TWI833803B - Use of high-z element containing nanoparticles in the manufacture of a medicament for treating a tumor - Google Patents

Use of high-z element containing nanoparticles in the manufacture of a medicament for treating a tumor Download PDF

Info

Publication number
TWI833803B
TWI833803B TW108133074A TW108133074A TWI833803B TW I833803 B TWI833803 B TW I833803B TW 108133074 A TW108133074 A TW 108133074A TW 108133074 A TW108133074 A TW 108133074A TW I833803 B TWI833803 B TW I833803B
Authority
TW
Taiwan
Prior art keywords
nanoparticles
aforementioned
tumor
cancer
aguix
Prior art date
Application number
TW108133074A
Other languages
Chinese (zh)
Other versions
TW202110488A (en
Inventor
奧利維爾 蒂耶芒
弗朗索瓦 勒克斯
山徳林 杜福特
卡米爾 韋里
吉瑞丁 雷杜克
Original Assignee
法商Nh蕾哈吉公司
法國里昂第一大學
格勒諾布爾醫學中心
法國國家科學研究院
格勒諾布爾 阿爾卑斯大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法商Nh蕾哈吉公司, 法國里昂第一大學, 格勒諾布爾醫學中心, 法國國家科學研究院, 格勒諾布爾 阿爾卑斯大學 filed Critical 法商Nh蕾哈吉公司
Priority to TW108133074A priority Critical patent/TWI833803B/en
Publication of TW202110488A publication Critical patent/TW202110488A/en
Application granted granted Critical
Publication of TWI833803B publication Critical patent/TWI833803B/en

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

The disclosure relates to methods for treating tumors. In particular, the disclosure relates to a method of treating a tumor by ionizing radiations in a subject in need thereof, said method comprising the steps of: (i) injecting a first therapeutically effective amount of high-Z element containing nanoparticles as radiosensitizing agents in said subject in need thereof within a period between 2 and 7 days prior to the first irradiation of the tumor, (ii) injecting a second therapeutically effective amount of the same or different high-Z element containing nanoparticles within a period between 1 hour to 12 hours prior to the first irradiation of the tumor, and, (iii) irradiating the tumor of said subject with a therapeutically efficient dose of radiations; wherein said high-Z element containing nanoparticles are nanoparticles containing an element with an atomic Z number higher than 40 and said nanoparticles have a mean hydrodynamic diameter below 10 nm.

Description

含有高Z元素之奈米顆粒在製備用於治療腫瘤之藥物之用 途 Nanoparticles containing high Z elements are used in the preparation of drugs for treating tumors. way

本揭示案係關於治療腫瘤的方法。具體而言,本揭示案係關於在有需要之受試者中藉由游離輻射來治療腫瘤之方法,該方法包含以下步驟:(i)在首次照射腫瘤之前2天與10天之間之時段內,在有需要之受試者中注射第一治療有效量的作為放射增敏劑之含有高Z元素之奈米顆粒,(ii)在首次照射腫瘤之前1小時至12小時之間之時段內,注射第二治療有效量的含有相同或不同高Z元素之奈米顆粒,及(iii)用治療有效劑量之輻射來照射該受試者之腫瘤;其中該等含有高Z元素之奈米顆粒為含有具有高於40之原子序Z之元素的奈米顆粒,並且該等奈米顆粒具有低於10nm之平均流體動力學直徑。 This disclosure relates to methods of treating tumors. Specifically, the present disclosure relates to a method of treating tumors by ionizing radiation in a subject in need thereof, the method comprising the following steps: (i) a period between 2 days and 10 days before first irradiation of the tumor Injecting a first therapeutically effective amount of nanoparticles containing high Z elements as a radiosensitizer into a subject in need thereof, (ii) within a period between 1 hour and 12 hours before the first irradiation of the tumor , injecting a second therapeutically effective amount of nanoparticles containing the same or a different high-Z element, and (iii) irradiating the subject's tumor with a therapeutically effective dose of radiation, wherein the nanoparticles containing the high-Z element are nanoparticles containing elements with an atomic number Z higher than 40, and the nanoparticles have an average hydrodynamic diameter below 10 nm.

輻射療法(亦稱為放射療法)為使用最多的抗腫瘤策略之一。超過一半的全部癌症患者單獨藉由游離輻射(ionizing radiation;IR)或結合手術或化學療法來接受治療。1在醫學物理學中實現之最新進展(藉由低/高能輻射之研發,單次、低分次或高分次方案之執行及所使用劑量率之多樣化)及創新醫學技術(諸如3D-構形放射療法(3D-conformational radiotherapy;3D-CRT)、強度調變輻射療法(intensity modulated radiation therapy;IMRT)、立體定向放射手術(stereotactic radiosurgery;SRS)及功能造影)之研發有助於向腫瘤更好地遞送有效劑量之輻射,同時避免破壞周圍健康組織,而對周圍健康組織之破壞為輻射療法之最常見副作用。2已開發奈米醫學之若干應用(諸如放射性同位素標記或金屬奈米顆粒)來改良此治療指數,此舉係使用奈米材料作為造影劑 或對比劑來將輻射劑量更好地將遞送至腫瘤位點中及/或作為放射增敏劑,以增強腫瘤中之劑量沉積並且減少照射相關之副作用。3,4,5,6,7考慮到藉由任何組織吸收之輻射劑量與材料之相對原子序之平方(Z2)相關(其中Z為原子序)8,含有高Z原子(諸如金或釓)之奈米顆粒已針對其改良放射療法之潛力而經廣泛研究。在曝露於游離輻射後,基於重金屬之奈米顆粒產生光子及歐傑電子(Auger electrons),其改善腫瘤上之總劑量率沉積,誘導活性含氧物(reactive oxygen species;ROS)之產生並且導致對於許多腫瘤(包括例如黑素瘤、膠質母細胞瘤、乳癌及肺癌)之細胞破壞。9,10,11儘管存在若干臨床前動物模型揭示基於重金屬之奈米顆粒與游離輻射之組合能夠減少腫瘤生長的事實,但是仍然需要改善在抗癌治療中與游離輻射組合之放射增敏奈米顆粒之使用。 Radiation therapy (also known as radiation therapy) is one of the most commonly used anti-tumor strategies. More than half of all cancer patients are treated with ionizing radiation (IR) alone or in combination with surgery or chemotherapy. 1 The latest advances achieved in medical physics (through the development of low/high energy radiation, the execution of single-shot, low-fraction or high-fraction protocols and the diversification of dose rates used) and innovative medical technologies (such as 3D- The research and development of 3D-conformational radiotherapy (3D-CRT), intensity modulated radiation therapy (IMRT), stereotactic radiosurgery (SRS) and functional imaging) helps to treat tumors Better delivery of effective doses of radiation while avoiding damage to surrounding healthy tissue, which is the most common side effect of radiation therapy. 2 Several applications of nanomedicine, such as radioisotope labeling or metal nanoparticles, have been developed to improve this therapeutic index by using nanomaterials as contrast agents or contrast agents to better deliver the radiation dose to the tumor. in-site and/or as a radiosensitizer to enhance dose deposition in the tumor and reduce radiation-related side effects. 3,4,5,6,7 Taking into account that the radiation dose absorbed by any tissue is related to the square of the relative atomic number (Z 2 ) of the material (where Z is the atomic number) 8 , containing high Z atoms (such as gold or chromium ) nanoparticles have been extensively studied for their potential to improve radiotherapy. After exposure to ionizing radiation, heavy metal-based nanoparticles generate photons and Auger electrons, which improve the total dose rate deposition on tumors, induce the production of reactive oxygen species (ROS) and lead to Cell destruction of many tumors including, for example, melanoma, glioblastoma, breast cancer, and lung cancer. 9,10,11 Although there are several preclinical animal models revealing the fact that the combination of heavy metal-based nanoparticles and ionizing radiation can reduce tumor growth, there is still a need to improve the use of radiosensitizing nanoparticles in combination with ionizing radiation in anticancer therapy. Use of particles.

具體而言,涉及放射增敏奈米顆粒之治療策略之重要成功法則在於在優化待治療之腫瘤中之放射增敏奈米顆粒之濃度及分佈的同時,保持周圍健康組織。 Specifically, an important success rule for therapeutic strategies involving radiosensitizing nanoparticles is to optimize the concentration and distribution of radiosensitizing nanoparticles in the tumor to be treated while preserving surrounding healthy tissue.

在本揭示案中,本案發明人現在意外地發現最初靶向輸送至腫瘤之Gd系奈米顆粒之10%以上在首次注射之後8天仍然在腫瘤中可見。奈米顆粒在人類腫瘤中之此意外較長持久性使得發明人能夠設計投與在人類患者中作為放射增敏劑來與輻射療法組合使用之奈米顆粒的新方案。本揭示案之方法包含在照射之前至少兩次注射奈米顆粒,其中一或多次注射通常在照射之前少於24小時進行,但是進一步包含首次注射在首次照射腫瘤之前2天與10天之間之時段內進行。 In the present disclosure, the inventors now unexpectedly discovered that more than 10% of the Gd-based nanoparticles initially targeted to the tumor were still visible in the tumor 8 days after the initial injection. This unexpectedly long persistence of nanoparticles in human tumors allowed the inventors to devise new protocols for administering nanoparticles as radiosensitizers in combination with radiation therapy in human patients. The methods of the present disclosure comprise at least two injections of nanoparticles prior to irradiation, one or more of the injections typically occurring less than 24 hours prior to irradiation, but further comprising the first injection being between 2 days and 10 days prior to the first irradiation of the tumor. carried out within the period.

因此,本揭示案係關於在有需要之受試者中藉由游離輻射來治療腫瘤之方法,該方法包含:(i)在首次照射腫瘤之前2天與10天之間,較佳2天與7天之間之時段內,在有需要之該受試者中注射第一治療有效量的作為放射增敏劑之含有 高Z元素之奈米顆粒;(ii)在首次照射腫瘤之前1小時至12小時之間之時段內,注射第二治療有效量的含有相同或不同高Z元素之奈米顆粒;及(iii)用治療有效劑量之輻射來照射該受試者之腫瘤;其中該等含有高Z元素之奈米顆粒為含有具有高於40、較佳高於50之原子序Z之元素的奈米顆粒,並且該等奈米顆粒具有低於10nm,較佳低於6nm,例如2nm與6nm之間之平均流體動力學直徑(hydrodynamic diameter)。 Accordingly, the present disclosure relates to a method of treating tumors by ionizing radiation in a subject in need thereof, the method comprising: (i) between 2 days and 10 days before first irradiation of the tumor, preferably between 2 days and Within a period of 7 days, inject a first therapeutically effective amount of a radiosensitizer containing Nanoparticles of high-Z elements; (ii) inject a second therapeutically effective amount of nanoparticles containing the same or different high-Z elements within a period between 1 hour and 12 hours before the first irradiation of the tumor; and (iii) irradiating the subject's tumor with a therapeutically effective dose of radiation; wherein the nanoparticles containing high-Z elements are nanoparticles containing elements having an atomic number Z higher than 40, preferably higher than 50, and The nanoparticles have an average hydrodynamic diameter below 10 nm, preferably below 6 nm, for example between 2 nm and 6 nm.

在該等方法之特定實施例中,該等奈米顆粒經靜脈內注射。 In specific embodiments of the methods, the nanoparticles are injected intravenously.

在特定實施例中,該等奈米顆粒包含作為高Z元素之稀土金屬、或稀土金屬之混合物。在更特定實施例中,該等奈米顆粒包含作為高Z元素之釓、鉍、或其混合物。 In certain embodiments, the nanoparticles include rare earth metals, or mixtures of rare earth metals, as high-Z elements. In more specific embodiments, the nanoparticles include as high-Z elements gallium, bismuth, or mixtures thereof.

通常,該等奈米顆粒包含高Z元素之螯合物,例如稀土元素之螯合物。 Typically, the nanoparticles include chelates of high-Z elements, such as chelates of rare earth elements.

在特定實施例中,用於上述方法中之奈米顆粒包含:(i)聚有機矽氧烷;(ii)共價結合至該聚有機矽氧烷之螯合物;及(iii)藉由螯合物來複合之高Z元素。 In certain embodiments, the nanoparticles used in the above methods comprise: (i) a polyorganosiloxane; (ii) a chelate covalently bound to the polyorganosiloxane; and (iii) by Chelates are used to complex high Z elements.

在特定實施例中,用於上述方法中之該等奈米顆粒包含:(i)具有奈米顆粒之總重量之至少8%、較佳8%與50%之間之矽重量比的聚有機矽氧烷;(ii)以每個奈米顆粒包含5與100之間、較佳5與20之間之比例,共價結合至該聚有機矽氧烷之螯合物;及(iii)複合至螯合物之高Z元素。 In particular embodiments, the nanoparticles used in the above methods comprise: (i) a polyorganic polyorganosulfide having a silicon weight ratio of at least 8%, preferably between 8% and 50%, based on the total weight of the nanoparticles. siloxane; (ii) chelates covalently bound to the polyorganosiloxane in a ratio of between 5 and 100, preferably between 5 and 20, per nanoparticle; and (iii) complexing High Z elements to chelates.

在特定實施例中,用於上述方法中之該等奈米顆粒可包含用於複合高Z元素之螯合物,其藉由將以下螯合劑中之一或多者接枝於該等奈米顆粒 上來獲得:DOTA、DTPA、EDTA、EGTA、BAPTA、NOTA、DOTAGA、及DTPABA、或其混合物。 In specific embodiments, the nanoparticles used in the above methods may include chelates for complexing high-Z elements by grafting one or more of the following chelating agents onto the nanoparticles particles Come up and get: DOTA, DTPA, EDTA, EGTA, BAPTA, NOTA, DOTAGA, and DTPABA, or their mixtures.

在一個尤其較佳實施例中,該等奈米顆粒為下式之釓螯合之聚矽氧烷奈米顆粒:

Figure 108133074-A0305-02-0007-1
In a particularly preferred embodiment, the nanoparticles are chelated polysiloxane nanoparticles of the following formula:
Figure 108133074-A0305-02-0007-1

其中PS為聚矽氧烷之基質,及n包含5與50、較佳5與20之間,並且其中平均流體動力學直徑包含2nm與6nm之間。 Wherein PS is the matrix of polysiloxane, and n includes between 5 and 50, preferably between 5 and 20, and the average hydrodynamic diameter includes between 2nm and 6nm.

在特定實施例中,該等奈米顆粒為AGuIX奈米顆粒。 In specific embodiments, the nanoparticles are AGuIX nanoparticles.

在特定實施例中,該等奈米顆粒為包含在預填充小瓶中之凍乾粉末,以便在水溶液中重構以供靜脈內注射。 In certain embodiments, the nanoparticles are lyophilized powders contained in prefilled vials for reconstitution in aqueous solution for intravenous injection.

在特定實施例中,用於上述方法中之奈米顆粒以50與150mg/mL之間、及較佳80與120mg/mL之間,例如100mg/mL之濃度包含在可注射溶液中。 In specific embodiments, the nanoparticles used in the above methods are included in the injectable solution at a concentration of between 50 and 150 mg/mL, and preferably between 80 and 120 mg/mL, such as 100 mg/mL.

通常,各注射步驟處投與之治療有效量可包含50mg/kg與150mg/kg之間,通常80與120mg/kg之間,例如100mg/kg。 Typically, a therapeutically effective amount administered at each injection step may comprise between 50 mg/kg and 150 mg/kg, typically between 80 and 120 mg/kg, such as 100 mg/kg.

在特定實施例中,待治療之該腫瘤為實體腫瘤,較佳選自由以下組成之群:膠質母細胞瘤、腦轉移、腦膜瘤、或子宮頸癌、直腸癌、肺癌、頭頸癌、前列腺癌、結直腸癌、肝癌、及胰腺癌之原發性腫瘤。通常,該腫瘤為腦轉移,通常來自黑素瘤、肺癌、乳癌、腎癌、結腸原發性癌之腦轉移。 In certain embodiments, the tumor to be treated is a solid tumor, preferably selected from the group consisting of: glioblastoma, brain metastasis, meningioma, or cervical cancer, rectal cancer, lung cancer, head and neck cancer, prostate cancer , primary tumors of colorectal cancer, liver cancer, and pancreatic cancer. Typically, the tumor is a brain metastasis, usually from melanoma, lung cancer, breast cancer, kidney cancer, or primary cancer of the colon.

在特定實施例中,該受試者在步驟(iii)處曝露於全腦輻射療法。 例如,該全腦輻射療法由使受試者曝露於25與35Gy之間,例如30Gy之總劑量之游離輻射組成。通常,受試者曝露於每個分劑約3Gy之劑量的游離輻射,並且總劑量較佳在最大10個分劑中投與。 In certain embodiments, the subject is exposed to whole brain radiation therapy at step (iii). For example, the whole-brain radiation therapy consists of exposing the subject to a total dose of ionizing radiation of between 25 and 35 Gy, such as 30 Gy. Typically, subjects are exposed to a dose of approximately 3 Gy per fraction of ionizing radiation, and the total dose is preferably administered in a maximum of 10 fractions.

在特定實施例中,該方法包含在第二注射步驟之後5-10天內,例如在第二注射步驟之後7天內注射第三治療有效量之含有相同或不同高Z元素之奈米顆粒的步驟。 In certain embodiments, the method includes injecting a third therapeutically effective amount of nanoparticles containing the same or a different high-Z element within 5-10 days after the second injection step, such as within 7 days after the second injection step. steps.

在特定實施例中,該方法進一步包含在該等奈米顆粒之第一注射步驟之後藉由核磁共振造影(MRI)來對腫瘤進行造影之步驟,其中該等奈米顆粒用作該MRI之T1對比劑。 In a specific embodiment, the method further includes the step of imaging the tumor by magnetic resonance imaging (MRI) after the first injection step of the nanoparticles, wherein the nanoparticles are used as the T1 of the MRI Contrast agent.

圖1顯示相比於所投與劑量之MRI增強。圖形上之各點對應於在具有大於1cm之最長直徑之轉移中所量測之MRI增強值。發現在各劑量、合併15-30mg/kg劑量、合併50-75mg/kg及100mg/kg之間,MRI增強在統計上為不同的。 Figure 1 shows MRI enhancement compared to the administered dose. Each point on the graph corresponds to the MRI enhancement value measured in metastases with a longest diameter greater than 1 cm. MRI enhancement was found to be statistically different between doses, combined 15-30 mg/kg, combined 50-75 mg/kg and 100 mg/kg.

圖2顯示相比於AGuIX濃度之MRI增強。圖形上之各點對應於在患者#13之具有大於1cm之最長直徑之轉移中所測量的MRI增強及AGuIX濃度值。黑色曲線對應於應用於一系列點之線性迴歸。虛線曲線對應於95%信賴帶。 Figure 2 shows MRI enhancement compared to AGuIX concentration. Each point on the graph corresponds to the measured MRI enhancement and AGuIX concentration values in patient #13's metastasis with the longest diameter greater than 1 cm. The black curve corresponds to linear regression applied to a series of points. The dashed curve corresponds to the 95% confidence band.

圖3顯示投與奈米顆粒之後一週之MRI增強。將患者#13之訊號增強圖(彩色編碼)之一部分疊加至在患者之i.v.注射後2小時(左側影像)及一週後(右側影像)所獲得的原始3D T1-加權影像。箭頭指向AGuIX-增強轉移。 Figure 3 shows MRI enhancement one week after nanoparticle administration. A portion of the signal enhancement map (color coded) of Patient #13 was superimposed onto the original 3D T 1 -weighted images obtained 2 hours after the patient's iv injection (left image) and one week later (right image). Arrow points to AGuIX-enhanced transfer.

圖4顯示II期臨床研究及目標之摘要。 Figure 4 shows a summary of the Phase II clinical studies and objectives.

本揭示案部分地來源於本案發明人所證明的作為癌症輻射療法中之放射增敏劑來使用之某些奈米顆粒在人類腫瘤中之較長持久性的意外發 現。 This disclosure arises, in part, from the unexpected discovery by the present inventors of the longer persistence of certain nanoparticles used as radiosensitizers in cancer radiation therapy in human tumors. now.

