況。Persistence refers to the averaging of live images or image frames in a loop. When the persistence rate is high, the image is less scattered and smoother. However, increasing the persistence rate can produce a blurry image if tissue moves while a user freezes the image. When persistence is low, the opposite occurs.

為改變圖框平均量,一使用者按壓「持久」軟鍵自0至7選擇一值。0設定表示0%持久性且7表示100%持久性。持久性設定作為資訊文字串中之一字元顯示於螢幕上。To change the frame average, a user presses the "Persistent" soft key to select a value from 0 to 7. A setting of 0 means 0% durability and 7 means 100% durability. Persistence settings appear on the screen as one character in the information text string.

圖控制使一使用者選擇如何跨越影像分佈灰階。每一圖強調信號振幅範圍之某些區。此特徵用於仔細查看某些解剖特徵且用於偵測微小的病狀。使用者圖選擇之效果由影像上深度尺左側的參考列表示。Image controls allow a user to choose how to distribute gray levels across an image. Each graph highlights certain regions of the signal amplitude range. This feature is useful for taking a closer look at certain anatomical features and for detecting subtle pathologies. The effects of user map selections are represented by the reference column to the left of the depth scale on the image.

只有當連接了支援生檢或其他醫療過程之探針時,針引導件軟鍵才有效。為顯示一針引導件,使用軟鍵打開針引導件並選擇正確針引導件(若有一個以上引導件可用)。取決於所連接之探針,一使用者可僅看見一個針引導件選項。若彼探針之托架支援一個以上角度或深度,顯示每一所支援角度或深度之選項。為在「開」或「關」之間雙態切換針引導件,按壓「針引導件」軟鍵。若一個以上針引導件可用,則按壓 「引導類型」軟鍵來選擇一不同引導件。為在「開」或「關」之間雙態切換目標指示器,按壓「目標」軟鍵。使用軌跡球設定目標深度。自探針至目標之距離顯示於成像視窗之左上角中。The Needle Guide softkey is only available when a probe that supports biopsies or other medical procedures is connected. To display a needle guide, use the softkey to open the needle guide and select the correct needle guide (if more than one guide is available). Depending on the connected probe, a user may only see one needle guide option. If the probe's cradle supports more than one angle or depth, an option is displayed for each supported angle or depth. To toggle the needle guide between "On" and "Off", press the "Needle Guide" soft key. If more than one needle guide is available, press the Guide Type softkey to select a different guide. To toggle the target indicator between On and Off, press the Target softkey. Use the trackball to set target depth. The distance from the probe to the target is displayed in the upper left corner of the imaging window.

「動態範圍」軟鍵控制影像中所顯示之聲波位準範圍,聲波位準範圍會對影像之對比度產生影響。軟鍵上之一數字表示壓縮量:自0至100。使用「動態範圍」軟鍵來調整動態範圍。0設定實現最大對比度,且100實現最小對比度。為啟用或停用軟體影像增強最佳化,使用「TV位準」軟鍵。一使用者可使用軟鍵將位準設定為「Off」、「1」、「2」或「3」。The "Dynamic Range" soft key controls the range of sound wave levels displayed in the image. The range of sound wave levels will affect the contrast of the image. A number on the soft key indicates the amount of compression: from 0 to 100. Use the Dynamic Range softkey to adjust the dynamic range. A setting of 0 achieves maximum contrast, and 100 achieves minimum contrast. To enable or disable software image enhancement optimization, use the TV Level softkey. A user can use the soft keys to set the level to "Off", "1", "2" or "3".

選擇組織都卜勒成像(TDI)將成像組織運動之影像控制最佳化。控制設定隨選定掃描模式而變化。控制值可被調整且獨立於非TDI設定而進行預設。當影像被凍結時,停用TDI。TDI僅與4V2A探針協同工作。為應用組織都卜勒成像,在處於2D模式中時按壓TDI軟鍵。Choose Tissue Doppler Imaging (TDI) to optimize image control of imaged tissue motion. Control settings change with the selected scan mode. Control values can be adjusted and preset independently of non-TDI settings. When the image is frozen, TDI is disabled. TDI only works with 4V2A probes. To apply tissue Doppler imaging, press the TDI soft key while in 2D mode.

所傳輸超音波信號在組織中產生諧波(頻率係所傳輸信號頻率之多倍之信號)。組織諧波成像處理一傳回的諧波信號以增強所顯示之影像。用於THI之諧波係所傳輸信號頻率之兩倍。THI只有在連接一4V2A或5C2A換能器時才可用。當連接一不同類型之換能器時,THI按鈕不顯示。THI在中等範圍深度處最有效。THI對淺掃描及深掃描沒有幫助。當掃描深度係4 cm或更大時,停用THI。為開啟或關閉THI,在2D模式中點選THI按鈕。The transmitted ultrasound signal generates harmonics (signals with frequencies that are multiples of the frequency of the transmitted signal) in the tissue. Tissue harmonic imaging processes a returned harmonic signal to enhance the displayed image. The harmonics used in THI are twice the frequency of the transmitted signal. THI is only available when connecting a 4V2A or 5C2A transducer. When a different type of transducer is connected, the THI button is not displayed. THI is most effective at mid-range depths. THI is not helpful for shallow scans and deep scans. THI is disabled when the scanning depth is 4 cm or greater. To turn THI on or off, click the THI button in 2D mode.

當一使用者選擇M模式時,系統軟體應用一組預設影像設定且改變可用軟鍵控制。當一使用者凍結一掃描時,系統軟體以用於量測M模式影像之特徵且用於檢查圖框且播放循環之控制來替換成像軟鍵控制。When a user selects M mode, the system software applies a set of default image settings and changes the available softkey controls. When a user freezes a scan, the system software replaces the imaging softkey controls with controls for measuring characteristics of the M-mode image and for checking frames and playing the loop.

當選擇M模式時,系統軟體自動地選擇超音波游標,且移動軌跡球來控制游標位置。按壓「左輸入」鍵取消選擇游標且將其鎖定於適當放置。按壓「游標」鍵選擇超音波游標。When M mode is selected, the system software automatically selects the ultrasonic cursor and moves the trackball to control the cursor position. Pressing the Left Enter key deselects the cursor and locks it in place. Press the "Cursor" key to select the ultrasonic cursor.

增益旋鈕中心中之作用按鈕控制顯示用於主動模式之成像控制組。在M模式中,該組成像控制係用於2D模式及M模式之控制。當前選定之控制組名稱在軟鍵上方顯示為藍色。為選擇一不同控制組,按壓「作用」按鈕。在M模式中,可用增益旋鈕控制係2D增益控制。The active button control in the center of the gain knob displays the imaging control group for active mode. In M mode, this group of imaging controls is used for 2D mode and M mode control. The name of the currently selected control group is displayed in blue above the soft key. To select a different control group, press the "Action" button. In M mode, the gain knob can be used to control the 2D gain control.

「掃略速率」軟鍵設定時間線跨越時間序列視窗進行掃描之快慢。為設定掃略速率,一使用者按壓「掃略速率」軟鍵以選擇「慢」、「中」或「快」。時間序列視窗中之刻度線根據速率而更緊湊或更稀疏。每一大的刻度標記表示1秒。The "Scan Rate" soft key sets how quickly the timeline scans across the time series window. To set the scan rate, a user presses the "Scan Rate" soft key to select "Slow", "Medium" or "Fast". The tick marks in the time series view are denser or sparser depending on the rate. Each large tick mark represents 1 second.

為移動超音波游標,一使用者按壓「游標」鍵選擇超音波游標,然後使用軌跡球將其移動至一新位置。當游標處於一使用者所期望之位置時,按壓「左輸入」鍵。當選定超音波游標時,其變為綠色。當鎖定於適當位置時,超音波游標恢復至其正常色彩。To move the ultrasonic cursor, a user presses the "cursor" key to select the ultrasonic cursor and then uses the trackball to move it to a new position. When the cursor is at a position desired by the user, press the "Left Enter" key. When the ultrasonic cursor is selected, it turns green. When locked in place, the ultrasonic cursor returns to its normal color.

利用「解剖」軟鍵啟用解剖M模式允許一使用者旋轉且垂直地移動掃描線。當一使用者選擇脈衝波都卜勒時,系統軟體應用一組預設影像設定且改變可用軟鍵控制。當一使用者凍結一脈衝波掃描,系統軟體以用於量測PWD影像之特徵且用於檢查圖框且播放循環之控制來替換成像軟鍵控制。Enabling the Dissection M mode using the Dissection softkey allows a user to move the scan line both rotationally and vertically. When a user selects Pulse Wave Doppler, the system software applies a set of default image settings and changes the available softkey controls. When a user freezes a pulse wave scan, the system software replaces the imaging soft key controls with controls for measuring the characteristics of the PWD image and for checking the frame and playing the loop.

增益旋鈕中心中之作用按鈕控制顯示用於主動模式之成像控制組。在PWD模式中,該組成像控制係用於2D模式及頻譜模式之控制。當前選定控制組在軟鍵上方顯示為藍色。為選擇一不同控制組,按壓「作用」按鈕。當選擇脈衝波都卜勒模式時,特殊軌跡球對PWD模式作出回應,系統軟體自動地選擇超音波游標及樣本體積閘(SVG),且移動軌跡球來控制超音波游標及SVG的位置。按壓「左輸入」鍵將超音波游標及SVG設定於適當位置。在處於PWD模式中時,按壓「游標」鍵以選擇超音波游標及SVG。The active button control in the center of the gain knob displays the imaging control group for active mode. In PWD mode, this group of imaging controls is used for the control of 2D mode and spectrum mode. The currently selected control group is displayed in blue above the soft keys. To select a different control group, press the "Action" button. When the pulse wave Doppler mode is selected, the special trackball responds to the PWD mode. The system software automatically selects the ultrasonic cursor and sample volume gate (SVG), and moves the trackball to control the positions of the ultrasonic cursor and SVG. Press the "Left Enter" key to set the ultrasonic cursor and SVG to the appropriate position. While in PWD mode, press the Cursor key to select the ultrasonic cursor and SVG.

系統軟體使一使用者針對頻譜都卜勒模式來選擇掃略速率。一慢速率隨時間展示更多波形,但細節較少。一中等速率適合於正常用途。快速率隨時間展示較少的波形,但細節較多。沿著時間序列視窗頂部之刻度之間的間隔指示掃略速率。每一較大的刻度表示1秒。當一影像被凍結時,一使用者無法改變設定。「掃略速率」軟鍵設定時間線跨越時間序列視窗進行掃描之快慢。為設定掃略速率,按壓「掃略速率」軟鍵以選擇「慢」、「中」或「快」。The system software enables a user to select the sweep rate for spectral Doppler mode. A slow rate shows more waveforms over time, but with less detail. A medium speed is suitable for normal use. Fast rates show fewer waveforms over time, but more detail. The space between the ticks along the top of the time series view indicates the sweep rate. Each larger tick represents 1 second. When an image is frozen, a user cannot change settings. The "Scan Rate" soft key sets how quickly the timeline scans across the time series window. To set the sweep rate, press the Sweep Rate soft key to select Slow, Medium, or Fast.

時間序列視窗以cm/s或kHz為單位展示血流速度。一使用者可在任何時間改變單位,只要游標角度係70°或小於70°即可。為改變速度顯示單位,按壓「輸出單位」軟鍵。按壓軟鍵在cm/s與kHz之間雙態切換。The time series window displays blood flow velocity in cm/s or kHz. A user can change units at any time as long as the cursor angle is 70° or less. To change the speed display unit, press the "Output Unit" soft key. Press the soft key to switch between cm/s and kHz.

脈衝重複頻率定義顯示之速度範圍,速度範圍展現為尺度。PRF之最大值(以Hz為單位)根據特定探針及樣本體積之位置而定。PRF應被設定為足夠高以防止發生頻疊,且足夠低以充分地偵測緩慢血流。可需要在一檢查期間根據血流速率變化PRF,或者當存在病狀時變化PRF。當一使用者正在觀測之頻率超過樣本率之一半時,會發生頻疊。若血液之移動比脈衝重複率快,則顯示器上之波形將與基線發生頻疊或糾纏在基線周圍。一使用者只有在查看一實時影像時才可改變此設定,當一影像被凍結時不改變此設定。當一使用者移動所關注區時系統軟體可自動地改變PRF值,以確保最大PRF值不超出其極限。為調整PRF值,使用「尺度」鍵。在時間序列視窗左側之速度(cm/s)尺度回應於尺度設定而發生改變,且在掃描性質顯示器中展示PRF值。每一次點擊之增量值根據當前範圍而定。舉例而言,若尺度設定係4000,則每當一使用者按壓上或下軟鍵時,系統軟體自彼值加上或減去500 Hz,直至選定值處於一較低或較高範圍中為止。增大PRF亦會增大熱指數(TI)值。僅在三工掃描中,PRF值才與2D模式(彩色都卜勒)中之設定相關。若一使用者就一個模式對PRF值做出改變,則系統軟體亦就其他模式而改變PRF值。此取決於一使用者是以同時模式還是非同時模式進行掃描,這係由「更新」鍵控制。The pulse repetition frequency defines the displayed speed range, which is displayed as a scale. The maximum value of PRF (in Hz) depends on the location of the specific probe and sample volume. The PRF should be set high enough to prevent overlap and low enough to adequately detect slow blood flow. It may be desirable to vary the PRF based on blood flow rate during an examination, or when a pathology is present. Frequency overlap occurs when a user is observing more than half the sample rate. If the blood moves faster than the pulse repetition rate, the waveform on the display will overlap with or become tangled around the baseline. A user can change this setting only when viewing a live image and not when an image is frozen. The system software can automatically change the PRF value when a user moves the area of interest to ensure that the maximum PRF value does not exceed its limit. To adjust the PRF value, use the "Scale" key. The velocity (cm/s) scale on the left side of the time series window changes in response to the scale setting, and the PRF value is displayed in the scan properties display. The increment value for each click is based on the current range. For example, if the scale setting is 4000, then each time a user presses the up or down soft key, the system software adds or subtracts 500 Hz from that value until the selected value is in a lower or higher range. . Increasing the PRF will also increase the thermal index (TI) value. Only in triple scanning, the PRF value is related to the setting in 2D mode (Color Doppler). If a user changes the PRF value for one mode, the system software also changes the PRF value for the other modes. This depends on whether a user is scanning in simultaneous mode or non-simultaneous mode, which is controlled by the "Update" key.

都卜勒系統使用一壁濾波器(高通頻率濾波器)來自顯示中消除低頻率高強度信號(被稱為雜波)。組織運動或探針之迅速移動可導致雜波。增大壁濾波器設定會減少對速度組織運動之顯示。減小壁濾波器設定顯示更多資訊,但顯示更多壁組織運動。Doppler systems use a wall filter (high-pass frequency filter) to remove low-frequency, high-intensity signals (called clutter) from the display. Tissue motion or rapid movement of the probe can cause clutter. Increasing the wall filter setting will reduce the display of velocity tissue motion. Decreasing the wall filter setting reveals more information but shows more wall tissue motion.

使用足夠高以移除雜波但足夠低以顯示基線附近之資訊的一壁濾波器設定。為調整壁濾波器值,使用「濾波器」軟鍵。壁濾波器範圍介於PRF之1%至25%,因此利用「尺度」鍵改變PRF亦會改變壁濾波器之範圍以及「濾波器」軟鍵改變其設定之增量。每一次點擊之增量值根據當前範圍而定。舉例而言,若壁濾波器範圍係1000 Hz,則每當一使用者點擊「濾波器」軟鍵時,系統軟體自濾波器值加上或減去100 Hz。Use a one-wall filter setting that is high enough to remove clutter but low enough to display information near the baseline. To adjust the wall filter value, use the Filter softkey. The wall filter range is between 1% and 25% of the PRF, so changing the PRF using the "Scale" key will also change the range of the wall filter and the "Filter" soft key changes the increment of its setting. The increment value for each click is based on the current range. For example, if the wall filter range is 1000 Hz, then each time a user clicks the "Filter" soft key, the system software adds or subtracts 100 Hz from the filter value.

當使用頻譜都卜勒時,使用者應獲悉都卜勒流動角度(超音波波束之軸線與血流流動平面之間的角度)。當超音波波束與血流垂直時(流動角度為90°),甚至在血流正常時,仍會顯示一缺失或混亂色彩圖案。需要一足夠的都卜勒流動角度來獲得有用的頻譜都卜勒資訊。在大多數例項中,都卜勒波束愈近乎平行於血流(流動角度愈低),則所接收到之信號愈佳。角度小於60°提供最佳品質之頻譜都卜勒。當血流與都卜勒波束成一不良角度時,可使用電子操縱。然而,通常亦需要按壓探針之一端或另一端以改良都卜勒流動角度。電子操縱可與扁平線性陣列探針搭配使用(4V2A及15L4)。曲線性探針不能進行電子操縱,且根據臨床情況可需要一使用者向下按壓一個探針之一個隅角以獲得一足夠血流角度。操縱角度並不會直接影響速度尺度之校準。為選擇一不同操縱角度,使用者按壓「操作」鍵以得到所期望角度。一使用者可在查看一實時影像時使用此控制。當一影像被凍結時,一使用者無法改變設定。When using spectral Doppler, the user should be aware of the Doppler flow angle (the angle between the axis of the ultrasound beam and the blood flow plane). When the ultrasound beam is perpendicular to the blood flow (flow angle is 90°), a missing or chaotic color pattern is still displayed even when the blood flow is normal. A sufficient Doppler flow angle is required to obtain useful spectral Doppler information. In most cases, the closer the Doppler beam is to parallel to the blood flow (the lower the flow angle), the better the signal received. Angle less than 60° provides the best quality spectral Doppler. Electronic steering can be used when the blood flow is at an adverse angle to the Doppler beam. However, it is also often necessary to compress one or the other end of the probe to improve the Doppler flow angle. Electronic steering can be used with flat linear array probes (4V2A and 15L4). Curved probes cannot be electronically steered, and depending on the clinical situation may require a user to press down on one corner of a probe to obtain an adequate blood flow angle. The control angle does not directly affect the calibration of the speed scale. To select a different control angle, the user presses the "operate" key to obtain the desired angle. A user can use this control while viewing a live image. When an image is frozen, a user cannot change settings.

為獲得準確速度,一使用者必須將都卜勒角度維持為60°或小於60°。通常需要按壓探針之一端或另一端以改良都卜勒流動角度。在可移動超音波系統中,僅在介於+70°與–70°之間的校正角度範圍中展示以公分/秒為單位之速度顯示。在大於70°之角度下,速度計算之誤差過大,且獨立於校正角度將速度尺度轉換成頻率(以kHz為單位)。血流方向指示符仍展示於視窗上以供參考。為調整校正角度,按壓CA軟鍵以增大或減小角度。角度設定在成像視窗之影像資訊區段中顯示於深度尺度之右側。為將校正角度設定為0°或60°,按壓「CA+/□□60」軟鍵或「Steer 0」軟鍵。「CA+/□□60」軟鍵使校正角度在–60°與+60°之間雙態切換且「Steer 0」軟鍵將角度設定為0°。To obtain accurate speed, a user must maintain the Doppler angle at or below 60°. It is often necessary to press one or the other end of the probe to improve the Doppler flow angle. In mobile ultrasound systems, the velocity display in centimeters per second is only shown in the correction angle range between +70° and –70°. At angles greater than 70°, the velocity calculation error is too large and the velocity scale is converted into frequency (in kHz) independently of the correction angle. The blood flow direction indicator remains displayed on the window for reference. To adjust the correction angle, press the CA soft key to increase or decrease the angle. The angle setting is displayed to the right of the depth scale in the Image Information section of the imaging window. To set the correction angle to 0° or 60°, press the "CA+/□□60" soft key or the "Steer 0" soft key. The "CA+/□□60" soft key switches the correction angle between –60° and +60° and the "Steer 0" soft key sets the angle to 0°.

一使用者可將脈衝都卜勒波形反相。跨越頻譜顯示器之寬度之一零基線將都卜勒尺度分隔開。在基線上方之資料被分類為正向血流。在基線下方之資料被分類為逆向血流。當將波形反相時,逆向血流顯示於基線上方,且正向血流位於基線下方。為將波形反相,使用者按壓「反相」軟鍵。一使用者可僅在查看一實時影像時才使用此控制。當一影像被凍結時,一使用者無改變此設定。A user can invert the pulsed Doppler waveform. A zero baseline across the width of the spectrum display separates the Doppler scales. Data above the baseline is classified as positive flow. Data below the baseline is classified as reverse flow. When the waveform is inverted, retrograde flow is shown above the baseline and forward flow is below the baseline. To invert the waveform, the user presses the "Invert" soft key. A user can use this control only when viewing a live image. While an image is frozen, a user does not change this setting.

為在2D影像顯示中調整超音波游標,按壓「游標」鍵,使用軌跡球移動游標,且按壓「左輸入」鍵以將游標鎖定於適當位置。To adjust the ultrasonic cursor in the 2D image display, press the Cursor key, use the trackball to move the cursor, and press the Left Enter key to lock the cursor in place.

樣本體積大小控制調整被檢測都卜勒區之大小。值愈低,計算血流速度時所使用之樣本大小愈窄。樣本體積沿著超音波游標顯示為兩條平行線。該兩條平行線之間的距離係以毫米為單位之樣本體積大小。為調整樣本體積(SV)大小,按壓「SV大小」軟鍵。「SV大小」顯示於軟鍵上且在成像視窗上顯示於深度尺度之右側之影像資訊區域中。一使用者可將一值設定為自0.5至20 mm (以0.5 mm為增量)。The sample volume size control adjusts the size of the Doppler zone being detected. The lower the value, the narrower the sample size used when calculating blood flow velocity. The sample volume is displayed as two parallel lines along the ultrasound cursor. The distance between the two parallel lines is the sample volume size in millimeters. To adjust the sample volume (SV) size, press the "SV Size" soft key. "SV Size" is displayed on the softkey and in the image information area to the right of the depth scale on the imaging window. A user can set a value from 0.5 to 20 mm (in 0.5 mm increments).

為調整樣本體積之位置,使用「游標」鍵將其選定,然後使用軌跡球或觸控墊將其移動至所期望位置。按壓「左輸入」鍵將其錨定。To adjust the position of the sample volume, use the Cursor keys to select it and then use the trackball or touch pad to move it to the desired position. Press the Left Enter key to anchor it.

一使用者僅在查看一實時影像時才可使用此控制。當一影像被凍結時,一使用者無法調整樣本體積。修改樣本體積之深度位置會對熱指數(TI)值產生影響。A user can use this control only when viewing a live image. While an image is frozen, a user cannot adjust the sample volume. Modifying the depth position of the sample volume will affect the thermal index (TI) value.

樣本體積指示符允許一使用者在一2D掃描模式中開始一掃描,設定樣本體積位置,且切換至頻譜都卜勒模式。樣本體積鎖定於適當位置。當在CD模式中進行掃描時,此過程切換至三工模式(在由一使用者許可啟用之情況下)。為在2D視窗中定位樣本體積,按壓「游標」鍵,然後使用軌跡球設定閘位置。The sample volume indicator allows a user to start a scan in a 2D scan mode, set the sample volume position, and switch to spectral Doppler mode. The sample volume is locked in place. When scanning in CD mode, the process switches to triplex mode (if enabled by a user's permission). To position the sample volume in the 2D viewport, press the Cursor key and use the trackball to set the gate position.

