TWI834121B - Semiconductor device and method forming the same - Google Patents

Semiconductor device and method forming the same Download PDF

Info

Publication number
TWI834121B
TWI834121B TW111105991A TW111105991A TWI834121B TW I834121 B TWI834121 B TW I834121B TW 111105991 A TW111105991 A TW 111105991A TW 111105991 A TW111105991 A TW 111105991A TW I834121 B TWI834121 B TW I834121B
Authority
TW
Taiwan
Prior art keywords
semiconductor device
opening
region
epitaxial layer
forming
Prior art date
Application number
TW111105991A
Other languages
Chinese (zh)
Other versions
TW202335300A (en
Inventor
賽沙瓦爾 伊瑪目
李家豪
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW111105991A priority Critical patent/TWI834121B/en
Publication of TW202335300A publication Critical patent/TW202335300A/en
Application granted granted Critical
Publication of TWI834121B publication Critical patent/TWI834121B/en

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A semiconductor device, including: a substrate having a first conductive type, an epitaxial layer disposed on the substrate, a doped region disposed in the epitaxial layer, and a gate electrode disposed through the doped region and extending into the epitaxial layer. The epitaxial layer has the first conductive type, and the doped region has a second conductive type different from the first conductive type. The gate electrode includes a first structure having a first dimension, and a second structure above the first structure. The second structure includes a main portion and a protruding portion below the main portion, wherein the main portion has a second dimension larger than the first dimension, and the protruding portion has the first dimension.

Description

半導體元件及其形成方法Semiconductor components and methods of forming the same

本揭露實施例是關於半導體元件及其形成方法,特別是關於「分離閘極(split-gate)」的設計及其形成方法。Embodiments of the present disclosure relate to semiconductor devices and methods of forming the same, and in particular to the design of "split-gate" and methods of forming the same.

傳統的金屬氧化物半導體場效電晶體(metal-oxide semiconductor field effect transistor, MOSFET)為受歡迎的分離式功率元件。特定的功率元件(具有垂直擴散配置的元件)具有PN接面結構,其以N型的飄移區(drift region)和上方的P型摻雜區所構成。PN接面結構主要是用來承受施加於傳統的金屬氧化物半導體場效電晶體的電壓。當改善金屬氧化物半導體場效電晶體的操作電壓時,需要較少的摻雜濃度和較厚的N型飄移區。用來改善PN接面結構所承受的電壓的方式導致傳統的金屬氧化物半導體場效電晶體的較大的導通電阻(on-resistance)。傳統的金屬氧化物半導體場效電晶體的導通電阻受限於N型飄移區的摻雜濃度和厚度。Traditional metal-oxide semiconductor field effect transistor (MOSFET) is a popular discrete power component. Certain power devices (components with vertical diffusion configurations) have a PN junction structure consisting of an N-type drift region and an upper P-type doped region. The PN junction structure is mainly used to withstand the voltage applied to traditional metal oxide semiconductor field effect transistors. When improving the operating voltage of metal oxide semiconductor field effect transistors, less doping concentration and a thicker N-type drift region are required. The method used to improve the voltage withstanding of the PN junction structure results in a larger on-resistance of traditional metal oxide semiconductor field effect transistors. The on-resistance of traditional metal oxide semiconductor field effect transistors is limited by the doping concentration and thickness of the N-type drift region.

垂直擴散的配置具有在電路中用掉較少空間的優勢。然而,由於垂直擴散的配置,N型飄移區的厚度可能會影響元件的整體性能。儘管增加N型飄移區的厚度可改善操作電壓,從而提升崩潰電壓,這樣做也可能增加導通電阻,而導致更高的熱和更大的功率損失(power loss)。換言之,需在崩潰電壓和導通電阻之間做取捨。因此,需要提出創新的方法來解決取捨的問題。The vertical diffusion configuration has the advantage of using up less space in the circuit. However, due to the vertical diffusion configuration, the thickness of the N-type drift region may affect the overall performance of the device. Although increasing the thickness of the N-type drift region can improve the operating voltage and thus the breakdown voltage, doing so may also increase the on-resistance, resulting in higher heating and greater power loss. In other words, there is a trade-off between breakdown voltage and on-resistance. Therefore, innovative methods need to be proposed to solve the problem of trade-offs.

在一實施例中,一種半導體元件包括具有第一導電類型的基底、設置於基底上的磊晶層、設置於磊晶層中的摻雜區、以及設置穿過摻雜區並延伸進入磊晶層中的閘極電極。磊晶層具有第一導電類型,而摻雜區具有第二導電類型,第二導電類型不同於第一導電類型。閘極電極包括具有第一尺寸的第一結構和於第一結構之上的第二結構。第二結構包括主體部和於主體部之下的凸出部,其中主體部具有第二尺寸,第二尺寸大於第一尺寸,而凸出部具有第一尺寸。In one embodiment, a semiconductor device includes a substrate having a first conductivity type, an epitaxial layer disposed on the substrate, a doped region disposed in the epitaxial layer, and a doped region disposed through the doped region and extending into the epitaxial layer. gate electrode in the layer. The epitaxial layer has a first conductivity type, and the doped region has a second conductivity type, the second conductivity type being different from the first conductivity type. The gate electrode includes a first structure having a first size and a second structure on the first structure. The second structure includes a main body portion and a protruding portion under the main body portion, wherein the main body portion has a second size, the second size is larger than the first size, and the protruding portion has a first size.

在另一實施例中,一種半導體元件的形成方法包括提供基底和於基底上的磊晶層;形成摻雜區於磊晶層中;以及形成閘極溝槽穿過摻雜區並延伸進入磊晶層中。閘極溝槽包括第一開口和於第一開口之下的第二開口。第一開口具有第一寬度,而第二開口具有第二寬度,第二寬度小於第一寬度。半導體元件的形成方法更包括以金屬材料填入第二開口;回蝕金屬材料成為閘極電極的第一結構,其中第一結構的頂面低於第二開口的頂部;沉積閘極介電層於第一結構的頂面上,其中閘極介電層的位置低於第二開口的頂部;以及形成閘極電極的第二結構於閘極介電層上並填入第二開口的剩餘部分和第一開口。In another embodiment, a method of forming a semiconductor device includes providing a substrate and an epitaxial layer on the substrate; forming a doped region in the epitaxial layer; and forming a gate trench passing through the doped region and extending into the epitaxial layer. in the crystal layer. The gate trench includes a first opening and a second opening below the first opening. The first opening has a first width and the second opening has a second width, the second width being less than the first width. The method of forming the semiconductor device further includes filling the second opening with a metal material; etching back the metal material to form a first structure of the gate electrode, wherein the top surface of the first structure is lower than the top of the second opening; and depositing a gate dielectric layer on the top surface of the first structure, wherein the position of the gate dielectric layer is lower than the top of the second opening; and forming a second structure of the gate electrode on the gate dielectric layer and filling the remaining portion of the second opening and the first opening.

以下揭露提供了許多不同的實施例或範例,用於實施本發明的不同部件。組件和配置的具體範例描述如下,以簡化本揭露實施例。當然,這些僅僅是範例,並非用以限定本揭露實施例。舉例來說,敘述中提及第一部件形成於第二部件之上,可包括形成第一和第二部件直接接觸的實施例,也可包括額外的部件形成於第一和第二部件之間,使得第一和第二部件不直接接觸的實施例。The following disclosure provides many different embodiments or examples for implementing various components of the invention. Specific examples of components and configurations are described below to simplify embodiments of the present disclosure. Of course, these are only examples and are not intended to limit the embodiments of the present disclosure. For example, the description mentioning that the first component is formed on the second component may include an embodiment in which the first and second components are in direct contact, or may include an additional component formed between the first and second components. , an embodiment in which the first and second components are not in direct contact.

應理解的是,額外的操作步驟可實施於所述方法之前、之間或之後,且在所述方法的其他實施例中,部分的操作步驟可被取代或省略。It should be understood that additional operational steps may be performed before, during, or after the method, and that some of the operational steps may be replaced or omitted in other embodiments of the method.

此外,與空間相關用詞,例如「在…下方」、「下方」、「較低的」、「在…上方」、「上方」、「較高的」和類似用語可用於此,以便描述如圖所示一元件或部件和其他元件或部件之間的關係。這些空間用語企圖包括使用或操作中的裝置的不同方位,以及圖式所述的方位。當裝置被轉至其他方位(旋轉90°或其他方位),則在此所使用的空間相對描述可同樣依旋轉後的方位來解讀。In addition, spatially related terms such as "below", "below", "lower", "above", "above", "higher" and similar terms may be used here to describe e.g. Diagrams show the relationship between one element or component and other elements or components. These spatial terms are intended to include the various orientations of the device in use or operation, as well as the orientation depicted in the drawings. When the device is rotated 90° or at any other orientation, the spatially relative descriptors used herein may be interpreted similarly to the rotated orientation.

在本揭露實施例中,「約」、「大約」、「大抵」之用語通常表示在一給定值或範圍的±20%之內,或±10%之內,或±5%之內,或±3%之內,或±2%之內,或±1%之內,或甚至±0.5%之內。在此給定的數量為大約的數量。亦即,在沒有特定說明「約」、「大約」、「大抵」的情況下,仍可隱含「約」、「大約」、「大抵」之含義。In the embodiments of this disclosure, the terms "about", "approximately" and "approximately" generally mean within ±20%, or within ±10%, or within ±5% of a given value or range, Or within ±3%, or within ±2%, or within ±1%, or even within ±0.5%. The quantities given here are approximate. That is to say, without specifying "about", "approximately", and "approximately", the meaning of "approximately", "approximately", and "approximately" can still be implied.

除非另外定義,在此使用的全部用語(包括技術及科學用語)具有與所屬技術領域中具有通常知識者所通常理解的相同涵義。應能理解的是,這些用語,例如在通常使用的字典中定義的用語,應被解讀成具有與相關技術及本揭露的背景或上下文一致的意思,而不應以一理想化或過度正式的方式解讀,除非在本揭露實施例中有特別定義。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art. It should be understood that these terms, such as those defined in commonly used dictionaries, should be interpreted to have a meaning consistent with the relevant technology and the background or context of the present disclosure, and should not be interpreted in an idealized or overly formal way. interpretation, unless otherwise defined in the embodiments of this disclosure.

