TWI833547B - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
TWI833547B
TWI833547B TW112101233A TW112101233A TWI833547B TW I833547 B TWI833547 B TW I833547B TW 112101233 A TW112101233 A TW 112101233A TW 112101233 A TW112101233 A TW 112101233A TW I833547 B TWI833547 B TW I833547B
Authority
TW
Taiwan
Prior art keywords
layer
reflective layer
peripheral area
reflective
hard mask
Prior art date
Application number
TW112101233A
Other languages
Chinese (zh)
Other versions
TW202429560A (en
Inventor
方偉權
Original Assignee
南亞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Priority to TW112101233A priority Critical patent/TWI833547B/en
Application granted granted Critical
Publication of TWI833547B publication Critical patent/TWI833547B/en
Publication of TW202429560A publication Critical patent/TW202429560A/en

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

The disclosure provides a method for manufacturing a semiconductor device. The method includes following steps: sequentially forming a barrier layer and a first anti-reflection layer on the substrate with the array area and the peripheral area. The first anti-reflection layer in the peripheral area is etched, and an underlayer is formed on the first anti-reflection layer in the peripheral area. A second anti-reflection layer is formed on the underlayer in the peripheral area. An ashable hard mask layer is formed on the first anti-reflection layer in the array area and the underlayer layer in the peripheral area. A third anti-reflection layer is formed on the ashable hard mask layer. A bottom antireflection layer and a photoresist layer are sequentially formed on the third antireflection layer. The method can improve the etch selectivity of the dielectric film stack, so as to reduce the problems of short circuit or disconnection of metal lines and landing pads.

Description

半導體元件的製造方法Semiconductor device manufacturing method

本揭露係有關於一種半導體元件的製造方法。The present disclosure relates to a manufacturing method of a semiconductor device.

半導體積體電路(integrated circuit, IC)行業經歷了快速的發展,並一直致力於提高裝置密度、提高性能和降低成本。但是,當前已面臨涉及製造和設計的問題。舉例來說,隨著裝置的尺寸縮小,在蝕刻製程期間,可能會發生過度蝕刻(over-etching),從而可能引起例如不期望的漏電流、不期望的電子元件之間的導通等問題,最後造成裝置的可靠性降低。The semiconductor integrated circuit (IC) industry has experienced rapid development and has been committed to increasing device density, improving performance and reducing costs. However, problems involving manufacturing and design are currently being faced. For example, as the size of devices shrinks, over-etching may occur during the etching process, which may cause problems such as undesirable leakage current, undesirable conduction between electronic components, and finally Reducing the reliability of the device.

有鑑於此,本揭露之一目的在於提出一種可解決上述問題之半導體元件製造方法,特別是一種透過提高介電薄膜堆疊(dielectric film stacks)的蝕刻選擇比(etch selectivity),使得後續蝕刻製程更加準確的方法。In view of this, one purpose of the present disclosure is to propose a semiconductor device manufacturing method that can solve the above problems, especially a method that makes the subsequent etching process more efficient by improving the etch selectivity of dielectric film stacks. Accurate method.

本發明之一實施方式提供了一種包括下列步驟的半導體元件的製造方法。在具有陣列區及周邊區的基板上依序形成阻擋層與第一抗反射層。蝕刻周邊區的第一抗反射層,並在周邊區的第一抗反射層上形成襯層。在周邊區的襯層上形成第二抗反射層。在陣列區的第一抗反射層與周邊區的襯層上形成可灰化硬遮罩層。在可灰化硬遮罩層上形成第三抗反射層。在第三抗反射層上依序形成底部抗反射層與光阻層。One embodiment of the present invention provides a method for manufacturing a semiconductor device including the following steps. A barrier layer and a first anti-reflective layer are sequentially formed on the substrate having the array area and the peripheral area. The first anti-reflective layer in the peripheral area is etched, and a lining layer is formed on the first anti-reflective layer in the peripheral area. A second anti-reflective layer is formed on the lining layer in the peripheral area. An ashesable hard mask layer is formed on the first anti-reflective layer in the array area and the lining layer in the peripheral area. A third anti-reflective layer is formed on the ashingable hard mask layer. A bottom anti-reflective layer and a photoresist layer are sequentially formed on the third anti-reflective layer.

於一些實施例中,方法進一步包含:在基板上形成阻擋層之前,在基板上形成元件層。In some embodiments, the method further includes: forming a device layer on the substrate before forming the barrier layer on the substrate.

於一些實施例中,方法進一步包含:在蝕刻周邊區的第一抗反射層之前,對陣列區的第一抗反射層進行保護處理。In some embodiments, the method further includes: performing a protective treatment on the first anti-reflective layer in the array area before etching the first anti-reflective layer in the peripheral area.

於一些實施例中,其中阻擋層與可灰化硬遮罩層包含碳基材料。In some embodiments, the barrier layer and the ashedable hard mask layer include carbon-based materials.

