TWI833281B - Fragments of coronavirus nucleocapsid protein for increasing gene expression and application thereof - Google Patents

Fragments of coronavirus nucleocapsid protein for increasing gene expression and application thereof Download PDF

Info

Publication number
TWI833281B
TWI833281B TW111125822A TW111125822A TWI833281B TW I833281 B TWI833281 B TW I833281B TW 111125822 A TW111125822 A TW 111125822A TW 111125822 A TW111125822 A TW 111125822A TW I833281 B TWI833281 B TW I833281B
Authority
TW
Taiwan
Prior art keywords
coronavirus
protein
gene
nucleocapsid
nucleocapsid protein
Prior art date
Application number
TW111125822A
Other languages
Chinese (zh)
Other versions
TW202402783A (en
Inventor
孫俊仁
許吉如
程雲詳
張天耀
黃志恆
陳正忠
劉秉誠
Original Assignee
國防醫學院
Filing date
Publication date
Application filed by 國防醫學院 filed Critical 國防醫學院
Priority to TW111125822A priority Critical patent/TWI833281B/en
Publication of TW202402783A publication Critical patent/TW202402783A/en
Application granted granted Critical
Publication of TWI833281B publication Critical patent/TWI833281B/en

Links

Abstract

The present invention relates to fragments of coronavirus nucleocapsid protein, which are used for increasing gene expression. The fragments include at least the dimerization domain and/or the C-terminal domain (CTD) of the coronavirus nucleocapsid protein. The present invention also relates to polynucleotides encoding the protein fragments, plasmids including the polynucleotides, cells including the protein fragments, the polynucleotides, or the plasmids, and methods for increasing expression of a target gene or methods for screening antiviral drugs using the protein fragments, the polynucleotides, the plasmids, or the cells.

Description

用於增加基因表現之冠狀病毒核殼蛋白片段及其應用Coronavirus nucleocapsid protein fragments used to increase gene expression and their applications

本發明涉及一種用於增加基因表現之冠狀病毒核殼蛋白片段,特別是一種至少包含冠狀病毒核殼蛋白的二聚化結構域(dimerization domain)及/或羧基端結構域(C-terminal domain, CTD)的蛋白片段。The present invention relates to a coronavirus nucleocapsid protein fragment for increasing gene expression, particularly a coronavirus nucleocapsid protein fragment that at least contains the dimerization domain and/or the carboxyl-terminal domain (C-terminal domain) of the coronavirus nucleocapsid protein. CTD) protein fragment.

伊波拉病毒(Ebola virus; EBOV)屬於絲狀病毒科( Filoviridae),被列為生物性危害第四級病毒。伊波拉病毒感染人類的致死率高達40%至90%,因此被視為是生物恐怖攻擊的潛在工具。伊波拉病毒RNA基因組長約19 kb,可產生8種病毒蛋白,其中四種蛋白,核殼蛋白(nucleocapsid protein, NP)、聚合酶蛋白(polymerase protein, L)、VP30蛋白,以及VP35蛋白,會形成複合體扮演幫助伊波拉病毒複製及轉錄的角色。在該複合體幫助下,細胞內會同時產生存在三種伊波拉病毒RNA,分別為病毒RNA (viral RNA, vRNA)、傳訊RNA (messenger RNA, mRNA),以及互補RNA (complementary RNA, cRNA)。已知伊波拉病毒的複製及轉錄過程中所產生的RNA穩定度與上述四種蛋白有關。伊波拉病毒微型基因組系統(EBOV minigenome system)便是根據這樣的特性所研發出來的。如圖1所示,該系統包含一微型基因組(minigenome,如圖1 EBOV-GFP vRNA所示)以及分別包含編碼NP蛋白、L蛋白、VP30蛋白,以及VP35蛋白基因的表現質體。該微型基因組是以一報導基因(以圖1為例,該報導基因為綠色螢光蛋白(green fluorescent protein, GFP))取代伊波拉病毒的基因組內的所有基因(亦即,開放閱讀框(open reading frame)),而該報導基因的兩側分別為伊波拉病毒的5’-非轉譯區(untranslated region, UTR)以及3’-UTR,其包含將伊波拉病毒基因組包裹、轉錄、複製,以及包裝成子代病毒所需的所有調節元件。接著,將包含該微型基因組的質體與包含編碼該四種蛋白(NP、L、VP30,以及VP35蛋白)基因的表現質體同時轉染至細胞。於細胞內,在該四種蛋白表現的驅使下使該微型基因組內的報導基因表現。因此,當細胞表現該報導基因,則表示在該環境下伊波拉病毒可複製及轉錄。在操作過程中,伊波拉病毒微型基因組系統並不會產生伊波拉病毒顆粒,因此可在生物安全第二等級(biosafety level 2, BSL-2)實驗室操作,並可作為篩選抑制伊波拉病毒複製及轉綠藥物的工具。簡言之,伊波拉病毒微型基因組系統是一種安全並可近距離觀察複製及轉錄過程的工具。此外,該系統亦可作為複製及轉錄調控相關蛋白的驗證工具。 Ebola virus (EBOV) belongs to the Filoviridae family and is classified as a biological hazard level 4 virus. The fatality rate of Ebola virus infection in humans is as high as 40% to 90%, so it is regarded as a potential tool for bioterrorism attacks. The Ebola virus RNA genome is about 19 kb long and can produce eight viral proteins, four of which, nucleocapsid protein (NP), polymerase protein (L), VP30 protein, and VP35 protein, will The complex formed plays a role in helping Ebola virus replication and transcription. With the help of this complex, three types of Ebola virus RNA are simultaneously produced in cells, namely viral RNA (viral RNA, vRNA), messenger RNA (mRNA), and complementary RNA (cRNA). It is known that the stability of RNA produced during the replication and transcription process of Ebola virus is related to the above four proteins. The EBOV minigenome system was developed based on such characteristics. As shown in Figure 1, the system includes a minigenome (as shown in Figure 1 EBOV-GFP vRNA) and expression plasmids containing genes encoding NP protein, L protein, VP30 protein, and VP35 protein respectively. The minigenome uses a reporter gene (see Figure 1 as an example, the reporter gene is green fluorescent protein (GFP)) to replace all the genes in the Ebola virus genome (that is, the open reading frame (open reading frame)). reading frame)), and the reporter gene is flanked by the 5'-untranslated region (UTR) and 3'-UTR of the Ebola virus, which contains the packaging, transcription, and replication of the Ebola virus genome, and All regulatory elements required for packaging into progeny viruses. Next, the plasmid containing the minigenome and the expression plasmid containing the genes encoding the four proteins (NP, L, VP30, and VP35 proteins) were simultaneously transfected into cells. In the cell, the reporter gene in the minigenome is expressed driven by the expression of the four proteins. Therefore, when cells express the reporter gene, it means that Ebola virus can replicate and transcribe in this environment. During the operation, the Ebola virus minigenome system does not produce Ebola virus particles, so it can be operated in biosafety level 2 (BSL-2) laboratories and can be used as a screening method to inhibit Ebola virus replication. and tools for converting drugs to green. In short, the Ebola virus minigenome system is a safe and close-up tool for observing replication and transcription processes. In addition, this system can also be used as a verification tool for proteins related to replication and transcriptional regulation.

本案發明人意外地發現,將帶有編碼新型冠狀病毒(Severe acute respiratory syndrome coronavirus 2, SARS-CoV-2)核殼蛋白基因的表現質體與伊波拉病毒微型基因組系統一起轉染至宿主細胞時,SARS-CoV-2核殼蛋白可增加伊波拉病毒微型基因組系統中報導基因的表現。The inventor of this case unexpectedly discovered that when the expression plasmid carrying the nucleocapsid protein gene encoding the novel coronavirus (Severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) was transfected into host cells together with the Ebola virus minigenome system, , SARS-CoV-2 nucleocapsid protein can increase the expression of reporter genes in the Ebola virus minigenome system.

於一方面,本發明提供一種用於增加基因表現之蛋白片段,包含一冠狀病毒的核殼蛋白的二聚化結構域(dimerization domain)及/或該冠狀病毒的核殼蛋白的羧基端結構域(CTD)。In one aspect, the present invention provides a protein fragment for increasing gene expression, comprising a dimerization domain of a coronavirus nucleocapsid protein and/or a carboxyl-terminal domain of a coronavirus nucleocapsid protein. (CTD).

於另一方面,本發明提供一種編碼本發明之蛋白片段的聚核苷酸。In another aspect, the invention provides a polynucleotide encoding a protein fragment of the invention.

於另一方面,本發明提供一種質體,該質體包含一編碼本發明之蛋白片段的聚核苷酸序列,以及在該核苷酸序列的5’端的一啟動子(promoter)序列。In another aspect, the present invention provides a plasmid comprising a polynucleotide sequence encoding the protein fragment of the present invention, and a promoter sequence at the 5' end of the nucleotide sequence.

於另一方面,本發明提供一種細胞,該細胞包含本發明之蛋白片段、編碼本發明之蛋白片段的聚核苷酸,或含有編碼本發明之蛋白片段的聚核苷酸序列以及在該核苷酸序列的5’端的一啟動子序列的質體。In another aspect, the invention provides a cell comprising a protein fragment of the invention, a polynucleotide encoding a protein fragment of the invention, or a polynucleotide sequence encoding a protein fragment of the invention and in the nucleus The 5' end of the nucleotide sequence is a promoter sequence of the plasmid.

於另一方面,本發明提供一種增加一目標基因表現之方法,包含下列步驟:(1) 提供一含有編碼本發明之蛋白片段的聚核苷酸序列以及在該核苷酸序列的5’端的一啟動子序列的質體,(2) 提供一含有該目標基因的表現載體,(3) 將步驟(1)之質體與步驟(2)之表現載體共轉染至一表現宿主細胞,以及(4) 提供一適當條件使該目標基因表現。On the other hand, the present invention provides a method for increasing the expression of a target gene, comprising the following steps: (1) providing a polynucleotide sequence containing a protein fragment encoding the present invention and a polynucleotide at the 5' end of the nucleotide sequence a plasmid of a promoter sequence, (2) providing an expression vector containing the target gene, (3) co-transfecting the plastid of step (1) and the expression vector of step (2) into an expression host cell, and (4) Provide an appropriate condition to express the target gene.

於另一方面,本發明提供一種增加一目標基因表現之方法,包含下列步驟:(1) 提供一種細胞,該細胞包含本發明之蛋白片段、編碼本發明之蛋白片段的聚核苷酸,或含有編碼本發明之蛋白片段的聚核苷酸序列以及在該核苷酸序列的5’端的一啟動子序列的質體,(2) 提供一含有該目標基因的表現載體,(3) 將步驟(2)之表現載體轉染至步驟(1)之細胞中,以及(4) 提供一適當條件使該目標基因表現。In another aspect, the present invention provides a method for increasing the expression of a target gene, comprising the following steps: (1) providing a cell comprising a protein fragment of the present invention, a polynucleotide encoding a protein fragment of the present invention, or A plasmid containing a polynucleotide sequence encoding the protein fragment of the present invention and a promoter sequence at the 5' end of the nucleotide sequence, (2) providing an expression vector containing the target gene, (3) combining the steps (2) The expression vector is transfected into the cells of step (1), and (4) an appropriate condition is provided to express the target gene.

於另一方面,本發明提供一種篩選抑制病毒的藥物之方法,包含下列步驟:(1) 提供一含有編碼本發明之蛋白片段的聚核苷酸序列以及在該核苷酸序列的5’端的一啟動子序列的質體,(2) 提供一含有一報導基因的病毒微型基因組系統(minigenome system),(3) 將步驟(1)之質體與步驟(2)之病毒微型基因組系統共轉染至一表現宿主細胞,(4) 對該表現宿主細胞加入一候選藥物,(5) 觀察該報導基因的表現,若該報導基因不表現,則該候選藥物具有抑制病毒的效果。On the other hand, the present invention provides a method for screening drugs that inhibit viruses, comprising the following steps: (1) providing a polynucleotide sequence containing a protein fragment encoding the present invention and a polynucleotide sequence at the 5' end of the nucleotide sequence A plasmid with a promoter sequence, (2) providing a viral minigenome system containing a reporter gene, (3) co-transfecting the plasmid of step (1) with the viral minigenome system of step (2) Infect a expressing host cell, (4) add a candidate drug to the expressing host cell, and (5) observe the expression of the reporter gene. If the reporter gene does not express, the candidate drug has the effect of inhibiting the virus.

於另一方面,本發明提供一種篩選抑制病毒的藥物之方法,包含下列步驟:(1) 提供一種細胞,該細胞包含本發明之蛋白片段、編碼本發明之蛋白片段的聚核苷酸,或含有編碼本發明之蛋白片段的聚核苷酸序列以及在該核苷酸序列的5’端的一啟動子序列的質體,(2) 提供一含有一報導基因的病毒微型基因組系統,(3) 將步驟(2)之病毒微型基因組系統轉染至步驟(1)之細胞中,(4) 對該細胞加入一候選藥物,(5) 觀察該報導基因的表現,若該報導基因不表現,則該候選藥物具有抑制病毒的效果。In another aspect, the present invention provides a method for screening drugs that inhibit viruses, comprising the following steps: (1) providing a cell comprising a protein fragment of the present invention, a polynucleotide encoding a protein fragment of the present invention, or A plasmid containing a polynucleotide sequence encoding a protein fragment of the present invention and a promoter sequence at the 5' end of the nucleotide sequence, (2) providing a viral minigenome system containing a reporter gene, (3) Transfect the viral minigenome system of step (2) into the cells of step (1), (4) add a candidate drug to the cells, (5) observe the expression of the reporter gene, if the reporter gene does not express, then This drug candidate has virus-inhibiting effects.

本發明係以下面的實施例及圖式予以示範闡明,但本發明不受下述實施例所限制。The present invention is illustrated by the following examples and drawings, but the present invention is not limited by the following examples.

本案發明人意外地發現,將帶有編碼SARS-CoV-2核殼蛋白基因的表現質體與伊波拉病毒微型基因組系統一起轉染至宿主細胞時,SARS-CoV-2核殼蛋白可增加伊波拉病毒微型基因組系統中報導基因的表現。本案發明人進一步研究發現,除了SARS-CoV-2之外,嚴重急性呼吸道症候群冠狀病毒(severe acute respiratory syndrome coronavirus 1, SARS-CoV-1)、中東呼吸症候群冠狀病毒(Middle East respiratory syndrome–related coronavirus, MERS-CoV)、人類冠狀病毒HKU1 (Human coronavirus HKU1, HCoV HKU1) ,以及人類冠狀病毒OC43 (HCoV OC43)的核殼蛋白或其片段,也能促進一目標基因的表現。此外,本案發明人並發現,冠狀病毒核殼蛋白增加基因表現的主要活性區包含二聚化結構域(dimerization domain),次要活性區包含羧基端結構域(C-terminal domain, CTD)。The inventor of this case unexpectedly discovered that when the expressoplast carrying the gene encoding the SARS-CoV-2 nucleocapsid protein was transfected into host cells together with the Ebola virus minigenome system, the SARS-CoV-2 nucleocapsid protein could increase the number of Ebola viruses. Expression of reporter genes in the Lavirus minigenome system. Further research by the inventor of this case found that in addition to SARS-CoV-2, severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), Middle East respiratory syndrome–related coronavirus , MERS-CoV), human coronavirus HKU1 (Human coronavirus HKU1, HCoV HKU1), and the nucleocapsid protein or fragments thereof of human coronavirus OC43 (HCoV OC43) can also promote the expression of a target gene. In addition, the inventor of this case also discovered that the main active region of the coronavirus nucleocapsid protein that increases gene expression includes the dimerization domain, and the secondary active region includes the carboxyl-terminal domain (CTD).

本發明作用機制如圖2所示。在伊波拉病毒微型基因組系統中加入一含有編碼SARS-CoV-2核殼蛋白基因的表現質體(SARS2-NP),並與伊波拉病毒微型基因組系統(包含帶有GFP報導基因的微型基因組,以及分別包含編碼NP蛋白、L蛋白、VP30蛋白,以及VP35蛋白基因的表現質體)同時轉染至細胞內。於細胞內,在該四種蛋白以及SARS-CoV-2核殼蛋白表現的作用下,該微型基因組內的報導基因的mRNA及cRNA增加,且報導基因的蛋白表現量增加。The mechanism of action of the present invention is shown in Figure 2. An expression plasmid (SARS2-NP) containing a gene encoding SARS-CoV-2 nucleocapsid protein was added to the Ebola virus minigenome system, and combined with the Ebola virus minigenome system (including a minigenome with a GFP reporter gene, and expression plasmids containing genes encoding NP protein, L protein, VP30 protein, and VP35 protein respectively) were simultaneously transfected into the cells. In cells, under the influence of the expression of these four proteins and the SARS-CoV-2 nucleocapsid protein, the mRNA and cRNA of the reporter gene in the minigenome increase, and the protein expression of the reporter gene increases.

因此,本發明提供一種用於增加基因表現之蛋白片段,包含一冠狀病毒的核殼蛋白的二聚化結構域及/或該冠狀病毒的核殼蛋白的羧基端結構域(CTD)。Therefore, the present invention provides a protein fragment for increasing gene expression, comprising a dimerization domain of a coronavirus nucleocapsid protein and/or a carboxyl-terminal domain (CTD) of the coronavirus nucleocapsid protein.

於某些具體實施例中,該冠狀病毒為嚴重急性呼吸道症候群冠狀病毒(SARS-CoV-1)、新型冠狀病毒(SARS-CoV-2)、中東呼吸症候群冠狀病毒(MERS-CoV)、人類冠狀病毒HKU1 (HCoV HKU1),或人類冠狀病毒OC43 (HCoV OC43)。In certain embodiments, the coronavirus is severe acute respiratory syndrome coronavirus (SARS-CoV-1), novel coronavirus (SARS-CoV-2), Middle East respiratory syndrome coronavirus (MERS-CoV), human coronavirus virus HKU1 (HCoV HKU1), or human coronavirus OC43 (HCoV OC43).