以下所揭露之不同實施例可能重複使用相同的參考符號及∕或標記。這些重複係為了簡化與清晰的目的,並非用以主導所討論的各種實施例及∕或結構之間的關係。Different embodiments disclosed below may reuse the same reference symbols and/or labels. These repetitions are for purposes of simplicity and clarity and are not intended to dictate the relationship between the various embodiments and/or structures discussed.

功率元件,如金屬氧化物半導體場效電晶體(metal-oxide semiconductor field effect transistor, MOSFET),可被廣泛地運用在類比(analog)電路和數位(digital)電路的功率系統組件中。為了減少功率元件的功率損失(power loss),導通電阻(on-resistance)必須要降低。從先前的實驗來看,已發現減少磊晶厚度可降低不想要的導通電阻。然而,磊晶厚度的減少超過一定的程度時,功率元件的崩潰電壓(breakdown voltage)可能無法維持在可接受的水準。簡單來說,增加磊晶厚度可同時增加崩潰電壓和導通電阻,而減少磊晶厚度可同時減少崩潰電壓和導通電阻。僅調整磊晶厚度無法同時地提升崩潰電壓並抑制導通電阻。Power components, such as metal-oxide semiconductor field effect transistor (MOSFET), can be widely used in power system components of analog circuits and digital circuits. In order to reduce the power loss of power components, the on-resistance must be reduced. From previous experiments, it has been found that reducing the epitaxial thickness reduces unwanted on-resistance. However, when the epitaxial thickness is reduced beyond a certain level, the breakdown voltage of the power device may not be maintained at an acceptable level. Simply put, increasing the epitaxial thickness can simultaneously increase the breakdown voltage and on-resistance, while decreasing the epitaxial thickness can reduce both the breakdown voltage and on-resistance. Simply adjusting the epitaxial thickness cannot simultaneously increase the breakdown voltage and suppress the on-resistance.

已發現在金屬氧化物半導體場效電晶體中使用「分離閘極(split-gate)」可維持崩潰電壓並減少導通電阻。「分離閘極」結構的配置可將電場驅趕至汲極端,從而增加崩潰電壓並減少導通電阻。「分離閘極」包括不同尺寸的兩個結構。具有較大尺寸的結構決定導通電阻,而具有較小尺寸的結構決定崩潰電壓。更具體而言,本揭露介紹一種由具有較大尺寸延伸的創新凸出部(protruding portion)。凸出部具有其較小尺寸,使得導通電阻可進一步受到抑制。It has been found that the use of "split-gate" in metal oxide semiconductor field effect transistors can maintain the breakdown voltage and reduce the on-resistance. The configuration of the "split gate" structure drives the electric field to the drain terminal, thereby increasing the breakdown voltage and reducing the on-resistance. "Split gate" consists of two structures of different sizes. Structures with larger dimensions determine the on-resistance, while structures with smaller dimensions determine the breakdown voltage. More specifically, the present disclosure introduces an innovative protruding portion extending with a larger size. The protrusion has its smaller size so that the on-resistance can be further suppressed.

第1圖是根據本揭露的一些實施例,半導體元件10的剖面示意圖。在一些實施例中,垂直配置的半導體元件可包含任何數量的閘極結構和源極結構交錯設置,取決於運用和設計需求。為了簡化起見,第1圖僅繪示一個閘極結構橫向地設置於一對源極結構之間。根據本揭露的一些實施例,半導體元件10包括基底100、磊晶層110、摻雜區120、井區130、閘極介電層150、閘極電極160、層間介電(interlayer dielectric, ILD)層200、摻雜接觸區220、源極電極230、以及汲極電極240。在一些實施例中,閘極介電層150可包括第一部分150A、第二部分150B、以及第三部分150C。再者,閘極電極160可包括第一結構160A和第二結構160B。Figure 1 is a schematic cross-sectional view of a semiconductor device 10 according to some embodiments of the present disclosure. In some embodiments, vertically configured semiconductor devices may include any number of staggered gate and source structures, depending on the application and design requirements. For the sake of simplicity, FIG. 1 only shows one gate structure disposed laterally between a pair of source structures. According to some embodiments of the present disclosure, the semiconductor device 10 includes a substrate 100, an epitaxial layer 110, a doped region 120, a well region 130, a gate dielectric layer 150, a gate electrode 160, and an interlayer dielectric (ILD). Layer 200, doped contact region 220, source electrode 230, and drain electrode 240. In some embodiments, the gate dielectric layer 150 may include a first portion 150A, a second portion 150B, and a third portion 150C. Furthermore, the gate electrode 160 may include a first structure 160A and a second structure 160B.

參照第1圖,基底100可為例如晶圓或晶粒,但本揭露實施例並不以此為限。在一些實施例中,基底100可為半導體基底,例如矽基底。此外,在一些實施例中,半導體基底亦可為:元素半導體(elemental semiconductor),包括鍺(germanium);化合物半導體(compound semiconductor),包含氮化鎵(gallium nitride, GaN)、碳化矽(silicon carbide, SiC)、砷化鎵(gallium arsenide, GaAs)、磷化鎵(gallium phosphide, GaP)、磷化銦(indium phosphide, InP)、砷化銦(indium arsenide, InAs)、及∕或銻化銦(indium antimonide, InSb);合金半導體(alloy semiconductor),包含矽鍺(silicon germanium, SiGe)合金、磷砷鎵(gallium arsenide phosphide, GaAsP)合金、砷鋁銦(aluminum indium arsenide, AlInAs)合金、砷鋁鎵(aluminum gallium arsenide, AlGaAs)合金、砷鎵銦(gallium indium arsenide, GaInAs)合金、磷鎵銦(gallium indium phosphide, GaInP)合金、及∕或砷磷鎵銦(gallium indium arsenide phosphide, GaInAsP)合金、或其組合。Referring to FIG. 1 , the substrate 100 may be, for example, a wafer or a die, but the embodiment of the present disclosure is not limited thereto. In some embodiments, the substrate 100 may be a semiconductor substrate, such as a silicon substrate. In addition, in some embodiments, the semiconductor substrate may also be: an elemental semiconductor, including germanium; a compound semiconductor, including gallium nitride (GaN), silicon carbide , SiC), gallium arsenide (GaAs), gallium phosphide (GaP), indium phosphide (InP), indium arsenide (InAs), and/or indium antimonide (indium antimonide, InSb); alloy semiconductor, including silicon germanium (SiGe) alloy, gallium arsenide phosphide (GaAsP) alloy, aluminum indium arsenide (AlInAs) alloy, arsenic Aluminum gallium arsenide (AlGaAs) alloy, gallium indium arsenide (GaInAs) alloy, gallium indium phosphide (GaInP) alloy, and/or gallium indium arsenide phosphide (GaInAsP) Alloys, or combinations thereof.

在其他實施例中,基底100也可以是絕緣層上半導體(semiconductor on insulator, SOI)基底。絕緣層上半導體基底可包含底板、設置於底板上之埋入式氧化物(buried oxide, BOX)層、以及設置於埋入式氧化物層上之半導體層。此外,基底100可為第一導電類型或第二導電類型。在下述實施例中,第一導電類型和第二導電類型可分別代表N型和P型。第一導電類型(N型)和第二導電類型(P型)可個別以合適的摻質(或雜質)摻雜。N型摻質可包括磷、而P型摻質可包括硼。在本揭露的特定實施例中,基底100可為第一導電類型(N型),其摻雜濃度大約介於1×10 19cm -3和3×10 19cm -3之間。 In other embodiments, the substrate 100 may also be a semiconductor on insulator (SOI) substrate. The semiconductor substrate on the insulating layer may include a base plate, a buried oxide (BOX) layer disposed on the base plate, and a semiconductor layer disposed on the buried oxide layer. In addition, the substrate 100 may be of the first conductivity type or the second conductivity type. In the following embodiments, the first conductivity type and the second conductivity type may represent N type and P type respectively. The first conductivity type (N type) and the second conductivity type (P type) can be individually doped with appropriate dopants (or impurities). N-type dopants may include phosphorus, and P-type dopants may include boron. In a specific embodiment of the present disclosure, the substrate 100 may be of the first conductivity type (N-type), and its doping concentration is approximately between 1×10 19 cm −3 and 3×10 19 cm −3 .

在其他實施例中,基底100可包括隔離結構(未繪示)以定義主動區並電性隔離基底100之內或之上的主動區部件,但本揭露實施例並不以此為限。隔離結構可包括深溝槽隔離(deep trench isolation, DTI)結構、淺溝槽隔離(shallow trench isolation, STI)結構、或局部矽氧化(local oxidation of silicon, LOCOS)結構。在一些實施例中,形成隔離結構可包括例如在基底100上形成絕緣層,選擇性地蝕刻絕緣層和基底100以形成由基底100頂面延伸至基底100內一位置的溝槽,其中溝槽位於相鄰的主動區之間。接著,形成隔離結構可包括沿著溝槽成長富含氮(如氧氮化矽(silicon oxynitride, SiON))的襯層,再以沉積製程將絕緣材料(如二氧化矽(silicon dioxide, SiO 2)、氮化矽(silicon nitride, SiN)、或氮氧化矽)填入溝槽中。之後,對溝槽中的絕緣材料進行退火製程,並對基底100進行平坦化製程以移除多餘的絕緣材料,使溝槽中的絕緣材料與基底100的頂面齊平。 In other embodiments, the substrate 100 may include an isolation structure (not shown) to define an active region and electrically isolate active region components within or on the substrate 100 , but the embodiments of the present disclosure are not limited thereto. The isolation structure may include a deep trench isolation (DTI) structure, a shallow trench isolation (STI) structure, or a local oxidation of silicon (LOCOS) structure. In some embodiments, forming the isolation structure may include, for example, forming an insulating layer on the substrate 100, and selectively etching the insulating layer and the substrate 100 to form a trench extending from the top surface of the substrate 100 to a location within the substrate 100, where the trench Located between adjacent active zones. Next, forming the isolation structure may include growing a liner layer rich in nitrogen (such as silicon oxynitride (SiON)) along the trench, and then depositing an insulating material (such as silicon dioxide (SiO 2 ) through a deposition process ), silicon nitride (SiN), or silicon oxynitride) is filled into the trench. Afterwards, an annealing process is performed on the insulating material in the trench, and a planarization process is performed on the substrate 100 to remove excess insulating material, so that the insulating material in the trench is flush with the top surface of the substrate 100 .