於一些實施例中,其中第一抗反射層與第二抗反射層包含富矽的氮氧化矽材料。In some embodiments, the first anti-reflective layer and the second anti-reflective layer include silicon-rich silicon oxynitride material.

於一些實施例中,其中第三抗反射層包含富氧的氮氧化矽材料。In some embodiments, the third anti-reflective layer includes oxygen-rich silicon oxynitride material.

於一些實施例中,其中以電漿增強化學氣相沉積法形成阻擋層、第一抗反射層、第二抗反射層、第三抗反射層與可灰化硬遮罩層。In some embodiments, a plasma enhanced chemical vapor deposition method is used to form the barrier layer, the first anti-reflective layer, the second anti-reflective layer, the third anti-reflective layer and the ashing hard mask layer.

於一些實施例中,其中第一抗反射層具有一厚度大於第二抗反射層的一厚度。In some embodiments, the first anti-reflective layer has a thickness greater than a thickness of the second anti-reflective layer.

於一些實施例中,其中形成光阻層之後,圖案化光阻層,並以經圖案化之光阻層為遮罩,蝕刻第三抗反射層與底部抗反射層。In some embodiments, after the photoresist layer is formed, the photoresist layer is patterned, and the third anti-reflective layer and the bottom anti-reflective layer are etched using the patterned photoresist layer as a mask.

於一些實施例中,更包含以經蝕刻的第三抗反射層與底部抗反射層為遮罩,蝕刻可灰化硬遮罩層。In some embodiments, the etched third anti-reflective layer and the bottom anti-reflective layer are used as masks, and the etching can ashes the hard mask layer.

為了使本揭露的描述更加詳細和完整,下面以示例方式描述本揭露的態樣和具體實施方式。雖然下文中利用一系列的操作或步驟來說明本揭露之方法,但是這些操作或步驟所示的順序不應被解釋為本揭露的限制。例如,某些操作或步驟可以按不同順序進行及/或與其它步驟同時進行。此外,並非必須執行所有繪示的操作、步驟及/或特徵才能實現本發明的實施方式,在此所述的每一個操作或步驟可以包含數個子步驟或動作。In order to make the description of the present disclosure more detailed and complete, aspects and specific implementations of the present disclosure are described below by way of examples. Although a series of operations or steps are used to illustrate the method of the present disclosure below, the order shown in these operations or steps should not be construed as a limitation of the disclosure. For example, certain operations or steps may be performed in a different order and/or concurrently with other steps. Furthermore, not all illustrated operations, steps, and/or features must be performed to implement embodiments of the invention, and each operation or step described herein may include several sub-steps or actions.

為了便於描述,本文中可以使用空間相對術語(例如「在…之下」、「在…下方」、「低於」、「在…之上」「在…上方」等)來描述圖中所示的一個要素或特徵與另一要素或特徵之間的關係。應理解的是,除了附圖中描繪的方向之外,空間相對術語還涵蓋裝置不同方向下使用或操作時的範圍。舉例而言,如果附圖中的裝置被翻轉,則被描述為在其他元件或特徵「下」或「之下」的元件將被定向為在其他元件或特徵「上」或「之上」。因此,例如,術語「在…下方」可以包括上方和下方的方位。裝置可以以其他方向配置,並對應此方向使用空間相對描述語。For ease of description, spatially relative terms (such as "under", "below", "below", "above", "above", etc.) may be used in this article to describe what is shown in the figure The relationship between one element or characteristic and another element or characteristic. It will be understood that the spatially relative terms encompass different orientations of use or operation of the device in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as "below" or "beneath" other elements or features would then be oriented "above" or "above" the other elements or features. Thus, for example, the term "below" may include both upper and lower orientations. The device may be otherwise oriented using the spatially relative descriptors corresponding to that orientation.

本揭露內容提供了一種製造半導體元件的方法。第1-7圖為根據本發明之一些實施方式繪示的半導體結構的製程一製造階段的剖面示意圖。請參考第1圖,半導體元件100的基板110具有陣列區A1與周邊區A2。首先在陣列區A1與周邊區A2的基板110上形成元件層120。元件層120可以元件層120包含有多個積體電路元件,其可包含主動元件,如電晶體、開關元件等,及/或被動元件,如電阻器、電容器、電感器、轉換器等,並且元件層120在陣列區A1與周邊區A2可以具有不同的元件分布及/或表面形貌。The present disclosure provides a method of manufacturing a semiconductor device. 1-7 are schematic cross-sectional views of a manufacturing stage of a semiconductor structure according to some embodiments of the invention. Referring to FIG. 1 , the substrate 110 of the semiconductor device 100 has an array area A1 and a peripheral area A2. First, the element layer 120 is formed on the substrate 110 in the array area A1 and the peripheral area A2. The component layer 120 may include a plurality of integrated circuit components, which may include active components, such as transistors, switching components, etc., and/or passive components, such as resistors, capacitors, inductors, converters, etc., and The element layer 120 may have different element distribution and/or surface topography in the array area A1 and the peripheral area A2.