PW增益設定(非2D增益設定)會增大或減小時間序列顯示之傳回信號(實時或回放)之放大倍率。應對增益做出調整以使得頻譜波形清晰,但不能高至致使收縮視窗填充或產生其他假影。為調整PWD增益,使用增益旋鈕。確保頻譜展示於軟鍵顯示上方。一使用者可針對正在播放之實時影像或所保存循環調整增益。一使用者無法調整凍結影像或暫停循環之增益。The PW gain setting (not the 2D gain setting) will increase or decrease the amplification of the returned signal (real-time or playback) of the time series display. The gain should be adjusted so that the spectral waveform is clear, but not so high that it shrinks the window fill or produces other artifacts. To adjust PWD gain, use the gain knob. Make sure the spectrum is displayed above the soft key display. A user can adjust the gain for a live image being played or a saved loop. A user cannot adjust the gain of frozen images or paused loops.

雜訊抑制對低位準傳回信號之抑制加以控制。增大抑制會使影像背景變暗。軟鍵上之一數字指示雜訊抑制位準。為調整雜訊抑制,使用「抑制」軟鍵。軟鍵上之一數字指示雜訊抑制位準。Noise suppression controls the suppression of low-level return signals. Increasing suppression darkens the image background. A number on the soft key indicates the noise suppression level. To adjust noise suppression, use the Suppression softkey. A number on the soft key indicates the noise suppression level.

「更新」鍵使一使用者在獲取頻譜都卜勒掃描資料的同時(在時間序列視窗中顯示)選擇是否能繼續掃描解剖結構(在2D視窗中顯示)。當選擇更新時,鍵亮起藍色,且系統軟體在獲取頻譜都卜勒資料的同時連續更新2D掃描。當未作出選擇時,鍵亮起白色且系統軟體在獲取頻譜都卜勒資料的同時凍結2D資料。在大多數檢查中皆會選擇對此鍵之預設設定(2D及頻譜都卜勒資料之連續掃描)。當一使用者取消選擇「更新」鍵(但不凍結掃描)時,一使用者無法調整2D影像控制中之某些。為使2D視窗在活躍與凍結之間雙態切換,按壓「更新」鍵。The "Update" button allows a user to select whether to continue scanning the anatomy (displayed in the 2D window) while acquiring spectral Doppler scan data (displayed in the time series window). When Update is selected, the key lights blue and the system software continuously updates the 2D scan while acquiring spectral Doppler data. When no selection is made, the key lights white and the system software freezes the 2D data while acquiring spectral Doppler data. The default setting for this key (continuous scan of 2D and spectral Doppler data) is selected in most exams. When a user deselects the "Update" button (but does not freeze scanning), a user cannot adjust some of the 2D image controls. To toggle the 2D window between active and frozen, press the Update key.

當一使用者選擇彩色模式時,系統軟體針對該彩色模式顯示軟鍵及一增益旋鈕選單。增益旋鈕中心中之作用按鈕控制顯示用於主動模式之成像控制組。在彩色模式中,該成像控制組係用於2D模式及彩色模式。當選擇彩色模式時,系統軟體自動地選擇ROI位置(ROI Pos),且移動軌跡球來改變該位置。點擊在軌跡球上方之選擇鍵改變ROI大小之控制;且滾動軌跡球來收縮或擴大ROI。當ROI處於正確位置中且係正確大小時,點擊「左輸入」鍵以設定ROI。按壓游標鍵來選擇超音波游標,且軌跡球控制游標位置。When a user selects a color mode, the system software displays soft keys and a gain knob menu for the color mode. The active button control in the center of the gain knob displays the imaging control group for active mode. In color mode, the imaging control group is used in 2D mode and color mode. When color mode is selected, the system software automatically selects the ROI position (ROI Pos) and moves the trackball to change the position. Click the select button above the trackball to change the ROI size control; and roll the trackball to shrink or expand the ROI. When the ROI is in the correct position and the correct size, click the "Left Enter" key to set the ROI. Press the cursor keys to select the ultrasonic cursor, and the trackball controls the cursor position.

掃描區域(亦被稱為所關注區或ROI)之大小係影響圖框速率之主要控制之一。掃描區域愈小,圖框速率愈快。掃描區域愈大,圖框速率愈緩慢。一使用者可藉由按壓選擇鍵、將ROI移動至一新位置且按壓「左輸入」鍵以將其錨定來移動掃描區域。按壓選擇鍵兩次來選擇ROI大小,且使一使用者使用軌跡球或藉由圖67中所展示之觸控致動來重新設定ROI之大小及形狀。當影像被凍結時,一使用者無法移動ROI或重新設定ROI之大小。為移動所關注區,完成以下步驟: 1 按壓選擇鍵以選擇ROI。游標消失,且ROI Pos顯示在軟鍵上方顯示為藍色。 2 使用軌跡球移動ROI。 3 按壓「左輸入」鍵。The size of the scan area (also called the region of interest or ROI) is one of the primary controls that affects frame rate. The smaller the scanning area, the faster the frame rate. The larger the scanning area, the slower the frame rate. A user can move the scan area by pressing the Select key, moving the ROI to a new location, and pressing the "Left Enter" key to anchor it. Pressing the select key twice selects the ROI size and enables a user to resize and shape the ROI using a trackball or through touch actuation as shown in Figure 67. While the image is frozen, a user cannot move or resize the ROI. To move the area of interest, complete the following steps: 1 Press the select key to select ROI. The cursor disappears and the ROI Pos display appears blue above the soft keys. 2 Use the trackball to move the ROI. 3 Press the "Left Input" key.

為調整所關注區之大小,完成以下步驟: 1.按壓選擇鍵兩次以選擇ROI。 遊標消失,且ROI外形變為一虛線,且ROI大小顯示在軟鍵上方顯示為藍色。 2.使用軌跡球重新設定ROI之大小。To resize the area of interest, complete the following steps: 1. Press the select key twice to select ROI. The cursor disappears, the ROI shape changes to a dotted line, and the ROI size display appears in blue above the soft keys. 2. Use the trackball to resize the ROI.

當一使用者移動所關注區時,系統軟體可自動地調整PRF值以確保最大PRF不超出新深度。脈衝重複頻率界定顯示之速度範圍,速度範圍展現為尺度。PRF之最大值(以kHz為單位)根據特定探針及所關注區之位置而定。PRF應被設定得足夠高以防止發生頻疊,且足夠低以充分地偵測低血流。可需要在一檢查期間根據血流速率變化PRF,或者在存在病狀時變化PRF。當一使用者正在觀測之頻率超過樣本率之一半時,會發生頻疊。若血液之移動比脈衝重複率快,則都卜勒顯像將與基線發生頻疊或糾纏在基線周圍。若將PRF設定得過高,則無法展示低速血流所致的低頻移。當PRF增大時,在不發生頻疊之情況下可顯示之最大都卜勒亦增大。一使用者僅在查看一實時影像時才可使用此控制。當一影像被凍結時,一使用者無法改變PRF。As a user moves the area of interest, the system software can automatically adjust the PRF value to ensure that the maximum PRF does not exceed the new depth. The pulse repetition frequency defines the displayed speed range, which is displayed as a scale. The maximum value of PRF (in kHz) depends on the specific probe and the location of the area of interest. The PRF should be set high enough to prevent overlapping and low enough to adequately detect low blood flow. It may be desirable to vary the PRF based on blood flow rate during an examination, or when a condition is present. Frequency overlap occurs when a user is observing more than half the sample rate. If the blood moves faster than the pulse repetition rate, the Doppler image will overlap with or become tangled around the baseline. If the PRF is set too high, the low-frequency shift caused by low-speed blood flow cannot be displayed. As the PRF increases, the maximum Doppler that can be displayed without frequency overlap also increases. A user can use this control only when viewing a live image. While an image is frozen, a user cannot change the PRF.

為調整PRF值,使用尺度鍵。每一次點擊之增量值根據當前範圍而定。舉例而言,若PRF設定係4.0 kHz,則每當一使用者點擊右箭頭或左箭頭時,系統軟體自彼值加上或減去500 Hz,直至選定值處於一較低或較高範圍中為止。增大PRF亦會增大熱指數(TI)值。To adjust the PRF value, use the scale keys. The increment value for each click is based on the current range. For example, if the PRF setting is 4.0 kHz, then each time a user clicks the right or left arrow, the system software adds or subtracts 500 Hz from that value until the selected value is in a lower or higher range So far. Increasing the PRF will also increase the thermal index (TI) value.

在彩色都卜勒中,一使用者可翻轉色階。通常,紅色被指派為正頻移(朝向探針之血流),且藍色被指派為負頻移(遠離探針之血流)。可藉由按壓「翻轉」軟鍵來逆轉此色彩指派。朝向探針之血流始終被指派色彩列之上半部之色彩,且遠離探針之血流被指派為色彩列之下半部之色彩。當一使用者按壓翻轉軟鍵時,彩色都卜勒參考列及所關注區內之掃描資料之色彩皆被翻轉。In Color Doppler, a user can flip the color levels. Typically, red is assigned a positive frequency shift (blood flow toward the probe) and blue is assigned a negative frequency shift (blood flow away from the probe). This color assignment can be reversed by pressing the "Invert" softkey. Blood flow toward the probe is always assigned the color of the upper half of the color column, and blood flow away from the probe is assigned the color of the lower half of the color column. When a user presses the flip soft key, the colors of the color Doppler reference column and the scanned data in the area of interest are flipped.

舉例而言,當掃描頸內動脈(ICA)時,可使用翻轉。通常,此血管中之血流遠離探針。若啟用翻轉,則ICA血流顯示為紅色陰影。色彩列在上半部上顯示藍色陰影,且在底部上顯示紅色陰影。For example, when scanning the internal carotid artery (ICA), inversion may be used. Normally, the blood flow in this vessel is away from the probe. If flipping is enabled, ICA blood flow is shown shaded red. The color column displays shades of blue on the top half and shades of red on the bottom.

都卜勒系統使用一壁濾波器(高通頻率濾波器)以自顯示中清除非所要低頻率高強度信號(亦被稱為雜波)。組織運動或迅速移動探針可導致雜波。提高壁濾波器設定會減少對低速度組織運動之顯示。降低壁濾波器設定會顯示更多資訊。然而,亦顯示更多壁組織運動。壁濾波器設定應被設定得足夠高以確保不顯示由組織或壁運動所致之彩色都卜勒閃爍假影,但設定得足夠低以顯示低血流。若壁濾波器設定得過高,無法看到較緩慢之血流。當在彩色都卜勒模式中進行掃描時,針對存在顯著組織運動的應用或者在探針迅速移動之例項中,將壁濾波器設定得較高。對於小部分或血流緩慢但組織運動不多的例項,將壁濾波器設定設定得較低。使用足夠高以移除雜波但足夠低以在基線附近顯示都卜勒資訊之一壁濾波器設定。為調整壁濾波器值,使用「濾波器」軟鍵。當前值顯示於軟鍵上且顯示於成像視窗之影像資訊區域上(作為在「WF」後面之一數字)。壁濾波器範圍係自尺度值之1%至尺度值之50%。Doppler systems use a wall filter (high-pass frequency filter) to remove unwanted low-frequency, high-intensity signals (also known as clutter) from the display. Tissue motion or rapidly moving probes can cause clutter. Increasing the wall filter setting will reduce the display of low velocity tissue motion. Lowering the wall filter settings will reveal more information. However, more mural tissue motion was also shown. The wall filter setting should be set high enough to ensure that color Doppler flicker artifacts caused by tissue or wall motion are not shown, but low enough to show low blood flow. If the wall filter is set too high, slower blood flow will not be visible. When scanning in color Doppler mode, set the wall filter higher for applications where there is significant tissue motion or in cases where the probe is moving rapidly. For small sections or cases with slow blood flow but not much tissue movement, set the wall filter setting lower. Use a wall filter setting that is high enough to remove clutter but low enough to reveal Doppler information near the baseline. To adjust the wall filter value, use the Filter softkey. The current value is displayed on the softkey and in the image information area of the imaging window (as a number after "WF"). The wall filter range is from 1% of the scale value to 50% of the scale value.

可增大色彩增益以校正一血管內之一不充分色彩填充且減小色彩增益以校正一血管外之一不可接受色彩量。一使用者可調整色彩增益以增大或減小所播放或所顯示之傳回信號之放大倍率。掃描性質清單中沒有類似於2D增益之色彩顏色增益之指示符。為改變色彩增益,向左(減小)或向右(增大)轉動增益旋鈕。The color gain can be increased to correct for an insufficient color fill within a vessel and the color gain can be decreased to correct for an unacceptable amount of color outside of a vessel. A user can adjust the color gain to increase or decrease the amplification of the returned signal as it is played or displayed. There is no indicator for color gain similar to 2D gain in the scan properties list. To change color gain, turn the gain knob to the left (decrease) or right (increase).

影像之色彩優先級界定在清晰回波上顯示之色彩量,且有助於將色彩侷限於血管壁內。色彩優先級會影響色彩信息覆蓋2D資訊之位準。若使用者必須在某些顯著2D亮度之一區域中看到更多血流,則增大色彩優先級。為更好地控制血管內之血流顯示,降低色彩優先級。若將色彩優先級設定為零,則不顯示色彩。為改變色彩優先級,使用優先級軟鍵。當前色彩優先級設定展示於軟鍵顯示上。Image color priority defines the amount of color displayed on clear echoes and helps localize color within the vessel wall. Color priority affects the degree to which color information covers 2D information. If the user must see more blood flow in one of the areas of significant 2D brightness, increase the color priority. To better control the display of intravascular blood flow, the color priority is lowered. If the color priority is set to zero, no color is displayed. To change color priority, use the Priority softkey. The current color priority setting is shown on the soft key display.

色彩持久性設定判定圖框之間的平均量。增大持久性使得血流持久顯示於2D影像上。減小持久性允許更好地偵測短持續時間噴流,且為較佳血流/無血流評估提供一基礎。調整色彩持久性亦產生較佳血管輪廓繪示。為改變色彩持久性,使用持久軟鍵。當前色彩持久性設定展示於軟鍵顯示上。The color persistence setting determines the amount of averaging between frames. Increased persistence allows blood flow to be permanently displayed on 2D images. Reducing persistence allows for better detection of short duration jets and provides a basis for better flow/no flow assessment. Adjusting color persistence also produces better rendering of vessel outlines. To change color persistence, use the Persistence softkey. The current color persistence setting is shown on the soft key display.

通常不需要進行色彩基線調整。基線係指彩色都卜勒影像內之零基線。為調整該基線,下移基線以顯示更多正血流(正向)且上移基線以顯示更多負血流(逆向)。此調整可用於防止在任一方向上發生頻疊。為移動色彩基線,使用基線鍵。基線之當前設定展示於彩色都卜勒參考列上。一使用者可看到一使用者對色彩參考列做出改變之效應。若列不可見,選擇Setup > General > Reference Bar以將其添加至影像顯示器。Color baseline adjustments are usually not required. Baseline refers to the zero baseline within the color Doppler image. To adjust the baseline, the baseline is moved down to show more positive flow (forward) and up to show more negative flow (reverse). This adjustment can be used to prevent overlap in either direction. To move the color baseline, use the baseline keys. The current setting of the baseline is displayed on the Color Doppler Reference Bar. A user can see the effects of changes a user makes to the color reference column. If the column is not visible, select Setup > General > Reference Bar to add it to the image display.

圖軟鍵選擇五個色彩圖中之一者以展示彩色都卜勒資料。一使用者可藉由選擇一檢查然後選擇一色彩圖來針對每一檢查獨立地組態色彩圖。當一使用者選擇一不同檢查時,系統軟體針對該選定檢查載入色彩圖。色彩圖被指定為A至E。某些圖比其他圖使用更多色彩,且某些圖以比其他圖平滑之梯度顯示。為選擇一色彩圖,使用圖軟鍵。當前圖字母展示於軟鍵顯示中。The Plot softkey selects one of five color plots to display color Doppler data. A user can configure the color map independently for each exam by selecting an exam and then selecting a color map. When a user selects a different exam, the system software loads a color map for the selected exam. Colormaps are designated A through E. Some images use more colors than others, and some images appear with smoother gradients than others. To select a color map, use the Map softkey. The current image letter is shown in the soft key display.

三工掃描模式將脈衝波都卜勒掃描與彩色都卜勒掃描組合起來。為啟動三工掃描,選擇彩色都卜勒模式,然後按壓控制台上之PW鍵。僅在三工掃描中,PRF值才與2D模式(彩色都卜勒)之設定相關。若一使用者在一個模式中改變PRF值,則系統軟體亦在其他模式中改變PRF值。此取決於一使用者是以同時模式還是非同時模式進行掃描,這由更新控制台鍵控制。為調整三工掃描之影像控制,首先調整2D掃描模式之影像控制,然後轉到彩色都卜勒視窗且按壓游標鍵以選擇PWD超音波游標及樣本體積位置。當在三工模式中進行掃描時,無法調整某些2D影像控制,因此一使用者必須在2D模式中調整影像控制。一使用者可僅在實時掃描期間調整此等影像控制。當一使用者凍結一掃描時,系統軟體以一不同組替換軟鍵,以列印掃描影像且在掃描影像上做出註解及量測。應用將PWD之時間序列視窗添加至2D影像。The triple scanning mode combines pulse wave Doppler scanning and color Doppler scanning. To start triple scanning, select Color Doppler mode and press the PW key on the console. Only in triple scanning, the PRF value is related to the 2D mode (color Doppler) setting. If a user changes the PRF value in one mode, the system software also changes the PRF value in other modes. This depends on whether a user is scanning in simultaneous or non-simultaneous mode, which is controlled by the Update Console key. To adjust the image control of the 3D scan, first adjust the image control of the 2D scan mode, then go to the color Doppler window and press the cursor key to select the PWD ultrasound cursor and sample volume position. When scanning in 3D mode, some 2D image controls cannot be adjusted, so a user must adjust the image controls in 2D mode. A user can adjust these image controls only during live scanning. When a user freezes a scan, the system software replaces the soft keys with a different set to print the scanned image and make annotations and measurements on the scanned image. The application adds the PWD time series viewport to the 2D image.

當在三工模式中進行掃描時,一使用者可移動所關注區、調整其大小或移動範圍閘。為移動所關注區,完成以下步驟: 1 按壓選擇鍵以選擇ROI。 2 使用軌跡球移動ROI。 3 按壓左輸入鍵。When scanning in triplex mode, a user can move the area of interest, resize it, or move the range gate. To move the area of interest, complete the following steps: 1 Press the select key to select ROI. 2 Use the trackball to move the ROI. 3 Press the left input key.

當進行三工掃描時,可使用PW軟鍵。影像資訊顯示在三工模式中展示出兩個PRF值。系統軟體將色彩PRF設定為PWD PRF之一積分分數(1/2、1/3、1/4等)。若一使用者在一個模式中改變PRF值,則系統軟體亦改變其他PRF設定。一使用者可為2D掃描及PWD掃描獨立地設定壁濾波器。增益旋鈕中心中之作用按鈕控制顯示用於主動模式之成像控制組。在三工模式中,該成像控制組係用於2D模式、頻譜模式及彩色模式之控制。當前選定控制組係在軟鍵上方顯示為藍色。為選擇一不同控制組,按壓作用按鈕。When performing triple scanning, the PW soft key can be used. The image information display shows two PRF values in triplex mode. The system software sets the color PRF to an integral fraction of the PWD PRF (1/2, 1/3, 1/4, etc.). If a user changes the PRF value in one mode, the system software also changes other PRF settings. A user can set wall filters independently for 2D scans and PWD scans. The active button control in the center of the gain knob displays the imaging control group for active mode. In the three-mode mode, the imaging control group is used for the control of 2D mode, spectrum mode and color mode. The currently selected control group is displayed in blue above the soft key. To select a different control group, press the Action button.

伴隨著超音波影像之量測補充主治醫師可用之其他臨床過程。藉由系統軟體且藉由恰當使用醫療協定來判定量測之準確度。當一使用者凍結一掃描時,系統軟體改變可用軟鍵控制組且啟用「測徑器」鍵。按壓「測徑器」鍵啟用量測控制。重複按壓「測徑器」鍵以在距離、痕跡及橢圓量測選項之間循環。當一使用者保存一影像時,將所有量測與該影像一起保存起來。Measurements accompanying ultrasound images complement other clinical procedures available to the attending physician. The accuracy of the measurements is determined by the system software and by appropriate use of medical protocols. When a user freezes a scan, the system software changes the set of available softkey controls and enables the Caliper key. Press the Caliper button to enable measurement control. Press the Caliper key repeatedly to cycle through distance, trace, and ellipse measurement options. When a user saves an image, all measurements are saved with the image.

當使用分割螢幕模式時,一使用者亦可量測兩個螢幕。為獲得一組完整量測,一使用者通常必須獲取多個掃描。一使用者可根據研究需要進行儘可能多的掃描和測量,而不會丟失任何量測。一直在成像視窗上進行量測直至一使用者選擇一不同檢查,選擇一不同掃描模式,載入一不同患者,按壓刪除軟鍵,按壓全部清除軟鍵為止。When using split screen mode, one user can also measure two screens. To obtain a complete set of measurements, a user usually must acquire multiple scans. A user can perform as many scans and measurements as their research needs without losing any measurements. Measurements continue in the imaging window until a user selects a different exam, selects a different scan mode, loads a different patient, presses the Delete soft key, or presses the Clear All soft key.

在例示性可移動超音波系統中顯示量測結果之預設位置係影像左上部。為將結果移動至影像底部,按壓「結果」軟鍵(在一量測工具作用時啟用)。一使用者還可使用「設置/量測」視窗上之「結果顯示位置」選項按鈕將預設位置改變至影像底部。The default location for displaying measurement results in the exemplary movable ultrasound system is the upper left portion of the image. To move the results to the bottom of the image, press the Results softkey (enabled when a measurement tool is active). A user can also change the default position to the bottom of the image using the Result Display Position option button on the Setup/Measurement window.

當一使用者選擇一檢查預設時,系統軟體做出可用量測之一預設設定。在所支援探針之間,預設設定可有所變化。一使用者亦可將定製量測添加至可用清單。When a user selects an inspection default, the system software makes one of the default settings for available measurements. Default settings may vary between supported probes. A user can also add custom measurements to the available list.

系統載入一使用者選擇之預設特製之一組量測。使用計算鍵選擇量測。為選擇一量測類型,按壓計算鍵,且點擊所期望量測。The system loads a user-selected default custom set of measurements. Use the calculation keys to select a measurement. To select a measurement type, press the Calculate key and click on the desired measurement.

當一使用者凍結一2D掃描時,系統軟體顯示軟鍵及一增益旋鈕選單以在2D模式中量測、列印且播放循環。2D視窗中之量測功能允許量測距離;量測橢圓圓周及區域;描摹影像上之區域;分割螢幕量測; 通常,一使用者自量測選單選擇其期望量測之內容。若一使用者選擇一特定量測,諸如面積,則僅可使用與量測協作之軟鍵。When a user freezes a 2D scan, the system software displays soft keys and a gain knob menu to measure, print, and playback loops in 2D mode. The measurement function in the 2D window allows measuring distances; measuring ellipse circumferences and areas; tracing areas on the image; splitting the screen for measurement; Typically, a user selects what he or she wishes to measure from a measurement menu. If a user selects a specific measurement, such as area, only softkeys that work with the measurement are available.