於某些具體實施例中,本發明之蛋白片段除了包含該冠狀病毒的核殼蛋白的二聚化結構域及/或該冠狀病毒的核殼蛋白的羧基端結構域(CTD)之外,還包括至少下列一種結構域:該冠狀病毒的核殼蛋白的胺基端結構域(N-terminal domain, NTD)、該冠狀病毒的核殼蛋白的RNA結合結構域(RNA binding domain, RBD),以及該冠狀病毒的核殼蛋白的連接子(linker)。於某些具體實施例中,本發明之蛋白片段包含該核殼蛋白的NTD、RBD、連接子,以及二聚化結構域。於某些具體實施例中,本發明之蛋白片段包含該核殼蛋白的RBD、連接子、二聚化結構域,以及CTD。於某些具體實施例中,本發明之蛋白片段包含該核殼蛋白的二聚化結構域以及CTD。於某些具體實施例中,本發明之蛋白片段包含該核殼蛋白的二聚化結構域。於某些具體實施例中,本發明之蛋白片段包含該核殼蛋白的CTD。於某些具體實施例中,本發明之蛋白片段包含該核殼蛋白的NTD以及二聚化結構域。於某些具體實施例中,本發明之蛋白片段包含該核殼蛋白的NTD、二聚化結構域,以及CTD。於某些具體實施例中,本發明之蛋白片段包含該核殼蛋白的全長序列。於某些具體實施例中,本發明之蛋白片段包含與以下一種胺基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%或99%相似度的胺基酸序列:SEQ ID NO: 1、12、13、15、17、18、19、20、21、22、23、28、29、30、31、32、33、34、35,以及36。於某些具體實施例中,本發明之蛋白片段具有以下一種胺基酸序列:SEQ ID NO: 1、12、13、15、17、18、19、20、21、22、23、28、29、30、31、32、33、34、35,以及36。In certain embodiments, in addition to the dimerization domain of the nucleocapsid protein of the coronavirus and/or the carboxyl-terminal domain (CTD) of the nucleocapsid protein of the coronavirus, the protein fragment of the present invention also contains It includes at least one of the following domains: the N-terminal domain (NTD) of the nucleocapsid protein of the coronavirus, the RNA binding domain (RBD) of the nucleocapsid protein of the coronavirus, and The linker of the nucleocapsid protein of the coronavirus. In certain embodiments, the protein fragment of the invention includes the NTD, RBD, linker, and dimerization domain of the nucleocapsid protein. In certain embodiments, the protein fragment of the invention includes the RBD, linker, dimerization domain, and CTD of the nucleocapsid protein. In certain embodiments, the protein fragment of the invention includes the dimerization domain and CTD of the nucleocapsid protein. In certain embodiments, the protein fragment of the invention includes the dimerization domain of the nucleocapsid protein. In certain embodiments, the protein fragment of the invention includes the CTD of the nucleocapsid protein. In certain embodiments, the protein fragment of the invention includes the NTD and dimerization domain of the nucleocapsid protein. In certain embodiments, the protein fragment of the invention includes the NTD, dimerization domain, and CTD of the nucleocapsid protein. In certain embodiments, the protein fragments of the invention comprise the full-length sequence of the nucleocapsid protein. In certain embodiments, the protein fragments of the invention comprise at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or Amino acid sequence with 99% similarity: SEQ ID NO: 1, 12, 13, 15, 17, 18, 19, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, and 36. In certain embodiments, the protein fragment of the present invention has one of the following amino acid sequences: SEQ ID NO: 1, 12, 13, 15, 17, 18, 19, 20, 21, 22, 23, 28, 29 , 30, 31, 32, 33, 34, 35, and 36.

本發明並提供一種編碼任何上述之蛋白片段的聚核苷酸。The present invention also provides a polynucleotide encoding any of the above-mentioned protein fragments.

該編碼本發明任何上述之蛋白片段的聚核苷酸,是由本發明之用於增加基因表現之蛋白片段的胺基酸序列衍生而來。將本發明之用於增加基因表現之蛋白片段的胺基酸序列上的各個胺基酸置換為遺傳密碼表(genetic code table)所列之編碼該胺基酸的核苷酸序列(包含各種簡併密碼子(degenerate codons),或稱同義密碼子(synonymous codons)),即可得到本發明所提供之該聚核苷酸序列。例如,本發明之用於增加基因表現之蛋白片段的胺基酸序列上的脯胺酸(Proline)可由CCA、CCC、CCG、CCT等核苷酸序列所編碼。The polynucleotide encoding any of the above-mentioned protein fragments of the present invention is derived from the amino acid sequence of the protein fragment used to increase gene expression of the present invention. Each amino acid on the amino acid sequence of the protein fragment used to increase gene expression of the present invention is replaced with the nucleotide sequence encoding the amino acid listed in the genetic code table (including various simplified The polynucleotide sequence provided by the present invention can be obtained by degenerate codons (also known as synonymous codons). For example, the proline in the amino acid sequence of the protein fragment used to increase gene expression of the present invention can be encoded by nucleotide sequences such as CCA, CCC, CCG, and CCT.

本發明並提供一種質體,包含一編碼本發明任何上述之蛋白片段的核苷酸序列,以及在該核苷酸序列的5’端的一啟動子序列。The present invention also provides a plasmid, comprising a nucleotide sequence encoding any of the above-mentioned protein fragments of the present invention, and a promoter sequence at the 5' end of the nucleotide sequence.

於某些具體實施例中,該啟動子為一強啟動子。強啟動子的實例包含但不限於,反轉錄病毒長末端重複序列(long terminal repeat, LTR)、巨細胞病毒(cytomegalovirus, CMV)、鼠幹細胞病毒(murine stem cell virus, MSCV)U3、磷酸甘油酸激酶(Phosphoglycerate kinase, PGK)、 肌動蛋白、泛素蛋白與猿猴病毒40 (Simian virus 40, SV40)/CD43複合啟動子、延伸因子(elongation factor, EF)-1 ,以及脾臟病灶形成病毒(spleen focus-forming virus, SFFV)啟動子。除了強啟動子之外,該質體可進一步包含可提高編碼任何上述之蛋白片段基因表現的調節元件,例如中樞多聚嘌呤區 (central polypurine track, CPPT)、土撥鼠肝炎病毒轉錄後調控元素 (Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element, WPRE)、CMV增強子、HTLV-I的LTR中的R-U5'區段、SV40增強子,以及兔 -球蛋白的外顯子2與3之間的內含子序列。 In certain embodiments, the promoter is a strong promoter. Examples of strong promoters include, but are not limited to, retrovirus long terminal repeat (LTR), cytomegalovirus (CMV), murine stem cell virus (MSCV) U3, phosphoglycerate Kinase (Phosphoglycerate kinase, PGK), Actin, ubiquitin protein and simian virus 40 (SV40)/CD43 complex promoter and elongation factor (EF)-1 , and the spleen focus-forming virus (SFFV) promoter. In addition to the strong promoter, the plasmid may further contain regulatory elements that can enhance the expression of genes encoding any of the above-mentioned protein fragments, such as central polypurine track (CPPT), woodchuck hepatitis virus post-transcriptional regulatory elements (Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element, WPRE), CMV enhancer, R-U5' segment in the LTR of HTLV-I, SV40 enhancer, and rabbit -The intronic sequence between exons 2 and 3 of the globin protein.

本發明並提供一種細胞,包含本發明任何上述之蛋白片段、編碼本發明任何上述之蛋白片段的核苷酸序列,或包含一編碼本發明任何上述之蛋白片段的核苷酸序列以及在該核苷酸序列的5’端的一啟動子序列的質體。The invention also provides a cell comprising any of the above-mentioned protein fragments of the invention, a nucleotide sequence encoding any of the above-mentioned protein fragments of the invention, or a nucleotide sequence encoding any of the above-mentioned protein fragments of the invention and in the nucleus The 5' end of the nucleotide sequence is a promoter sequence of the plasmid.

於某些具體實施例中,本發明任何上述之蛋白片段在瞬時表現該蛋白片段之細胞株中表現。瞬時轉染為引入細胞中之核酸未整合入該細胞之基因體或染色體DNA的過程。其事實上作為染色體外元件(例如,作為游離基因體)保留於細胞中。游離基因體之核酸的轉錄過程不受影響且產生由游離基因體之核酸編碼的蛋白質。於某些具體實施例中,本發明任何上述之蛋白片段在穩定表現該蛋白片段之細胞株中表現。宿主細胞可經適當工程改造,包含表現控制元件(例如,啟動子、強化子、轉錄終止子、聚腺苷酸化位點等)及可選擇標記基因之載體轉型。在引入外來DNA之後,可使細胞於增殖培養基中生長1-2天,隨後將其轉入選擇性培養基中。重組質體中之可選標記物對選擇賦予抗性且允許細胞使質體穩定整合入其染色體中以生長且形成可依次選殖且擴增成細胞株之變異區。建構並生產穩定細胞株之方法為本技術領域中所熟知,且試劑一般為市售的。In certain embodiments, any of the above-mentioned protein fragments of the present invention is expressed in a cell line that transiently expresses the protein fragment. Transient transfection is a process in which the nucleic acid introduced into a cell is not integrated into the genome or chromosomal DNA of the cell. They are in fact retained in the cell as extrachromosomal elements (eg, as episomes). The transcription process of the nucleic acid of the cell-free genome is unaffected and the protein encoded by the nucleic acid of the cell-free genome is produced. In certain embodiments, any of the above-mentioned protein fragments of the present invention is expressed in a cell line that stably expresses the protein fragment. Host cells can be appropriately engineered and transformed with vectors containing expression control elements (eg, promoters, enhancers, transcription terminators, polyadenylation sites, etc.) and selectable marker genes. After the introduction of foreign DNA, the cells can be grown in proliferation medium for 1-2 days and then transferred to selective medium. The selectable marker in the recombinant plastid confers resistance to selection and allows cells to stably integrate the plastid into their chromosomes to grow and form variant regions that can be sequentially selected and expanded into cell lines. Methods for constructing and producing stable cell lines are well known in the art, and reagents are generally commercially available.

本發明並提供一種增加一目標基因表現之方法,包含下列步驟:(1) 提供一含有編碼本發明之蛋白片段的聚核苷酸序列以及在該核苷酸序列的5’端的一啟動子序列的質體,(2) 提供一含有該目標基因的表現載體,(3) 將步驟(1)之質體與步驟(2)之表現載體共轉染至一表現宿主細胞,以及(4) 提供一適當條件使該目標基因表現。The present invention also provides a method for increasing the expression of a target gene, which includes the following steps: (1) providing a polynucleotide sequence encoding the protein fragment of the present invention and a promoter sequence at the 5' end of the nucleotide sequence the plasmid, (2) providing an expression vector containing the target gene, (3) co-transfecting the plastid of step (1) and the expression vector of step (2) into an expression host cell, and (4) providing An appropriate condition enables the expression of the target gene.

本發明並提供一種增加一目標基因表現之方法,包含下列步驟:(1) 提供一種細胞,該細胞包含本發明之蛋白片段、編碼本發明之蛋白片段的聚核苷酸,或含有編碼本發明之蛋白片段的聚核苷酸序列以及在該核苷酸序列的5’端的一啟動子序列的質體,(2) 提供一含有該目標基因的表現載體,(3) 將步驟(2)之表現載體轉染至步驟(1)之細胞中,以及(4) 提供一適當條件使該目標基因表現。The present invention also provides a method for increasing the expression of a target gene, which includes the following steps: (1) providing a cell that contains the protein fragment of the present invention, the polynucleotide encoding the protein fragment of the present invention, or the cell containing the protein fragment encoding the present invention. The polynucleotide sequence of the protein fragment and a plasmid of a promoter sequence at the 5' end of the nucleotide sequence, (2) providing an expression vector containing the target gene, (3) converting the step (2) The expression vector is transfected into the cells in step (1), and (4) an appropriate condition is provided to express the target gene.

本發明並提供一種篩選抑制病毒的藥物之方法,包含下列步驟:(1) 提供一含有編碼本發明之蛋白片段的聚核苷酸序列以及在該核苷酸序列的5’端的一啟動子序列的質體,(2) 提供一含有一報導基因的病毒微型基因組系統,(3) 將步驟(1)之質體與步驟(2)之病毒微型基因組系統共轉染至一表現宿主細胞,(4) 對該表現宿主細胞加入一候選藥物,(5) 觀察該報導基因的表現,若該報導基因不表現,則該候選藥物具有抑制病毒的效果。The present invention also provides a method for screening drugs that inhibit viruses, which includes the following steps: (1) providing a polynucleotide sequence encoding the protein fragment of the present invention and a promoter sequence at the 5' end of the nucleotide sequence the plasmid, (2) providing a viral minigenome system containing a reporter gene, (3) co-transfecting the plastid of step (1) and the viral minigenome system of step (2) into a expressing host cell, ( 4) Add a candidate drug to the expressing host cell, and (5) observe the expression of the reporter gene. If the reporter gene does not express, the candidate drug has the effect of inhibiting the virus.

本發明並提供一種篩選抑制病毒的藥物之方法,包含下列步驟:(1) 提供一種細胞,該細胞包含本發明之蛋白片段、編碼本發明之蛋白片段的聚核苷酸,或含有編碼本發明之蛋白片段的聚核苷酸序列以及在該核苷酸序列的5’端的一啟動子序列的質體,(2) 提供一含有一報導基因的病毒微型基因組系統,(3) 將步驟(2)之病毒微型基因組系統轉染至步驟(1)之細胞中,(4) 對該細胞加入一候選藥物,(5) 觀察該報導基因的表現,若該報導基因不表現,則該候選藥物具有抑制病毒的效果。The present invention also provides a method for screening drugs that inhibit viruses, which includes the following steps: (1) providing a cell that contains the protein fragment of the present invention, the polynucleotide encoding the protein fragment of the present invention, or the cell containing the protein fragment encoding the present invention. a polynucleotide sequence of the protein fragment and a promoter sequence at the 5' end of the nucleotide sequence, (2) providing a viral minigenome system containing a reporter gene, (3) combining step (2) ) is transfected into the cells of step (1), (4) adding a candidate drug to the cells, (5) observing the expression of the reporter gene, if the reporter gene does not express, then the candidate drug has Virus-inhibiting effect.

報導基因的實例包括但不限於,編碼麩胱甘肽-S-轉移酶(glutathione S-transferase, GST)、辣根過氧化物酶(horseradish peroxidase, HRP)、氯黴素乙醯轉移酶(chloramphenicol acetyltransferase, CAT)、β-半乳糖苷酶、β-葡萄糖醛酸酶、螢光素酶(luciferase)、綠色螢光蛋白(green fluorescent protein, GFP)、增強型綠色螢光蛋白(enhanced green fluorescent protein, EGFP)、紅色螢光蛋白(red fluorescent protein, RFP)、黃色螢光蛋白(yellow fluorescent protein, YFP)、青色螢光蛋白(cyan fluorescent protein, CFP)、以及自身螢光蛋白(包括藍色螢光蛋白(blue fluorescent protein, BFP))的基因。於某些具體實施例中,該報導基因為編碼螢光蛋白的基因、編碼氯黴素乙醯轉移酶(CAT)的基因、·編碼分泌型的胎盤鹼性磷酸酶(Secreted alkaline phosphatase, SEAP)的基因、編碼β-半乳糖苷酶(β- galactosidase, β-gal)的基因,或編碼螢光素酶的基因。Examples of reporter genes include, but are not limited to, those encoding glutathione S-transferase (GST), horseradish peroxidase (HRP), chloramphenicol acetyltransferase (chloramphenicol) acetyltransferase (CAT), β-galactosidase, β-glucuronidase, luciferase (luciferase), green fluorescent protein (GFP), enhanced green fluorescent protein (enhanced green fluorescent protein) , EGFP), red fluorescent protein (RFP), yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), and autofluorescent proteins (including blue fluorescent protein The gene for blue fluorescent protein (BFP). In some embodiments, the reporter gene is a gene encoding a fluorescent protein, a gene encoding chloramphenicol acetyltransferase (CAT), or a gene encoding secreted alkaline phosphatase (SEAP). The gene, the gene encoding β-galactosidase (β-gal), or the gene encoding luciferase.

於某些具體實施例中,該病毒微型基因組系統為一伊波拉病毒微型基因組系統。該伊波拉病毒微型基因組系統包含一含有一報導基因的伊波拉病毒微型基因組的表現載體、一含有編碼伊波拉病毒核殼蛋白(nucleocapsid protein, NP)基因的表現載體、一含有編碼伊波拉病毒聚合酶蛋白(polymerase protein, L)基因的表現載體、一含有編碼伊波拉病毒VP30蛋白基因的表現載體,以及一含有編碼伊波拉病毒VP35蛋白基因的表現載體。In certain embodiments, the viral minigenome system is an Ebola virus minigenome system. The Ebola virus minigenome system includes an expression vector containing an Ebola virus minigenome containing a reporter gene, an expression vector containing a gene encoding Ebola virus nucleocapsid protein (NP), and an expression vector containing an encoding Ebola virus polymer An expression vector containing an enzyme protein (polymerase protein, L) gene, an expression vector containing a gene encoding the Ebola virus VP30 protein, and an expression vector containing a gene encoding the Ebola virus VP35 protein.

病毒微型基因組系統的實例包括但不限於,伊波拉病毒微型基因組系統、馬堡病毒(Marburg virus)微型基因組系統、發熱伴血小板低下症候群病毒(Severe fever with thrombocytopenia syndrome virus)微型基因組系統、裂谷熱病毒(Rift Valley Fever Virus)微型基因組系統、立百病毒(Nipah Virus)微型基因組系統、冠狀病毒(Coronavirus)微型基因組系統,以及腸病毒(Enterovirus)微型基因組系統等。Examples of viral minigenome systems include, but are not limited to, Ebola virus minigenome system, Marburg virus minigenome system, Severe fever with thrombocytopenia syndrome virus minigenome system, Rift Valley fever Rift Valley Fever Virus mini-genome system, Nipah Virus mini-genome system, Coronavirus mini-genome system, and Enterovirus mini-genome system, etc.

除非本文另有定義,否則用以與本文結合的科學與技術術語應具有本領域普通技術人員通常理解的含義。此外,除非上下文另有要求,單數術語應包括複數,並且複數術語應包括單數。本發明的方法與技術一般可根據本領域已知的常規方法進行。一般而言,本文所描述之用以連結以下技術的命名法,以及生物化學、酵素學、分子及細胞生物學、微生物學、遺傳學的技術皆為本領域已知且經常使用者。除非另有說明,本發明的方法與技術一般可根據本領域已知的常規方法進行,且被描述於在本說明書中被引用且討論的各種一般及更具體的參考文獻中。Unless otherwise defined herein, scientific and technical terms used in connection with this document shall have the meaning commonly understood by one of ordinary skill in the art. Furthermore, unless the context otherwise requires, singular terms shall include the plural and plural terms shall include the singular. The methods and techniques of the present invention can generally be performed according to conventional methods known in the art. In general, the nomenclature described herein is used to link the following techniques, as well as techniques in biochemistry, enzymology, molecular and cellular biology, microbiology, and genetics, all of which are known and commonly used by those in the art. Unless otherwise indicated, the methods and techniques of the present invention may generally be performed according to conventional methods known in the art and are described in the various general and more specific references cited and discussed in this specification.