繼續參照第1圖,在基底100上提供磊晶層110。根據本揭露的一些實施例,磊晶層110具有第一導電類型,其摻雜濃度大約介於2.9×10 14cm -3和5.0×10 14cm -3之間。在本揭露的一特定實施例中,基底100與磊晶層110具有相同的導電類型,而基底100的摻雜濃度大於磊晶層110的摻雜濃度。磊晶層110的材料可包括砷、其他類似材料、或其組合。磊晶層110的厚度可大約介於4μm和8μm之間,例如大約6μm。可藉由磊晶成長形成磊晶層110。 Continuing to refer to FIG. 1 , an epitaxial layer 110 is provided on the substrate 100 . According to some embodiments of the present disclosure, the epitaxial layer 110 has a first conductivity type, and its doping concentration is approximately between 2.9×10 14 cm −3 and 5.0×10 14 cm −3 . In a specific embodiment of the present disclosure, the substrate 100 and the epitaxial layer 110 have the same conductivity type, and the doping concentration of the substrate 100 is greater than the doping concentration of the epitaxial layer 110 . The material of the epitaxial layer 110 may include arsenic, other similar materials, or combinations thereof. The thickness of the epitaxial layer 110 may be approximately between 4 μm and 8 μm, such as approximately 6 μm. The epitaxial layer 110 may be formed by epitaxial growth.

繼續參照第1圖,可在磊晶層110內形成摻雜區120,其可由磊晶層110的頂面延伸。在一些實施例中,摻雜區120可減少基體電阻(body resistance)、避免對後續形成的源極電極230衝穿(punch-through)、以及改善非箝位電感式負載開關耐用性(unclamped inductive load switching ruggedness)。根據本揭露的一些實施例,摻雜區120具有第二導電類型(P型),其摻雜濃度大約介於1×10 12cm -3和5×10 12cm -3之間。摻雜區120的厚度可大約介於0.8μm和1.2μm之間。可藉由例如離子佈植(ion implantation)及∕或擴散製程(diffusion process)形成摻雜區120。 Continuing to refer to FIG. 1 , a doped region 120 may be formed in the epitaxial layer 110 and may extend from the top surface of the epitaxial layer 110 . In some embodiments, the doped region 120 can reduce body resistance, avoid punch-through of the subsequently formed source electrode 230 , and improve the durability of the unclamped inductive load switch. load switching ruggedness). According to some embodiments of the present disclosure, the doping region 120 has a second conductivity type (P-type), and its doping concentration is approximately between 1×10 12 cm −3 and 5×10 12 cm −3 . The thickness of doped region 120 may be approximately between 0.8 μm and 1.2 μm. The doped region 120 may be formed by, for example, ion implantation and/or a diffusion process.

繼續參照第1圖,可在摻雜區120內形成井區130,其可由摻雜區120的頂面延伸。在一些實施例中,井區130具有第一導電類型(N型)。應注意的是,井區130(N型)於摻雜區120(P型)內和摻雜區120於磊晶層110(N型)內的配置可構成雙極性(NPN)接面。在元件操作期間,可在雙極性接面中形成空乏(depletion)區以降低漏電流並提升崩潰電壓。根據本揭露的一些實施例,井區130具有大約介於4×10 12cm -3和7×10 12cm -3之間的摻雜濃度。井區130的厚度可大約介於1.2μm和1.8μm之間。井區130的形成方法可與摻雜區120的形成方法類似,其細節將不於此重複贅述。 Continuing to refer to FIG. 1 , a well region 130 may be formed within the doped region 120 and may extend from a top surface of the doped region 120 . In some embodiments, well region 130 has a first conductivity type (N-type). It should be noted that the configuration of the well region 130 (N-type) within the doped region 120 (P-type) and the doped region 120 within the epitaxial layer 110 (N-type) may constitute a bipolar (NPN) junction. During device operation, depletion regions can be formed in the bipolar junction to reduce leakage current and increase breakdown voltage. According to some embodiments of the present disclosure, the well region 130 has a doping concentration of approximately between 4×10 12 cm −3 and 7×10 12 cm −3 . The thickness of the well region 130 may be approximately between 1.2 μm and 1.8 μm. The formation method of the well region 130 may be similar to the formation method of the doping region 120, and the details thereof will not be repeated here.

參照第1圖,可形成閘極介電層150和閘極電極160穿過井區130和摻雜區120,並延伸進入磊晶層110中。如先前所提及,閘極電極160可包括第一結構160A和第二結構160B。第二結構160B位在第一結構160A之上。閘極電極160可作為半導體元件10的電晶體閘極端。在一些實施例中,可藉由閘極介電層150(其細節將於下詳述)將閘極電極160與垂直通道區隔絕。閘極電極160的材料可包括金屬、金屬氮化物(如氮化鈦(titanium nitride, TiN))、金屬氧化物(如氧化鈦(titanium oxide, TiO))、其他合適的材料、或其組合,但本揭露實施例並不以此為限。金屬可包括鈷(cobalt, Co)、釕(ruthenium, Ru)、鋁(aluminum, Al)、鎢(tungsten, W)、銅(copper, Cu)、鈦(titanium, Ti)、鉭(tantalum, Ta)、銀(silver, Ag)、金(gold, Au)、鉑(platinum, Pt)、鎳(nickel, Ni)、鋅(zinc, Zn)、鉻(chromium, Cr)、鉬(molybdenum, Mo)、鈮(niobium, Nb)、其他類似材料、其組合,或其多膜層,但本揭露實施例並不以此為限。Referring to FIG. 1 , a gate dielectric layer 150 and a gate electrode 160 may be formed through the well region 130 and the doping region 120 and extend into the epitaxial layer 110 . As mentioned previously, the gate electrode 160 may include a first structure 160A and a second structure 160B. The second structure 160B is located above the first structure 160A. The gate electrode 160 may serve as a transistor gate terminal of the semiconductor device 10 . In some embodiments, the gate electrode 160 may be isolated from the vertical channel region by a gate dielectric layer 150 (details of which are discussed below). The material of the gate electrode 160 may include metal, metal nitride (such as titanium nitride, TiN), metal oxide (such as titanium oxide (TiO)), other suitable materials, or combinations thereof, However, the embodiments of the present disclosure are not limited to this. Metals may include cobalt (Co), ruthenium (Ru), aluminum (Al), tungsten (W), copper (copper, Cu), titanium (Ti), tantalum (Ta) ), silver (Ag), gold (Au), platinum (Pt), nickel (Ni), zinc (zinc, Zn), chromium (Cr), molybdenum (Molybdenum, Mo) , niobium (Nb), other similar materials, combinations thereof, or multi-film layers thereof, but the embodiments of the disclosure are not limited thereto.

閘極電極160的第一結構160A和第二結構160B係被閘極介電層150的一部分(或第二部分150B)「分離」,展現出本揭露實施例的「分離閘極」特徵。第一結構160A具有大約介於0.6μm和0.8μm之間的橫向尺寸、以及大約介於3.5μm和4.0μm之間的垂直尺寸。根據本揭露的一些實施例,閘極電極160的第二結構160B進一步包括主體部和由主體部底部往外延伸的凸出部。第二結構160B的主體部具有大約介於0.85μm和0.95μm之間的橫向尺寸、以及大約介於1.2μm和1.5μm之間的垂直尺寸。第二結構160B的凸出部具有與第一結構160A相同的橫向尺寸,而第二結構160B的凸出部的垂直尺寸可大約介於0.15μm和0.25μm之間,例如大約0.20μm。The first structure 160A and the second structure 160B of the gate electrode 160 are "separated" by a portion of the gate dielectric layer 150 (or the second portion 150B), exhibiting the "separated gate" feature of the embodiment of the present disclosure. The first structure 160A has a lateral dimension of approximately between 0.6 μm and 0.8 μm, and a vertical dimension of approximately between 3.5 μm and 4.0 μm. According to some embodiments of the present disclosure, the second structure 160B of the gate electrode 160 further includes a main body part and a protruding part extending outward from the bottom of the main body part. The body portion of the second structure 160B has a lateral dimension approximately between 0.85 μm and 0.95 μm, and a vertical dimension approximately between 1.2 μm and 1.5 μm. The protrusions of the second structure 160B have the same lateral dimensions as the first structure 160A, while the vertical dimensions of the protrusions of the second structure 160B may be approximately between 0.15 μm and 0.25 μm, such as approximately 0.20 μm.

如第1圖所示,第二結構160B的凸出部垂直地位於第一結構160A和第二結構160B的主體部之間。如前述,第一結構160A決定半導體元件10的崩潰電壓,而第二結構160B決定半導體元件10的導通電阻。傳統的「分離閘極」結構並不具有凸出部,其可作為第一結構160A和第二結構160B之間的接面。儘管傳統的「分離閘極」特徵可以降低導通電阻並維持崩潰電壓,凸出部的存在提供了在第二結構160B上尺寸縮小的行為,使得導通電阻可更進一步的被抑制。應理解的是,凸出部的垂直尺寸(或在第2K圖中的凸出深度E)不能超過指定的範圍(例如大約介於0.15μm和0.25μm之間)。若凸出深度E(繪示於第2K圖)太小,則半導體元件10的電性特性可能不會被顯著地提升。相反地,若凸出深度E太大,閘極介電層150的第二部分150B可能被消耗。As shown in FIG. 1 , the protruding portion of the second structure 160B is vertically located between the first structure 160A and the main body portion of the second structure 160B. As mentioned above, the first structure 160A determines the breakdown voltage of the semiconductor device 10 , and the second structure 160B determines the on-resistance of the semiconductor device 10 . The traditional "split gate" structure does not have a protruding portion, which can serve as the interface between the first structure 160A and the second structure 160B. Although the traditional "split gate" feature can reduce the on-resistance and maintain the breakdown voltage, the presence of the protrusion provides a size reduction behavior on the second structure 160B, so that the on-resistance can be further suppressed. It should be understood that the vertical dimension of the protrusion (or protrusion depth E in Figure 2K) cannot exceed the specified range (eg approximately between 0.15 μm and 0.25 μm). If the protrusion depth E (shown in FIG. 2K ) is too small, the electrical characteristics of the semiconductor device 10 may not be significantly improved. On the contrary, if the protrusion depth E is too large, the second portion 150B of the gate dielectric layer 150 may be consumed.