為在2D視窗中量測一距離,一使用者完成以下步驟: 1 若影像係活動的,按壓凍結鍵。影像凍結且軟鍵控制發生改變。 2 按壓「測徑器」鍵。 3 為精確地量測一詳細區域,使用縮放功能來放大2D掃描之一面積。 4 按壓「測徑器」鍵。 5 點擊一使用者期望開始量測之位置,移動目標游標,且點擊一使用者期望結束量測之位置。 6 系統軟體在2D視窗之左上角顯示結果。To measure a distance in a 2D viewport, a user completes the following steps: 1 If the image is active, press the Freeze key. The image freezes and the soft key controls change. 2 Press the "Caliper" key. 3. To accurately measure a detailed area, use the zoom function to enlarge an area of the 2D scan. 4 Press the "Caliper" key. 5. Click a position where the user wants to start measurement, move the target cursor, and click a position where the user wants to end measurement. 6 The system software displays the results in the upper left corner of the 2D window.

若一使用者未看到量測值,則使用者按壓設置鍵,然後選擇General > Measurement Value。為對一影像進行一次以上同一類型之量測,再次按壓適當軟鍵,然後做出額外量測。當使用「測徑器」鍵進行一系列2D量測時,一使用者可藉由核取「設置量測」視窗上之「啟動測徑器」方塊來啟動測徑器。當核取方塊時,新測徑器游標在一使用者設定一測徑量測之結束點時出現。當一使用者結束量測時,使用者保存影像,然後按壓凍結鍵以關閉測徑量測。If a user does not see the measurement value, the user presses the Set button and then selects General > Measurement Value. To take more than one measurement of the same type on an image, press the appropriate softkey again and make additional measurements. When using the Caliper key to take a series of 2D measurements, a user can activate the caliper by checking the Activate Caliper box on the Setup Measurements window. When the box is checked, a new caliper cursor appears when the user sets the end point of a caliper measurement. When a user ends the measurement, the user saves the image and then presses the freeze key to close the diameter measurement.

一使用者可使用橢圓軟鍵或痕跡軟鍵來量測圖68中所展示之影像上之一圓周。為量測一卵形區域,使用橢圓軟鍵。為量測一不規則的形狀之面積,使用描摹軟鍵。為量測一小的區域,在一使用者量測之前使用縮放功能。A user can use the Ellipse softkey or Trace softkey to measure a circle on the image shown in Figure 68. To measure an oval area, use the Ellipse softkey. To measure the area of an irregular shape, use the Trace softkey. To measure a small area, a user uses the zoom function before taking measurements.

為使用橢圓工具量測一橢圓區域,完成以下步驟: 1 若影像係活動的,則按壓凍結鍵。影像凍結且軟鍵控制發生改變。 2 按壓「測徑器」鍵。 3 按壓計算鍵。量測選單打開。 4.藉由在量測選單中點擊量測類型來選擇量測類型。若一使用者自量測選單選擇圓周,則自動地啟動橢圓工具。 5.將目標游標定位於區域的一使用者期望量測且點擊之一端處。 6.將目標游標移動至所期望區域之另一端並點擊。 系統軟體顯示一綠色線且在影像頂部處展示圓周值或面積值。 7.為調整一橢圓之其他軸線,按壓選擇鍵使得突出顯示軸線(在軟鍵顯示上方),然後使用軌跡球調整橢圓之寬度。 8.當量測正確時,按壓「左輸入」鍵將其鎖定。在鎖定之後一使用者無法改變一量測。一使用者現在可進行另一量測但不刪除一使用者鎖定之量測。 9.為保存量測,按壓儲存鍵。將影像與所有的量測一起保存起來。To use the Ellipse tool to measure an elliptical area, complete the following steps: 1 If the image is active, press the Freeze key. The image freezes and the soft key controls change. 2 Press the "Caliper" key. 3 Press the Calculate key. The measurement menu opens. 4. Select the measurement type by clicking Measurement Type in the measurement menu. If a user selects Circle from the Measurement menu, the Ellipse tool is automatically launched. 5. Position the target cursor at an end of the area that the user wishes to measure and click on. 6. Move the target cursor to the other end of the desired area and click. The system software displays a green line and displays the circumference or area value at the top of the image. 7. To adjust the other axes of an ellipse, press the Select key to highlight the axis (above the softkey display), then use the trackball to adjust the width of the ellipse. 8. When the measurement is correct, press the "Left Enter" key to lock it. A user cannot change a measurement after locking. A user can now take another measurement without deleting a user-locked measurement. 9. To save the measurement, press the Save key. Save the image with all measurements.

系統軟體使一使用者藉由在一影像上描摹任何形狀之輪廓及圖69中所展示之一腫瘤來量測一面積。一使用者亦可使用橢圓工具量測一面積。一使用者可使用描摹工具藉由描繪外形且藉由點擊形狀之隅角繪製一多邊形來描摹一不規則的形狀。一使用者亦可將此等方法組合起來以描摹影像上之一區域。The system software enables a user to measure an area by tracing the outline of any shape on an image and a tumor as shown in Figure 69. A user can also use the Ellipse tool to measure an area. A user can use the tracing tool to trace an irregular shape by tracing the outline and drawing a polygon by clicking on the corners of the shape. A user can also combine these methods to trace an area on the image.

為描摹一外形:a.使用者點擊開始量測;及b.使用者使用軌跡球圍繞使用者期望描摹之物體拖動描摹游標。然後c.當一使用者描摹幾乎完成時,按壓「左輸入」鍵,且軟體藉由自當前游標位置至開始點繪製一直線來完成循環。To trace a shape: a. the user clicks to start measuring; and b. the user uses the trackball to drag the tracing cursor around the object the user wishes to trace. Then c. When a user's tracing is almost complete, the "Left Enter" key is pressed, and the software completes the cycle by drawing a straight line from the current cursor position to the starting point.

當一使用者按壓「左輸入」鍵時,痕跡變為白色且不再可編輯。在一使用者點擊「左輸入」鍵之前,一使用者可逆轉游標之軌跡以刪除痕跡之一些部分。 5.為編輯未完成描摹: a.按壓選擇鍵,使得在軟鍵顯示上方突出顯示抹除。 b.使用軌跡球自最近朝向開頭之返回抹除痕跡之非所要部分。 c.當痕跡之所有非所有部分皆被抹除時,再次按壓「選擇」鍵,以使得「描繪」突出顯示於軟鍵顯示上方。 d.使用軌跡球完成描摹。 e.按壓「左輸入」鍵完成描摹。When a user presses the "Left Enter" key, the trace turns white and is no longer editable. Before a user clicks the "Left Enter" key, a user can reverse the trajectory of the cursor to delete portions of the trace. 5. To edit unfinished tracings: a. Press the Select key so that Erase is highlighted above the soft key display. b. Use the trackball to return from the most recent direction to the beginning to erase the unwanted parts of the trace. c. When all but all parts of the trace have been erased, press the "Select" key again so that "Draw" is highlighted above the soft key display. d. Use the trackball to complete the tracing. e. Press the "Left Enter" key to complete tracing.

當在分割螢幕模式中量測時,即使兩個螢幕皆含有量測,所有量測仍皆顯示於一單個清單中。一使用者可在任一螢幕上或跨越兩個螢幕做出一量測。為在分割螢幕上進行交替量測,一使用者必須停用返回實時成像: 1 按壓「設置」鍵。 2 點擊顯示器索引標籤。 3 在雙態切換主動螢幕上點擊返回至實時成像,使得不對方塊進行核取。When measuring in split-screen mode, all measurements are displayed in a single list, even if both screens contain measurements. A user can make a measurement on either screen or across two screens. In order to perform alternate measurements on split screens, a user must disable Return to Live Imaging: 1 Press the "Settings" button. 2 Click the Monitor Index tab. 3 Click on the toggle active screen to return to live imaging so that the blocks are not checked.

此允許一使用者在一個螢幕上進行一量測,切換至其他螢幕且在該其他螢幕上進行一量測,然後返回至第一螢幕且進行額外量測。若核取「設置/顯示」視窗中之方塊,返回至第一螢幕使其作用且抹除該第一螢幕上之所有量測。為跨越螢幕進行一量測: 1 停用返回至實時成像,如上文所闡述。 2 凍結一個螢幕上之一掃描。 3 按壓「雙態觸變螢幕」軟鍵。 4 凍結另一螢幕上上之一掃描。 5 重複按壓「測徑器」鍵,直至顯示一使用者需要之工具為止。 6 點擊量測之開始點。 7 點擊量測之結束點。 8 按壓「左輸入」鍵。This allows a user to take a measurement on one screen, switch to another screen and take a measurement on that other screen, and then return to the first screen and take additional measurements. If you check the box in the Setup/Display window, return to the first screen to enable it and erase all measurements on that first screen. To take a measurement across the screen: 1 Deactivate returns to live imaging as explained above. 2 Freeze a scan on one screen. 3 Press the "Two-state thixotropic screen" soft key. 4 Freeze the previous scan on another screen. 5. Press the "Caliper" button repeatedly until a tool required by the user is displayed. 6 Click the start point of the measurement. 7 Click the end point of the measurement. 8 Press the "Left Input" key.

當一使用者凍結一M模式掃描時,系統軟體顯示軟鍵及一增益旋鈕選單以在M模式中量測、列印及播放循環。When a user freezes an M-mode scan, the system software displays softkeys and a gain knob menu for measuring, printing, and playing loops in M-mode.

在一M模式掃描之時間序列視窗中,一使用者可量測其心率(HR)及距離(包含時距[TD]及坡度值)。為在M模式時間序列視窗中進行量測,完成以下步驟: 1 按壓凍結鍵。 2 按壓「測徑器」鍵,直至顯示一使用者需要之量測類型。 3 在一使用者期望開始量測之位置處點擊目標游標。 4 移動目標游標且在所期望結束位置處點擊。量測顯示於時間序列視窗之左上部處。In the time series window of an M-mode scan, a user can measure their heart rate (HR) and distance (including time distance [TD] and slope values). To take measurements in the M-mode time series view, complete the following steps: 1 Press the Freeze key. 2 Press the "Caliper" button until the measurement type required by the user is displayed. 3 Click the target cursor at a location where the user wants to start measurements. 4 Move the target cursor and click at the desired end position. Measurements are displayed in the upper left part of the time series window.

當一使用者凍結一脈衝波都卜勒或三工掃描時,系統軟體改變軟鍵以允許量測、列印及其他功能。When a user freezes a pulse wave Doppler or triplex scan, the system software changes the soft keys to allow measurement, printing, and other functions.

一使用者可使用CA(校正角度)軟鍵及0/+-60軟鍵來調整凍結掃描之角度。此函數之作用與PWD索引標籤上之校正角度相同。若一使用者已將2D量測添加至頻譜量測設定,一使用者可在頻譜都卜勒成像螢幕中執行2D量測。為在頻譜都卜勒成像螢幕上進行2D量測,按壓「計算」鍵。一使用者已添加至頻譜量測組之任何2D量測出現於成像螢幕之右上角處之一量測選單處。A user can use the CA (Correction Angle) soft key and the 0/+-60 soft key to adjust the angle of the freeze scan. This function has the same effect as the correction angle on the PWD index label. If a user has added 2D measurements to the spectrum measurement settings, a user can perform 2D measurements in the spectrum Doppler imaging screen. To perform 2D measurements on the spectral Doppler imaging screen, press the Calculate key. Any 2D measurements that a user has added to the spectrum measurement group appear in the measurement menu in the upper right corner of the imaging screen.

一使用者可進行若干個心臟量測中之任一者且然後產生一報告。系統軟體針對2D影像顯示視窗、M模式時間序列視窗及PWD/CW時間序列視窗提供心臟量測(參見圖70)。當一使用者在2D影像顯示視窗中進行一量測,量測值顯示於視窗之左上部處。A user can perform any of several cardiac measurements and then generate a report. The system software provides cardiac measurements for the 2D image display window, the M-mode time series window, and the PWD/CW time series window (see FIG. 70 ). When a user performs a measurement in the 2D image display window, the measurement value is displayed in the upper left portion of the window.

中膜厚度(IMT)量測用於藉由量測一動脈內壁之厚度來診斷動脈粥樣硬化。為量測頸動脈內壁: 1. 將一線性探針連接至系統。 2. 在2D模式中,選擇頸動脈預設。 3. 掃描頸動脈。 4. 凍結掃描。 5. 按壓「計算」鍵。量測選單出現。 6. 自選單,選擇IMT。一綠色正方形顯示於影像上。 7.使用軌跡球移動綠色正方形使得其覆蓋動脈的兩個壁。 必要時,按壓「選擇」鍵以允許使用軌跡球重新設定方塊之大小。按壓「選擇」鍵一次允許水平重新設定大小;按壓兩次允許垂直重新設定大小。方塊的寬度顯示於成像視窗的左上部處。若顯示器未正確地描摹動脈之內壁,按壓「編輯」軟鍵,然後在影像上點擊壁的恰當位置。 8.按壓「壁」軟鍵以選擇前壁、後壁或這兩者。量測顯示於成像視窗之左上部處。Medial thickness (IMT) measurement is used to diagnose atherosclerosis by measuring the thickness of the inner wall of an artery. To measure the inner wall of the carotid artery: 1. Connect a linear probe to the system. 2. In 2D mode, select the Carotid Arteries preset. 3. Scan the carotid arteries. 4. Freeze scan. 5. Press the "Calculate" key. The measurement menu appears. 6. Select IMT from the menu. A green square appears on the image. 7. Use the trackball to move the green square so that it covers both walls of the artery. If necessary, press the "Select" key to allow resizing of the box using the trackball. Pressing the Select key once allows horizontal resizing; pressing it twice allows vertical resizing. The width of the square is shown in the upper left part of the imaging window. If the monitor does not correctly trace the inner wall of the artery, press the Edit soft key and click on the appropriate location on the wall on the image. 8. Press the Wall softkey to select the front wall, rear wall, or both. The measurement is displayed in the upper left part of the imaging window.

系統軟體包含常用量測之預設群組,可在一影像被凍結時在量測選單中使用該等群組。一使用者可自群組添加或移除量測,且形成或刪除群組。The system software includes preset groups of commonly used measurements that can be used in the measurement menu when an image is frozen. A user can add or remove measurements from a group, and form or delete groups.

下表列示可用於各種掃描模式之量測。 a.可在CW模式中使用此計算。時間序列視窗必須顯示包含300 cm/s之一速度範圍。使用尺度軟鍵來實現此。 b.可用在CW模式中使用此計算。時間序列視窗必須顯示包含200 cm/s之一速度範圍。使用尺度軟鍵來實現此。The following table lists the measurements that can be used in various scan modes. a. This calculation can be used in CW mode. The time series view must display a velocity range that includes 300 cm/s. Use the Scale softkey to do this. b. This calculation can be used in CW mode. The time series view must display a velocity range that includes 200 cm/s. Use the Scale softkey to do this.

選擇一檢查會將諸多影像控制設定之最佳化預設載入於一打開視窗或選單7120中,其中一使用者可自複數個診斷成像序列7140進行選擇,該複數個診斷成像序列7140可用於如基於如圖71中所見之待掃描之解剖結構(包含所使用探針及掃描模式)而展示之一身體部位、器官或區。該等檢查預設亦規定適合用於檢查之量測。一使用者可照樣使用此等最佳化預設,或一使用者可在必要時針對特定患者及特定檢查調整影像控制設定中之任一者。一使用者可創建額外預設以針對特定種類之檢查儲存影像控制設定集。定製化預設可最小化每當一使用者執行一特定超音波檢查時一使用者必須改變之設定數目。Selecting an exam loads an optimized preset of image control settings in an open window or menu 7120, in which a user can select from a plurality of diagnostic imaging sequences 7140 that may be used for A body part, organ or region as shown based on the anatomy to be scanned (including the probe used and the scanning mode) as seen in Figure 71. These inspection presets also specify measurements suitable for inspection. A user can continue to use these optimized presets, or a user can adjust any of the image control settings as necessary for a specific patient and a specific exam. A user can create additional presets to store sets of image control settings for specific types of exams. Customized presets can minimize the number of settings a user must change each time a user performs a specific ultrasound examination.

可移動超音波系統為所有所支援探針提供預定義預設。儘管數個探針模型可支援相同檢查類型,但預設影像控制設定唯一於每一探針模型。一檢查包含用於高頻率、中等頻率及低頻率之預定影像控制設定。當一使用者在控制台上選擇一頻率範圍時,系統軟體載入針對彼頻率而最佳化之其他檢查設定。當一使用者選擇一不同頻率時,一使用者不需要重新載入預設或載入一不同預設;系統軟體自動地更新選定頻率之設定。下表列出可用於每一探針之預設檢查。The mobile ultrasound system comes with predefined presets for all supported probes. Although several probe models can support the same exam type, the default image control settings are unique to each probe model. One exam contains predetermined image control settings for high, medium, and low frequencies. When a user selects a frequency range on the console, the system software loads other check settings optimized for that frequency. When a user selects a different frequency, a user does not need to reload the default or load a different default; the system software automatically updates the settings for the selected frequency. The following table lists the preset checks available for each probe.

例示性可移動超音波系統提供定製化檢查預設以用於掃描不同解剖結構。當一使用者選擇一預設時,系統軟體載入針對彼解剖結構、所選擇掃描模式及連接探針而定製之影像控制設定。為選擇一預設,使用者自預設選單選擇該預設,藉由點擊該預設而突出顯示該預設,然後按壓左輸入鍵。若一使用者未看到與一使用者想要執行之研究種類對應之一預設名稱,則一使用者可創建一定製預設。An exemplary mobile ultrasound system provides customized examination presets for scanning different anatomy. When a user selects a preset, the system software loads image control settings customized for that anatomy, selected scan mode, and attached probe. To select a preset, the user selects the preset from the default menu, highlights the preset by clicking on the preset, and then presses the left enter key. If a user does not see a default name corresponding to the type of study a user wants to perform, a user can create a custom default.

系統軟體僅顯示由所連接探針支援之彼等檢查。若一使用者創建任何定製檢查,則定製檢查展示於檢查選單之底部處。The system software only displays those tests supported by the connected probe. If a user creates any custom exams, the custom exams are displayed at the bottom of the exam menu.

除使用所提供檢查預設之外,一使用者亦可創建定製預設。定製預設包含對預設影像控制設定之使用者所擁有特定修改。一使用者然後可載入定製預設且跳過設定影像控制參數。一使用者可定製任何預設以包含使用者特定控制設定。一使用者無法改變一系統預設之預設定。然而,一使用者可編輯一系統預設之影像控制設定,然後用一不同名稱保存其。為創建一預設或修改一現有定製預設,一使用者完成此等步驟: 1 選擇具有與一使用者想要創建之設定接近之設定的系統預設或定製預設。 2 視需要修改影像控制設定。 3 按壓預設鍵。 4 按壓保存設定軟鍵。保存設定視窗打開。其含有一預設清單,其中系統預設在頂部且定製預設在底部。 5.將定製預設之一名稱輸入於名稱:欄位。該名稱可高達16字元長。若一使用者正在修改一現有定製預設,則確保彼名稱係在欄位。 6.點擊保存。系統軟體保存影像控制設定。In addition to using the provided exam presets, a user can also create custom presets. Custom defaults contain user-specific modifications to the default image control settings. A user can then load custom defaults and skip setting image control parameters. A user can customize any default to include user-specific control settings. A user cannot change the default settings of a system default. However, a user can edit a system default image control setting and then save it under a different name. To create a default or modify an existing custom default, a user completes these steps: 1 Select a system default or a custom default that has settings that are close to those a user wants to create. 2 Modify the image control settings as necessary. 3 Press the preset key. 4 Press the Save Settings soft key. The Save Settings window opens. It contains a list of presets with system presets at the top and custom presets at the bottom. 5. Enter one of the custom default names in the Name: field. The name can be up to 16 characters long. If a user is modifying an existing custom default, make sure their name is in the field. 6. Click Save. The system software saves the image control settings.

每當當前探針連接至電腦,新預設現在可加以利用。若一使用者連接一不同探針,則此新預設係不可用的。Whenever the current probe is connected to the computer, the new preset is now available. If a user connects a different probe, this new default is not available.

影像及循環以適當患者資料夾保存至研究目錄。若患者不與一掃描相關聯,則不可保存影像或循環。同一天保存的一給定患者之所有影像及循環保存於同一研究中,除非在保存一稍後影像之前點擊患者視窗中之新研究按鈕。一單個研究無法包含在不同日期保存之影像及循環。對於分割螢幕模式,一使用者可保存分割螢幕影像(作為展示兩個螢幕之一單個圖框)。一使用者可保存分割螢幕影像作為一循環檔案。當一使用者這樣做時,系統軟體保存現用螢幕作為一影像循環,且保存其他螢幕作為一單個圖框。Images and loops are saved to the study directory in the appropriate patient folder. If the patient is not associated with a scan, the image or cycle cannot be saved. All images and cycles saved for a given patient on the same day are saved in the same study unless the New Study button in the patient window is clicked before saving a later image. A single study cannot contain images and loops saved on different dates. For split screen mode, a user can save a split screen image (as a single frame showing one of the two screens). A user can save split screen images as a loop file. When a user does this, the system software saves the active screen as an image loop and saves the other screens as a single frame.

為保存一影像或循環,完成此等步驟: 1 若觀看一現場影像,則按壓凍結鍵。 2 為保存一影像,按壓儲存鍵。一使用者亦可藉由按壓電腦鍵盤上之F8而保存一影像。 3 為保存一影像循環,在現場成像(未凍結)時按壓儲存鍵。 4 為將經保存影像或循環添加至當前研究之報告,將光標放置於影像或循環上,按壓右輸入鍵,且選擇添加至報告。 5 為刪除一影像或循環,將光標放置於該影像或循環上,按壓由輸入鍵,且選擇刪除。若一使用者未載入一檢查之患者資訊,則一使用者無法保存影像或循環。To save an image or loop, complete these steps: 1. If viewing a live image, press the Freeze button. 2 To save an image, press the Save button. A user can also save an image by pressing F8 on the computer keyboard. 3 To save an image cycle, press the Save button while live imaging (not frozen). 4. To add a saved image or loop to the current study's report, place the cursor over the image or loop, press the right enter key, and select Add to Report. 5 To delete an image or loop, place the cursor over the image or loop, press the Enter key, and select Delete. If a user has not loaded patient information for an exam, a user cannot save the image or loop.

當一使用者保存一影像或循環時,該影像或循環之縮圖出現在成像視窗右邊之區域中。當12個以上影像或循環包含於研究中時,某些影像或循環將被隱藏。為觀看該等影像或循環,點擊縮圖區域之底部處之捲動箭頭。為向上往回捲動,點擊縮圖區域之頂部處之捲動箭頭。為審閱當前研究中之一經保存影像或循環,雙擊影像或循環之縮圖。其顯示於成像視窗中。When a user saves an image or loop, a thumbnail of the image or loop appears in the area to the right of the imaging window. When more than 12 images or loops are included in a study, some images or loops will be hidden. To view the images or loops, click the scroll arrows at the bottom of the thumbnail area. To scroll up and back, click the scroll arrow at the top of the thumbnail area. To review a saved image or loop in the current study, double-click the image or loop thumbnail. It is displayed in the imaging window.

一使用者可藉由使用患者視窗上之研究清單...按鈕而找到經保存患者研究。A user can find saved patient studies by using the Study List... button on the Patients window.