本揭示案之治療方法之有利作用尤其與奈米顆粒之兩種特徵有關聯:(i)其含有高Z元素,通常為具有放射增敏性質之高Z陽離子之複合物;(ii)其具有較小平均流體動力學直徑。 The beneficial effects of the treatment method of the present disclosure are particularly related to two characteristics of the nanoparticles: (i) they contain high-Z elements, usually complexes of high-Z cations with radiosensitizing properties; (ii) they have Smaller mean hydrodynamic diameter.

如本文使用,術語「放射增敏(radiosensitizing)」容易為一般技藝人士所理解並且通常係指增加癌細胞對於輻射療法(例如,光子輻射、電子輻射、質子輻射、重離子輻射、及其類似輻射)之敏感性的過程。 As used herein, the term "radiosensitizing" is readily understood by those of ordinary skill in the art and generally refers to an increase in the response of cancer cells to radiation therapy (e.g., photon radiation, electron radiation, proton radiation, heavy ion radiation, and the like) ) sensitivity process.

如本文使用之該高Z元素為具有高於40,例如高於50之原子序Z之元素。 The high Z element as used herein is an element having an atomic number Z above 40, for example above 50.

在特定實施例中,該高Z元素在重金屬之間選擇,並且更佳地Au、Ag、Pt、Pd、Sn、Ta、Zr、Tb、Tm、Ce、Dy、Er、Eu、La、Nd、Pr、Lu、Yb、Bi、Hf、Ho、Pm、Sm、In、及Gd、及其混合物。 In a specific embodiment, the high Z element is chosen between heavy metals, and more preferably Au, Ag, Pt, Pd, Sn, Ta, Zr, Tb, Tm, Ce, Dy, Er, Eu, La, Nd, Pr, Lu, Yb, Bi, Hf, Ho, Pm, Sm, In, and Gd, and mixtures thereof.

高Z元素較佳為陽離子元素,其以氧化物及/或硫屬化物或鹵化物形式或以與螯合劑諸如有機螯合劑之複合物形式而包含在奈米顆粒中。 High-Z elements are preferably cationic elements, which are included in the nanoparticles in the form of oxides and/or chalcogenides or halides or in complexes with chelating agents such as organic chelating agents.

奈米顆粒之大小分佈例如使用商用顆粒大小測定器,諸如Malvern Zêtasizer Nano-S顆粒大小測定器基於PCS(光子關聯光譜法)來量測。 The size distribution of nanoparticles is measured, for example, using a commercial particle sizer such as the Malvern Zêtasizer Nano-S particle sizer based on PCS (Photon Correlation Spectroscopy).

出於本發明目的,術語「平均流體動力學直徑」或「平均直徑」意欲意謂顆粒之直徑之調和平均值。量測此參數之方法亦在標準ISO 13321:1996中描述。 For the purposes of the present invention, the term "mean hydrodynamic diameter" or "average diameter" is intended to mean the harmonic mean of the diameters of the particles. The method of measuring this parameter is also described in the standard ISO 13321:1996.

具有例如1與10nm之間,及甚至更佳1與8nm之間或例如2nm與6nm之間,或通常約3nm之平均流體動力學直徑的奈米顆粒適合於本文揭示之方法。具體而言,其已被證明在靜脈內注射之後在腫瘤,包括腦腫瘤中提供極好被動靶向,及快速腎消除(並且由此提供低毒性)。 Nanoparticles having a mean hydrodynamic diameter, for example, between 1 and 10 nm, and even better, between 1 and 8 nm, or, for example, between 2 nm and 6 nm, or typically about 3 nm, are suitable for the methods disclosed herein. Specifically, it has been shown to provide excellent passive targeting in tumors, including brain tumors, and rapid renal elimination (and thus low toxicity) following intravenous injection.

在可與先前實施例組合的另一實施例中,奈米顆粒可亦有利地用 作造影劑或對比劑,例如,在影像引導輻射療法中。 In another embodiment, which can be combined with the previous embodiment, nanoparticles can also advantageously be used As a contrast agent or contrast agent, for example, in image-guided radiation therapy.

如本文使用,術語「對比劑」意欲意謂出於人為增加對比,使得可相對於相鄰或非病理結構來觀測特定解剖結構(例如某些組織或器官)或病理解剖結構(例如腫瘤)之目的而在醫學造影中使用之任何產物或組合物。術語「造影劑」意欲意謂出於產生訊號,使得可相對於相鄰或非病理結構來觀測特定解剖結構(例如某些組織或器官)或病理解剖結構(例如腫瘤)之目的而在醫學造影中使用之任何產物或組合物。對比劑或造影劑如何運作之原理取決於所使用之造影技術。 As used herein, the term "contrast agent" is intended to mean an agent that artificially increases contrast so that a specific anatomical structure (eg, certain tissues or organs) or a pathological anatomical structure (eg, a tumor) can be observed relative to adjacent or non-pathological structures. Any product or composition intended for use in medical imaging. The term "contrast agent" is intended to mean a substance used in medical imaging for the purpose of producing a signal that allows the observation of a specific anatomical structure (such as certain tissues or organs) or a pathological anatomical structure (such as a tumor) relative to adjacent or non-pathological structures. any product or composition used in. How contrast media or contrast agents work depends on the imaging technique used.

在一些實施例中,造影使用核磁共振造影(magnetic resonance imaging;MRI)、電腦化斷層攝影術造影、正電子發射斷層攝影術造影、或其任何組合來執行。 In some embodiments, imaging is performed using magnetic resonance imaging (MRI), computerized tomography, positron emission tomography, or any combination thereof.

有利地,可組合本揭示案之治療方法中之奈米顆粒之使用,及藉由MRI來活體內偵測腫瘤,使得能夠例如監測治療性治療,如在本揭示案中所描述。 Advantageously, the use of nanoparticles in the treatment methods of the present disclosure may be combined with in vivo detection of tumors by MRI, enabling, for example, monitoring of therapeutic treatments, as described in the present disclosure.

較佳地,僅鑭系元素,包括至少50重量%之釓(Gd)、鏑(Dy)、鑥(Lu)、鉍(Bi)或鈥(Ho)、或其混合物(相對於奈米顆粒中之高Z元素之總重量),例如至少50重量%之釓被選擇作為奈米顆粒中之高Z元素。 Preferably, only lanthanide elements include at least 50% by weight of gallium (Gd), dysprosium (Dy), 鑥 (Lu), bismuth (Bi) or 鈥 (Ho), or mixtures thereof (relative to the nanoparticles) (total weight of high-Z elements), for example at least 50% by weight of rhodium is selected as the high-Z element in the nanoparticles.

在一個尤其較佳實施例中,用於本揭示案之方法中之該等奈米顆粒為釓系奈米顆粒。 In a particularly preferred embodiment, the nanoparticles used in the methods of the present disclosure are gallium-based nanoparticles.

在特定實施例中,該等高Z元素為藉由有機螯合劑來複合之陽離子元素,例如選自具有羧酸、胺、硫醇、或膦酸酯基團之螯合劑。 In specific embodiments, the high-Z elements are cationic elements complexed by organic chelating agents, such as chelating agents selected from the group consisting of carboxylic acid, amine, thiol, or phosphonate groups.

在較佳實施例中,奈米顆粒進一步包含除了高Z元素及視情況螯合劑以外的生物相容性塗層。適合於此生物相容性之試劑包括不限於生物相容性聚合物,諸如聚乙二醇、聚環氧乙烷、聚丙烯醯胺、生物聚合物、多醣、或聚矽氧烷。 In preferred embodiments, the nanoparticles further comprise a biocompatible coating in addition to high-Z elements and optional chelating agents. Agents suitable for such biocompatibility include, but are not limited to, biocompatible polymers such as polyethylene glycol, polyethylene oxide, polyacrylamide, biopolymers, polysaccharides, or polysiloxanes.

在具體實施例中,選擇奈米顆粒以使得其具有每個顆粒50與5000mM-1.s-1之間的弛豫率r1(在37℃及1.4T下)及/或至少5%,例如5%與30%之間之Gd重量比。 In specific embodiments, the nanoparticles are selected such that they have a relaxivity r1 (at 37°C and 1.4T) of between 50 and 5000mM −1 .s −1 per particle and/or at least 5%, e.g. Gd weight ratio between 5% and 30%.

在一個特定實施例中,具有例如1與10nm之間,較佳2nm與6nm之間之很小平均流體動力學直徑之該等奈米顆粒為包含高Z元素之螯合物,例如稀土元素之螯合物的奈米顆粒。在某些實施例中,該等奈米顆粒包含釓或鉍之螯合物。 In a particular embodiment, the nanoparticles having a very small average hydrodynamic diameter, for example between 1 and 10 nm, preferably between 2 nm and 6 nm, are chelates containing high Z elements, such as rare earth elements. Chelate nanoparticles. In certain embodiments, the nanoparticles comprise chelates of gium or bismuth.

在可與任何先前實施例組合之特定實施例中,該等含有高Z元素之奈米顆粒包含:‧聚有機矽氧烷;‧共價結合至該聚有機矽氧烷之螯合劑;‧藉由螯合劑來複合之高Z元素。 In certain embodiments that can be combined with any of the previous embodiments, the high-Z element-containing nanoparticles comprise: ‧polyorganosiloxane; ‧a chelating agent covalently bound to the polyorganosiloxane; High Z elements complexed by chelating agents.

如本文使用,術語「螯合劑」係指能夠複合一或多種金屬離子之基團。 As used herein, the term "chelating agent" refers to a group capable of complexing one or more metal ions.

例示性螯合劑包括(但不限於):1,4,7-三氮雜環壬烷三乙酸(NOTA)、1,4,7,10-四氮雜環十二烷-1,4,7,10-四乙酸(DOTA)、1,4,7-三氮雜環壬烷-1-戊二酸-4,7-二乙酸(NODAGA)、乙二胺四乙酸(EDTA)、二伸乙基三胺五乙酸(DTPA)、環己基-1,2-二胺四乙酸(CDTA)、乙二醇-0,0'-雙(2-胺基乙基)-N,N,N',N'-四乙酸(EGTA)、N,N-雙(羥苄基)-乙二胺-N,N'-二乙酸(HBED)、三伸乙基四胺六乙酸(TTHA)、羥乙二胺三乙酸(HEDTA)、1,4,8,11-四氮雜環十四烷-N,N',N",N'''-四乙酸(TETA)、及1,4,7,10-四氮雜-1,4,7,10-四-(2-胺甲醯基甲基)-環十二烷(TCMC)及1,4,7,10-四氮雜環十二烷,1-(戊二酸)-4,7,10-三乙酸(DOTAGA)。 Exemplary chelating agents include (but are not limited to): 1,4,7-triazacyclononanetriacetic acid (NOTA), 1,4,7,10-tetraazacyclododecane-1,4,7 ,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-1-glutaric acid-4,7-diacetic acid (NODAGA), ethylenediaminetetraacetic acid (EDTA), diethylene glycol Triaminepentaacetic acid (DTPA), cyclohexyl-1,2-diaminetetraacetic acid (CDTA), ethylene glycol-0,0'-bis(2-aminoethyl)-N,N,N', N'-tetraacetic acid (EGTA), N,N-bis(hydroxybenzyl)-ethylenediamine-N,N'-diacetic acid (HBED), trisethylenetetraminehexaacetic acid (TTHA), hydroxyethylenediamine Amine triacetic acid (HEDTA), 1,4,8,11-tetraazacyclotetradecane-N,N',N",N'''-tetraacetic acid (TETA), and 1,4,7,10 -Tetraaza-1,4,7,10-tetraaza-(2-aminomethylmethyl)-cyclododecane (TCMC) and 1,4,7,10-tetraazacyclododecane, 1-(Glutaric acid)-4,7,10-triacetic acid (DOTAGA).

在一些實施例中,該螯合劑在以下之間選擇:

Figure 108133074-A0305-02-0012-2
In some embodiments, the chelating agent is selected between:
Figure 108133074-A0305-02-0012-2

其中波形鍵指示將螯合劑連接至形成奈米顆粒之生物相容性塗層之連接基團的鍵。 Where the wavy bond indicates the bond connecting the chelating agent to the linking group forming the biocompatible coating of the nanoparticle.

在可較佳與先前實施例組合之一個特定實施例中,稀土元素之該等螯合物為釓及/或鉍之螯合物,較佳螯合Gd3+及/或Bi之DOTA或DOTAGA。 In a particular embodiment, which may preferably be combined with the previous embodiments, the chelates of rare earth elements are chelates of gallium and/or bismuth, preferably DOTA or DOTAGA chelating Gd 3+ and/or Bi .

在特定及較佳實施例中,每個奈米顆粒之高Z元素之比率,例如每個奈米顆粒之稀土元素,例如釓(視情況如藉由DOTAGA來螯合)之比率在3與100之間,較佳在5與20之間,通常為約10。 In certain and preferred embodiments, the ratio of high Z elements per nanoparticle, such as the ratio of rare earth elements such as gallium (optionally chelated by DOTAGA) per nanoparticle, is between 3 and 100 between, preferably between 5 and 20, usually about 10.

對於藉由閃爍攝影來造影,奈米顆粒可另外包含放射性同位素,其可用於閃爍攝影,並且較佳選自由In、Tc、Ga、Cu、Zr、Y或Lu之放射性同位素組成之群,例如:111In、99mTc、67Ga、68Ga、64Cu、89Zr、90Y或177Lu。 For imaging by scintigraphy, the nanoparticles may additionally contain radioactive isotopes, which can be used for scintigraphy and are preferably selected from the group consisting of radioactive isotopes of In, Tc, Ga, Cu, Zr, Y or Lu, for example: 111 In, 99m Tc, 67 Ga, 68 Ga, 64 Cu, 89 Zr, 90 Y or 177 Lu.

對於近紅外範圍中之螢光,奈米顆粒可另外包含選自Nd、Yb或Er之鑭系元素。 For fluorescence in the near-infrared range, the nanoparticles may additionally contain a lanthanide element selected from Nd, Yb or Er.

對於可見範圍中之螢光,奈米顆粒可另外包含選自可使用之Eu或Tb之鑭系元素。 For fluorescence in the visible range, the nanoparticles may additionally contain a lanthanide selected from Eu or Tb which may be used.

對於近紅外範圍中之螢光,奈米顆粒可另外包含選自Cyanine 5.5、Cyanine 7、Alexa 680、Alexa 700、Alexa 750、Alexa 790、Bodipy、ICG之有機螢光團。 For fluorescence in the near-infrared range, the nanoparticles may additionally contain organic fluorophores selected from Cyanine 5.5, Cyanine 7, Alexa 680, Alexa 700, Alexa 750, Alexa 790, Bodipy, ICG.

在特定實施例中,混合奈米顆粒為核-殼型。基於由稀土氧化物組成之核心並且具有視情況經官能化之聚有機矽氧烷基質的核-殼型之奈米顆粒為已知的(尤其參見WO2005/088314、WO2009/053644)。 In certain embodiments, the hybrid nanoparticles are core-shell type. Nanoparticles of the core-shell type based on a core consisting of rare earth oxides and with an optionally functionalized polyorganosiloxane matrix are known (see in particular WO 2005/088314, WO 2009/053644).

奈米顆粒可進一步藉由允許將奈米顆粒靶向輸送至特定組織之 分子來官能化。該等試劑可藉由共價偶合來偶合至奈米顆粒,或藉由非共價鍵結來捕獲,例如藉由囊封或親水性/疏水性相互作用或使用螯合劑。 Nanoparticles can be further developed by allowing targeted delivery of nanoparticles to specific tissues. molecules for functionalization. These agents can be coupled to the nanoparticles by covalent coupling, or captured by non-covalent bonding, such as by encapsulation or hydrophilic/hydrophobic interactions or the use of chelating agents.

在一個特定實施例中,使用包含以下各者之混合奈米顆粒:- 聚有機矽氧烷(polyorganosiloxane;POS)基質,其包括稀土陽離子Mn+,n為2與4之間之整數,視情況部分地呈金屬氧化物及/或羥基氧化物之形式,該等稀土陽離子視情況與摻雜陽離子Dm+締合,m為2與6之間之整數,D較佳為除了M以外之稀土金屬、錒系元素及/或過渡元素;- 經由共價鍵-Si-C-共價結合至POS之螯合物,- Mn+陽離子及視情況Dm+陽離子藉由螯合物來複合。 In a specific embodiment, hybrid nanoparticles are used that comprise: - a polyorganosiloxane (POS) matrix, which includes rare earth cations M n+ , n being an integer between 2 and 4, as appropriate Partly in the form of metal oxides and/or oxyhydroxides, these rare earth cations are optionally associated with doping cations D m+ , m being an integer between 2 and 6, D preferably being a rare earth metal other than M , actinides and/or transition elements; - chelates covalently bound to POS via covalent bonds -Si-C-, - M n+ cations and optionally D m+ cations are complexed by chelates.

在核-殼型結構的情況下,POS基質形成環繞基於金屬陽離子之核心的表面層。其厚度可在0.5至10nm範圍內變化,並且可佔總體積之25%至75%。 In the case of a core-shell structure, the POS matrix forms a surface layer surrounding a core based on metal cations. Its thickness can vary from 0.5 to 10nm and can account for 25% to 75% of the total volume.

POS基質充當相對於外部介質的針對核心之保護(尤其抵抗水解之保護)並且其優化對比劑之性質(例如,螢光)。其亦允許經由接枝螯合劑及靶向分子來使奈米顆粒官能化。 The POS matrix acts as a protection for the core relative to the external medium (especially protection against hydrolysis) and it optimizes the properties of the contrast agent (eg, fluorescence). It also allows functionalization of nanoparticles via grafting chelators and targeting molecules.

[超細奈米顆粒] [Ultra-fine nanoparticles]

在一個特定實施例中,該等奈米顆粒為下式之釓螯合之聚矽氧烷奈米顆粒:

Figure 108133074-A0305-02-0013-3
In a specific embodiment, the nanoparticles are chelated polysiloxane nanoparticles of the formula:
Figure 108133074-A0305-02-0013-3

其中PS為聚矽氧烷之基質,並且其中n包含5與50,通常5與20之間, 並且其中平均流體動力學直徑包含2nm與6nm之間。 Where PS is the matrix of polysiloxane, and n includes 5 and 50, usually between 5 and 20, And the average hydrodynamic diameter is between 2nm and 6nm.

更具體而言,如在上式中所描述之該等釓螯合之聚矽氧烷奈米顆粒為如在下一個章節中所描述之AGuIX超細奈米顆粒。 More specifically, the gallium-chelated polysiloxane nanoparticles as described in the above formula are AGuIX ultrafine nanoparticles as described in the next section.

可根據本揭示案之方法來使用之此類超細奈米顆粒可藉由包含以下步驟之自頂向下合成途徑來獲得或可獲得:a.獲得金屬(M)氧化物核心,其中M為如先前描述之高Z元素,較佳釓;b.在M氧化物核心周圍添加聚矽氧烷外殼,例如經由溶膠凝膠法;c.將螯合劑接枝至POS外殼,以使得螯合劑藉由-Si-C-共價鍵來結合至該POS外殼,由此獲得核-殼前體奈米顆粒;及d.純化核-殼前體奈米顆粒並且將其轉移至水溶液中;其中所接枝之試劑呈足以在步驟d.中將金屬(M)氧化物核心溶解並且將陽離子形式(M)加以複合之量,由此將所得混合奈米顆粒之平均流體動力學直徑減小至少於10nm,例如,1nm與8nm之間,通常少於6nm,例如2nm與6nm之間之平均直徑。 Such ultrafine nanoparticles that can be used according to the methods of the present disclosure can be obtained or can be obtained by a top-down synthesis route including the following steps: a. Obtaining a metal (M) oxide core, where M is High Z elements as previously described, preferably gallium; b. Add a polysiloxane shell around the M oxide core, for example via the sol-gel method; c. Graft the chelating agent to the POS shell so that the chelating agent Bind to the POS shell by -Si-C- covalent bond, thereby obtaining core-shell precursor nanoparticles; and d. purify the core-shell precursor nanoparticles and transfer them to an aqueous solution; wherein The grafted reagent is in an amount sufficient to dissolve the metal (M) oxide core and complex the cationic form (M) in step d., thereby reducing the average hydrodynamic diameter of the resulting mixed nanoparticles to less than 10 nm, eg, between 1 nm and 8 nm, is typically less than an average diameter of 6 nm, eg, between 2 nm and 6 nm.