舉例而言,在陣列區A1中的元件層120可以包含有核心電路元件,而在周邊區A2的元件層120具有周邊電路元件,陣列區A1中的元件與周邊區A2中的元件可以利用金屬線連接在一起。為了方便理解,在本文中元件層120在圖式中簡化呈現。For example, the element layer 120 in the array area A1 may include core circuit elements, while the element layer 120 in the peripheral area A2 may have peripheral circuit elements. The elements in the array area A1 and the elements in the peripheral area A2 may be made of metal. lines connected together. To facilitate understanding, the component layer 120 is simplified in the drawings herein.

在一些實施方式中,基板110包括元素半導體,其包括晶體、多晶和/或非晶結構的矽或鍺;化合物半導體,包括碳化矽、砷化鎵、磷化鎵、磷化銦、砷化銦和/或銻化銦;合金半導體,包括SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP和/或GaInAsP;任何其他合適的材料;和/或其組合。In some embodiments, the substrate 110 includes elemental semiconductors, including silicon or germanium in crystalline, polycrystalline and/or amorphous structures; compound semiconductors, including silicon carbide, gallium arsenide, gallium phosphide, indium phosphide, arsenide Indium and/or indium antimonide; alloy semiconductors including SiGe, GaAsP, AlInAs, AlGaAs, GaInAs, GaInP and/or GaInAsP; any other suitable material; and/or combinations thereof.

如第1圖所示,藉由例如電漿增強化學氣相沉積法(plasma-enhanced chemical vapor deposition, PECVD)在陣列區A1的元件層120與周邊區A2的元件層120上分別形成阻擋層130。在一些實施方式中,阻擋層130包含碳基材料,其中阻擋層130的厚度可以是大約60±1.5奈米(nanometer, nm)。As shown in FIG. 1 , barrier layers 130 are respectively formed on the element layer 120 of the array area A1 and the element layer 120 of the peripheral area A2 by, for example, plasma-enhanced chemical vapor deposition (PECVD). . In some embodiments, the barrier layer 130 includes a carbon-based material, where the thickness of the barrier layer 130 may be approximately 60±1.5 nanometer (nm).

如第1圖所示,接下來,藉由例如電漿增強化學氣相沉積法(PECVD)在陣列區A1的阻擋層130與周邊區A2的阻擋層130上分別形成第一抗反射層140。在一些實施方式中,第一抗反射層140包含富矽(silicon-rich)的氮氧化矽(SiO N y)材料,其中第一抗反射層140的折射率約大於1.7。在一些實施方式中,第一抗反射層140的厚度可以是大約50±2nm。由於第一抗反射層140的材料不同於阻擋層130的材料,可以提高蝕刻選擇比。 As shown in FIG. 1 , next, first anti-reflection layers 140 are respectively formed on the barrier layer 130 of the array area A1 and the barrier layer 130 of the peripheral area A2 by, for example, plasma enhanced chemical vapor deposition (PECVD). In some embodiments, the first anti-reflective layer 140 includes silicon-rich silicon oxynitride (SiO N y ) material, wherein the first anti-reflective layer 140 has a refractive index greater than approximately 1.7. In some implementations, the thickness of the first anti-reflective layer 140 may be approximately 50±2 nm. Since the material of the first anti-reflective layer 140 is different from the material of the barrier layer 130 , the etching selectivity ratio can be improved.

如第1圖所示,對周邊區A2的第一抗反射層140進行蝕刻,在周邊區A2形成複數個溝槽142。在一些實施方式中,溝槽142可以藉由例如乾蝕刻、濕蝕刻或其他蝕刻方法來形成,其中若是乾蝕刻可以使用例如反應式離子蝕刻(reactive ion etching, RIE)製程。在本文中溝槽142的圖示簡化呈現。As shown in FIG. 1 , the first anti-reflective layer 140 in the peripheral area A2 is etched to form a plurality of trenches 142 in the peripheral area A2. In some embodiments, the trench 142 may be formed by, for example, dry etching, wet etching, or other etching methods. In the case of dry etching, a reactive ion etching (RIE) process may be used. The illustration of trench 142 is presented simplified herein.

雖未在圖式中示出,在一些實施方式中,在執行對周邊區A2的第一抗反射層140進行蝕刻之前,可以先對陣列區A1的元件進行保護處理。例如,可以先沈積遮罩層(未繪示)在陣列區A1的第一抗反射層140上,使得陣列區A1的元件免於受到周邊區A2後續處理的影響或是因受到後續處理而損壞。Although not shown in the drawings, in some embodiments, before etching the first anti-reflective layer 140 in the peripheral area A2, the elements in the array area A1 may be protected first. For example, a mask layer (not shown) can be deposited on the first anti-reflective layer 140 in the array area A1 first, so that the elements in the array area A1 are protected from being affected by or damaged by subsequent processing in the peripheral area A2 .