為找到患者視窗中之先前經保存研究: 1.按壓患者鍵。 2.在患者視窗中,點擊研究清單...按鈕。研究清單視窗打開,從而顯示經保存研究之一清單。 3.預設係展示所有研究。為找到在特定的一天或一特定日期範圍進行之研究,點擊研究日期選單,且選擇今天、最近7天、最近30天或有效期範圍。 若一使用者點擊有效期範圍,則一方框打開,其中一使用者可自該方框選擇一日期範圍來展示研究。 4.在清單中找到所期望研究,且點擊該研究以選擇其。 5.按壓審閱鍵。選定研究載入於成像視窗中。To find previously saved studies in the patient window: 1. Press the patient button. 2. In the patient window, click the Study List... button. The Study List window opens, displaying a list of one of the saved studies. 3. The default system displays all research. To find studies conducted on a specific day or within a specific date range, click the Study Dates menu and select Today, Last 7 Days, Last 30 Days, or Validity Range. If a user clicks on the validity range, a box opens from which the user can select a date range to display the study. 4. Find the desired study in the list and click on it to select it. 5. Press the Review button. The selected study loads in the imaging window.

一使用者可將研究、影像導出至一CD、一DVD、一DICOM伺服器、一USB磁碟機或一網路上之另一位置。當導出一研究、影像或循環時,系統針對每一研究、影像或循環創建一唯一地命名之子目錄。一使用者可將一影像作為一JPEG、BMP或AVI格式導出至電腦硬碟機或一外部磁碟機上。一使用者亦可以彼等格式中之一者將附接一影像至一郵件訊息。系統軟體允許一使用者以此等格式中之任一者將一影像或循環導出至外部媒體:AVI、點陣圖、DICOM、JPEG。一使用者可用郵件發送影像及循環檔案或在其他應用中包含該等影像及循環檔案作為圖形。若一使用者使用JPEG格式保存影像,則該使用者應知曉資料壓縮效應。按照預設,系統軟體使用一有損JPEG壓縮演算法。在壓縮之後,某些影像資料消失了。在查看時,壓縮影像可展示由JPEG壓縮引起之成品。該等成品亦可展示一使用者是否在一醫療查看站上查看影像,此允許一使用者將影像視窗化且水平化。無法選擇或預測對一影像之壓縮量。一個掃描可以10:1之一比率進行壓縮,且另一掃描可以5:1之一比率進行壓縮。無論壓縮量如何,醫學上重要之結構皆可能由於壓縮而丟失。另外,壓縮可產生出現在影像上之成品。A user can export studies and images to a CD, a DVD, a DICOM server, a USB drive, or another location on the network. When exporting a study, image, or cycle, the system creates a uniquely named subdirectory for each study, image, or cycle. A user can export an image as a JPEG, BMP or AVI format to a computer hard drive or an external disk drive. A user can also attach an image to an email message in one of these formats. The system software allows a user to export an image or loop to external media in any of these formats: AVI, bitmap, DICOM, JPEG. A user can send images and loop files via email or include them as graphics in other applications. If a user saves images using the JPEG format, the user should be aware of the effects of data compression. By default, the system software uses a lossy JPEG compression algorithm. After compression, some image data disappears. When viewed, compressed images reveal the finished product resulting from JPEG compression. These products can also show whether a user is viewing images on a medical viewing station, which allows a user to window and level the image. The amount of compression to be applied to an image cannot be selected or predicted. One scan can be compressed at a ratio of 10:1, and another scan can be compressed at a ratio of 5:1. Regardless of the amount of compression, medically important structures may be lost due to compression. In addition, compression can produce a finished product that appears on the image.

例示性可移動超音波系統可輔助執行諸如生檢之醫療過程。為執行一生檢,一使用者需要一探針、針、針引導套件及托架。生檢特徵可與選定探針一起使用。當完成所有預備步驟且一使用者最近已驗證對準時,對患者執行生檢。系統軟體顯示器引導線為在一生檢或其他醫療過程中使用之特定探針、托架及針規。Exemplary mobile ultrasound systems may assist in performing medical procedures such as biopsies. To perform a biopsy, a user requires a probe, needle, needle guide set and bracket. Biometric features are available for use with selected probes. When all preliminary steps are completed and alignment has been recently verified by a user, a biologic examination is performed on the patient. The system software displays guide lines for specific probes, brackets, and needle gauges used during lifetime exams or other medical procedures.

可移動超音波系統軟體提供與不同實體針引導件一起使用之兩個類型之針引導件。一針引導件僅在支援彼引導件之一探針連接至超音波系統時係可用的。若一個以上針引導件可用於連接探針,則一使用者必須驗證選定引導件與裝設於探針上之硬體匹配。平面內引導件與標準針引導件硬體一起工作。此等引導件係指示在使用適當硬體時針之路徑之兩個平行線。橫向引導件係一圓圈,該圓圈指示在使用包含夾子以設定插入角度及深度之引導硬體時獲得之深度。為關斷針引導件,按壓下部針引導件軟鍵。若一使用者正在使用橫向針引導件,則一使用者可必須按壓下部針引導件軟鍵數次。The removable ultrasound system software provides two types of needle guides for use with different physical needle guides. A needle guide is only available when one of the probes supporting that guide is connected to the ultrasound system. If more than one needle guide can be used to connect the probe, a user must verify that the selected guide matches the hardware mounted on the probe. In-plane guides work with standard needle guide hardware. These guides are two parallel lines that indicate the path of the hand when using appropriate hardware. The lateral guide is a circle that indicates the depth achieved when using guide hardware that includes clips to set the angle and depth of insertion. To switch off the needle guide, press the lower needle guide softkey. If a user is using the transverse needle guide, the user may have to press the lower needle guide soft key several times.

可移動超音波系統提供螢幕上針引導件,且利用特定探針來提供針之經增強成像。若一使用者系統被許可用於針增強,則該系統在滿足所有以下條件之情況下使針影像變亮,如圖72中所見;選擇2D模式;一探針連接至系統;選擇一患者概況且按壓控制台上之N鍵。The mobile ultrasound system provides an on-screen needle guide and utilizes a specific probe to provide enhanced imaging of the needle. If a user system is licensed for needle enhancement, the system brightens the needle image as seen in Figure 72 if all of the following conditions are met; 2D mode is selected; a probe is connected to the system; a patient profile is selected And press the N key on the console.

按壓N鍵會在掃描視窗上顯示一藍色實線及一發散藍色虛線,該藍色實線及該發散藍色虛線標記針增強之極限。若針之點變得超過此等極限,則不使超過極限的針影像之部分變亮。虛線適用於更陡傾針插入。標記為針Lt/Rt之一軟鍵在自左上至右下成角度之線與自右上至所下成角度之線之間雙態切換。當針增強係主動的時,圖例ENV (用於增強針可視化)出現在掃描資訊區域中在成像視窗之右側。Pressing the N key will display a solid blue line and a diverging blue dotted line on the scan window. The solid blue line and the diverging blue dotted line mark the limit of needle enhancement. If the point of the needle becomes to exceed these limits, the portion of the needle image that exceeds the limit is not brightened. The dashed line is for steeper needle insertion. One of the softkeys labeled Lt/Rt toggles between a line angled from top left to bottom right and a line angled from top right to bottom. When needle enhancement is active, the legend ENV (for enhanced needle visualization) appears in the scan information area to the right of the imaging window.

為啟動針影像增強,按壓控制台上之N鍵。To activate needle image enhancement, press the N key on the console.

為使用平面內針引導件執行一生檢,完成此等步驟: 1 開始實時成像。 2 按壓針引導件軟鍵。針引導線連同一警告訊息展示於成像視窗中。 警告關閉且系統軟體顯示針引導件及目標指示器。引導線展示一使用者應將針插入至患者中何處。綠色目標指示器可在引導線內移動至生檢目標之確切位置。距目標之距離值之然後確切地展示針必須插入多深以到達彼目標。 引導線上之大刻度線處於1 cm間隔,且引導線之間的距離固定在1 cm。 4. 若綠色目標指示器未展示於引導內,則按壓目標軟鍵。 系統軟體將「距目標之距離」值添加在影像之頂部。 5. 使用軌跡球來將目標指示器移動至正確深度。一使用者無法將目標移出引導線。 6. 遵循恰當醫療協定而完成生檢。 目標距離以公分為單位來量測且經計算為自夾子之底部至患者之皮膚之距離(如針引導線之頂部所指示)加上自皮膚線至目標之距離(如綠色目標指示器之位置所指示)。當一使用者插入針時,其應位於引導線之中心附近。若針出現在線外部,則驗證一使用者已選擇適當針引導件。To perform a lifetime inspection using the in-plane needle guide, complete these steps: 1 Start live imaging. 2 Press the Needle Guide soft key. The needle guide is displayed in the imaging window along with a warning message. The warning turns off and the system software displays the needle guide and target indicator. The guide wire shows a user where to insert the needle into the patient. The green target indicator can move within the guide line to the exact location of the biometric target. The distance to target value then shows exactly how deep the needle must be inserted to reach that target. The large scale lines on the guide lines are at intervals of 1 cm, and the distance between the guide lines is fixed at 1 cm. 4. If the green target indicator is not displayed in the boot, press the Target soft key. The system software adds a "distance to target" value on top of the image. 5. Use the trackball to move the target indicator to the correct depth. A user cannot move the target outside the guidance line. 6. Complete biologic exams following appropriate medical protocols. Target distance is measured in centimeters and is calculated as the distance from the bottom of the clip to the patient's skin (as indicated by the top of the needle guide) plus the distance from the skin line to the target (as indicated by the location of the green target indicator) as indicated). When a user inserts the needle, it should be located near the center of the guide wire. If the needle appears outside the line, it is verified that a user has selected the appropriate needle guide.

為使用橫向針引導件執行一生檢,完成此等步驟: 1.開始實時成像。 2.按壓針引導件軟鍵。針引導線連同警告訊息一起展示於成像視窗中。 3 點擊OK。 4 按壓引導類型軟鍵。 一橫向針引導圓圈在成像視窗上替換平面內針引導件,且針引導件軟鍵顯示引導件之識別。 5. 若引導件並非用於夾子(一使用者將其附接至硬體引導件)之正確引導件,則按壓引導類型軟鍵直至顯示正確引導件。 6. 遵循恰當醫療協定而完成生檢。 為確保準確地對準探針與生檢附件,且針路徑在所陳述規範內,一使用者應週期性地進行一模擬測試。為進行此測試,一使用者必須具有一裝配生檢托架、針引導件及一水槽。使用2D來驗證對準,且不使用縮放工具。針引導件未展示於經縮放顯示器中。To perform a lifetime inspection using the transverse needle guide, complete these steps: 1. Start live imaging. 2. Press the needle guide soft key. The needle guide is displayed in the imaging window along with a warning message. 3 Click OK. 4 Press the Boot Type soft key. A transverse needle guide circle replaces the in-plane needle guide on the imaging viewport, and the Needle Guide softkey displays the guide's identification. 5. If the guide is not the correct guide for the clip (which a user attaches to the hardware guide), press the Guide Type softkey until the correct guide is displayed. 6. Complete biologic exams following appropriate medical protocols. To ensure that the probe and biometric accessory are accurately aligned and that the needle path is within stated specifications, a user should periodically perform a simulation test. To perform this test, a user must have an assembly holder, needle guide, and a sink. Use 2D to verify alignment without using the zoom tool. The needle guide is not shown in the scaled display.

為驗證探針與生檢附件之對準,完成此等步驟: 1 若針引導件係不可見的,則按壓針引導件軟鍵。生檢引導件出現在成像視窗中。 2 按壓引導類型軟鍵以選擇將用於測試之針引導件。可僅存在對於經裝設探針可用之一個引導件。 3 裝配托架、針引導件夾子及規插入銷。 4 將針插入至規插入銷中。 5 將針放置於一水槽中,從而確保一使用者不觸控水槽之側面或底部(此可使針彎曲且產生一不準確讀數)。 6 驗證針清晰地出現在兩個導引線之間。 7 自生檢托架移除針且安全地處理掉針。 8 自探針拆卸生檢托架。To verify the alignment of the probe and biometric accessory, complete these steps: 1 If the needle guide is not visible, press the Needle Guide softkey. The Biopsy Guide appears in the imaging window. 2 Press the Guide Type softkey to select the needle guide to be used for testing. There may be only one guide available to the installed probe. 3 Assemble the bracket, needle guide clip and gauge insertion pin. 4 Insert the needle into the gauge insertion pin. 5 Place the needle in a sink, ensuring that a user does not touch the sides or bottom of the sink (this can bend the needle and produce an inaccurate reading). 6 Verify that the pin appears clearly between the two guide wires. 7 Remove the needle from the test tray and safely dispose of the needle. 8 Remove the biopsy holder from the probe.

系統軟體使一使用者對針引導件(在生檢中所使用)及插入網格(用於冷凍剝脫或近程治療)之定位進行小調整。當一使用者接收針引導件時,已針對角度及深度而組態且測試該等針引導件。角度係X軸與Y軸(針軸)之間的度數。以毫米為單位而展示之深度係生檢針及引導線與2D影像之垂直中心線交叉之點。The system's software enables a user to make small adjustments to the positioning of the needle guide (used in biopsies) and the insertion grid (used for cryoablation or brachytherapy). When a user receives the needle guides, they have been configured and tested for angle and depth. The angle is the number of degrees between the X-axis and the Y-axis (needle axis). The depth shown in millimeters is the point where the biopsy needle and guide line intersect the vertical centerline of the 2D image.

一使用者可在針引導件誤差校正對話方塊上對角度及深度之上限及下限做出邊限改變。一使用者對此等設定所做出之改變在針引導線中係可見的,而且由系統保存且用於所有生檢直至一使用者再次改變該等設定為止。一使用者可在如下之此等範圍內改變值:角度:–2°至2°及深度:–1 mm至1 mm。A user can make margin changes to the upper and lower limits of angle and depth on the needle guide error correction dialog box. Changes made by a user to these settings are visible in the needle guide and are saved by the system and used for all biopsies until a user changes the settings again. A user can change the values within the following ranges: Angle: –2° to 2° and Depth: –1 mm to 1 mm.

為針對除雙平面探針以外之任何探針改變針引導件誤差校正值,完成此等步驟: 1 按壓設置鍵。 2 點擊顯示器索引標籤。設置顯示視窗打開。 3.在針引導件區段中,點擊校準按鈕。針引導件校準對話方塊打開。 一使用者可點擊應用按鈕以在不關閉對話方塊之情況下查看使用者選擇之效應。點擊預設按鈕以將值重設至出廠設置值。 1 緊挨著角度校正欄,點擊左箭頭及由箭頭以使角度校正一度或兩度。 2 緊挨著深度校正欄,點擊左箭頭及右箭頭以使深度校正﹢或﹣1毫米。 3 點擊OK以保存使用者項目且關閉對話方塊。To change the needle guide error correction value for any probe except a biplane probe, complete these steps: 1 Press the Set key. 2 Click the Monitor Index tab. The settings display window opens. 3. In the Needle Guide section, click the Calibrate button. The Needle Guide Calibration dialog box opens. A user can click the Apply button to see the effects of the user's selections without closing the dialog box. Click the Preset button to reset the values to factory settings. 1 Next to the angle correction field, click the left arrow and the arrow to correct the angle by one or two degrees. 2 Next to the Depth Correction field, click the left and right arrows to enable a depth correction of + or -1 mm. 3 Click OK to save the user project and close the dialog box.

DICOM (醫學數位成像及通信)係由NEMA (國家電氣製造商協會)形成以輔助諸如超音波掃描之醫療影像之分配及查看之一格式。若一使用者具有裝設於一使用者可移動超音波系統上之DICOM選項,則一使用者可:將研究發送至一DICOM伺服器,其中該等研究可由其他應用使用,該等其他應用支援DICOM檔案且使用DICOM工作清單來在DICOM伺服器上搜尋患者研究封存,且將患者資訊複製至可移動超音波系統使得針對正確患者而識別檢查系統上之檢查。DICOM (Digital Imaging and Communications in Medicine) is a format formed by NEMA (National Electrical Manufacturers Association) to aid in the distribution and viewing of medical images such as ultrasound scans. If a user has the DICOM option installed on a user-movable ultrasound system, a user can: Send studies to a DICOM server where the studies can be used by other applications that support DICOM files and use the DICOM worklist to search patient study archives on the DICOM server and copy the patient information to the removable ultrasound system to identify the exam on the system for the correct patient.

當一使用者將一研究發送至一DICOM伺服器時,系統軟體將研究保存於一使用者電腦上之一臨時位置中。然後將該等研究發送至伺服器。為將一研究發送至一DICOM伺服器,完成此等步驟: 1 載入研究(若其先前經保存)或獲得且保存一新掃描。 2 按壓導出軟鍵。導出選擇視窗打開。 3 在導出目的地:區段中,確保選擇DICOM伺服器選項按鈕。 4 點擊一使用者想要發送之研究之名稱。 5 點擊導出。可移動超音波系統應用將研究發送至經組態DICOM伺服器。When a user sends a study to a DICOM server, the system software saves the study in a temporary location on the user's computer. These studies are then sent to the server. To send a study to a DICOM server, complete these steps: 1 Load the study (if it was previously saved) or obtain and save a new scan. 2 Press the Export soft key. The export selection window opens. 3 In the Export Destination: section, make sure the DICOM Server option button is selected. 4 Click on the name of the study the user wants to send. 5 Click Export. The mobile ultrasound system application sends studies to a configured DICOM server.

當一使用者將研究導出至一CD或DVD時,一使用者具有在磁盤上包含DICOM檔案之一查看器之選項。DICOM工作清單係使用一網路服務連接至一DICOM伺服器之可移動超音波系統軟體之一函數,且產生滿足所選擇準則之患者資訊組之一清單。工作清單基於Setup > DICOM > Query視窗中之參數組而找到患者記錄。When a user exports a study to a CD or DVD, a user has the option of including a viewer for the DICOM files on the disk. The DICOM worklist is a function of the portable ultrasound system software that connects to a DICOM server using a network service and generates a list of patient information groups that meet selected criteria. The worklist finds the patient record based on the parameter group in the Setup > DICOM > Query window.

為準備一超音波檢查,超音波技師使用包含患者之資訊之參數查詢工作清單。該查詢重新運行滿足準則之所有患者資訊組之一工作清單。超音波技師在工作清單上選擇一患者之記錄,且檢查自動地附接至彼患者之資訊(用選定患者之資訊填充患者資訊視窗)。技師亦可使用工作清單來自DICOM 伺服器獲得患者資訊且將資訊施加至一當前檢查。存在兩個可用類型之工作清單查詢:自動查詢及手動查詢。To prepare for an ultrasound exam, the sonographer queries the worklist using parameters that contain patient information. This query reruns a worklist of all patient information groups that meet the criteria. The sonographer selects a patient's record on the work list, and the review automatically attaches to that patient's information (populating the patient information window with the selected patient's information). Technicians can also use worklists to obtain patient information from the DICOM server and apply the information to a current exam. There are two types of worklist queries available: automatic query and manual query.

自動查詢在超音波系統接通時週期性地運行,且傳回與查詢視窗中之準則組匹配之患者資訊之一清單作為一廣泛查詢。舉例而言,一自動查詢可經設置以傳回在當前日期經排程之超音波檢查之一清單。設施之排程管理者將一患者之一超音波檢查輸入至DICOM中,且當經排程日期到達時,工作清單自動查詢收集患者資訊且將其添加至工作清單。The automatic query runs periodically when the ultrasound system is turned on and returns a list of patient information that matches the set of criteria in the query window as a broad query. For example, an automated query can be set up to return a list of ultrasound exams scheduled for the current date. The facility's schedule manager enters a patient's ultrasound examination into DICOM, and when the scheduled date arrives, the work list automatically queries to collect the patient information and adds it to the work list.

手動查詢可採取兩種形式:廣泛查詢及基於患者之查詢。廣泛查詢使用選項視窗中所選擇之參數在DICOM 伺服器上搜尋所有記錄。廣泛查詢係預設參數群組。其可按照原樣使用,或利用不同參數來修改,或施加至基於患者之查詢。Manual queries can take two forms: broad queries and patient-based queries. A broad query searches all records on the DICOM server using the parameters selected in the options window. Extensive query is a default parameter group. It can be used as is, modified with different parameters, or applied to patient-based queries.

基於患者之查詢使用一患者名字、登錄號或患者ID來搜尋記錄。可還受限於一廣泛查詢中之參數。Patient-based queries search for records using a patient name, accession number, or patient ID. Can also be limited to parameters in a broad query.

一使用者可進行搜尋所有患者記錄且傳回與準則匹配之所有患者資訊組之一廣泛查詢,或者搜尋一特定患者之資訊組之一患者特定查詢。一患者特定查詢可使用與一廣泛查詢相同之準則,從而僅傳回與廣泛查詢中之準則及特定於患者之某些資料兩者匹配之彼等資訊。A user can perform a broad query that searches all patient records and returns all sets of patient information that match the criteria, or a patient-specific query that searches for sets of information for a specific patient. A patient-specific query can use the same criteria as a broad query, returning only information that matches both the criteria in the broad query and certain data specific to the patient.

核取方塊控制分割螢幕之間的雙態切換是否使主動螢幕為活動的。當方塊未經核取時,螢幕之間的雙態切換使其兩者皆為凍結的。按壓凍結鍵會使主動視窗為活動的。雙態切換至其他螢幕且返回會使兩個螢幕再次凍結。當方塊經核取時,視窗之間的雙態切換使主動視窗為活動的,即使先前使用凍結鍵將其凍結。The checkbox controls whether toggling between split screens makes the active screen active. When the block is unchecked, the toggles between screens cause both to be frozen. Pressing the Freeze key makes the active window active. Switching to another screen and back causes both screens to freeze again. When a block is checked, toggling between windows makes the active window active, even if it was previously frozen using the Freeze key.

當其被選擇時,頻譜都卜勒模式通常打開,從而同時更新時間序列顯示器及2D顯示器兩者。此為預設的,且為設置顯示視窗上之同時選擇。選擇非同時會致使頻譜都卜勒模式在2D顯示器經凍結之情況下打開。無論選擇哪一選項按鈕,按壓更新鍵會使2D顯示器在活動與凍結之間雙態切換。When it is selected, Spectral Doppler mode is usually turned on, updating both the time series display and the 2D display simultaneously. This is the default and is selected simultaneously on the settings display window. Selecting Non-Simultaneous will cause Spectral Doppler mode to be turned on while the 2D display is frozen. Regardless of which option button is selected, pressing the update key toggles the 2D display between active and frozen.

此區段包含展示或隱藏目標指示器之一核取方塊及打開針引導件校準視窗之一按鈕。針引導件校準排他地與生檢/醫療過程選項一起使用。This section contains a checkbox to show or hide the target indicator and a button to open the needle guide calibration window. Needle guide calibration works exclusively with the Biopsy/Medical Procedures option.

此等選項按鈕在成像視窗上設定2D顯示器及時間序列顯示器之相對大小。 S/L使2D顯示器為時間序列顯示器之高度之二分之一 相等使2D顯示器為與時間序列顯示器相同之高度 L/S使2D顯示器為時間序列顯示器之高度之兩倍 此選擇顯示於掃描視窗上之熱指數。 TIS係軟組織指數;且TIB係骨骼指數;TIC係顱骨指數。These option buttons set the relative sizes of the 2D display and the time series display on the imaging window. S/L makes the 2D display half the height of the time series display Equal makes the 2D display the same height as the time series display L/S makes the 2D display twice the height of the time series display This selection displays the thermal index in the scan window. TIS is the soft tissue index; TIB is the bone index; TIC is the skull index.

當此方塊經核取時,自一個分割螢幕視圖至另一分割螢幕視圖之雙態切換使選定視圖為活動的。當方塊未經核取時,兩個視圖在自一者至另一者雙態切換時保持凍結,直至按壓凍結鍵為止。When this box is checked, toggling from one split-screen view to another makes the selected view active. When the box is unchecked, the two views remain frozen when toggling from one to the other until the freeze key is pressed.

