TWI832691B - 用於運送裝置的健康評估的方法及裝置 - Google Patents
用於運送裝置的健康評估的方法及裝置 Download PDFInfo
- Publication number
- TWI832691B TWI832691B TW112103840A TW112103840A TWI832691B TW I832691 B TWI832691 B TW I832691B TW 112103840 A TW112103840 A TW 112103840A TW 112103840 A TW112103840 A TW 112103840A TW I832691 B TWI832691 B TW I832691B
- Authority
- TW
- Taiwan
- Prior art keywords
- torque
- predetermined
- basic
- command
- dynamic performance
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 127
- 230000036541 health Effects 0.000 title claims abstract description 56
- 230000033001 locomotion Effects 0.000 claims abstract description 410
- 238000011065 in-situ storage Methods 0.000 claims abstract description 91
- 230000008569 process Effects 0.000 claims abstract description 88
- 230000006866 deterioration Effects 0.000 claims description 45
- 230000006870 function Effects 0.000 claims description 20
- 230000002776 aggregation Effects 0.000 claims description 7
- 238000004220 aggregation Methods 0.000 claims description 7
- 238000013507 mapping Methods 0.000 claims description 4
- 230000000875 corresponding effect Effects 0.000 description 76
- 239000000463 material Substances 0.000 description 42
- 238000012545 processing Methods 0.000 description 23
- 239000000758 substrate Substances 0.000 description 22
- 238000011156 evaluation Methods 0.000 description 20
- 230000015556 catabolic process Effects 0.000 description 19
- 238000006731 degradation reaction Methods 0.000 description 19
- 230000001133 acceleration Effects 0.000 description 18
- 238000003745 diagnosis Methods 0.000 description 11
- 101100264195 Caenorhabditis elegans app-1 gene Proteins 0.000 description 10
- 230000008859 change Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 101000635761 Homo sapiens Receptor-transporting protein 3 Proteins 0.000 description 8
- 102100030849 Receptor-transporting protein 3 Human genes 0.000 description 8
- 238000004891 communication Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000012544 monitoring process Methods 0.000 description 8
- 241000209094 Oryza Species 0.000 description 7
- 235000007164 Oryza sativa Nutrition 0.000 description 7
- 235000009566 rice Nutrition 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 5
- 238000012512 characterization method Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000010606 normalization Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 210000000245 forearm Anatomy 0.000 description 3
- 230000003862 health status Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 101150013030 FAN1 gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005284 basis set Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000002310 elbow joint Anatomy 0.000 description 1
- 238000010265 fast atom bombardment Methods 0.000 description 1
- 230000009474 immediate action Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 238000005007 materials handling Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 210000000323 shoulder joint Anatomy 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 210000003857 wrist joint Anatomy 0.000 description 1
Images
Landscapes
- Manipulator (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
一種用於評估包括運送裝置的系統的健康的方法,該方法包括記錄預定操作資料,該預定操作資料體現由該運送裝置輸出的至少一個動態性能變數,確定由各該動態性能變數輸出的機率密度函數所特徵化的基本值(C
pkBase),從該運送裝置分解裝置控制器的原位過程運動命令並定義該運送裝置的另一個預定運動組,記錄體現由該運送裝置輸出的該至少一個動態性能變數的預定操作資料並用處理器確定藉由該運送裝置所輸出的各該動態性能變數的機率密度函數來加以特徵化的另一個值(C
pkOther),以及針對由分別地對應於預定運動基本組和該其他的預定運動組的運送裝置所輸出的各該動態性能變數而將該其他的值和基本值(C
pkBase)進行比較。
Description
相關申請案的交互參照:本專利申請案主張2017年5月5日申請的美國臨時專利申請案第62/502,292號的優先權和權益,其所揭露內容藉由引用全部併入本申請全文。示例性實施例總體上涉及自動化處理系統。
1。領域:示例性實施例更具體地係涉及自動化處理系統的健康評估和預測診斷。
2。相關發展簡述:由於自動化製造工具(例如用於生產半導體元件的自動化材料處理平台)中使用的機器人操縱器和其他機電元件的故障導致的材料損壞和非計劃停機時間是常見的問題,這通常代表了製造工具的終端用戶的鉅額費用負擔。
已經為工業、汽車和航空航天應用開發了許多健康監測和故障診斷(health-monitoring and fault-diagnostic,HMFD)方法。現有系統典型地實現故障檢測以指示被監測系統中的某些地方發生錯誤,故障隔離以確定故障的確切位置(即故障的組件),以及確定故障大小的故障識別。
該隔離連同該識別任務通常被稱為故障診斷。許多現有系統僅執行故障檢測和隔離階段。
儘管這些故障診斷方案有助於故障檢測,其中之隔離和自適應恢復,仍然使元件、工具、FAB(例如製造設施/工廠)或其他自動化裝置以有限的或實質上不存在的預測範圍而以實質上地回應方式來運行。預測方法被認知為是嘗試將預測範圍增加到故障診斷系統,例如自動化裝置的數學建模,其中將自動化裝置變數的傳感測量結果與各個變數(例如是從自動化裝置的牛頓動力學模型或類神經網路動力學模型而產生)的分析計算值進行比較,數學模型代表標稱條件。這種方法受到例如信號雜訊和模型誤差等非保守因素的影響,這些因素不可預測地並且不利地影響分析(標稱)值與由傳感測量結果來的值之間的結果差異,並且需要故障診斷系統在處理能力和/或重複/冗餘傳感系統以及資料系統做進一步的投資來解決這種非保守因素。
存在有提供沒有非保守因素相關的數學建模的故障預測的故障診斷系統將是有利的。
及
儘管將參照附圖來描述所揭露的實施例的態樣,但應理解,所揭露的實施例的態樣可以以許多形式來體現。另外,可以使用任何合適的尺寸、形狀或類型的元素或材料。