如本文所用,術語「冠狀病毒(coronavirus)」係指屬於冠狀病毒科( Coronaviridae)、正冠狀病毒亞科( Orthocoronavirinae)的病毒。冠狀病毒為具有包膜的正股單鏈RNA病毒,其基因組大小介於26,000至32,000個核苷酸之間,編碼棘(spike, S)、外膜(envelope, E)、膜(membrane, M),以及核殼(nucleocapsid, N)蛋白等四種結構蛋白。冠狀病毒可感染哺乳動物及鳥類;在人類及鳥類中,冠狀病毒會引起從輕微到致命的呼吸道感染。已知七種感染人類的冠狀病毒,包括人類冠狀病毒229E (Human coronavirus 229E, HCoV 229E)、人類冠狀病毒OC43 (HCoV OC43)、人類冠狀病毒NL63 (HCoV NL63) 、人類冠狀病毒HKU1 (HCoV HKU1)、嚴重急性呼吸道症候群冠狀病毒(severe acute respiratory syndrome coronavirus, SARS-CoV-1)、新型冠狀病毒(SARS-CoV-2)、中東呼吸症候群冠狀病毒(Middle East respiratory syndrome coronavirus, MERS-CoV)。 As used herein, the term "coronavirus" refers to viruses belonging to the family Coronaviridae and the subfamily Orthocoronavirinae . Coronaviruses are enveloped, positive-stranded, single-stranded RNA viruses with a genome size ranging from 26,000 to 32,000 nucleotides, encoding a spike (S), an outer membrane (E), and a membrane (Membrane, M). ), and four structural proteins including nucleocapsid (N) protein. Coronaviruses can infect mammals and birds; in humans and birds, coronaviruses can cause respiratory infections ranging from mild to fatal. There are seven known coronaviruses that infect humans, including Human coronavirus 229E (HCoV 229E), Human coronavirus OC43 (HCoV OC43), Human coronavirus NL63 (HCoV NL63), and Human coronavirus HKU1 (HCoV HKU1) , severe acute respiratory syndrome coronavirus (SARS-CoV-1), novel coronavirus (SARS-CoV-2), Middle East respiratory syndrome coronavirus (MERS-CoV).

如本文所用,術語「核殼蛋白」係指圍繞在一病毒基因組(DNA或RNA)的病毒蛋白外殼。核殼蛋白為病毒核殼的主要成分,其能夠與自身以及病毒基因組結合,進而將病毒基因組包裝在一個封閉的空腔內。除了冠狀病毒之外,許多病毒也具有核殼蛋白,例如伊波拉病毒及流感病毒。冠狀病毒的核殼蛋白包含胺基端結構域(N-terminal domain, NTD)、RNA結合結構域(RNA binding domain, RBD)、連接子(linker)、二聚化結構域(dimerization domain)、羧基端結構域(C-terminal domain, CTD)。As used herein, the term "nucleocapsid protein" refers to the viral protein shell surrounding a viral genome (DNA or RNA). Nucleocapsid protein is the main component of the viral nucleocapsid. It can combine with itself and the viral genome, thereby packaging the viral genome in a closed cavity. In addition to coronaviruses, many viruses also have nucleocapsid proteins, such as Ebola virus and influenza virus. The nucleocapsid protein of coronavirus contains N-terminal domain (NTD), RNA binding domain (RBD), linker, dimerization domain, carboxyl C-terminal domain (CTD).

如本文所用,術語「微型基因組(minigenome)」係指一種人工DNA序列,其係以一個報導基因取代一病毒的開放閱讀框(open reading frame),而該報導基因的兩側分別為該病毒的5’-UTR以及3’-UTR。該5’-UTR及3’-UTR包含將該病毒基因組包裹、轉錄、複製,以及包裝成子代病毒所需的所有調節元件。微型基因組的報導基因通常為編碼螢光蛋白、氯黴素乙醯轉移酶(CAT),或螢光素酶的基因。作為一實例,「伊波拉病毒微型基因組」係指以一報導基因取代伊波拉病毒的開放閱讀框,亦即以一報導基因取代伊波拉病毒的基因組內的所有基因,而該報導基因的兩側分別為伊波拉病毒的5’- UTR以及3’-UTR,其包含將伊波拉病毒基因組包裹、轉錄、複製,以及包裝成子代病毒所需的所有調節元件。能作為微型基因組的病毒包含但不限於,伊波拉病毒、馬堡病毒、發熱伴血小板低下症候群病毒、裂谷熱病毒、立百病毒、冠狀病毒,以及腸病毒等。As used herein, the term "minigenome" refers to an artificial DNA sequence that replaces the open reading frame of a virus with a reporter gene flanked by two 5'-UTR and 3'-UTR. The 5'-UTR and 3'-UTR contain all the regulatory elements required to package, transcribe, replicate, and package the viral genome into progeny viruses. Reporter genes for minigenomes are usually genes encoding fluorescent proteins, chloramphenicol acetyltransferase (CAT), or luciferase. As an example, "Ebola virus minigenome" refers to replacing the open reading frame of Ebola virus with a reporter gene, that is, replacing all the genes in the genome of Ebola virus with a reporter gene, and the reporter gene is flanked by They are the 5'-UTR and 3'-UTR of Ebola virus respectively, which contain all the regulatory elements required to package, transcribe, replicate, and package the Ebola virus genome into progeny viruses. Viruses that can serve as minigenomes include, but are not limited to, Ebola virus, Marburg virus, fever syndrome virus, Rift Valley fever virus, Nipah virus, coronavirus, and enterovirus.

如本文所用,術語「微型基因組系統」係指一組質體,其包含具有一微型基因組的表現質體,以及具有編碼該微型基因組所取代的病毒基因組在複製及轉錄上所需的病毒蛋白的基因的表現質體。在應用時,這些質體會被一起共轉染至細胞中。作為一實例,「伊波拉病毒微型基因組系統」包含一具有一報導基因的伊波拉微型基因組的表現質體、一含有編碼伊波拉病毒核殼蛋白(NP)基因的表現載體、一含有編碼伊波拉病毒聚合酶蛋白(L)基因的表現載體、一含有編碼伊波拉病毒VP30蛋白基因的表現載體,以及一含有編碼伊波拉病毒VP35蛋白基因的表現載體。As used herein, the term "minigenome system" refers to a set of plastids that includes an expression plasmid harboring a minigenome and a plastid encoding viral proteins required for the replication and transcription of the viral genome that the minigenome replaces. Expression plastids of genes. When used, these plasmids are co-transfected into cells together. As an example, an "Ebola virus minigenome system" includes an expression plasmid containing an Ebola minigenome with a reporter gene, an expression vector containing a gene encoding Ebola virus nucleocapsid protein (NP), and an expression vector containing a gene encoding Ebola virus nucleocapsid protein (NP). An expression vector for viral polymerase protein (L) gene, an expression vector containing a gene encoding Ebola virus VP30 protein, and an expression vector containing a gene encoding Ebola virus VP35 protein.

如本文所用,術語「基因表現」係指基因中所含之資訊轉化至基因產物中。基因產物可為基因之直接轉錄產物(例如mRNA、tRNA、rRNA、反義RNA、cRNA、核糖酶、結構RNA或任何其他類型之RNA)或由轉譯mRNA而產生之蛋白質。As used herein, the term "gene expression" refers to the transformation of information contained in a gene into a gene product. The gene product may be a direct transcription product of a gene (eg, mRNA, tRNA, rRNA, antisense RNA, cRNA, ribozyme, structural RNA, or any other type of RNA) or a protein resulting from translation of the mRNA.

如本文所用,術語「核苷酸」係指包括含連接到糖磷酸鹽的氮鹼基的單體,該糖磷酸鹽包括糖,如核糖或2'-去氧核糖,連接到一個或多個磷酸基團。「聚核苷酸」與「核酸」係指包括超過一個的核苷酸單體的聚合物,其中該單體通常被糖-磷酸主鏈的糖-磷酸鍵所連接。聚核苷酸不必只包括一個類型的核苷酸單體。例如,包含一個給定的多核苷酸的核苷酸可以僅為核糖核苷酸,僅為2’-氧核糖核苷酸,或核糖核苷酸以及2’-去氧核糖核苷酸二者的組合。聚核苷酸包括天然存在的核酸,例如去氧核糖核酸(DNA)以及核糖核酸(RNA),以及包含一種或多種非天然存在的單體的核酸類似物。聚核苷酸可以被合成,例如,使用自動化DNA合成儀。術語「核酸」通常是指大的聚核苷酸。將會理解的是,當核苷酸序列由DNA序列(即A、T、G、C)所表示,這還包括RNA序列(即A、U、G、C),其中“U”取代“T”。術語「cDNA」係指一種與一mRNA互補或相同的DNA,不論是以單鏈或雙鏈形式,但在其中的“T”取代“U”。術語「重組核酸」意指具有非天然接合在一起的序列的多核苷酸或核酸。重組核酸可以存在於載體的形式。As used herein, the term "nucleotide" is intended to include monomers containing a nitrogen base linked to a sugar phosphate, which includes a sugar, such as ribose or 2'-deoxyribose, linked to one or more Phosphate group. "Polynucleotide" and "nucleic acid" refer to polymers including more than one nucleotide monomer, where the monomers are usually linked by sugar-phosphate bonds in a sugar-phosphate backbone. A polynucleotide need not include only one type of nucleotide monomer. For example, the nucleotides comprising a given polynucleotide may be only ribonucleotides, only 2'-oxyribonucleotides, or both ribonucleotides and 2'-deoxyribonucleotides. combination. Polynucleotides include naturally occurring nucleic acids, such as deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), as well as nucleic acid analogs containing one or more non-naturally occurring monomers. Polynucleotides can be synthesized, for example, using automated DNA synthesizers. The term "nucleic acid" generally refers to large polynucleotides. It will be understood that when a nucleotide sequence is represented by a DNA sequence (i.e. A, T, G, C), this also includes an RNA sequence (i.e. A, U, G, C) where "U" is substituted for "T ". The term "cDNA" refers to a DNA that is complementary or identical to an mRNA, whether in single-stranded or double-stranded form, but in which "T" is substituted for "U". The term "recombinant nucleic acid" means a polynucleotide or nucleic acid having sequences that are not naturally joined together. The recombinant nucleic acid may be in the form of a vector.

如本文所用,術語「胺基酸」是指天然存在的與合成的胺基酸,以及胺基酸類似物與以類似於天然存在的胺基酸的方式作用的胺基酸模擬物。天然存在的胺基酸是那些由遺傳密碼所編碼的,以及後來被修飾的那些胺基酸,例如,羥脯氨酸、γ羧基麩胺酸,以及O-磷絲胺酸。針對本發明的目的,術語「胺基酸類似物」是指具有與天然存在的胺基酸相同的基本化學結構的化合物,亦即,一個與氫、羧基、氨基,以及一個R基團結合的碳,該R基團例如,高絲氨酸、正白胺酸、甲硫胺酸硫氧化物、甲硫氨酸甲基锍。這些類似物具有修飾的R基團(例如正白胺酸)或修飾的胜肽骨架,但保留了與天然存在的胺基酸相同的基本化學結構。針對本發明的目的,術語「胺基酸模擬物」是指一種具有一個與胺基酸的一般化學結構不同的結構的化合物,但是,其以類似於天然存在的胺基酸的方式作用。As used herein, the term "amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that act in a manner similar to naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code and those that are later modified, for example, hydroxyproline, gamma carboxyglutamic acid, and O-phosphoserine. For the purposes of this invention, the term "amino acid analogue" refers to a compound that has the same basic chemical structure as a naturally occurring amino acid, i.e., a hydrogen, a carboxyl group, an amino group, and an R group. Carbon, the R group is, for example, homoserine, norleucine, methionine sulfoxide, and methionine methylsulfonium. These analogs have modified R groups (eg, norleucine) or modified peptide backbones, but retain the same basic chemical structure as the naturally occurring amino acid. For the purposes of the present invention, the term "amino acid mimetic" refers to a compound that has a structure that is different from the general chemical structure of an amino acid, but that acts in a manner similar to naturally occurring amino acids.

本文所使用的「約」、「大約」或「近乎」一詞實質上代表所述 之數值或範圍位於20%以內,較佳為於10%以內,以及更佳者為於5%以內。於 本文所提供之數字化的量為近似值,意旨若術語「約」、「大約」或「近乎」 沒有被使用時亦可被推得。The words "about", "approximately" or "approximately" used herein essentially mean that the stated value or range is within 20%, preferably within 10%, and more preferably within 5%. Numerical quantities provided herein are approximations and may be inferred if the terms "about," "approximately," or "approximately" are not used.

如本文所用,冠詞「一」、「一個」以及「任何」是指一個或多於一個(即至少一個)的物品的文法物品。例如,「一個元件」意指一個元件或多 於一個元件。As used herein, the articles "a," "an," and "any" refer to grammatical items that refer to one or more than one (ie, at least one) item. For example, "an element" means one element or more than one element.

本發明通過下列的實施例進一步說明,其提供了用於示範而非限制的目的。根據本發明公開內容,本領域中的技術人員應當理解,許多變化可以在所公開的特定具體實施例中產生,且仍然獲得相同或類似的結果而不脫離 本發明的精神和範圍。The invention is further illustrated by the following examples, which are provided for purposes of illustration and not limitation. In light of this disclosure, those skilled in the art will understand that many variations can be made in the specific embodiments disclosed and still obtain the same or similar results without departing from the spirit and scope of the invention.

實施例Example

實施例Example 1  SARS-CoV-21 SARS-CoV-2 核殼蛋白對伊波拉病毒微型基因組系統之影響Effects of nucleocapsid protein on Ebola virus minigenome system

材料與方法Materials and methods

含有編碼 SARS-CoV-2 核殼蛋白的基因之質體的製備。以PCR擴增編碼SARS-CoV-2核殼蛋白(SEQ ID NO: 1)的基因序列後,將該基因序列選殖至pCAGGS載體(型號:V008798,NovoPro Bioscience公司,上海市,中國),產生pCAGGS_SARSCoV2_NP質體,並將pCAGGS_SARSCoV2_NP質體轉形至大腸桿菌中。 Preparation of plasmids containing genes encoding SARS-CoV-2 nucleocapsid proteins. After amplifying the gene sequence encoding SARS-CoV-2 nucleocapsid protein (SEQ ID NO: 1) by PCR, the gene sequence was cloned into the pCAGGS vector (Model: V008798, NovoPro Bioscience Company, Shanghai, China) to generate pCAGGS_SARSCoV2_NP plasmid, and transform the pCAGGS_SARSCoV2_NP plasmid into E. coli.

伊波拉病毒微型基因組系統的操作。伊波拉病毒微型基因組系統包含五個質體,分別為pCAGGS_3E5E_eGFP質體(型號#103054,Addgene)、pCAGGS_L_EBOV質體(型號#103052,Addgene)、pCAGGS_VP30_EBOV質體(型號#103051,Addgene)、pCAGGS_VP35_EBOV質體(型號#103050,Addgene),以及pCAGGS_NP_EBOV質體(型號#103049,Addgene)。該五個質體皆購自Addgene平台(沃特敦市,麻州,美國)。依照下表1比例配製各組的質體混合液: 對照組:僅包含伊波拉病毒微型基因組系統; 試驗組1:伊波拉病毒微型基因組系統 + 1000 ng SARS-CoV-2核殼蛋白基因質體;以及 試驗組2:伊波拉病毒微型基因組系統 + 500 ng SARS-CoV-2核殼蛋白基因質體。 Operation of the Ebola virus minigenome system . The Ebola virus minigenome system contains five plasmids, namely pCAGGS_3E5E_eGFP plasmid (model #103054, Addgene), pCAGGS_L_EBOV plasmid (model #103052, Addgene), pCAGGS_VP30_EBOV plasmid (model #103051, Addgene), pCAGGS_VP35_EBOV plasmid (model #103050, Addgene), and pCAGGS_NP_EBOV plasmid (model #103049, Addgene). The five plasmids were purchased from Addgene platform (Watertown, MA, USA). Prepare the plastid mixture of each group according to the ratio in Table 1 below: Control group: only contains the Ebola virus mini-genome system; Test group 1: Ebola virus mini-genome system + 1000 ng SARS-CoV-2 nucleocapsid protein gene plastid ; and Experimental Group 2: Ebola virus minigenome system + 500 ng SARS-CoV-2 nucleocapsid protein gene plasmid.

表1  實施例1中各組質體混合液比例   對照組 試驗組1 試驗組2 pCAGGS_3E5E_eGFP質體 1500 ng 1500 ng 1500 ng pCAGGS_L_EBOV質體 1000 ng 1000 ng 1000 ng pCAGGS_VP30_EBOV質體 250 ng 250 ng 250 ng pCAGGS_VP35_EBOV質體 750 ng 750 ng 750 ng pCAGGS_NP_EBOV質體 250 ng 250 ng 250 ng pCAGGS_SARSCoV2_NP質體 0 ng 1000 ng 500  Table 1 Proportions of plastid mixtures in each group in Example 1 control group Experimental group 1 Experimental group 2 pCAGGS_3E5E_eGFP plasmid 1500ng 1500ng 1500ng pCAGGS_L_EBOV plasmid 1000ng 1000ng 1000ng pCAGGS_VP30_EBOV plasmid 250ng 250ng 250ng pCAGGS_VP35_EBOV plasmid 750ng 750ng 750ng pCAGGS_NP_EBOV plasmid 250ng 250ng 250ng pCAGGS_SARSCoV2_NP plasmid 0ng 1000ng 500

於各組的質體混合液中分別加入120 µL減血清培養基(GibcoTM Opti-MEM;型號:11058021,Thermo Fisher Scientific公司,沃爾瑟姆市,麻州,美國)以及8 µL T-Pro NTR II試劑套組 (型號:JT97-N002,T-Pro Biotechnology公司,新北市,臺灣),靜置15分鐘後成為轉染試劑混合液。此外,將1.6 x 10 5個/孔人類胚胎腎細胞(293T細胞;編號:CRL-3216,美國典型培養物保藏中心(American Type Culture Collection, ATCC),馬納薩斯市,維吉尼亞州,美國)接種於含有10%胎牛血清(fetal bovine serum, FBS,型號:89510-186,Avantor公司,拉德諾鎮,賓州,美國) / Dulbecco氏改良Eagle氏培養基(Dulbecco's Modified Eagle Medium, DMEM,型號:CC103-0500,GeneDireX公司,桃園市,台灣)的24孔細胞培養盤中,並加入40 µL轉染試劑混合液進行轉染。轉染後的細胞置於37 oC / 5% CO 2細胞培養箱內,培養至指定時間後進行分析。 120 µL serum-reduced medium (GibcoTM Opti-MEM; model: 11058021, Thermo Fisher Scientific, Waltham, MA, USA) and 8 µL T-Pro NTR II were added to the plastid mixture of each group. The reagent set (model: JT97-N002, T-Pro Biotechnology Co., Ltd., New Taipei City, Taiwan) was left to stand for 15 minutes to become the transfection reagent mixture. In addition, 1.6 x 10 5 /well human embryonic kidney cells (293T cells; number: CRL-3216, American Type Culture Collection, ATCC, Manassas, VA , USA) inoculated in Dulbecco's Modified Eagle Medium (Dulbecco's Modified Eagle Medium, USA) containing 10% fetal bovine serum (FBS, model: 89510-186, Avantor Company, Radnor Township, Pennsylvania, USA) DMEM, model: CC103-0500, GeneDireX Company, Taoyuan City, Taiwan) into a 24-well cell culture plate, and add 40 µL transfection reagent mixture for transfection. The transfected cells were placed in a 37 ° C/5% CO2 cell culture incubator and cultured for the specified time before analysis.