當一使用者按壓設置鍵,然後點擊量測索引標籤時,設置視窗讓一使用者選擇哪些量測出現在由凍結影像上之計算鍵存取之選單上。設置量測視窗亦包含用於選擇量測游標之大小之控制、在計算產科量測中所使用之表及用於將量測發送至另一位置之埠。體積計算係數選擇選擇標準PI/6橢球係數或一定製值。定製選擇之預設係0.479,另一常用值,但一使用者可輸入任何值。When a user presses the Setup button and then clicks on the Measurement Index tab, the Setup window allows the user to select which measurements appear on the menu accessed by the Calculate button on the frozen image. The Set Measurements window also contains controls for selecting the size of the measurement cursor, tables used in calculating obstetric measurements, and a port for sending measurements to another location. Volume calculation coefficient selection selects the standard PI/6 ellipsoid coefficient or a custom value. The default for custom selections is 0.479, another common value, but a user can enter any value.

根據各種實施例,與本文中所闡述之可移動或平板式超音波裝置相關聯之手持式殼體可具有緊湊外觀尺寸。舉例而言,平板式超音波裝置之手持式殼體可以8英吋(~20 cm)至18英吋(~46 cm)之一範圍提供觸控螢幕顯示器之一對角線尺寸。在某些實施例中,用以操作超音波及電腦之電子組件使用一3D板架構來設計以達成組件在較小大小之一殼體內之更緊湊放置。According to various embodiments, handheld housings associated with the mobile or tablet ultrasound devices described herein may have compact exterior dimensions. For example, a handheld housing of a flat-panel ultrasound device may provide a touch screen display with a diagonal size ranging from 8 inches (~20 cm) to 18 inches (~46 cm). In some embodiments, the electronic components used to operate the ultrasound and computer are designed using a 3D panel architecture to achieve more compact placement of the components within a smaller sized housing.

圖73圖解說明根據各種實施例之一平板式超音波裝置2000’之一剖面圖,其中平板電腦之主機板106’及超音波引擎108’垂直地堆疊於彼此上方而非並排放置。換言之,主機板106’及超音波引擎108’根據三維系統架構遠離來構造且配置。在某些實施例中,主機板106’及超音波引擎108’使用一板連接器7001來連接。在某些實施例中,板連接器7001可提供至少部分機械支撐為主機板106’及/或超音波引擎108’。在某些實施例中,主機板106’之組件與超音波引擎108’之組件之間的電連接可穿過板連接器7001。Figure 73 illustrates a cross-sectional view of a tablet ultrasound device 2000' in which the tablet's motherboard 106' and ultrasound engine 108' are stacked vertically on top of each other rather than side by side, according to various embodiments. In other words, the motherboard 106' and the ultrasonic engine 108' are constructed and configured according to the three-dimensional system architecture. In some embodiments, the motherboard 106' and the ultrasonic engine 108' are connected using a board connector 7001. In some embodiments, board connector 7001 may provide at least partial mechanical support for motherboard 106' and/or ultrasonic engine 108'. In certain embodiments, electrical connections between components of motherboard 106' and components of ultrasonic engine 108' may pass through board connector 7001.

圖74圖解說明在移除殼體及超音波引擎108’之底部部分之情況下平板式超音波裝置2000’之一仰視示意圖。該視圖因此展示經顛倒主機板106’。主機板106’包含一處理單元7002、一記憶體7004、板連接器7001、資料儲存裝置7006、一冷卻風扇7008、一電池7010及一可信平台模組7012。在較佳實施例中,記憶體7004可包括安裝於一第二電路板(其安裝在一第一電路板上面或下面)上之一共用記憶體裝置,或可包括複數個經堆疊電路層中之一層以提供一個三維(3D)電路裝置。在某些實施例中,資料儲存裝置7006可包含固態驅動儲存裝置(亦即,不具有移動部分之磁碟儲存裝置)。在某些實施例中,處理單元7002可接觸熱耗散管以自處理單元7002附近移除過多熱。主機板106’可與如上文使用連接器7014所闡述之外部裝置(諸如換能器探針、資料儲存裝置或外部顯示器)介接。在某些實施例中,主機板106’可包含一或多個連接器7014以使用通信標準(諸如通用串列匯流排(USB 1.0/2.0/3.0、USB-C、迷你USB、微USB)、顯示器埠及迷你顯示器埠、閃電、雷電、高畫質多媒體介面(HDMI)或其他適當標準或協定)與一或多個外部裝置介面。Figure 74 illustrates a schematic bottom view of the flat-panel ultrasound device 2000' with the housing and bottom portion of the ultrasound engine 108' removed. This view thus shows motherboard 106' turned upside down. The motherboard 106′ includes a processing unit 7002, a memory 7004, a board connector 7001, a data storage device 7006, a cooling fan 7008, a battery 7010 and a trusted platform module 7012. In preferred embodiments, memory 7004 may comprise a shared memory device mounted on a second circuit board (mounted above or below a first circuit board), or may comprise a plurality of stacked circuit layers. layer to provide a three-dimensional (3D) circuit device. In some embodiments, data storage device 7006 may include a solid-state drive storage device (ie, a disk storage device with no moving parts). In some embodiments, processing unit 7002 may contact heat dissipation tubes to remove excess heat from the vicinity of processing unit 7002. The motherboard 106' may interface with external devices such as transducer probes, data storage devices, or external displays as described above using connector 7014. In some embodiments, the motherboard 106' may include one or more connectors 7014 for use with communication standards such as Universal Serial Bus (USB 1.0/2.0/3.0, USB-C, Mini USB, Micro USB), Display port and mini-display port, Lightning, Thunderbolt, High Definition Multimedia Interface (HDMI) or other appropriate standard or protocol) interface with one or more external devices.

包括一加密與解密電路之可信平台模組(TPM) 7012可與其他主機板106’組件(諸如資料儲存裝置7006、記憶體7004及顯示器驅動器)介接以保護且加密平板式超音波裝置2000’上之資料。TPM 7012可實時地加密寫入至資料儲存裝置7006及記憶體7004之所有資料且可實時地解密自資料儲存裝置7006及記憶體7004擷取之所有資料。在某些實施例中,TPM 7012可加密每一資料封包中之一或多個資料欄。藉由提供實時加密及解密,TPM 7012確保靈敏 患者資料在裝置上之任何儲存裝置媒體中始終係加密。因此,在平板式超音波裝置2000’丟失、被盜或解除委任之事件中,無法簡單地自記憶體7004或資料儲存裝置7006提取患者資料。A trusted platform module (TPM) 7012 including an encryption and decryption circuit can interface with other motherboard 106' components (such as data storage device 7006, memory 7004, and display drive) to protect and encrypt data on the flat-panel ultrasound device 2000'. TPM 7012 can encrypt all data written to data storage device 7006 and memory 7004 in real time and can decrypt all data retrieved from data storage device 7006 and memory 7004 in real time. In some embodiments, TPM 7012 can encrypt one or more data fields in each data packet. By providing real-time encryption and decryption, TPM 7012 ensures that sensitive patient data is always encrypted in any storage device media on the device. Therefore, in the event that the flat-panel ultrasound device 2000' is lost, stolen, or decommissioned, the patient data cannot be simply extracted from the memory 7004 or data storage device 7006.

圖75圖解說明根據本文中所闡述之各種實施例之平板式超音波裝置2000’之顯示器之一示意圖。在某些實施例中,平板式超音波裝置2000’可利用可由觸控控制操作之一模式切換選單7030。當藉由觸控而啟動模式切換選單7030時,顯示器向使用者提供各種操作模式7032。模式切換選單7030可使得一使用者能夠自各種模式7032當中進行選擇以達成裝置在不同成像或影像分析模式當中之快速切換。在某些實施例中,操作模式7032可各自基於不同機器學習演算法或其他電腦輔助診斷功能。Figure 75 illustrates a schematic diagram of a display of a flat-panel ultrasound device 2000' in accordance with various embodiments set forth herein. In some embodiments, tablet ultrasound device 2000' may utilize a mode switching menu 7030 operable by touch controls. When the mode switching menu 7030 is activated by touch, the display provides various operating modes 7032 to the user. The mode switching menu 7030 allows a user to select from various modes 7032 to quickly switch the device among different imaging or image analysis modes. In some embodiments, operating modes 7032 may each be based on a different machine learning algorithm or other computer-aided diagnostic functionality.

在某些實施例中,平板式超音波裝置2000’可對語音命令做出回應。當裝置2000’主動地接聽語音命令或控制時一語音指示器7020可出現在顯示器上。語音指示器7020亦可經觸控啟動以接通或關斷語音致動之操作。在此等實施例中,平板式超音波裝置2000’可包含一麥克風以偵測嵌入於平板電腦殼體內之一使用者之語音。在其他實施例中,平板式超音波裝置2000’可接收與自一外部源(例如,使用者所佩戴或使用之頭戴耳機或一麥克風)接收之語音命令對應之有線或無線信號。在某些實施例中,語音命令可提供對裝置2000’之特徵之控制及調整之最實際方法。舉例而言,一使用者在一磁性共振成像套組內可能夠在磁性膛孔附近使用一患者身上之換能器探針,但可能不能夠將平板電腦裝置殼體放置在磁性膛孔附近。在此一情形中,當平板式超音波裝置2000’位於遠離磁體之一安全地點中時,使用者可使用語音命令來自一距離遠程地控制平板式超音波裝置2000’上之功能。In some embodiments, tablet ultrasound device 2000' can respond to voice commands. A voice indicator 7020 may appear on the display when device 2000' actively accepts voice commands or controls. The voice indicator 7020 can also be activated by touch to turn on or off the voice-activated operation. In these embodiments, the tablet ultrasound device 2000' may include a microphone to detect a user's voice embedded in the tablet casing. In other embodiments, the tablet ultrasound device 2000' may receive wired or wireless signals corresponding to voice commands received from an external source (e.g., a headset or a microphone worn or used by the user). In certain embodiments, voice commands may provide the most practical method of controlling and adjusting features of device 2000'. For example, a user in a magnetic resonance imaging suite may be able to use a transducer probe on the patient near the magnetic bore, but may not be able to place the tablet device housing near the magnetic bore. In this situation, when the flat-panel ultrasound device 2000' is located in a safe location away from the magnet, the user can use voice commands to remotely control functions on the flat-panel ultrasound device 2000' from a distance.

可使用語音來操作平板式超音波裝置2000’上之諸多功能。在語音啟動之後,語音指示器7020旋即可有生命,或(舉例而言)改變色彩或形狀以指示已接收一語音命令或按照該語音命令而行事。在各種實施例中,使用者可向裝置提供裝置然後可實施之語音命令,例如,「增加增益」、「降低對比度」等。在某些實施例中,裝置2000’可包含將在藉由語音命令致動之後旋即實施之目前值或改變。舉例而言,一命令「增加增益」可使影像上之增益增加諸如10%之一預設量。Voice can be used to operate many functions on the tablet ultrasound device 2000'. After voice activation, voice indicator 7020 may spin to life or, for example, change color or shape to indicate that a voice command has been received or acted upon. In various embodiments, a user can provide a voice command to the device that the device can then implement, for example, "increase gain," "decrease contrast," etc. In certain embodiments, device 2000' may contain a current value or change that will be implemented immediately upon activation by a voice command. For example, a command "increase gain" increases the gain on the image by a preset amount such as 10%.

以上裝置及方法可與習用超音波系統一起使用。在如本文中所闡述之一觸控螢幕致動型平板電腦顯示器系統中使用較佳實施例。可採用觸控致動型圖標,使得手勢可用於控制成像過程。The above devices and methods can be used with conventional ultrasound systems. Preferred embodiments are used in a touch screen actuated tablet display system as described herein. Touch-activated icons can be used so that gestures can be used to control the imaging process.

注意,本文中所闡述之操作純粹係例示性的,且不暗示任何特定次序。此外,可在適當時在任何序列中使用及/或可部分地使用操作。例示性流程圖在本文中出於說明性目的經提供且係方法之非限制性實例。熟習此項技術者將認識到,例示性方法可包含多於或少於例示性流程圖中所圖解說明之彼等步驟的步驟,且可以不同於所展示之一次序執行例示性流程圖中之步驟。Note that the operations described in this article are purely illustrative and do not imply any specific order. Furthermore, operations may be used in any sequence and/or may be used in part, where appropriate. Illustrative flowcharts are provided herein for illustrative purposes and are non-limiting examples of methods. Those skilled in the art will recognize that the illustrative methods may include more or fewer steps than illustrated in the illustrative flowcharts, and the steps in the illustrative flowcharts may be performed in a different order than shown. steps.

在闡述例示性施例中,為清楚起見而使用特定術語。出於說明目的,每一特定術語意欲至少包含以一類似方式操作以實現一類似目的之所有技術及功能等效物。另外,在其中一特定例示性實施例包含複數個系統元件或方法步驟之某些例項中,可用一單個元件或步驟替換彼等元件或步驟。同樣地,可用服務於同一目的之複數個元件或步驟替換一單個元件或步驟。此外,在本文中針對例示性實施例規定各種性質之參數之情況下,可將彼等參數向上調整或向下調整l/20、1/10、l/5、l/3、l/2等等或調整其四捨五入之近似值,除非另有規定。In describing the illustrative embodiments, specific terminology is used for the sake of clarity. For purposes of explanation, each specific term is intended to include at least all technical and functional equivalents that operate in a similar manner to achieve a similar purpose. Additionally, in some instances in which a particular illustrative embodiment includes multiple system elements or method steps, a single element or step may be substituted for those elements or steps. Likewise, a single element or step may be replaced by multiple elements or steps that serve the same purpose. Additionally, where parameters of various properties are specified herein for exemplary embodiments, those parameters may be adjusted upwards or downwards by 1/20, 1/10, 1/5, 1/3, 1/2, etc. Etc. or adjust to rounded approximations, unless otherwise specified.

記住以上實施例,應理解,此等實施例可採用涉及經傳送且儲存於電腦系統中之資料之各種電腦實施之操作。此等操作係需要對物理量進行實體操縱之彼等操作。通常(儘管未必),此等量採取能夠儲存、傳送、組合、比較及以其他方式操縱之電氣、磁性及/或光學信號之形式。With the above embodiments in mind, it should be understood that these embodiments may employ various computer-implemented operations involving data transferred and stored in a computer system. These operations are those requiring physical manipulation of physical quantities. Usually, though not necessarily, these quantities take the form of electrical, magnetic, and/or optical signals capable of being stored, transmitted, combined, compared, and otherwise manipulated.

此外,形成說明性實施例之一部分的本文中所闡述之操作中之任何操作係有用機器操作。說明性實施例亦係關於用於執行此等操作之一裝置或一設備。設備可專門針對所需目的而構造,或其可包括一般用途電腦,該等一般用途電腦由存儲於該電腦中之電腦程式來選擇性地啟動或組態。特定而言,採用耦合至一或多個電腦可讀媒體之一或多個處理器之各種一般用途機器可與根據本文中所揭示之教示撰寫之電腦程式一起使用,或構造用以執行所需要操作之一更特殊設備可係更方便的。Furthermore, any of the operations set forth herein forming part of the illustrative embodiments are useful machine operations. Illustrative embodiments also relate to an apparatus or an apparatus for performing these operations. A device may be specially constructed for the required purposes, or it may include a general purpose computer that is selectively enabled or configured by a computer program stored in the computer. In particular, various general purpose machines employing one or more processors coupled to one or more computer readable media may be used with computer programs written in accordance with the teachings disclosed herein, or configured to perform the required Operation of one of the more special equipment can be more convenient.

前述說明已針對於本發明之特定說明性實施例。然而將明瞭,可對所闡述實施例做出其他變化及修改,其中獲得其相關聯優勢中之某些或所有優勢。此外,可在硬體、軟體(體現為具有程式指令之一電腦可讀媒體)、韌體或其一組合中實施本文中所闡述之過程、處理及/或模組。舉例而言,可由執行程式指令之一處理器在一記憶體或其他儲存裝置裝置外執行本文中所闡述之功能中之一或多者。The foregoing description has been directed to specific illustrative embodiments of the invention. It will be apparent, however, that other changes and modifications may be made to the illustrated embodiments, wherein some or all of their associated advantages are obtained. Furthermore, the processes, processes, and/or modules described herein may be implemented in hardware, software (embodied in a computer-readable medium having program instructions), firmware, or a combination thereof. For example, one or more of the functions described herein may be performed by a processor executing program instructions outside of a memory or other storage device.

熟習此項技術者將明白,可在不背離本文中所揭示之發明性概念之情況下做出對上述系統及方法之修改及該等系統及方法之變化。相應地,本發明不應被視為受限制,除了受所附申請專利範圍之範疇及精神限制。Those skilled in the art will appreciate that modifications to the above-described systems and methods and variations in these systems and methods can be made without departing from the inventive concepts disclosed herein. Accordingly, the present invention should not be construed as limited except by the scope and spirit of the appended claims.