本文描述的所揭露實施例的態樣提供了一種用於使用可用變數來量化自動化系統(例如在此所描述的那些關於圖1~4E)的健康狀態和預測診斷的方法和裝置,該些可用變數受該自動化系統的任何合適的控制器監測(其中該控制器包括用於實現所揭露的實施例的態樣之非暫時性電腦軟體碼)。健康狀態的度量藉由所揭露的實施例的態樣透過針對所收集的變數的獨特統計資料處理來實現,該所收集的變數獨特地與多個裝置的給定裝置和/或系統相關聯並且獨特地將該多個裝置的給定裝置和/或系統特徵化為一個提供該給定裝置和/或系統的預測診斷的健康狀態量。所揭露的實施例的態樣可以允許自動化系統的控制器使用“基線”(其包括如本文所述之基本值和/或基本運動)的概念來確定被監測的變數(獨特元件的)的統計特性(該獨特元件的獨特特徵),並且促進進一步地將未來的表現與這些基線進行比較。結果,所揭露的實施例的方法和裝置可以允許自動化系統的控制器基於趨勢分析執行預測,允許自動化系統的控制器基於與受監測的自動化系統截然不同的資料來做用於預防性維護的建議。所揭露的實施例的態樣還可以允許對難以確定可接受的和可行的規格的變數進行操作的預期限制的識別。
儘管在此將描述具有三個自由度(theta旋轉、R延伸和Z提昇運動)的半導體機器人(本文也稱為機器人操縱器)之所揭露的實施例的態樣,然在其他態樣,半導體機器人可具有多於或少於三個自由度。仍然在其他態樣中,所揭露的實施例可以應用於具有單一運動(例如機器人運送、裝載端口、對準器、泵、風扇、閥門等)自由度的半導體處理系統的其他組件。還應該理解的是,所揭露的實施例的態樣可以用於任何自動化和/或受電元件或系統(包括,例如,上述裝置和/或元件的組合),該任何自動化和/或受電元件或系統能夠採樣相似的或相關的性能監測資料,其中該性能監測資料獨特地與每個獨特裝置、元件和/或系統相關並且獨特地特徵化該每個獨特裝置、元件和/或系統。
所揭露的實施例的態樣提供基於統計參數歸一化之一種型式的度量,該統計參數允許不同物理意義的變數(例如溫度與最大扭矩)進行直接比較。這樣的比較允許計算這些無關變數對受監測的自動化系統的總體健康狀況的影響。
圖1顯示出了根據所揭露的實施例的態樣之用於包含自動化裝置健康評估和預測診斷的自動化裝置之示例性控制器100。所揭露的實施例的態樣可以以硬體或軟體進行操作。例如,所揭露的實施例的態樣可以常駐在組件控制器、指引多個組件的操作的控制器、控制子系統的控制器或系統控制器之中。所揭露的實施例的態樣也可以用專用硬體或軟體來實現。
控制器100可以是自動化裝置(例如像是圖3所示的自動化材料處理平台300)的任何合適的控制器,並且可以普遍地包括處理器105、唯讀記憶體110、隨機存取記憶體115、程式儲存器120、用戶介面125和網路介面130。處理器105可以包括內建快取記憶體135並且通常地可操作以從電腦程式產品,舉例來說電腦可用介質(例如像是內建快取記憶體135、唯讀記憶體110、隨機存取記憶體115和程式儲存器120)來讀取資訊和程式。
在開啟電源時,處理器105可以開始操作在唯讀記憶體110中找到的程式,並且在初始化之後,可以將來自程式儲存器120的指令加載到隨機存取記憶體115並且在那些程式的控制下操作。經常使用的指令可以暫時地儲存在內建快取記憶體135中。唯讀記憶體110和隨機存取記憶體115都可以利用半導體科技或任何其他適當的材料和技術。程式儲存器120可以包括磁碟片、電腦硬碟、光碟(CD)、數位通用光碟(DVD),光碟(optical disk)、晶片、半導體或能夠以電腦可讀程式碼的形式來儲存程式的任何其他裝置。
內建快取記憶體135、唯讀記憶體110、隨機存取記憶體115和程式儲存器120單獨或以任何組合的形式可以包括操作系統程式。操作系統程式可以補充有可選的即時操作系統,以改善由功能控制器100提供的資料的質量並且允許功能控制器100提供保證回應時間。
具體而言,單獨或以任何組合的形式的內建快取記憶體135、唯讀記憶體110、隨機存取記憶體115和程式儲存器120可以包括用於致使處理器105執行根據以下本文所描述之所揭露的實施例之態樣的故障診斷和故障預測的程式。網路介面130通常可以適用於提供控制器100與其他控制器或其他系統之間的介面。網路介面130可以操作為從一個或多個附加功能控制器接收資料並將資料傳遞到相同或其他的功能控制器。網路介面130還可以提供至可以提供遠程監視和診斷服務的全球診斷系統的介面。
通信網路190可以包括公共交換電話網路(PSTN)、網際網路、無線網路、有線網路、區域網路(LAN)、廣域網路(WAN)、虛擬專用網路(VPN)等,並且還可以包括其他類型的網路,包括X.25、TCP/IP、ATM等。
控制器100可以包括具有顯示器140的用戶介面125和例如像是鍵盤155或滑鼠145的輸入裝置。用戶介面可以在處理器105的控制下由用戶介面控制器150操作,並且可以向用戶提供圖形用戶介面以可視化健康監測和故障診斷的結果。用戶介面也可用於指導維修人員來完成故障排除例行工作或維修程序。另外,用戶介面控制器還可以提供用於與其他功能控制器、外部網路、另一個控制系統或主機進行通信的連接或介面180。
用於製造半導體元件的示例性材料處理平台被圖解地描繪在圖2,連同對表1中所列出的主要組件的解釋性說明,其中所揭露的實施例的態樣可以在該半導體元件中實現。圖2的材料處理平台的一種或多種控制器可以包括如本文關於圖1所描述的控制器。
表1:圖2的自動化材料處理平台300(也稱為處理工具)的解釋性說明。
編號 | 說明 |
301 | 大氣部分 |
302 | 真空部分 |
303 | 處理模組 |
304 | 外殼 |
305 | 裝載端口 |
306 | 大氣機器人操縱器 |
307 | 基底對準器 |
308 | 風扇過濾器單元 |
309 | 真空室 |
310 | 負載鎖 |
311 | 真空機器人操縱器 |
312 | 真空泵 |
313 | 狹縫閥 |
314 | 工具控制器 |
315 | 大氣部分控制器 |
316 | 真空部分控制器 |
317 | 處理控制器 |
318 | 裝載端口控制器 |
319 | 大氣機器人控制器 |
320 | 對準器控制器 |
321 | 風扇過濾器單元控制器 |
322 | 電動機控制器 |
323 | 真空機器人控制器 |
自動化材料處理平台300具有大氣部分301、真空部分302和一個或多個處理模組303。
大氣部分301可以包括外殼304、一個或多個裝載端口305、一個或多個機器人操縱器306、一個或多個基底對準器307和風扇過濾器單元308。其還可以包括一個或多個電離單元(未顯示出)。真空部分可以包括真空室309、一個或多個負載鎖310、一個或多個機器人操縱器311、一個或多個真空泵312和多個狹縫閥313,它們通常位於大氣部分301與負載鎖310的交界面、介於負載鎖310與真空室309之間以及介於真空室309與處理模組303之間。
平台的操作由監控大氣部分控制器315的工具控制器314、真空部分控制器316和一個或多個處理控制器317協調。大氣部分控制器315負責一個或多個裝載端口控制器318、一個或多個大氣機器人控制器319、一個或多個對準器控制器320和風扇過濾器單元控制器321。裝載端口控制器318、大氣機器人控制器319和對準器控制器320中的每一個依次負責一個或多個電動機控制器322。真空部分控制器316負責一個或多個真空機器人控制器323,控制真空泵312並操作狹縫閥313。處理控制器317的作用取決於在處理模組303中執行的操作。
在某些情況下,將兩個或更多控制層合併到一個控制器中可能很實用。例如,大氣機器人控制器319和相應的電動機控制器322可以組合在單個集中式機器人控制器中,或者大氣部分控制器315可以與大氣機器人控制器319組合以消除對兩個單獨的控制器單元的需求。
可以在圖2的自動化材料處理平台300中採用五軸直接驅動機器人操縱器400,其中一個或更多個大氣機器人操縱器306和真空機器人操縱器311係實質上類似於機器人操縱器400。圖3提供了一個這樣的機器人操縱器400的簡化示意圖。主要組件的解釋性註釋在表2中列出。在一個態樣中,所揭露的實施例的態樣可以在機器人操縱器400內實現;然而,應該理解的是,雖然所揭露的實施例的態樣是針對機器人操縱器進行描述的,但是所揭露的實施例的態樣可以在自動化材料操作平台300的任何合適的自動化部分中實現,該自動化材料操作平台300包括但不限於運送機器人,裝載端口,對準器,泵,風扇,閥等等,注意到圖8A中的控制器800是對用於上述中任何一個自動化設備的控制器的一般性表示。注意到機器人操縱器400被繪示為僅用於示例性目的的五軸直接驅動機器人操縱器,並且在其他方面,機器人操縱器(或包括所揭露實施例的態樣之處理工具的其他自動化部分)可以具有任何適當數量的驅動軸,具有任意合適的自由度以及具有直接或間接驅動系統。
表2:圖3的機器人操縱器400的解釋性說明。
編號 | 說明 |
401 | 機器人方塊架 |
402 | 安裝凸緣 |
403 | 垂直導軌 |
404 | 線性軸承 |
405 | 載運器 |
406 | 垂直驅動電動機 |
407 | 滾珠螺桿 |
408 | 電動機1(主動桿1) |
409 | 電動機2(主動桿2) |
410 | 編碼器1(連接到電動機1) |
411 | 編碼器2(連接到電動機2) |
412 | 外軸 |
413 | 內軸 |
414 | 連桿1(上臂) |
415 | 皮帶主動桿2 |
416 | 連桿2(前臂) |
417A | 電動機A(驅動端接器A) |
417B | 電動機B(驅動端接器B) |
418A | 皮帶驅動的第一階段A |
418B | 皮帶驅動的第一階段B |
419A | 皮帶驅動的第二階段A |
419B | 皮帶驅動的第二階段B |
420A | 端接器A(上端接器) |
420B | 端接器B(下端接器) |
421A, 421B | 端接器A和B之有效負載 |
422 | 主控制器 |
423A, 423B, 423C | 電動機控制器 |
424A, 424B | 端接器A和B的電子單元 |
425 | 通信網路 |
426 | 滑環 |
428A, 428B | 映射感測器 |
429 | 電源供應器 |
430 | 真空泵 |
431A, 431B | 閥 |
432A, 432B | 壓力感測器 |
433, 434A, 434B | 唇形密封 |
435 | 制動器 |
參照圖3,機器人操縱器400係圍繞從圓形安裝凸緣402懸置的開放圓柱形方塊架401而建構。方塊架401包括具有線性軸承404的垂直導軌403以經由滾珠螺桿機構407對由無刷DC電動機406驅動的載運器405提供引導。載運器405容納配備有光學編碼器410、411的一對同軸無刷DC電動機408、409。上電動機408驅動連接到機器人手臂的第一連桿414的中空外軸412。下電動機409連接到同軸內軸413,該同軸內軸413經由皮帶驅動器415耦合到第二連桿416。第一連桿414容納無刷DC電動機417A,該無刷DC電動機417A經由兩級皮帶配置418A、419A驅動上端接器420A。採用另一個DC無刷電動機417B和兩級皮帶驅動器418B、419B來致動下端接器420B。每個級418A、418B、419A和419B被設計成在輸入和輸出滑輪之間具有1:2的比率。基底421A和421B藉由真空致動邊緣接觸夾持器、表面接觸吸取夾持器或被動夾持器之用具來分別保持附接到端接器420A和420B。