螢光顯微鏡分析。將轉染後培養24及48小時的細胞(對照組及試驗組1)分別置於倒立螢光顯微鏡(Olympus IX71,Olympus公司,東京,日本)上,以波長475 nm激發光激發,並以波長509 nm吸收光進行觀察。 Fluorescence microscopy analysis . The cells cultured for 24 and 48 hours after transfection (control group and test group 1) were placed on an inverted fluorescence microscope (Olympus IX71, Olympus Corporation, Tokyo, Japan), and excited with excitation light of a wavelength of 475 nm. 509 nm absorbs light for observation.

流式細胞儀分析。取出轉染後培養24及48小時的細胞(對照組、試驗組1、試驗組2),移除細胞培養盤內的培養液,加入150 µL TrypLE Express (Gibco TM,型號:12605-028,Thermo Fisher Scientific公司)作用後,加入500 µL Dulbecco氏磷酸鹽緩衝液(Dulbecco's Phosphate Buffered Saline, DPBS,HyClone TM,型號:SH30028.03,Cytiva公司,馬爾伯勒市,麻州,美國)中和形成細胞混合液。將細胞混合液轉移至試管內並放置於冰上備用。以流式細胞儀(CytoFLEX,Beckman Coulter公司,布雷亞市,加州,美國)分析螢光訊號,並以流式細胞分析工具軟體(FlowJo v10)進行資料分析。 Flow cytometry analysis . Take out the cells cultured for 24 and 48 hours after transfection (control group, test group 1, test group 2), remove the culture medium in the cell culture plate, and add 150 µL TrypLE Express (Gibco TM , model: 12605-028, Thermo Fisher Scientific), add 500 µL Dulbecco's Phosphate Buffered Saline (DPBS, HyClone TM , Model: SH30028.03, Cytiva, Marlborough, MA, USA) to neutralize the cells. Mixture. Transfer the cell mixture into a test tube and place on ice until use. Fluorescence signals were analyzed with a flow cytometer (CytoFLEX, Beckman Coulter, Brea, California, USA), and data analysis was performed with flow cytometry analysis tool software (FlowJo v10).

RNA 定量分析。取出轉染後培養0、12、24、36及48小時的細胞(對照組及試驗組1),移除細胞培養盤內的培養液,加入1 mL TRI Reagent RNA Isolation Reagent (型號:T9424,Sigma-Aldrich公司,聖路易斯市,密蘇里州,美國)試劑以裂解細胞並萃取RNA。萃取後的RNA經過Picodrop TM超微量分光光度計(Picodrop有限公司,劍橋,英國)測量RNA濃度。以Superscript TM反轉錄酶套組(Thermo Fisher Scientific公司)將RNA轉錄成cDNA。另外,針對伊波拉病毒微型基因組系統中的綠色螢光蛋白(GFP)的總RNA、mRNA、病毒RNA (viral RNA, vRNA)、互補RNA (complementary RNA, cRNA),以及甘油醛-3-磷酸去氫酶(Glyceraldehyde 3-phosphate dehydrogenase, GAPDH)的基因設計定量PCR所用之引子對。使用SYBR Green Master Mix試劑套組 (Thermo Fisher Scientific公司)分別以GFP總RNA的引子對(SEQ ID NOs: 2及3)、GFP mRNA的引子對(SEQ ID NOs: 4及5)、GFP vRNA的引子對(SEQ ID NOs: 6及7)、GFP cRNA的引子對(SEQ ID NOs: 8及9),以及GAPDH基因的引子對(SEQ ID NOs: 10及11)針對cDNA進行定量PCR,並使用LightCycler 480 II儀器(Roche公司,巴塞爾市,瑞士)偵測各別基因複製數(copies number)。以GAPDH基因做為內部對照基因(internal control),並計算基因表現比例。 RNA quantification analysis . Take out the cells cultured for 0, 12, 24, 36 and 48 hours after transfection (control group and test group 1), remove the culture medium in the cell culture plate, and add 1 mL TRI Reagent RNA Isolation Reagent (Model: T9424, Sigma -Aldrich Co., St. Louis, MO, USA) reagent to lyse cells and extract RNA. The extracted RNA was passed through a Picodrop TM ultramicrovolume spectrophotometer (Picodrop Ltd., Cambridge, UK) to measure RNA concentration. RNA was transcribed into cDNA using Superscript reverse transcriptase kit (Thermo Fisher Scientific). In addition, the total RNA, mRNA, viral RNA (vRNA), complementary RNA (cRNA), and glyceraldehyde-3-phosphate of the green fluorescent protein (GFP) in the Ebola virus minigenome system were removed. Hydrogenase (Glyceraldehyde 3-phosphate dehydrogenase, GAPDH) gene design primer pair used for quantitative PCR. Use the SYBR Green Master Mix reagent set (Thermo Fisher Scientific) to respectively use the primer pair of GFP total RNA (SEQ ID NOs: 2 and 3), the primer pair of GFP mRNA (SEQ ID NOs: 4 and 5), and the primer pair of GFP vRNA. The primer pair (SEQ ID NOs: 6 and 7), the primer pair of GFP cRNA (SEQ ID NOs: 8 and 9), and the primer pair of GAPDH gene (SEQ ID NOs: 10 and 11) were used to perform quantitative PCR on cDNA, and use The LightCycler 480 II instrument (Roche, Basel, Switzerland) detects individual gene copy numbers. The GAPDH gene was used as the internal control gene (internal control), and the gene expression ratio was calculated.

統計分析。使用Prism 6.01 (GraphPad軟體公司,聖地牙哥市,加州,美國)的分析套裝軟體進行統計分析。使用Mann-Whitney U檢驗比較各實驗組與對照組之間的差異。* p< 0.05,** p< 0.01,*** p< 0.001。 Statistical analysis . Statistical analysis was performed using Prism 6.01 (GraphPad Software, Inc., San Diego, CA, USA) analysis suite software. The Mann-Whitney U test was used to compare differences between each experimental group and the control group. * p < 0.05, ** p < 0.01, *** p < 0.001.

結果result

SARS-CoV-2 核殼蛋白提高伊波拉病毒微型基因組系統中報導子的表現。如圖3及圖4所示,不論是轉染後24或48小時,試驗組1 (伊波拉病毒微型基因組系統 + 1000 ng SARS-CoV-2核殼蛋白)中表現報導基因(GFP基因)的細胞數目皆明顯多於對照組(僅包含伊波拉病毒微型基因組系統),且前者的螢光強度高於後者。上述結果顯示,伊波拉病毒微型基因組系統中加入SARS-CoV-2核殼蛋白基因使表現報導基因的細胞數目增加且使螢光亮度提高。 SARS-CoV-2 nucleocapsid protein improves reporter performance in Ebola virus minigenome systems. As shown in Figure 3 and Figure 4, whether 24 or 48 hours after transfection, the expression of the reporter gene (GFP gene) in experimental group 1 (Ebola virus minigenome system + 1000 ng SARS-CoV-2 nucleocapsid protein) The number of cells was significantly higher than that of the control group (which only included the Ebola virus minigenome system), and the fluorescence intensity of the former was higher than that of the latter. The above results show that adding the SARS-CoV-2 nucleocapsid protein gene to the Ebola virus minigenome system increases the number of cells expressing the reporter gene and increases the fluorescence brightness.

此外,如圖5所示,不論是試驗組1 (伊波拉病毒微型基因組系統 + 1000 ng SARS-CoV-2核殼蛋白)或試驗組2 (伊波拉病毒微型基因組系統 + 500 ng SARS-CoV-2核殼蛋白),在轉染24及48小時後,表現報導基因(GFP基因)的細胞數目皆在統計上顯著多於對照組(僅包含伊波拉病毒微型基因組系統) ( p< 0.01或 p< 0.05)。上述結果顯示,伊波拉病毒微型基因組系統中加入SARS-CoV-2核殼蛋白基因使表現報導基因的細胞數目於24小時後顯著增加,且加入500 ng SARS-CoV-2核殼蛋白基因質體的效果與加入1000 ng SARS-CoV-2核殼蛋白基因質體的效果相當。 In addition, as shown in Figure 5, whether it is experimental group 1 (Ebola virus minigenome system + 1000 ng SARS-CoV-2 nucleocapsid protein) or experimental group 2 (Ebola virus minigenome system + 500 ng SARS-CoV- 2 nucleocapsid protein), 24 and 48 hours after transfection, the number of cells expressing the reporter gene (GFP gene) was statistically significantly greater than that of the control group (only including the Ebola virus minigenome system) ( p < 0.01 or p <0.05). The above results show that adding the SARS-CoV-2 nucleocapsid protein gene to the Ebola virus minigenome system significantly increased the number of cells expressing the reporter gene after 24 hours, and the addition of 500 ng SARS-CoV-2 nucleocapsid protein gene plasmids The effect is equivalent to that of adding 1000 ng SARS-CoV-2 nucleocapsid protein gene plasmid.

SARS-CoV-2 核殼蛋白增加伊波拉病毒微型基因組系統中報導基因的 mRNA cRNA 表現量。如圖6A所示,在轉染24及48小時後,試驗組1 (伊波拉病毒微型基因組系統 + 1000 ng SARS-CoV-2核殼蛋白)中報導基因(GFP基因)的總RNA表現量顯著增加,且在統計上顯著多於對照組(僅包含伊波拉病毒微型基因組系統)中報導基因(GFP基因)的總RNA表現量( p< 0.05)。進一步分析如圖6B所示,在轉染36及48小時後,試驗組1中報導基因的vRNA表現量因細胞代謝而顯著減少;在轉染24及48小時後,試驗組1中報導基因的mRNA表現量顯著增加,且在統計上顯著多於對照組中報導基因的mRNA表現量( p< 0.05);在轉染24-48小時後,試驗組1中報導基因的cRNA表現量顯著增加,且在統計上顯著多於對照組中報導基因的cRNA表現量( p< 0.05)。 SARS-CoV-2 nucleocapsid protein increases the expression of mRNA and cRNA of reporter genes in the Ebola virus minigenome system . As shown in Figure 6A, 24 and 48 hours after transfection, the total RNA expression of the reporter gene (GFP gene) in experimental group 1 (Ebola virus minigenome system + 1000 ng SARS-CoV-2 nucleocapsid protein) was significant increased, and was statistically significantly greater than the total RNA expression of the reporter gene (GFP gene) in the control group (only containing the Ebola virus minigenome system) ( p < 0.05). Further analysis is shown in Figure 6B. After 36 and 48 hours of transfection, the vRNA expression amount of the reporter gene in experimental group 1 was significantly reduced due to cell metabolism; after 24 and 48 hours of transfection, the expression amount of the reporter gene in experimental group 1 The expression amount of mRNA increased significantly, and was statistically significantly greater than the expression amount of mRNA of the reporter gene in the control group ( p <0.05); 24-48 hours after transfection, the expression amount of cRNA of the reporter gene in experimental group 1 increased significantly, And it was statistically significantly higher than the cRNA expression amount of the reporter gene in the control group ( p < 0.05).

本實施例結果顯示,SARS-CoV-2核殼蛋白可促進伊波拉病毒微型基因組系統中報導基因的轉錄(mRNA增加)及複製(cRNA增加),進而增加報導基因的表現(表現報導基因的細胞數目增加且螢光亮度提高)。The results of this example show that SARS-CoV-2 nucleocapsid protein can promote the transcription (increase of mRNA) and replication (increase of cRNA) of the reporter gene in the Ebola virus minigenome system, thereby increasing the expression of the reporter gene (cells expressing the reporter gene The number increases and the fluorescence brightness increases).

實施例Example 2  SARS-CoV-22 SARS-CoV-2 核殼蛋白對以伊波拉病毒微型基因組系統進行抗病毒藥物篩選之影響Effect of nucleocapsid protein on antiviral drug screening using Ebola virus minigenome system

材料與方法Materials and methods

伊波拉病毒微型基因組系統的操作。同實施例1所述。簡言之,分別對該系統加入0 ng及1000 ng pCAGGS_SARSCoV2_NP質體,以形成對照組(僅包含伊波拉病毒微型基因組系統)及試驗組(伊波拉病毒微型基因組系統 + 1000 ng SARS-CoV-2核殼蛋白)。各組分別加入120 µL減血清培養基以及8 µL T-Pro NTR II試劑套組,靜置15分鐘後成為轉染試劑混合液。接著將各組的轉染試劑混合液加至293T細胞中進行轉染。轉染後的細胞置於37 oC / 5% CO 2細胞培養箱內。 Operation of the Ebola virus minigenome system . Same as described in Example 1. Briefly, 0 ng and 1000 ng pCAGGS_SARSCoV2_NP plasmids were added to the system respectively to form a control group (containing only the Ebola virus minigenome system) and an experimental group (Ebola virus minigenome system + 1000 ng SARS-CoV-2 nucleocapsid protein). Add 120 µL of serum-reduced medium and 8 µL of T-Pro NTR II reagent kit to each group, and let it stand for 15 minutes to form a transfection reagent mixture. Then, the transfection reagent mixture of each group was added to 293T cells for transfection. The transfected cells were placed in a 37 ° C/5% CO2 cell culture incubator.

瑞德西韋 (Remdesivir) 抗病毒藥物篩選。細胞轉染6小時後,將濃度為25 µM、50 µM、100 µM、200 µM、400 µM,以及800 µM的抗病毒藥物瑞德西韋(Remdesivir)分別加入細胞培養盤內。以瑞德西韋處理後的細胞置於37 oC / 5% CO 2細胞培養箱內繼續培養48小時,接著進行流式細胞儀分析。 Remdesivir antiviral drug screening . Six hours after the cells were transfected, antiviral drug Remdesivir (Remdesivir) at concentrations of 25 µM, 50 µM, 100 µM, 200 µM, 400 µM, and 800 µM was added to the cell culture plate respectively. The cells treated with remdesivir were placed in a 37 ° C/5% CO2 cell culture incubator for 48 hours, and then analyzed by flow cytometry.

流式細胞儀分析。同實施例1所述。 Flow cytometry analysis . Same as described in Example 1.

統計分析。同實施例1所述。 Statistical analysis . Same as described in Example 1.

結果result

SARS-CoV-2 核殼蛋白增加伊波拉病毒微型基因組系統篩選抗病毒藥物的敏感性。如圖7所示,不論是對照組(僅包含伊波拉病毒微型基因組系統)或試驗組(伊波拉病毒微型基因組系統 + 1000 ng SARS-CoV-2核殼蛋白),隨著瑞德西韋濃度增加,表現報導基因(GFP)的細胞數逐漸減少,顯示瑞德西韋具有抑制病毒的能力。然而,在對照組中,以瑞德西韋處理對照組細胞,其表現報導基因的細胞數雖有減少趨勢,但無法與未處理瑞德西韋(0 µM)的對照組細胞中表現報導基因的細胞數具有統計上的顯著差異。相較之下,在試驗組中,只需以50 µM瑞德西韋處理試驗組細胞,其表現報導基因的細胞數,就能與未處理瑞德西韋(0 µM)的試驗組細胞中表現報導基因的細胞數具有統計上的顯著差異( p< 0.05)。 SARS-CoV-2 nucleocapsid protein increases the sensitivity of Ebola virus minigenome system for antiviral drug screening. As shown in Figure 7, whether it is the control group (containing only Ebola virus minigenome system) or the experimental group (Ebola virus minigenome system + 1000 ng SARS-CoV-2 nucleocapsid protein), with the concentration of remdesivir The number of cells expressing the reporter gene (GFP) gradually decreased, indicating that Remdesivir has the ability to inhibit the virus. However, in the control group, although the number of cells expressing the reporter gene in the control group cells treated with remdesivir decreased, it was not comparable to that in the control group cells that were not treated with remdesivir (0 µM). There is a statistically significant difference in the number of cells. In comparison, in the experimental group, the cells in the experimental group only need to be treated with 50 µM remdesivir, and the number of cells expressing the reporter gene can be compared with the number of cells in the experimental group not treated with remdesivir (0 µM). There was a statistically significant difference in the number of cells expressing the reporter gene ( p < 0.05).

本實施例結果顯示,SARS-CoV-2核殼蛋白可促進伊波拉病毒微型基因組系統篩選抗病毒藥物的敏感性,而更容易判讀候選藥物是否具有抑制病毒的效果。The results of this example show that the SARS-CoV-2 nucleocapsid protein can promote the sensitivity of the Ebola virus minigenome system for screening antiviral drugs, making it easier to determine whether candidate drugs have the effect of inhibiting the virus.

實施例Example 3  SARS-CoV-23 SARS-CoV-2 核殼蛋白對基因表現之影響Effect of nucleocapsid protein on gene expression

材料與方法Materials and methods

細胞轉染作用。分別帶有增強型綠色螢光蛋白(EGFP)以及紅色螢光蛋白(RFP)等報導子的基因的表現質體, pEGFP-N2質體與piRFP682_N1質體,係購自Addgene平台(沃特敦市,麻州,美國)。依照下表2比例配製各組的質體混合液: 負對照組:未轉染任何質體的細胞; 試驗組G1:僅轉染EGFP基因的細胞; 試驗組G2:轉染EGFP基因 + 1000 ng SARS-CoV-2核殼蛋白基因質體的細胞; 試驗組R1:僅轉染RFP基因的細胞;以及 試驗組R2:轉染RFP基因 + 1000 ng SARS-CoV-2核殼蛋白基因質體的細胞)。 Cell transfection . Expression plasmids carrying enhanced green fluorescent protein (EGFP) and red fluorescent protein (RFP) reporter genes respectively, pEGFP-N2 plasmid and piRFP682_N1 plasmid, were purchased from Addgene platform (Watertown City , Massachusetts, USA). Prepare the plastid mixture of each group according to the ratio in Table 2 below: Negative control group: cells not transfected with any plastids; Experimental group G1: Cells transfected with EGFP gene only; Experimental group G2: Transfected with EGFP gene + 1000 ng Cells with SARS-CoV-2 nucleocapsid protein gene plasmid; Experimental group R1: cells transfected with RFP gene only; and Experimental group R2: cells transfected with RFP gene + 1000 ng SARS-CoV-2 nucleocapsid protein gene plasmid cells).