繼續參照第1圖,除了第二部分150B以外,閘極介電層150的第一部分150A和第三部分150C分別圍繞第一結構160A和第二結構160B的外圍。更具體來說,閘極介電層150的第一部分150A係順應性地設置於第一結構160A的相對兩側和底部上。第三部分150C係順應性地設置於第二結構160B的相對兩側上,並於第二結構160B的主體部的露出底面上。閘極介電層150提供第一結構160A和第二結構160B之間的絕緣、以及閘極電極160和摻雜層(如磊晶層110、摻雜區120、或井區130)之間的絕緣。應理解的是,在元件操作期間,會產生垂直通道區貫穿井區130、摻雜區120、以及磊晶層110。Continuing with reference to FIG. 1 , in addition to the second portion 150B, the first portion 150A and the third portion 150C of the gate dielectric layer 150 surround the periphery of the first structure 160A and the second structure 160B, respectively. More specifically, the first portion 150A of the gate dielectric layer 150 is conformably disposed on opposite sides and the bottom of the first structure 160A. The third portion 150C is compliantly disposed on the opposite sides of the second structure 160B and on the exposed bottom surface of the main body of the second structure 160B. Gate dielectric layer 150 provides insulation between first structure 160A and second structure 160B, and between gate electrode 160 and doped layers (eg, epitaxial layer 110, doped region 120, or well region 130). Insulation. It should be understood that during operation of the device, vertical channel regions are created through the well region 130, the doped region 120, and the epitaxial layer 110.

閘極介電層150的材料可包括氧化矽、氮化矽、或其多膜層。在其他實施例中,閘極介電層150包括具有高介電常數的材料,而在這些實施例中,閘極介電層150可具有大於約7.0的介電常數(或k值),且可包括金屬氧化物或鉿(hafnium, Hf)、鋁、鋯(zirconium, Zr)、鑭(lanthanum, La)、鎂(magnesium, Mg)、鋇(barium, Ba)、鈦、鉛(lead, Pb)、其他類似材料、或其組合的矽酸鹽(silicate)。閘極介電層150的厚度可大約介於500Å和700Å之間,例如大約600Å。根據本揭露的一些實施例,第一部分150A、第二部分150B、以及第三部分150C可具有相同的厚度。應理解的是,若閘極介電層150的厚度太大,可產生過多的電容值(特別是介於第一結構160A和第二結構160B之間)。若閘極介電層150的厚度太小,則絕緣的功能可能會受損。可藉由分子束沉積(molecular beam deposition, MBD)、原子層沉積(atomic layer deposition, ALD)、電漿輔助化學氣相沉積(plasma-enhanced chemical vapor deposition, PECVD)、其他類似方法、或其組合形成閘極介電層150。The material of the gate dielectric layer 150 may include silicon oxide, silicon nitride, or multiple layers thereof. In other embodiments, gate dielectric layer 150 includes a material with a high dielectric constant, and in these embodiments, gate dielectric layer 150 may have a dielectric constant (or k-value) greater than about 7.0, and May include metal oxides or hafnium (Hf), aluminum, zirconium (Zr), lanthanum (La), magnesium (Mg), barium (Ba), titanium, lead (Pb) ), other similar materials, or silicates of combinations thereof. The thickness of the gate dielectric layer 150 may be approximately between 500 Å and 700 Å, such as approximately 600 Å. According to some embodiments of the present disclosure, the first portion 150A, the second portion 150B, and the third portion 150C may have the same thickness. It should be understood that if the thickness of the gate dielectric layer 150 is too large, excessive capacitance may be generated (especially between the first structure 160A and the second structure 160B). If the thickness of the gate dielectric layer 150 is too small, the insulation function may be impaired. It can be achieved by molecular beam deposition (MBD), atomic layer deposition (ALD), plasma-enhanced chemical vapor deposition (PECVD), other similar methods, or combinations thereof Gate dielectric layer 150 is formed.

如第1圖所示,閘極電極160的第一結構160A和閘極介電層150的第一部分150A係垂直地設置橫越摻雜區120和磊晶層110。閘極電極160的第二結構160B的凸出部和閘極介電層150的第二部分150B係完全地設置於摻雜區120內。閘極電極160的第二結構160B的主體部和閘極介電層150的第三部分150C係設置穿過井區130並延伸進入摻雜區120中。應理解的是,閘極電極160的第二結構160B的主體部和閘極介電層150的第三部分150C必須延伸進入摻雜區120,以將電場推移朝向汲極端,從而提升崩潰電壓。然而,閘極電極160的第二結構160B的主體部和閘極介電層150的第三部分150C不能延伸進入磊晶層110中,這樣做可能導致崩潰失效。再者,閘極電極160的第一結構160A和閘極介電層150的第一部分150A不能觸及基底100,這樣做可能導致操作失效。As shown in FIG. 1 , the first structure 160A of the gate electrode 160 and the first portion 150A of the gate dielectric layer 150 are vertically disposed across the doped region 120 and the epitaxial layer 110 . The protruding portion of the second structure 160B of the gate electrode 160 and the second portion 150B of the gate dielectric layer 150 are completely disposed within the doped region 120 . The main portion of the second structure 160B of the gate electrode 160 and the third portion 150C of the gate dielectric layer 150 are disposed through the well region 130 and extend into the doped region 120 . It should be understood that the main body portion of the second structure 160B of the gate electrode 160 and the third portion 150C of the gate dielectric layer 150 must extend into the doped region 120 to push the electric field toward the drain terminal, thereby increasing the breakdown voltage. However, the main body portion of the second structure 160B of the gate electrode 160 and the third portion 150C of the gate dielectric layer 150 cannot extend into the epitaxial layer 110, and doing so may cause collapse failure. Furthermore, the first structure 160A of the gate electrode 160 and the first portion 150A of the gate dielectric layer 150 cannot touch the substrate 100, which may cause operational failure.

參照第1圖,可在磊晶層110、閘極介電層150、以及閘極電極160上形成層間介電層200。更具體而言,層間介電層200覆蓋井區130、閘極介電層150的第三部分150C、以及閘極電極160的第二結構160B。在一些實施例中,層間介電層200可針對下方的結構提供機械保護和絕緣。層間介電層200的材料可包括氧化矽、氮化矽、碳化矽、氧氮化矽、氧氮碳化矽(silicon oxynitrocarbide, SiO xN yC 1-x-y,其中x和y係在0至1的範圍)、四乙氧基矽烷(tetraethylorthosilicate, TEOS)、未摻雜矽酸玻璃、摻雜氧化矽(如硼摻雜磷矽酸玻璃(boronphosphosilicate glass, BPSG)、熔矽石玻璃(fused silica glass, FSG)、磷矽酸玻璃(phosphosilicate glass, PSG)、硼摻雜矽酸玻璃(boron-doped silicate glass, BSG)、或其他類似材料)、低介電常數(low-k)介電材料、或其他合適的介電材料。可藉由化學氣相沉積(chemical vapor deposition, CVD)、高密度電漿化學氣相沉積(high-density plasma chemical vapor deposition, HDP-CVD)、電漿輔助化學氣相沉積、流動性化學氣相沉積(flowable chemical vapor deposition, FCVD)、次大氣壓化學氣相沉積(sub-atmospheric chemical vapor deposition, SACVD)、其他類似方法、或其組合形成層間介電層200。 Referring to FIG. 1 , an interlayer dielectric layer 200 may be formed on the epitaxial layer 110 , the gate dielectric layer 150 , and the gate electrode 160 . More specifically, the interlayer dielectric layer 200 covers the well region 130 , the third portion 150C of the gate dielectric layer 150 , and the second structure 160B of the gate electrode 160 . In some embodiments, interlayer dielectric layer 200 may provide mechanical protection and insulation from underlying structures. The material of the interlayer dielectric layer 200 may include silicon oxide, silicon nitride, silicon carbide, silicon oxynitride, silicon oxynitride carbide (silicon oxynitrocarbide, SiO x N y C 1-xy , where x and y range from 0 to 1 range), tetraethylorthosilicate (TEOS), undoped silicic acid glass, doped silica (such as boronphosphosilicate glass (BPSG), fused silica glass , FSG), phosphosilicate glass (PSG), boron-doped silicate glass (BSG), or other similar materials), low dielectric constant (low-k) dielectric materials, or other suitable dielectric material. It can be processed by chemical vapor deposition (CVD), high-density plasma chemical vapor deposition (HDP-CVD), plasma-assisted chemical vapor deposition, and mobile chemical vapor deposition. The interlayer dielectric layer 200 is formed by flowable chemical vapor deposition (FCVD), sub-atmospheric chemical vapor deposition (SACVD), other similar methods, or combinations thereof.

繼續參照第1圖,可依序地形成摻雜接觸區220和源極電極230穿過層間介電層200和井區130,並延伸進入摻雜區120中。更具體而言,摻雜接觸區220係垂直地設置橫越井區130和摻雜區120。源極電極230係設置穿過層間介電層200,並延伸進入井區130中。摻雜接觸區220的材料可包括砷、其他類似材料、或其組合。根據本揭露的一些實施例,摻雜接觸區220具有第二導電類型(P型),其摻雜濃度大約介於1×10 15cm -3和3×10 15cm -3之間。摻雜接觸區220的厚度可大約介於0.6μm和0.8μm之間。 Continuing to refer to FIG. 1 , the doped contact region 220 and the source electrode 230 may be sequentially formed through the interlayer dielectric layer 200 and the well region 130 , and extend into the doped region 120 . More specifically, the doped contact region 220 is vertically disposed across the well region 130 and the doped region 120 . The source electrode 230 is disposed through the interlayer dielectric layer 200 and extends into the well region 130 . The material of doped contact region 220 may include arsenic, other similar materials, or combinations thereof. According to some embodiments of the present disclosure, the doped contact region 220 has a second conductivity type (P-type), and its doping concentration is approximately between 1×10 15 cm −3 and 3×10 15 cm −3 . The thickness of doped contact region 220 may be approximately between 0.6 μm and 0.8 μm.