在整篇正文中,第一連桿414、第二連桿416、上端接器420A和下端接器420B也分別被稱為上臂、前臂、端接器A和端接器B。A點,B點和C點分別表示肩關節、肘關節和腕關節的旋轉耦合。點D表示參考點,其指示相應端接器上的基底中心的期望位置。
範例機器人操縱器的控制系統可以是分佈式的。它包括電源供應器429、主控制器422和電動機控制器423A、423B和423C。主控制器422負責監督任務和軌跡規劃。每個電動機控制器423A、423B和423C執行一個或兩個電動機的位置和電流反饋迴路。在圖3中,控制器423A控制電動機408和409,控制器423B控制電動機417A和417B,並且控制器423C控制電動機406。除了執行反饋迴路之外,電動機控制器還收集例如電動機電流、電動機位置和電動機速度等資料,並將資料魚貫傳輸到主控制器。電動機控制器423A、423B和423C通過高速通信網路425連接到主控制器。由於接頭A是無限旋轉接頭,所以通信網路425係透過滑環426路由。附加的電子單元424A和424B可分別用於支撐端接器420A和420B的邊緣接觸夾持器。
現在參考圖4A~4E,圖3的機器人操縱器400可以包括任何合適的臂連桿機構。臂連桿機構的合適實例可以在,例如2009年8月25日公佈的美國專利號7,578,649,1998年8月18日公佈的5,794,487,2011年5月24日公佈的7,946,800,2002年11月26日公佈的6,485,250,2011年2月22日公佈的7,891,935,2013年4月16日公佈的8,419,341和2011年11月10日申請的名稱為“Dual Arm Robot”的美國專利申請號13/293,717和13/861,693,2013年9月5日申請的名稱為“Linear Vacuum Robot with Z Motion and Articulated Arm”,其所揭露內容全部通過引用併入本文。在所揭露的實施例的態樣中,每個運送單元模組104的至少一個傳遞臂、吊桿臂143和/或線性滑軌144可以從常規SCARA臂315(選擇性順應關節式機器人臂)(圖4C)類型的設計衍生而來,其包括上臂315U、帶驅動的前臂315F和帶約束的端接器315E,或者可以從伸縮臂或任何其他合適的臂設計,例如笛卡爾直線滑動臂314(圖4B)。運送臂的合適實例可以在例如2008年5月8日申請的名稱為“Substrate Transport Apparatus with Multiple Movable Arms Utilizing a Mechanical Switch Mechanism”的美國專利申請號12/117,415以及2010年1月19日公佈的美國專利號7,648,327,其所揭露內容通過引用整體併入本文。運送臂的操作可以彼此獨立(例如,每個臂的延伸/縮回係獨立於其他臂),可以通過空轉開關操作,或者可以以任何合適的方式可操作地連接,使得臂共享至少一個共同的驅動軸。還有在其他態樣中,運送臂可以具有任何其他期望的佈置,例如蛙腿臂316(圖4A)配置,跳蛙臂317(圖4E)配置,雙對稱臂318(圖4D)配置等。合適的運送臂的例子可以在2001年5月15日公佈的美國專利6,231,297,1993年1月19日公佈的5,180,276,2002年10月15日公佈的6,464,448,2001年5月1日公佈的6,224,319,1995年9月5日公佈的美國專利5,447,409,2009年8月25日公佈的美國專利7,578,649,1998年8月18日公佈的5,794,487,2011年5月24日公佈的7,946,800,2002年11月26日公佈的6,485,250,2011年2月22日公佈的7,891,935和於2011年11月10日申請的名稱為”Dual Arm Robot“的美國專利申請號13/293,717以及於2011年10月11日申請的名稱為”Coaxial Drive Vacuum Robot“的13/270,844中找到。其全部內容通過引用併入本文。
仍然參考圖2~4E,本文描述的機器人操縱器306、311、400在空間中的點之間運送基底S(參見圖4A和4B),例如圖5A所示的基底保持站STN1~STN6。為了完成基底S的運送,運動控制演算法在自動化材料處理平台300的任何合適的控制器中運行,例如機器人控制器(也稱為機器人操縱器控制器)319、323、422、423A~423C、810(參見圖2、3和8A),其連接到機器人操縱器306、311、400。運動控制演算法定義在空間中期望的基底路徑,並且位置控制迴路計算期望的控制扭矩(或力)以應用於負責移動空間中的各個機器人自由度的每個機器人致動器。
機器人操縱器306、311、400(其可以被稱為自動化系統)被期望以執行連續傳輸基底S的重複性任務,並且機器人操縱器受到與處理這種基底相關的環境條件的影響。具有如同所揭露的實施例的態樣提供的方法和裝置隨時間監測機器人操縱器(或自動化材料處理平台300的任何其他自動化設備)的性能並且確定(預測診斷)各個機器人操縱器306、311、400是否能夠在期望參數內操作,以便處理其主要任務,例如在基底保持站STN1~STN6之間攜帶和運送基底是有益的。
根據所揭露的實施例的態樣,例如針對機器人操縱器306、311、400所做的健康評估係藉由產生基本統計特徵(例如,運行於典型的環境條件中之給定變數的行為之基線或統計表示)來加以執行,該基本統計特徵針對機器人操縱器306、311、400的一組基本移動/運動(術語移動和運動在本文中可互換使用)820、820A、820B、820C(參見圖8A)特徵化由機器人操縱器306、311、400輸出的每個動態性能變數。基本統計特徵係藉由利用可通信地耦合到諸如控制器319、323、422、423A、423B、423C、810等之自動化材料處理平台300的任何合適的控制器的記錄系統801R(其可以由任何合適的記憶體形成或存在於任何合適的記憶體中,例如儲存器801)來,例如,記錄預定操作資料而產生,該預定操作資料體現了由機器人操縱器306、311、400所輸出的至少一個動態性能變數,其中該預定操作資料實現了預定基本運動之預定運動基本組。
每個動態性能變數對於自動化系統(例如機器人操縱器306、311、400)是特定的,其可以在一組不同的自動化系統中(例如形成自動化材料處理平台300的自動化系統的組),從中獲得動態性能變數。這樣,由於每個動態性能變數對於(自動化系統的組的)自動化系統中之相應的一個為特定的,所以相應的自動化系統的基本統計特徵與相應的自動化系統相互結伴。例如,位於自動化材料處理平台300的大氣部分301中的機器人操縱器306具有相對的基本統計特徵,並且位於真空部分302中的機器人操縱器311具有相對的基本統計特徵。如果機器人操縱器311被放置在大氣部分301中,則機器人操縱器311的基本統計特徵在被置於大氣部分301內時仍然可以應用於機器人操縱器311。在一個態樣中,基本統計特徵係與位在記憶體和/或自動化系統的控制器中之相對的自動化系統相關。此外,每個機器人操縱器可具有影響相對機器人操縱器的基本統計特徵的獨特操作特性。例如,機器人操縱器311和另一個機器人操縱器可以被製造為同一品牌和型號的機器人操縱器。然而,由於,例如存在於機器人驅動系統和臂結構中的製造公差,機器人操縱器311的基本統計特徵可能不適用於其他類似的機器人操縱器,反之亦然。因此,每個機器人操縱器的基本統計特徵與相應的機器人操縱器相互結伴(例如,機器人操縱器311的基本統計特徵C
pkbase與機器人操縱器311一起移動並且對其是獨特的,並且機器人操縱器306的基本統計特徵C
pkbase與機器人操縱器306一起移動並且對其來說是獨特的)。於是,每個裝置,例如機器人操縱器311,是獨特的,並且預定運動基本組820、820A~820C的每個預定基本移動501、502、503的每個歸一化值或基本統計特徵/值C
pkbase和用於其他預定運動組830、830A~830C的每個映射的原位過程移動501’、502’、503’的每個其他的值C
pkother是只與獨特的裝置獨特地相關,並且確定的性能惡化率(例如由線性趨勢模型LTM-見圖11所指出的)只與獨特的裝置獨特地相關。
在一個態樣,系統(例如圖3中所示的自動化材料處理平台300)包括或者以其他方式設置有多個不同的相互連接的獨特裝置(例如對準器307、機器人操縱器306、風扇過濾器單元308等在表1中列出的並且在圖2中顯示出的),以及例如運送裝置311,其中來自多個不同的獨特裝置App(i)(在圖2A中被圖表示地表示為App1~Appn)的每個不同的獨特裝置具有不同的對應的用於預定運動基本組820、820A~820C的每個基本移動501、502、503的歸一化值C
pkBasei(其包括C
pkBase(1-n)),以及用於其他預定運動組830、830A~830C的每個映射的原位過程移動501’、502’、503’的其他歸一化值C
pkOtheri,該其他預定運動組830、830A~830C獨特地與不超過於來自該多個不同的獨特裝置App(i)的該些不同的對應的獨特裝置App1~Appn相關聯。在一個態樣,來自多個不同的獨特裝置App(i)的每個(或至少一個)不同的獨特裝置App1~Appn具有與不同的獨特裝置App1~Appn中的另一個共同的配置。例如,機器人操縱器306可以具有與機器人操縱器311共同的配置。在其他態樣,來自多個不同的獨特裝置App(i)的每個(或至少一個)不同的獨特裝置App1~Appn具有與來自不同的獨特裝置App(i)的另一個不同的配置。例如,對準器307具有與機器人操縱器306不同的配置。
可以直接測量每個自動化裝置和/或系統的動態性能變數(即連續監測變數)或從可用測量結果(即導出變數)中導出。動態性能變數的例子包括:
機械或電功率;
機械功;
機器人端接器加速度;
電動機PWM工作週期:電動機的PWM工作週期是在任何給定時間提供給每個電動機相位的輸入電壓的百分比。健康監測和故障診斷系統可以使用在每個電動機相位的工作週期;
電動機電流:電動機電流表示流過每個電動機的三相中的每一相的電流。電動機電流可被以絕對值的方式或以最大電流百分比的方式獲得。如果以絕對值的方式獲得,則它的單位為安培。電動機電流值可以被反過來藉由使用電動機扭矩-電流關係而被使用來計算電動機扭矩;
實際位置,速度和加速度:這些是每個電動機軸的位置、速度和加速度。對於旋轉軸,位置、速度和加速度值分別以度、度/秒和度/秒