如第2圖所示,在周邊區A2的第一抗反射層140上形成襯層(underlayer)150。襯層150可以選用各種適合的材料,若選用不同於第一抗反射層140的材料,可以進一步提高蝕刻選擇比。在一些實施例中,在進行後續步驟之前可以對襯層150執行平坦化處理。平坦化處理包含化學機械平坦化(chemical mechanical planarization, CMP),也可以選用其他合適的處理。在本文中襯層150的圖示簡化呈現。As shown in FIG. 2 , an underlayer 150 is formed on the first anti-reflection layer 140 in the peripheral area A2. The lining layer 150 can be made of various suitable materials. If a material different from the first anti-reflective layer 140 is chosen, the etching selectivity ratio can be further improved. In some embodiments, a planarization process may be performed on the liner layer 150 before proceeding with subsequent steps. The planarization process includes chemical mechanical planarization (CMP), and other suitable processes can also be selected. The illustrations of liner 150 are presented simplified herein.

如第3圖所示,藉由例如電漿增強化學氣相沉積法(PECVD)在周邊區A2的襯層150上形成第二抗反射層160。在一些實施方式中,第二抗反射層160包含富矽(silicon-rich)的氮氧化矽(SiOₓN y)材料,其中第二抗反射層160的折射率約大於1.7。第二抗反射層160的厚度可以是大約15±2nm。在一些實施方式中,第二抗反射層160的厚度小於第一抗反射層140的厚度。第一抗反射層140與第二抗反射層160皆包含富矽的氮氧化矽,第一抗反射層140與第二抗反射層160之中矽的比例可以完全相同也可以不同。 As shown in FIG. 3 , a second anti-reflective layer 160 is formed on the liner 150 of the peripheral area A2 by, for example, plasma enhanced chemical vapor deposition (PECVD). In some embodiments, the second anti-reflective layer 160 includes silicon-rich silicon oxynitride (SiOₓN y ) material, wherein the refractive index of the second anti-reflective layer 160 is approximately greater than 1.7. The thickness of the second anti-reflective layer 160 may be approximately 15±2 nm. In some embodiments, the thickness of the second anti-reflective layer 160 is less than the thickness of the first anti-reflective layer 140 . Both the first anti-reflective layer 140 and the second anti-reflective layer 160 include silicon-rich silicon oxynitride. The proportions of silicon in the first anti-reflective layer 140 and the second anti-reflective layer 160 may be exactly the same or different.

雖未在圖式中示出,在一些實施方式中,在形成周邊區A2的第二抗反射層160之後,可以利用例如平坦化處理移除保護陣列區A1的遮罩層,暴露出陣列區A1的第一抗反射層140。在一些實施例中,平坦化處理包含化學機械平坦化(CMP),也可以選用其他合適的處理。Although not shown in the drawings, in some embodiments, after forming the second anti-reflective layer 160 in the peripheral area A2, the mask layer protecting the array area A1 may be removed using, for example, a planarization process to expose the array area. The first anti-reflective layer 140 of A1. In some embodiments, the planarization process includes chemical mechanical planarization (CMP), but other suitable processes may also be selected.

如第4圖所示,藉由例如電漿增強化學氣相沉積法(PECVD)在陣列區A1的第一抗反射層140與周邊區A2的第二抗反射層160上分別形成可灰化硬遮罩層170。在一些實施方式中,可灰化硬遮罩層170包含碳基材料,其中可灰化硬遮罩層170的厚度可以是大約60±2.5nm。在一些實施方式中,可灰化硬遮罩層170的材料不同於陣列區A1的第一抗反射層140與周邊區A2的第二抗反射層160的材料,可以提高蝕刻選擇比。在一些實施方式中,阻擋層130與可灰化硬遮罩層170皆包含碳基材料,阻擋層130與可灰化硬遮罩層170可以由完全相同的材料形成。在一些實施方式中,阻擋層130與可灰化硬遮罩層170的厚度可以相同,也可以不同。As shown in FIG. 4 , an asheable hardened layer is formed on the first anti-reflective layer 140 of the array area A1 and the second anti-reflective layer 160 of the peripheral area A2 by, for example, plasma enhanced chemical vapor deposition (PECVD). Mask layer 170. In some embodiments, the ashing hard mask layer 170 includes a carbon-based material, wherein the thickness of the ashing hard mask layer 170 may be approximately 60 ± 2.5 nm. In some embodiments, the material of the ashing hard mask layer 170 is different from the materials of the first anti-reflective layer 140 of the array area A1 and the second anti-reflective layer 160 of the peripheral area A2, which can improve the etching selectivity. In some embodiments, the barrier layer 130 and the ashedable hard mask layer 170 both include carbon-based materials, and the barrier layer 130 and the ashedable hard mask layer 170 may be formed of the same material. In some embodiments, the barrier layer 130 and the ashable hard mask layer 170 may have the same thickness or may have different thicknesses.