根據如上所述之方法來獲得之此等奈米顆粒不包含由至少一個塗層來囊封之金屬氧化物之核心。關於合成此等奈米顆粒之更多細節在以下給出。 The nanoparticles obtained according to the method described above do not contain a core of metal oxide encapsulated by at least one coating. More details on the synthesis of these nanoparticles are given below.

此自頂向下合成法產生通常在1nm與8nm之間,更具體而言在2nm與6nm之間的所觀察到的大小。那麼本文使用之術語為超細奈米顆粒。 This top-down synthesis method yields observed sizes typically between 1 nm and 8 nm, more specifically between 2 nm and 6 nm. So the term used in this article is ultrafine nanoparticles.

替代地,在下文中描述另一種「一鍋」合成法以製備具有少於10nm,例如,1nm與8nm之間,通常2nm與6nm之間之平均直徑的該等無核心奈米顆粒。 Alternatively, another "one-pot" synthesis is described below to prepare such coreless nanoparticles with an average diameter of less than 10 nm, eg, between 1 nm and 8 nm, typically between 2 nm and 6 nm.

關於此等超細或無核心奈米顆粒、其合成過程及其用途的進一步細節在專利申請案WO2011/135101、WO2018/224684或WO2019/008040中描述,該等申請案以引用方式併入。 Further details about such ultrafine or coreless nanoparticles, their synthesis processes and their uses are described in patent applications WO2011/135101, WO2018/224684 or WO2019/008040, which applications are incorporated by reference.

[獲得根據本揭示案來使用之奈米顆粒之較佳實施例的過程] [Process for Obtaining Preferred Embodiments of Nanoparticles for Use in accordance with the Disclosure]

總體上,熟習此項技術者能夠容易地產生根據本發明來使用之奈米顆粒。更具體而言,將提及以下要素。 In general, one skilled in the art can readily produce nanoparticles for use in accordance with the present invention. More specifically, the following elements will be mentioned.

對於基於鑭系元素氧化物或羥基氧化物之核心的核-殼型之奈米顆粒,可利用使用醇作為溶劑的生產過程,如例如在P.Perriat等人,J.Coll.Int.Sci,2004,273,191;O.Tillement等人,J.Am.Chem.Soc.,2007,129,5076及P.Perriat等人,J.Phys.Chem.C,2009,113,4038中所描述。 For core-shell nanoparticles based on a core of lanthanide oxides or oxyhydroxides, production processes using alcohols as solvents can be used, as for example in P. Perriat et al., J. Coll. Int. Sci, 2004, 273, 191; O. Tillement et al., J. Am. Chem. Soc., 2007, 129, 5076 and P. Perriat et al., J. Phys. Chem. C, 2009, 113, 4038.

對於POS基質,可使用來源於由Stoeber首創之技術的若干技術(Stoeber,W;J.Colloid Interf Sci 1968,26,62)。亦可使用用於塗覆之過程,如在Louis等人(Louis等人,2005,Chemistry of Materials,17,1673-1682)或國際申請案WO2005/088314中所描述。 For POS substrates, several techniques derived from those pioneered by Stoeber (Stoeber, W; J. Colloid Interf Sci 1968, 26, 62) can be used. The process for coating can also be used, as described in Louis et al. (Louis et al., 2005, Chemistry of Materials, 17, 1673-1682) or in the international application WO2005/088314.

在實務中,超細奈米顆粒之合成例如在Mignot等人Chem.Eur.J.2013,19,6122-6136中所描述:通常,核/殼型之前體奈米顆粒以鑭系元素氧化物核心(經由經修飾之多元醇途徑)及聚矽氧烷外殼(經由溶膠/凝膠)來形成;此物件具有例如約5-10nm之平均流體動力學直徑。因此,極小尺寸(在10nm以下可調整)之鑭系元素氧化物核心可藉助於在以下出版物中描述之過程之一在醇中產生:P.Perriat等人,J.Coll.Int.Sci,2004,273,191;O.Tillement等人,J.Am.Chem.Soc.,2007,129,5076及P.Perriat等人,J.Phys.Chem.C,2009,113,4038。 In practice, the synthesis of ultrafine nanoparticles is described, for example, in Mignot et al. Chem. Eur. J. 2013, 19, 6122-6136: Usually, core/shell type precursor nanoparticles are prepared with lanthanide oxides. A core (via modified polyol route) and a polysiloxane shell (via sol/gel) are formed; the object has an average hydrodynamic diameter of, for example, about 5-10 nm. Therefore, lanthanide oxide cores of extremely small size (tunable below 10 nm) can be produced in alcohols by means of one of the processes described in the following publications: P. Perriat et al., J. Coll. Int. Sci, 2004, 273, 191; O. Tillement et al., J. Am. Chem. Soc., 2007, 129, 5076 and P. Perriat et al., J. Phys. Chem. C, 2009, 113, 4038.

此等核心可根據例如在以下出版物中描述之方案經塗佈具有聚矽氧烷層:C.Louis等人,Chem.Mat.,2005,17,1673及O.Tillement等人,J.Am.Chem.Soc.,2007,129,5076。 Such cores may be coated with a polysiloxane layer according to the protocol described, for example, in the following publications: C. Louis et al., Chem. Mat., 2005, 17, 1673 and O. Tillement et al., J. Am .Chem.Soc.,2007,129,5076.

將對於規定金屬陽離子具有特異性之螯合劑(例如用於Gd3+之DOTAGA)接枝在聚矽氧烷之表面上;亦可將其一部分插入該層內部,但是形成聚矽氧烷之控制為複雜的,並且在此等極小規模下的簡單外部接枝可給出 足夠比例之接枝。 A chelating agent specific for a specified metal cation (such as DOTAGA for Gd 3+ ) is grafted onto the surface of the polysiloxane; part of it can also be inserted into the interior of the layer, but the control of the polysiloxane is formed are complex, and simple external grafting at these very small scales can give adequate proportions of grafting.

可藉助於例如在包含適當尺寸之孔的膜上的透析或切向過濾方法,將奈米顆粒與合成殘餘物分離。 Nanoparticles can be separated from synthesis residues by means of methods such as dialysis or tangential filtration on membranes containing pores of appropriate size.

藉由溶解(例如藉由改變pH或藉由將複合分子引入溶液中)來破壞核心。然後,核心之此破壞允許耗散聚矽氧烷層(根據緩慢侵蝕或崩陷之機制),使得可最終獲得具有複雜形態之聚矽氧烷物件,其特徵尺度為聚矽氧烷層之厚度之數量級,亦即比直到現在為止所產生的物件小得多。 The core is destroyed by dissolution (eg by changing the pH or by introducing complex molecules into the solution). This destruction of the core then allows the dissipation of the silicone layer (according to the mechanism of slow erosion or collapse), so that ultimately polysiloxane objects with complex morphologies can be obtained, with characteristic dimensions being the thickness of the silicone layer orders of magnitude, that is, much smaller than the objects produced until now.

因此,移除核心使得可將大約5-10奈米直徑之顆粒尺寸減小至低於8nm,例如2-6nm之間之尺寸。此外,與具有相同尺寸但是僅在表面處包含M(例如釓)之理論聚矽氧烷奈米顆粒相比,此操作使得可增加每nm3之M(例如釓)之數目。對於一定奈米顆粒尺寸之M之數目可藉助於藉由EDX來量測之M/Si原子比來評價。通常,每個超細奈米顆粒之M之此數目可包含在5與50之間。 Therefore, removing the core allows reducing the particle size from about 5-10 nanometers in diameter to below 8 nm, for example to a size between 2-6 nm. Furthermore, this operation allows to increase the number of M (eg gallium) per nm 3 compared to theoretical polysiloxane nanoparticles of the same size but containing M (eg gallium) only at the surface. The number of M for a certain nanoparticle size can be evaluated with the help of the M/Si atomic ratio measured by EDX. Typically, this number of M per ultrafine nanoparticle may be comprised between 5 and 50.

在一個特定實施例中,根據本揭示案之奈米顆粒包含具有酸官能之螯合劑,例如DOTA或DOTAGA。奈米顆粒之酸官能在合適量之靶向分子之存在下例如使用EDC/NHS(1-乙基-3-(3-二甲胺基丙基)碳二亞胺/N-氫琥珀醯亞胺)來活化。由此接枝之奈米顆粒然後例如藉由切向過濾來純化。 In a specific embodiment, nanoparticles according to the present disclosure include a chelating agent with acid functionality, such as DOTA or DOTAGA. The acid functionality of the nanoparticles is achieved in the presence of an appropriate amount of targeting molecules, such as using EDC/NHS (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydrosuccinimide). amine) to activate. The nanoparticles thus grafted are then purified, for example by tangential filtration.

替代地,根據本揭示案之奈米顆粒可藉由合成法(「一鍋合成法」)來獲得或可獲得,該方法包含將至少一種在生理pH下帶負電荷之羥基矽烷或烷氧基矽烷及至少一種選自聚胺基聚羧酸之螯合劑與以下各者混合:- 至少一種在生理pH下呈中性之羥基矽烷或烷氧基矽烷,及/或- 至少一種在生理pH下帶正電荷並且包含胺基官能之羥基矽烷或烷氧基矽烷,其中:- 中性矽烷與帶負電荷矽烷之莫耳比A定義如下:0

Figure 108133074-A0305-02-0016-6
A
Figure 108133074-A0305-02-0016-7
6,較佳0.5
Figure 108133074-A0305-02-0016-8
A
Figure 108133074-A0305-02-0016-9
2;- 帶正電荷矽烷與帶負電荷矽烷之莫耳比B定義如下:0
Figure 108133074-A0305-02-0017-10
B
Figure 108133074-A0305-02-0017-11
5,較佳0.25
Figure 108133074-A0305-02-0017-12
B
Figure 108133074-A0305-02-0017-14
3;- 中性及帶正電荷矽烷與帶負電荷矽烷之莫耳比C定義如下:0<C
Figure 108133074-A0305-02-0017-15
8,較佳1
Figure 108133074-A0305-02-0017-17
C
Figure 108133074-A0305-02-0017-18
4。 Alternatively, nanoparticles according to the present disclosure may be obtained or obtainable by a synthetic method ("one-pot synthesis") that involves adding at least one hydroxysilane or alkoxy group that is negatively charged at physiological pH. The silane and at least one chelating agent selected from polyaminopolycarboxylic acids are mixed with: - at least one hydroxysilane or alkoxysilane that is neutral at physiological pH, and/or - at least one hydroxysilane or alkoxysilane that is neutral at physiological pH Positively charged hydroxysilanes or alkoxysilanes containing amine functionality, where: - The molar ratio A of neutral silanes to negatively charged silanes is defined as follows: 0
Figure 108133074-A0305-02-0016-6
A
Figure 108133074-A0305-02-0016-7
6, better 0.5
Figure 108133074-A0305-02-0016-8
A
Figure 108133074-A0305-02-0016-9
2;-The molar ratio B between positively charged silane and negatively charged silane is defined as follows: 0
Figure 108133074-A0305-02-0017-10
B
Figure 108133074-A0305-02-0017-11
5, preferably 0.25
Figure 108133074-A0305-02-0017-12
B
Figure 108133074-A0305-02-0017-14
3; - The molar ratio C between neutral and positively charged silane and negatively charged silane is defined as follows: 0<C
Figure 108133074-A0305-02-0017-15
8, better 1
Figure 108133074-A0305-02-0017-17
C
Figure 108133074-A0305-02-0017-18
4.

根據此一鍋合成法之一更特定實施例中,該方法包含將至少一種在生理pH下帶負電荷之烷氧基矽烷與以下各者混合,該烷氧基矽烷在APTES-DOTAGA、TANED、CEST及其混合物之間選擇,- 至少在生理pH下呈中性之烷氧基矽烷,該烷氧基矽烷在TMOS、TEOS及其混合物之間選擇,及/或- 在生理pH下帶正電荷之APTES,其中:- 中性矽烷與帶負電荷矽烷之莫耳比A定義如下:0

Figure 108133074-A0305-02-0017-19
A
Figure 108133074-A0305-02-0017-21
6,較佳0.5
Figure 108133074-A0305-02-0017-22
A
Figure 108133074-A0305-02-0017-24
2;- 帶正電荷矽烷與帶負電荷矽烷之莫耳比B定義如下:0
Figure 108133074-A0305-02-0017-25
B
Figure 108133074-A0305-02-0017-26
5,較佳0.25
Figure 108133074-A0305-02-0017-28
B
Figure 108133074-A0305-02-0017-29
3;- 中性及帶正電荷矽烷與帶負電荷矽烷之莫耳比C定義如下:0<C
Figure 108133074-A0305-02-0017-31
8,較佳1
Figure 108133074-A0305-02-0017-32
C
Figure 108133074-A0305-02-0017-33
4。 According to a more specific embodiment of this one-pot synthesis method, the method includes mixing at least one alkoxysilane that is negatively charged at physiological pH with APTES-DOTAGA, TANED, CEST and mixtures thereof, - an alkoxysilane that is at least neutral at physiological pH, the alkoxysilane is selected between TMOS, TEOS and mixtures thereof, and/or - is positively charged at physiological pH APTES, where: - The molar ratio A between neutral silane and negatively charged silane is defined as follows: 0
Figure 108133074-A0305-02-0017-19
A
Figure 108133074-A0305-02-0017-21
6, better 0.5
Figure 108133074-A0305-02-0017-22
A
Figure 108133074-A0305-02-0017-24
2;-The molar ratio B between positively charged silane and negatively charged silane is defined as follows: 0
Figure 108133074-A0305-02-0017-25
B
Figure 108133074-A0305-02-0017-26
5, preferably 0.25
Figure 108133074-A0305-02-0017-28
B
Figure 108133074-A0305-02-0017-29
3; - The molar ratio C between neutral and positively charged silane and negatively charged silane is defined as follows: 0<C
Figure 108133074-A0305-02-0017-31
8, better 1
Figure 108133074-A0305-02-0017-32
C
Figure 108133074-A0305-02-0017-33
4.

根據一特定實施例,一鍋合成法包含將在生理pH下帶負電荷之APTES-DOTAGA與以下各者混合:- 至少一種在生理pH下呈中性之烷氧基矽烷,該烷氧基矽烷在TMOS、TEOS及其混合物之間選擇,及/或- 在生理pH下帶正電荷之APTES,其中:- 中性矽烷與帶負電荷矽烷之莫耳比A定義如下:0

Figure 108133074-A0305-02-0017-34
A
Figure 108133074-A0305-02-0017-35
6,較佳0.5
Figure 108133074-A0305-02-0017-36
A
Figure 108133074-A0305-02-0017-37
2;- 帶正電荷矽烷與帶負電荷矽烷之莫耳比B定義如下:0
Figure 108133074-A0305-02-0018-38
B
Figure 108133074-A0305-02-0018-39
5,較佳0.25
Figure 108133074-A0305-02-0018-40
B
Figure 108133074-A0305-02-0018-41
3;- 中性及帶正電荷矽烷與帶負電荷矽烷之莫耳比C定義如下:0<C
Figure 108133074-A0305-02-0018-42
8,較佳1
Figure 108133074-A0305-02-0018-43
C
Figure 108133074-A0305-02-0018-44
4。 According to a particular embodiment, the one-pot synthesis involves mixing APTES-DOTAGA, which is negatively charged at physiological pH, with: - at least one alkoxysilane that is neutral at physiological pH, the alkoxysilane Choose between TMOS, TEOS and their mixtures, and/or - Positively charged APTES at physiological pH, where: - The molar ratio A of neutral silane to negatively charged silane is defined as follows: 0
Figure 108133074-A0305-02-0017-34
A
Figure 108133074-A0305-02-0017-35
6, better 0.5
Figure 108133074-A0305-02-0017-36
A
Figure 108133074-A0305-02-0017-37
2;-The molar ratio B between positively charged silane and negatively charged silane is defined as follows: 0
Figure 108133074-A0305-02-0018-38
B
Figure 108133074-A0305-02-0018-39
5, preferably 0.25
Figure 108133074-A0305-02-0018-40
B
Figure 108133074-A0305-02-0018-41
3; - The molar ratio C between neutral and positively charged silane and negatively charged silane is defined as follows: 0<C
Figure 108133074-A0305-02-0018-42
8, better 1
Figure 108133074-A0305-02-0018-43
C
Figure 108133074-A0305-02-0018-44
4.

[AGuIX奈米顆粒] [AGuIX Nanoparticles]

在一更特定實施例中,該基於釓螯合聚矽氧烷之奈米顆粒為下式之無核心超細AGuIX奈米顆粒:

Figure 108133074-A0305-02-0018-4
In a more specific embodiment, the nanoparticles based on chelated polysiloxane are core-less ultrafine AGuIX nanoparticles of the following formula:
Figure 108133074-A0305-02-0018-4

其中PS為聚矽氧烷並且n平均為約10,並且具有4±2nm之平均流體動力學直徑及約10±1kDa之質量。 Where PS is polysiloxane and n averages about 10, and has an average hydrodynamic diameter of 4±2 nm and a mass of about 10±1 kDa.

該AGuIX奈米顆粒亦可藉由平均化學式來描述:(GdSi4-7C24-30N5-8O15-25H40-60,5-10 H2O)x The AGuIX nanoparticles can also be described by the average chemical formula: (GdSi 4-7 C 24-30 N 5-8 O 15-25 H 40-60 ,5-10 H 2 O) x

[根據所揭示方法來使用的奈米顆粒之醫藥調配物] [Pharmaceutical formulations of nanoparticles for use according to the disclosed methods]

當作為藥品來使用時,用於如本文提供之用途的包含該等高Z奈米顆粒之組合物可以奈米顆粒之懸浮液之醫藥調配物形式投與。此等調配物可如在本文中或在別處所描述來製備,並且可藉由各種途徑來投與,此取決於是否需要局部或全身治療及待治療之區域。 When used as pharmaceuticals, compositions containing such high-Z nanoparticles for use as provided herein can be administered in the form of pharmaceutical formulations of suspensions of nanoparticles. Such formulations may be prepared as described herein or elsewhere, and may be administered by various routes, depending on whether local or systemic treatment is desired and the area to be treated.

具體而言,用於如本文所述用途之該等醫藥調配物含有作為活性成分的如本文提供之含有高Z奈米顆粒之懸浮液,以及一或多種醫藥學上可接 受之載劑(賦形劑)。在製造本文提供之醫藥調配物的過程中,奈米顆粒組合物可例如與賦形劑混合或藉由賦形劑來稀釋。當賦形劑充當稀釋劑時,其可為充當奈米顆粒組合物之媒劑、載劑或介質之固體、半固體或液體材料。 Specifically, such pharmaceutical formulations for use as described herein contain as active ingredients a suspension containing high-Z nanoparticles as provided herein, and one or more pharmaceutically acceptable The carrier (excipient). In making the pharmaceutical formulations provided herein, the nanoparticle compositions may be mixed with or diluted by excipients, for example. When the excipient serves as a diluent, it can be a solid, semi-solid, or liquid material that serves as a vehicle, carrier, or medium for the nanoparticle composition.

因此,醫藥調配物可呈粉末、糖錠、酏劑、懸浮液、乳液、溶液、糖漿、氣溶膠(以固體形式或在液體介質中)、無菌可注射溶液、無菌封裝粉末形式、及其類似形式。 Thus, pharmaceutical formulations may be in the form of powders, lozenges, elixirs, suspensions, emulsions, solutions, syrups, aerosols (either in solid form or in liquid media), sterile injectable solutions, sterile packaged powders, and the like. form.