源極電極230可作為半導體元件10的電晶體源極端。源極電極230的材料可與閘極電極160的材料類似,其細節將不於此重複贅述。源極電極230的厚度可大約介於0.35μm和0.55μm之間。可藉由化學氣相沉積、物理氣相沉積(physical vapor deposition, PVD)、原子層沉積、其他類似方法、或其組合形成摻雜接觸區220和源極電極230。在形成摻雜接觸區220之後和形成源極電極230之前,可使用離子佈植及∕或擴散製程摻雜摻雜接觸區220。The source electrode 230 may serve as a transistor source terminal of the semiconductor device 10 . The material of the source electrode 230 may be similar to the material of the gate electrode 160, and the details thereof will not be repeated here. The thickness of the source electrode 230 may be approximately between 0.35 μm and 0.55 μm. The doped contact region 220 and the source electrode 230 may be formed by chemical vapor deposition, physical vapor deposition (PVD), atomic layer deposition, other similar methods, or a combination thereof. After the doped contact region 220 is formed and before the source electrode 230 is formed, the doped contact region 220 may be doped using an ion implantation and/or diffusion process.

參照第1圖,可在基底100的背側(backside)上,或相對於磊晶層110的表面上(其磊晶層110係設置在基底100的前側(frontside)上)形成汲極電極240。更具體而言,汲極電極240覆蓋基底100的背側。汲極電極240可作為半導體元件10的電晶體汲極端。應理解的是,源極電極230和汲極電極240定義了先前所提及在元件操作期間所產生的垂直通道區。汲極電極240的材料可與閘極電極160或源極電極230類似,其細節將不於此重複贅述。汲極電極240的厚度可大約介於10μm和20μm之間。可藉由晶背金屬化(back metallization)形成汲極電極240,其利用與形成源極電極230類似的方法,其細節將不於此重複贅述。Referring to FIG. 1 , the drain electrode 240 may be formed on the backside of the substrate 100 or on the surface opposite to the epitaxial layer 110 (the epitaxial layer 110 is disposed on the front side of the substrate 100 ). . More specifically, the drain electrode 240 covers the back side of the substrate 100 . The drain electrode 240 may serve as a transistor drain terminal of the semiconductor device 10 . It should be understood that source electrode 230 and drain electrode 240 define the previously mentioned vertical channel regions created during operation of the device. The material of the drain electrode 240 may be similar to the gate electrode 160 or the source electrode 230, and the details thereof will not be repeated here. The thickness of the drain electrode 240 may be approximately between 10 μm and 20 μm. The drain electrode 240 may be formed by back metallization using a method similar to that used to form the source electrode 230, the details of which will not be repeated here.

第2A~2K圖是根據本揭露的一些實施例,在製造半導體元件10的中間階段的剖面示意圖。應注意的是,在第2A~2K圖中的分步步驟僅為例示性目的,而並非用來限定本揭露實施例。舉例來說,可新增、移除、替換、重組、以及重複第2A~2K圖所示的各種步驟。Figures 2A-2K are schematic cross-sectional views at an intermediate stage of manufacturing the semiconductor device 10 according to some embodiments of the present disclosure. It should be noted that the step-by-step steps in Figures 2A-2K are for illustrative purposes only and are not intended to limit the embodiments of the present disclosure. For example, various steps shown in Figures 2A-2K can be added, removed, replaced, reorganized, and repeated.

參照第2A圖,提供基底100和磊晶層110。如先前所提及,可藉由磊晶成長在基底100上形成磊晶層110,其磊晶成長可包括金屬有機化學氣相沉積(metal organic chemical vapor deposition, MOCVD)、分子束磊晶(molecular beam epitaxy, MBE)、液相磊晶(liquid phase epitaxy, LPE)、氣相磊晶(vapor phase epitaxy, VPE)、選擇性磊晶成長(selective epitaxial growth, SEG)、其他類似方法、或其組合。基底100和磊晶層110皆可具有第一導電類型(N型)。Referring to Figure 2A, a substrate 100 and an epitaxial layer 110 are provided. As mentioned previously, the epitaxial layer 110 can be formed on the substrate 100 through epitaxial growth. The epitaxial growth can include metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (molecular beam epitaxy). beam epitaxy (MBE), liquid phase epitaxy (LPE), vapor phase epitaxy (VPE), selective epitaxial growth (SEG), other similar methods, or combinations thereof . Both the substrate 100 and the epitaxial layer 110 may have a first conductivity type (N-type).

參照第2B圖,可在磊晶層110內形成摻雜區120。在替代實施例中,不使用離子佈植及∕或擴散製程(如前述),可在磊晶層110的成長期間原位(in situ)摻雜摻雜區120。在其他實施例中,可一起使用原位和佈植摻雜。摻雜區120具有第二導電類型(P型),其不同於基底100或磊晶層110的導電類型。Referring to FIG. 2B , a doped region 120 may be formed in the epitaxial layer 110 . In an alternative embodiment, the doped region 120 may be doped in situ during the growth of the epitaxial layer 110 without using ion implantation and/or diffusion processes (as described above). In other embodiments, in-situ and implanted doping may be used together. The doped region 120 has a second conductivity type (P type), which is different from the conductivity type of the substrate 100 or the epitaxial layer 110 .

參照第2C圖,可在摻雜區120內形成井區130,其摻雜區120係形成於磊晶層110內。井區130具有第一導電類型(N型)。如先前所提及,磊晶層110、摻雜區120、以及井區130的配置構成雙極性接面,以在元件操作期間降低漏電流並提升崩潰電壓。Referring to FIG. 2C , a well region 130 may be formed in the doped region 120 , and the doped region 120 is formed in the epitaxial layer 110 . The well region 130 has a first conductivity type (N-type). As mentioned previously, the configuration of the epitaxial layer 110, the doped region 120, and the well region 130 form a bipolar junction to reduce leakage current and increase breakdown voltage during device operation.

第2D和2E圖繪示閘極溝槽140的形成,其中閘極介電層150和閘極電極160將形成於其內。閘極溝槽140可包括第一開口140A和第二開口140B。第二開口140B係設置於第一開口140A之下。Figures 2D and 2E illustrate the formation of gate trench 140 in which gate dielectric layer 150 and gate electrode 160 will be formed. The gate trench 140 may include a first opening 140A and a second opening 140B. The second opening 140B is provided below the first opening 140A.

參照第2D圖,首先形成第一開口140A穿過井區130,並延伸進入摻雜區120中。第一開口140A具有第一寬度W1和第一深度D1。第一寬度W1可大約介於0.6μm和1.4μm之間,例如大約0.95μm。應注意的是,本揭露的第一開口140A包括圓化角,使得後續形成的閘極介電層150和閘極電極160可採用其輪廓,這樣的輪廓產生的應力小於使用尖角的輪廓所產生的應力。可藉由微影製程,接著進行蝕刻製程來形成第一開口140A。微影製程可包括塗佈光阻、軟烤(soft baking)、曝光、曝光後烘烤、顯影、其他類似技術、或其組合。蝕刻製程可包括乾蝕刻、濕蝕刻、其他類似方法、或其組合。Referring to FIG. 2D , a first opening 140A is first formed through the well region 130 and extends into the doping region 120 . The first opening 140A has a first width W1 and a first depth D1. The first width W1 may be approximately between 0.6 μm and 1.4 μm, such as approximately 0.95 μm. It should be noted that the first opening 140A of the present disclosure includes rounded corners, so that the subsequently formed gate dielectric layer 150 and the gate electrode 160 can adopt a profile that generates less stress than using a profile with sharp corners. the stress produced. The first opening 140A can be formed by a photolithography process followed by an etching process. The lithography process may include photoresist coating, soft baking, exposure, post-exposure baking, development, other similar techniques, or combinations thereof. The etching process may include dry etching, wet etching, other similar methods, or combinations thereof.

參照第2E圖,在形成第一開口140A之後,可由第一開口140A的底面形成第二開口140B。第二開口140B係垂直地設置橫越摻雜區120和磊晶層110。第二開口140B具有第二寬度W2和第二深度D2。第二寬度W2可大約介於0.2μm和0.9μm之間,例如大約0.55μm。類似於第一開口140A的特徵,第二開口140B包括圓化底部。第二開口140B的形成與第一開口140A類似,其細節將不於此重複贅述。Referring to FIG. 2E , after the first opening 140A is formed, the second opening 140B may be formed from the bottom surface of the first opening 140A. The second opening 140B is vertically disposed across the doped region 120 and the epitaxial layer 110 . The second opening 140B has a second width W2 and a second depth D2. The second width W2 may be approximately between 0.2 μm and 0.9 μm, such as approximately 0.55 μm. Similar to the features of first opening 140A, second opening 140B includes a rounded bottom. The second opening 140B is formed similarly to the first opening 140A, and the details thereof will not be repeated here.

如第2E圖所示,閘極溝槽140具有總深度D,其大約介於2.2μm和3.0μm之間,例如大約2.6μm。根據本揭露的一些實施例,第一寬度W1比第二寬度W2大約1.5至2.0倍。第二深度D2比第一深度D1大約4至6倍。儘管本實施例繪示在形成第二開口140B之前形成第一開口140A,但本揭露實施例並不以此為限。舉例來說,可一開始形成具有第二寬度W2和總深度D的開口,接著再進行凹蝕以擴展開口的上部使其具有第一寬度W1。As shown in Figure 2E, the gate trench 140 has a total depth D that is approximately between 2.2 μm and 3.0 μm, such as approximately 2.6 μm. According to some embodiments of the present disclosure, the first width W1 is approximately 1.5 to 2.0 times larger than the second width W2. The second depth D2 is approximately 4 to 6 times greater than the first depth D1. Although this embodiment shows that the first opening 140A is formed before the second opening 140B is formed, the disclosed embodiment is not limited thereto. For example, an opening with a second width W2 and a total depth D may be initially formed, and then etching is performed to expand the upper portion of the opening to have the first width W1.