如第5圖所示,藉由例如電漿增強化學氣相沉積法(PECVD)在陣列區A1的可灰化硬遮罩層170與周邊區A2的可灰化硬遮罩層170上分別形成第三抗反射層180。在一些實施方式中,第三抗反射層180包含富氧(oxygen-rich)的氮氧化矽(SiOₓN y)材料,其中第三抗反射層180的折射率約小於1.7。在一些實施方式中,第三抗反射層180的厚度可以是大約26±1nm。在一些實施方式中,第三抗反射層180的厚度大於第二抗反射層160的厚度,第三抗反射層180的厚度小於第一抗反射層140的厚度。換言之,在一些實施方式中,第一抗反射層140的厚度大於第二抗反射層160的厚度,也大於第三抗反射層180的厚度。在一些實施方式中,比起第一抗反射層140、第二抗反射層160,第三抗反射層180具有較高的氧含量。 As shown in FIG. 5 , the asheable hard mask layer 170 in the array area A1 and the asheable hard mask layer 170 in the peripheral area A2 are respectively formed by, for example, plasma enhanced chemical vapor deposition (PECVD). Third anti-reflective layer 180. In some embodiments, the third anti-reflective layer 180 includes oxygen-rich silicon oxynitride (SiOₓN y ) material, wherein the refractive index of the third anti-reflective layer 180 is approximately less than 1.7. In some implementations, the thickness of the third anti-reflective layer 180 may be approximately 26 ± 1 nm. In some embodiments, the thickness of the third anti-reflective layer 180 is greater than the thickness of the second anti-reflective layer 160 , and the thickness of the third anti-reflective layer 180 is less than the thickness of the first anti-reflective layer 140 . In other words, in some embodiments, the thickness of the first anti-reflective layer 140 is greater than the thickness of the second anti-reflective layer 160 and also greater than the thickness of the third anti-reflective layer 180 . In some embodiments, the third anti-reflective layer 180 has a higher oxygen content than the first anti-reflective layer 140 and the second anti-reflective layer 160 .

如第6圖所示,在陣列區A1的第三抗反射層180與周邊區A2的第三抗反射層180上分別形成底部抗反射層(Bottom anti-reflective coating, BARC)190。在一些實施方式中,底部抗反射層190的厚度可以是大約30nm。底部抗反射層190可由氮氧化矽或其他合適的材料形成。As shown in FIG. 6 , a bottom anti-reflective coating (BARC) 190 is formed on the third anti-reflective layer 180 of the array area A1 and the third anti-reflective layer 180 of the peripheral area A2 respectively. In some implementations, the thickness of bottom anti-reflective layer 190 may be approximately 30 nm. Bottom anti-reflective layer 190 may be formed of silicon oxynitride or other suitable materials.

如第6圖所示,在陣列區A1的底部抗反射層190與周邊區A2的底部抗反射層190上分別形成光阻層200。在一些實施方式中,光阻層200的厚度可以是大約120nm。在一些實施方式中,光阻層200可以為單層或是多層結構。在一些實施方式中,可以使用習知的光阻劑作為光阻層200的材料,光阻層200也可以是聚合材料。As shown in FIG. 6 , photoresist layers 200 are respectively formed on the bottom anti-reflective layer 190 of the array area A1 and the bottom anti-reflective layer 190 of the peripheral area A2. In some embodiments, the thickness of photoresist layer 200 may be approximately 120 nm. In some embodiments, the photoresist layer 200 can be a single layer or a multi-layer structure. In some embodiments, a conventional photoresist can be used as the material of the photoresist layer 200 , and the photoresist layer 200 can also be a polymer material.

如第7圖所示,對第6圖的陣列區A1與周邊區A2進行後續蝕刻處理,並形成多個溝槽210。在一些實施方式中,溝槽210暴露基板110的一些部分,並在後續製程中在溝槽210內形成金屬線或著陸墊(landing pad),金屬線或著陸墊可與基板110上的線路(若有的話)相連。金屬線或著陸墊可由例如鎢(W)、銅(Cu)鋁(Al)、鈦(Ti)、鉭(Ta)、其組合和/或是其他合適的導電材料形成。在其他的一些實施方式中,蝕刻溝槽210的步驟可以止於元件層120,並在後續製程中在溝槽210內形成金屬線或著陸墊。金屬線或著陸墊可與元件層120中的元件相連。在一些實施方式中,溝槽210可以藉由例如乾蝕刻、濕蝕刻或其他蝕刻方式來形成,其中若是乾蝕刻可以使用例如反應式離子蝕刻(RIE)製程。As shown in FIG. 7 , a subsequent etching process is performed on the array area A1 and the peripheral area A2 in FIG. 6 , and a plurality of trenches 210 are formed. In some embodiments, the trench 210 exposes some portions of the substrate 110, and metal lines or landing pads are formed in the trench 210 in subsequent processes. The metal lines or landing pads can be connected to the lines on the substrate 110 ( if any) connected. The metal lines or landing pads may be formed of, for example, tungsten (W), copper (Cu) aluminum (Al), titanium (Ti), tantalum (Ta), combinations thereof, and/or other suitable conductive materials. In some other embodiments, the step of etching the trench 210 may end at the device layer 120 , and metal lines or landing pads may be formed in the trench 210 in subsequent processes. Metal wires or landing pads may be connected to components in component layer 120 . In some embodiments, the trench 210 may be formed by, for example, dry etching, wet etching, or other etching methods, wherein dry etching may use, for example, a reactive ion etching (RIE) process.