在特定實施例中,用於本文所述用途的該醫藥調配物為無菌凍乾粉末,其包含在預填充小瓶中以便例如在水溶液中重構來供靜脈內注射。在特定實施例中,該凍乾粉末包含有效量的作為活性成分之該等含有高Z奈米顆粒,通常基於釓螯合聚矽氧烷之奈米顆粒,並且更具體而言如本文描述之AGuIX奈米顆粒。在某些特定實施例中,該凍乾粉末含有每小瓶約200mg與15g之間,例如每小瓶280mg與320mg之間之AGuIX,通常每小瓶300mg之AGuIX或約800mg與1200mg之間,例如每小瓶1g之AGuIX。 In certain embodiments, the pharmaceutical formulation for use described herein is a sterile lyophilized powder contained in a prefilled vial for reconstitution, eg, in aqueous solution, for intravenous injection. In certain embodiments, the lyophilized powder includes as an active ingredient an effective amount of such high-Z nanoparticle-containing nanoparticles, generally nanoparticles based on chelated polysiloxane, and more specifically as described herein. AGuIX nanoparticles. In certain specific embodiments, the lyophilized powder contains between about 200 mg and 15 g of AGuIX per vial, such as between 280 mg and 320 mg per vial, typically 300 mg of AGuIX per vial or between about 800 mg and 1200 mg, such as per vial 1g of AGuIX.

此粉末可進一步含有一或多種額外賦形劑,及尤其CaCl2,例如0.5mg與0.80mg之間之CaCl2,通常0.66mg之CaCl2This powder may further contain one or more additional excipients, and in particular CaCl2 , for example between 0.5 mg and 0.80 mg of CaCl2 , typically 0.66 mg of CaCl2 .

該凍乾粉末可在水溶液,通常注射用水中重構。因此,在特定實施例中,用於根據本揭示案之用途的該醫藥溶液為注射用溶液,其包含有效量的作為活性成分之該等含有高Z奈米顆粒,通常基於釓螯合聚矽氧烷之奈米顆粒,並且更具體而言如本文描述之AGuIX奈米顆粒。 The lyophilized powder can be reconstituted in an aqueous solution, usually water for injection. Accordingly, in a specific embodiment, the pharmaceutical solution for use according to the present disclosure is an injectable solution that contains as an active ingredient an effective amount of such high-Z nanoparticle-containing nanoparticles, typically based on chelated polysilica. Nanoparticles of oxane, and more specifically AGuIX nanoparticles as described herein.

例如,用於如本文揭示之方法中之該注射用溶液為50mg/mL與150mg/mL,例如80mg/mL及120mg/mL之間,通常100mg/mL的基於釓螯合聚矽氧烷之奈米顆粒,通常AGuIX奈米顆粒之溶液,其視情況包含一或多種額外醫藥學上可接受之賦形劑,例如0.1mg/mL與0.3mg/mL之間之CaCl2,通常0.22mg/mL之CaCl2For example, the injectable solution for use in the methods as disclosed herein is between 50 mg/mL and 150 mg/mL, such as between 80 mg/mL and 120 mg/mL, typically 100 mg/mL, based on chelated polysiloxane. rice particles, typically a solution of AGuIX nanoparticles, optionally containing one or more additional pharmaceutically acceptable excipients, such as CaCl 2 between 0.1 mg/mL and 0.3 mg/mL, typically 0.22 mg/mL of CaCl 2 .

[本揭示案之使用方法] [How to use this disclosure]

本發明係關於在有需要之受試者中治療腫瘤之方法,該方法包含:(i)首次照射腫瘤之前2天與10天之間,較佳2天與7天之間之時段內,在有需要之該受試者中注射第一治療有效量的作為放射增敏劑之含有高Z元素之奈米顆粒;(ii)首次照射腫瘤之前1小時至12小時之間之時段內,注射第二治療有效量的含有相同或不同高Z元素之奈米顆粒;及(iii)治療有效劑量之輻射來照射該受試者之腫瘤;其中該等含有高Z元素之奈米顆粒為含有具有高於40、較佳高於50之原子序Z之元素的奈米顆粒,並且該等奈米顆粒具有低於10nm,較佳低於6nm,例如2nm與6nm之間之平均流體動力學直徑。 The present invention relates to a method of treating tumors in a subject in need thereof, the method comprising: (i) within a period between 2 days and 10 days, preferably between 2 days and 7 days, before the first irradiation of the tumor, Inject the first therapeutically effective amount of nanoparticles containing high-Z elements as radiosensitizers into the subject in need; (ii) Inject the second therapeutically effective amount between 1 hour and 12 hours before the first irradiation of the tumor. 2. A therapeutically effective dose of nanoparticles containing the same or different high-Z elements; and (iii) a therapeutically effective dose of radiation to irradiate the subject's tumor; wherein the nanoparticles containing high-Z elements are those containing high-Z elements. Nanoparticles of an element with an atomic number Z between 40 and preferably above 50, and the nanoparticles have an average hydrodynamic diameter below 10 nm, preferably below 6 nm, for example between 2 nm and 6 nm.

本揭示案亦係關於在有需要之受試者中治療腫瘤之方法中使用之含有高Z元素之奈米顆粒,該方法包含:(i)首次照射腫瘤之前2天與10天之間,較佳2天與7天之間之時段內,在有需要之該受試者中注射第一治療有效量的作為放射增敏劑之含有高Z元素之奈米顆粒;(ii)首次照射腫瘤之前1小時至12小時之間之時段內,注射第二治療有效量的含有相同或不同高Z元素之奈米顆粒;及(iii)治療有效劑量之輻射來照射該受試者之腫瘤;其中該等含有高Z元素之奈米顆粒為含有具有高於40、較佳高於50之原子序Z之元素的奈米顆粒,並且該等奈米顆粒具有低於10nm,較佳低於6nm,例如2nm與6nm之間之平均流體動力學直徑。 The present disclosure also relates to nanoparticles containing high Z elements for use in a method of treating tumors in a subject in need thereof, the method comprising: (i) between 2 days and 10 days before first irradiation of the tumor, whichever is less Preferably within a period between 2 days and 7 days, inject a first therapeutically effective amount of nanoparticles containing high Z elements as a radiosensitizer into the subject in need; (ii) before the first irradiation of the tumor Injecting a second therapeutically effective amount of nanoparticles containing the same or different high-Z elements within a period between 1 hour and 12 hours; and (iii) irradiating the subject's tumor with a therapeutically effective dose of radiation; wherein the Nanoparticles containing high Z elements are nanoparticles containing elements with an atomic number Z higher than 40, preferably higher than 50, and these nanoparticles have a diameter below 10 nm, preferably below 6 nm, such as Average hydrodynamic diameter between 2nm and 6nm.

本揭示案進一步係關於用於製造在有需要之受試者中治療腫瘤之藥物的含有高Z元素之奈米顆粒,該方法包含:(i)首次照射腫瘤之前2天與10天之間,較佳2與7天之間之時段內,在 有需要之該受試者中注射第一治療有效量的作為放射增敏劑之含有高Z元素之奈米顆粒;(ii)首次照射腫瘤之前1小時至12小時之間之時段內,注射第二治療有效量的含有相同或不同高Z元素之奈米顆粒;及(iii)治療有效劑量之輻射來照射該受試者之腫瘤;其中該等含有高Z元素之奈米顆粒為含有具有高於40、較佳高於50之原子序Z之元素的奈米顆粒,並且該等奈米顆粒具有低於10nm,較佳低於6nm,例如2nm與6nm之間之平均流體動力學直徑。 The present disclosure further relates to nanoparticles containing high Z elements for use in the manufacture of a drug for treating tumors in a subject in need thereof, the method comprising: (i) between 2 days and 10 days before first irradiation of the tumor, Preferably within a period between 2 and 7 days, in Inject the first therapeutically effective amount of nanoparticles containing high-Z elements as radiosensitizers into the subject in need; (ii) Inject the second therapeutically effective amount between 1 hour and 12 hours before the first irradiation of the tumor. 2. A therapeutically effective dose of nanoparticles containing the same or different high-Z elements; and (iii) a therapeutically effective dose of radiation to irradiate the subject's tumor; wherein the nanoparticles containing high-Z elements are those containing high-Z elements. Nanoparticles of an element with an atomic number Z between 40 and preferably above 50, and the nanoparticles have an average hydrodynamic diameter below 10 nm, preferably below 6 nm, for example between 2 nm and 6 nm.

如本文所用,術語「治療」係指以下一或多者:(1)抑制疾病;例如抑制正經歷或顯示疾病、病狀或病症之病理學或症狀之個體的疾病、病狀或病症(亦即遏制病理學及/或症狀之進一步發展);及(2)改善疾病;例如改善正經歷或顯示疾病、病狀或病症之病理學或症狀之個體的疾病、病狀或病症(亦即逆轉病理學及/或症狀),諸如降低疾病之嚴重性或減少或減輕疾病之一或多種症狀。具體而言,關於治療腫瘤,術語「治療」可意指抑制腫瘤之生長,或減小腫瘤之尺寸。 As used herein, the term "treatment" refers to one or more of the following: (1) Suppression of a disease; e.g., suppression of a disease, condition, or disorder in an individual who is experiencing or exhibiting pathology or symptoms of the disease, condition, or condition (also i.e., arresting the further development of pathology and/or symptoms); and (2) ameliorating disease; e.g., ameliorating (i.e., reversing) a disease, condition, or condition in an individual who is experiencing or exhibiting pathology or symptoms of the disease, condition, or condition. pathology and/or symptoms), such as reducing the severity of the disease or reducing or alleviating one or more symptoms of the disease. Specifically, with respect to treating a tumor, the term "treating" may mean inhibiting the growth of the tumor, or reducing the size of the tumor.

在本文中可互換使用之術語「患者」及「受試者」係指動物界之任何成員,包括哺乳動物及無脊椎動物。例如,小鼠、大鼠、其他齧齒動物、兔、犬、貓、豬、牛、綿羊、馬、靈長類動物、魚、及人類。較佳地,受試者為哺乳動物,或人類,包括例如患有腫瘤之受試者。 The terms "patient" and "subject" are used interchangeably herein to refer to any member of the animal kingdom, including mammals and invertebrates. For example, mice, rats, other rodents, rabbits, dogs, cats, pigs, cattle, sheep, horses, primates, fish, and humans. Preferably, the subject is a mammal, or human, including, for example, a subject suffering from a tumor.

在特定實施例中,該腫瘤為實體腫瘤,較佳選自由以下組成之群:膠質母細胞瘤、腦轉移、腦膜瘤、或子宮頸癌、直腸癌、肺癌、頭頸癌、前列腺癌、結直腸癌、肝癌、及胰腺癌之原發性腫瘤。具體而言,該腫瘤為腦轉移,通常來自黑素瘤、肺癌、乳癌、腎原發性癌之腦轉移。 In specific embodiments, the tumor is a solid tumor, preferably selected from the group consisting of: glioblastoma, brain metastasis, meningioma, or cervical cancer, rectal cancer, lung cancer, head and neck cancer, prostate cancer, colorectal cancer Primary tumors of cancer, liver cancer, and pancreatic cancer. Specifically, the tumor is a brain metastasis, usually from melanoma, lung cancer, breast cancer, or primary renal cancer.

在特定實施例中,該受試者選自患有多發性腦轉移之人類患者。在其他特定實施例中,該受試者選自不適合於藉由手術或立體定向輻射來局 部治療的患有多發性腦轉移之人類患者。 In specific embodiments, the subject is selected from a human patient suffering from multiple brain metastases. In other specific embodiments, the subject is selected from a population not suitable for localization by surgery or stereotactic radiation. Partially treated human patients with multiple brain metastases.

治療癌症之本揭示案之方法包含向受試者之腫瘤投與有效量之該等奈米顆粒的至少兩個步驟。 Methods of the present disclosure for treating cancer include at least two steps of administering an effective amount of the nanoparticles to a tumor in a subject.

奈米顆粒可使用不同可能途徑來投與受試者,諸如局部(瘤內(IT)、動脈內(IA)、皮下、靜脈內(IV)、皮內、氣道(吸入)、腹膜內、肌肉內、鞘內、眼內或經口途徑。 Nanoparticles can be administered to a subject using different possible routes, such as local (intratumoral (IT)), intraarterial (IA), subcutaneous, intravenous (IV), intradermal, airway (inhalation), intraperitoneal, intramuscular Intrathecal, intraocular, or oral routes.

在特定實施例中,奈米顆粒靜脈內投與。事實上,如本文揭示之奈米顆粒藉由被動靶向,例如藉由增強之滲透性及截留效應來有利地靶向輸送至人類腫瘤。 In specific embodiments, the nanoparticles are administered intravenously. Indeed, nanoparticles as disclosed herein are advantageously targeted for delivery to human tumors through passive targeting, such as through enhanced permeability and entrapment effects.

在合適時,可執行奈米顆粒之進一步注射或投與。通常,在使用分次輻射療法時,奈米顆粒可在輻射療法期間每週一次進一步注射。例如,在一個特定實施例中,如本文揭示之方法進一步包含在第二注射步驟之後5-10天內,例如在第二注射步驟之後7天內注射第三治療有效量之含有相同或不同高Z元素之奈米顆粒的步驟。 When appropriate, further injections or administrations of nanoparticles can be performed. Typically, when fractionated radiation therapy is used, nanoparticles can be further injected once a week during radiation therapy. For example, in one particular embodiment, a method as disclosed herein further comprises injecting a third therapeutically effective amount of a compound containing the same or a different high concentration within 5-10 days after the second injection step, such as within 7 days after the second injection step. The steps of Z element nanoparticles.

在特定實施例中,該等奈米顆粒為基於釓螯合聚矽氧烷之奈米顆粒並且在各注射步驟處投與之治療有效量可包含50mg/kg與150mg/kg之間,通常80mg/kg與120mg/kg之間,例如100mg/kg。 In particular embodiments, the nanoparticles are chelated polysiloxane-based nanoparticles and the therapeutically effective amount administered at each injection step may comprise between 50 mg/kg and 150 mg/kg, typically 80 mg /kg and 120mg/kg, such as 100mg/kg.

有利地,相同奈米顆粒在其用作放射增敏劑之前可用作藉由MRI來偵測腫瘤之治療診斷劑。因此,該方法進一步包含在該等奈米顆粒之第一注射步驟之後藉由核磁共振造影(MRI)來對腫瘤進行造影之步驟,其中該等奈米顆粒用作該MRI之T1對比劑。實例中之結果提供在注射該等含有高Z奈米顆粒之後,在人類患者中藉由MRI來偵測腫瘤例如腦轉移之極好訊號增強之證據。 Advantageously, the same nanoparticles can be used as a theranostic agent for detecting tumors by MRI before they are used as radiosensitizers. Therefore, the method further includes the step of imaging the tumor by magnetic resonance imaging (MRI) after the first injection step of the nanoparticles, wherein the nanoparticles are used as T1 contrast agents for the MRI. The results in the Examples provide evidence of excellent signal enhancement in detecting tumors such as brain metastases by MRI in human patients after injection of these high-Z containing nanoparticles.

[照射腫瘤之步驟] [Steps of irradiating tumors]

使用奈米顆粒之方法包括針對相應癌症之輻射療法對有需要之 受試者之腫瘤進行照射的步驟,其中該等奈米顆粒有利地增強輻射療法之劑量功效。 Methods using nanoparticles include targeting cancer-specific radiation therapy to those in need. A step of irradiating a subject's tumor, wherein the nanoparticles advantageously enhance the dose efficacy of radiation therapy.

如本文使用,輻射療法或放射療法係作為控制惡性細胞之癌症治療之一部分來醫療使用照射亦即游離輻射。其用作姑息性治療或用作治療性治療。放射療法被公認為用於治療各種類型癌症之重要標準療法。 As used herein, radiation therapy or radiotherapy is the medical use of radiation, also known as ionizing radiation, as part of cancer treatment to control malignant cells. It is used as a palliative treatment or as a therapeutic treatment. Radiation therapy is recognized as an important standard therapy for the treatment of various types of cancer.

如本文使用,術語「放射療法」用於藉由對應於游離輻射之照射來治療腫瘤性質之疾病。游離輻射沉積能量,該能量在待治療之區域(目標組織)中藉由破壞細胞之遺傳物質來損傷或摧毀細胞,使得此等細胞不可能繼續生長。 As used herein, the term "radiation therapy" is used for the treatment of diseases of a neoplastic nature by irradiation corresponding to ionizing radiation. Ionizing radiation deposits energy that damages or destroys cells in the area to be treated (target tissue) by damaging their genetic material, making it impossible for these cells to continue to grow.

在特定實施例中,本揭示案之方法包含使待治療之腫瘤曝露於有效劑量之游離輻射,其中該等游離輻射為光子,例如X-射線。取決於其具有之能量,該等射線可用於摧毀身體表面上或更深處之癌細胞。X射線束之能量愈高,X-射線可愈深地進入目標組織。線性加速器及貝他加速器產生愈來愈大能量之X-射線。使用機器來將輻射(諸如X-射線)聚焦在癌症部位上被稱為外部射束放射療法。 In certain embodiments, methods of the present disclosure include exposing a tumor to be treated to an effective dose of ionizing radiation, wherein the ionizing radiation is photons, such as X-rays. Depending on their energy, these rays can be used to destroy cancer cells on the surface or deeper within the body. The higher the energy of the X-ray beam, the deeper the X-rays can penetrate into the target tissue. Linear accelerators and beta accelerators produce X-rays of increasing energy. Using a machine to focus radiation, such as X-rays, on the cancer site is called external beam radiation therapy.

在根據本揭示案之治療方法之替代實施例中,使用γ射線。當某些元素(諸如鐳、鈾、及鈷60)隨著其分解或衰變而釋放輻射時,自發產生γ射線。 In alternative embodiments of treatment methods according to the present disclosure, gamma rays are used. Gamma rays are produced spontaneously when certain elements, such as radium, uranium, and cobalt-60, release radiation as they break down or decay.

游離輻射通常為2keV至25000keV,尤其2keV至6000keV(亦即6MeV)或2keV至1500keV(諸如鈷60源)。 Ionizing radiation is typically 2keV to 25000keV, especially 2keV to 6000keV (ie 6MeV) or 2keV to 1500keV (such as a cobalt 60 source).

放射療法領域之一般技藝人士知道如何視疾病之性質及患者之體質而定來確定合適給藥及施用方案。具體而言,該人士知道如何評估劑量限制性毒性(DLT)及相應地如何確定最大耐受劑量(MTD)。 Those skilled in the field of radiation therapy know how to determine appropriate dosage and administration regimens depending on the nature of the disease and the patient's constitution. Specifically, this person knows how to assess dose-limiting toxicities (DLT) and, accordingly, how to determine the maximum tolerated dose (MTD).

用於輻射療法中之輻射之量以戈雷(Gy)為單位來量測,並且取決於所治療癌症之類型及階段而變化。對於有療效的病例,實體腫瘤之典型總 劑量在20Gy至120Gy範圍內。輻射腫瘤醫師在選擇劑量時考量許多其他因素,包括是否患者正在接受化學療法、患者共生病症、是否輻射療法在手術之前或之後投與、及手術之成功度。 The amount of radiation used in radiation therapy is measured in Grays (Gy) and varies depending on the type and stage of cancer being treated. For responsive cases, the typical total of solid tumors Doses ranged from 20Gy to 120Gy. Radiation oncologists consider many other factors when selecting doses, including whether the patient is receiving chemotherapy, the patient's comorbid conditions, whether radiation therapy is given before or after surgery, and the success of the surgery.

總劑量通常分次進行(隨著時間的推移而展開)。數量及時程(游離輻射之計劃及遞送、分次劑量、分次遞送模式、單獨或與其他抗癌劑組合之總劑量等)針對任何疾病/解剖部位/疾病階段患者處境/年齡來進行界定並且構成任何特定情形之標準護理。 The total dose is usually given in divided doses (spread out over time). Amount and schedule (planning and delivery of ionizing radiation, fractionated doses, fractionated delivery mode, total dose alone or in combination with other anticancer agents, etc.) are defined for any disease/anatomic site/disease stage patient situation/age and constitutes the standard of care in any particular situation.