表2  實施例3中各組質體混合液比例   負對照組 試驗組G1 試驗組G2 試驗組R1 試驗組R2 pEGFP-N2質體 0 ng 500 ng 500 ng 0 ng 0 ng piRFP682_N1質體 0 ng 0 ng 0 ng 500 ng 500 ng pCAGGS_SARSCoV2_NP 質體(同實施例1) 0 ng 0 ng 1000 ng 0      ng 1000  Table 2 Proportions of plastid mixtures in each group in Example 3 negative control group Test group G1 Test group G2 Test group R1 Test group R2 pEGFP-N2 plasmid 0ng 500ng 500ng 0ng 0ng piRFP682_N1 plasmid 0ng 0ng 0ng 500ng 500ng pCAGGS_SARSCoV2_NP plasmid (same as Example 1) 0ng 0ng 1000ng 0ng 1000

於各組的質體混合液中分別加入120 µL減血清培養基(Gibco TMOpti-MEM;型號:11058021,Thermo Fisher Scientific公司)以及8 µL T-Pro NTR II試劑套組 (型號:JT97-N002,T-Pro Biotechnology公司),靜置15分鐘後成為轉染試劑混合液。此外,將1.6 x 10 5個/孔293T細胞(ATCC,編號:CRL-3216)接種於含有10% FBS / DMEM的24孔細胞培養盤中,並加入40 µL轉染試劑混合液進行轉染。轉染後的細胞置於37 oC / 5% CO 2細胞培養箱內,培養24小時後進行流式細胞儀分析。 Add 120 µL serum-reduced medium (Gibco TM Opti-MEM; model: 11058021, Thermo Fisher Scientific) and 8 µL T-Pro NTR II reagent kit (model: JT97-N002, T-Pro Biotechnology Co., Ltd.) and let it stand for 15 minutes to become the transfection reagent mixture. In addition, 1.6 x 10 5 cells/well 293T cells (ATCC, No.: CRL-3216) were seeded in a 24-well cell culture plate containing 10% FBS/DMEM, and 40 µL transfection reagent mixture was added for transfection. The transfected cells were placed in a 37 ° C/5% CO2 cell culture incubator, and flow cytometry analysis was performed after 24 hours of culture.

流式細胞儀分析。同實施例1所述。 Flow cytometry analysis . Same as described in Example 1.

結果result

SARS-CoV-2 核殼蛋白增加表現質體中報導子的表現量。如圖8A所示,相較於負對照組(未轉染任何質體的細胞,表現綠色螢光的細胞比例為0.2%)與試驗組G1 (僅轉染EGFP基因的細胞,表現綠色螢光的細胞比例為20%),試驗組G2 (轉染EGFP基因 + 1000 ng SARS-CoV-2核殼蛋白基因質體的細胞)表現綠色螢光的細胞比例高達96.7%,大幅提升EGFP基因的表現。類似地,如圖8B所示,相較於負對照組(未轉染任何質體的細胞,表現紅色螢光的細胞比例為0.04%)與試驗組R1 (僅轉染RFP基因的細胞,表現紅色螢光的細胞比例為12.9%),試驗組R2 (轉染RFP基因 + 1000 ng SARS-CoV-2核殼蛋白基因質體的細胞)表現紅色螢光的細胞比例高達26.7%,大幅提升RFP基因的表現。 SARS-CoV-2 nucleocapsid protein increases reporter expression in expression plasmids . As shown in Figure 8A, compared with the negative control group (cells not transfected with any plastids, the proportion of cells showing green fluorescence was 0.2%) and the experimental group G1 (cells transfected with only the EGFP gene, showing green fluorescence The proportion of cells in the experimental group G2 (cells transfected with EGFP gene + 1000 ng SARS-CoV-2 nucleocapsid protein gene plasmid) was as high as 96.7%, significantly improving the expression of the EGFP gene. . Similarly, as shown in Figure 8B, compared with the negative control group (cells not transfected with any plastid, the proportion of cells showing red fluorescence was 0.04%) and the experimental group R1 (cells transfected with only the RFP gene, the proportion of cells showing red fluorescence was 0.04%) The proportion of cells with red fluorescence was 12.9%), and the proportion of cells with red fluorescence in experimental group R2 (cells transfected with RFP gene + 1000 ng SARS-CoV-2 nucleocapsid protein gene plasmid) was as high as 26.7%, significantly increasing RFP Gene expression.

本實施例結果顯示,SARS-CoV-2核殼蛋白可大幅增加表現質體中目標基因之表現,且不限於綠色螢光蛋白基因,而適用於各種目標基因。The results of this example show that SARS-CoV-2 nucleocapsid protein can significantly increase the expression of target genes in the plastid, and is not limited to the green fluorescent protein gene, but is applicable to various target genes.

實施例Example 4  SARS-CoV-24 SARS-CoV-2 核殼蛋白增加基因表現的活性區分析Active zone analysis of nucleocapsid protein increasing gene expression

材料與方法Materials and methods

含有編碼 SARS-CoV-2 核殼蛋白各區段基因片段之質體的製備。如圖9所示,SARS-CoV-2核殼蛋白包含胺基端結構域(NTD)、RNA結合結構域(RBD)、連接子、二聚化結構域、羧基端結構域(CTD)。以PCR分別擴增編碼以下SARS-CoV-2核殼蛋白片段之基因序列,並在各片段之基因序列的5’端加上一個編碼甲硫胺酸(Methionine)的DNA序列(ATG) (除了SEQ ID NOs: 12、14、16、19、20外): 第1-360個胺基酸(SEQ ID NO: 12); 第61-419個胺基酸(SEQ ID NO: 13); 第1-180個胺基酸(SEQ ID NO: 14); 第241-419個胺基酸(SEQ ID NO: 15); 第1-67個胺基酸(SEQ ID NO: 16); 第241-363個胺基酸(SEQ ID NO: 17); 第354-419個胺基酸(SEQ ID NO: 18); 第1-67/241-360個胺基酸(SEQ ID NO: 19);以及 第1-67/241-419個胺基酸(SEQ ID NO: 20)。 分別將該些基因序列選殖至pCAGGS載體,產生 pCAGGS_SARSCoV2_NP (1-360 aa)質體(可表現SEQ ID NO: 12序列); pCAGGS_SARSCoV2_NP(61-419 aa)質體(可表現SEQ ID NO: 13序列); pCAGGS_SARSCoV2_NP (1-180 aa)質體(可表現SEQ ID NO: 14序列); pCAGGS_SARSCoV2_NP (241-419 aa) 質體(可表現SEQ ID NO: 15序列); pCAGGS_SARSCoV2_NP (1-67 aa)質體(可表現SEQ ID NO: 16序列); pCAGGS_SARSCoV2_NP (241-361 aa)質體(可表現SEQ ID NO: 17序列); pCAGGS_SARSCoV2_NP (354-419 aa)質體(可表現SEQ ID NO: 18序列); pCAGGS_SARSCoV2_NP (1-67/241-360 aa)質體(可表現SEQ ID NO: 19序列);以及 pCAGGS_SARSCoV2_NP (1-67/241-419 aa)質體(可表現SEQ ID NO: 20序列)。並將該些質體分別轉形至大腸桿菌中。 Preparation of plasmids containing gene fragments encoding each segment of SARS-CoV-2 nucleocapsid protein . As shown in Figure 9, the SARS-CoV-2 nucleocapsid protein contains an amine-terminal domain (NTD), an RNA-binding domain (RBD), a linker, a dimerization domain, and a carboxyl-terminal domain (CTD). Use PCR to amplify the gene sequences encoding the following SARS-CoV-2 nucleocapsid protein fragments, and add a DNA sequence (ATG) encoding methionine (Methionine) to the 5' end of the gene sequence of each fragment (except SEQ ID NOs: 12, 14, 16, 19, 20): Amino acids 1-360 (SEQ ID NO: 12); Amino acids 61-419 (SEQ ID NO: 13); Amino acids 1 -180 amino acids (SEQ ID NO: 14); 241-419 amino acids (SEQ ID NO: 15); 1-67 amino acids (SEQ ID NO: 16); 241-363 Amino acids (SEQ ID NO: 17); Amino acids 354-419 (SEQ ID NO: 18); Amino acids 1-67/241-360 (SEQ ID NO: 19); and Amino acids 1-67/241-360 (SEQ ID NO: 19); 1-67/241-419 amino acids (SEQ ID NO: 20). These gene sequences were selected and cloned into pCAGGS vector respectively to produce pCAGGS_SARSCoV2_NP (1-360 aa) plasmid (can express SEQ ID NO: 12 sequence); pCAGGS_SARSCoV2_NP (61-419 aa) plasmid (can express SEQ ID NO: 13 sequence); pCAGGS_SARSCoV2_NP (1-180 aa) plasmid (can express SEQ ID NO: 14 sequence); pCAGGS_SARSCoV2_NP (241-419 aa) plastid (can express SEQ ID NO: 15 sequence); pCAGGS_SARSCoV2_NP (1-67 aa) Plastid (can express SEQ ID NO: 16 sequence); pCAGGS_SARSCoV2_NP (241-361 aa) plastid (can express SEQ ID NO: 17 sequence); pCAGGS_SARSCoV2_NP (354-419 aa) plastid (can express SEQ ID NO: 18 sequence); pCAGGS_SARSCoV2_NP (1-67/241-360 aa) plasmid (can express SEQ ID NO: 19 sequence); and pCAGGS_SARSCoV2_NP (1-67/241-419 aa) plastid (can express SEQ ID NO: 20 sequence) ). And these plasmids were transformed into E. coli respectively.

伊波拉病毒微型基因組系統的操作。同實施例1所述。簡言之,分別對該系統加入0 ng及1000 ng的pCAGGS_SARSCoV2_NP、pCAGGS_SARSCoV2_NP (1-360 aa)、pCAGGS_SARSCoV2_NP(61-419 aa)、pCAGGS_SARSCoV2_NP (1-180 aa)、pCAGGS_SARSCoV2_NP (241-419 aa)、pCAGGS_SARSCoV2_NP (1-67 aa)、pCAGGS_SARSCoV2_NP (241-360 aa)、 pCAGGS_SARSCoV2_NP (354-419 aa)、pCAGGS_SARSCoV2_NP (1-67/241-360 aa),以及pCAGGS_SARSCoV2_NP (1-67/241-419 aa)質體,以形成對照組1 (僅包含伊波拉病毒微型基因組系統)、對照組2 (伊波拉病毒微型基因組系統 + 1000 ng SARS-CoV-2核殼蛋白全長),以及試驗組A-I。各組分別加入120 µL減血清培養基以及8 µL T-Pro NTR II試劑套組,靜置15分鐘後成為轉染試劑混合液。接著將各組的轉染試劑混合液加至293T細胞中進行轉染。轉染後的細胞置於37 oC / 5% CO 2細胞培養箱內繼續培養48小時,接著進行流式細胞儀分析。 Operation of the Ebola virus minigenome system . Same as described in Example 1. Briefly, 0 ng and 1000 ng of pCAGGS_SARSCoV2_NP, pCAGGS_SARSCoV2_NP (1-360 aa), pCAGGS_SARSCoV2_NP (61-419 aa), pCAGGS_SARSCoV2_NP (1-180 aa), pCAGGS_SARSCoV2_NP (241-419 aa), pCAGGS_SAR were added to the system respectively. SCoV2_NP (1-67 aa), pCAGGS_SARSCoV2_NP (241-360 aa), pCAGGS_SARSCoV2_NP (354-419 aa), pCAGGS_SARSCoV2_NP (1-67/241-360 aa), and pCAGGS_SARSCoV2_NP (1-67/241-419 aa) plastids, To form control group 1 (containing only Ebola virus minigenome system), control group 2 (Ebola virus minigenome system + 1000 ng SARS-CoV-2 nucleocapsid protein full length), and experimental group AI. Add 120 µL serum-reduced medium and 8 µL T-Pro NTR II reagent kit to each group respectively, and let it stand for 15 minutes to form a transfection reagent mixture. Then, the transfection reagent mixture of each group was added to 293T cells for transfection. The transfected cells were cultured in a 37 ° C/5% CO2 cell incubator for 48 hours, and then analyzed by flow cytometry.

流式細胞儀分析。同實施例1所述。 Flow cytometry analysis . Same as described in Example 1.

統計分析。同實施例1所述。 Statistical analysis . Same as described in Example 1.

結果result

SARS-CoV-2 核殼蛋白增加基因表現的主要活性區為第 241-360 個胺基酸區段,次要活性區為第 354-419 個胺基酸區段。如圖9及表3所示,包含SARS-CoV-2核殼蛋白第241-360個胺基酸區段的組別(包括對照組2、試驗組A、試驗組B、試驗組D、試驗組F、試驗組H、試驗組I)所產生的螢光細胞(亦即,表現報導基因(GFP基因)的細胞)的平均比例(n=3)皆在統計上顯著高於對照組1 (僅包含伊波拉病毒微型基因組系統)的螢光細胞平均比例( p< 0.05),顯示SARS-CoV-2核殼蛋白第241-360個胺基酸區段具有增加基因表現的活性。此外,試驗組G (伊波拉病毒微型基因組系統 + 1000 ng SARS-CoV-2核殼蛋白第354-419個胺基酸區段) 所產生的螢光細胞在統計上亦顯著高於對照組1的螢光細胞平均比例( p< 0.05),顯示SARS-CoV-2核殼蛋白第354-419個胺基酸區段亦具有增加基因表現的活性,但其活性小於第241-360個胺基酸區段。而不包含SARS-CoV-2核殼蛋白第241-360個及第354-419個胺基酸區段的組別(包括試驗組C及試驗組E)則無法增加伊波拉病毒微型基因組系統中表現報導基因(GFP基因)的細胞數目。 The main active region of SARS-CoV-2 nucleocapsid protein that increases gene expression is the amino acid segment 241-360 , and the secondary active region is the amino acid segment 354-419 . As shown in Figure 9 and Table 3, the groups containing the 241-360th amino acid segment of the SARS-CoV-2 nucleocapsid protein (including control group 2, test group A, test group B, test group D, test The average proportion (n=3) of fluorescent cells (that is, cells expressing the reporter gene (GFP gene)) produced by group F, experimental group H, and experimental group I) was all statistically significantly higher than that of the control group 1 ( The average proportion of fluorescent cells ( p < 0.05) containing only the Ebola virus minigenome system shows that the 241-360 amino acid segments of the SARS-CoV-2 nucleocapsid protein have the activity of increasing gene expression. In addition, the fluorescent cells produced by test group G (Ebola virus minigenome system + 1000 ng SARS-CoV-2 nucleocapsid protein amino acid segment 354-419) were also statistically significantly higher than those in the control group 1 The average proportion of fluorescent cells ( p < 0.05) shows that the 354-419 amino acid segments of the SARS-CoV-2 nucleocapsid protein also have the activity of increasing gene expression, but its activity is less than the 241-360 amino groups acid section. Groups that do not include amino acid segments 241-360 and 354-419 of the SARS-CoV-2 nucleocapsid protein (including experimental group C and experimental group E) cannot be added to the Ebola virus minigenome system. The number of cells expressing the reporter gene (GFP gene).

表3 實施例4中各組螢光細胞的比例 組別 螢光細胞平均比例(n=3) 標準差 P值 對照組1 僅含EBOV微型基因組 (ST3) 22.2% 0.1 - 對照組2 ST3+ SARSCoV2_NP(1-419aa) 35.6% 1.1 <0.05 試驗組A ST3+ SARSCoV2_NP(1-361aa) 29.3% 3.6 <0.05 試驗組B ST3+ SARSCoV2_NP(61-419aa) 27.0% 2.8 <0.05 試驗組C ST3+ SARSCoV2_NP(1-180aa) 18.5% 1.9 <0.05 試驗組D ST3+ SARSCoV2_NP(240-419aa) 25.8% 1.4 <0.05 試驗組E ST3+ SARSCoV2_NP(1-67aa) 24.0% 3.2 >0.05 試驗組F ST3+ SARSCoV2_NP(240-361aa) 27.6% 2.7 <0.05 試驗組G ST3+ SARSCoV2_NP(352-419aa) 24.7% 0.5 <0.05 試驗組H ST3+ SARSCoV2_NP(1-67/240-361aa) 25.0% 0.8 <0.05 試驗組I ST3+ SARSCoV2_NP(1-67/240-419aa) 28.9% 3.3 <0.05 Table 3 Proportions of fluorescent cells in each group in Example 4 Group Average proportion of fluorescent cells (n=3) standard deviation P value Control group 1 Contains only EBOV minigenome (ST3) 22.2% 0.1 - Control group 2 ST3+ SARSCoV2_NP(1-419aa) 35.6% 1.1 <0.05 Experimental group A ST3+ SARSCoV2_NP(1-361aa) 29.3% 3.6 <0.05 Experimental group B ST3+ SARSCoV2_NP(61-419aa) 27.0% 2.8 <0.05 Experimental group C ST3+ SARSCoV2_NP(1-180aa) 18.5% 1.9 <0.05 Experimental group D ST3+ SARSCoV2_NP(240-419aa) 25.8% 1.4 <0.05 Experimental group E ST3+ SARSCoV2_NP(1-67aa) 24.0% 3.2 >0.05 Test group F ST3+ SARSCoV2_NP(240-361aa) 27.6% 2.7 <0.05 Test group G ST3+ SARSCoV2_NP(352-419aa) 24.7% 0.5 <0.05 Test group H ST3+ SARSCoV2_NP(1-67/240-361aa) 25.0% 0.8 <0.05 Experimental group I ST3+ SARSCoV2_NP(1-67/240-419aa) 28.9% 3.3 <0.05

本實施例結果顯示,SARS-CoV-2核殼蛋白增加基因表現的主要活性區為第241-360個胺基酸區段,該區段包含二聚化結構域(dimerization domain)。此外,SARS-CoV-2核殼蛋白增加基因表現的次要活性區為第354-419個胺基酸區段,該區段包含羧基端結構域(CTD)。The results of this example show that the main active region of SARS-CoV-2 nucleocapsid protein that increases gene expression is the 241-360 amino acid segment, which contains the dimerization domain. In addition, the secondary active region of SARS-CoV-2 nucleocapsid protein that increases gene expression is the 354-419th amino acid segment, which contains the carboxyl-terminal domain (CTD).

實施例Example 55 不同冠狀病毒的核殼蛋白對伊波拉病毒微型基因組系統之影響Effects of nucleocapsid proteins of different coronaviruses on the Ebola virus minigenome system

材料與方法Materials and methods

含有編碼冠狀病毒核殼蛋白的基因之質體的製備。以PCR分別擴增編碼SARS-CoV-1核殼蛋白(SEQ ID NO: 21)、MERS-CoV核殼蛋白(SEQ ID NO: 22)、HCoV HKU1核殼蛋白(SEQ ID NO: 23)、HCoV OC43核殼蛋白(SEQ ID NO: 24)、HCoV 229E核殼蛋白(SEQ ID NO: 25)、HCoV NL63核殼蛋白(SEQ ID NO: 26)、A型流感病毒(Influenza A)核殼蛋白(SEQ ID NO: 27)的基因序列後,分別將該些基因序列選殖至pCAGGS載體,產生 pCAGGS_SARSCoV1_NP質體(可表現SEQ ID NO: 21序列); pCAGGS_MERSCoV_NP質體(可表現SEQ ID NO: 22序列); pCAGGS_HCoVHKU1_NP質體(可表現SEQ ID NO: 23序列); pCAGGS_HCoVOC43 _NP質體(可表現SEQ ID NO: 24序列); pCAGGS_HCoV229E_NP質體(可表現SEQ ID NO: 25序列); pCAGGS_HCoVNL63_NP質體(可表現SEQ ID NO: 26序列);以及 pCAGGS_InfluenzaA _NP質體(可表現SEQ ID NO: 27序列)。並將該些質體分別轉形至大腸桿菌中。 Preparation of plasmids containing genes encoding coronavirus nucleocapsid proteins . PCR was used to amplify the encoding SARS-CoV-1 nucleocapsid protein (SEQ ID NO: 21), MERS-CoV nucleocapsid protein (SEQ ID NO: 22), HCoV HKU1 nucleocapsid protein (SEQ ID NO: 23), HCoV OC43 nucleocapsid protein (SEQ ID NO: 24), HCoV 229E nucleocapsid protein (SEQ ID NO: 25), HCoV NL63 nucleocapsid protein (SEQ ID NO: 26), influenza A virus (Influenza A) nucleocapsid protein ( SEQ ID NO: 27), these gene sequences were selected and cloned into the pCAGGS vector to generate pCAGGS_SARSCoV1_NP plasmid (which can express the SEQ ID NO: 21 sequence); pCAGGS_MERSCoV_NP plasmid (which can express the SEQ ID NO: 22 sequence) ; Represents SEQ ID NO: 26 sequence); and pCAGGS_InfluenzaA_NP plasmid (can express SEQ ID NO: 27 sequence). And these plasmids were transformed into E. coli respectively.