在一些實施方式中,上述的蝕刻處理可以分階段進行蝕刻。在形成光阻層200後,首先將光阻層200圖案化,可以使用習知的方式進行圖案化。接下來,可以將經過圖案化的光阻層200作為遮罩,並以第一蝕刻製程蝕刻陣列區A1與周邊區A2的底部抗反射層190與第三抗反射層180。下一步,能以不同於第一蝕刻製程之第二蝕刻製程蝕刻陣列區A1與周邊區A2的可灰化硬遮罩層170。再來,能以不同於第二蝕刻製程之第三蝕刻製程蝕刻陣列區A1的第一抗反射層140與周邊區A2的第二抗反射層160。接著,能以不同於第三蝕刻製程之第四蝕刻製程蝕刻周邊區A2的襯層150。再來,能以不同於第四蝕刻製程之第五蝕刻製程蝕刻周邊區A2的第一抗反射層140。接下來,再以不同於第五蝕刻製程之第六蝕刻製程蝕刻陣列區A1與周邊區A2的阻擋層130。以上僅為示例性說明,各蝕刻製程能依需求增加或減少。In some embodiments, the etching process described above can be performed in stages. After the photoresist layer 200 is formed, the photoresist layer 200 is first patterned, and the patterning can be performed using a conventional method. Next, the patterned photoresist layer 200 can be used as a mask, and the bottom anti-reflective layer 190 and the third anti-reflective layer 180 of the array area A1 and the peripheral area A2 are etched using a first etching process. Next, the asheable hard mask layer 170 of the array area A1 and the peripheral area A2 can be etched using a second etching process that is different from the first etching process. Next, a third etching process different from the second etching process can be used to etch the first anti-reflective layer 140 of the array area A1 and the second anti-reflective layer 160 of the peripheral area A2. Then, the lining layer 150 of the peripheral region A2 can be etched using a fourth etching process that is different from the third etching process. Next, the first anti-reflective layer 140 of the peripheral area A2 can be etched using a fifth etching process that is different from the fourth etching process. Next, a sixth etching process different from the fifth etching process is used to etch the barrier layer 130 of the array area A1 and the peripheral area A2. The above is only an exemplary description, and each etching process can be increased or decreased according to needs.

以本揭露提供的半導體元件製造方法,藉由形成多層不同材料、不同厚度的介電薄膜,可以提高介電薄膜堆疊(dielectric film stacks)的蝕刻選擇比(etch selectivity),以在後續蝕刻處理時形成較精準的溝槽210。如此一來,能減少出現不期望的漏電流、不期望的電子元件之間的導通等問題,進而提高元件可靠性,例如可以減少後續製程中金屬線、著陸墊的短路或斷線之問題。以本揭露提供的半導體元件製造方法,可以有效地提高元件可靠性並提高產量。With the semiconductor device manufacturing method provided by the present disclosure, by forming multiple layers of dielectric films of different materials and different thicknesses, the etch selectivity of dielectric film stacks can be improved for subsequent etching processes. A more precise groove 210 is formed. In this way, problems such as undesirable leakage current and undesirable conduction between electronic components can be reduced, thereby improving component reliability. For example, it can reduce short circuits or disconnections of metal lines and landing pads in subsequent processes. The semiconductor device manufacturing method provided by the present disclosure can effectively improve device reliability and increase yield.

儘管已經參考某些實施方式相當詳細地描述了本揭露,但是亦可能有其他實施方式。因此,所附申請專利範圍的精神和範圍不應限於此處包含的實施方式的描述。Although the present disclosure has been described in considerable detail with reference to certain embodiments, other embodiments are possible. Accordingly, the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein.

對於所屬技術領域人員來說,顯而易見的是,在不脫離本揭露的範圍或精神的情況下,可以對本揭露的結構進行各種修改和變化。鑑於前述內容,本揭露意圖涵蓋落入所附申請專利範圍內的本發明的修改和變化。It will be apparent to those skilled in the art that various modifications and changes can be made in the structure of the present disclosure without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the present disclosure cover the modifications and variations of this invention falling within the scope of the appended claims.