本揭示案方法之用於成人之典型習知分劑方案可為每天2.5Gy至3.5Gy,每週五天,例如持續2至8週。在特定實施例中,該放射療法由使受試者曝露於25Gy與35Gy之間,例如30Gy之總劑量之游離輻射組成。 A typical conventional fractionated dose regimen for adults using the disclosed method may be 2.5Gy to 3.5Gy per day, five days per week, for example, for 2 to 8 weeks. In certain embodiments, the radiation therapy consists of exposing the subject to a total dose of ionizing radiation of between 25 Gy and 35 Gy, such as 30 Gy.

在其他特定實施例中,受試者曝露於每個分劑約2Gy至8Gy之劑量的游離輻射,並且總劑量較佳在最大10個分劑中投與。 In other specific embodiments, the subject is exposed to a dose of about 2 Gy to 8 Gy per fraction, and the total dose is preferably administered in a maximum of 10 fractions.

在其中受試者罹患腦癌,例如多發性腦轉移之特定實施例中,在本文揭示方法之步驟(iii)處採用之輻射療法為全腦輻射療法(WBRT)。在WBRT中使用之最常見給藥/分劑方案為在2週之過程中在10個分劑中遞送30Gy,如例如在實例2中所使用。 In certain embodiments in which the subject suffers from brain cancer, such as multiple brain metastases, the radiation therapy employed at step (iii) of the methods disclosed herein is whole brain radiation therapy (WBRT). The most common dosing/fractionation regimen used in WBRT is to deliver 30 Gy in 10 fractions over the course of 2 weeks, as used, for example, in Example 2.

[本揭示案之方法之組合療法] [Combination therapy of methods disclosed in this disclosure]

用於本文揭示之用途之奈米顆粒可作為單獨活性成分來投與或與例如用於治療或預防上述癌症病症之其他藥物例如細胞毒性、抗增生、或其他抗腫瘤劑聯合投與,例如作為佐劑或組合來投與。 Nanoparticles for use disclosed herein may be administered as the sole active ingredient or in combination with other agents, such as cytotoxic, anti-proliferative, or other anti-neoplastic agents, for example, used to treat or prevent the cancer disorders described above, for example, as administered with an adjuvant or combination.

合適細胞毒性、抗增生或抗腫瘤劑可包括但不限於順鉑、多柔比星(doxorubicin)、紫杉醇(taxol)、依託泊苷(etoposide)、伊立替康(irinotecan)、拓撲替康(topotecan)、紫杉醇(paclitaxel)、多烯紫杉醇(docetaxel)、埃博黴素(epothilone)、他莫西芬(tamoxifen)、5-氟尿嘧啶、胺甲蝶呤(methotrexate)、替莫唑胺(temozolomide)、環磷醯胺(cyclophosphamide)、替吡法尼(tipifarnib)、 吉非替尼(gefitinib)、厄洛替尼(erlotinib)、伊馬替尼(imatinib)、吉西他賓(gemcitabine)、尿嘧啶氮芥(uracil mustard)、氮芥(chlormethine)、異環磷醯胺(ifosfamide)、美法侖(melphalan)、苯丁酸氮芥(chlorambucil)、哌泊溴烷(pipobroman)、曲他胺(triethylenemelamine)、白消安(busulfan)、卡莫司汀(carmustine)、洛莫司汀(lomustine)、鏈佐星(streptozocin)、達卡巴嗪(dacarbazine)、氟尿苷(floxuridine)、阿糖胞苷(cytarabine)、6-巰基嘌呤、6-硫鳥嘌呤、氟達拉濱磷酸酯(fludarabine phosphate)、奧沙利鉑(oxaliplatin)、葉醛酸(folinic acid)、噴司他丁(pentostatin)、長春花鹼(vinblastine)、長春新鹼(vincristine)、長春地辛(vindesine)、博來黴素(bleomycin)、放線菌素D(dactinomycin)、柔紅黴素(daunorubicin)、表柔比星(epirubicin)、伊達比星(idarubicin)、米拉黴素(mithramycin)、去氧柯福黴素(deoxycoformycin)、絲裂黴素-C(mitomycin-C)、左旋天冬醯胺酶、替尼泊苷(teniposide)。 Suitable cytotoxic, antiproliferative or antineoplastic agents may include, but are not limited to, cisplatin, doxorubicin, taxol, etoposide, irinotecan, topotecan ), paclitaxel, docetaxel, epothilone, tamoxifen, 5-fluorouracil, methotrexate, temozolomide, cyclophosphamide cyclophosphamide, tipifarnib, Gefitinib, erlotinib, imatinib, gemcitabine, uracil mustard, chlormethine, ifosfate ifosfamide, melphalan, chlorambucil, pipobroman, triethylenemelamine, busulfan, carmustine , lomustine, streptozocin, dacarbazine, floxuridine, cytarabine, 6-mercaptopurine, 6-thioguanine, fluorine Fludarabine phosphate, oxaliplatin, folinic acid, pentostatin, vinblastine, vincristine, vinblastine Vindesine, bleomycin, dactinomycin, daunorubicin, epirubicin, idarubicin, mithramycin ), deoxycoformycin, mitomycin-C, L-aspartase, teniposide.

在一些實施例中,額外治療劑與本文提供之組合物同時投與。在一些實施例中,額外治療劑在投與本文提供之組合物之後投與。在一些實施例中,額外治療劑在投與本文中之組合物之前投與。在一些實施例中,本文提供之組合物在手術程序期間投與。在一些實施例中,本文提供之組合物在手術程序期間與額外治療劑組合投與。 In some embodiments, additional therapeutic agents are administered concurrently with the compositions provided herein. In some embodiments, the additional therapeutic agent is administered after administration of a composition provided herein. In some embodiments, the additional therapeutic agent is administered prior to administration of a composition herein. In some embodiments, compositions provided herein are administered during a surgical procedure. In some embodiments, compositions provided herein are administered during a surgical procedure in combination with additional therapeutic agents.

本文提供之額外治療劑可在廣泛劑量範圍內有效並且通常以有效量來投與。然而,應瞭解實際投予之治療劑之量將通常由醫師根據相關情形來確定,該等情形包括欲治療之病狀、所選投藥途徑、投予之實際化合物、個別患者之年齡、體重及反應、患者症狀之嚴重性及其類似情形。 Additional therapeutic agents provided herein are effective over a wide dosage range and are generally administered in effective amounts. However, it is understood that the actual amount of therapeutic agent administered will generally be determined by the physician based on the relevant circumstances, including the condition to be treated, the route of administration chosen, the actual compound administered, the age, weight, and age of the individual patient. reactions, severity of patient symptoms, and similar circumstances.

本揭示案之方法之其他態樣及優勢在以下實例中變得顯而易知,該等實例僅出於說明之目的而給出。 Other aspects and advantages of the methods of the present disclosure will become apparent in the following examples, which are given for illustrative purposes only.

[實例] [Example]

實例1:Gd系治療診斷奈米顆粒的首次在人類中之試驗:患有4 種類型之腦轉移之患者中之吸收及生物分佈 Example 1: First human trial of Gd-based theranostic nanoparticles: patients with 4 Absorption and biodistribution in patients with various types of brain metastases

[1.1 材料及方法] [1.1 Materials and methods]

[研究設計] [Research Design]

此研究為評估靜脈內投與與用於治療腦轉移的全腦放射療法組合之放射增敏AGuIX奈米顆粒之耐受性的前瞻性劑量遞增I-b期臨床試驗之一部分。Nano-Rad試驗(使用AGuIX釓系奈米顆粒之多發性腦轉移之放射增敏)登記為NCT02820454。在本文中,我們報導應用於15名募集患者之MRI方案之調查結果。分配給此MRI輔助研究之目標為i)評估腦轉移及周圍健康組織中之AGuIX奈米顆粒之分佈及ii)量測在靜脈內投與AGuIX奈米顆粒之後的T1-加權對比增強及腦轉移及周圍健康組織中之奈米顆粒濃度(Verry C等人.BMJ Open.9:e023591(2019))。 This study is part of a prospective dose-escalation Phase Ib clinical trial to evaluate the tolerability of radiosensitized AGuIX nanoparticles administered intravenously in combination with whole-brain radiation therapy for the treatment of brain metastases. The Nano-Rad test (radiosensitization of multiple brain metastases using AGuIX gallium-based nanoparticles) is registered as NCT02820454. In this article, we report the findings of an MRI protocol applied to 15 recruited patients. The objectives assigned to this MRI ancillary study were i) to assess the distribution of AGuIX nanoparticles in brain metastases and surrounding healthy tissue and ii) to measure T 1 -weighted contrast enhancement and brain imaging following intravenous administration of AGuIX nanoparticles. Nanoparticle concentration in metastasis and surrounding healthy tissue (Verry C et al. BMJ Open. 9 : e023591 (2019)).

[患者選擇] [Patient selection]

募集不適合於藉由手術或立體定向輻射來局部治療的患有多發性腦轉移之患者。納入標準包含:i)最小年齡18歲、ii)來自組織學上確認實體腫瘤之繼發性腦轉移、iii)先前未進行腦照射、iv)無腎功能衰竭(腎小球濾過率>60mL/min/1.73m2)、v)正常肝臟功能(膽紅素<30μmol/L;鹼性磷酸酶<400UI/L;天冬胺酸轉胺酶(AST)<75UI/L;丙胺酸轉胺酶(ALT)<175UI/L)。 Recruitment is not suitable for patients with multiple brain metastases who are treated locally by surgery or stereotactic radiation. Inclusion criteria included: i) minimum age 18 years, ii) secondary brain metastases from histologically confirmed solid tumors, iii) no previous brain irradiation, iv) no renal failure (glomerular filtration rate >60 mL/ min/1.73m 2 ), v) normal liver function (bilirubin <30 μmol/L; alkaline phosphatase <400UI/L; aspartate aminotransferase (AST) <75UI/L; alanine aminotransferase (ALT)<175UI/L).

[試驗設計] [Experimental design]

試驗方案之主要步驟如下。在D0處,患者經歷第一造影進程(參見下一段落中之MRI方案),包括以0.2mL/kg(0.1mmol/kg)體重之劑量來靜脈內快速注射Dotarem(釓特酸葡甲胺)。第一造影進程之後1天至21天(取決於患者可得性及輻射療法計劃),以15mg/kg、30mg/kg、50mg/kg、75mg/kg或100mg/kg體重之劑量向患者靜脈內投與AGuIX奈米顆粒之溶液。AGuIX奈米顆粒投與日期被稱為D1。 The main steps of the test plan are as follows. At D0, the patient underwent the first imaging session (see MRI protocol in the next paragraph), which consisted of an intravenous bolus injection of Dotarem (meglumine meglumine) at a dose of 0.2 mL/kg (0.1 mmol/kg) of body weight. Give the patient intravenously at a dose of 15 mg/kg, 30 mg/kg, 50 mg/kg, 75 mg/kg, or 100 mg/kg of body weight between 1 day and 21 days after the first imaging session (depending on patient availability and radiation therapy plan). Administer the solution of AGuIX nanoparticles. The date of AGuIX nanoparticle administration is referred to as D1.

[合成AGuIX奈米顆粒] [Synthesis of AGuIX nanoparticles]

AGuIX奈米顆粒藉由六步驟合成來獲得。第一步驟為藉由將純鹼添加至二乙二醇中之三氯化釓上來形成氧化釓核心。第二步驟為藉由添加TEOS及APTES來生長聚矽氧烷外殼。成熟之後,添加DOTAGA酐以便與存在於無機基質之表面上之游離胺基官能基反應。轉移至水中之後,觀察到氧化釓核心之溶解並且釓藉由基質之表面處之DOTAGA來螯合。然後,觀察到超小AGuIX奈米顆粒中之聚矽氧烷基質之分裂。最後一個步驟為奈米顆粒之冷凍乾燥。 AGuIX nanoparticles were obtained through a six-step synthesis. The first step is to form a gallium oxide core by adding soda ash to gallium trichloride in diethylene glycol. The second step is to grow the polysiloxane shell by adding TEOS and APTES. After maturation, DOTAGA anhydride is added to react with free amine functional groups present on the surface of the inorganic matrix. After transfer to water, dissolution of the gallium oxide core was observed and chelation of the gallium by DOTAGA at the surface of the matrix was observed. Then, fragmentation of the polysiloxane matrix in the ultrasmall AGuIX nanoparticles was observed. The final step is freeze-drying of the nanoparticles.

治療診斷劑由聚矽氧烷網狀結構組成,該網狀結構藉由共價接枝至聚矽氧烷基質之釓環狀配位體來圍繞,該等配位體為DOTA(1,4,7,10-四氮雜環十二烷酸-1,4,7,10-四乙酸)之衍生物。其平均流體動力學直徑為4±2nm,其質量為約10kDa並且藉由平均化學式(GdSi4-7C24-30N5-8O15-25H40-60,5-10H2O)x來描述。平均各奈米顆粒在其表面上呈現10個DOTA配位體,該等配位體螯合核心釓離子。3特斯拉(Tesla)下之縱向弛豫率r1等於每個Gd3+離子8.9mM-1.s-1,導致每個AGuIX奈米顆粒89mM-1.s-1之總r1。投與奈米顆粒後2小時,在不注射釓特酸葡甲胺的情況下執行相同MRI進程。然後,患者經歷全腦輻射療法(在3Gy之10個進程中,遞送30Gy)。投與AGuIX奈米顆粒之後7天(D8)及4週(D28),對於各患者執行類似MRI進程。 Theranostic agents consist of a polysiloxane network surrounded by cylindrium cyclic ligands covalently grafted to the polysiloxane matrix. These ligands are DOTA(1,4 , 7,10-tetraazacyclododecanoic acid-1,4,7,10-tetraacetic acid) derivatives. Its average hydrodynamic diameter is 4±2nm, its mass is about 10kDa and its average chemical formula is (GdSi 4-7 C 24-30 N 5-8 O 15-25 H 40-60 ,5-10H 2 O) x to describe. On average, each nanoparticle exhibits 10 DOTA ligands on its surface, which chelate core gallium ions. The longitudinal relaxation rate r 1 at 3 Tesla is equal to 8.9mM -1 .s -1 per Gd 3+ ion, resulting in a total r 1 of 89mM -1 .s -1 per AGuIX nanoparticle. Two hours after nanoparticle administration, the same MRI procedure was performed without injection of meglumine meglumine. The patient then underwent whole-brain radiation therapy (30Gy delivered in 10 sessions of 3Gy). Similar MRI procedures were performed on each patient 7 days (D8) and 4 weeks (D28) after administration of AGuIX nanoparticles.

[MRI方案] [MRI plan]

MRI採集在3特斯拉Philips掃描器上執行。使用32-通道Philips頭部線圈。患者經歷包括以下MRI序列之相同造影方案:i)3D T1-加權梯度回音序列、ii)具有多種傾倒角度之3D FLASH序列、iii)感受性加權造影(susceptibility-weighted imaging;SWI)序列、iv)液體衰減反轉恢復(Fluid Attenuated Inversion Recovery;FLAIR)序列、v)擴散加權造影(Diffusion-weighted imaging;DWI)序列。在遵循用於評估放射療法之後之腦 轉移反應的RECIST(實體腫瘤反應評價標準)及RANO(神經腫瘤學中之反應評估)標準時,推薦此等造影序列中之一些序列(24,25)。3D T1-加權造影序列提供投與MRI對比劑之後的健康組織及腦轉移之高解析度對比增強影像。3D FLASH序列以不同傾倒角度來重複若干次以便計算T1弛豫時間及對比劑濃度。SWI序列用於偵測出血之存在。FLAIR序列應用於監測發炎或浮腫之存在。最終,DWI序列可應用於偵測組織或腦轉移中之異常水擴散。取決於患者調整之造影參數,總採集時間在30分鐘與40分鐘之間之範圍內。此等造影序列之關鍵特徵及主要採集參數在輔助材料章節中詳述。 MRI acquisitions were performed on a 3 Tesla Philips scanner. Uses a 32-channel Philips head coil. The patient underwent the same imaging protocol including the following MRI sequences: i) 3D T 1 -weighted gradient echo sequence, ii) 3D FLASH sequence with multiple tilt angles, iii) susceptibility-weighted imaging (SWI) sequence, iv) Fluid Attenuated Inversion Recovery (Fluid Attenuated Inversion Recovery; FLAIR) sequence, v) Diffusion-weighted imaging (DWI) sequence. Some of these contrast-enhanced sequences are recommended when following the RECIST (Response Evaluation Criteria in Solid Tumors) and RANO (Response Assessment in Neuro-Oncology) criteria for assessing brain metastasis response after radiation therapy (24, 25). 3D T 1 -weighted imaging sequences provide high-resolution contrast-enhanced images of healthy tissue and brain metastases after administration of MRI contrast agent. The 3D FLASH sequence is repeated several times with different tilt angles in order to calculate the T1 relaxation time and contrast agent concentration. SWI sequences are used to detect the presence of hemorrhage. The FLAIR sequence should be used to monitor the presence of inflammation or edema. Ultimately, DWI sequences can be applied to detect abnormal water diffusion in tissue or brain metastases. The total acquisition time ranges between 30 and 40 minutes depending on patient-adjusted angiographic parameters. The key features and main acquisition parameters of these imaging sequences are detailed in the supporting material section.

[影像處理及量化管線] [Image processing and quantization pipeline]

MRI分析使用藉由GIN Laboratory(Grenoble,France)開發並且在Matlab®軟體上運行之稱為MP3之內部電腦程式(https://github.com/nifm-gin/MP3)來執行。影像分析包括計算及量測轉移、量化對比增強、弛豫時間及奈米顆粒之濃度。遵循RECIST及RANO標準,僅具有大於1cm之最長直徑之轉移被視為可量測的並且保留在後續分析中。以百分比來表示之MRI增強定義為投與對比劑後之MRI訊號振幅與投與對比劑前之MRI訊號振幅的比率;MRI訊號振幅在3D T1-加權影像資料集中量測。T1弛豫時間來源於在四個不同傾倒角度下獲得之3D FLASH影像。腦轉移中之奈米顆粒之濃度來源於投與對比劑之前及之後之T1弛豫時間之變化並且來源於奈米顆粒之已知弛豫率。 MRI analysis was performed using an in-house computer program called MP 3 (https://github.com/nifm-gin/MP3) developed by GIN Laboratory (Grenoble, France) and running on Matlab® software. Image analysis includes calculation and measurement of transfer, quantification of contrast enhancement, relaxation time, and nanoparticle concentration. Following RECIST and RANO criteria, only metastases with a longest diameter greater than 1 cm were considered measurable and retained in subsequent analyses. MRI enhancement expressed as a percentage is defined as the ratio of the MRI signal amplitude after contrast agent administration to the MRI signal amplitude before contrast agent administration; MRI signal amplitude is measured in a 3D T 1 -weighted image data set. The T 1 relaxation time is derived from 3D FLASH images obtained at four different tilt angles. The concentration of nanoparticles in brain metastases is derived from the change in T1 relaxation time before and after administration of contrast agent and from the known relaxation rate of the nanoparticles.

3D影像渲染使用藉由NeuroSpin(CEA,Saclay,France)來開發之BrainVISA/Anatomist軟體(http://brainvisa.info)來執行。為了更好觀測不同轉移之位置,BrainVISA之Morphologist管線用於產生各患者之腦部及頭部之網格。 3D image rendering is performed using the BrainVISA/Anatomist software (http://brainvisa.info) developed by NeuroSpin (CEA, Saclay, France). In order to better observe the location of different metastases, BrainVISA's Morphologist pipeline was used to generate meshes of the brain and head of each patient.

[統計學分析] [statistical analysis]

所有分析使用GraphPad Prism(GraphPad Software Inc.)來執行。 除非指定,否則顯著性固定於5%概率水準下。除非指定,否則全部資料以平均值±SD來呈現。 All analyzes were performed using GraphPad Prism (GraphPad Software Inc.). Unless specified, significance is fixed at the 5% probability level. Unless otherwise specified, all data are presented as mean ± SD.