伊波拉病毒微型基因組系統的操作。同實施例1所述。簡言之,分別對該系統加入0 ng及1000 ng的pCAGGS_SARSCoV1_NP、pCAGGS_SARSCoV2_NP、pCAGGS_MERSCoV_NP、pCAGGS_HCoVHKU1_NP、pCAGGS_HCoVOC43 _NP、pCAGGS_HCoV229E_NP、pCAGGS_HCoVNL63_NP,以及pCAGGS_ InfluenzaA _NP質體,以形成對照組 (僅包含伊波拉病毒微型基因組系統)以及試驗組1-9。各組分別加入120 µL減血清培養基以及8 µL T-Pro NTR II試劑套組,靜置15分鐘後成為轉染試劑混合液。接著將各組的轉染試劑混合液加至293T細胞中進行轉染。轉染後的細胞置於37 oC / 5% CO 2細胞培養箱內繼續培養48小時,接著進行流式細胞儀分析。 Operation of the Ebola virus minigenome system . Same as described in Example 1. Briefly, 0 ng and 1000 ng of pCAGGS_SARSCoV1_NP, pCAGGS_SARSCoV2_NP, pCAGGS_MERSCoV_NP, pCAGGS_HCoVHKU1_NP, pCAGGS_HCoVOC43_NP, pCAGGS_HCoV229E_NP, pCAGGS_HCoVNL63_NP, and pCAGGS_InfluenzaA_NP plasmids were added to the system, respectively. , to form a control group (containing only the Ebola virus minigenome system ) and experimental groups 1-9. Add 120 µL of serum-reduced medium and 8 µL of T-Pro NTR II reagent kit to each group, and let it stand for 15 minutes to form a transfection reagent mixture. Then, the transfection reagent mixture of each group was added to 293T cells for transfection. The transfected cells were cultured in a 37 ° C/5% CO2 cell incubator for 48 hours, and then analyzed by flow cytometry.

流式細胞儀分析。同實施例1所述。 Flow cytometry analysis . Same as described in Example 1.

統計分析。同實施例1所述。 Statistical analysis . Same as described in Example 1.

結果result

SARS-CoV-1 SARS-CoV-2 MERS-CoV HCoV HKU1 的核殼蛋白能提高伊波拉病毒微型基因組系統中報導子的表現。如表4所示,包含SARS-CoV-1核殼蛋白(試驗組1)、SARS-CoV-2核殼蛋白(試驗組2)、MERS-CoV核殼蛋白(試驗組3)、HCoV HKU1核殼蛋白(試驗組4)的組別的螢光細胞(亦即,表現報導基因(GFP基因)的細胞)的平均比例(n=3)皆在統計上顯著高於對照組(僅包含伊波拉病毒微型基因組系統)的螢光細胞平均比例( p< 0.05)。而人類冠狀病毒HCoV OC43、HCoV 229E、HCoV NL63,以及A型流感病毒的核殼蛋白則無法增加伊波拉病毒微型基因組系統中表現報導基因(GFP基因)的細胞數目。 The nucleocapsid proteins of SARS-CoV-1 , SARS-CoV-2 , MERS-CoV , and HCoV HKU1 can improve the performance of reporters in the Ebola virus minigenome system. As shown in Table 4, it contains SARS-CoV-1 nucleocapsid protein (test group 1), SARS-CoV-2 nucleocapsid protein (test group 2), MERS-CoV nucleocapsid protein (test group 3), HCoV HKU1 core The average proportion of fluorescent cells (i.e., cells expressing the reporter gene (GFP gene)) in the shell protein (test group 4) group (n=3) was statistically significantly higher than that in the control group (only including Ebola viral minigenome system) ( p < 0.05). However, the nucleocapsid proteins of human coronaviruses HCoV OC43, HCoV 229E, HCoV NL63, and influenza A virus were unable to increase the number of cells expressing the reporter gene (GFP gene) in the Ebola virus minigenome system.

表4 實施例5中各組螢光細胞的比例 組別 螢光細胞平均 比例(n=3) 標準差 P值 對照組 僅含EBOV微型基因組 (ST3) 22.2% 0.1 - 試驗組1 ST3+ SARSCoV1_NP 46.0% 6.4 <0.05 試驗組2 ST3+ SARSCoV2_NP 45.4% 3.6 <0.05 試驗組3 ST3+ MERSCoV_NP 35.9% 5.9 <0.05 試驗組4 ST3+ HCoVHKU1_NP 43.6% 5.2 <0.05 試驗組5 ST3+ HCoVOC43_NP 19.1% 1.3 <0.05 試驗組6 ST3+ HCoV229E_NP 21.9% 1.0 >0.05 試驗組7 ST3+ HCoVNL63_NP 20.4% 0.7 <0.05 試驗組8 ST3+ InfluenzaA_NP 14.8% 0.3 <0.05 Table 4 Proportions of fluorescent cells in each group in Example 5 Group Average proportion of fluorescent cells (n=3) standard deviation P value control group Contains only EBOV minigenome (ST3) 22.2% 0.1 - Experimental group 1 ST3+ SARSCoV1_NP 46.0% 6.4 <0.05 Experimental group 2 ST3+ SARSCoV2_NP 45.4% 3.6 <0.05 Experimental group 3 ST3+ MERSCoV_NP 35.9% 5.9 <0.05 Experimental group 4 ST3+ HCoVHKU1_NP 43.6% 5.2 <0.05 Experimental group 5 ST3+ HCoVOC43_NP 19.1% 1.3 <0.05 Experimental group 6 ST3+ HCoV229E_NP 21.9% 1.0 >0.05 Experimental group 7 ST3+ HCoVNL63_NP 20.4% 0.7 <0.05 Experimental group 8 ST3+ InfluenzaA_NP 14.8% 0.3 <0.05

本實施例結果顯示,伊波拉病毒微型基因組系統中分別加入SARS-CoV-1、SARS-CoV-2、MERS-CoV、HCoV HKU1的核殼蛋白基因,會使表現報導基因的細胞數目增加,亦即這些冠狀病毒的核殼蛋白皆能提高伊波拉病毒微型基因組系統中報導子的表現。The results of this example show that adding the nucleocapsid protein genes of SARS-CoV-1, SARS-CoV-2, MERS-CoV, and HCoV HKU1 to the Ebola virus minigenome system will increase the number of cells expressing the reporter gene and also That is, the nucleocapsid proteins of these coronaviruses can improve the performance of reporters in the Ebola virus minigenome system.

實施例Example 66 不同冠狀病毒的核殼蛋白活性區對基因表現之影響Effects of active regions of nucleocapsid proteins of different coronaviruses on gene expression

材料與方法Materials and methods

含有編碼冠狀病毒核殼蛋白活性區的基因之質體的製備。根據實施例4之結果,針對編碼各冠狀病毒核殼蛋白增加基因表現的活性區(包含二聚化結構域及CTD)的基因序列進行PCR擴增,並在各基因序列的5’端加上一個編碼甲硫胺酸的DNA序列(ATG)。擴增後的序列包含: 編碼SARS-CoV-1核殼蛋白第241-422個胺基酸(SEQ ID NO: 28)的基因序列; 編碼SARS-CoV-2核殼蛋白第241-419個胺基酸(SEQ ID NO: 15)的基因序列; 編碼MERS-CoV核殼蛋白第232-413個胺基酸(SEQ ID NO: 29)的基因序列; 編碼HCoV HKU1核殼蛋白第245-441個胺基酸(SEQ ID NO: 30)的基因序列;及 編碼HCoV OC43核殼蛋白第246-448個胺基酸(SEQ ID NO: 31)的基因序列。接著,分別將該些基因序列選殖至pCAGGS載體,產生 pCAGGS_SARSCoV1_NP(241-422aa)質體(可表現SEQ ID NO: 28序列); pCAGGS_SARSCoV2_NP(241-419aa)質體(可表現SEQ ID NO: 15序列)(同實施例4所述質體); pCAGGS_MERSCoV_NP(232-413aa)質體(可表現SEQ ID NO: 29序列); pCAGGS_HCoVHKU1_NP(245-441aa)質體(可表現SEQ ID NO: 30序列); pCAGGS_HCoVOC43_NP(246-448aa)質體(可表現SEQ ID NO: 31序列)。並將該些質體分別轉形至大腸桿菌中。 Preparation of plasmids containing genes encoding the active region of coronavirus nucleocapsid protein . According to the results of Example 4, PCR amplification was performed on the gene sequence encoding the active region (including the dimerization domain and CTD) of each coronavirus nucleocapsid protein that increases gene expression, and was added to the 5' end of each gene sequence. A DNA sequence encoding methionine (ATG). The amplified sequence includes: the gene sequence encoding amino acids 241-422 of SARS-CoV-1 nucleocapsid protein (SEQ ID NO: 28); the gene sequence encoding amino acids 241-419 of SARS-CoV-2 nucleocapsid protein Gene sequence encoding amino acids (SEQ ID NO: 15); Gene sequence encoding MERS-CoV nucleocapsid protein amino acids 232-413 (SEQ ID NO: 29); encoding HCoV HKU1 nucleocapsid protein 245-441 The gene sequence of amino acids (SEQ ID NO: 30); and the gene sequence encoding amino acids 246-448 of HCoV OC43 nucleocapsid protein (SEQ ID NO: 31). Then, these gene sequences were selected and cloned into the pCAGGS vector respectively to generate pCAGGS_SARSCoV1_NP(241-422aa) plasmid (can express SEQ ID NO: 28 sequence); pCAGGS_SARSCoV2_NP(241-419aa) plasmid (can express SEQ ID NO: 15 sequence) (same as the plasmid described in Example 4); pCAGGS_MERSCoV_NP (232-413aa) plasmid (can express SEQ ID NO: 29 sequence); pCAGGS_HCoVHKU1_NP (245-441aa) plasmid (can express SEQ ID NO: 30 sequence) ; pCAGGS_HCoVOC43_NP (246-448aa) plasmid (can express SEQ ID NO: 31 sequence). And these plasmids were transformed into E. coli respectively.

細胞轉染作用。將以下質體(1000 ng)分別與帶有EGFP報導基因的pEGFP-N2質體(500 ng)混合,以配製各組的質體混合液: 對照組:僅包含pEGFP-N2質體; 試驗組A: pEGFP-N2質體 + pCAGGS_SARSCoV1_NP(241-422aa)質體; 試驗組B: pEGFP-N2質體 + pCAGGS_SARSCoV2_NP(241-419aa)質體; 試驗組C: pEGFP-N2質體 + pCAGGS_MERSCoV_NP(232-413aa)質體; 試驗組D: pEGFP-N2質體 + pCAGGS_MERSCoV_NP(245-441aa)質體;以及 試驗組E: pEGFP-N2質體 + pCAGGS_HCoVOC43_NP(246-448aa)質體。 Cell transfection . The following plasmids (1000 ng) were mixed with pEGFP-N2 plasmids (500 ng) carrying the EGFP reporter gene to prepare the plasmid mixture of each group: Control group: only containing pEGFP-N2 plasmids; Experimental group A: pEGFP-N2 plasmid + pCAGGS_SARSCoV1_NP(241-422aa) plasmid; Experimental group B: pEGFP-N2 plasmid + pCAGGS_SARSCoV2_NP(241-419aa) plasmid; Experimental group C: pEGFP-N2 plasmid + pCAGGS_MERSCoV_NP(232- 413aa) plasmid; Experimental group D: pEGFP-N2 plasmid + pCAGGS_MERSCoV_NP (245-441aa) plasmid; and Experimental group E: pEGFP-N2 plasmid + pCAGGS_HCoVOC43_NP (246-448aa) plasmid.

各組分別加入120 µL減血清培養基以及8 µL T-Pro NTR II試劑套組,靜置15分鐘後成為轉染試劑混合液。接著將各組的轉染試劑混合液加至293T細胞中進行轉染。轉染後的細胞置於37 oC / 5% CO 2細胞培養箱內繼續培養24小時,接著進行流式細胞儀分析。 Add 120 µL of serum-reduced medium and 8 µL of T-Pro NTR II reagent kit to each group, and let it stand for 15 minutes to form a transfection reagent mixture. Then, the transfection reagent mixture of each group was added to 293T cells for transfection. The transfected cells were cultured in a 37 ° C/5% CO2 cell incubator for 24 hours, and then analyzed by flow cytometry.

流式細胞儀分析。同實施例1所述。 Flow cytometry analysis . Same as described in Example 1.

統計分析。同實施例1所述。 Statistical analysis . Same as described in Example 1.

結果result

數種冠狀病毒核殼蛋白的活性區會增加表現質體中報導子的表現量。如圖10及表5所示,相較於對照組(僅轉染EGFP基因的細胞,表現綠色螢光的細胞之平均比例為24.7%),試驗組A-E表現綠色螢光的細胞之平均比例皆大幅提高,且具有統計上的顯著差異( p< 0.05)。其中,以試驗組B (轉染EGFP基因 + 1000 ng SARS-CoV-2核殼蛋白第241-419個胺基酸(SEQ ID NO: 15)基因質體的細胞)以及試驗組A (轉染EGFP基因 + 1000 ng SARS-CoV-1核殼蛋白第241-422個胺基酸(SEQ ID NO: 28)基因質體的細胞)提升綠色螢光表現的效果最顯著。另外,值得注意的是,根據實施例5之結果,HCoV OC43核殼蛋白(SEQ ID NO: 24)對於提升基因表現的效果並不顯著;然而,根據本實施例之結果,HCoV OC43核殼蛋白第246-448個胺基酸(SEQ ID NO: 31)能夠顯著提升目標基因之表現(如表5試驗組E結果所示)。 The active regions of several coronavirus nucleocapsid proteins increase reporter expression in expression plasmids . As shown in Figure 10 and Table 5, compared with the control group (cells transfected with the EGFP gene only, the average proportion of cells expressing green fluorescence was 24.7%), the average proportion of cells expressing green fluorescence in the AE group of the test group was 24.7%. significantly improved, and there was a statistically significant difference ( p < 0.05). Among them, experimental group B (cells transfected with EGFP gene + 1000 ng SARS-CoV-2 nucleocapsid protein 241-419 amino acids (SEQ ID NO: 15) gene plasmid) and experimental group A (transfected with EGFP gene + 1000 ng SARS-CoV-1 nucleocapsid protein 241-422 amino acids (SEQ ID NO: 28) gene plasmid cells) have the most significant effect on improving green fluorescence performance. In addition, it is worth noting that according to the results of Example 5, the effect of HCoV OC43 nucleocapsid protein (SEQ ID NO: 24) on improving gene expression is not significant; however, according to the results of this example, HCoV OC43 nucleocapsid protein Amino acids 246-448 (SEQ ID NO: 31) can significantly improve the expression of the target gene (as shown in the results of test group E in Table 5).

表5 實施例6中各組螢光細胞的比例 組別 螢光細胞平均比例(n=3) 標準差 P值 對照組 僅含pEGFP-N2質體 24.7% 0.3 - 試驗組A pEGFP-N2 + SARSCoV1_NP(241-422aa) 72.6% 5.9 <0.05 試驗組B pEGFP-N2 + SARSCoV2_NP(241-419aa) 85.7% 1.1 <0.05 試驗組C pEGFP-N2 + MERSCoV_NP(232-413aa) 53.1% 1.6 <0.05 試驗組D pEGFP-N2 + HCoVHKU1_NP(245-441aa) 63.6% 1.3 <0.05 試驗組E pEGFP-N2 + HCoVOC43_NP(246-448aa) 56.4% 9.4 <0.05 Table 5 Proportions of fluorescent cells in each group in Example 6 Group Average proportion of fluorescent cells (n=3) standard deviation P value control group pEGFP-N2 plasmid only 24.7% 0.3 - Experimental group A pEGFP-N2 + SARSCoV1_NP(241-422aa) 72.6% 5.9 <0.05 Experimental group B pEGFP-N2 + SARSCoV2_NP(241-419aa) 85.7% 1.1 <0.05 Experimental group C pEGFP-N2 + MERSCoV_NP(232-413aa) 53.1% 1.6 <0.05 Experimental group D pEGFP-N2 + HCoVHKU1_NP(245-441aa) 63.6% 1.3 <0.05 Experimental group E pEGFP-N2 + HCoVOC43_NP(246-448aa) 56.4% 9.4 <0.05

本實施例結果顯示,數種冠狀病毒核殼蛋白的活性區(包含二聚化結構域及CTD)可大幅增加表現質體中目標基因之表現,特別是SARS-CoV-1以及SARS-CoV-2的核殼蛋白活性區提升目標基因表現的效果最佳。The results of this example show that the active regions (including dimerization domains and CTDs) of several coronavirus nucleocapsid proteins can significantly increase the expression of target genes in the expression plasmid, especially SARS-CoV-1 and SARS-CoV- 2 nucleocapsid protein active region has the best effect on improving the expression of target genes.

實施例Example 7  SARS-CoV-17 SARS-CoV-1 and SARS-CoV-2SARS-CoV-2 核殼蛋白活性區的突變序列對基因表現之影響Effects of mutation sequences in the active region of nucleocapsid protein on gene expression

材料與方法Materials and methods

含有編碼 SARS-CoV-1 SARS-CoV-2 核殼蛋白活性區突變序列的基因之質體的製備。以突變試劑(GeneMorph II Random Mutagenesis Kit,Agilent Technologies公司,聖塔克拉拉市,加州,美國)分別對編碼SARS-CoV-1核殼蛋白第241-422個胺基酸(SEQ ID NO: 28)以及SARS-CoV-2核殼蛋白第241-419個胺基酸(SEQ ID NO: 15)的基因序列進行隨機突變,並建立突變基因資料庫。接著將這些突變的序列分別選殖至pCAGGS載體,產生帶有各種突變的質體。分別將這些質體(1000 ng)與帶有EGFP報導基因的pEGFP-N2質體(500 ng)共同轉染至細胞中,並以流式細胞儀分析,篩選出可增加螢光蛋白表現的變異株。 Preparation of plasmids containing genes encoding mutant sequences in the active regions of SARS-CoV-1 and SARS-CoV-2 nucleocapsid proteins. Mutagenesis reagents (GeneMorph II Random Mutagenesis Kit, Agilent Technologies, Santa Clara, California, USA) were used to mutate amino acids 241-422 of the SARS-CoV-1 nucleocapsid protein (SEQ ID NO: 28). And the gene sequence of amino acids 241-419 of SARS-CoV-2 nucleocapsid protein (SEQ ID NO: 15) was randomly mutated, and a mutation gene database was established. These mutated sequences were then cloned into the pCAGGS vector to generate plasmids with various mutations. These plasmids (1000 ng) were co-transfected into cells with the pEGFP-N2 plasmid (500 ng) carrying the EGFP reporter gene, and analyzed by flow cytometry to screen for mutations that could increase the expression of fluorescent proteins. strain.