100:半導體元件 110:基板 120:元件層 130:阻擋層 140:第一抗反射層 142:溝槽 150:襯層 160:第二抗反射層 170:可灰化硬遮罩層 180:第三抗反射層 190:底部抗反射層 200:光阻層 210:溝槽 A1:陣列區 A2:周邊區100:Semiconductor components 110:Substrate 120: component layer 130: Barrier layer 140: First anti-reflective layer 142:Trench 150: Lining 160: Second anti-reflective layer 170: Hard mask layer can be grayed out 180:Third anti-reflective layer 190: Bottom anti-reflective layer 200: Photoresist layer 210:Trench A1: Array area A2: Surrounding area

當讀到隨附的圖式時,從以下詳細的敘述可充分瞭解本揭露的各方面,並可參照所附之圖式及以下所述各種實施方式,圖式中相同之號碼代表相同或相似之元件。此外,為了簡化圖示,一些習知慣用的結構與元件在圖示中將以簡單示意的方式繪示。 第1-7圖為根據本發明之一些實施方式繪示的半導體結構的製程一製造階段的剖面示意圖。 When reading the accompanying drawings, various aspects of the present disclosure can be fully understood from the following detailed description, and reference can be made to the accompanying drawings and the various embodiments described below. The same numbers in the drawings represent the same or similar of components. In addition, in order to simplify the illustration, some commonly used structures and components will be illustrated in a simple schematic manner. 1-7 are schematic cross-sectional views of a manufacturing stage of a semiconductor structure according to some embodiments of the invention.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in order of storage institution, date and number) without Overseas storage information (please note in order of storage country, institution, date, and number) without

100:半導體元件 100:Semiconductor components

110:基板 110:Substrate

120:元件層 120: component layer

130:阻擋層 130: Barrier layer

140:第一抗反射層 140: First anti-reflective layer

150:襯層 150: Lining

160:第二抗反射層 160: Second anti-reflective layer

170:可灰化硬遮罩層 170: Hard mask layer can be grayed out

180:第三抗反射層 180:Third anti-reflective layer

190:底部抗反射層 190: Bottom anti-reflective layer

200:光阻層 200: Photoresist layer

A1:陣列區 A1: Array area

A2:周邊區 A2: Surrounding area

Claims (10)

一種半導體元件的製造方法,包括: 在具有一陣列區及一周邊區的一基板上依序形成一阻擋層與一第一抗反射層; 蝕刻該周邊區的該第一抗反射層;並在該周邊區的該第一抗反射層上形成一襯層; 在該周邊區的該襯層上形成一第二抗反射層; 在該陣列區的該第一抗反射層與該周邊區的該襯層上形成一可灰化硬遮罩層; 在該可灰化硬遮罩層上形成一第三抗反射層;及 在該第三抗反射層上依序形成一底部抗反射層與一光阻層。 A method for manufacturing semiconductor components, including: A barrier layer and a first anti-reflective layer are sequentially formed on a substrate having an array area and a peripheral area; Etching the first anti-reflective layer in the peripheral area; and forming a lining layer on the first anti-reflective layer in the peripheral area; forming a second anti-reflective layer on the liner in the peripheral area; Form an ashesable hard mask layer on the first anti-reflective layer in the array area and the liner layer in the peripheral area; forming a third anti-reflective layer on the ashingable hard mask layer; and A bottom anti-reflective layer and a photoresist layer are sequentially formed on the third anti-reflective layer. 如請求項1所述之方法,進一步包含:在該基板上形成該阻擋層之前,在該基板上形成一元件層。The method of claim 1, further comprising: forming a component layer on the substrate before forming the barrier layer on the substrate. 如請求項1所述之方法,進一步包含:在蝕刻該周邊區的該第一抗反射層之前,對該陣列區的該第一抗反射層進行一保護處理。The method of claim 1, further comprising: performing a protective treatment on the first anti-reflective layer in the array area before etching the first anti-reflective layer in the peripheral area. 如請求項1所述之方法,其中該阻擋層與該可灰化硬遮罩層包含一碳基材料。The method of claim 1, wherein the barrier layer and the ashing hard mask layer comprise a carbon-based material. 如請求項1所述之方法,其中該第一抗反射層與第二抗反射層包含一富矽的氮氧化矽材料。The method of claim 1, wherein the first anti-reflective layer and the second anti-reflective layer include a silicon-rich silicon oxynitride material. 如請求項1所述之方法,其中該第三抗反射層包含一富氧的氮氧化矽材料。The method of claim 1, wherein the third anti-reflective layer includes an oxygen-rich silicon oxynitride material. 如請求項1所述之方法,其中以電漿增強化學氣相沉積法形成該阻擋層、該第一抗反射層、該第二抗反射層、該第三抗反射層與該可灰化硬遮罩層。The method of claim 1, wherein the barrier layer, the first anti-reflective layer, the second anti-reflective layer, the third anti-reflective layer and the ashing hard layer are formed by plasma enhanced chemical vapor deposition. Mask layer. 如請求項1所述之方法,其中該第一抗反射層具有一厚度大於該第二抗反射層的一厚度。The method of claim 1, wherein the first anti-reflective layer has a thickness greater than a thickness of the second anti-reflective layer. 如請求項1所述之方法,其中形成該光阻層之後,圖案化該光阻層,並以經圖案化之該光阻層為遮罩,蝕刻該第三抗反射層與該底部抗反射層。The method of claim 1, wherein after forming the photoresist layer, the photoresist layer is patterned, and the third anti-reflective layer and the bottom anti-reflective layer are etched using the patterned photoresist layer as a mask. layer. 如請求項9所述之方法,更包含以經蝕刻的該第三抗反射層與該底部抗反射層為遮罩,蝕刻該可灰化硬遮罩層。The method of claim 9 further includes etching the ashingable hard mask layer using the etched third anti-reflective layer and the bottom anti-reflective layer as masks.
TW112101233A 2023-01-11 2023-01-11 Manufacturing method of semiconductor device TWI833547B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112101233A TWI833547B (en) 2023-01-11 2023-01-11 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112101233A TWI833547B (en) 2023-01-11 2023-01-11 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
TWI833547B true TWI833547B (en) 2024-02-21
TW202429560A TW202429560A (en) 2024-07-16