第2F和2G圖繪示形成閘極介電層150和閘極電極160於閘極溝槽140中以具有先前所定義的輪廓。可沿著閘極溝槽140的側壁和底部順應性地沉積閘極介電層150,以隔絕閘極電極160與摻雜層(如磊晶層110、摻雜區120、或井區130)。可先填入第二開口140B,接著再填入第一開口140A。Figures 2F and 2G illustrate forming gate dielectric layer 150 and gate electrode 160 in gate trench 140 to have the previously defined profile. The gate dielectric layer 150 may be conformably deposited along the sidewalls and bottom of the gate trench 140 to isolate the gate electrode 160 from the doped layer (such as the epitaxial layer 110, the doped region 120, or the well region 130) . The second opening 140B may be filled first, and then the first opening 140A may be filled.

參照第2F圖,可在閘極溝槽140的第二開口140B中沉積閘極介電層150的第一部分150A和閘極電極160的第一結構160A。在進行蝕刻製程以形成第二開口140B之後,且在移除微影圖案之前,可依序地填入閘極介電材料和閘極電極材料於第二開口140B中。在填入第二開口140B之後,可進行平坦化製程(如化學機械研磨(chemical mechanical polish, CMP)或回蝕)以移除微影圖案和多餘的閘極介電材料和閘極電極材料。根據本揭露的一些實施例,進一步凹蝕閘極介電材料和閘極電極材料於第二開口140B的頂部(或第一開口140A和第二開口140B之間的接合處)之下。剩餘的閘極介電材料和閘極電極材料則分別成為閘極介電層150的第一部分150A和閘極電極160的第一結構160A。藉由讓第一部分150A和第一結構160A的頂面在第二開口140B的頂部之下,後續形成的第二結構160B可具有凸出部,作為本揭露實施例的關鍵特徵。Referring to FIG. 2F , the first portion 150A of the gate dielectric layer 150 and the first structure 160A of the gate electrode 160 may be deposited in the second opening 140B of the gate trench 140 . After performing the etching process to form the second opening 140B, and before removing the lithography pattern, the gate dielectric material and the gate electrode material may be sequentially filled into the second opening 140B. After filling the second opening 140B, a planarization process (such as chemical mechanical polish (CMP) or etchback) may be performed to remove the photolithographic pattern and excess gate dielectric material and gate electrode material. According to some embodiments of the present disclosure, the gate dielectric material and gate electrode material are further etched under the top of the second opening 140B (or the joint between the first opening 140A and the second opening 140B). The remaining gate dielectric material and gate electrode material become the first portion 150A of the gate dielectric layer 150 and the first structure 160A of the gate electrode 160 respectively. By having the top surfaces of the first portion 150A and the first structure 160A below the top of the second opening 140B, the subsequently formed second structure 160B can have protrusions as a key feature of the disclosed embodiments.

參照第2G圖,可在閘極溝槽140的剩餘部分中(或更具體而言,第二開口140B的剩餘部分和整個第一開口140A)沉積閘極介電層150的第二部分150B和第三部分150C、以及閘極電極160的第二結構160B。可在第一開口140A的側壁上、在第二開口140B剩餘部分的側壁上、以及在第一部分150A和第一結構160A的頂面上順應性地形成相同的閘極介電材料。之後,相同的閘極電極材料可完全地填滿閘極溝槽140。可進行相同的平坦化製程以移除閘極溝槽140之外多餘的閘極介電材料和閘極電極材料。在平坦化製程之後,井區130、閘極介電材料、以及閘極電極材料的頂面彼此齊平。閘極介電材料接觸第一部分150A和第一結構160A頂面的區段成為第二部分150B,而其餘的閘極介電材料成為第三部分150C。被第二部分150B和第三部分150C圍繞的閘極電極材料成為第二結構160B。Referring to FIG. 2G , a second portion 150B of the gate dielectric layer 150 may be deposited in the remaining portion of the gate trench 140 (or more specifically, the remaining portion of the second opening 140B and the entire first opening 140A). The third portion 150C, and the second structure 160B of the gate electrode 160. The same gate dielectric material may be conformably formed on the sidewalls of the first opening 140A, on the sidewalls of the remainder of the second opening 140B, and on the top surfaces of the first portion 150A and the first structure 160A. Afterwards, the same gate electrode material can completely fill the gate trench 140 . The same planarization process may be performed to remove excess gate dielectric material and gate electrode material outside the gate trench 140 . After the planarization process, the top surfaces of the well region 130, the gate dielectric material, and the gate electrode material are flush with each other. The portion of the gate dielectric material that contacts the first portion 150A and the top surface of the first structure 160A becomes the second portion 150B, while the remainder of the gate dielectric material becomes the third portion 150C. The gate electrode material surrounded by the second portion 150B and the third portion 150C becomes the second structure 160B.

參照第2H圖,可在井區130、閘極介電層150、以及閘極電極160上沉積層間介電層200。在一些實施例中,層間介電層200將閘極溝槽140封住。閘極電極160可與上方的結構分離以避免任何潛在的短路。Referring to FIG. 2H , an interlayer dielectric layer 200 may be deposited on the well region 130 , the gate dielectric layer 150 , and the gate electrode 160 . In some embodiments, the interlayer dielectric layer 200 seals the gate trench 140 . Gate electrode 160 may be separated from the overlying structure to avoid any potential short circuits.

參照第2I圖,形成一對源極溝槽210穿過層間介電層200和井區130,並延伸進入摻雜區120中。應注意的是,源極溝槽210係橫向地設置於閘極電極160的相對兩側。閘極電極160可橫向地位於後續形成的源極電極230之間。Referring to FIG. 2I, a pair of source trenches 210 are formed through the interlayer dielectric layer 200 and the well region 130, and extend into the doping region 120. It should be noted that the source trenches 210 are laterally disposed on opposite sides of the gate electrode 160 . Gate electrode 160 may be laterally located between subsequently formed source electrodes 230 .

參照第2J圖,可在源極溝槽210中依序地填入接觸材料和源極電極材料。更具體而言,接觸材料可能僅填入源極溝槽210的下部,而源極電極材料可填滿源極溝槽210的剩餘部分。可進行平坦化製程以移除源極溝槽210之外多餘的源極電極材料。在平坦化製程之後,層間介電層200和源極電極材料的頂面彼此齊平。接觸材料成為摻雜接觸區220,而剩餘的源極電極材料成為源極電極230。可定義相鄰的源極電極230之間的橫向距離為半導體元件10的節距P。Referring to FIG. 2J , the source trench 210 may be filled with contact material and source electrode material in sequence. More specifically, the contact material may only fill the lower portion of the source trench 210 , while the source electrode material may fill the remaining portion of the source trench 210 . A planarization process may be performed to remove excess source electrode material outside the source trench 210 . After the planarization process, the top surfaces of the interlayer dielectric layer 200 and the source electrode material are flush with each other. The contact material becomes doped contact region 220 and the remaining source electrode material becomes source electrode 230 . The lateral distance between adjacent source electrodes 230 can be defined as the pitch P of the semiconductor device 10 .

參照第2K圖,可在基底100的背側上形成汲極電極240,從而完成半導體元件10的製作(或至少其主動組件)。在一些實施例中,汲極電極240覆蓋基底100的整個背側表面,使得汲極電極240可被每個源極電極230共享,其中可產生垂直通道區。Referring to FIG. 2K , the drain electrode 240 may be formed on the backside of the substrate 100 , thereby completing the fabrication of the semiconductor device 10 (or at least its active component). In some embodiments, the drain electrode 240 covers the entire backside surface of the substrate 100 so that the drain electrode 240 can be shared by each source electrode 230 where a vertical channel region can be created.

可定義閘極電極160和其中一個源極電極230之間的橫向距離為台面(mesa)寬度。如第2K圖所示,閘極電極160橫向地位在該對源極電極230的正中間。換言之,在閘極電極160任一側的台面寬度皆相同,因此可呈現對稱的行為。由於本揭露實施例的閘極電極160包括不同尺寸的兩個結構,因此具有兩個不同的台面寬度。第一台面寬度M1定義閘極電極160的第二結構160B和其中一個源極電極230之間的距離,而第二台面寬度M2定義閘極電極160的第一結構160A和其中一個源極電極230之間的距離。如前述,閘極電極160橫向地位在該對源極電極230的正中間,在閘極電極160相對兩側的第一台面寬度M1或第二台面寬度M2對稱,因而在閘極電極160任一側具有相同的尺寸。The lateral distance between the gate electrode 160 and one of the source electrodes 230 can be defined as a mesa width. As shown in FIG. 2K , the gate electrode 160 is laterally located in the middle of the pair of source electrodes 230 . In other words, the mesa width on either side of the gate electrode 160 is the same, thus exhibiting symmetrical behavior. Since the gate electrode 160 in the embodiment of the present disclosure includes two structures of different sizes, it has two different mesa widths. The first mesa width M1 defines the distance between the second structure 160B of the gate electrode 160 and one of the source electrodes 230 , while the second mesa width M2 defines the first structure 160A of the gate electrode 160 and one of the source electrodes 230 distance between. As mentioned above, the gate electrode 160 is laterally located in the middle of the pair of source electrodes 230 , and the first mesa width M1 or the second mesa width M2 on opposite sides of the gate electrode 160 is symmetrical. Therefore, on either side of the gate electrode 160 sides have the same dimensions.