細胞轉染作用。同實施例3所述。 Cell transfection . Same as described in Example 3.

流式細胞儀分析。同實施例1所述。 Flow cytometry analysis . Same as described in Example 1.

統計分析。同實施例1所述。 Statistical analysis . Same as described in Example 1.

結果result

數種 SARS-CoV-1 SARS-CoV-2 核殼蛋白活性區突變序列會增加表現質體中報導子的表現量。如表6所示,相較於對照組(僅轉染EGFP基因的細胞,表現綠色螢光的細胞之平均比例為21%),試驗組A-E中,與pEGFP-N2質體共轉染的pCAGGS_Rho100 (表現SARS-CoV-2核殼蛋白活性區突變序列SEQ ID NO: 32)、pCAGGS_Rho103 (表現SARS-CoV-2核殼蛋白活性區突變序列SEQ ID NO: 33)、pCAGGS_Rho110 (表現SARS-CoV-2核殼蛋白活性區突變序列SEQ ID NO: 34)、pCAGGS_RhoA (表現SARS-CoV-2核殼蛋白活性區突變序列SEQ ID NO: 35),以及pCAGGS_RhoB (表現SARS-CoV-1核殼蛋白活性區突變序列SEQ ID NO: 36)質體可增加表現綠色螢光的細胞之比例,約增加2.7-3.8倍。 Several SARS-CoV-1 and SARS-CoV-2 nucleocapsid protein active region mutation sequences increase the expression of reporters in expression plasmids . As shown in Table 6, compared with the control group (cells transfected with the EGFP gene only, the average proportion of cells expressing green fluorescence was 21%), in the experimental group AE, pCAGGS_Rho100 co-transfected with pEGFP-N2 plasmid (Expressing the mutation sequence of the active region of the SARS-CoV-2 nucleocapsid protein, SEQ ID NO: 32), pCAGGS_Rho103 (Expressing the mutation sequence of the active region of the SARS-CoV-2 nucleocapsid protein, SEQ ID NO: 33), pCAGGS_Rho110 (Expressing the mutation sequence of the active region of the SARS-CoV-2 nucleocapsid protein, SEQ ID NO: 33), pCAGGS_Rho110 (Expressing the mutation sequence of the active region of the SARS-CoV-2 nucleocapsid protein, SEQ ID NO: 32) 2 Nucleocapsid protein active region mutation sequence SEQ ID NO: 34), pCAGGS_RhoA (expressing SARS-CoV-2 nucleocapsid protein active region mutation sequence SEQ ID NO: 35), and pCAGGS_RhoB (expressing SARS-CoV-1 nucleocapsid protein activity The region mutation sequence SEQ ID NO: 36) plastid can increase the proportion of cells showing green fluorescence by approximately 2.7-3.8 times.

表6 實施例7中各組螢光細胞的比例 組別 質體 螢光細胞 比例 螢光細胞 增加的倍數* 對照組 僅含pEGFP-N2質體 21% 1倍 試驗組A pEGFP-N2 + pCAGGS_Rho100 76% 3.62倍 試驗組B pEGFP-N2 + pCAGGS_Rho103 77% 3.67倍 試驗組C pEGFP-N2 + pCAGGS_Rho110 79% 3.76倍 試驗組D pEGFP-N2 + pCAGGS_RhoA 56% 2.66倍 試驗組E pEGFP-N2 + pCAGGS_RhoB 58% 2.76倍 * 相較於對照組,螢光細胞增加的倍數 Table 6 Proportions of fluorescent cells in each group in Example 7 Group plastid Fluorescent cell ratio The fold increase of fluorescent cells* control group pEGFP-N2 plasmid only twenty one% 1 times Experimental group A pEGFP-N2 + pCAGGS_Rho100 76% 3.62 times Experimental group B pEGFP-N2 + pCAGGS_Rho103 77% 3.67 times Experimental group C pEGFP-N2 + pCAGGS_Rho110 79% 3.76 times Experimental group D pEGFP-N2 + pCAGGS_RhoA 56% 2.66 times Experimental group E pEGFP-N2 + pCAGGS_RhoB 58% 2.76 times * Compared with the control group, the fold increase of fluorescent cells

當然,在不脫離本發明之範圍的情況下,可對本發明之上述實施例進行許多改變及修改。因此,為了促進科學及有用領域的進步,公開本發明且目的僅在於由所附申請專利範圍所述之範圍來限制。Of course, many changes and modifications can be made to the above-described embodiments of the invention without departing from the scope of the invention. Accordingly, in order to promote the advancement of science and useful fields, this invention is disclosed and is intended to be limited only by the scope of the appended claims.

EBOV-GFP vRNA:帶有綠色螢光蛋白(GFP)基因的伊波拉病毒微型基因組 NP:伊波拉病毒核殼蛋白 L:伊波拉病毒L蛋白 30:伊波拉病毒VP30蛋白 35:伊波拉病毒VP35蛋白 SARS2-NP:SARS-CoV-2核殼蛋白 EBOV-GFP vRNA: Ebola virus minigenome with green fluorescent protein (GFP) gene NP: Ebola virus nucleocapsid protein L: Ebola virus L protein 30: Ebola virus VP30 protein 35: Ebola virus VP35 protein SARS2-NP: SARS-CoV-2 nucleocapsid protein

前面的概述,以及本發明以下的詳細描述,在結合附圖一起閱讀時將可以被更好地理解。為了說明本發明的目的,所附圖式示出了一些,但不是所有的,可替代的具體實施例。然而,應該理解的是,本發明並不限於所示的精確安排和手段。這些圖式,其被併入並構成說明書的一部分,有助於解釋本發明的原理。The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the accompanying drawings. For the purpose of illustrating the invention, the accompanying drawings illustrate some, but not all, alternative embodiments. It should be understood, however, that this invention is not limited to the precise arrangements and instrumentalities shown. The drawings, which are incorporated in and constitute a part of this specification, help explain the principles of the invention.

1所示為習知之伊波拉病毒微型基因組系統的作用方式。EBOV-GFP vRNA:帶有綠色螢光蛋白(GFP)基因的伊波拉病毒微型基因組;NP:伊波拉病毒核殼蛋白;L:伊波拉病毒L蛋白;30:伊波拉病毒VP30蛋白;35:伊波拉病毒VP35蛋白。 Figure 1 shows the commonly known mode of action of the Ebola virus minigenome system. EBOV-GFP vRNA: Ebola virus minigenome with green fluorescent protein (GFP) gene; NP: Ebola virus nucleocapsid protein; L: Ebola virus L protein; 30: Ebola virus VP30 protein; 35: Ebola virus Pull virus VP35 protein.

2所示為含有本發明之冠狀病毒核殼蛋白片段的伊波拉病毒微型基因組系統的作用方式。EBOV-GFP vRNA:帶有綠色螢光蛋白(GFP)基因的伊波拉病毒微型基因組;NP:伊波拉病毒核殼蛋白;L:伊波拉病毒L蛋白;30:伊波拉病毒VP30蛋白;35:伊波拉病毒VP35蛋白;SARS2-NP:SARS-CoV-2核殼蛋白。 Figure 2 shows the mode of action of the Ebola virus minigenome system containing the coronavirus nucleocapsid protein fragment of the present invention. EBOV-GFP vRNA: Ebola virus minigenome with green fluorescent protein (GFP) gene; NP: Ebola virus nucleocapsid protein; L: Ebola virus L protein; 30: Ebola virus VP30 protein; 35: Ebola virus Virus VP35 protein; SARS2-NP: SARS-CoV-2 nucleocapsid protein.

3所示為對照組細胞(僅轉染伊波拉病毒微型基因組系統的293T細胞)以及試驗組1細胞(轉染伊波拉病毒微型基因組系統 + 1000 ng SARS-CoV-2核殼蛋白質體的293T細胞),於轉染後24及48小時,以螢光顯微鏡分析報導基因(GFP基因)表現之結果。 Figure 3 shows cells in the control group (293T cells transfected with the Ebola virus minigenome system only) and experimental group 1 cells (293T cells transfected with the Ebola virus minigenome system + 1000 ng SARS-CoV-2 nucleocapsid proteosome cells), 24 and 48 hours after transfection, the results of reporter gene (GFP gene) expression were analyzed using fluorescence microscopy.

4所示為對照組細胞(僅轉染伊波拉病毒微型基因組系統的293T細胞)以及試驗組1細胞(轉染伊波拉病毒微型基因組系統 + 1000 ng SARS-CoV-2核殼蛋白質體的293T細胞),於轉染後24及48小時,以流式細胞儀分析報導基因(GFP基因)表現之結果。a.u. (arbitrary unit):任意單位。 Figure 4 shows cells in the control group (293T cells transfected with the Ebola virus minigenome system only) and experimental group 1 cells (293T cells transfected with the Ebola virus minigenome system + 1000 ng SARS-CoV-2 nucleocapsid proteosome cells), 24 and 48 hours after transfection, the results of reporter gene (GFP gene) expression were analyzed by flow cytometry. au (arbitrary unit): arbitrary unit.

5所示為對照組細胞(僅轉染伊波拉病毒微型基因組系統的293T細胞)、試驗組1細胞(轉染伊波拉病毒微型基因組系統 + 1000 ng SARS-CoV-2核殼蛋白質體的293T細胞),以及試驗組2細胞(轉染伊波拉病毒微型基因組系統 + 500 ng SARS-CoV-2核殼蛋白質體的293T細胞),於轉染後24及48小時,表現GFP基因的細胞數目百分比之統計結果(n=6)。使用Mann-Whitney U檢驗比較各實驗組與對照組之間的差異。相較於對照組 ,*表示 p< 0.05,**表示 p< 0.01。 Figure 5 shows cells in the control group (293T cells transfected with the Ebola virus minigenome system only) and test group 1 cells (293T cells transfected with the Ebola virus minigenome system + 1000 ng SARS-CoV-2 nucleocapsid proteosome). cells), and experimental group 2 cells (293T cells transfected with Ebola virus minigenome system + 500 ng SARS-CoV-2 nucleocapsid protein), the percentage of cells expressing the GFP gene at 24 and 48 hours after transfection The statistical results (n=6). The Mann-Whitney U test was used to compare differences between each experimental group and the control group. Compared with the control group, * indicates p < 0.05, and ** indicates p < 0.01.

6A所示為對照組細胞(僅轉染伊波拉病毒微型基因組系統的293T細胞)以及試驗組1細胞(轉染伊波拉病毒微型基因組系統 + 1000 ng SARS-CoV-2核殼蛋白質體的293T細胞),於轉染後0、12、24、36,以及48小時,細胞的總RNA表現量之統計結果(n=4)。使用Mann-Whitney U檢驗比較各實驗組與對照組之間的差異。相較於對照組 ,*表示 p< 0.05。 Figure 6A shows cells in the control group (293T cells transfected with the Ebola virus minigenome system only) and experimental group 1 cells (293T cells transfected with the Ebola virus minigenome system + 1000 ng SARS-CoV-2 nucleocapsid proteosomes cells), statistical results of total RNA expression of cells at 0, 12, 24, 36, and 48 hours after transfection (n=4). The Mann-Whitney U test was used to compare differences between each experimental group and the control group. Compared with the control group, * indicates p < 0.05.

6B所示為於轉染後0、12、24、36,以及48小時,試驗組1細胞(轉染伊波拉病毒微型基因組系統 + 1000 ng SARS-CoV-2核殼蛋白質體的293T細胞)的病毒RNA (vRNA)、mRNA、互補RNA (cRNA)的表現量分別相對於對照組細胞(僅轉染伊波拉病毒微型基因組系統的293T細胞)的vRNA、mRNA、cRNA的表現量之比例的統計結果(n=4)。使用Mann-Whitney U檢驗比較各實驗組與對照組之間的差異。相較於0小時的數據 ,*表示 p< 0.05。 Figure 6B shows the cells of test group 1 (293T cells transfected with Ebola virus minigenome system + 1000 ng SARS-CoV-2 nucleocapsid proteosome) at 0, 12, 24, 36, and 48 hours after transfection. Statistics on the proportion of expression amounts of viral RNA (vRNA), mRNA, and complementary RNA (cRNA) relative to the expression amounts of vRNA, mRNA, and cRNA in control cells (293T cells transfected only with the Ebola virus minigenome system) Results (n=4). The Mann-Whitney U test was used to compare differences between each experimental group and the control group. Compared with the 0 hour data, * indicates p < 0.05.

7所示為以伊波拉病毒微型基因組系統(對照組)或伊波拉病毒微型基因組系統 + 1000 ng SARS-CoV-2核殼蛋白質體(試驗組)進行瑞德西韋(Remdesivir)抗病毒藥物篩選之統計結果(n=3)。使用Mann-Whitney U檢驗比較各實驗組與對照組之間的差異。相較於對照組 ,*表示 p< 0.05。 Figure 7 shows the use of the Ebola virus minigenome system (control group) or the Ebola virus minigenome system + 1000 ng SARS-CoV-2 nucleocapsid proteosome (test group) for the treatment of Remdesivir antiviral drugs Statistical results of screening (n=3). The Mann-Whitney U test was used to compare differences between each experimental group and the control group. Compared with the control group, * indicates p < 0.05.

8A所示為負對照組細胞(未轉染任何質體的細胞293T細胞)、試驗組G1細胞(僅轉染EGFP基因的293T細胞),以及試驗組G2細胞(轉染EGFP基因 + 1000 ng SARS-CoV-2核殼蛋白基因質體的239T細胞),於轉染後24小時,以流式細胞儀分析報導基因(EGFP基因)表現之結果。a.u. (arbitrary unit):任意單位。 Figure 8A shows cells in the negative control group (293T cells not transfected with any plastids), G1 cells in the experimental group (293T cells transfected with only EGFP gene), and G2 cells in the experimental group (transfected with EGFP gene + 1000 ng SARS-CoV-2 nucleocapsid protein gene plasmid 239T cells), 24 hours after transfection, the results of the expression of the reporter gene (EGFP gene) were analyzed by flow cytometry. au (arbitrary unit): arbitrary unit.

8B所示為所示為負對照組細胞(未轉染任何質體的細胞293T細胞)、試驗組R1細胞(僅轉染RFP基因的293T細胞),以及試驗組R2細胞(轉染RFP基因 + 1000 ng SARS-CoV-2核殼蛋白基因質體的239T細胞),於轉染後24小時,以流式細胞儀分析報導基因(RFP基因)表現之結果。a.u. (arbitrary unit):任意單位。 Figure 8B shows cells in the negative control group (293T cells not transfected with any plastid), R1 cells in the test group (293T cells transfected with only the RFP gene), and R2 cells in the test group (293T cells transfected with the RFP gene). + 1000 ng SARS-CoV-2 nucleocapsid protein gene plasmid in 239T cells), 24 hours after transfection, the results of reporter gene (RFP gene) expression were analyzed by flow cytometry. au (arbitrary unit): arbitrary unit.

9所示為SARS-CoV-2核殼蛋白的結構域以及各重組蛋白片段所包含之結構域的示意圖(左圖),以及對照組1細胞(僅轉染伊波拉病毒微型基因組系統的293T細胞)、對照組2細胞(轉染伊波拉病毒微型基因組系統 + SARS-CoV-2核殼蛋白質體的293T細胞),以及試驗組A-I細胞(轉染伊波拉病毒微型基因組系統 + 各個SARS-CoV-2核殼蛋白的重組蛋白片段之質體的293T細胞),於轉染後48小時,表現GFP基因的細胞數目百分比之統計結果(n=3)。 NTD:胺基端結構域;CTD:羧基端結構域。使用Mann-Whitney U檢驗比較各實驗組與對照組之間的差異。相較於對照組1 ,*表示 p< 0.05 (右圖)。 Figure 9 shows a schematic diagram of the domains of the SARS-CoV-2 nucleocapsid protein and the domains contained in each recombinant protein fragment (left picture), and control group 1 cells (only 293T transfected with the Ebola virus minigenome system cells), control group 2 cells (293T cells transfected with Ebola virus minigenome system + SARS-CoV-2 nucleocapsid proteosome), and experimental group AI cells (transfected with Ebola virus minigenome system + each SARS-CoV -293T cells containing the recombinant protein fragment of nucleocapsid protein, 48 hours after transfection, statistical results of the percentage of cells expressing the GFP gene (n=3). NTD: amine terminal domain; CTD: carboxyl terminal domain. The Mann-Whitney U test was used to compare differences between each experimental group and the control group. Compared to control group 1, * indicates p < 0.05 (right panel).

10所示為冠狀病毒核殼蛋白的結構域以及不同冠狀病毒的核殼蛋白的重組蛋白片段所包含之結構域的示意圖(左圖),以及對照組細胞(僅轉染EGFP基因的293T細胞)與試驗組A-E細胞(轉染EGFP基因 + 各冠狀病毒核殼蛋白的重組蛋白片段之質體的293T細胞),於轉染後24小時,表現EGFP基因的細胞數目百分比之統計結果(n=3)。使用Mann-Whitney U檢驗比較各實驗組與對照組之間的差異。相較於對照組 ,*表示 p< 0.05 (右圖)。 Figure 10 shows a schematic diagram of the domains of coronavirus nucleocapsid proteins and the domains contained in recombinant protein fragments of different coronavirus nucleocapsid proteins (left picture), and control cells (293T cells transfected with only the EGFP gene ) and the experimental group AE cells (293T cells transfected with EGFP gene + plasmids of recombinant protein fragments of each coronavirus nucleocapsid protein), 24 hours after transfection, the statistical results of the percentage of cells expressing the EGFP gene (n= 3). The Mann-Whitney U test was used to compare differences between each experimental group and the control group. Compared with the control group, * indicates p < 0.05 (right panel).