2為單位。對於平移軸,位置、速度和加速度值分別以毫米、毫米/秒
2和毫米/秒
2為單位;
期望的位置、速度和加速度:這些是命令電動機的控制器所具有的位置、速度和加速度值。這些屬性與上面的實際位置、速度和加速度具有相似的單位;
位置和速度追蹤誤差:這些是各個期望值和實際值之間的差異。這些屬性與上面的實際位置、速度和加速度具有相似的單位;
安定時間:這是自動化裝置和/或系統用於決定位置和速度追蹤誤差於運動結束時在指定窗口內所花的時間;
編碼器類比和絕對位置輸出:電動機位置由編碼器決定,編碼器輸出兩種類型的信號-類比信號和絕對位置信號。類比信號是以mVolts為單位的正弦和餘弦信號。絕對位置信號是非揮發性整數值,其指示類比正弦週期的數量或已經過去的類比正弦週期的整數倍。通常情況下,數位輸出在電源開啟時讀取,此後軸位置僅由類比信號確定;
夾持器狀態:這是夾持器的狀態-打開或關閉。在真空致動邊緣接觸夾持器的情況下,它是一個或多個感測器的受阻/未受阻狀態;
真空系統壓力:這是由真空感測器測量的真空度。這是一個類比感測器,其輸出藉由類比數位轉換器進行數位化。在吸取夾持器的情況下,真空度指示晶圓是否被夾持;
基底存在感測器狀態:在被動夾持端接器中,晶圓存在感測器輸出是二進制輸出。在真空致動邊緣接觸夾持端接器中,晶圓存在是從兩個或更多個感測器的輸出狀態來確定,每個感測器都是二進制的;
映射器感測器狀態:這是映射器感測器的狀態-在任何給定情況下為受阻或未受阻;
基底映射器/對準器檢測器光強度:這是由基底映射器或對準器的光檢測器檢測到的光的強度的量度。該信號通常以整數值形式提供(例如,其範圍可以為0~1024);
基底映射器感測器位置擷取資料:這是映射器感測器改變狀態的機器人軸位置值的陣列;
真空閥狀態:這是真空閥的指令狀態。它具體指出了操作真空閥的電磁圈是否應該通電;
保險絲輸出端子的電壓:監控電動機控制電路中每個保險絲輸出端子的電壓。熔斷保險絲導致低輸出端子電壓;
基底對準資料:這是對準器所報告的基底的對準基準的基底偏心向量和角定位;
外部基底感測器轉換時的位置資料:在某些情況下,工具的大氣和真空部分可能配備了光學感測器,用於檢測由機器人攜帶的基底的前緣和後緣。對應於這些事件的機器人位置資料被用於機器人端接器上的基底的偏心率的即時識別;
基底循環時間:這是自動化裝置和/或系統對於單個基底被工具處理所花費的時間,通常在穩定流動條件下測量;
小環境壓力:這是由工具的大氣部分中的壓力感測器所測得的壓力。
連續監測變數的具體例子包括:
表3:連續監測變數
名稱 | 單位縮寫 | 單位全名 |
T1位置_實際 | deg | Degrees(度) |
T2位置_實際 | deg | Degrees(度) |
Z位置_實際 | m | Meters(米) |
T1速度_實際 | deg/sec | Degrees per second(度/秒) |
T2速度_實際 | deg/sec | Degrees per second(度/秒) |
Z速度_實際 | m/sec | Meters per second(米/秒) |
T1加速度_實際 | deg/sec2 | Degrees per second squared (度/每秒平方) |
T2加速度_實際 | deg/sec2 | Degrees per second squared (度/每秒平方) |
Z加速度_實際 | m/sec2 | Meters per second squared (米/每秒平方) |
T1加速度指令 | deg/sec2 | Degrees per second squared (度/每秒平方) |
T2加速度指令 | deg/sec2 | Degrees per second squared (度/每秒平方) |
Z加速度指令 | m/sec2 | Millimeters per second squared (毫米/每秒平方) |
T1位置誤差 | deg | Degrees(度) |
T2位置誤差 | deg | Degrees(度) |
Z位置誤差 | deg | Degrees(度) |
T1扭矩_實際 | N | Newton-meters(牛頓米) |
T2扭矩_實際 | N | Newton-meters(牛頓米) |
Z扭矩_實際 | N | Newton-meters(牛頓米) |
T1扭矩_模型化 | N | Newton-meters(牛頓米) |
T2扭矩_模型化 | N | Newton-meters(牛頓米) |
Z扭矩_模型化 | N | Newton-meters(牛頓米) |
T1電流_實際 | A | Amps(安培) |
T2電流_實際 | A | Amps(安培) |
Z電流_實際 | A | Amps(安培) |
匯流排電動機電壓 | V | Volts(伏特) |
匯流排24V導軌 | V | Volts(伏特) |
匯流排12V導軌 | V | Volts(伏特) |
匯流排5V導軌 | V | Volts(伏特) |
匯流排3.3V導軌 | V | Volts(伏特) |
核心溫度 | C | Celsius(攝氏) |
FPGA核心供應電壓 | V | Volts(伏特) |
FPGA io供應電壓 | V | Volts(伏特) |
處理器核心供應電壓 | V | Volts(伏特) |
處理器io供應電壓 | V | Volts(伏特) |
DDR供應電壓 | V | Volts(伏特) |
T1溫度 | C | Celsius(攝氏) |
T2溫度 | C | Celsius(攝氏) |
Z溫度 | C | Celsius(攝氏) |
T1伺服狀態 | bitwise | Bitwise(按位) |
T2伺服狀態 | bitwise | Bitwise(按位) |
Z伺服狀態 | bitwise | Bitwise(按位) |
T1編碼器CRC錯誤計數器 | 計數 | 計數器 |
T2編碼器CRC錯誤計數器 | 計數 | 計數器 |
Z編碼器CRC錯誤計數器 | 計數 | 計數器 |
T1編碼器警告旗標計數器 | 計數 | 計數器 |
T2編碼器警告旗標計數器 | 計數 | 計數器 |
Z編碼器警告旗標計數器 | 計數 | 計數器 |
T1編碼器錯誤旗標計數器 | 計數 | 計數器 |
T2編碼器錯誤旗標計數器 | 計數 | 計數器 |
Z編碼器錯誤旗標計數器 | 計數 | 計數器 |
T1指令位置 | deg | Degrees(度) |
T2指令位置 | deg | Degrees(度) |
Z指令位置 | m | Meters(米) |
徑向指令位置 | m | Meters(米) |
徑向指令位置臂B | m | Meters(米) |
Theta指令位置 | deg | Degrees(度) |
Theta指令位置臂B | deg | Degrees(度) |
徑向位置誤差 | m | Meters(米) |
徑向位置誤差臂B | m | Meters(米) |
切向位置誤差 | m | Meters(米) |
切向位置誤差臂B | m | Meters(米) |
命令複合加速度 | g | g |
命令複合加速度臂B | g | g |
實際複合加速度 | g | g |
實際複合加速度臂B | g | g |
CPU核心0利用率 | % | 百分比 |
CPU核心1利用率百分比 | % | 百分比 |
總系統RAM | B | Bytes |
可用的系統RAM | B | Bytes |
使用的系統RAM | B | Bytes |
使用的百分比系統RAM | % | 百分比 |
總磁碟0空間 | B | Bytes |
可用磁碟0空間 | B | Bytes |
使用的磁碟0空間 | B | Bytes |
使用的百分比磁碟0空間 | % | 百分比 |
處理器PCB溫度 | C | Celsius(攝氏) |
RTC電池電量低旗標 | Bool | Boolean(布林) |
控制器啟動週期次數 | 計數 | 計數 |
控制器硬體工作時間 | 天 | 天 |
總週期計數 | 計數 | 計數 |
風扇控制器內部溫度 | C | Celsius(攝氏) |
風扇0轉速 | RPM | RPM |
風扇0錯誤旗標 | Bool | Boolean(布林) |
風扇1轉速 | RPM | RPM |
風扇1錯誤旗標 | Bool | Boolean(布林) |
其中T1和T2是機器人操縱器驅動旋轉軸(可能有多於或少於兩個旋轉驅動軸);Z是機器人驅動Z軸;CPU是機器人控制器(例如控制器319、323、422、423A~423C、800)。風扇0、風扇1是機器人操縱器的各種風扇;theta是機器人操縱器臂的旋轉;以及R是機器人操縱器臂的延伸。
衍生變數的具體示例包括:
表4:衍生變數
名稱 | 單位縮寫 | 單位全名 |
T1伺服狀態持續時間 | 天 | 天 |
T2伺服狀態持續時間 | 天 | 天 |
Z伺服狀態持續時間 | 天 | 天 |
T1伺服狀態 | bool | Boolean(布林) |
T2伺服狀態 | bool | Boolean(布林) |
Z伺服狀態 | bool | Boolean(布林) |
T1機械功率 | W | Watts(瓦特) |
T2機械功率 | W | Watts(瓦特) |
Z機械功率 | W | Watts(瓦特) |
T1電功率 | W | Watts(瓦特) |
T2電功率 | W | Watts(瓦特) |
Z電功率 | W | Watts(瓦特) |
T1電動機效率 | % | percentage(百分比) |
T2電動機效率 | % | percentage(百分比) |
Z電動機效率 | % | percentage(百分比) |
T1增量能量 | J | Joules(焦耳) |
T2增量能量 | J | Joules(焦耳) |
Z增量能量 | J | Joules(焦耳) |
T1增量位置 | deg | Degrees(度) |
T2增量位置 | deg | Degrees(度) |
Z增量位置 | m | Meters(米) |
位置循環平均執行時間 | us | Microseconds(微秒) |
位置循環最大執行時間 | us | Microseconds(微秒) |
位置循環平均信號延遲時間 | us | Microseconds(微秒) |
位置循環最大信號延遲時間 | us | Microseconds(微秒) |
電流循環平均執行時間 | us | Microseconds(微秒) |
電流循環最大執行時間 | us | Microseconds(微秒) |