在一特定實施例中,比較具有「分離閘極」特徵的示例元件與具有統一尺寸的單一閘極電極的傳統元件。列出設計特徵並量測電性參數。相關數據整理於表1中。 表1 設計和電性參數 傳統設計 創新設計 差異 磊晶厚度 6.0μm 6.0μm 0 閘極溝槽深度 2.60μm 2.60μm 0 溝槽第一寬度 (不適用) 0.95μm (不適用) 溝槽第二寬度 0.55μm 0.55μm 0 第一台面寬度 (不適用) 1.15μm (不適用) 第二台面寬度 1.35μm 1.35μm 0 節距 3.25μm 3.25μm 0 崩潰電壓 46.98V 59.10V +20.51% 導通電阻 4.06 m-ohm 2.60m-ohm -35.96% 臨界電壓 3.62V 2.79V -23.04% 飽和汲極電流 8.05×10 -6A 1.24×10 -5A +53.79% In one specific embodiment, an example device with a "split gate" feature is compared to a conventional device with a single gate electrode of uniform size. List design features and measure electrical parameters. Relevant data are summarized in Table 1. Table 1 Design and electrical parameters traditional design Innovative design difference Epitaxial thickness 6.0μm 6.0μm 0 Gate trench depth 2.60μm 2.60μm 0 Groove first width (not applicable) 0.95μm (not applicable) Groove second width 0.55μm 0.55μm 0 First table width (not applicable) 1.15μm (not applicable) Second table width 1.35μm 1.35μm 0 Pitch 3.25μm 3.25μm 0 breakdown voltage 46.98V 59.10V +20.51% On-resistance 4.06 m-ohm 2.60m-ohm -35.96% critical voltage 3.62V 2.79V -23.04% Saturation drain current 8.05×10 -6 A 1.24×10 -5 A +53.79%

為了達到有效的比較,傳統設計和創新設計之間的一些參數(如磊晶厚度、閘極溝槽深度、以及節距)將保持一致。由於傳統設計的溝槽僅具有單一尺寸,只能有一個溝槽寬度,因而只能有一個台面寬度。應注意的是,節距等於兩倍台面寬度和溝槽寬度的總和。針對創新設計,節距等於兩倍第一台面寬度和溝槽第一寬度的總和(3.25μm = 2 × 1.15μm + 0.95μm),或等於兩倍第二台面寬度和溝槽第二寬度的總和(3.25μm = 2 × 1.35μm + 0.55μm)。In order to achieve a valid comparison, some parameters (such as epitaxial thickness, gate trench depth, and pitch) will remain consistent between the traditional design and the innovative design. Since conventionally designed trenches are only of a single size, they can only have one trench width and therefore only one table width. It should be noted that the pitch is equal to the sum of twice the mesa width and the trench width. For innovative designs, the pitch is equal to the sum of twice the first mesa width and the first trench width (3.25μm = 2 × 1.15μm + 0.95μm), or the sum of twice the second mesa width and the second trench width (3.25μm = 2 × 1.35μm + 0.55μm).

在此特定實施例中,套用具有凸出部的「分離閘極」特徵可增加崩潰電壓20.51%,並減少導通電阻35.96%。臨界電壓(threshold voltage)掉了23.04%,但位移的值量對於業界標準仍為可接受的。再者,由於提升操作電壓,也改善了飽和汲極電流。In this particular embodiment, applying the "split gate" feature with protrusions can increase the breakdown voltage by 20.51% and reduce the on-resistance by 35.96%. The threshold voltage dropped by 23.04%, but the amount of displacement was still acceptable by industry standards. Furthermore, due to the increase in operating voltage, the saturation drain current is also improved.

儘管可能需要額外的遮罩來製造具有兩個不同尺寸的閘極溝槽140,所得的元件展現出優越的電性表現。在傳統的設計中,電場可能集中靠近閘極電極的底部。創新設計的「分離閘極」特徵可將電場驅趕至汲極端,以提升崩潰電壓。較大尺寸閘極結構的凸出部可進一步抑制導通電阻。以所述特徵,半導體元件10可成功地增加崩潰電壓並同時減少導通電阻。Although additional masks may be required to fabricate gate trenches 140 with two different sizes, the resulting device exhibits superior electrical performance. In a conventional design, the electric field may be concentrated near the bottom of the gate electrode. The innovatively designed "split gate" feature drives the electric field to the drain terminal to increase the breakdown voltage. The larger size of the protruding portion of the gate structure can further suppress the on-resistance. With the above characteristics, the semiconductor device 10 can successfully increase the breakdown voltage while reducing the on-resistance.

以上概述數個實施例之特徵,以使本發明所屬技術領域中具有通常知識者可以更加理解本揭露實施例的觀點。本發明所屬技術領域中具有通常知識者應該理解,可輕易地以本揭露實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及∕或優勢。本發明所屬技術領域中具有通常知識者也應該理解到,此類等效的結構並無悖離本揭露實施例的精神與範圍,且可在不違背本揭露實施例之精神和範圍之下,做各式各樣的改變、取代和替換。因此,本揭露實施例之保護範圍當視後附之申請專利範圍所界定者為準。另外,雖然本揭露已以數個較佳實施例揭露如上,然其並非用以限定本揭露實施例的範圍。The features of several embodiments are summarized above so that those with ordinary knowledge in the technical field to which the present invention belongs can better understand the viewpoints of the disclosed embodiments. It should be understood by those of ordinary skill in the art that other processes and structures can be easily designed or modified based on the embodiments of the present disclosure to achieve the same purposes and/or advantages as the embodiments introduced here. Those of ordinary skill in the technical field to which the present invention belongs should also understand that such equivalent structures do not deviate from the spirit and scope of the embodiments of the present disclosure, and can be used without departing from the spirit and scope of the embodiments of the present disclosure. Make all kinds of changes, substitutions and substitutions. Therefore, the protection scope of the embodiments of the present disclosure shall be determined by the appended patent application scope. In addition, although the present disclosure has disclosed several preferred embodiments as above, they are not used to limit the scope of the embodiments of the present disclosure.

整份說明書對特徵、優點或類似語言的引用,並非意味可以利用本揭露實施例實現的所有特徵和優點應該或者可以在本揭露的任何單一實施例中實現。相對地,涉及特徵和優點的語言被理解為其意味著結合實施例描述的特定特徵、優點或特性包括在本揭露的至少一個實施例中。因而,在整份說明書中對特徵和優點以及類似語言的討論可以但不一定代表相同的實施例。Reference throughout this specification to features, advantages, or similar language does not imply that all features and advantages that may be realized using embodiments of the disclosure should or can be realized in any single embodiment of the disclosure. In contrast, language referring to features and advantages is to be understood to mean that a particular feature, advantage, or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Thus, discussions of features and advantages, and similar language, throughout this specification may, but are not necessarily, representative of the same embodiments.

再者,在一或複數個實施例中,可以任何合適的方式組合本揭露實施例的所描述的特徵、優點和特性。根據本文的描述,所屬技術領域中具有通常知識者將意識到,可在沒有特定實施例的一個或複數個特定特徵或優點的情況下實現本揭露實施例。在其他情況下,在某些實施例中可辨識附加的特徵和優點,這些特徵和優點可能不存在於本揭露的所有實施例中。Furthermore, the described features, advantages, and characteristics of the disclosed embodiments may be combined in any suitable manner in one or more embodiments. From the description herein, one of ordinary skill in the art will appreciate that embodiments of the present disclosure may be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be identified in certain embodiments that may not be present in all embodiments of the present disclosure.

10:半導體元件 100:基底 110:磊晶層 120:摻雜區 130:井區 140:閘極溝槽 140A:第一開口 140B:第二開口 150:閘極介電層 150A:第一部分 150B:第二部分 150C:第三部分 160:閘極電極 160A:第一結構 160B:第二結構 200:層間介電層 210:源極溝槽 220:摻雜接觸區 230:源極電極 240:汲極電極 D:總深度 D1:第一深度 D2:第二深度 E:凸出深度 M1:第一台面寬度 M2:第二台面寬度 P:節距 W1:第一寬度 W2:第二寬度 10:Semiconductor components 100:Base 110: Epitaxial layer 120: Doped area 130:Well area 140: Gate trench 140A: First opening 140B:Second opening 150: Gate dielectric layer 150A:Part 1 150B:Part 2 150C:Part 3 160: Gate electrode 160A: First structure 160B: Second structure 200: Interlayer dielectric layer 210: Source trench 220: Doped contact area 230: Source electrode 240: Drain electrode D:Total depth D1: first depth D2: Second depth E:Protrusion depth M1: first table width M2: Second table width P: pitch W1: first width W2: second width

以下將配合所附圖式詳述本揭露實施例之各面向。值得注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製。事實上,可任意地放大或縮小各種元件的尺寸,以清楚地表現出本揭露實施例的特徵。 第1圖是根據本揭露的一些實施例,半導體元件的剖面示意圖。 第2A~2K圖是根據本揭露的一些實施例,在製造半導體元件的中間階段的剖面示意圖。 Various aspects of the disclosed embodiments will be described in detail below with reference to the accompanying drawings. Note that, as is standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various elements may be arbitrarily enlarged or reduced to clearly illustrate the features of the embodiments of the present disclosure. Figure 1 is a schematic cross-sectional view of a semiconductor device according to some embodiments of the present disclosure. 2A-2K are schematic cross-sectional views at an intermediate stage of manufacturing a semiconductor device according to some embodiments of the present disclosure.

without

10:半導體元件 10:Semiconductor components

100:基底 100:Base

110:磊晶層 110: Epitaxial layer

120:摻雜區 120: Doped area

130:井區 130:Well area

150:閘極介電層 150: Gate dielectric layer

150A:第一部分 150A:Part 1

150B:第二部分 150B:Part 2

150C:第三部分 150C:Part 3

160:閘極電極 160: Gate electrode

160A:第一結構 160A: First structure

160B:第二結構 160B: Second structure

200:層間介電層 200: Interlayer dielectric layer

220:摻雜接觸區 220: Doped contact area

230:源極電極 230: Source electrode

240:汲極電極 240: Drain electrode

Claims (20)