[1.2 結果] [1.2 Results]

[所投與之AGuIX Gd系奈米顆粒在全部四種類型之腦轉移中誘導MRI對比增強] [Administered AGuIX Gd-based nanoparticles induced MRI contrast enhancement in all four types of brain metastases]

患者募集導致納入四種類型之腦轉移,即NSCLC(非小細胞肺癌)N=6、乳癌N=2、黑素瘤N=6及結腸癌N=1。在所投與劑量之各遞增步驟處(對於15mg/kg、30mg/kg、50mg/kg、75mg/kg及100mg/kg體重,N=3),所有患者用治療診斷奈米顆粒AGuIX(如在材料及方法中所描述)來成功注射。 Patient recruitment resulted in the inclusion of four types of brain metastases, namely NSCLC (non-small cell lung cancer) N=6, breast cancer N=2, melanoma N=6 and colon cancer N=1. At each escalating step in dose administered (N=3 for 15 mg/kg, 30 mg/kg, 50 mg/kg, 75 mg/kg, and 100 mg/kg body weight), all patients were treated with theranostic nanoparticles AGuIX (as in as described in Materials and Methods) for successful injection.

在D1處,在AGuIX注射之後兩個小時,對於全部類型之腦轉移、全部患者及所投與之全部劑量,觀察到MRI訊號增強。在圍繞各轉移所繪製之所關注區域內,發現MRI訊號增強隨著AGuIX奈米顆粒之投與劑量而增加(圖1)。對於15mg/kg、30mg/kg、50mg/kg、75mg/kg及100mg/kg體重之AGuIX劑量,在全部可量測轉移(大於1cm之最長直徑)之間取平均值的訊號增強分別等於26.3±15.2%、24.8±16.3%、56.7±23.8%、64.4±26.7%及120.5±68%。發現MRI增強與注射劑量線性地相關(斜率1.08,R2=0.90)(資料未展示)。 At D1, two hours after AGuIX injection, MRI signal enhancement was observed for all types of brain metastases, for all patients, and for all doses administered. Within the region of interest mapped around each metastasis, MRI signal enhancement was found to increase with dose of AGuIX nanoparticles administered (Figure 1). The signal enhancement averaged across all measurable metastases (longest diameter greater than 1 cm) was equal to 26.3± for AGuIX doses of 15 mg/kg, 30 mg/kg, 50 mg/kg, 75 mg/kg and 100 mg/kg body weight respectively 15.2%, 24.8±16.3%, 56.7±23.8%, 64.4±26.7% and 120.5±68%. MRI enhancement was found to be linearly related to injected dose (slope 1.08, R 2 =0.90) (data not shown).

[Gd系奈米顆粒表現出與臨床使用對比劑之MRI增強同等的腦轉移之MRI增強] [Gd-based nanoparticles show MRI enhancement of brain metastases that is equivalent to MRI enhancement of clinically used contrast agents]

對於各患者,在D0處,在注射臨床上批準之Gd系對比劑(Dotarem®,Guerbet,Villepinte,France)之後15min,亦量測MRI增強。在具有大於1cm之最長直徑的全部可量測轉移上取平均值,MRI增強等於182.9±116.2%。與在投與最高劑量之AGuIX奈米顆粒之後2h觀察到之MRI增強相比,在注射之後15min觀察到之此MRI增強處於相同數量級。 For each patient, MRI enhancement was also measured at D0, 15 min after injection of a clinically approved Gd-based contrast agent (Dotarem ® , Guerbet, Villepinte, France). Averaged over all measurable metastases with a longest diameter greater than 1 cm, MRI enhancement was equal to 182.9 ± 116.2%. This MRI enhancement observed 15 min after injection was of the same order of magnitude compared to the MRI enhancement observed 2 h after administration of the highest dose of AGuIX nanoparticles.

定義為其在可量測腦轉移中增強MRI訊號之能力的AGuIX奈米顆粒之偵測靈敏度針對全部投與劑量來進行評估並且與臨床使用之對比劑 Dotarem®之靈敏度進行比較。對於15mg/kg、30mg/kg、50mg/kg、75mg/kg及100mg/kg體重之注射劑量,表示為Dotarem靈敏度之百分比的AGuIX奈米顆粒靈敏度分別等於12.1%、19.5%、34.2%、31.8%及61.6%。 The detection sensitivity of AGuIX nanoparticles, defined by their ability to enhance MRI signals in measurable brain metastases, was evaluated for all administered doses and compared with the sensitivity of the clinically used contrast agent Dotarem® . For injection doses of 15 mg/kg, 30 mg/kg, 50 mg/kg, 75 mg/kg, and 100 mg/kg body weight, the AGuIX nanoparticle sensitivities expressed as a percentage of Dotarem sensitivity were equal to 12.1%, 19.5%, 34.2%, and 31.8%, respectively. and 61.6%.

AGuIX奈米顆粒之濃度可在腦轉移中量化AGuIX nanoparticle concentration can be quantified in brain metastasis

多傾倒角度3D FLASH採集成功用於計算T1值之逐個像素圖譜(資料未展示)並且使得能夠量化所關注區域上之縱向弛豫時間。藉由AGuIX奈米顆粒之吸收所誘導的腦轉移中之T1弛豫時間之減少在此等T1圖譜中清楚地顯示。如預期,T1值之減少與對比增強腦轉移共同定位。 Multi-tilt angle 3D FLASH acquisition was successfully used to calculate a pixel-by-pixel map of T1 values (data not shown) and enabled the quantification of longitudinal relaxation times over regions of interest. The reduction in T1 relaxation time in brain metastases induced by uptake of AGuIX nanoparticles is clearly shown in these T1 spectra. As expected, decreases in T1 values colocalized with contrast-enhancing brain metastases.

對比增強轉移中之AGuIX奈米顆粒之濃度基於其投與之後的T1值之變化來計算。對於投與100mg/kg體重之劑量的患者,在具有大於1cm之最長直徑之轉移中執行AGuIX濃度之量測。在患者#13、#14及#15中,腦轉移中之平均AGuIX濃度分別量測為57.5±14.3mg/L、20.3±6.8mg/L、29.5±12.5mg/L。 The concentration of AGuIX nanoparticles in contrast-enhanced transfer was calculated based on the change in T1 value after its administration. For patients administered a dose of 100 mg/kg body weight, measurements of AGuIX concentrations were performed in metastases with a longest diameter greater than 1 cm. In patients #13, #14, and #15, the mean AGuIX concentrations in brain metastases were measured to be 57.5±14.3 mg/L, 20.3±6.8 mg/L, and 29.5±12.5 mg/L, respectively.

對於具有最高(100mg/kg)投與劑量之患者,評估MRI增強與奈米顆粒濃度之間之相關性。在圖2中藉由來自患有NSCLC轉移之患者#13之MRI資料來例示相關性。觀察到兩個MRI參數之間之強烈正相關,其中在量測值之範圍中的關係接近於線性。 For patients with the highest (100 mg/kg) administered dose, the correlation between MRI enhancement and nanoparticle concentration was evaluated. The correlation is illustrated in Figure 2 by MRI data from patient #13 with NSCLC metastasis. A strong positive correlation between the two MRI parameters was observed, with the relationship approaching linearity over the range of measured values.

對於各患者,在沒有可見轉移之所關注腦部區域(每個患者所關注之三個代表性區域,對於全部患者而言具有類似尺寸)中,評估MRI增強及T1值。在任何此等健康腦部區域中觀察到沒有顯著MRI增強並且沒有T1變化。 For each patient, MRI enhancement and T1 values were assessed in brain regions of interest without visible metastases (three representative regions of interest per patient, of similar size for all patients). No significant MRI enhancement and no T1 changes were observed in any of these healthy brain regions.

[在投與奈米顆粒之後一週,觀察MRI增強] [Observe MRI enhancement one week after nanoparticle administration]

對於投與最大劑量(100mg/kg體重)之患者,在D8處,亦即如圖3中顯示在投與AGuIX奈米顆粒之後高達一週,在可量測轉移(大於1cm之最長直徑)中發現MRI增強之持久性。對於患者#13、#14及#15,轉移中之平均MRI增強經量測為分別等於32.4±10.8%、14±5.8%及26.3±9.7%。作為比較點,對於患者#13、#14及#15,D1處之平均MRI增強分別等於175.8±45.2%、 58.3±18.4%及154.1±61.9%。由於較低T1變化,不可計算AGuIX奈米顆粒之濃度。基於所觀察到的MRI增強與奈米顆粒濃度之間之相關性,在D8處,可估計腦轉移中之MAGuIX濃度的10mM之上限。在D28處,在投與AGuIX奈米顆粒之後4周在任何患者中未觀察到明顯MRI增強。 For patients administered the highest dose (100 mg/kg body weight), measurable metastases (longest diameter greater than 1 cm) were found at D8, up to one week after administration of AGuIX nanoparticles as shown in Figure 3 Persistence of MRI enhancement. For patients #13, #14, and #15, the mean MRI enhancement in metastases was measured to be equal to 32.4±10.8%, 14±5.8%, and 26.3±9.7%, respectively. As a point of comparison, for patients #13, #14, and #15, the mean MRI enhancement at D1 was equal to 175.8±45.2%, 58.3±18.4%, and 154.1±61.9%, respectively. Due to the lower T1 variation, the concentration of AGuIX nanoparticles could not be calculated. Based on the observed correlation between MRI enhancement and nanoparticle concentration, an upper limit of 10 mM for MAGuIX concentration in brain metastases can be estimated at D8. At D28, no significant MRI enhancement was observed in any patient 4 weeks after administration of AGuIX nanoparticles.

[討論] [Discuss]

腦轉移之發生為癌症病史中之常見事件並且不利地影響患者之預期壽命。對於患有多發性腦轉移之患者,全腦輻射療法(WBRT)仍為標準護理。然而,中值總存活少於六個月並且需要開發新方法來改良此等患者之治療功效。因此,放射增敏劑之使用受到極大關注。AGuIX奈米顆粒之活體內治療診斷性質(藉由多模式造影之放射增敏及診斷)先前在齧齒動物中之八個腫瘤模型中執行之臨床前研究中得以證明(F.Lux等人Br J Radiol. 18:20180365(2018)),並且尤其在腦腫瘤中(G.Le Duc等人ACS Nano. 5,9566-9574(2011),C.Verry C等人Nanomedicine 11,2405-2417(2016))。AGuIX奈米顆粒對於腦轉移之診斷價值之臨床評估為臨床試驗Nano-Rad之次要目標之一。AGuIX奈米顆粒在患者中之放射治療應用之目標劑量為100mg/kg並且出於此原因,此研究之結論及視角基本上集中於此劑量。 The occurrence of brain metastases is a common event in the history of cancer and adversely affects the life expectancy of patients. For patients with multiple brain metastases, whole-brain radiation therapy (WBRT) remains the standard of care. However, the median overall survival is less than six months and new approaches need to be developed to improve treatment outcomes for these patients. Therefore, the use of radiosensitizers has received great attention. The in vivo theranostic properties (radiosensitization and diagnosis by multimodal contrast imaging) of AGuIX nanoparticles were previously demonstrated in preclinical studies performed in eight tumor models in rodents (F. Lux et al. Br J Radiol. 18 :20180365 (2018)), and especially in brain tumors (G. Le Duc et al. ACS Nano. 5 , 9566-9574 (2011), C. Verry C et al. Nanomedicine 11 , 2405-2417 (2016) ). Clinical evaluation of the diagnostic value of AGuIX nanoparticles for brain metastasis is one of the secondary goals of the clinical trial Nano-Rad. The target dose for radiotherapy applications of AGuIX nanoparticles in patients is 100 mg/kg and for this reason, the conclusions and perspectives of this study are essentially focused on this dose.

投與患者之AGuIX奈米顆粒之最大劑量(100mg/kg體重或100μmol/kg體重Gd3+)對應於在一個劑量的臨床使用MRI對比劑諸如Dotarem®中注射之螯合釓離子Gd3+之量(100mmol/kg體重Gd3+)。因此將使用最大AGuIX劑量在轉移中觀察到之MRI增強與在臨床慣例中使用之Gd系對比劑之劑量進行比較為適合的。 The maximum dose of AGuIX nanoparticles administered to a patient (100 mg/kg body weight or 100 μmol/kg body weight Gd 3+ ) corresponds to a dose of chelated chromium ion Gd 3+ injected in a clinically used MRI contrast agent such as Dotarem® Amount (100mmol/kg body weight Gd 3+ ). It is therefore appropriate to compare the MRI enhancement observed in metastases using the maximum AGuIX dose with the dose of Gd-based contrast agents used in clinical practice.

在此項研究中,在投與奈米顆粒與為了監測患者對注射之反應而進行的MRI採集之間存在2小時延遲。在平均奈米顆粒血漿半衰期為約1小時的情況下,此延遲導致血漿中之奈米顆粒濃度減少86%。相比之下,在Dotarem®注射與MRI採集之間僅存在15分鐘延遲。儘管奈米顆粒之此顯著清除及患者血 流中之濃度減少,最高奈米顆粒劑量下之MRI增強接近於使用臨床對比劑所觀察到的MRI增強。 In this study, there was a 2-hour delay between administration of the nanoparticles and MRI acquisition to monitor the patient's response to the injection. With an average nanoparticle plasma half-life of approximately 1 hour, this delay resulted in an 86% reduction in nanoparticle concentration in plasma. In comparison, there was only a 15-minute delay between Dotarem® injection and MRI acquisition. Despite this significant clearance of nanoparticles and reduced concentration in the patient's bloodstream, MRI enhancement at the highest nanoparticle dose was close to that observed using clinical contrast agents.

AGuIX奈米顆粒增強腦轉移中之MRI訊號的此顯著診斷性能可歸因於兩個獨立因素。第一因素與奈米顆粒之固有磁性相關。如與臨床Gd系對比劑相比,其更大直徑及分子量導致更高縱向弛豫係數r1並且由此導致改變MRI訊號之強度的增加之能力。具體而言,在3特斯拉之磁場下,AGuIX奈米顆粒及Dotarem®之r1值分別等於每個Gd3+離子8.9及3.5mM-1.s-1(B.R.Smith,S.S.Gambhir.Chem Rev. 117,901-986(2017))。 This remarkable diagnostic performance of AGuIX nanoparticles in enhancing MRI signals in brain metastases can be attributed to two independent factors. The first factor is related to the inherent magnetism of nanoparticles. As compared to clinical Gd-based contrast agents, their larger diameter and molecular weight lead to a higher longitudinal relaxation coefficient r 1 and thus to an increased ability to change the intensity of the MRI signal. Specifically, under a magnetic field of 3 Tesla, the r 1 values of AGuIX nanoparticles and Dotarem ® are respectively equal to 8.9 and 3.5mM -1 .s -1 per Gd 3+ ion (BRSmith, SSGambhir. Chem Rev. 117,901-986 (2017)).

第二因素可與AGuIX奈米顆粒在腦轉移中被動積聚之能力相關。此被動靶向現象利用所謂增強滲透性及截留(EPR)效應,其假設奈米物件在腫瘤中之積聚歸因於有缺陷的及漏洩的腫瘤血管,並且歸因於缺乏有效淋巴引流(A.Bianchi,et al.MAGMA. 27,303-316(2014))。藉由AGuIX奈米顆粒來實現之腫瘤之被動靶向在先前動物癌症模型研究中一致地觀察到。在多發性腦黑素瘤轉移之小鼠模型中,已報道AGuIX奈米顆粒在腫瘤細胞中之內在化並且在靜脈內注射至動物之後24小時,仍然觀察到奈米顆粒在腦轉移中之存在(Kotb,A.等人Theranostics 6(3):418-427(2016))。在最高100mg/kg劑量下,在投與奈米顆粒之後高達7天,具有大於1cm之直徑的全部轉移仍得以對比增強。 The second factor may be related to the ability of AGuIX nanoparticles to passively accumulate in brain metastases. This passive targeting phenomenon exploits the so-called enhanced permeability and retention (EPR) effect, which postulates that the accumulation of nanoobjects in tumors is due to defective and leaky tumor blood vessels and is due to the lack of effective lymphatic drainage (A. Bianchi, et al. MAGMA. 27 , 303-316 (2014)). Passive targeting of tumors by AGuIX nanoparticles has been consistently observed in previous studies in animal cancer models. In a mouse model of multiple brain melanoma metastases, AGuIX nanoparticles have been reported to be internalized in tumor cells and the presence of nanoparticles in brain metastases was still observed 24 hours after intravenous injection into the animals. (Kotb, A. et al. Theranostics 6 (3): 418-427 (2016)). At the highest dose of 100 mg/kg, all metastases with a diameter greater than 1 cm remained contrast enhanced up to 7 days after nanoparticle administration.

投與之後一週,在轉移中之MRI訊號增強之持久性提示此積聚及奈米顆粒自轉移中之延遲清除。就發明人所知,在文獻未報道在投與臨床上使用之Gd系對比劑之後,在轉移中之此較遲MRI增強。 The persistence of MRI signal enhancement in metastases one week after administration suggests this accumulation and delayed clearance of nanoparticles from metastases. To the best of the inventors' knowledge, such late MRI enhancement in metastases after administration of clinically used Gd-based contrast agents has not been reported in the literature.

劑量遞增包含在此首次在人類中之臨床試驗之設計中,並且因此向患者投與五種遞增劑量水準之AGuIX奈米顆粒。根據轉移中之訊號增強與所投與奈米顆粒濃度之間所觀察到的線性相關性,可以得出結論:在範圍所研究劑量中之奈米顆粒之劑量並非轉移之被動靶向之限制因素。重要的是, 儘管有限數目之患者參與此第一臨床研究,但是此等最初結果顯示奈米顆粒吸收及訊號增強存在於四種類型之所研究轉移(NSCLC、黑素瘤、乳癌及結腸癌)中,不論奈米顆粒之注射劑量為何。 Dose escalation was included in the design of this first-in-human clinical trial, and thus patients were administered five ascending dose levels of AGuIX nanoparticles. Based on the linear correlation observed between signal enhancement in metastasis and the concentration of administered nanoparticles, it can be concluded that the dose of nanoparticles in the range of doses studied is not a limiting factor for passive targeting of metastases . What's important is that Although a limited number of patients participated in this first clinical study, these initial results show that nanoparticle uptake and signal enhancement are present in the four types of metastases studied (NSCLC, melanoma, breast cancer, and colon cancer), regardless of whether What is the injection dose of rice granules?

考慮到AGuIX奈米顆粒之放射增敏性質,評估並可能量化在轉移中積聚之奈米顆粒之局部濃度為關鍵性的。為此,MRI方案包含T1對映造影序列,由此序列導出奈米顆粒濃度。在此臨床研究中獲得之濃度值可與動物腫瘤模型中之臨床前研究中獲得之濃度值進行比較。注射最高劑量之三個患者之NSCLC及乳癌轉移中之AGuIX奈米顆粒之計算濃度在8mg/L與63mg/L之間變化,其對應於腦轉移中之8mg/L與63mM之間之Gd3+離子之濃度範圍。在三個前述患者中,% ID/g介於8%與63%之間之範圍內。在兩個上述MRI臨床前研究中,發現% ID/g之相同數量級,該等研究分別具有28%及45% ID/g。引起關注地,在與放射療法進程之情形相容的注射後延遲(幾小時)的情況下獲得此等濃度。 Given the radiosensitizing properties of AGuIX nanoparticles, it is critical to assess and possibly quantify the local concentration of nanoparticles that accumulate in metastases. To this end, the MRI protocol consists of a T 1 enantiography sequence from which the nanoparticle concentration is derived. Concentration values obtained in this clinical study can be compared to concentration values obtained in preclinical studies in animal tumor models. The calculated concentrations of AGuIX nanoparticles in NSCLC and breast cancer metastases in the three patients injected with the highest doses varied between 8 mg/L and 63 mg/L, which corresponded to Gd 3 between 8 mg/L and 63 mM in brain metastases. + Concentration range of ions. In the three aforementioned patients, % ID/g ranged between 8% and 63%. The same order of magnitude of % ID/g was found in the two aforementioned MRI preclinical studies, which had 28% and 45% ID/g respectively. Of interest, these concentrations were obtained with a post-injection delay (several hours) compatible with the course of radiotherapy.