IO循環平均間隔時間 | ms | Milliseconds(毫秒) |
IO循環最大間隔時間 | ms | Milliseconds(毫秒) |
IO循環平均執行時間 | ms | Milliseconds(毫秒) |
IO循環最大執行時間 | ms | Milliseconds(毫秒) |
T1編碼器CRC錯誤旗標 | 計數 | 計數器 |
T2編碼器CRC錯誤旗標 | 計數 | 計數器 |
Z編碼器CRC錯誤旗標 | 計數 | 計數器 |
T1編碼器警告旗標 | 計數 | 計數器 |
T2編碼器警告旗標 | 計數 | 計數器 |
Z編碼器警告旗標 | 計數 | 計數器 |
T1編碼器錯誤旗標 | 計數 | 計數器 |
T2編碼器錯誤旗標 | 計數 | 計數器 |
Z編碼器錯誤旗標 | 計數 | 計數器 |
這些動態性能變數是從原始或直接測量值,例如電動機位置、速度、加速度和控制扭矩計算得出的。
預定運動基本組820、820A~820C的預定基本移動501、502、503包括至少一個定義基本運動類型的共同基本移動(例如,形成基線的移動,並且其是從足夠的樣本移動所創建的,該些足夠的樣本移動係被收集以定義統計上地有意義的批次)的統計表徵數量。例如,用於各別的基本移動501、502、503(例如,基本移動501具有運動基本組820A,基本移動502具有運動基本組820B,基本移動503具有運動基本組820C)的(每個)運動基本組820、820A~820C(參見圖8A)係實質上地為基於給定的收斂準則而足以提供統計上有意義的標準偏差的移動N
min(見圖6)(例如樣本大小)之最小數量,進而針對特定機器人操縱器306、311、400來特徵化運動基本組(或移動組)820、820A~820C。這樣,每個動態性能變數係特定於相應的機器人操縱器306、311、400並由其輸出。
相應的預定運動基本組820、820A~820C的預定基本移動501、502、503包括多個不同的基本運動類型,其中每一個基本運動類型都由運送裝置306、311、400以對於每個基本運動類型產生共同運動的統計特徵數量的效果。每個不同的基本運動類型具有不同的對應的至少一個扭矩命令特徵和位置命令特徵,該扭矩命令特徵和位置命令特徵定義與每個基本運動類型相關的不同的共同運動。在一個態樣中,預定基本運動組820、820A~820C可以是一個或多個移動/運動類型。例如,基本運動組820、820A~820C中的各個運動501、502、503可以是簡單的移動或複雜的(例如混合的)移動,該些移動係以定義相應移動的扭矩和位置命令來進行特徵化。
簡單的移動是兩點之間的直線移動(如圖5C中所示從點0到點1)或沿兩點之間的圓弧移動(如圖5C中所示從點1到點2)沿著機器人操縱器306、311、400的theta軸、延伸軸或Z軸中的一個(例如,單一移動自由度)。
如圖5B所示,複合或混合移動是其中多於兩個簡單移動被混合在一起的移動,圖5B示例了移動從點0延伸到點2,並且具有與點1相鄰的混合路徑,該路徑混合來自點0到點1及點1到點2的兩條直線移動,沿著機器人操縱器306、311、400的theta軸、延伸軸或Z軸中的至少兩個(例如,兩個或更多個以上的移動自由度)。
運動基本組820、820A~820C中的每一個還可以藉由該組內的移動的位置(例如移動的起點和終點)、該組內的移動的負載參數(例如機器人操縱器306、311、400為加載(攜帶基底)或未加載(未攜帶基底))和/或移動的初始位置和/或最終位置處的動態條件(例如運動/停止、停止/停止、停止/運動、運動/運動等)。例如,參考圖5B中的複雜移動,動態條件點0係停止的並且點2處的動態條件係停止的。參照圖5C中的兩個簡單移動,點0處的動態條件係停止的並且點1處的動態條件為正在移動;而點2的動態條件係停止的。如上所述,儘管移動類型係以關於機器人操縱器臂運動的一個、兩個或三個自由度進行描述,但應該理解,移動類型可以包括以任何合適數量的自由度或者單個自由度所產生的移動(例如配合使用真空泵、基底對準器等)。
每種移動類型都會影響統計地特徵化每個移動類型的最小移動次數N
min。例如,每個動態性能變數或運動類型可以以歷史方式表示為:
其中s是表5至表7中所提供的基本移動/運動信號。信號s
0至s
n是具有純量輸出的信號並且應該能夠跨越不同的模板移動(其也可以被稱為基本移動)進行比較,即跨越不同移動類型比較相關於基線的電動機能量。信號s
n+1到s
n+1+mi是來自表8的向量輸出信號,且不能在不同模板移動類型間進行比較,其係用i來表示。
表5:帶有純量輸出之關於基本移動的衍生信號(每個電動機)
公制 | 說明 | 單位 |
峰值 | 追蹤誤差 | 度 |
RMS | 追蹤誤差 | 度 |
峰值 | 扭矩誤差 | 牛頓-米 |
RMS | 扭矩誤差 | 牛頓-米 |
峰值 | 電流 | 安培 |
RMS | 電流 | 安培 |
峰值 | 工作週期作為可用扭矩的百分比 | 百分比 |
峰值 | 機械功率 | 瓦 |
平均 | 電動機效率 | 百分比 |
總和 | 機械能 | 焦耳 |
平均 | 繞組溫度 | 攝氏 |
總和 | 振動功率、超過可配置的Hz範圍 | dB |
峰值 | 振動功率 | dB/Hz |
峰值 | 振動功率波峰因數 | dB/Hz |
表6:帶有純量輸出之關於基本移動的衍生信號(每個臂或端接器)
公制 | 說明 | 單位 | 條件 |
峰值 | 安定時間 | 秒 | 精確安定 |
峰值 | 安定徑向誤差 | 米 | 精確安定 |
峰值 | 安定切向誤差 | 米 | 精確安定 |
峰值 | 切換複合誤差 | 米 | 位於: R EX 改變: Z狀態 |
峰值 | 切向追蹤誤差 | 米 | 改變: R狀態 |
RMS | 切向追蹤誤差 | 米 | 改變: R狀態 |
峰值 | 合成加速度 | g |
表7:帶有純量輸出之關於基本移動的衍生系統信號
公制 | 說明 | 單位 |
峰值 | 電動機匯流排電壓下降 | 伏特 |
峰值 | 累加電動機機械功率 | 瓦 |
總和 | 累加電動機機械能 | 焦耳 |
表8:帶有向量輸出之關於基本移動的衍生信號
說明 | 單位 |
位置錯誤(每個電動機) | 度 |
實際扭矩(每個電動機) | 牛頓-米 |
切向誤差(每個臂或端接器) | 米 |
徑向誤差(每個臂或端接器) | 米 |
這些向量輸出信號在沿著軌跡的每次時間採樣處都有信號,因此這些信號的數量在不同的移動之間不同,並且在一個時間採樣中之一次移動與另一次移動對評估而言是沒有任何物理意義的。基本移動(類型)索引由i表示,並且給定之索引的歷史紀錄由j表示。
在這個例子中最後一個受評估的基本移動是
並且在這個例子中第三個最後受評估的基本移動是
參照圖5A~5C所示,基本移動,例如相應的一組基本移動820、820A~820C中的基本移動501、502、503也可以被稱為模板移動。基本移動501、502、503是沿著獨特路徑的重複移動。基本移動501、502、503可以由簡單移動或如上所述的複雜移動所組成。
為了評估系統性能下降和性能趨勢,特徵資料沿著關於基線的基本移動的獨特路徑進行分析。基本移動501、502、503可以在理論上和/或經驗上定義。例如,理論基本移動是基於期望的設計配置和處理工具的處理來解決操作中的預期移動,然後在原位過程工具安裝之前或之後的任何時間被執行。
可以從原位過程移動命令產生經驗性基本移動,作為期望發生共同性之移動,以產生足夠的統計特性而具有安定於如圖6中所示的預定收斂界限變化率之間的有意義的統計值(其中圖6中的N
min是基於給定的收斂準則而足以提供統計上有意義的標準偏差的最小移動數量(例如樣本大小))。經驗性基本移動的產生可以是一個兩部分流程(類似地應用於基本統計特徵的經驗產生)。例如,產生經驗性基本移動可以包括:存取原位移動命令直方圖700(參見圖7)並且利用命令(例如,扭矩、位置、邊界參數、命令軌跡路徑(包括速度和移動持續時間)、負載狀況等)識別原位移動,該命令映射到基本移動501、502、503(例如,原位移動與基本移動匹配在可配置容許偏差內);以及針對所映射的動作從任何合適的記錄系統801R的記錄表840存取由相應的機器人操縱器306、311、400輸出的的每個動態性能變數,該記錄系統801R記錄預定的操作資料,該操作資料體現了至少一個由機器人操縱器輸出的動態性能變數來實現對另一個預定運動組830(詳如下述)的確定。
經驗性基本移動的產生可以以接近即時地執行、在背景運行並且存取記錄表840而不存取自動化材料處理平台300的控制器319、323、422、423A、423B、423C、800和相關聯的雙向通信/資料頻道。原位移動命令直方圖700包括由機器人操縱器控制器(例如控制器319、323、422、423A、423B、423C、800)命令的運動,該機器人操縱器控制器包括由相應的機器人操縱器306、311、400所實現的原位過程運動。原位移動命令直方圖700可以在例如機器人操縱器控制器(例如控制器319、323、422、423A、423B、423C、810)或自動化材料處理平台300的任何其它合適的控制器的任何合適的記錄表700R(參見圖8A)中記錄。如本文所描述,機器人操縱器控制器分解來自記錄表700R中的運動直方圖700的周期性存取的映射運動。
例如,還是參照圖8A,運動分解器800從機器人操縱器306、311、400(參見圖2和圖3)分解機器人控制器319、323、422、423A~423C、810的原位過程運動命令(其中由運送裝置實現的原位過程運動501’、502’、503’(參見圖5A)映射到預定運動基本組(詳如下述)的預定基本運動501、502、503(其中每一個定義相應的模板運動,使得原位過程運動映射到各自的模板運動之上)),並且用映射的原位過程運動501’、502’、503’定義機器人控制器319、323、422、423A~423C、810的另一個預定運動組(詳如下述)。例如,原位過程運動501’映射到基本運動501,原位過程運動502’映射到基本運動502,並且原位過程運動503’映射到基本動作503。請注意,以類似於上述的方式,每個原位過程運動501’~503’係由扭矩命令和來自裝置控制器的位置命令中的至少一個加以特徵化,其中扭矩命令和位置命令中的至少一個特徵化機器人操縱器306、311、400的至少一個運動自由度中的原位過程運動。
運動分解器800可以被包括在機器人控制器319、323、422、423A~423C、800中以作為模組,運動分解器800可以是可通信地耦合到機器人控制器319、323、422、423A~423C、810的遠端處理器或者運動分解器800可以是與機器人控制器319、323、422、423A~423C、810可通信地鏈接的不同處理器。