一種半導體元件,包括:一基底,具有一第一導電類型;一磊晶層,設置於該基底上,其中該磊晶層具有該第一導電類型;一摻雜區,設置於該磊晶層中,其中該摻雜區具有一第二導電類型,該第二導電類型不同於該第一導電類型;以及一閘極電極,設置穿過該摻雜區並延伸進入該磊晶層中,其中該閘極電極包括:一第一結構,具有一第一橫向尺寸;以及一第二結構,於該第一結構之上,其中該第二結構包括一主體部和一凸出部,該凸出部於該主體部之下,其中該主體部具有一第二橫向尺寸,該第二橫向尺寸大於該第一橫向尺寸,而該凸出部具有該第一橫向尺寸,其中該凸出部的垂直尺寸小於該主體部的垂直尺寸。 A semiconductor element including: a substrate having a first conductivity type; an epitaxial layer disposed on the substrate, wherein the epitaxial layer has the first conductivity type; and a doping region disposed on the epitaxial layer wherein the doped region has a second conductivity type, the second conductivity type is different from the first conductivity type; and a gate electrode is disposed through the doped region and extends into the epitaxial layer, wherein The gate electrode includes: a first structure having a first lateral dimension; and a second structure on the first structure, wherein the second structure includes a main body and a protrusion. part below the main body part, wherein the main body part has a second lateral dimension, the second lateral dimension is greater than the first lateral dimension, and the protruding part has the first lateral dimension, wherein the vertical dimension of the protruding part The dimensions are smaller than the vertical dimensions of the body portion. 如請求項1之半導體元件,更包括一閘極介電層,其中該閘極介電層包括:一第一部分,設置於該第一結構的相對兩側和底部上;一第二部分,設置於該第一結構和該第二結構的該凸出部之間;以及一第三部分,設置於該第二結構的相對兩側上。 The semiconductor device of claim 1 further includes a gate dielectric layer, wherein the gate dielectric layer includes: a first part disposed on opposite sides and the bottom of the first structure; a second part disposed between the first structure and the protruding portion of the second structure; and a third portion disposed on opposite sides of the second structure. 如請求項1之半導體元件,其中該第二結構的該凸 出部係垂直地位於該第一結構和該第二結構的該主體部之間。 The semiconductor device of claim 1, wherein the protrusion of the second structure The outlet portion is vertically located between the first structure and the main body portion of the second structure. 如請求項1之半導體元件,更包括一井區,設置於該摻雜區中,其中該井區具有該第一導電類型。 The semiconductor device of claim 1 further includes a well region disposed in the doping region, wherein the well region has the first conductivity type. 如請求項4之半導體元件,其中該閘極電極的該第二結構的該主體部設置穿過該井區並延伸進入該摻雜區中。 The semiconductor device of claim 4, wherein the main body portion of the second structure of the gate electrode is disposed through the well region and extends into the doping region. 如請求項1之半導體元件,其中該閘極電極的該第二結構的該凸出部係完全地設置於該摻雜區中。 The semiconductor device of claim 1, wherein the protruding portion of the second structure of the gate electrode is completely disposed in the doped region. 如請求項1之半導體元件,其中該閘極電極的該第一結構係設置橫越該摻雜區和該磊晶層。 The semiconductor device of claim 1, wherein the first structure of the gate electrode is disposed across the doping region and the epitaxial layer. 如請求項4之半導體元件,更包括一層間介電(interlayer dielectric,ILD)層,設置於該磊晶層和該閘極電極上。 The semiconductor device of claim 4 further includes an interlayer dielectric (ILD) layer disposed on the epitaxial layer and the gate electrode. 如請求項8之半導體元件,更包括一源極電極,設置穿過該層間介電層並延伸進入該井區中。 The semiconductor device of claim 8 further includes a source electrode disposed through the interlayer dielectric layer and extending into the well region. 如請求項9之半導體元件,更包括一摻雜接觸區,於該源極電極之下並延伸進入該摻雜區中,其中該摻雜接觸區具有該第二導電類型。 The semiconductor device of claim 9 further includes a doped contact region under the source electrode and extending into the doped region, wherein the doped contact region has the second conductivity type. 如請求項1之半導體元件,更包括一汲極電極,設置於該基底相對於該磊晶層的另一側上。 The semiconductor device of claim 1 further includes a drain electrode disposed on the other side of the substrate relative to the epitaxial layer. 一種半導體元件的形成方法,包括:提供一基底和於該基底上的一磊晶層;形成一摻雜區於該磊晶層中; 形成一閘極溝槽穿過該摻雜區並延伸進入該磊晶層中,其中該閘極溝槽包括:一第一開口,具有一第一寬度;以及一第二開口,於該第一開口之下,其中該第二開口具有一第二寬度,該第二寬度小於該第一寬度;以一金屬材料填入該第二開口;回蝕該金屬材料成為一閘極電極的一第一結構,其中該第一結構的頂面低於該第二開口的頂部;沉積一閘極介電層於該第一結構的頂面上,其中該閘極介電層的位置低於該第二開口的頂部;以及形成該閘極電極的一第二結構於該閘極介電層上並填入該第二開口的一剩餘部分和該第一開口。 A method of forming a semiconductor element, including: providing a substrate and an epitaxial layer on the substrate; forming a doped region in the epitaxial layer; A gate trench is formed through the doping region and extending into the epitaxial layer, wherein the gate trench includes: a first opening having a first width; and a second opening in the first Under the opening, the second opening has a second width, and the second width is smaller than the first width; filling the second opening with a metal material; etching back the metal material to become a first gate electrode structure, wherein the top surface of the first structure is lower than the top of the second opening; depositing a gate dielectric layer on the top surface of the first structure, wherein the position of the gate dielectric layer is lower than the second the top of the opening; and forming a second structure of the gate electrode on the gate dielectric layer and filling a remaining portion of the second opening and the first opening. 如請求項12之半導體元件的形成方法,其中該閘極介電層更延伸於該閘極電極的相對兩側和底部上。 The method of forming a semiconductor device according to claim 12, wherein the gate dielectric layer further extends on opposite sides and bottom of the gate electrode. 如請求項12之半導體元件的形成方法,更包括形成一井區於該摻雜區中。 The method of forming a semiconductor device according to claim 12 further includes forming a well region in the doping region. 如請求項14之半導體元件的形成方法,其中該第一開口穿過該井區並延伸進入該摻雜區中,而該第二開口係形成橫越該摻雜區和該磊晶層。 The method of forming a semiconductor device according to claim 14, wherein the first opening passes through the well region and extends into the doping region, and the second opening is formed across the doping region and the epitaxial layer. 如請求項12之半導體元件的形成方法,其中該第一開口的一第一深度小於該第二開口的一第二深度。 The method of forming a semiconductor device according to claim 12, wherein a first depth of the first opening is less than a second depth of the second opening. 如請求項12之半導體元件的形成方法,更包括: 沉積一層間介電層於該磊晶層和該閘極電極上;形成一源極溝槽穿過該層間介電層並延伸進入該摻雜區中;以及以一源極電極填入該源極溝槽。 The method for forming a semiconductor device according to claim 12 further includes: depositing an interlayer dielectric layer on the epitaxial layer and the gate electrode; forming a source trench through the interlayer dielectric layer and extending into the doped region; and filling the source with a source electrode Extremely grooved. 如請求項17之半導體元件的形成方法,更包括在填入該源極電極之前,形成一摻雜接觸區於該源極溝槽中,其中該摻雜接觸區與該摻雜區直接接觸。 The method of forming a semiconductor device according to claim 17 further includes forming a doped contact region in the source trench before filling the source electrode, wherein the doped contact region is in direct contact with the doped region. 如請求項17之半導體元件的形成方法,其中該第二結構和該源極電極之間的一第一台面(mesa)寬度小於該第一結構和該源極電極之間的一第二台面寬度。 The method of forming a semiconductor device according to claim 17, wherein a first mesa width between the second structure and the source electrode is smaller than a second mesa width between the first structure and the source electrode. . 如請求項12之半導體元件的形成方法,更包括形成一汲極電極於該基底相對於該磊晶層的另一側上。 The method of forming a semiconductor device according to claim 12, further comprising forming a drain electrode on the other side of the substrate relative to the epitaxial layer.
TW111105991A 2022-02-18 2022-02-18 Semiconductor device and method forming the same TWI834121B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111105991A TWI834121B (en) 2022-02-18 2022-02-18 Semiconductor device and method forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111105991A TWI834121B (en) 2022-02-18 2022-02-18 Semiconductor device and method forming the same

Publications (2)

Publication Number Publication Date
TW202335300A TW202335300A (en) 2023-09-01
TWI834121B true TWI834121B (en) 2024-03-01

Family

ID=88927545

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111105991A TWI834121B (en) 2022-02-18 2022-02-18 Semiconductor device and method forming the same

Country Status (1)

Country Link
TW (1) TWI834121B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060001084A1 (en) * 2002-10-04 2006-01-05 Koninklijke Philips Electronics, N.V. Power semiconductor devices
US8648412B1 (en) * 2012-06-04 2014-02-11 Semiconductor Components Industries, Llc Trench power field effect transistor device and method
TWI731753B (en) * 2020-07-21 2021-06-21 新唐科技股份有限公司 Semiconductor structure and method of forming the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060001084A1 (en) * 2002-10-04 2006-01-05 Koninklijke Philips Electronics, N.V. Power semiconductor devices
US8648412B1 (en) * 2012-06-04 2014-02-11 Semiconductor Components Industries, Llc Trench power field effect transistor device and method
TWI731753B (en) * 2020-07-21 2021-06-21 新唐科技股份有限公司 Semiconductor structure and method of forming the same

Also Published As

Publication number Publication date
TW202335300A (en) 2023-09-01

Similar Documents

Publication Publication Date Title
KR102107620B1 (en) Dummy fin structures and methods of forming same
US10163903B2 (en) FETS and methods of forming FETS
CN108735656B (en) Device with multiple contact plugs and method for manufacturing the same
KR101946689B1 (en) Finfets and methods of forming finfets
US9245963B2 (en) Insulated gate semiconductor device structure
US20230335640A1 (en) Semiconductor structure and associated fabricating method
CN107452625B (en) High power and high frequency heterojunction field effect transistor
KR101979515B1 (en) Semiconductor device and method
US10636883B2 (en) Semiconductor device including a gate trench and a source trench
CN107887446B (en) Preparation method of composite shielding self-aligned trench MOSFET device
TWI755641B (en) Semiconductor device and method for fabricating the same
US11127847B2 (en) Semiconductor devices having a gate field plate including an extension portion and methods for fabricating the semiconductor device
US11973027B2 (en) Semiconductor device and methods of forming the same
CN108122746B (en) Method for manufacturing semiconductor device and power semiconductor device
TW201733113A (en) Semiconductor devices
TW201926445A (en) Method for fabricating semiconductor device
CN115832019A (en) Field plate arrangement for trench gate field effect transistor
CN111524974B (en) Semiconductor device and method for manufacturing the same
US20230207682A1 (en) Semiconductor device and method forming the same
TWI834121B (en) Semiconductor device and method forming the same
CN116741824A (en) Semiconductor device and method for forming the same
TWI842625B (en) High voltage device and method forming the same
TWI736299B (en) Semiconductor device and method of forming the same
TWI836384B (en) Semiconductor devices and methods of manufacturing thereof
TW202431631A (en) Semiconductor device and method for forming the same