Family

ID=90825006

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112101233A TWI833547B (en) 2023-01-11 2023-01-11 Manufacturing method of semiconductor device

Country Status (1)

Country Link
TW (1) TWI833547B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201448024A (en) * 2013-01-23 2014-12-16 Lam Res Corp Method of etching self-aligned vias and trenches in a multi-layer film stack
US20150093902A1 (en) * 2013-10-01 2015-04-02 Taiwan Semiconductor Manufacturing Company, Ltd. Self-Aligned Patterning Process
US20190006174A1 (en) * 2017-06-30 2019-01-03 Taiwan Semiconductor Manufacturing Company, Ltd. Method for patterning semiconductor device using masking layer
TW202013686A (en) * 2018-09-26 2020-04-01 大陸商長江存儲科技有限責任公司 3D memory device and method for forming 3D memory device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201448024A (en) * 2013-01-23 2014-12-16 Lam Res Corp Method of etching self-aligned vias and trenches in a multi-layer film stack
US20150093902A1 (en) * 2013-10-01 2015-04-02 Taiwan Semiconductor Manufacturing Company, Ltd. Self-Aligned Patterning Process
US20190006174A1 (en) * 2017-06-30 2019-01-03 Taiwan Semiconductor Manufacturing Company, Ltd. Method for patterning semiconductor device using masking layer
TW202013686A (en) * 2018-09-26 2020-04-01 大陸商長江存儲科技有限責任公司 3D memory device and method for forming 3D memory device

Similar Documents

Publication Publication Date Title
TW201737312A (en) Method of forming vias
TWI397984B (en) Multi-layer thick metallization structure for a microelectronic device,integrated circuit containing same, and method of manufacturing an integrated circuit containing same
US20200219889A1 (en) Landing pad structure and method of manufacturing the same
US11239077B2 (en) Litho-etch-litho-etch with self-aligned blocks
TW202117851A (en) Method of forming semiconductor structure
US11107726B2 (en) Method for manufacturing bonding pad in semiconductor device
US9305832B2 (en) Dimension-controlled via formation processing
CN111199880B (en) Manufacturing method of semiconductor device and semiconductor device
US10658190B2 (en) Extreme ultraviolet lithography patterning with directional deposition
JP2001338979A (en) Semiconductor device and its manufacturing method
US6465346B2 (en) Conducting line of semiconductor device and manufacturing method thereof using aluminum oxide layer as hard mask
CN114334619A (en) Method for forming semiconductor structure
TWI833547B (en) Manufacturing method of semiconductor device
US20230154848A1 (en) Semiconductor structure
US7196002B2 (en) Method of making dual damascene with via etch through
CN103050382B (en) Manufacturing method of semiconductor device
TW202429560A (en) Manufacturing method of semiconductor device
KR20230019054A (en) Two-dimension self-aligned scheme with subtractive metal etch
US11355351B2 (en) Semiconductor device and fabrication method thereof
TW202213630A (en) Method for manufacturing semiconductor device
US6287752B1 (en) Semiconductor device, method of manufacturing a semiconductor device, and method of forming a pattern for semiconductor device
US11488820B2 (en) Method of fabricating layered structure
TWI840706B (en) Method of fabricating semiconductor device and patterning semiconductor structure
US11915933B2 (en) Manufacturing method of semiconductor structure
US12087582B2 (en) Improving resolution of masks for semiconductor manufacture