運動分解器800迭代所有的原位過程移動501’、502’、503’以識別那些具有由,例如,圖6所示之標準偏差收斂所確定的所需的最小移動次數N
min的原位過程移動501’、502’、503’。例如,如上所述,為了創建基線(例如,建立基本移動501、502、503),必須收集足夠的樣本以定義具有統計意義的批次。創建基線所需的樣本數量取決於正被分析的變數的物理性質。例如,定義機器人操縱器306、311、400的給定運動軸的機械功的典型(平均值和標準偏差)統計量比執行相同運動的同一軸的峰值控制扭矩花費更長的時間。為了糾正這種情況,基於對收集的資料的統計分析來定義基線的大小。例如,可以在基線資料收集至其值安定在一定界限(如圖6所示)內的某個點的期間計算標準偏差。在圖6中,給定變數的標準偏差係對照著樣本大小進行繪製。隨著樣本量的增加,標準偏差趨於在一定的界限內收斂。根據實際資料組,這些界限可以被先驗定義或被計算,例如在當圖的變化率低於約+/- 10%變化時;然而,任何合適的收斂方法和/或變化的百分比均可使用。
仍然參考圖8A、圖5和圖8B,構成至少所需的最小移動次數N
min(例如,用於定義基線的移動)的移動可以被稱為預定的運動基本組820。每個基本移動501、502、503具有對於該基本移動501、502、503係獨特的之相應的預定運動基本組820A、820B、820C。用於確定和更新相應預定運動基本組820A、820B、820C的示例性處理流程示例於圖8A和8B中。
仍然參照圖5、8A和8B,在一個態樣中,一旦運動分解器800識別並分解用於相應基本移動501、502、503的預定運動基本組820A、820B、820C,映射(如上所述)到基本移動501、502、503中相應的一個的原位過程移動501’、502’、503’係包括在相對的預定運動基本組820A、820B、820C之中以更新相對的預定運動基本組820A、820B、820C。在其他態樣,映射到基本移動501、502、503中相對的一個的預定運動基本組820A、820B、820C的原位過程運動501’、502’、503’可以形成與預定的運動基本組820A、820B、820C不同之運動類型組之一個不一樣的組。經更新的預定運動基本組和/或不同組的運動類型組可被稱為另一個預定運動組830。如本文將描述的,用於相應的原位過程移動501’、502’、503’的其他的預定運動基本組830A、830B、830C係與用於相應的基本移動501、502、503的運動基本組820A、820B、820C進行關於正受監測的自動化系統,例如機器人操縱器300,的健康評估和預測診斷的比較(如本文於此之描述)。
如上所述,例如機器人操縱器306、311、400(或自動化材料處理平台300的其他合適的自動化設備)的健康評估藉由產生基本統計特徵(例如,操作在典型環境條件下的給定變數的行為的基線或統計表示)而被執行,該基本統計特徵對於機器人操縱器306、311、400的一組基本移動820、820A、820B、820C(參見圖8A)特徵化由機器人操縱器306、311、400輸出的的每個動態性能變數。
在一個態樣,使用自動化材料處理平台300的任何合適的處理器810P(其在一個態樣中係實質上地類似於處理器105)擷取/確定基線度量。處理器810P可以被包括在機器人控制器319、323、422、423A~423C、810之中以作為模組,處理器810P可以是可通信地耦合到機器人控制器319、323、422、423A~423C、810(和運動分解器800)的遠端處理器,或者處理器810P可以是與機器人控制器319、323、422、423A~423C、810(和運動分解器800)可通信地鏈接的不同處理器。處理器810P以任何合適的方式耦合到記錄系統801R,而在其他態樣中,處理器810P包括記錄系統801R。
基線度量藉由,例如,計算基本統計特徵的機率密度函數(PDF)來擷取/確定,其中機率函數可以表示為:
其中μ是資料集平均值,x是動態性能變數,σ是標準偏差。圖9顯示了具有平均值和標準偏差的典型高斯分佈。圖9中還定義了規格上限和下限(分別為USL和LSL)。
相應的機器人操縱器306、311、400(參見圖2和圖3)的每個動態性能變數的基本統計特徵針對每個不同的基本移動類型(移動類型組至基本值)進行歸一化,該基本移動類型針對每個不同的基本移動類型/移動類型組特徵化特定於相應的機器人操縱器306、311、400的每個動態性能變數的標稱/基線。例如,對於預定運動基本組的每個運動而由每個動態性能變數的相應的機率密度函數PDF所特徵化的基本值(例如處理能力指數C
pkBase)被確定,其中該動態性能變數係由相應的機器人操縱器306、311、400輸出。
通常,處理能力指數C
pk可以被定義為:
其中σ是標準偏差,μ是為相應的變數所收集的樣本的平均值。處理能力指數C
pk可以用作為度量以表示相應的動態性能變數的基線,因為處理能力指數C
pk擷取了足夠大以提供有意義的統計資料的總體樣本的均值和標準偏差。可以以任何合適的方式來確定上限和下限規格限值USL、LSL,例如藉由將上限和下限規格限值USL、LSL定義為相應的受測量的機器人操縱器306、311、400的測量標準偏差的函數。例如:
其中N可以是大於3的整數,使得C
pk可以是大於1的數。作為一個例子,如果N=6,那麼基線處理能力指數C
pkBase可以被定義為:
在一個態樣,C
pkBase可以被設定為2.0並且理論上地或經驗上地基於+/-6σ的基線的資料組平均μ以識別上限和下限規格限值USL、LSL,使得99.9%的移動樣本被擷取(如圖9和10所示)。在其他態樣中,當限值被很好地建立時,例如峰值扭矩限值、最大安定時間等,則上限和下限規格限值USL、LSL可以在每個信號的基礎上來加以配置。
在一個態樣中,亦請參照圖2A,用於每個相對的不同的獨特裝置App1~Appn的相應的歸一化值C
pkBase(1-n)和其他的值C
pkOther(1-n)被記錄在任何合適的控制器中,例如裝置App1~Appn中的相應的一個裝置的控制器。 將與不同的獨特裝置App1~Appn中的相應的一個裝置獨特地相關的歸一化值C
pkBase(1-n)和其他值C
pkOther(1-n)進行比較,以針對各個不同的獨特裝置App1~Appn在裝置的基礎之上於一個裝置上決定相應的性能惡化率(由,例如,相應的線性趨勢模型LTM所指示的,參見圖11),該相應的性能惡化率在本文中將更詳細地描述。例如,每個相應的裝置App1~Appn具有如圖11所示的相應的線性趨勢模型LTM1~LTMn。
一旦針對每個測量變數(原始的和派生的)建立了基線度量,在相應的機器人操縱器306、311、400的操作期間對一批量的原位過程移動501’~503’進行採樣。例如,原位過程移動501’、502’、503’係由控制器,例如,控制器319、323、422、423A、423B、423C、810所產生,以識別對受監視的機器人操縱器306、311、400為特定的另一個統計特徵。如上所述,用於原位過程移動的組的每個動態性能變數被映射到相應的基本移動(例如基本移動類型/類型組-參見等式1、2和3)。如上所述,所映射的原位過程運動501’、502’、503’被用於定義相應的機器人操縱器306、311、400的其他的預定運動組830、830A~830C。
如同基線移動501~503一樣,針對每個不同的原位(另一個)移動類型/類型組(例如,其他預定運動組830、830A~830C),相應的機器人操縱器306、311、400的每個動態性能變數的原位過程移動501’~503’過程(另一個)統計特徵被映射到相應的預定運動基本組820、830A~830C並且被歸一化為原位(另一個)值C
pkOther,該原位(另一個)值C
pkOther對於不同的原位移動類型(其可以是簡單移動或複雜移動)中的每一個特徵化相應的機器人操縱器306、311、400的每個動態性能變數的原位性能。原位(另一個)值C
pkOther是處理能力指數,其係由機器人操縱器306、311、400所輸出的每個動態性能變數的機率密度函數PDF來加以特徵化,該原位(另一個)值C
pkOther實現其他的預定運動組830、830A~830C之所映射的原位過程運動501’~503’。原位(其它的)值C
pkOther參考基線的上限和下限USL、LSL以相對於預定運動基本組來定位其他預定運動組,就如同圖10所示(其中其他的預定運動組被識別為“新批次”並且預定運動基本組被識別為“基線”)。C
pkOther是一個處理能力指數,可以被定義為:
其中i為受評估的C
pkOther的一個迭代。歸一化的原位(另一個)值C
pkOther針對被監測的每個相應的動態性能變數(例如,針對每個移動類型和橫移類型)與的歸一化基本值C
pkBase進行比較。
原位(另一個)值C
pkOther和基本值C
pkBase之間的比較可以由處理器810P或自動化材料處理平台300的任何其他合適的控制器來執行,其中相應的機器人操縱器306、311、400是預定運動基本組820、820A~820C和其他的預定運動組830、830A~830C(以及對應的原位(另一個)值C
pkOther和基本值C
pkBase)兩者的共同運送裝置。原位(另一個)值C
pkOther與基本值C
pkBase之間的比較藉由提供追蹤每個動態性能變數偏離或漂移其基線(見圖10)程度的多寡來針對特定裝置(例如相應的機器人操縱器306、311、400)來實現被監測的每個動態性能變數的健康評估。對於每個性能變數所作的健康評估可以被定義為相對於其基線的相對偏差,定義如下:
這意味著100%的評估表示原位(另一個)值C
pkOther和基本值C
pkBase之間的完美統計匹配。上面的等式(10)表示對於給定的動態性能變數的評估的一個例子。在其他態樣,可以使用其他的測量評估方法,例如測量超出基線的上限和下限值USL和LSL的發生次數。圖10示例出了根據一給定的動態性能變數之統計,對其進行健康評估計算的一個例子。在圖10所示的例子中,20%的批量資料樣本位於基線範圍之外,則原位(另一個)值C
pkOther使受到處於不利益之地位。
仍然參照圖10,同樣參照圖11和圖12,可以根據原位(另一個)值C
pkOther偏離基本值C
pkBase的程度來定義相應的機器人操縱器306、311、400的每個動態性能變數的健康評估。可以根據規定的閾值來定義變化的程度,例如像是“警告”和“錯誤”,其中“警告”可以指“需要注意”並且“錯誤”可以指“要求立即行動”,其將在下面描述。追蹤原位(另一個)值C
pkOther(和基本值C
pkBase)的另一個態樣是這樣的一個追蹤提供了趨勢分析,即當相應的動態性能變數預計達到變化程度的不同等級時,可以評估或推知。