10‧‧‧醫療超音波成像裝備 12‧‧‧摺疊式顯示器 14‧‧‧鍵盤控制面板 16‧‧‧手柄 18‧‧‧鍵盤 100‧‧‧醫療超音波成像裝備/裝備/可移動超音波系統/系統/超音波系統/ 101‧‧‧前面板 102‧‧‧殼體 103‧‧‧後面板 104‧‧‧觸控螢幕顯示器/顯示器/多點觸控式LCD觸控螢幕顯示器/觸控顯示器 105‧‧‧表面 106‧‧‧電腦主機板 106’‧‧‧主機板 107‧‧‧觸控感測器/感測器 108‧‧‧超音波引擎/128通道型超音波引擎電路板/128通道型超音波引擎 108’‧‧‧超音波引擎 109‧‧‧觸控處理器 110‧‧‧電池 112‧‧‧火線連接/鏈路/高速串列介面/通信鏈路 114‧‧‧探針連接器/連接器 115‧‧‧探針附接/拆卸桿 116‧‧‧I/O埠連接器 118‧‧‧電路系統 119‧‧‧殼體埠 120‧‧‧SIM卡/卡 140‧‧‧系統 150‧‧‧換能器殼體/探針/超音波探針/換能器/換能器探針/探針殼體 152‧‧‧換能器元件陣列/換能器陣列 154‧‧‧探針識別電路 302‧‧‧點選手勢 304‧‧‧捏縮手勢 306‧‧‧拂動手勢 308‧‧‧旋轉手勢 310‧‧‧雙點選手勢 312‧‧‧展開手勢 314‧‧‧拂動手勢 316‧‧‧旋轉手勢 318‧‧‧拖動手勢 320‧‧‧按壓手勢 322‧‧‧按壓與拖動手勢 324‧‧‧手掌手勢 340‧‧‧成像操作 342‧‧‧影像處理操作 344‧‧‧操作 346‧‧‧操作 348‧‧‧操作 350‧‧‧操作 352‧‧‧操作 402‧‧‧子組 404‧‧‧子組 406‧‧‧子組 408‧‧‧觸控控制/二維觸控控制 410‧‧‧觸控控制/增益觸控控制 412‧‧‧觸控控制/色彩觸控控制 414‧‧‧觸控控制/儲存裝置觸控控制 416‧‧‧觸控控制/分割觸控控制 418‧‧‧觸控控制/PW成像觸控控制 420‧‧‧觸控控制 422‧‧‧觸控控制/註解觸控控制 424‧‧‧觸控控制/動態範圍操作觸控控制 426‧‧‧觸控控制/TeravisionTM觸控控制 428‧‧‧觸控控制/圖操作觸控控制 430‧‧‧觸控控制/針引導件觸控控制428 502‧‧‧肝臟 504‧‧‧囊性病變 506‧‧‧虛擬視窗 508‧‧‧手指 602‧‧‧心臟 604‧‧‧心內膜緣 606‧‧‧左心室 607‧‧‧游標 608‧‧‧虛線 610‧‧‧手指 612‧‧‧手指 702‧‧‧肝臟 704‧‧‧囊性病變 706‧‧‧虛擬視窗 707‧‧‧第一游標 709‧‧‧第二游標 710‧‧‧手指 712‧‧‧手指 802‧‧‧肝臟 804‧‧‧囊性病變 806‧‧‧虛擬視窗 807‧‧‧第一游標/游標 809‧‧‧第二游標 810‧‧‧手指 811‧‧‧連接線 812‧‧‧手指 900‧‧‧軟體流程圖 902‧‧‧換能器管理模組 904‧‧‧操作 906‧‧‧操作 908‧‧‧操作 910‧‧‧操作 912‧‧‧操作 914‧‧‧操作 916‧‧‧操作 918‧‧‧操作 920‧‧‧操作 921‧‧‧操作 922‧‧‧操作 924‧‧‧操作 926‧‧‧操作 928‧‧‧操作 930‧‧‧步驟 932‧‧‧步驟 934‧‧‧步驟 936‧‧‧步驟 938‧‧‧步驟 940‧‧‧步驟 942‧‧‧步驟 944‧‧‧步驟 946‧‧‧步驟 948‧‧‧步驟 950‧‧‧步驟 952‧‧‧步驟 956‧‧‧針 958‧‧‧系統 960‧‧‧超音波換能器元件/換能器元件 962‧‧‧針引導件 964‧‧‧超音波反射器盤/反射器盤 966‧‧‧針引導件安裝托架 968‧‧‧換能器陣列 970‧‧‧超音波成像探針總成 972‧‧‧超音波 974‧‧‧經反射超音波 976‧‧‧距離 978‧‧‧線性超音波聲學陣列/超音波成像探針總成 980‧‧‧超音波換能器陣列/換能器元件 982‧‧‧超音波成像探針總成 984‧‧‧超音波換能器陣列 986‧‧‧系統 1000‧‧‧方塊圖 1010‧‧‧主機電腦 1012‧‧‧USB連接/定製或USB3晶片組 1014‧‧‧微處理器 1020‧‧‧介面單元/介面電路系統 1022‧‧‧USB連接/定製USB3晶片組/USB3晶片組/定製或USB3晶片組 1024‧‧‧系統控制器 1025‧‧‧連接器 1026‧‧‧現場可程式化閘陣列/現場可程式化閘陣列數位波束成形 1027‧‧‧連接器 1028‧‧‧A/D轉換器 1030‧‧‧A/D轉換器 1032‧‧‧記憶體 1034‧‧‧DC-DC轉換器 1040‧‧‧整合式超音波探針/超音波探針/換能器 1042‧‧‧電源供應器 1044‧‧‧控制器 1046‧‧‧記憶體 1048‧‧‧多工器 1050‧‧‧傳輸驅動器 1052‧‧‧子陣列/孔隙/子陣列波束成形器 1054‧‧‧傳輸驅動器 1056‧‧‧多工器 1058‧‧‧記憶體 1060‧‧‧子陣列波束成形器 1062‧‧‧一維換能器陣列 1064‧‧‧影像目標 1066‧‧‧纜線 1068‧‧‧纜線 1075‧‧‧裝置 1080‧‧‧方塊圖 1082‧‧‧主機電腦 1102‧‧‧影像目標 1104‧‧‧纜線 1112‧‧‧先進先出緩衝器模組 1114‧‧‧記憶體 1116‧‧‧波束成形器控制處理器/系統控制器 1118‧‧‧通信晶片組 1120‧‧‧通信晶片組 1122‧‧‧核心電腦可讀記憶體/記憶體/ 1124‧‧‧波束成形器控制處理器/微處理器 1126‧‧‧顯示器控制器 1200‧‧‧電路板 1202‧‧‧HDI基板/基板 1204‧‧‧第一積體電路晶片/ 1206‧‧‧第一間隔件層 1208‧‧‧第二積體電路晶片 1210‧‧‧金屬框架 1212‧‧‧配線 1214‧‧‧配線 1216‧‧‧封裝 1302‧‧‧步驟 1304‧‧‧步驟 1306‧‧‧步驟 1308‧‧‧步驟 1310‧‧‧步驟 1312‧‧‧步驟 1600‧‧‧多晶片模組 1602‧‧‧TR晶片/晶片 1604‧‧‧放大器晶片/晶片 1606‧‧‧波束成形器晶片/晶片 1608‧‧‧第一間隔件層 1610‧‧‧第二間隔件層 1612‧‧‧金屬框架 1614‧‧‧基板 1702‧‧‧無線網路配接器/配接器 1704‧‧‧輸入/輸出(I/O)與圖形晶片組 1706‧‧‧串列或並列介面 1708‧‧‧電力模組 1710‧‧‧第一多晶片模組 1712‧‧‧第二多晶片模組 1714‧‧‧時脈產生複雜可程式化邏輯裝置 1716‧‧‧類比轉數位轉換器 1718‧‧‧延遲分佈與波形產生器現場可程式化閘陣列 1720‧‧‧記憶體 1722‧‧‧掃描序列控制現場可程式化閘陣列 1724‧‧‧電力模組 1802‧‧‧選用性觸控筆 1804‧‧‧殼體連接器 1806‧‧‧撓性纜線 1900‧‧‧主圖形使用者介面 1902‧‧‧選單列 1904‧‧‧影像顯示視窗 1906‧‧‧影像控制列 1908‧‧‧工具列 2000‧‧‧醫療超音波成像裝備/平板電腦系統 2000’‧‧‧平板式超音波裝置 2010‧‧‧觸控螢幕顯示器 2020‧‧‧超音波控制 2030‧‧‧殼體 2040‧‧‧超音波資料 2060‧‧‧前面板 2070‧‧‧後面板 2080‧‧‧埠 2082‧‧‧卡 2084‧‧‧SIM卡/SIM電路 2100‧‧‧搬運車系統/搬運車組態 2102‧‧‧觸控螢幕顯示器 2104‧‧‧平板電腦 2106‧‧‧可調整高度裝置 2108‧‧‧搬運車/搬運車支架 2110‧‧‧凝膠固持器 2112‧‧‧鍵盤 2114‧‧‧儲存箱 2118‧‧‧探針連接器 2120‧‧‧熱探針固持器 2122‧‧‧基座總成 2124‧‧‧全操作員控制台/操作員控制台 2126‧‧‧操作員控制台 2200‧‧‧搬運車系統/搬運車總成 2210‧‧‧固持器 2212‧‧‧垂直支撐部件/支撐樑/樑 2214‧‧‧控制台面板 2216‧‧‧多埠探針多工裝置/多工器裝置 2218‧‧‧固持器 2222‧‧‧儲存箱附接機構 2224‧‧‧儲存箱/配件固持器 2226‧‧‧繩索管理系統/高度調整裝置 2228‧‧‧基座 2230‧‧‧電池 2232‧‧‧輪 2300‧‧‧配置 2302‧‧‧平板電腦/系統 2304‧‧‧插接站/基座插接單元/基座單元/單元/插接元件 2305‧‧‧電連接器 2306‧‧‧附接機構/安裝總成 2307‧‧‧埠 2308‧‧‧鉸鏈部件 2310‧‧‧搖台 2312‧‧‧垂直部件 2400‧‧‧搬運車系統/配置 2402‧‧‧平板電腦 2404‧‧‧連接器/附接機構 2406‧‧‧鉸接部件 2408‧‧‧垂直支撐部件 2502‧‧‧插接站 2504‧‧‧平板電腦 2506‧‧‧基座總成 2508‧‧‧釋放機構 2510‧‧‧換能器探針/換能器探針連接器 2512‧‧‧換能器埠 2602‧‧‧二維影像視窗 2604‧‧‧二維影像掃描 2606‧‧‧靈活頻率掃描 2700‧‧‧平板電腦 2702‧‧‧靈活頻率控制 2704‧‧‧二維影像視窗 2706‧‧‧二維影像 2708‧‧‧運動模式成像 2800‧‧‧平板電腦/平板電腦顯示器 2802‧‧‧彩色都卜勒掃描資訊 2804‧‧‧靈活頻率控制 2806‧‧‧二維影像視窗 2808‧‧‧色彩編碼資訊 2810‧‧‧二維影像 2900‧‧‧平板電腦顯示器 2902‧‧‧二維影像 2904‧‧‧可調整頻率控制 2906‧‧‧混合操作模式 2908‧‧‧灰色陰影 2910‧‧‧時間/都卜勒頻 2912‧‧‧樣本閘 3000‧‧‧平板電腦顯示器/平板電腦 3002‧‧‧二維視窗/二維影像視窗 3004‧‧‧色彩編碼資訊 3006‧‧‧色碼覆疊 3008‧‧‧樣本體積/樣本閘 3010‧‧‧靈活頻率控制 3012‧‧‧時間/都卜勒頻移 3016‧‧‧二維影像 3100‧‧‧圖形使用者介面主螢幕介面/螢幕介面/圖形使用者介面主頁螢幕/主圖形使用者介面主螢幕 3102‧‧‧影像顯示視窗 3104‧‧‧選單列 3106‧‧‧影像控制列 3108‧‧‧深度控制觸控控制 3110‧‧‧二維增益觸控控制 3112‧‧‧全螢幕觸控控制 3114‧‧‧文字觸控控制 3116‧‧‧分割螢幕觸控控制 3118‧‧‧ENV觸控控制 3120‧‧‧CD觸控控制 3122‧‧‧PWD觸控控制 3124‧‧‧凍結觸控控制 3126‧‧‧儲存觸控控制 3128‧‧‧最佳化觸控控制 3130‧‧‧滾動影像 3200‧‧‧圖形使用者介面選單螢幕介面/螢幕介面/主圖形使用者介面選單螢幕 3202‧‧‧影像顯示視窗 3204‧‧‧選單列 3206‧‧‧展開格式 3208‧‧‧患者觸控控制 3210‧‧‧預設觸控控制 3212‧‧‧審閱觸控控制 3214‧‧‧報告觸控控制 3216‧‧‧設置觸控控制 3218‧‧‧影像 3220‧‧‧影像控制列 3224‧‧‧二維增益觸控控制 3226‧‧‧全螢幕觸控控制 3228‧‧‧文字觸控控制 3230‧‧‧分割螢幕觸控控制 3232‧‧‧針可視化ENV觸控控制 3236‧‧‧PWD觸控控制 3238‧‧‧凍結觸控控制 3240‧‧‧儲存觸控控制 3242‧‧‧最佳化觸控控制 3302‧‧‧選單列 3304‧‧‧新患者觸控螢幕控制 3306‧‧‧新研究觸控螢幕控制 3308‧‧‧研究清單觸控螢幕控制 3310‧‧‧工作清單觸控螢幕控制 3312‧‧‧編輯觸控螢幕控制 3314‧‧‧患者資訊區段 3316‧‧‧研究資訊區段 3318‧‧‧影像控制列 3320‧‧‧研究觸控控制 3324‧‧‧列印觸控控制 3326‧‧‧列印預覽觸控控制 3328‧‧‧取消觸控控制 3330‧‧‧二維觸控控制 3332‧‧‧凍結觸控控制 3334‧‧‧儲存觸控控制 3400‧‧‧圖形使用者介面患者資料螢幕介面/預設螢幕 3402‧‧‧選單列 3404‧‧‧預設選擇模式/選擇模式 3408‧‧‧影像控制列 3410‧‧‧保存設定觸控控制 3412‧‧‧刪除觸控控制 3414‧‧‧CD觸控控制 3416‧‧‧PWD觸控控制 3418‧‧‧凍結觸控控制 3420‧‧‧儲存觸控控制 3422‧‧‧最佳化觸控控制 3500‧‧‧圖形使用者介面審閱螢幕介面/螢幕介面/螢幕 3502‧‧‧選單列 3504‧‧‧預設展開審閱 3506‧‧‧影像顯示視窗 3508‧‧‧影像 3510‧‧‧影像 3512‧‧‧影像 3514‧‧‧影像 3516‧‧‧影像控制列 3518‧‧‧縮圖設定觸控控制 3520‧‧‧同步觸控控制 3522‧‧‧選擇觸控控制 3524‧‧‧先前影像觸控控制 3526‧‧‧下一影像觸控控制 3528‧‧‧二維影像觸控控制 3530‧‧‧暫停影像觸控控制 3532‧‧‧儲存影像觸控控制 3600‧‧‧螢幕介面/報告螢幕 3602‧‧‧選單列 3604‧‧‧報告展開審閱 3606‧‧‧顯示器螢幕 3608‧‧‧影像控制列 3610‧‧‧保存觸控控制 3612‧‧‧另存新檔觸控控制 3614‧‧‧列印觸控控制 3616‧‧‧列印預覽觸控控制 3618‧‧‧嚴密研究觸控控制 3620‧‧‧二維影像觸控控制 3622‧‧‧凍結影像觸控控制 3624‧‧‧儲存影像觸控控制 3700‧‧‧螢幕介面/螢幕 3702‧‧‧選單列 3704‧‧‧報告展開審閱 3706‧‧‧一般觸控控制 3708‧‧‧顯示觸控控制 3710‧‧‧量測觸控控制 3712‧‧‧註解觸控控制 3714‧‧‧列印觸控控制 3716‧‧‧儲存/獲取觸控控制 3718‧‧‧DICOM觸控控制 3720‧‧‧導出觸控控制 3722‧‧‧研究資訊影像觸控控制 3724‧‧‧組態螢幕 3726‧‧‧軟鍵插接位置 3728‧‧‧影像控制列 3730‧‧‧縮圖設定觸控控制 3732‧‧‧同步觸控控制 3734‧‧‧選擇觸控控制 3736‧‧‧先前影像觸控控制 3738‧‧‧下一影像觸控控制 3740‧‧‧二維影像觸控控制 3742‧‧‧暫停影像觸控控制 3750‧‧‧軟鍵控制箭頭 3752‧‧‧軟鍵控制 3760‧‧‧軟鍵控制箭頭 3762‧‧‧軟鍵控制 3800‧‧‧螢幕介面/設置螢幕 3802‧‧‧選單列/儲存/獲取觸控控制 3804‧‧‧報告展開審閱/設置展開螢幕 3806‧‧‧一般觸控控制 3808‧‧‧顯示觸控控制 3810‧‧‧量測觸控控制 3812‧‧‧註解觸控控制 3814‧‧‧列印觸控控制 3816‧‧‧儲存/獲取觸控控制 3818‧‧‧DICOM觸控控制 3820‧‧‧導出觸控控制 3822‧‧‧研究資訊影像觸控控制 3828‧‧‧影像控制列 3830‧‧‧縮圖設定觸控控制 3832‧‧‧同步化觸控控制 3834‧‧‧選擇觸控控制 3836‧‧‧先前影像觸控控制 3838‧‧‧下一影像觸控控制 3840‧‧‧二維影像觸控控制 3842‧‧‧暫停影像觸控控制 3900‧‧‧配置 3902‧‧‧y方向/y軸 3904‧‧‧x方向/x軸 3906‧‧‧z軸 3908‧‧‧偏振軸 3910‧‧‧仰角軸 3912‧‧‧配置 3914‧‧‧超音波影像 3920‧‧‧仰角軸 3922‧‧‧偏振軸 3924‧‧‧超音波影像 4002‧‧‧頂部陣列 4004‧‧‧底部陣列 4006‧‧‧高電壓驅動脈衝 4008‧‧‧高電壓驅動脈衝 4010‧‧‧高電壓驅動脈衝 4012‧‧‧陣列 4102‧‧‧高電壓脈衝 4104‧‧‧高電壓脈衝 4106‧‧‧高電壓脈衝 4108‧‧‧接地 4110‧‧‧陣列 4112‧‧‧頂部陣列 4114‧‧‧底部陣列 4202‧‧‧接收電子裝置 4204‧‧‧選擇底部陣列 4206‧‧‧高電壓驅動器 4208‧‧‧選擇頂部陣列 4210‧‧‧高電壓驅動器 4212‧‧‧高電壓驅動器 4302‧‧‧心尖兩腔 4304‧‧‧心尖四腔 4402‧‧‧影像 4404‧‧‧影像 4900‧‧‧操作 4902‧‧‧操作 4904‧‧‧操作 4906‧‧‧操作 4908‧‧‧操作 4910‧‧‧操作 4950‧‧‧腹腔鏡換能器探針/探針 4952‧‧‧EM感測器 4954‧‧‧散佈式處理器系統/核心處理器及記憶體/散佈式處理器系統或圖形處理單元 5101‧‧‧線性成像陣列 5102‧‧‧垂直陣列 5200‧‧‧序列 5202‧‧‧步驟 5204‧‧‧步驟 5206‧‧‧步驟 5208‧‧‧步驟 5210‧‧‧步驟 5212‧‧‧步驟 5402‧‧‧波束成形引擎/引擎 5404‧‧‧匯流排 5405‧‧‧超音波軟體操作/超音波應用 5406‧‧‧處理器 5408‧‧‧資料及影像 5410‧‧‧機器學習及/或影像處理應用程式/處理器/處理應用程式/中央處理器應用程式 5420‧‧‧圖形處理單元/處理器 5422‧‧‧記憶體 5490‧‧‧所關注線 5492‧‧‧平行線 5920‧‧‧共用記憶體 5940‧‧‧第三方應用程式 5960‧‧‧控制電路 6020‧‧‧核心處理器 6040‧‧‧圖形處理單元 6050‧‧‧共用記憶體 6060‧‧‧匯流排 6310‧‧‧控制台 6320‧‧‧控制 6420‧‧‧軟鍵 7001‧‧‧板連接器 7002‧‧‧圖形視覺指示器/處理單元 7004‧‧‧記憶體 7006‧‧‧資料儲存裝置 7010‧‧‧電池 7012‧‧‧可信平台模組 7014‧‧‧連接器 7120‧‧‧打開視窗或選單 7140‧‧‧診斷成像順序 7020‧‧‧語音指示器 7030‧‧‧模式切換選單 7032‧‧‧操作模式10‧‧‧Medical ultrasound imaging equipment 12‧‧‧Foldable display 14‧‧‧Keyboard control panel 16‧‧‧Handle 18‧‧‧Keyboard 100‧‧‧Medical ultrasound imaging equipment/equipment/mobile ultrasound system/system/ultrasound system/ 101‧‧‧Front panel 102‧‧‧Casing 103‧‧‧Rear panel 104‧‧‧Touch screen monitor/monitor/multi-touch LCD touch screen monitor/touch monitor 105‧‧‧Surface 106‧‧‧Computer motherboard 106’‧‧‧Motherboard 107‧‧‧Touch sensor/sensor 108‧‧‧Ultrasonic engine/128-channel ultrasonic engine circuit board/128-channel ultrasonic engine 108’‧‧‧Supersonic Engine 109‧‧‧Touch processor 110‧‧‧battery 112‧‧‧FireWire connection/link/high-speed serial interface/communication link 114‧‧‧Probe Connector/Connector 115‧‧‧Probe attachment/detachment lever 116‧‧‧I/O port connector 118‧‧‧Circuit system 119‧‧‧Case port 120‧‧‧SIM card/card 140‧‧‧System 150‧‧‧Transducer housing/probe/ultrasonic probe/transducer/transducer probe/probe housing 152‧‧‧Transducer element array/transducer array 154‧‧‧Probe identification circuit 302‧‧‧Click gesture 304‧‧‧Pinch gesture 306‧‧‧Flicking gesture 308‧‧‧Rotate gesture 310‧‧‧Double point gesture 312‧‧‧Expand gesture 314‧‧‧Flicking gesture 316‧‧‧Rotate gesture 318‧‧‧Drag gesture 320‧‧‧Press gesture 322‧‧‧Press and drag gestures 324‧‧‧Palm gesture 340‧‧‧Imaging operation 342‧‧‧Image processing operations 344‧‧‧Operation 346‧‧‧Operation 348‧‧‧Operation 350‧‧‧Operation 352‧‧‧Operation 402‧‧‧Subgroup 404‧‧‧Subgroup 406‧‧‧Subgroup 408‧‧‧Touch control/two-dimensional touch control 410‧‧‧Touch Control/Gain Touch Control 412‧‧‧Touch control/color touch control 414‧‧‧Touch control/storage device touch control 416‧‧‧Touch control/split touch control 418‧‧‧Touch control/PW imaging touch control 420‧‧‧Touch control 422‧‧‧Touch Control/Annotation Touch Control 424‧‧‧Touch Control/Dynamic Range Operation Touch Control 426‧‧‧Touch control/TeravisionTM touch control 428‧‧‧Touch control/image operation touch control 430‧‧‧Touch Control/Needle Guide Touch Control 428 502‧‧‧Liver 504‧‧‧Cystic lesions 506‧‧‧Virtual Window 508‧‧‧Finger 602‧‧‧Heart 604‧‧‧Endocardial border 606‧‧‧Left ventricle 607‧‧‧Cursor 608‧‧‧dashed line 610‧‧‧Finger 612‧‧‧Finger 702‧‧‧Liver 704‧‧‧Cystic lesions 706‧‧‧Virtual Window 707‧‧‧First Cursor 709‧‧‧Second Cursor 710‧‧‧Finger 712‧‧‧Finger 802‧‧‧Liver 804‧‧‧Cystic lesions 806‧‧‧Virtual Window 807‧‧‧First cursor/cursor 809‧‧‧Second Cursor 810‧‧‧Finger 811‧‧‧Connection cable 812‧‧‧Finger 900‧‧‧Software flow chart 902‧‧‧Transducer Management Module 904‧‧‧Operation 906‧‧‧Operation 908‧‧‧Operation 910‧‧‧Operation 912‧‧‧Operation 914‧‧‧Operation 916‧‧‧Operation 918‧‧‧Operation 920‧‧‧Operation 921‧‧‧Operation 922‧‧‧Operation 924‧‧‧Operation 926‧‧‧Operation 928‧‧‧Operation 930‧‧‧Steps 932‧‧‧Steps 934‧‧‧steps 936‧‧‧Steps 938‧‧‧steps 940‧‧‧Steps 942‧‧‧Steps 944‧‧‧Steps 946‧‧‧Steps 948‧‧‧Steps 950‧‧‧steps 952‧‧‧Steps 956‧‧‧Needle 958‧‧‧System 960‧‧‧Ultrasonic transducer element/transducer element 962‧‧‧Needle Guide 964‧‧‧Ultrasonic reflector disc/reflector disc 966‧‧‧Needle guide mounting bracket 968‧‧‧Transducer Array 970‧‧‧Ultrasonic imaging probe assembly 972‧‧‧Ultrasound 974‧‧‧Reflected ultrasound 976‧‧‧distance 978‧‧‧Linear ultrasonic acoustic array/ultrasonic imaging probe assembly 980‧‧‧Ultrasonic transducer array/transducer element 982‧‧‧Ultrasonic imaging probe assembly 984‧‧‧Ultrasonic transducer array 986‧‧‧System 1000‧‧‧Block Diagram 1010‧‧‧Host computer 1012‧‧‧USB Connectivity/Customized or USB3 Chipset 1014‧‧‧Microprocessor 1020‧‧‧Interface unit/interface circuit system 1022‧‧‧USB connection/customized USB3 chipset/USB3 chipset/customized or USB3 chipset 1024‧‧‧System Controller 1025‧‧‧Connector 1026‧‧‧Field Programmable Gate Array/Field Programmable Gate Array Digital Beamforming 1027‧‧‧Connector 1028‧‧‧A/D converter 1030‧‧‧A/D converter 1032‧‧‧Memory 1034‧‧‧DC-DC converter 1040‧‧‧Integrated ultrasonic probe/ultrasonic probe/transducer 1042‧‧‧Power supply 1044‧‧‧Controller 1046‧‧‧Memory 1048‧‧‧Multiplexer 1050‧‧‧Transmission Driver 1052‧‧‧Subarray/Aperture/Subarray Beamformer 1054‧‧‧Transmission driver 1056‧‧‧Multiplexer 1058‧‧‧Memory 1060‧‧‧Sub-array beamformer 1062‧‧‧One-dimensional transducer array 1064‧‧‧Image target 1066‧‧‧cable 1068‧‧‧cable 1075‧‧‧Device 1080‧‧‧Block Diagram 1082‧‧‧Host computer 1102‧‧‧Image target 1104‧‧‧Cable 1112‧‧‧FIFO buffer module 1114‧‧‧Memory 1116‧‧‧Beamformer Control Processor/System Controller 1118‧‧‧Communication Chipset 1120‧‧‧Communication Chipset 1122‧‧‧Core Computer Readable Memory/Memory/ 1124‧‧‧Beamformer Control Processor/Microprocessor 1126‧‧‧Monitor Controller 1200‧‧‧Circuit Board 1202‧‧‧HDI substrate/substrate 1204‧‧‧First Integrated Circuit Chip/ 1206‧‧‧First spacer layer 1208‧‧‧Second integrated circuit chip 1210‧‧‧Metal frame 1212‧‧‧Wiring 1214‧‧‧Wiring 1216‧‧‧Package 1302‧‧‧Steps 1304‧‧‧Steps 1306‧‧‧Steps 1308‧‧‧Steps 1310‧‧‧Steps 1312‧‧‧Steps 1600‧‧‧Multi-chip module 1602‧‧‧TR chip/chip 1604‧‧‧Amplifier chip/chip 1606‧‧‧Beamformer Chip/Chip 1608‧‧‧First spacer layer 1610‧‧‧Second spacer layer 1612‧‧‧Metal frame 1614‧‧‧Substrate 1702‧‧‧Wireless Network Adapter/Adapter 1704‧‧‧Input/Output (I/O) and Graphics Chipset 1706‧‧‧Serial or parallel interface 1708‧‧‧Power module 1710‧‧‧The first multi-chip module 1712‧‧‧The second multi-chip module 1714‧‧‧Clock generation complex programmable logic device 1716‧‧‧Analog to digital converter 1718‧‧‧Delay profile and waveform generator field programmable gate array 1720‧‧‧Memory 1722‧‧‧Scan sequence controlled field programmable gate array 1724‧‧‧Power module 1802‧‧‧Optional stylus 1804‧‧‧Shell Connector 1806‧‧‧Flexible Cable 1900‧‧‧Main GUI 1902‧‧‧Menu bar 1904‧‧‧Image display window 1906‧‧‧Image control column 1908‧‧‧Toolbar 2000‧‧‧Medical ultrasound imaging equipment/tablet computer system 2000’‧‧‧Flat-plate ultrasound device 2010‧‧‧Touch screen monitor 2020‧‧‧Ultrasonic Control 2030‧‧‧Casing 2040‧‧‧Ultrasound data 2060‧‧‧Front panel 2070‧‧‧Rear panel 2080‧‧‧Port 2082‧‧‧Card 2084‧‧‧SIM card/SIM circuit 2100‧‧‧Transport truck system/port truck configuration 2102‧‧‧Touch screen monitor 2104‧‧‧Tablet 2106‧‧‧Adjustable height device 2108‧‧‧Transportation truck/transportation truck bracket 2110‧‧‧Gel holder 2112‧‧‧Keyboard 2114‧‧‧Storage Box 2118‧‧‧Probe Connector 2120‧‧‧Thermal Probe Holder 2122‧‧‧Base assembly 2124‧‧‧Full operator console/operator console 2126‧‧‧Operator Console 2200‧‧‧Porter truck system/pallet truck assembly 2210‧‧‧Retainer 2212‧‧‧Vertical support parts/support beams/beams 2214‧‧‧Console Panel 2216‧‧‧Multi-port probe multiplexer/multiplexer device 2218‧‧‧Retainer 2222‧‧‧Storage box attachment mechanism 2224‧‧‧Storage box/accessory holder 2226‧‧‧Rope Management System/Height Adjustment Device 2228‧‧‧Base 2230‧‧‧Battery 2232‧‧‧wheel 2300‧‧‧Configuration 2302‧‧‧Tablet/System 2304‧‧‧Dock station/base plug unit/base unit/unit/plug element 2305‧‧‧Electrical Connector 2306‧‧‧Attachment mechanism/installation assembly 2307‧‧‧Port 2308‧‧‧Hinge parts 2310‧‧‧Shaking table 2312‧‧‧Vertical parts 2400‧‧‧Transport truck system/configuration 2402‧‧‧Tablet 2404‧‧‧Connector/Attachment Mechanism 2406‧‧‧Hinged parts 2408‧‧‧Vertical Support Parts 2502‧‧‧Dock station 2504‧‧‧Tablet 2506‧‧‧Base assembly 2508‧‧‧Release mechanism 2510‧‧‧Transducer Probe/Transducer Probe Connector 2512‧‧‧Transducer port 2602‧‧‧2D image window 2604‧‧‧2D image scanning 2606‧‧‧Flexible frequency scanning 2700‧‧‧Tablet 2702‧‧‧Flexible frequency control 2704‧‧‧2D image window 2706‧‧‧2D image 2708‧‧‧Motion mode imaging 2800‧‧‧Tablet/Tablet Monitor 2802‧‧‧Color Doppler Scan Information 2804‧‧‧Flexible frequency control 2806‧‧‧2D image window 2808‧‧‧Color coding information 2810‧‧‧2D image 2900‧‧‧Tablet PC Monitor 2902‧‧‧2D image 2904‧‧‧Adjustable frequency control 2906‧‧‧Hybrid operating mode 2908‧‧‧Shadows of gray 2910‧‧‧Time/Doppler frequency 2912‧‧‧Sample gate 3000‧‧‧Tablet PC Monitor/Tablet PC 3002‧‧‧2D Window/2D Image Window 3004‧‧‧Color coding information 3006‧‧‧Color code overlay 3008‧‧‧Sample volume/sample gate 3010‧‧‧Flexible frequency control 3012‧‧‧Time/Doppler shift 3016‧‧‧2D image 3100‧‧‧GUI Home Screen/Screen Interface/GUI Home Screen/Main GUI Home Screen 3102‧‧‧Image display window 3104‧‧‧Menu bar 3106‧‧‧Image control column 3108‧‧‧Depth Control Touch Control 3110‧‧‧2D gain touch control 3112‧‧‧Full screen touch control 3114‧‧‧Text touch control 3116‧‧‧Split screen touch control 3118‧‧‧ENV touch control 3120‧‧‧CD touch control 3122‧‧‧PWD touch control 3124‧‧‧Freeze touch control 3126‧‧‧Storage touch control 3128‧‧‧Optimized touch control 3130‧‧‧scrolling image 3200‧‧‧GUI Menu Screen/Screen Interface/Main GUI Menu Screen 3202‧‧‧Image display window 3204‧‧‧Menu bar 3206‧‧‧Expand format 3208‧‧‧Patient touch control 3210‧‧‧Default touch control 3212‧‧‧Review Touch Control 3214‧‧‧Report touch control 3216‧‧‧Set up touch control 3218‧‧‧image 3220‧‧‧Image control column 3224‧‧‧2D gain touch control 3226‧‧‧Full screen touch control 3228‧‧‧Text touch control 3230‧‧‧Split screen touch control 3232‧‧‧Needle Visual ENV Touch Control 3236‧‧‧PWD touch control 3238‧‧‧Freeze touch control 3240‧‧‧Storage touch control 3242‧‧‧Optimized touch control 3302‧‧‧Menu bar 3304‧‧‧New Patient Touch Screen Control 3306‧‧‧New research on touch screen control 3308‧‧‧Research List Touch Screen Control 3310‧‧‧Work List Touch Screen Control 3312‧‧‧Edit Touch Screen Controls 3314‧‧‧Patient information section 3316‧‧‧Research information section 3318‧‧‧Image control column 3320‧‧‧Research on touch control 3324‧‧‧Print touch control 3326‧‧‧Print preview touch control 3328‧‧‧Cancel touch control 3330‧‧‧2D touch control 3332‧‧‧Freeze touch control 3334‧‧‧Save touch control 3400‧‧‧GUI Patient Information Screen Interface/Default Screen 3402‧‧‧Menu bar 3404‧‧‧Default selection mode/selection mode 3408‧‧‧Image control column 3410‧‧‧Save settings touch control 3412‧‧‧Delete touch controls 3414‧‧‧CD touch control 3416‧‧‧PWD touch control 3418‧‧‧Freeze touch control 3420‧‧‧Storage touch control 3422‧‧‧Optimized touch control 3500‧‧‧GUI Review Screen/Screen/Screen 3502‧‧‧Menu bar 3504‧‧‧Default review 3506‧‧‧Image display window 3508‧‧‧image 3510‧‧‧image 3512‧‧‧image 3514‧‧‧image 3516‧‧‧Image control column 3518‧‧‧Thumbnail setting touch control 3520‧‧‧Synchronized touch control 3522‧‧‧Select touch control 3524‧‧‧Previous image touch control 3526‧‧‧Next image touch control 3528‧‧‧2D image touch control 3530‧‧‧Pause image touch control 3532‧‧‧Save image touch control 3600‧‧‧Screen Interface/Report Screen 3602‧‧‧Menu bar 3604‧‧‧Report begins review 3606‧‧‧Monitor screen 3608‧‧‧Image control column 3610‧‧‧Save touch control 3612‧‧‧Save new file touch control 3614‧‧‧Printing touch control 3616‧‧‧Print preview touch control 3618‧‧‧Carefully study touch control 3620‧‧‧2D image touch control 3622‧‧‧Freeze image touch control 3624‧‧‧Save image touch control 3700‧‧‧Screen Interface/Screen 3702‧‧‧Menu bar 3704‧‧‧Report begins review 3706‧‧‧General touch control 3708‧‧‧Display touch control 3710‧‧‧Measurement touch control 3712‧‧‧Annotation Touch Control 3714‧‧‧Print Touch Control 3716‧‧‧Save/Get Touch Controls 3718‧‧‧DICOM touch control 3720‧‧‧Export touch control 3722‧‧‧Research Information Image Touch Control 3724‧‧‧Configuration screen 3726‧‧‧Soft key plug-in position 3728‧‧‧Image control column 3730‧‧‧Thumbnail setting touch control 3732‧‧‧Synchronized touch control 3734‧‧‧Select touch control 3736‧‧‧Previous image touch control 3738‧‧‧Next image touch control 3740‧‧‧2D image touch control 3742‧‧‧Pause image touch control 3750‧‧‧Soft key control arrows 3752‧‧‧Soft key control 3760‧‧‧Soft key control arrows 3762‧‧‧Soft key control 3800‧‧‧Screen Interface/Settings Screen 3802‧‧‧Menu Bar/Save/Get Touch Control 3804‧‧‧Report expansion review/set expansion screen 3806‧‧‧General touch control 3808‧‧‧Display touch control 3810‧‧‧Measurement touch control 3812‧‧‧Annotation Touch Control 3814‧‧‧Printing touch control 3816‧‧‧Save/Get touch control 3818‧‧‧DICOM touch control 3820‧‧‧Export touch control 3822‧‧‧Research Information Image Touch Control 3828‧‧‧Image control column 3830‧‧‧Thumbnail setting touch control 3832‧‧‧Synchronized touch control 3834‧‧‧Select touch control 3836‧‧‧Previous image touch control 3838‧‧‧Next image touch control 3840‧‧‧2D image touch control 3842‧‧‧Pause image touch control 3900‧‧‧Configuration 3902‧‧‧y direction/y axis 3904‧‧‧x direction/x axis 3906‧‧‧z axis 3908‧‧‧Polarization axis 3910‧‧‧elevation axis 3912‧‧‧Configuration 3914‧‧‧Ultrasound images 3920‧‧‧elevation axis 3922‧‧‧Polarization axis 3924‧‧‧Ultrasound images 4002‧‧‧Top Array 4004‧‧‧Bottom Array 4006‧‧‧High voltage driving pulse 4008‧‧‧High voltage driving pulse 4010‧‧‧High voltage driving pulse 4012‧‧‧Array 4102‧‧‧High voltage pulse 4104‧‧‧High voltage pulse 4106‧‧‧High voltage pulse 4108‧‧‧Ground 4110‧‧‧Array 4112‧‧‧Top Array 4114‧‧‧Bottom Array 4202‧‧‧Receiving electronic device 4204‧‧‧Select bottom array 4206‧‧‧High voltage driver 4208‧‧‧Select top array 4210‧‧‧High Voltage Driver 4212‧‧‧High voltage driver 4302‧‧‧Apical two chambers 4304‧‧‧Apical four chambers 4402‧‧‧Image 4404‧‧‧Image 4900‧‧‧Operation 4902‧‧‧Operation 4904‧‧‧Operation 4906‧‧‧Operation 4908‧‧‧Operation 4910‧‧‧Operation 4950‧‧‧Laparoscopic transducer probe/probe 4952‧‧‧EM sensor 4954‧‧‧Distributed processor system/core processor and memory/distributed processor system or graphics processing unit 5101‧‧‧Linear Imaging Array 5102‧‧‧Vertical Array 5200‧‧‧sequence 5202‧‧‧Steps 5204‧‧‧Steps 5206‧‧‧Steps 5208‧‧‧Steps 5210‧‧‧Steps 5212‧‧‧Steps 5402‧‧‧Beamforming engine/engine 5404‧‧‧Bus 5405‧‧‧Ultrasound software operation/ultrasound application 5406‧‧‧Processor 5408‧‧‧Information and images 5410‧‧‧Machine learning and/or image processing applications/processors/processing applications/central processing unit applications 5420‧‧‧Graphics Processing Unit/Processor 5422‧‧‧Memory 5490‧‧‧Focused line 5492‧‧‧parallel lines 5920‧‧‧Shared memory 5940‧‧‧Third-party applications 5960‧‧‧Control circuit 6020‧‧‧Core Processor 6040‧‧‧Graphics Processing Unit 6050‧‧‧Shared memory 6060‧‧‧Bus 6310‧‧‧Console 6320‧‧‧Control 6420‧‧‧soft key 7001‧‧‧Board Connector 7002‧‧‧Graphic Visual Indicator/Processing Unit 7004‧‧‧Memory 7006‧‧‧Data storage device 7010‧‧‧Battery 7012‧‧‧Trusted Platform Module 7014‧‧‧Connector 7120‧‧‧Open window or menu 7140‧‧‧Diagnostic Imaging Sequence 7020‧‧‧Voice indicator 7030‧‧‧Mode switching menu 7032‧‧‧Operating mode