在此項研究中,我們亦評價奈米顆粒濃度與使用穩健T1-加權3D MRI序列獲得之MRI訊號增強SE之間之關係。在轉移中之可量測奈米顆粒濃度之範圍中,藉由在此項研究中使用之採集方案,觀察到MRI增強與奈米顆粒濃度之間之線性關係。因此,藉由在此項研究中使用之特定方案,MRI增強可用作評估AGuIX奈米顆粒之濃度的穩健及簡單指標。 In this study, we also evaluate the relationship between nanoparticle concentration and MRI signal enhancement SE obtained using robust T 1 -weighted 3D MRI sequences. A linear relationship between MRI enhancement and nanoparticle concentration was observed with the acquisition protocol used in this study over the range of measurable nanoparticle concentrations in metastasis. Therefore, with the specific protocol used in this study, MRI enhancement can be used as a robust and simple indicator for assessing the concentration of AGuIX nanoparticles.

雖然轉移靶向有益於診斷及放射增敏目的,但是需要在健康周圍組織中將奈米顆粒保持於低濃度處。在此方面,在投與最高劑量之AGuIX奈米顆粒之後兩個小時,在無轉移腦組織中不可觀察到MRI增強。增強之此缺乏與在患者血漿中量測之奈米顆粒之快速清除一致並且為奈米顆粒對於健康腦部之無害性之肯定指示。 Although metastatic targeting is beneficial for diagnostic and radiosensitization purposes, it requires keeping nanoparticles at low concentrations in healthy surrounding tissue. In this regard, no MRI enhancement was observed in metastasis-free brain tissue two hours after administration of the highest dose of AGuIX nanoparticles. This lack of enhancement is consistent with the rapid clearance of nanoparticles measured in patient plasma and is a positive indication of the harmlessness of nanoparticles in healthy brains.

總之,在本文中報導之臨床試驗之初步結果證明靜脈內注射Gd系奈米顆粒可有效地增強患者中之不同類型之腦轉移。此等首次臨床調查結 果,亦即藥代動力學、被動靶向、轉移中之濃度與先前在腦腫瘤之動物模型之臨床前研究中獲得之觀察結果一致,並且預示著可將此治療診斷劑自臨床前水準成功轉換至臨床水準。 In conclusion, the preliminary results of the clinical trials reported in this article demonstrate that intravenous injection of Gd-based nanoparticles can effectively enhance different types of brain metastases in patients. The results of these first clinical investigations The results, that is, pharmacokinetics, passive targeting, and concentrations in metastasis are consistent with observations previously obtained in preclinical studies of animal models of brain tumors and indicate the success of this theranostic agent from the preclinical level. Translated to clinical level.

另外,Nano-Rad 1期臨床試驗之初步結果證明直至對於此研究來選擇之100mg/kg劑量,AGuIX奈米顆粒之靜脈內注射之良好耐受性。 Additionally, preliminary results from the Nano-Rad Phase 1 clinical trial demonstrate that intravenous injection of AGuIX nanoparticles is well tolerated up to the 100 mg/kg dose selected for this study.

最後,在D8處奈米顆粒在腫瘤中之持久性支援以下方案,該方案包括在首次照射之前第2天與第7天之間之時段內首次注射,以便優化腫瘤內之腫瘤之濃度及分佈,同時最大限度地減少奈米顆粒在周圍健康組織中之存在。 Finally, the persistence of nanoparticles in tumors at D8 supports a strategy that includes a first injection between days 2 and 7 before the first irradiation in order to optimize tumor concentration and distribution within the tumor. , while minimizing the presence of nanoparticles in surrounding healthy tissue.

所有此等結果及觀察提供對於2期臨床試驗(NANORAD2,NCT03818386)之強有力及可信賴支持,如以下實例2所揭示。 All these results and observations provide strong and reliable support for the Phase 2 clinical trial (NANORAD2, NCT03818386), as disclosed in Example 2 below.

實例2:使用AGuIX基於釓螯合聚矽氧烷之奈米顆粒的多發性腦轉移之放射療法:前瞻性隨機化II期臨床試驗 Example 2: Radiation therapy of multiple brain metastases using AGuIX chelated polysiloxane-based nanoparticles: a prospective randomized phase II clinical trial

[2.1 研究假設及預期結果] [2.1 Research hypothesis and expected results]

Ib期試驗Nanorad之初步結果確認AGuIX奈米顆粒與輻射療法之組合用於治療癌症患者之重要性,尤其患有腦轉移之患者。 Preliminary results from the Phase Ib trial Nanorad confirm the importance of combining AGuIX nanoparticles with radiation therapy for the treatment of cancer patients, especially those with brain metastases.

此隨機化II期研究之目的為評估AGuIX與WBRT之組合之功效,證明與單獨WBRT相比,顱內反應率之增加。此外,預期顱內無進展存活之增加,以及患者之生活品質之改良。另外,因為釓為MRI中之正性對比劑T1,所以執行MRI研究來評估該產物在腦轉移及周圍健康組織中之分佈。 The purpose of this randomized phase II study was to evaluate the efficacy of the combination of AGuIX and WBRT and demonstrate increased intracranial response rates compared with WBRT alone. Additionally, an increase in intracranial progression-free survival is expected, as well as an improvement in patients' quality of life. Additionally, because gium is the positive contrast agent T1 in MRI, MRI studies were performed to evaluate the distribution of this product in brain metastases and surrounding healthy tissue.

選定目標群體為適合於用全腦輻射療法來治療之患有腦轉移之患者,不論其原發性癌症為何。 The selected target group is patients with brain metastases who are suitable for treatment with whole-brain radiation therapy, regardless of their primary cancer.

目標群體基於以下來選擇:- 脈內投與放射增敏劑對於腦轉移之多灶性質的相關性;- 臨床前活體內研究中,以及對於包含在I期試驗Nanorad (EudraCT2015-004259-30;NCT02820454)中之患者,腫瘤病灶與健康腦之間的組織增強之差異;- 於使用標準放射療法治療,其預期壽命為約4.5個月之患者,不存在治療替代方案。 Target groups were selected based on: - the relevance of intravenous administration of radiosensitizers to the multifocal nature of brain metastases; - preclinical in vivo studies, and for inclusion in the Phase I Nanorad trial Differences in tissue enhancement between tumor lesions and healthy brain in patients in (EudraCT2015-004259-30; NCT02820454); - No treatment alternatives exist for patients with a life expectancy of approximately 4.5 months treated with standard radiation therapy .

其他腫瘤部位也可受益於與奈米顆粒之放射增敏效應相關之劑量功效的增加。 Other tumor sites may also benefit from the increased dose efficacy associated with the radiosensitizing effect of nanoparticles.

[2.2 研究之計劃/方法] [2.2 Research plan/method]

此為前瞻性隨機化開盲端點II期臨床試驗,用以與單獨全腦放射療法相比,評估AGuIX與全腦放射療法組合用於治療腦轉移的功效(Blood Press.1992 Aug;1(2):113-9.Prospective randomized open blinded end-point (PROBE)study.A novel design for intervention trials.Prospective Randomized Open Blinded End-Point.Hansson L)(Hansson等人,1992)This is a prospective, randomized, blinded endpoint phase II clinical trial to evaluate the efficacy of AGuIX in combination with whole-brain radiation therapy compared with whole-brain radiation therapy alone for the treatment of brain metastases (Blood Press. 1992 Aug; 1( 2): 113-9. Prospective randomized open blinded end-point (PROBE) study. A novel design for intervention trials. Prospective Randomized Open Blinded End-Point. Hansson L) (Hansson et al., 1992) .

在中心執行之最小化程序之後,將患者分配至兩f個治療組中之一者,以便將治療組之間之潛在預後因子加以平衡。最小化演算法考慮到以下因子:中心、年齡(作為連續性變數)、原發性癌症之組織結構(肺癌或乳癌或黑素瘤或其他癌症)、DS-GPA評分(

Figure 108133074-A0305-02-0035-45
1或>1)、顱內局部治療史(是或否)、免疫療法治療(是或否)、在納入時用皮質類固醇治療(是或否)、執行海馬迴保護之意向(是或否)。 After a center-performed minimization procedure, patients were assigned to one of two treatment groups in order to balance potential prognostic factors between treatment groups. The minimization algorithm takes into account the following factors: center, age (as a continuous variable), tissue structure of the primary cancer (lung or breast or melanoma or other cancer), DS-GPA score (
Figure 108133074-A0305-02-0035-45
1 or >1), history of intracranial local therapy (yes or no), immunotherapy treatment (yes or no), treatment with corticosteroids at inclusion (yes or no), intention to perform hippocampal protection (yes or no) .

該研究為適應性的:在各治療組(WBRT及AGuIX+WBRT)中登記20名患者之後計劃進行期中分析,以便在各組之間無差異的情況下,放棄先驗鑑別亞組。期中選擇之兩個鑑別組為(i)患有黑素瘤腦轉移之患者及(ii)患有來自全部其他原發性癌症(肺癌、乳癌、腎癌...)之腦轉移的患者。 The study was adaptive: an interim analysis was planned after enrolling 20 patients in each treatment group (WBRT and AGuIX+WBRT), in order to discard a priori identification of subgroups in the absence of differences between groups. The two differential groups selected midterm were (i) patients with melanoma brain metastases and (ii) patients with brain metastases from all other primary cancers (lung, breast, kidney...).

在兩個亞組中之每一者中,列聯表描述反應率,並且沒有反應或反應較差(亦即,與參照組相比相同或更差的最佳客觀顱內反應率)的任何組可予以放棄。 In each of the two subgroups, contingency tables describe response rates and any group with no response or poor response (i.e., the same or worse best objective intracranial response rate compared to the reference group) can be given up.

[2.3 合格標準/受試者特徵] [2.3 Eligibility criteria/subject characteristics]

[納入標準] [Inclusion criteria]

- 合於WBRT的患有來自組織學上確認實體腫瘤之腦轉移的患者 - Patients with brain metastases from histologically confirmed solid tumors eligible for WBRT

- 至少18歲 - At least 18 years old

- 簽署知情同意 - Sign informed consent

ECOG(東方合作腫瘤學群組)體力狀態0-2 ECOG (Eastern Cooperative Oncology Group) performance status 0-2

- 顱外疾病: - Extracranial diseases:

‧在全身治療下,完全或部分反應或穩定性 ‧Complete or partial response or stability under systemic treatment

‧沒有顱外疾病 ‧No extracranial disease

‧或者一線治療 ‧Or first-line treatment

- 預期壽命大於6週 - Life expectancy greater than 6 weeks

- 具有生育潛力之全部患者執行有效避孕法 - All patients of childbearing potential should use effective contraception

- 附屬於社會安全方案或其受益人 - Affiliated to a Social Security program or its beneficiary

[非納入標準] [Non-inclusion criteria]

- 軟腦膜轉移 - Leptomeningeal metastasis

- 轉移具有近期較大出血之跡象 - Metastasis with signs of recent major bleeding

- 在全身治療下,漸進性及危脅性顱外疾病 - Progressive and threatening extracranial disease under systemic therapy

- 先前顱照射(除立體定向照射以外) - Previous cranial irradiation (other than stereotactic irradiation)

- 已知禁忌症、對釓之敏感性或過敏症 - Known contraindications, sensitivities or allergies to chromium

- 對核磁共振造影之已知禁忌症 - Known contraindications to MRI

- 腎功能衰竭(腎小球濾過率

Figure 108133074-A0305-02-0036-46
50mL/min/1.73m2) - Renal failure (glomerular filtration rate
Figure 108133074-A0305-02-0036-46
50mL/min/1.73m 2 )

- 納入另一個臨床試驗方案中 - Incorporated into another clinical trial protocol

- 懷孕或哺乳 - Pregnant or breastfeeding

- 處於另一個研究之排除期中之受試者 - Subjects who are in the exclusion period of another study

- 在行政或司法控制下之受試者 - Subjects under administrative or judicial control

[2.4 允許治療/程序] [2.4 Treatments/Procedures Allowed]

在腦部照射之前保持或停止全身癌症治療由各研究者進行裁量並且必須遵照當前推薦。 Maintaining or discontinuing systemic cancer therapy prior to brain irradiation is at the discretion of the individual investigator and must adhere to current recommendations.

以下治療在放射療法期間為禁忌的:GEMZAR®、AVASTIN®、VEMURAFENIB®以及酪胺酸激酶抑制劑。根據當前推薦,它們在輻射之前必須停止。 The following treatments are contraindicated during radiotherapy: GEMZAR®, AVASTIN®, VEMURAFENIB® and tyrosine kinase inhibitors. According to current recommendations, they must be stopped before irradiation.

除了彼等限制以外,允許患者之普通治療並且在各患者之CRF中列出。 Subject to these restrictions, the patient's usual treatment is permitted and is listed in each patient's CRF.

作為防護措施,放射療法不應在投與AGuIX之後少於2小時執行。顆粒之血漿半衰期在人類中為1.08小時(0.75至2小時)。過早放射療法可增加健康腦組織中之放射療法之效應,但是在動物模型中,健康腦組織中之奈米顆粒之量仍然較低(Verry,C.等人(2016)。神經膠質瘤的MRI引導之臨床6-MV放射增敏使用獨特釓系奈米顆粒注射。Nanomedicine(Lond)。 As a precaution, radiation therapy should not be administered less than 2 hours after administration of AGuIX. The plasma half-life of the particles in humans is 1.08 hours (0.75 to 2 hours). Premature radiation therapy can increase the effects of radiation therapy in healthy brain tissue, but the amount of nanoparticles in healthy brain tissue remains low in animal models (Verry, C. et al. (2016). Glioma MRI-guided clinical 6-MV radiosensitization uses unique gallium-based nanoparticle injection. Nanomedicine (Lond).

[2.5 該研究中所使用之治療] [2.5 Treatments used in this study]

藥物/治療名稱及商品名稱:AGuIX。 Drug/Treatment Name and Trade Name: AGuIX.

化學名稱(DCI):基於釓螯合聚矽氧烷之奈米顆粒。 Chemical name (DCI): Nanoparticles based on chelated polysiloxane.

醫藥形式:含有300mg AGuIX作為活性成分之無菌凍乾灰白色粉末(300mg AGuIX/小瓶)。各小瓶含有0.66mg之CaCl2作為非活性成分。藥物產品在具有溴丁基橡皮塞之一次性使用10mL透明玻璃小瓶中供應。 Pharmaceutical form: Sterile lyophilized off-white powder containing 300 mg AGuIX as active ingredient (300 mg AGuIX/vial). Each vial contains 0.66 mg of CaCl as the inactive ingredient. The drug product is supplied in single-use 10 mL clear glass vials with bromobutyl rubber stoppers.

製備程序:用3mL注射用水來重構溶液以獲得100mg/mL之AGuIX溶液。溶液之pH然後處於7.2±0.2下。 Preparation procedure: Reconstitute the solution with 3 mL of water for injection to obtain a 100 mg/mL AGuIX solution. The pH of the solution is then at 7.2±0.2.

一小時之後重構與注射用水,重構溶液置於注射器,之前注射使用注射泵。 One hour after reconstitution with water for injection, place the reconstituted solution in a syringe, prior to injection using a syringe pump.

在重構之後並且在最大24小時內,投與最少1小時。 Administer for a minimum of 1 hour after reconstitution and within a maximum of 24 hours.

AGuIX溶液在重構之後半天內投與,然而,奈米顆粒必須儲存在 [+2℃;+8℃]並且在重構之後最大24小時內投與。 The AGuIX solution is administered within half a day after reconstitution, however, the nanoparticles must be stored in [+2°C; +8°C] and administered within a maximum of 24 hours after reconstitution.

藉由用注射泵來緩慢輸注(2mL/min),進行靜脈內投與。 Intravenous administration was performed by slow infusion (2 mL/min) using a syringe pump.

每次投與之劑量:100mg/kg,1mL/kg。 Dose for each administration: 100mg/kg, 1mL/kg.

[2.6 治療及相關程序] [2.6 Treatment and related procedures]

放射療法:全腦輻射療法: Radiation therapy: Whole brain radiation therapy:

- 劑量測定掃描器及個別競爭屏蔽 - Dosimetry scanners and individual competition shields

- 允許照射技術: - Allowed irradiation techniques:

○6MV光子之構形、等距、2橫向射束 ○Configuration of 6MV photons, equidistant, 2 transverse beams

○IMRT(斷層放療或VMAT) ○IMRT (tomotherapy or VMAT)

- 劑量 - dosage

○處方劑量:30Gy ○Prescription dose: 30Gy

○每分劑之劑量3Gy ○The dose per dose is 3Gy

○分劑之數目:10 ○Number of doses: 10

○每天之分劑:1 ○Dose per day: 1

○總治療持續時間不應超過3週 ○Total treatment duration should not exceed 3 weeks

目標體積: Target volume:

臨床目標體積(CTV)=腦+腦幹+小腦 Clinical target volume (CTV) = brain + brainstem + cerebellum

計劃目標體積(PTV)=CTV+3mm Planning target volume (PTV)=CTV+3mm

處於風險中之器官: Organs at risk:

眼睛、水晶體、視網膜、海馬迴、內耳及耳蝸 Eyes, lens, retina, hippocampus, inner ear and cochlea

劑量限制: Dosage Limitations:

PTV:V95%>95,D max<107% PTV: V95%>95, D max<107%

避免破壞海馬迴: Avoid damaging the hippocampus:

在可能時,建議避免破壞海馬迴,但是並非強制性的。在為了避免破壞海馬迴而進行強度調變照射的情況下,必需在劑量測定掃描器與參考 MRI之間產生融合。在融合MRI-CT影像集上手動產生雙側海馬迴輪廓並且擴展5mm以產生海馬迴避免區域。計劃目標體積(PTV)定義為排除海馬迴避免區域之臨床目標體積。IMRT在10個分劑中遞送至30Gy之劑量以便在避免海馬迴的同時,覆蓋PTV。遞送至100%海馬迴之劑量可不超過9Gy,並且最大海馬迴劑量可不超過16Gy。 Avoiding disruption of the hippocampus is recommended when possible, but is not mandatory. In the case of intensity-modulated irradiation to avoid damage to the hippocampus, it is necessary to coordinate the dosimetry scanner with the reference Fusion occurs between MRIs. Bilateral hippocampal outlines were manually generated on the fused MRI-CT image set and extended 5 mm to create hippocampal avoidance areas. Planning target volume (PTV) is defined as the clinical target volume excluding the hippocampal avoidance area. IMRT is delivered to a dose of 30 Gy in 10 fractions to cover the PTV while avoiding the hippocampus. The dose delivered to 100% of the hippocampus may not exceed 9 Gy, and the maximum hippocampal dose may not exceed 16 Gy.

[2.7 治療中訪視] [2.7 Visit during treatment]

V實驗治療組:AGuIX+WBRT V experimental treatment group: AGuIX+WBRT

第0天(開始WBRT之前,第2天至第7天之間): Day 0 (before starting WBRT, between days 2 and 7):

- 患者在移動式單元中住院 - Patient hospitalized in a mobile unit

- 臨床檢查確定ECOG OMS體力狀態、疼痛、體重及常數(心率、血壓、溫度) - Clinical examination to determine ECOG OMS performance status, pain, weight and constants (heart rate, blood pressure, temperature)

- 神經學檢查 - Neurological examination

- 安置末梢靜脈導管以便AGuIX®注射 - Place a peripheral intravenous catheter for AGuIX® injection

- 生物學檢查:全血計數、血清電解質、腎功能、肝功能 - Biological tests: complete blood count, serum electrolytes, renal function, liver function

- 在開始WBRT之前第2天至第7天之間,首次投與AGuIX(H0) - First investment in AGuIX(H0) between day 2 and day 7 before starting WBRT

- 注射之後一個小時執行腦部MRI* - Perform brain MRI* one hour after injection

- 安全評估 - Security assessment

放射療法治療之第1週: Week 1 of Radiation Therapy Treatment:

進程1: Process 1:

- 患者在移動式單元中住院 - Patient hospitalized in a mobile unit

- 臨床檢查確定ECOG OMS體力狀態、疼痛、體重及常數(心率、血壓、溫度) - Clinical examination to determine ECOG OMS performance status, pain, weight and constants (heart rate, blood pressure, temperature)

- 神經學檢查 - Neurological examination

- 安置末梢靜脈導管以便AGuIX®注射 - Place a peripheral intravenous catheter for AGuIX® injection

- 生物學檢查:全血計數、血清電解質、腎功能、肝功能。醫師必須 確認患者在執行AGuIX®注射之前其腎功能無變化。 - Biological tests: complete blood count, serum electrolytes, renal function, liver function. Physicians must Confirm that the patient has no changes in renal function before performing AGuIX® injections.