確定每個動態性能變數偏離或漂移其基線的量為每個動態性能變數提供趨勢資料TD,其中趨勢資料TD特徵化相應的動態性能變數的惡化趨勢。趨勢資料TD可以被記錄在自動化材料處理平台300的任何合適的暫存器TDR中。圖11繪示出了示例性動態性能變數的示例性趨勢資料圖表;其中來自不同批樣本的預定時間點的原位(另一個)值C
pkOther和基本值C
pkBase的比較之評估A1~An被繪製在圖表上。
圖11中的斜線表示線性趨勢模型LTM、LTM1~LTMn,其可以以任何合適的方式獲得,例如藉由使用最小平方法;而在其他態樣,可以使用任何合適的趨勢模型。特徵化,例如,機器人操縱器306(或自動化材料處理平台300(參見圖2)的任何其他合適的裝置)的性能惡化趨勢的趨勢資料以及自動化材料處理平台300的數個不同的獨特的裝置App1~Appn(參見圖2A)中的每一個被記錄在自動化材料處理平台300的,例如,任何合適的控制器/處理器(像是,例如,相應的裝置的控制器或工具控制器314或處理器810P)的記錄表之中。在一個態樣,處理器810P結合與運送裝置(例如運送裝置306)相對應的性能惡化趨勢以及自動化材料處理平台300的多個不同的獨特裝置App1~Appn中的每一個,以確定特徵化自動化材料處理平台300的性能惡化的系統性能惡化趨勢。
參考線性趨勢模型LTM,這個線性趨勢模型LTM(其可以表示獨特的裝置,像是機器人操縱器306、機器人操縱器311、對準器304、自動化材料處理平台300的電源供應器PS等等其中之一者)可以被用來預測時間t
warn作為用於評估測量之估計的時間(或週期)以達到規定的警告閾值。同樣地,時間t
error可以被估計為達到機器人操縱器306、311、400的操作不被推薦為繼續的點的時間(或週期)。如圖11所示,針對每個不同的獨特裝置App1~Appn確定的線性趨勢模型LTM1~LTMn。線性趨勢模型LTM1~LTMn可以指示系統(例如自動化材料處理平台300)的整體健康狀況以及每個不同的獨特裝置App1~Appn的健康狀況。亦參照圖2,例如,線性趨勢模型LTM1可以對應於電源供應器PS,線性趨勢模型LTM2可以對應於機器人操縱器306,線性趨勢模型LTM3可以對應於機器人操縱器311並且線性趨勢模型LTMn可對應於對準器307。
如同在圖11和圖12中看到的,趨勢資料TD還可以藉由,例如,任何合適的顯示器140來提供給要被供應至,例如,機器人操縱器306、311、400的操作器的健康評估警告。例如,可以從控制器319、323、422、423A、423B、423C、810分開的或包含在其中的自動化材料處理平台300(例如處理器810P)的任何合適的控制器可以包括趨勢/評估單元870(圖8A),該趨勢/評估單元870被配置以發送預定的信號以向操作器指示機器人操縱器306、311、400的健康評估。在其它態樣,趨勢/評估單元870可以是控制器319、323、422、423A、423B、423C、810之一部分。例如,當趨勢資料TD達到第一預定評估值WS時,處理器810P可以發送或者導致在視覺上以例如黃色顯示“警告”指示,當趨勢資料TD達到第二預定評估值ES(例如,低於第一預定評估值WS)時可以將“錯誤”指示呈現為紅色,並且當趨勢資料高於第一預定評估值WS時,可以以綠色呈現“正常”指示(例如,所有動態性能變數在預定操作限值內)。在其它態樣,自動化系統的操作狀態(例如,正常、警告和錯誤)可以在聽覺上、視覺上或以任何其他適當的方式呈現。
在一個態樣中,處理器810P匯集由運送裝置輸出的至少一個動態性能變數之具有最高惡化趨勢(例如最低百分比評估)的動態性能變數並且預測具有性能低於預定的性能狀態的運送裝置的發生。例如,可以測量機器人操縱器306、311、400的整體健康狀況,作為在給定的一批資料樣本中受監測的所有動態性能變數中之最差情況評估。例如,設想測量五個動態性能變數Var1~Var5(像是,例如,T1位置_實際、Z加速度_實際,匯流排電動機電壓、T2溫度和用於說明所比較的不同變數的theta指令位置)並且將其與它們各自的基線進行比較,其中結果評估值為:
表9:評估值
變數 | 評估 |
Var1 | 95% |
Var2 | 92% |
Var3 | 89% |
Var4 | 96% |
Var5 | 70% |
在上面的例子中,動態性能變數Var5的評估是五個動態性能變數Var1~Var5中的最低評估,並且可以用來表示機器人操縱器306、311、400的總體電流健康評估,該操縱器306、311、400的健康被所有的五個動態性能變數Var1~Var5監測。這可以獨立地從這些動態性能變數Var1~Var5的每一個的物理性質和含義來完成,因為基於這些評估是針對它們各自的基線的相對測量的事實,評估可以直接地在所有的這些實體上進行比較。
作為上述的性能變數比較的例子,處理器810P將運送裝置306的性能惡化趨勢與多個不同的獨特裝置App1~Appn中的每一個的性能惡化趨勢進行比較,並且確定運送裝置306的性能惡化趨勢或者該多個不同的獨特裝置App1~Appn中的另一個的性能惡化趨勢是否為控制性能惡化趨勢以及控制性能惡化趨勢是否為系統的性能惡化趨勢的決定因素。例如,在時間t
s,用於機器人操縱器306的線性趨勢模型LTM2具有最低評估,其中該最低評估被認為是關於表9所描述的自動化材料處理平台300的整體健康狀況。隨著時間的推移,其他的線性趨勢模型(像是線性趨勢模型LTM1)可能會顯示更快的性能下降率。在這種情況下,例如,可以基於,例如,在時間t
0時的線性趨勢模型LTM1來判斷自動化材料處理平台的總體健康狀況,其中警告是基於在時間t
warnLTM1時的線性趨勢模型LTM1而產生以及錯誤是基於在時間t
errorLTM1時的線性趨勢模型LTM1而產生。
儘管自動化材料處理系統的整體健康狀況可由具有在任何給定時間內的最低評估值的線性趨勢模型來確定,但線性趨勢模型還提供了關於哪個裝置App1~Appn是造成系統錯誤或警告的原因或主要的來源的指紋或指示。例如,電源供應器PS可能,例如,藉由不向,例如,機器人操縱器306(對應於線性趨勢模型LTM2)提供足夠的電壓而影響其他的裝置App1~Appn。如圖11所示,警告可能會在時間t
warnLTM1產生以作為電源供應器PS性能惡化的結果。針對機器人操縱器306在性能方面的惡化,於時間t
warnLTM2處可能會產生警告;然而,如果沒有由電源供應器PS向機器人操縱器306所提供之不足的電壓,機器人操縱器306可以正常地運作。這兩個警告指示了電源供應器PS和機器人操縱器306應該被檢查以進行修理,並且暗示了在電源供應器PS的性能惡化和機器人操縱器306的性能惡化之間可能存在一些相關性。
於另一個態樣中,如圖5A和圖8A所示,所揭露的實施例的態樣可以將系統的健康狀況作為聚集的特徵化和健康預測之組合來提供。需要注意的是,系統之聚集的特徵化和健康預測之組合係不同於組合/聚集系統組件之不同的惡化趨勢以確定整個系統的惡化趨勢。例如,聚集的特徵化和健康預測之組合可以被認為類似於確定具有μ個裝置的系統的惡化趨勢,其中系統及其多個裝置被視為單個獨特裝置,同時還單獨地確定如上所述之系統的每個獨特裝置的惡化趨勢。於這個態樣中,如上所述,基本移動501~503和原位過程運動501’~503’與分別的獨特裝置獨特地相關。基本移動501~503和原位過程運動501’~503’對於通用類型的每個不同的裝置可以是不同的(例如機器人操縱器306的基本移動501~503和原位過程運動501’~503’可以不同於機器人操縱器311的基本移動501~503和原位過程運動501’~503’)。可以藉由基本運動組890(參見圖8A)來確定用於獨特系統(例如自動化材料處理平台300)的基本運動組820、820A~820C和其他的預定運動組830、830A~830C,其中基本運動組890的基本運動是藉由組合多個一個或多個基本運動501~503來確定的,其中該多個一個或多個基本運動中的每一個係與獨特裝置(像是如上表1及表2中所描述的那些裝置)獨特地相關,該獨特裝置係通信地連接(例如電源供應器、機器人操縱器、晶圓感測器等)以形成單個聚集運動890AG。單個聚集運動與獨特系統(例如自動化材料處理平台300)和(在單個聚集運動中操作的每個裝置之)μ個相關的組合的關聯動態性能變數獨特地相關聯(例如,
),其中S
0,μ是純量值,S
μ+1是向量值,以便產生系統性能歸一化值
並且對於映射的運動產生與μ個裝置的系統獨特地相關的另一個值
。
在一個態樣中,參考圖14,其中一個元件(例如表1和2中列出的元件)於系統(例如自動化材料處理平台300)中被替換的情況下,可能會藉由重複系統健康測定來產生系統的健康測定(圖14方塊1400),其中重複系統健康測定包括(1)重複系統(或者至少被替換元件的裝置)的每個元件的惡化趨勢(如由線性趨勢模型LTM、LTM1~LTMn所指示的)的測定並且結合元件的惡化趨勢以從與,例如,表9(圖14,方塊1401)有關之所描述的惡化趨勢中之控制的一個來確定總體系統健康狀況;(2)確定如上所述(圖14,方塊1402)之組合的聚集的特徵化之新的系統聚集的惡化趨勢;(3)識別替換的元件是否改善或降低了系統的總體惡化趨勢,以及如果新的元件降低了惡化趨勢,則再次替換元件,並且/或著混合和匹配元件以改善總體系統惡化趨勢(圖14,方塊1403)。
在一個態樣中,權衡惡化趨勢(圖15,方塊1500)的重要性可以由系統(例如工具控制器314)的任何合適的處理器應用到系統的每個元件的線性趨勢模型LTM、LTM1~LTMn。例如,當應用權衡重要性時,工具控制器314可以確定任何一個或更多個元件的惡化趨勢是否正在控制(例如最大程度惡化)或以其他方式顯示在期望故障時間(圖15,方塊1501)的預定時間範圍之外的預測故障時間;或者更多個元件中的任何一個可以以其他方式被識別為第一個被預測為會故障的元件,並且可以在被預測為第一個故障的元件和被預測為最後一個故障的元件(圖15,方塊1502)之間確定一個範圍(例如時間範圍)。過往故障的歷史記錄(如果有的話)也可以被確定並儲存在系統的記憶體中並由工具控制器314來檢視以確定哪些元件(如果有的話)有成為第一個故障之傾向(圖15,方塊1503)。根據上述所做成的確定,可以經由工具控制器314確定元件的故障頻率是否與系統不一致(例如,其他元件的故障頻率)(圖15,方塊1504)。工具控制器314還可以識別與系統性能有關的元件特性(例如,系統是否可用於與故障元件或者不能與故障元件一起工作)(圖15,方塊1505)。在一個態樣中,與系統性能相關的元件特性可以被分類為關鍵的(例如當系統不能在沒有元件的情況下運行)或例行工作(系統可以在沒有元件的情況下運行)。元件特性可以包括但不限於元件的首要性、找到元件之替換的難度、系統內之元件的可及性(元件是否易於可及以替換/難以存取以及難以替換)、元件的封裝(例如,機器人操縱器中的電動機若是故障,則需要更換機器人操縱器,然而如故障者為電源供應器則僅需要更換電源供應器)或可能影響系統停機時間和/或元件替換之可用性的其他因素。