結合附圖參考以下說明,例示性實施例之上述及其他的目標、態樣、特徵及優勢將變得顯而易見且可更好理解,在附圖中: 圖1A係根據本申請案之一例示性實施例之例示性醫療超音波成像裝備之一平面圖; 圖1B展示具有一鍵盤控制面板及一摺疊式顯示器之一電池供電型可移動系統; 圖2A及圖2B係根據本發明之較佳實施例之醫療超音波成像系統之側視圖; 圖3AA至圖3AL圖解說明例示性單點及多點手勢,該等手勢可用作去往根據本發明之較佳實施例之醫療超音波成像系統之使用者輸入; 圖3B圖解說明操作根據本發明之較佳實施例之一平板式超音波系統之一程序流程圖; 圖3C至圖3K圖解說明用以調整波束成形操作及顯示操作之觸控螢幕手勢之細節; 圖4A至圖4C圖解說明可實施於根據本發明之較佳實施例之醫療超音波成像系統上之幾子組的例示性觸控控制; 圖5A及圖5B係具有一囊性病變之一肝臟在根據本發明之較佳實施例之醫療超音波成像系統之一觸控螢幕顯示器上之例示性圖示; 圖5C及圖5D係肝臟及囊性病變在圖5A及圖5B之觸控螢幕顯示器上之例示性圖示,該觸控螢幕顯示器包含與肝臟之一被擴大部分對應之一虛擬視窗; 圖6A係一心臟之一心尖四(4)腔觀在醫療超音波成像系統之觸控螢幕顯示器上之一例示性圖示; 圖6B至圖6E圖解說明在圖6A之觸控螢幕顯示器上對心臟之左心室之一心內膜緣之一例示性手動描摹; 圖7A至圖7C圖解說明在圖5C及圖5D之虛擬視窗內對肝臟上之囊性病變之大小之一例示性量測; 圖8A至圖8C圖解說明在圖5C及圖5D之虛擬視窗內對肝臟上之囊性病變進行一例示性測徑量測; 圖9A圖解說明附接至處理器殼體之複數個換能器陣列中之一者; 圖9B展示根據例示性實施例之一換能器附接序列; 圖9C展示例示性實施例之一針感測定位系統之一透視圖; 圖9D展示例示性實施例之一針引導件之一透視圖; 圖9E展示例示性實施例之一針感測定位系統之一透視圖; 圖9F圖解說明具有一蜂巢通信卡之一系統; 圖10A展示量測心臟壁運動之一方法; 圖10B展示例示性實施例之一整合式超音波探針之一示意性方塊圖; 圖10C展示例示性實施例之一整合式超音波探針之一示意性方塊圖; 圖11係一超音波引擎(亦即,前端超音波特殊電路系統)之一例示性實施例及例示性超音波裝置之一電腦主機板(亦即,主機電腦)之一例示性實施例的一詳細示意性方塊圖; 圖12繪示一電路板之一示意性側視圖,該電路板包含裝配成一垂直堆疊組態之一多晶片模組; 圖13係製作包含裝配成一垂直堆疊組態之一多晶片模組之一電路板之一例示性方法之一流程圖; 圖14A係包含四個垂直堆疊晶粒之一多晶片模組之一示意性側視圖,其中該等晶粒彼此被具有一2合1切割晶粒附接膜(D-DAF)之被動矽層間隔開; 圖14B係包含四個垂直堆疊晶粒之一多晶片模組之一示意性側視圖,其中該等晶粒彼此被用作晶粒間間隔件之DA膜型黏合劑間隔開; 圖14C係包含四個垂直堆疊晶粒之一多晶片模組之一示意性側視圖,其中該等晶粒彼此被用作晶粒間間隔件之DA膏或膜型黏合劑間隔開; 圖15係進行晶粒間堆疊之另一例示性方法之一流程圖,該方法使用(a)具有一2合1切割晶粒附接膜(D-DAF)之被動矽層、(b)DA膏、(c)厚DA膜、及(d)包含一2合1 D-DAF之導線上膜(FOW); 圖16係一多晶片模組之一示意性側視圖,該多晶片模組包含垂直地整合成一垂直堆疊組態的一超音波傳輸/接收IC晶片、放大器IC晶片及一超音波波束成形器IC晶片; 圖17係一超音波引擎(亦即,前端超音波特殊電路系統)之一例示性實施例及一電腦主機板(亦即,主機電腦)之一例示性實施例的一詳細示意性方塊圖,該超音波引擎與該電腦主機板設置為一單板式完整超音波系統; 圖18係根據例示性實施例提供之一例示性可移動超音波系統之一透視圖; 圖19圖解說明呈現於圖18之例示性可移動超音波系統之一觸控螢幕顯示器上之一主圖形使用者介面(GUI)之一例示性視圖; 圖20A及圖20B係根據本發明之另一較佳實施例之醫療超音波成像系統之俯視圖; 圖21圖解說明根據本發明之較佳實施例之一平板式超音波系統之一較佳搬運車系統; 圖22圖解說明根據本發明之較佳實施例之一模組化超音波成像系統之較佳搬運車系統; 圖23A及圖23B圖解說明根據本發明之較佳實施例之一模組化超音波成像系統之較佳搬運車系統; 圖24圖解說明根據本發明之較佳實施例之一模組化超音波成像系統之較佳搬運車系統; 圖25A至圖25B圖解說明平板式超音波裝置之一多功能插接基座; 圖26圖解說明根據本發明之一模組化超音波成像系統之一2D成像操作模式; 圖27圖解說明根據本發明之一模組化超音波成像系統之一運動操作模式; 圖28圖解說明根據本發明之一模組化超音波成像系統之一彩色都卜勒操作模式; 圖29圖解說明根據本發明之一模組化超音波成像系統之一脈衝波都卜勒操作模式; 圖30圖解說明根據本發明之一模組化超音波成像系統之一個三工掃描操作模式; 圖31圖解說明根據本發明之一模組化超音波成像系統的在一使用者操作模式下之一GUI主螢幕介面; 圖32圖解說明根據本發明之一模組化超音波成像系統的在一使用者操作模式下之一GUI選單螢幕介面; 圖33圖解說明根據本發明之一模組化超音波成像系統的在一使用者操作模式下之一GUI患者資料螢幕介面; 圖34圖解說明根據本發明之一模組化超音波成像系統的在一使用者操作模式下之一GUI預設螢幕介面; 圖35圖解說明根據本發明之一模組化超音波成像系統的在一使用者操作模式下之一GUI審閱螢幕介面; 圖36圖解說明根據本發明之一模組化超音波成像系統的在一使用者操作模式下之一GUI報告螢幕介面; 圖37A至圖37C圖解說明根據本發明之一模組化超音波成像系統的在一使用者操作模式下之一GUI設置顯示器螢幕介面; 圖38圖解說明根據本發明之一模組化超音波成像系統之一使用者操作模式之一GUI設置儲存/獲取螢幕介面; 圖39A至圖39C圖解說明根據本發明之一較佳實施例之XY雙平面探針,該XY雙平面探針包括兩個一維1D多元件陣列; 圖40圖解說明形成xy探針之一雙平面影像之操作; 圖41圖解說明形成xy探針之一雙平面影像之操作; 圖42圖解說明形成xy探針之一雙平面影像之一高電壓驅動器電路; 圖43A至圖43B圖解說明左心室狀況之同時雙平面評估;且 圖44A及圖44B圖解說明根據本發明之較佳實施例之博出分率探針量測技術; 圖45展示隨著橫向距離(以mm為單位)而變化的在焦距處在組織中之基波頻率、二次諧波頻率及超諧波頻率下所計算之聲壓位準; 圖46展示基波、二次諧波及三次諧波的波束輪廓; 圖47展示15百萬赫基波影像、15百萬赫傳輸波形、15百萬赫所接收A模式波形的一A模式曲線圖; 圖48展示15百萬赫接收基波影像、15百萬赫傳輸波形之幻影A模式影像之一半高寬(FWHM)曲線圖; 圖49圖解說明GAMMAX 4040GS幻影之使用、在軸向維度上之二次諧波半高寬(FWHM)接腳尺寸、7.5百萬赫傳輸波形及15百萬赫所接收二次諧波影像; 圖50圖解說明GAMMAX 4040GS幻影之使用、在軸向維度上之三次諧波半高寬(FWHM)接腳尺寸、5百萬赫傳輸波形及15百萬赫所接收波形; 圖51A及圖51B圖解說明一方形波形之一頻譜在低於基波頻率約-4分貝處具有一三次諧波分量,該三次諧波分量係三次高諧波分量;因此習用方形波不適合用作實現高次諧波成像之傳輸波形; 圖52圖解說明三分之二波形,該三分之二波形圖解說明一諧波信號; 圖53展示一個三分之二方形波形及一正弦波之一頻譜;此經修改波形具有比一規則方形波之三次諧波分量大得多之一三次諧波分量,且接近一純正弦波; 圖54A及圖54B提供對一基波影像與超諧波成像之比較,其中超諧波影像係利用脈衝相消技術藉由使用4.5百萬赫傳輸三分之二經修改波形產生且由三次高諧波、四次高諧波及五次高諧波組成; 圖54C圖解說明穿過所關注區而放置之一單個線。 圖54D及圖54E展示在一第一頻率脈衝之後傳回之回波之形狀以及在一第二頻率下在一負單脈衝傳輸波形之後的一傳回回波; 圖54F圖解說明穿過自動重複進行該程序之所關注區之若干條線; 圖55A展示標記有掃描方向及探針放置之水凝膠墊。每一矩形係50 mm × 200 mm,將換能器放置於第一矩形之頂部處且徒手移動至底部。且使探針移動至第二矩形之開始點,再次開始掃描直至覆蓋四個矩形區域為止。 圖55B圖解說明具有一成像陣列及一位置追蹤陣列之一換能器陣列。 圖55C圖解說明使用一換能器探針之位置追蹤之一成像序列。 圖56A圖解說明根據本申請案之各種實施例的具有全連接人工神經節點之一計算神經網路模型。 圖56B圖解說明根據本申請案之各種實施例之一徑向基底函數分類器模型之一部分,該徑向基底函數分類器模型具有輸入層及隱藏層。 圖57圖解說明根據本申請案之各種實施例的使用多個模態進行成像之一過程之一流程圖。 圖58A圖解說明根據本文中所闡述之各種實施例的用於執行多模式成像之一系統。 圖58B圖解說明包含一圖形處理器之又一實施例,該圖形處理器執行本文中所闡述的機器學習及影像處理以及診斷方法。 圖58C圖解說明根據本文中所闡述之各種實施例之一例示性超音波應用資料流。 圖58D圖解說明根據本文中所闡述之各種實施例之一例示性人工智慧應用資料流。 圖58E繪示根據各種實施例之一平板電腦組態之一電路板佈局之一圖片。 圖59圖解說明根據本文中所闡述之各種實施例使用一共用記憶體來提供與一外部應用之通信。 圖60A繪示整合至一例示性平板型或膝上型超音波系統中之一散佈式處理器系統4954。 圖60B展示對一患者執行回波心動量測之一軟體引擎之一螢幕截圖。 圖61圖解說明用於執行範圍閘分析之一個三工掃描影像。 圖62圖解說明一影像視窗顯示器軟鍵或觸控圖標。 圖63圖解說明一可移動超音波系統之一鍵盤控制面板。 圖64圖解說明顯示於成像視窗上之複數個軟鍵。 圖65圖解說明添加有箭頭及文字的子宮纖維瘤之成像。 圖66圖解說明隨著深度而變化之一時間增益控制(TGC)曲線。 圖67圖解說明使用觸控螢幕或控制面板啟動之一經修改ROI視窗。 圖68圖解說明一影像上之一橢圓之量測。 圖69展示一影像上之形狀之痕跡量測。 圖70展示一時間序列量測顯示視窗。 圖71圖解說明一解剖研究預設選擇視窗。 圖72圖解說明一經調整傳輸頻率之一針可視化。 圖73圖解說明根據各種實施例之一平板式超音波裝置之一剖面圖。 圖74圖解說明根據本文中所闡述之各種實施例之平板式超音波裝置之一仰視示意圖,其中殼體之底部部分及超音波引擎被移除。 圖75圖解說明根據本文中所闡述之各種實施例之平板式超音波裝置之顯示器之一示意圖。The above and other objects, aspects, features and advantages of illustrative embodiments will become apparent and better understood with reference to the following description taken in conjunction with the accompanying drawings, in which: 1A is a plan view of an exemplary medical ultrasound imaging device according to an exemplary embodiment of the present application; Figure 1B shows a battery-powered portable system with a keyboard control panel and a folding display; 2A and 2B are side views of a medical ultrasound imaging system according to a preferred embodiment of the present invention; 3AA-3AL illustrate exemplary single-point and multi-point gestures that may be used as user input to a medical ultrasound imaging system according to preferred embodiments of the present invention; 3B illustrates a process flow chart for operating a flat-panel ultrasound system according to a preferred embodiment of the present invention; Figures 3C-3K illustrate details of touch screen gestures used to adjust beamforming operations and display operations; 4A-4C illustrate several subsets of exemplary touch controls that may be implemented on a medical ultrasound imaging system in accordance with preferred embodiments of the present invention; 5A and 5B are illustrative illustrations of a liver with a cystic lesion on a touch screen display of a medical ultrasound imaging system according to a preferred embodiment of the present invention; Figures 5C and 5D are illustrative illustrations of liver and cystic lesions on the touch screen display of Figures 5A and 5B, the touch screen display including a virtual window corresponding to an enlarged portion of the liver; Figure 6A is an illustrative illustration of an apical four (4) chamber view of a heart on a touch screen display of a medical ultrasound imaging system; 6B-6E illustrate an exemplary manual tracing of an endocardial rim of the left ventricle of the heart on the touch screen display of FIG. 6A; Figures 7A-7C illustrate an exemplary measurement of the size of a cystic lesion on the liver within the virtual window of Figures 5C and 5D; Figures 8A to 8C illustrate an exemplary caliper measurement of a cystic lesion on the liver within the virtual window of Figures 5C and 5D; 9A illustrates one of a plurality of transducer arrays attached to a processor housing; Figure 9B shows a transducer attachment sequence according to one of the exemplary embodiments; 9C shows a perspective view of a needle sensing positioning system according to an exemplary embodiment; 9D shows a perspective view of a needle guide of an exemplary embodiment; 9E shows a perspective view of a needle sensing positioning system according to an exemplary embodiment; Figure 9F illustrates a system with a cellular communications card; Figure 10A shows one method of measuring heart wall motion; Figure 10B shows a schematic block diagram of an integrated ultrasonic probe according to an exemplary embodiment; Figure 10C shows a schematic block diagram of an integrated ultrasonic probe according to an exemplary embodiment; Figure 11 is an illustration of an exemplary embodiment of an ultrasound engine (ie, front-end ultrasound special circuit system) and an exemplary embodiment of a computer motherboard (ie, host computer) of the exemplary ultrasound device Detailed schematic block diagram; 12 illustrates a schematic side view of a circuit board including multi-chip modules assembled in a vertically stacked configuration; 13 is a flowchart of an illustrative method of fabricating a circuit board including a multi-chip module assembled into a vertically stacked configuration; Figure 14A is a schematic side view of a multi-die module containing four vertically stacked dies separated from each other by a passive silicon layer with a 2-in-1 diced die attach film (D-DAF). separate; separate 14B is a schematic side view of a multi-die module containing four vertically stacked dies separated from each other by a DA film adhesive used as an inter-die spacer; 14C is a schematic side view of a multi-die module containing four vertically stacked dies separated from each other by DA paste or film adhesive used as inter-die spacers; Figure 15 is a flow diagram of another exemplary method of performing inter-die stacking using (a) a passive silicon layer with a 2-in-1 diced die attach film (D-DAF), (b) DA paste, (c) thick DA film, and (d) over-the-wire (FOW) containing a 2-in-1 D-DAF; Figure 16 is a schematic side view of a multi-chip module including an ultrasonic transmission/reception IC chip, an amplifier IC chip and an ultrasonic beamformer IC vertically integrated into a vertical stack configuration wafer; 17 is a detailed schematic block diagram of an exemplary embodiment of an ultrasound engine (ie, front-end ultrasound special circuitry) and an exemplary embodiment of a computer motherboard (ie, host computer), The ultrasonic engine and the computer motherboard are configured as a single-board complete ultrasonic system; Figure 18 is a perspective view of an exemplary mobile ultrasound system provided in accordance with exemplary embodiments; 19 illustrates an exemplary view of a main graphical user interface (GUI) presented on a touch screen display of the exemplary mobile ultrasound system of FIG. 18; 20A and 20B are top views of a medical ultrasound imaging system according to another preferred embodiment of the present invention; Figure 21 illustrates a preferred truck system of a flat-panel ultrasonic system according to a preferred embodiment of the present invention; Figure 22 illustrates a preferred truck system of a modular ultrasound imaging system according to a preferred embodiment of the present invention; 23A and 23B illustrate a preferred truck system of a modular ultrasound imaging system according to a preferred embodiment of the present invention; Figure 24 illustrates a preferred truck system of a modular ultrasound imaging system according to a preferred embodiment of the present invention; 25A to 25B illustrate a multifunctional plug-in base of a flat-panel ultrasound device; Figure 26 illustrates a 2D imaging operating mode of a modular ultrasound imaging system according to the present invention; Figure 27 illustrates a motion operating mode of a modular ultrasound imaging system according to the present invention; Figure 28 illustrates a color Doppler operating mode of a modular ultrasound imaging system in accordance with the present invention; Figure 29 illustrates a pulse wave Doppler operating mode of a modular ultrasound imaging system in accordance with the present invention; Figure 30 illustrates a three-way scan operation mode of a modular ultrasound imaging system according to the present invention; Figure 31 illustrates a GUI main screen interface in a user operation mode of a modular ultrasound imaging system according to the present invention; Figure 32 illustrates a GUI menu screen interface in a user operation mode of a modular ultrasound imaging system according to the present invention; Figure 33 illustrates a GUI patient information screen interface in a user operating mode of a modular ultrasound imaging system according to the present invention; Figure 34 illustrates a GUI default screen interface in a user operation mode of a modular ultrasound imaging system according to the present invention; Figure 35 illustrates a GUI review screen interface in a user operating mode of a modular ultrasound imaging system according to the present invention; Figure 36 illustrates a GUI report screen interface in a user operation mode of a modular ultrasound imaging system according to the present invention; 37A to 37C illustrate a GUI setting display screen interface in a user operation mode of a modular ultrasound imaging system according to the present invention; Figure 38 illustrates a GUI setting storage/retrieval screen interface in a user operation mode of a modular ultrasound imaging system according to the present invention; 39A to 39C illustrate an XY biplane probe according to a preferred embodiment of the present invention, the XY biplane probe including two one-dimensional 1D multi-element arrays; Figure 40 illustrates the operation of forming a biplanar image of an xy probe; Figure 41 illustrates the operation of forming a biplanar image of an xy probe; Figure 42 illustrates a high voltage driver circuit that forms a biplane image of an xy probe; Figures 43A-43B illustrate simultaneous biplane assessment of left ventricular status; and 44A and 44B illustrate a shot rate probe measurement technology according to a preferred embodiment of the present invention; Figure 45 shows the calculated sound pressure levels at the fundamental frequency, second harmonic frequency and superharmonic frequency in the tissue at the focal length as a function of lateral distance (in mm); Figure 46 shows the beam profiles of the fundamental, second harmonic, and third harmonic; Figure 47 shows an A-mode curve of 15 MHz fundamental wave image, 15 MHz transmission waveform, and 15 MHz received A-mode waveform; Figure 48 shows the full width at half maximum (FWHM) curve of the phantom A-mode image of the 15 MHz received fundamental wave image and the 15 MHz transmitted waveform; Figure 49 illustrates the use of the GAMMAX 4040GS phantom, second harmonic half maximum (FWHM) pin dimensions in the axial dimension, 7.5 MHz transmitted waveform, and 15 MHz received second harmonic image; Figure 50 illustrates the use of GAMMAX 4040GS Phantom, third harmonic half maximum (FWHM) pin dimensions in the axial dimension, 5 MHz transmitted waveform and 15 MHz received waveform; Figure 51A and Figure 51B illustrate that a spectrum of a square waveform has a third harmonic component at about -4 dB lower than the fundamental frequency. The third harmonic component is a third high harmonic component; therefore, the conventional square wave is not suitable for use. To realize the transmission waveform of high-order harmonic imaging; Figure 52 illustrates a two-thirds waveform illustrating a harmonic signal; Figure 53 shows a two-thirds square waveform and a spectrum of a sine wave; this modified waveform has a third harmonic component that is much larger than the third harmonic component of a regular square wave, and is close to a pure sine wave ; Figure 54A and Figure 54B provide a comparison of a fundamental image and superharmonic imaging, where the superharmonic image is generated using pulse cancellation technology by transmitting two-thirds of the modified waveform using 4.5 MHz and is generated from a third-order high-frequency waveform. It consists of harmonics, fourth harmonic and fifth harmonic; Figure 54C illustrates a single line placed through the area of interest. Figures 54D and 54E show the shape of a return echo after a first frequency pulse and a return echo after a negative single pulse transmission waveform at a second frequency; Figure 54F illustrates several lines passing through the area of interest through which the process is automatically repeated; Figure 55A shows a hydrogel pad marked with scanning direction and probe placement. Each rectangle is 50 mm × 200 mm. Place the transducer at the top of the first rectangle and move it to the bottom with your bare hands. And move the probe to the starting point of the second rectangle, and start scanning again until four rectangular areas are covered. Figure 55B illustrates a transducer array having an imaging array and a position tracking array. Figure 55C illustrates an imaging sequence using position tracking of a transducer probe. Figure 56A illustrates a computational neural network model with fully connected artificial neural nodes in accordance with various embodiments of the present application. Figure 56B illustrates a portion of a radial basis function classifier model having an input layer and a hidden layer in accordance with various embodiments of the present application. Figure 57 illustrates a flow diagram of a process for imaging using multiple modalities in accordance with various embodiments of the present application. Figure 58A illustrates a system for performing multi-modal imaging in accordance with various embodiments set forth herein. Figure 58B illustrates yet another embodiment that includes a graphics processor that performs the machine learning and image processing and diagnostic methods described herein. Figure 58C illustrates an exemplary ultrasound application data flow according to one of the various embodiments set forth herein. Figure 58D illustrates an exemplary artificial intelligence application data flow according to one of the various embodiments set forth herein. Figure 58E illustrates an image of a circuit board layout of a tablet computer configuration according to various embodiments. Figure 59 illustrates the use of a shared memory to provide communication with an external application in accordance with various embodiments described herein. Figure 60A illustrates a distributed processor system 4954 integrated into an exemplary tablet or laptop ultrasound system. Figure 60B shows a screenshot of a software engine performing echocardiography on a patient. Figure 61 illustrates a triple scan image used to perform range gate analysis. Figure 62 illustrates an image window display soft key or touch icon. Figure 63 illustrates a keyboard control panel of a mobile ultrasound system. Figure 64 illustrates a plurality of soft keys displayed on the imaging window. Figure 65 illustrates imaging of uterine fibroids with arrows and text added. Figure 66 illustrates a time gain control (TGC) curve as a function of depth. Figure 67 illustrates a modified ROI window launched using a touch screen or control panel. Figure 68 illustrates the measurement of an ellipse on an image. Figure 69 shows the trace measurement of the shape on an image. Figure 70 shows a time series measurement display window. Figure 71 illustrates an anatomy study preset selection window. Figure 72 illustrates a needle visualization once the transmission frequency is adjusted. Figure 73 illustrates a cross-sectional view of a flat-panel ultrasound device according to various embodiments. Figure 74 illustrates a bottom schematic view of a flat-panel ultrasound device with the bottom portion of the housing and the ultrasound engine removed, in accordance with various embodiments set forth herein. Figure 75 illustrates a schematic diagram of a display of a flat-panel ultrasound device in accordance with various embodiments set forth herein.