- 第二次投與AGuIX(H0) - Second investment in AGuIX(H0)

- 放射療法進程n°1,在第二次投與AGuIX注射之後3至5小時之間執行 - Radiotherapy course n°1, performed between 3 and 5 hours after the second AGuIX injection

- (作為防護措施,放射療法不應在投與AGuIX之後少於2小時執行) - (As a precaution, radiation therapy should not be performed less than 2 hours after administration of AGuIX)

- 安全評估 - Security assessment

進程2/進程3/進程4/進程5: Process 2/Process 3/Process 4/Process 5:

移動式放射療法進程n°2、n°3、n°4及n°5 Mobile radiotherapy procedures n°2, n°3, n°4 and n°5

放射療法治療之第2週: Week 2 of Radiation Therapy Treatment:

進程6(放射療法進程n°6之前): Course 6 (before radiotherapy course n°6):

- 患者在移動式單元中住院 - Patient hospitalized in a mobile unit

- 臨床檢查確定ECOG OMS體力狀態、疼痛、體重及常數(心率、血壓、溫度) - Clinical examination to determine ECOG OMS performance status, pain, weight and constants (heart rate, blood pressure, temperature)

- 神經學檢查 - Neurological examination

- 安置末梢靜脈導管以便AGuIX®注射 - Place a peripheral intravenous catheter for AGuIX® injection

- 生物學檢查:全血計數、血清電解質、腎功能、肝功能。醫師必須 確認患者在執行AGuIX注射之前其腎功能無變化。 - Biological tests: complete blood count, serum electrolytes, renal function, liver function. Physicians must Confirm that the patient has no changes in renal function before performing AGuIX injections.

- 第三次投與AGuIX(H0) - The third investment in AGuIX(H0)

- 放射療法進程n°6,在第二次投與AGuIX注射之後3至5小時之間執行。 - Radiotherapy course n°6, performed between 3 and 5 hours after the second AGuIX injection.

- (作為防護措施,放射療法不應在投與AGuIX之後少於2小時執行) - (As a precaution, radiation therapy should not be performed less than 2 hours after administration of AGuIX)

- 安全評估 - Security assessment

進程7/進程8/進程9/進程10: Process 7/Process 8/Process 9/Process 10:

- 移動式放射療法進程n°7、n°8、n°9及n°10 - Mobile radiotherapy procedures n°7, n°8, n°9 and n°10

V對照治療組:WBRT V control treatment group: WBRT

放射療法治療之第1週 Radiotherapy Treatment Week 1

進程1: Process 1:

- 臨床檢查確定ECOG OMS體力狀態、疼痛、體重及常數(心率、血壓、溫度) - Clinical examination to determine ECOG OMS performance status, pain, weight and constants (heart rate, blood pressure, temperature)

- 神經學檢查 - Neurological examination

- 生物學檢查:全血計數、血清電解質、腎功能、肝功能 - Biological tests: complete blood count, serum electrolytes, renal function, liver function

- 放射療法進程n°1 - Radiotherapy process n°1

- 安全評估 - Security assessment

進程2/進程3/進程4/進程5: Process 2/Process 3/Process 4/Process 5:

移動式放射療法進程n°2、n°3、n°4及n°5 Mobile radiotherapy procedures n°2, n°3, n°4 and n°5

放射療法治療之第2週: Week 2 of Radiation Therapy Treatment:

進程6(放射療法進程n°6之前): Course 6 (before radiotherapy course n°6):

- 臨床檢查確定ECOG OMS體力狀態、疼痛、體重及常數(心率、血壓、溫度); - Clinical examination to determine ECOG OMS performance status, pain, weight and constants (heart rate, blood pressure, temperature);

- 神經學檢查; - neurological examination;

- 生物學檢查:全血計數、血清電解質、腎功能、肝功能; - Biological tests: complete blood count, serum electrolytes, renal function, liver function;

- 放射療法進程n°6; - radiotherapy course n°6;

- 安全評估。 - Security assessment.

進程7/進程8/進程9/進程10: Process 7/Process 8/Process 9/Process 10:

- 移動式放射療法進程n°7、n°8、n°9及n°10 - Mobile radiotherapy procedures n°7, n°8, n°9 and n°10

[追蹤訪視] [Follow-up visit]

無論治療組為何(亦即,實驗治療組AGuIX+WBRT及對照治療組WBRT),追蹤訪視方案為相同的。 The follow-up visit schedule was the same regardless of treatment group (i.e., experimental treatment AGuIX+WBRT and control treatment WBRT).

追蹤訪視在放射療法開始之後6週,然後3、6、9及12個月發生(+/-一週)。 Follow-up visits occurred 6 weeks after the start of radiation therapy and then at 3, 6, 9, and 12 months (+/- one week).

研究結束訪視 end-of-study visit

對於兩個治療組(亦即,實驗治療組AGuIX+WBRT及對照治療組WBRT),研究結束在放射療法開始之後12個月發生。 For both treatment groups (i.e., experimental treatment group AGuIX+WBRT and control treatment group WBRT), the end of the study occurred 12 months after the start of radiation therapy.

研究方案及目標亦在圖4中概述。 The research protocol and objectives are also summarized in Figure 4 .

[參考文獻][Reference]

1. Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol 2015, 12(9): 527-540. 1. Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol 2015, 12 (9): 527-540.

2. Beasley M, Driver D. Dobbs HJ. Complications of radiotherapy: improving the therapeutic index. Cancer Imaging 2005, 5: 78-84. 2. Beasley M, Driver D. Dobbs HJ. Complications of radiotherapy: improving the therapeutic index. Cancer Imaging 2005, 5 : 78-84.

3. Hainfeld JF, O'Connor MJ, Dilmanian FA, Slatkin DN, Adams DJ. Smilowitz HM. Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions. Br J Radiol 2011. 84(1002): 526-533. 3. Hainfeld JF, O'Connor MJ, Dilmanian FA, Slatkin DN, Adams DJ. Smilowitz HM. Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions. Br J Radiol 2011. 84 (1002): 526 -533.

4. Dorsey JF. Sun L. Joh DY. Witztum A. Kao GD, Alonso-Basanta M. et al. Gold nanoparticles in radiation research: potential applications for imaging and radiosensitization. Transl Cancer Res 2013, 2(4): 280-291. 4. Dorsey JF. Sun L. Joh DY. Witztum A. Kao GD, Alonso-Basanta M. et al. Gold nanoparticles in radiation research: potential applications for imaging and radiosensitization. Transl Cancer Res 2013, 2 (4): 280- 291.

5. Taupin F. Flaender M. Delorme R, Brochard T. Mayol JF. Amaud J. et al. Gadolinium nanoparticles and contrast agent as radiation sensitizers. Phys Med Biol 2015, 60(11): 4449-4464. 5. Taupin F. Flaender M. Delorme R, Brochard T. Mayol JF. Amaud J. et al. Gadolinium nanoparticles and contrast agent as radiation sensitizers. Phys Med Biol 2015, 60 (11): 4449-4464.

6. McQuaid HN. Muir MF. Taggart LE, McMahon SJ, Coulter JA, Hyland WB. et al. Imaging and radiation effects of gold nanoparticles in tumour cells. Sci Rep 2016. 6: 19442. 6. McQuaid HN. Muir MF. Taggart LE, McMahon SJ, Coulter JA, Hyland WB. et al. Imaging and radiation effects of gold nanoparticles in tumour cells. Sci Rep 2016. 6 : 19442.

7. Zhu J. Zhao L. Cheng Y. Xiong Z. Tang Y. Shen M. et al. Radionuclide (131)I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors. Nanoscale 2015. 7(43): 18169-18178. 7. Zhu J. Zhao L. Cheng Y. Xiong Z. Tang Y. Shen M. et al. Radionuclide (131)I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors. Nanoscale 2015. 7(43): 18169 -18178.

8. Mi Y. Shao Z. Vang J. Kaidar-Person O. Wang AZ. Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol 2016. 7(1): 11. 8. Mi Y. Shao Z. Vang J. Kaidar-Person O. Wang AZ. Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol 2016. 7 (1): 11.

9. Le Duc G, Miladi I, Alric C, Mowat P. Brauer-Krisch E. Bouchet A. et al. Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano 2011, 5(12): 9566-9574. 9. Le Duc G, Miladi I, Alric C, Mowat P. Brauer-Krisch E. Bouchet A. et al. Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano 2011, 5 (12): 9566 -9574.

10. Dufort S. Bianchi A, Henry M. Lux F, Le Duc G, Josserand V. et al. Nebulized gadolinium-based nanoparticles: a theranostic approach for lung tumor imaging and radiosensitization. Small 2015, 11(2): 215-221. 10. Dufort S. Bianchi A, Henry M. Lux F, Le Duc G, Josserand V. et al. Nebulized gadolinium-based nanoparticles: a theranostic approach for lung tumor imaging and radiosensitization. Small 2015, 11 (2): 215- 221.

11. Hainfeld JF. Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 2004. 49(18): N309-315. 11. Hainfeld JF. Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 2004. 49 (18): N309-315.

Claims (18)

一種含有高Z元素之奈米顆粒在製備用於治療腫瘤之藥物之用途,其中前述藥物供在有需要之受試者中藉由游離輻射來治療前述腫瘤之方法中使用,前述方法包含以下步驟:步驟(i)首次照射前述腫瘤之前2天與10天之間之時段內,在有需要之前述受試者中注射第一治療有效量的作為放射增敏劑之含有高Z元素之奈米顆粒;步驟(ii)首次照射前述腫瘤之前1小時至12小時之間之時段內,注射第二治療有效量的含有相同或不同高Z元素之奈米顆粒;及步驟(iii)以治療有效劑量之輻射來照射前述受試者之前述腫瘤;其中前述含有高Z元素之奈米顆粒為下式之釓螯合之聚矽氧烷奈米顆粒:
Figure 108133074-A0305-02-0043-5
其中PS為聚矽氧烷之基質,及n包含5與50之間,並且其中平均流體動力學直徑包含2與6nm之間。
The use of nanoparticles containing high Z elements in the preparation of drugs for treating tumors, wherein the drugs are used in a method of treating the tumors by ionizing radiation in subjects in need, and the method includes the following steps : Step (i) within a period between 2 days and 10 days before the first irradiation of the aforementioned tumor, inject a first therapeutically effective amount of nanometers containing high Z elements as a radiosensitizer into the aforementioned subject if necessary particles; step (ii) injecting a second therapeutically effective amount of nanoparticles containing the same or different high Z elements within a period between 1 hour and 12 hours before the first irradiation of the aforementioned tumor; and step (iii) injecting a therapeutically effective dose Radiation is used to irradiate the aforementioned tumor of the aforementioned subject; wherein the aforementioned nanoparticles containing high Z elements are chelated polysiloxane nanoparticles of the following formula:
Figure 108133074-A0305-02-0043-5
Wherein PS is a polysiloxane matrix, and n includes between 5 and 50, and wherein the average hydrodynamic diameter includes between 2 and 6 nm.
如請求項1所記載之用途,其中在前述步驟(i)中,首次照射前述腫瘤之前2天與7天之間之時段內,在有需要之前述受試者中注射第一治療有效量的作為放射增敏劑之含有高Z元素之奈 米顆粒。 The use as described in claim 1, wherein in the aforementioned step (i), within a period between 2 days and 7 days before the first irradiation of the aforementioned tumor, the first therapeutically effective amount is injected into the aforementioned subject before the need arises. Nanoparticles containing high Z elements as radiosensitizers Rice grains. 如請求項1所記載之用途,其中前述奈米顆粒為靜脈內注射的。 The use as described in claim 1, wherein the aforementioned nanoparticles are injected intravenously. 如請求項1所記載之用途,其中前述奈米顆粒包含具有前述奈米顆粒之總重量為8%與50%之間之矽重量比的聚有機矽氧烷。 The use as described in claim 1, wherein the nanoparticles comprise polyorganosiloxane with a silicon weight ratio between 8% and 50% of the total weight of the nanoparticles. 如請求項1所記載之用途,其中n包含5與20之間。 The purpose described in claim 1, where n includes between 5 and 20. 如請求項1至5中任一項所記載之用途,其中前述奈米顆粒為包含在預填充小瓶中之凍乾粉末,以便在水溶液中重構以供靜脈內注射。 The use as described in any one of claims 1 to 5, wherein the aforementioned nanoparticles are freeze-dried powders contained in prefilled vials so as to be reconstituted in aqueous solution for intravenous injection. 如請求項1至5中任一項所記載之用途,其中前述奈米顆粒以50mg/mL與150mg/mL之間之濃度包含在可注射溶液中。 The use as described in any one of claims 1 to 5, wherein the aforementioned nanoparticles are included in the injectable solution at a concentration between 50 mg/mL and 150 mg/mL. 如請求項7所記載之用途,其中前述奈米顆粒以80mg/mL與120mg/mL之間之濃度包含在可注射溶液中。 The use as described in claim 7, wherein the aforementioned nanoparticles are included in the injectable solution at a concentration between 80 mg/mL and 120 mg/mL. 如請求項1至5中任一項所記載之用途,其中各注射步驟處投與之治療有效量包含之濃度在50mg/kg與150mg/kg之間,或在80與120mg/kg之間。 The use as described in any one of claims 1 to 5, wherein the therapeutically effective dose administered at each injection step contains a concentration between 50 mg/kg and 150 mg/kg, or between 80 and 120 mg/kg. 如請求項1至5中任一項所記載之用途,其中前述腫瘤為實體腫瘤。 The use as described in any one of claims 1 to 5, wherein the aforementioned tumor is a solid tumor. 如請求項1至5中任一項所記載之用途,其中前述腫瘤為實體腫瘤,選自由以下組成之群:膠質母細胞瘤、腦轉移、腦膜瘤、或子宮頸癌、直腸癌、肺癌、頭頸癌、前列腺癌、結直腸癌、肝癌、及胰腺癌之原發性腫瘤。 The use as described in any one of claims 1 to 5, wherein the aforementioned tumor is a solid tumor selected from the group consisting of: glioblastoma, brain metastasis, meningioma, or cervical cancer, rectal cancer, lung cancer, Primary tumors of head and neck cancer, prostate cancer, colorectal cancer, liver cancer, and pancreatic cancer. 如請求項11所記載之用途,其中前述腫瘤為腦轉移。 The use as described in claim 11, wherein the aforementioned tumor is brain metastasis. 如請求項12所記載之用途,其中前述腦轉移係來自黑素瘤、肺 癌、乳癌、或腎原發性癌之腦轉移。 The use as described in claim 12, wherein the aforementioned brain metastasis is from melanoma, lung Cancer, breast cancer, or brain metastasis from primary renal cancer. 如請求項12或13所記載之用途,其中前述受試者在步驟(iii)處曝露於全腦輻射療法。 The use as described in claim 12 or 13, wherein the subject is exposed to whole-brain radiation therapy in step (iii). 如請求項14所記載之用途,其中前述全腦輻射療法由使前述受試者曝露於25Gy與35Gy之間之總劑量之游離輻射組成。 The use as described in claim 14, wherein the whole-brain radiation therapy consists of exposing the subject to a total dose of ionizing radiation between 25Gy and 35Gy. 如請求項15所記載之用途,其中前述受試者曝露於每個分劑約3Gy之劑量的游離輻射,並且前述總劑量在最大10個分劑中投與。 The use as described in claim 15, wherein the subject is exposed to a dose of ionizing radiation of about 3 Gy per fraction, and the total dose is administered in a maximum of 10 fractions. 如請求項1至5中任一項所記載之用途,其中前述方法包含在步驟(ii)之前述注射之後5至10天內注射第三治療有效量之含有相同或不同高Z元素之奈米顆粒的步驟。 The use as described in any one of claims 1 to 5, wherein the aforementioned method includes injecting a third therapeutically effective amount of nanometers containing the same or different high-Z elements within 5 to 10 days after the aforementioned injection in step (ii). Particle steps. 如請求項1至5中任一項所記載之用途,其中前述方法進一步包含在步驟(i)之前述奈米顆粒之注射之後藉由核磁共振造影(MRI)來對前述腫瘤進行造影之步驟,其中前述奈米顆粒用作前述核磁共振造影(MRI)之T1對比劑。 The use as described in any one of claims 1 to 5, wherein the aforementioned method further includes the step of imaging the aforementioned tumor by magnetic resonance imaging (MRI) after the injection of the aforementioned nanoparticles in step (i), The aforementioned nanoparticles are used as the T1 contrast agent for the aforementioned magnetic resonance imaging (MRI).
TW108133074A 2019-09-12 2019-09-12 Use of high-z element containing nanoparticles in the manufacture of a medicament for treating a tumor TWI833803B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108133074A TWI833803B (en) 2019-09-12 2019-09-12 Use of high-z element containing nanoparticles in the manufacture of a medicament for treating a tumor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108133074A TWI833803B (en) 2019-09-12 2019-09-12 Use of high-z element containing nanoparticles in the manufacture of a medicament for treating a tumor

Publications (2)

Publication Number Publication Date
TW202110488A TW202110488A (en) 2021-03-16
TWI833803B true TWI833803B (en) 2024-03-01

Family

ID=76035417

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108133074A TWI833803B (en) 2019-09-12 2019-09-12 Use of high-z element containing nanoparticles in the manufacture of a medicament for treating a tumor

Country Status (1)

Country Link
TW (1) TWI833803B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113650362B (en) * 2021-08-11 2022-05-31 四川大学 Preparation method of X-ray protection material based on superfine fiber membrane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019008040A1 (en) * 2017-07-05 2019-01-10 Nh Theraguix Methods for treating tumors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019008040A1 (en) * 2017-07-05 2019-01-10 Nh Theraguix Methods for treating tumors
TW201906636A (en) * 2017-07-05 2019-02-16 法商Nh蕾哈吉公司 Nanoparticles used in methods of treating tumors

Also Published As

Publication number Publication date
TW202110488A (en) 2021-03-16

Similar Documents

Publication Publication Date Title
Indoria et al. Recent advances in theranostic polymeric nanoparticles for cancer treatment: A review
Detappe et al. Advanced multimodal nanoparticles delay tumor progression with clinical radiation therapy
Le Duc et al. Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles
US20060204443A1 (en) Methods for tumor treatment using dendrimer conjugates
Zhao et al. Construction of nanomaterials as contrast agents or probes for glioma imaging
CN103079642A (en) Nanoparticle-guided radiotherapy
WO2014141288A1 (en) The art, method, manner, process and system of a nano-biomineral for multi-modal contrast imaging and drug delivery
KR102347377B1 (en) Nanostructures and applications thereof
Smith et al. Nanoparticles for MRI-guided radiation therapy: A review
US20230390394A1 (en) Bismuth-Gadolinium Nanoparticles
US20230330229A1 (en) Methods for image-guided radiotherapy
TWI833803B (en) Use of high-z element containing nanoparticles in the manufacture of a medicament for treating a tumor
Guo et al. Radioiodine based biomedical carriers for cancer theranostics
JP7431940B2 (en) Methods for treating tumors
US20230218781A1 (en) Methods for triggering m1 macrophage polarization
Zhang et al. Engineering nanoprobes for magnetic resonance imaging of brain diseases
CN116472067A (en) Method for preparing nanoparticles
Buckway et al. Nanotheranostics and in-vivo imaging
Tao et al. Imaging and therapy with upconversion nanoparticles
WO2024013272A1 (en) Combined therapy with nanoparticles and radiopharmaceuticals
Jiao et al. Nanoscale Radiotheranostics for Cancer Treatment: From Bench to Bedside