EBOV-GFP vRNA:帶有綠色螢光蛋白(GFP)基因的伊波拉病毒微型基因組 NP:伊波拉病毒核殼蛋白 L:伊波拉病毒L蛋白 30:伊波拉病毒VP30蛋白 35:伊波拉病毒VP35蛋白 SARS2-NP:SARS-CoV-2核殼蛋白 EBOV-GFP vRNA: Ebola virus minigenome with green fluorescent protein (GFP) gene NP: Ebola virus nucleocapsid protein L: Ebola virus L protein 30: Ebola virus VP30 protein 35: Ebola virus VP35 protein SARS2-NP: SARS-CoV-2 nucleocapsid protein

Claims (15)

一種蛋白片段用於增加一目標基因表現之用途,其中該蛋白片段包含一選自由嚴重急性呼吸道症候群冠狀病毒(severe acute respiratory syndrome coronavirus 1,SARS-CoV-1)、新型冠狀病毒(SARS-CoV-2)、中東呼吸症候群冠狀病毒(Middle East respiratory syndrome-related coronavirus,MERS-CoV),以及人類冠狀病毒HKU1(Human coronavirus HKU1,HCoV HKU1)所組成之群組的冠狀病毒的核殼蛋白的二聚化結構域(dimerization domain)及/或該冠狀病毒的核殼蛋白的羧基端結構域(C-terminal domain,CTD),或由一人類冠狀病毒OC43(HCoV OC43)的核殼蛋白的二聚化結構域及羧基端結構域所組成。 A protein fragment is used to increase the expression of a target gene, wherein the protein fragment includes a protein selected from severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), novel coronavirus (SARS-CoV- 2) Dimerization of nucleocapsid proteins of coronaviruses from the group consisting of Middle East respiratory syndrome-related coronavirus (MERS-CoV) and human coronavirus HKU1 (HCoV HKU1) dimerization domain (dimerization domain) and/or the carboxyl-terminal domain (CTD) of the nucleocapsid protein of the coronavirus, or dimerization of the nucleocapsid protein of a human coronavirus OC43 (HCoV OC43) domain and carboxyl-terminal domain. 如請求項1所述之用途,其中該包含一選自由嚴重急性呼吸道症候群冠狀病毒、新型冠狀病毒、中東呼吸症候群冠狀病毒,以及人類冠狀病毒HKU1所組成之群組的冠狀病毒的核殼蛋白的二聚化結構域及/或該冠狀病毒的核殼蛋白的羧基端結構域的蛋白片段進一步包含至少一種選自由下列所組成之群組的結構域:該冠狀病毒的核殼蛋白的胺基端結構域(N-terminal domain,NTD)、該冠狀病毒的核殼蛋白的RNA結合結構域(RNA binding domain,RBD),以及該冠狀病毒的核殼蛋白的連接子(linker)。 The use as described in claim 1, wherein the nucleocapsid protein of a coronavirus selected from the group consisting of severe acute respiratory syndrome coronavirus, novel coronavirus, Middle East respiratory syndrome coronavirus, and human coronavirus HKU1 The dimerization domain and/or the protein fragment of the carboxyl-terminal domain of the nucleocapsid protein of the coronavirus further comprises at least one domain selected from the group consisting of: the amino terminus of the nucleocapsid protein of the coronavirus The N-terminal domain (NTD), the RNA binding domain (RBD) of the nucleocapsid protein of the coronavirus, and the linker of the nucleocapsid protein of the coronavirus. 如請求項1所述之用途,其中該蛋白片段包含與選自由下列所組成之群組的胺基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%,或100%相似度的胺基酸序列:SEQ ID NO:1、12、13、15、17、18、19、20、21、22、23、28、29、30、31、32、33、34、35,以及36。 The use as described in claim 1, wherein the protein fragment contains at least 90%, 91%, 92%, 93%, 94%, 95%, 96% of an amino acid sequence selected from the group consisting of: , 97%, 98%, 99%, or 100% similar amino acid sequence: SEQ ID NO: 1, 12, 13, 15, 17, 18, 19, 20, 21, 22, 23, 28, 29 , 30, 31, 32, 33, 34, 35, and 36. 一種用於增加一目標基因表現之蛋白片段,包含與選自由下列所組成之群組的胺基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%,或100%相似度的胺基酸序列:SEQ ID NO:19以及SEQ ID NO:20。 A protein fragment for increasing the expression of a target gene, comprising at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, Amino acid sequences with 97%, 98%, 99%, or 100% similarity: SEQ ID NO: 19 and SEQ ID NO: 20. 一種聚核苷酸,其編碼一如請求項4所述之蛋白片段。 A polynucleotide encoding a protein fragment as described in claim 4. 一種質體,包含編碼一如請求項4所述之蛋白片段的一核苷酸序列,以及在該核苷酸序列的5’端的一啟動子(promoter)序列。 A plasmid comprising a nucleotide sequence encoding a protein fragment as described in claim 4, and a promoter sequence at the 5' end of the nucleotide sequence. 一種細胞,包含一如請求項4所述之蛋白片段、一如請求項5所述之聚核苷酸,或一如請求項6所述之質體。 A cell comprising a protein fragment as described in claim 4, a polynucleotide as described in claim 5, or a plastid as described in claim 6. 一種增加一目標基因表現之方法,包含下列步驟:(1)提供一質體,其中該質體包含編碼一蛋白片段的一核苷酸序列以及在該核苷酸序列的5’端的一啟動子序列,其中該蛋白片段包含一選自由嚴重急性呼吸道症候群冠狀病毒、新型冠狀病毒、中東呼吸症候群冠狀病毒,以及人類冠狀病毒HKU1所組成之群組的冠狀病毒的核殼蛋白的二聚化結構域及/或該冠狀病毒的核殼蛋白的羧基端結構域(CTD),或由一人類冠狀病毒OC43的核殼蛋白的二聚化結構域及羧基端結構域所組成,(2)提供一含有該目標基因的表現載體,(3)將步驟(1)之質體與步驟(2)之表現載體共轉染至一表現宿主細胞,以及(4)提供一適當條件使該目標基因表現。 A method for increasing the expression of a target gene, comprising the following steps: (1) providing a plasmid, wherein the plasmid contains a nucleotide sequence encoding a protein fragment and a promoter at the 5' end of the nucleotide sequence Sequence, wherein the protein fragment includes a dimerization domain of a nucleocapsid protein of a coronavirus selected from the group consisting of severe acute respiratory syndrome coronavirus, novel coronavirus, Middle East respiratory syndrome coronavirus, and human coronavirus HKU1 and/or the carboxyl-terminal domain (CTD) of the nucleocapsid protein of the coronavirus, or consisting of the dimerization domain and the carboxyl-terminal domain of the nucleocapsid protein of human coronavirus OC43, (2) providing a For the expression vector of the target gene, (3) co-transfect the plasmid of step (1) and the expression vector of step (2) into an expression host cell, and (4) provide an appropriate condition to express the target gene. 一種增加一目標基因表現之方法,包含下列步驟:(1)提供一細胞,其中該細胞包含一蛋白片段、編碼該蛋白片段的一聚核苷酸,或一質體,其中該質體包含編碼該蛋白片段的一核苷酸序列以及在該核苷酸序列的5’端的一啟動子序列,其中該蛋白片段包含一選自由嚴重急性呼吸道症候群冠狀 病毒、新型冠狀病毒、中東呼吸症候群冠狀病毒,以及人類冠狀病毒HKU1所組成之群組的冠狀病毒的核殼蛋白的二聚化結構域及/或該冠狀病毒的核殼蛋白的羧基端結構域(CTD),或由一人類冠狀病毒OC43的核殼蛋白的二聚化結構域及羧基端結構域所組成,(2)提供一含有該目標基因的表現載體,(3)將步驟(2)之表現載體轉染至步驟(1)之細胞中,以及(4)提供一適當條件使該目標基因表現。 A method for increasing the expression of a target gene, comprising the following steps: (1) providing a cell, wherein the cell contains a protein fragment, a polynucleotide encoding the protein fragment, or a plasmid, wherein the plasmid contains the encoding A nucleotide sequence of the protein fragment and a promoter sequence at the 5' end of the nucleotide sequence, wherein the protein fragment includes a protein selected from the group consisting of severe acute respiratory syndrome coronavirus The dimerization domain of the nucleocapsid protein of the coronavirus, the novel coronavirus, the Middle East respiratory syndrome coronavirus, and the human coronavirus HKU1 and/or the carboxyl-terminal domain of the nucleocapsid protein of the coronavirus (CTD), or consisting of the dimerization domain and carboxyl-terminal domain of the nucleocapsid protein of human coronavirus OC43, (2) providing an expression vector containing the target gene, (3) combining step (2) The expression vector is transfected into the cells in step (1), and (4) an appropriate condition is provided to express the target gene. 一種篩選抑制病毒的藥物之方法,包含下列步驟:(1)提供一質體,其中該質體包含編碼一蛋白片段的一核苷酸序列以及在該核苷酸序列的5’端的一啟動子序列,其中該蛋白片段包含一選自由嚴重急性呼吸道症候群冠狀病毒、新型冠狀病毒、中東呼吸症候群冠狀病毒,以及人類冠狀病毒HKU1所組成之群組的冠狀病毒的核殼蛋白的二聚化結構域及/或該冠狀病毒的核殼蛋白的羧基端結構域(CTD),或由一人類冠狀病毒OC43的核殼蛋白的二聚化結構域及羧基端結構域所組成,(2)提供一含有一報導基因的病毒微型基因組系統(minigenome system),(3)將步驟(1)之質體與步驟(2)之病毒微型基因組系統共轉染至一表現宿主細胞,(4)對該表現宿主細胞加入一候選藥物,(5)觀察該報導基因的表現,若該報導基因不表現,則該候選藥物具有抑制病毒的效果。 A method for screening drugs that inhibit viruses, comprising the following steps: (1) providing a plasmid, wherein the plasmid contains a nucleotide sequence encoding a protein fragment and a promoter at the 5' end of the nucleotide sequence Sequence, wherein the protein fragment includes a dimerization domain of a nucleocapsid protein of a coronavirus selected from the group consisting of severe acute respiratory syndrome coronavirus, novel coronavirus, Middle East respiratory syndrome coronavirus, and human coronavirus HKU1 and/or the carboxyl-terminal domain (CTD) of the nucleocapsid protein of the coronavirus, or consisting of the dimerization domain and the carboxyl-terminal domain of the nucleocapsid protein of human coronavirus OC43, (2) providing a A reporter gene viral minigenome system (minigenome system), (3) co-transfecting the plasmid of step (1) and the viral minigenome system of step (2) into a expressing host cell, (4) Add a candidate drug to the cells, and (5) observe the expression of the reporter gene. If the reporter gene does not express, the candidate drug has the effect of inhibiting the virus. 一種篩選抑制病毒的藥物之方法,包含下列步驟:(1)提供一細胞,其中該細胞包含一蛋白片段、編碼該蛋白片段的一聚核苷酸,或一質體,其中該質體包含編碼該蛋白片段的一核苷酸序列以及在該核苷酸序列的5’端的一啟動子序列,其中該蛋白片段包含一選自由嚴重急性呼吸道症候群冠狀病毒、新型冠狀病毒、中東呼吸症候群冠狀病毒,以及人類冠狀病毒HKU1所組成之群組的冠狀病毒的核殼蛋白的二聚化結構域及/或該冠狀病毒的核殼蛋 白的羧基端結構域(CTD),或由一人類冠狀病毒OC43的核殼蛋白的二聚化結構域及羧基端結構域所組成,(2)提供一含有一報導基因的病毒微型基因組系統,(3)將步驟(2)之病毒微型基因組系統轉染至步驟(1)之細胞中,(4)對該細胞加入一候選藥物,(5)觀察該報導基因的表現,若該報導基因不表現,則該候選藥物具有抑制病毒的效果。 A method for screening drugs that inhibit viruses, comprising the following steps: (1) providing a cell, wherein the cell contains a protein fragment, a polynucleotide encoding the protein fragment, or a plasmid, wherein the plasmid contains the encoding A nucleotide sequence of the protein fragment and a promoter sequence at the 5' end of the nucleotide sequence, wherein the protein fragment includes a virus selected from the group consisting of severe acute respiratory syndrome coronavirus, novel coronavirus, and Middle East respiratory syndrome coronavirus, and the dimerization domain of the nucleocapsid protein of the coronavirus of the group consisting of human coronavirus HKU1 and/or the nucleocapsid protein of the coronavirus The carboxyl-terminal domain (CTD) of white may be composed of the dimerization domain and the carboxyl-terminal domain of the nucleocapsid protein of human coronavirus OC43, (2) provide a viral minigenome system containing a reporter gene, (3) Transfect the viral minigenome system of step (2) into the cells of step (1), (4) add a candidate drug to the cells, (5) observe the expression of the reporter gene, if the reporter gene does not performance, the candidate drug has the effect of inhibiting the virus. 如請求項10或11所述之方法,其中該報導基因為一螢光蛋白基因。 The method according to claim 10 or 11, wherein the reporter gene is a fluorescent protein gene. 如請求項10或11所述之方法,其中該病毒微型基因組系統為一伊波拉病毒微型基因組系統(EBOV minigenome system),該伊波拉病毒微型基因組系統由下列所組成:一含有一報導基因的伊波拉病毒微型基因組的表現載體、一含有編碼伊波拉病毒核殼蛋白(nucleocapsid protein,NP)基因的表現載體、一含有編碼伊波拉病毒聚合酶蛋白(polymerase protein,L)基因的表現載體、一含有編碼伊波拉病毒VP30蛋白基因的表現載體,以及一含有編碼伊波拉病毒VP35蛋白基因的表現載體。 The method of claim 10 or 11, wherein the viral minigenome system is an Ebola virus minigenome system (EBOV minigenome system), and the Ebola virus minigenome system consists of the following: an EBOV minigenome system containing a reporter gene An expression vector for Ebola virus minigenome, an expression vector containing a gene encoding Ebola virus nucleocapsid protein (NP), an expression vector containing a gene encoding Ebola virus polymerase protein (L), and an expression vector containing An expression vector encoding Ebola virus VP30 protein gene, and an expression vector containing a gene encoding Ebola virus VP35 protein. 如請求項8至11任一項所述之方法,其中該包含一選自由嚴重急性呼吸道症候群冠狀病毒、新型冠狀病毒、中東呼吸症候群冠狀病毒,以及人類冠狀病毒HKU1所組成之群組的冠狀病毒的核殼蛋白的二聚化結構域及/或該冠狀病毒的核殼蛋白的羧基端結構域的蛋白片段進一步包含至少一種選自由下列所組成之群組的結構域:該冠狀病毒的核殼蛋白的胺基端結構域(NTD)、該冠狀病毒的核殼蛋白的RNA結合結構域(RBD),以及該冠狀病毒的核殼蛋白的連接子(linker)。 The method of any one of claims 8 to 11, wherein the coronavirus is selected from the group consisting of severe acute respiratory syndrome coronavirus, novel coronavirus, Middle East respiratory syndrome coronavirus, and human coronavirus HKU1 The dimerization domain of the nucleocapsid protein and/or the protein fragment of the carboxyl-terminal domain of the nucleocapsid protein of the coronavirus further comprises at least one domain selected from the group consisting of: the nucleocapsid of the coronavirus The amino terminal domain (NTD) of the protein, the RNA binding domain (RBD) of the nucleocapsid protein of the coronavirus, and the linker of the nucleocapsid protein of the coronavirus. 如請求項8至11任一項所述之方法,其中該蛋白片段包含與選自由下列所組成之群組的胺基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%,或100%相似度的胺基酸序列:SEQ ID NO:1、12、13、15、17、18、19、20、21、22、23、28、29、30、31、32、33、34、35,以及36。The method according to any one of claims 8 to 11, wherein the protein fragment comprises at least 90%, 91%, 92%, 93%, 94% of an amino acid sequence selected from the group consisting of: Amino acid sequence with 95%, 96%, 97%, 98%, 99%, or 100% similarity: SEQ ID NO: 1, 12, 13, 15, 17, 18, 19, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, and 36.
TW111125822A 2022-07-08 Fragments of coronavirus nucleocapsid protein for increasing gene expression and application thereof TWI833281B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111125822A TWI833281B (en) 2022-07-08 Fragments of coronavirus nucleocapsid protein for increasing gene expression and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111125822A TWI833281B (en) 2022-07-08 Fragments of coronavirus nucleocapsid protein for increasing gene expression and application thereof

Publications (2)

Publication Number Publication Date
TW202402783A TW202402783A (en) 2024-01-16
TWI833281B true TWI833281B (en) 2024-02-21

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210260180A1 (en) 2020-02-14 2021-08-26 Altimmune, Inc Coronavirus immunogenic compositions and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210260180A1 (en) 2020-02-14 2021-08-26 Altimmune, Inc Coronavirus immunogenic compositions and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
期刊 Vanmechelen et al., "Identification of novel Ebola virus inhibitors using biologically contained virus" Antiviral Research, 200,105294, ELSEVIER, Available online 23 March 2022, p.1-11

Similar Documents

Publication Publication Date Title
CN111405912A (en) Polynucleotides, compositions and methods for genome editing
US9550987B2 (en) Riboregulator compositions and methods of use
JP4886931B2 (en) Method and polynucleotide for determining codon translation efficiency
KR20230028375A (en) Genetic elements driving circular RNA translation and methods for using them
EP4219806A2 (en) Adeno-associated virus library
JP2022505402A (en) Compositions and Methods for Expression of Introduced Genes from the Albumin Locus
Geerts-Dimitriadou et al. Analysis of the Tomato spotted wilt virus ambisense S RNA-encoded hairpin structure in translation
Noton et al. The first two nucleotides of the respiratory syncytial virus antigenome RNA replication product can be selected independently of the promoter terminus
Sweeney et al. Delivery of large transgene cassettes by foamy virus vector
Rehfeld et al. CRISPR screening reveals a dependency on ribosome recycling for efficient SARS-CoV-2 programmed ribosomal frameshifting and viral replication
Choi et al. Replicase-binding sites on plus-and minus-strand brome mosaic virus RNAs and their roles in RNA replication in plant cells
TWI833281B (en) Fragments of coronavirus nucleocapsid protein for increasing gene expression and application thereof
TW202402783A (en) Fragments of coronavirus nucleocapsid protein for increasing gene expression and application thereof
AU2020245425A1 (en) Multiplexing regulatory elements to identify cell-type specific regulatory elements
Wierzchoslawski et al. A transcriptionally active subgenomic promoter supports homologous crossovers in a plus-strand RNA virus
Laham-Karam et al. Transduction of human immunodeficiency virus type 1 vectors lacking encapsidation and dimerization signals
WO2019018555A1 (en) Antisense fingerloop dnas and uses thereof
Habig et al. Sequence identity of the direct repeats, DR1 and DR2, contributes to the discrimination between primer translocation and in situ priming during replication of the duck hepatitis B virus
US20230053353A1 (en) Targeting transfer rna for the suppression of nonsense mutations in messenger rna
WO2021133871A2 (en) Method for identifying regulatory elements
WO2021221956A1 (en) Compositions and methods for production of recombinant adeno-associated virus
TW200827442A (en) Method for amplifying a flavivirus cDNA in a prokaryotic cell
US20230037026A1 (en) Method for identifying regulatory elements conformationally
CN117089576B (en) Method for screening plasmid and PV protease inhibitor and evaluating drug effect
Paré et al. Elena M Thornhill1, Ryan J. Andrews2, Zachary Lozier3, Elizabeth Carino3, Marie-Anne Rameix-Welti4, Jean-François Eléouët4, W Allen Miller3, Walter N. Moss2, and David Verhoeven1,* Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, USA