2000‧‧‧醫療超音波成像裝備/平板電腦系統 2000‧‧‧Medical ultrasound imaging equipment/tablet computer system

2010‧‧‧觸控螢幕顯示器 2010‧‧‧Touch screen monitor

2020‧‧‧超音波控制 2020‧‧‧Ultrasonic Control

2030‧‧‧殼體 2030‧‧‧Case

2040‧‧‧超音波資料 2040‧‧‧Ultrasound data

2060‧‧‧前面板 2060‧‧‧Front panel

2070‧‧‧後面板 2070‧‧‧Rear panel

2080‧‧‧埠 2080‧‧‧Port

2082‧‧‧卡 2082‧‧‧Card

2084‧‧‧SIM卡/SIM電路 2084‧‧‧SIM card/SIM circuit

Claims (24)

一種可移動醫療超音波成像裝置,其包括:一換能器探針(transducer probe),其容納一換能器陣列;一平板電腦殼體(tablet housing),其與該換能器探針通信,該平板電腦殼體經由一電池供電且具有位於該平板電腦殼體中之一電腦,該電腦具有包含一中央處理單元之至少一個處理器及至少一個記憶體;一觸控螢幕顯示器,其顯示一超音波影像,該觸控螢幕顯示器定位於該平板電腦殼體上;一圖形處理器,其位於該平板電腦殼體中,與該中央處理單元及一共用記憶體通信;以及一超音波波束成形器處理電路(ultrasound beamformer processing circuit),其自該換能器陣列接收影像資料,該超音波波束成形器處理電路通信連接至該電腦且產生經波束成形之影像資料(beamformed image data),其中藉由該圖形處理器對該經波束成形之影像資料執行一機器學習操作以產生顯示於該觸控螢幕顯示器上之一經處理超音波影像。 A movable medical ultrasound imaging device, which includes: a transducer probe that accommodates a transducer array; a tablet housing that communicates with the transducer probe , the tablet computer case is powered by a battery and has a computer located in the tablet computer case, the computer has at least one processor including a central processing unit and at least one memory; a touch screen display that displays an ultrasound image, the touch screen display positioned on the tablet case; a graphics processor located in the tablet case communicating with the central processing unit and a shared memory; and an ultrasound beam An ultrasound beamformer processing circuit receives image data from the transducer array. The ultrasonic beamformer processing circuit is communicatively connected to the computer and generates beamformed image data, wherein A machine learning operation is performed on the beamformed image data by the graphics processor to generate a processed ultrasound image displayed on the touch screen display. 如請求項1之裝置,其中該中央處理單元與連接至一核心記憶體之該圖形處理器安裝於一電路板上。 The device of claim 1, wherein the central processing unit and the graphics processor connected to a core memory are mounted on a circuit board. 如請求項1之裝置,其中該換能器陣列包括一雙平面換能器陣列。 The device of claim 1, wherein the transducer array includes a bi-planar transducer array. 如請求項1之裝置,其中該探針進一步包括與一探針安裝在一起的一 腹腔鏡成像裝置或一相機。 The device of claim 1, wherein the probe further includes a probe installed together Laparoscopic imaging device or a camera. 如請求項1之裝置,其中該中央處理單元與經組態以操作一神經網路之該圖形處理器安裝於一電路板上。 The device of claim 1, wherein the central processing unit and the graphics processor configured to operate a neural network are mounted on a circuit board. 如請求項1之裝置,其中該平板電腦殼體由該平板電腦殼體內之一電池供電,該波束成形器處理電路位於具有一加密電路之該平板電腦殼體中。 The device of claim 1, wherein the tablet case is powered by a battery within the tablet case, and the beamformer processing circuit is located in the tablet case with an encryption circuit. 如請求項1之裝置,其中該電腦可自該觸控螢幕顯示器接收一輸入,該輸入係在該顯示器上之一虛擬視窗之一區內之一第一位置處被接收到。 The device of claim 1, wherein the computer can receive an input from the touch screen display, the input being received at a first position within a region of a virtual window on the display. 如請求項1之裝置,其中在該觸控螢幕顯示器上之一輸入,該輸入與對該觸控螢幕顯示器之一按壓手勢對應。 The device of claim 1, wherein an input on the touch screen display corresponds to a pressing gesture on the touch screen display. 如請求項8之裝置,其進一步包括在該電腦處自該觸控螢幕顯示器接收一第二輸入,該第二輸入與該輸入實質上同時地被接收到。 The apparatus of claim 8, further comprising receiving a second input from the touch screen display at the computer, the second input being received substantially simultaneously with the input. 如請求項1之裝置,其中該換能器陣列包括複數個換能器陣列,該複數個換能器陣列各自由一探針波束成形器處理電路操作。 The device of claim 1, wherein the transducer array includes a plurality of transducer arrays, each of the plurality of transducer arrays being operated by a probe beamformer processing circuit. 如請求項1之裝置,其進一步包括藉由該電腦視情況至少部分地基於一顯示區或虛擬視窗中之一第一位置處之一第一游標對該超音波影像執行 至少一個定量量測。 The device of claim 1, further comprising executing, by the computer, the ultrasound image based at least in part on a first cursor at a first position in a display area or virtual window, as appropriate. At least one quantitative measurement. 如請求項1之裝置,其進一步包括在該電腦處自一鍵盤控制面板或虛擬控制面板接收一輸入。 The device of claim 1, further comprising receiving an input from a keyboard control panel or a virtual control panel at the computer. 如請求項8之裝置,其中又一輸入與對該觸控螢幕顯示器之一按壓與拖動手勢對應。 The device of claim 8, wherein the further input corresponds to a press and drag gesture on the touch screen display. 如請求項1之裝置,其進一步包括一匯流排,該匯流排將該圖形處理器連接至該超音波處理器及該共用記憶體。 The device of claim 1, further comprising a bus connecting the graphics processor to the ultrasonic processor and the shared memory. 如請求項1之裝置,其中該平板電腦殼體具有小於2500立方公分之一體積。 The device of claim 1, wherein the tablet casing has a volume of less than 1/2500 cubic centimeters. 如請求項1之裝置,其中該處理器經組態以回應於一觸控手勢而操作一圖形使用者介面顯示一或多個選單,以使得一使用者可選擇一或多個電腦程式來執行該機器學習操作、一電腦輔助成像操作及/或一擴增實境操作中之至少一者。 The device of claim 1, wherein the processor is configured to operate a graphical user interface to display one or more menus in response to a touch gesture, so that a user can select one or more computer programs to execute. At least one of the machine learning operation, a computer-aided imaging operation and/or an augmented reality operation. 如請求項1之裝置,其中該平板電腦殼體安裝於一搬運車上,且該裝置視情況進一步包括位於該搬運車之一多工器,該多工器可電連接至該平板電腦殼體以連接至複數個換能器陣列,且該多工器可使用一觸控手勢來進行切換。 The device of claim 1, wherein the tablet computer casing is installed on a truck, and the device optionally further includes a multiplexer located on the truck, and the multiplexer can be electrically connected to the tablet computer casing To connect to multiple transducer arrays, the multiplexer can be switched using a touch gesture. 一種可移動醫療超音波成像裝置,其包括:一換能器(transducer)探針,其具有複數個換能器元件;一平板電腦顯示裝置,其在一超音波成像程序期間與該換能器探針通信以處理及顯示超音波資料及影像,該平板電腦顯示裝置具有一電池、包含與一圖形處理單元通信之一中央處理單元之至少一處理器及一觸控螢幕顯示器,其中觸控螢幕手勢致動(actuate)用於顯示超音波影像之複數個操作模式;一超音波波束成形器裝置,其位於該換能器探針中,其處理來自該等換能器元件之超音波信號以產生超音波資料;及其中在該平板電腦顯示裝置中之該圖形處理單元經組態以執行一機器學習操作及在該超音波成像程序期間產生用於顯示在該觸控螢幕顯示器上之一經處理超音波影像。 A movable medical ultrasound imaging device, which includes: a transducer probe having a plurality of transducer elements; a tablet computer display device that communicates with the transducer during an ultrasound imaging procedure The probe communicates to process and display ultrasound data and images. The tablet display device has a battery, at least one processor including a central processing unit in communication with a graphics processing unit, and a touch screen display, wherein the touch screen Gestures actuate multiple operating modes for displaying ultrasound images; an ultrasound beamformer device located in the transducer probe that processes ultrasound signals from the transducer elements to Generating ultrasound data; and wherein the graphics processing unit in the tablet display device is configured to perform a machine learning operation and generate processed data for display on the touch screen display during the ultrasound imaging process Ultrasound images. 如請求項18之裝置,其中該機器學習操作包括以一神經網路(neural network)處理資料。 The device of claim 18, wherein the machine learning operation includes processing data with a neural network. 如請求項18之裝置,其中該機器學習操作包括以一超音波成像模式所產生之一影像覆疊(overlaying)以一第一成像模式所產生之一影像。 The apparatus of claim 18, wherein the machine learning operation includes overlaying an image generated in an ultrasound imaging mode with an image generated in a first imaging mode. 如請求項18之裝置,其中該圖形處理單元係連接至一共用(shared)記憶體。 The device of claim 18, wherein the graphics processing unit is connected to a shared memory. 如請求項19之裝置,其中該神經網路包括一脈衝耦合神經網路。 The device of claim 19, wherein the neural network includes a pulse coupled neural network. 如請求項18之裝置,其中該超音波波束成形器裝置係由位於該換能器探針內之一控制器操作。 The device of claim 18, wherein the ultrasonic beamformer device is operated by a controller located within the transducer probe. 如請求項18之裝置,更包括一圖形使用者介面,其經組態以操作在該觸控螢幕顯示器上,且具有用於選擇複數個超音波成像模式中之一者之一觸控經致動選單視窗(touch actuated menu window)、及用以選擇一機器學習模式之至少一觸控經致動圖標(icon)。 The device of claim 18, further comprising a graphical user interface configured to operate on the touch screen display and having a touch function for selecting one of a plurality of ultrasound imaging modes. a touch actuated menu window, and at least one touch-activated icon for selecting a machine learning mode.
TW108116961A 2018-05-17 2019-05-16 Portable ultrasound system TWI834668B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201862673020P 2018-05-17 2018-05-17
US62/673,020 2018-05-17
US201962819276P 2019-03-15 2019-03-15
US62/819,276 2019-03-15
US201962830200P 2019-04-05 2019-04-05
US62/830,200 2019-04-05

Publications (2)

Publication Number Publication Date
TW202004774A TW202004774A (en) 2020-01-16
TWI834668B true TWI834668B (en) 2024-03-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170360403A1 (en) 2016-06-20 2017-12-21 Alex Rothberg Automated image acquisition for assisting a user to operate an ultrasound device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170360403A1 (en) 2016-06-20 2017-12-21 Alex Rothberg Automated image acquisition for assisting a user to operate an ultrasound device

Similar Documents

Publication Publication Date Title
US20210015456A1 (en) Devices and Methods for Ultrasound Monitoring
US20190336101A1 (en) Portable ultrasound system
US20190365350A1 (en) Portable ultrasound system
US11857363B2 (en) Tablet ultrasound system
JP7304076B2 (en) portable medical ultrasound imaging device
US10387713B2 (en) Apparatus and method of processing medical image
JP5782428B2 (en) System for adaptive volume imaging
US20230181160A1 (en) Devices and methods for ultrasound monitoring
KR102518468B1 (en) Probe apparatus, medical instrument and controlling method thereof
US11020091B2 (en) Ultrasound imaging apparatus and control method for the same
US10806433B2 (en) Ultrasound apparatus and method of operating the same
US20180185011A1 (en) Ultrasonic device and operation method therefor
TWI834668B (en) Portable ultrasound system
WO2019222478A2 (en) Portable ultrasound system
US20240057971A1 (en) Transcranial ultrasound devices and methods
US20160120506A1 (en) Ultrasound imaging apparatus and method of operating same
Thomas et al. 17 Machine Learning Algorithms in the Handling of Ultrasonography Big Data for Disease