對於每個元件的惡化趨勢所給予的權衡重要性可以基於元件的故障頻率和與系統性能有關的元件特性而藉由,例如,工具控制器314來確定。對元件的惡化趨勢進行權衡重要性提高了或減少了元件的惡化趨勢對系統整體的惡化趨勢的影響,其中對整個系統健康之評估是基於系統中每個元件的已進行權衡重要性的惡化趨勢。
作為非限制性的例子,對應於剛被替換/修復的元件的線性趨勢模型可以具有比已經服務一段時間的元件較少的權重,使得剛剛被替換/修復的元件對於整個系統的健康狀況的判斷要比已經服務較長一段時間的元件較少的影響。在另一態樣中,可以對線性趨勢模型LTM、LTM1~LTMn進行權衡重要性,使得已知頻繁失效的元件的線性趨勢模型不會影響整個系統在健康狀況上的判斷,或只有限度的影響。在其他態樣中,系統的健康評估可以不包括應用於線性趨勢模型LTM、LTM1~LTMn的任何加權因子。
現在參照圖2、3、5A、8A、8B和13,將根據所揭露的實施例的態樣描述示例性健康評估的操作。使用可通信地耦合到裝置控制器319、323、422、423A~423C、810的記錄系統801R來記錄預定操作資料(圖13,方塊1300)。預定操作資料體現了由運送裝置輸出的至少一個動態性能變數,該預定操作資料實現了預定基本運動的預定運動基本組820、820A、820B、820C。利用,例如,可通信地耦合到記錄系統801R的處理器810P來確定基本值C
pkBase(圖13,方塊1310)。基本值C
pkBase是由運送裝置306、311、400針對預定運動基本組820、820A、820B、820C的每個運動而輸出的每個動態性能變數的機率密度函數PDF來加以特徵化。
藉由,例如,可通信地耦合到裝置控制器319、323、422、423A~423C、810的運動分解器800來分解用於原位過程運動501’~503’的命令(圖13,方塊1320)。相應於被分解的原位過程運動命令並由運送裝置306、311、400所實現的原位過程運動501’~503’映射到預定運動基本組820、820A、820B、820C的預定基本運動501~503。運送裝置的另一個預定運動組830、830A、830B、830C與映射的原位過程運動501’~503’一起被定義(圖13,方塊1330)。
藉由例如記錄系統801R記錄(圖13,方塊1340)體現了由運送裝置所輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現其他的預定運動組。處理器810P確定了另一個值C
pkOther(圖13,方塊1350),該值由運送裝置所輸出的每個動態性能變數的機率密度函數PDF來加以特徵化,該另一個值C
pkOther實現了其他預定運動組830、830A~830C的映射的原位過程運動501’~503’。
該另一個值C
pkOther和基本值C
pkBase透過,例如,處理器810P針對由分別地對應於預定運動基本組和其他的預定運動組的運送裝置所輸出的每個動態性能變數來進行比較(圖13,方塊1360),其中運送裝置為預定運動基本組和另一預定運動組兩者的共同運送裝置。運送裝置的健康狀況以基於如上所述的比較來評估,並且任何適當的健康評估通知可以被發送至如上所述之自動化材料處理平台300的操作器。
根據所揭露的實施例的一個或更多個態樣,一種用於系統的健康評估的方法包括運送裝置:
利用可通信地耦合到裝置控制器的記錄系統記錄體現了由運送裝置所輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現預定基本運動之預定運動基本組;
利用可通信地耦合到該記錄系統的處理器來確定基本值(C
pkBase),該基本值由運送裝置針對該預定運動基本組的每個運動所輸出的每個動態性能變數的機率密度函數來加以特徵化;
利用與裝置控制器可通信地耦合的運動分解器,從運送裝置分解裝置控制器的原位過程運動命令,其中由運送裝置實現的原位過程運動映射到預定運動基本組的預定基本運動,並且用該映射的原位過程運動定義運送裝置的另一個預定運動組;
利用記錄系統記錄體現了由運送裝置所輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現另一預定運動組,並且利用處理器來確定另一個值(C
pkOther),該另一個值由運送裝置所輸出的每個動態性能變數的機率密度函數來加以特徵化,該另一個值(C
pkOther)實現另一預定運動組之所映射之原位過程運動;以及
利用處理器來針對由分別地對應於預定運動基本組和另一預定運動組的運送裝置所輸出的每個動態性能變數而將另一個值和基本值(C
pkBase)進行比較,其中運送裝置對於預定運動基本組和另一預定運動組兩者為一獨特的運送裝置並且為共同的,並且基於該比較來評估運送裝置的健康狀況。
根據所揭露的實施例的一個或多個態樣,每個預定基本運動定義了模板運動,並且每個原位過程運動實質上地映射到該些模板運動中相對應的一個之上。
根據所揭露的實施例的一個或多個態樣,每個模板運動被來自裝置控制器的扭矩命令和位置命令中的至少一個加以特徵化。
根據所揭露的實施例的一個或多個態樣,扭矩命令和位置命令中的至少一個將模板運動特徵化於運送裝置的至少一個運動自由度之中。
根據所揭露的實施例的一個或多個態樣,該方法還包括在裝置控制器的記錄表中記錄由裝置控制器命令的運動直方圖,該運動直方圖包括由運送裝置實現的原位過程運動,並且其中處理器分解了從位於記錄表中的定期存取運動直方圖的映射的運動。
根據所揭露的實施例的一個或多個態樣,預定運動基本組的預定基本運動包括定義基本運動類型的至少一個共同基本運動的統計特徵數量。
根據所揭露的實施例的一個或多個態樣,預定運動基本組的預定基本運動包括多個不同的基本運動類型,其中每個基本運動類型由運送裝置針對每個基本運動類型在共同運動的統計特徵數量中加以實現。
根據所揭露的實施例的一個或多個態樣,不同的基本運動類型中的每一個具有不同的相應的至少一個扭矩命令特性和位置命令特性,該扭矩命令特性和位置命令特性定義了與每個基本運動類型相應的不同的共同運動。
根據所揭露的實施例的一個或多個態樣,該方法還包括利用記錄系統記錄每個動態性能變數的趨勢資料,其中趨勢資料特徵化了相應的動態性能變數的惡化趨勢。
根據所揭露的實施例的一個或多個態樣,該方法進一步包括利用處理器聚集由運送裝置輸出的至少一個動態性能變數之具有最高惡化趨勢的動態性能變數,以及預測具有低於預定性能狀態的性能的運送裝置之事件的發生。
根據所揭露的實施例的一個或多個態樣,該方法進一步包括利用處理器基於動態性能變數之聚集向運送裝置的操作器提供關於具有低於預定性能狀態的性能的運送裝置之事件的發生的預測的指示。
根據所揭露的實施例的一個或多個態樣,提供了一種用於包括運送裝置的系統的健康評估的方法。該方法包括:
利用與裝置控制器可通信地耦合的記錄系統,記錄體現了由運送裝置輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現了被設置為定義預定基本運動的統計特徵的預定運動基本組;
利用可通信地耦合到記錄系統的處理器來確定歸一化值,該歸一化值統計上地特徵化了由運送裝置針對預定運動基本組的每個運動所輸出的每個動態性能變數的標稱性能;
利用與裝置控制器可通信地耦合的運動分解器,從運送裝置分解裝置控制器的原位過程運動命令,其中由運送裝置所實現的原位過程運動映射到預定運動基本組的預定基本運動,並且利用該映射的原位過程運動定義運送裝置的另一個預定運動組;
利用記錄系統記錄體現了由運送裝置所輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現另一預定運動組,並且利用處理器來確定另一個歸一化值,該另一個歸一化值統計上地特徵化了由運送裝置所輸出的每個動態性能變數的原位過程性能,該另一個歸一化值實現另一預定運動組之所映射之原位過程運動;以及
利用處理器來針對分別地對應於預定基本運動組和另一預定運動組的運送裝置的每個動態性能變數而將另一歸一化值和歸一化值進行比較,並且基於該比較從標稱性能確定運送裝置的性能惡化率,其中該裝置是獨特的,並且該預定運動基本組的每個預定基本運動的每個歸一化值(C
pkBase)和該另一預定運動組的每個映射的原位過程運動的每個其他值(C
pkOther)是只與該獨特裝置獨特地相關,並且所確定的性能惡化率是只與該獨特裝置獨特相關。
根據所揭露的實施例的一個或多個態樣,該方法進一步包括向系統提供彼此連接的多個不同的獨特裝置和運送裝置,其中來自多個不同的獨特裝置(i)的每個不同的獨特裝置具有用於預定基本運動組的每個基本運動的不同的對應的歸一化值(C
pkBasei)以及用於另一預定運動組的每個映射的原位過程運動的其他歸一化值(C
pkOtheri),該歸一化值(C
pkBasei)及該其他歸一化值(C
pkOtheri)係至多地與來自該多個不同的獨特裝置之不同的對應的獨特裝置(i)獨特地相關聯。
根據所揭露的實施例的一個或多個態樣,該方法還包括為每個不同的獨特裝置(i)向分別地耦合到該不同的對應的獨特裝置的控制器記錄該對應的歸一化值(C
pkBasei)和其他歸一化值(C
pkOtheri),該對應的歸一化值(C
pkBasei)和該其他歸一化值(C
pkOtheri)與該不同的對應的獨特裝置(i)獨特地相關,以及針對每個不同的獨特裝置(i),以逐個裝置(i = 1…n)為基礎,從該獨特地相關的歸一化值(C
pkBasei)和該不同的獨特裝置(i)的其他歸一化值(C
pkOtheri)間之比較來為該不同的獨特裝置(i)確定對應的性能惡化率。
根據所揭露的實施例的一個或多個態樣,來自該多個不同的獨特裝置的每個不同的獨特裝置與運送裝置具有共同的配置。
根據所揭露的實施例的一個或多個態樣,來自該多個不同的獨特裝置的每個不同的獨特裝置具有與運送裝置不同的配置。
根據所揭露的實施例的一個或多個態樣,該方法還包括在控制器的記錄表中記錄特徵化了運送裝置和系統的該多個不同的獨特裝置中的每一個的性能惡化趨勢的趨勢資料。
根據所揭露的實施例的一個或多個態樣,該方法還包括利用處理器結合對應於該運送裝置和該系統的各該多個不同的獨特裝置的該性能惡化趨勢以確定特徵化了該系統的性能惡化的系統性能惡化趨勢。
根據所揭露的實施例的一個或多個態樣,該方法還包括利用處理器將運送裝置的性能惡化趨勢與該多個不同的獨特裝置中的每一個的性能惡化趨勢進行比較,並且利用處理器來確定運送裝置的性能惡化趨勢或該多個不同的獨特裝置中的另一個的性能惡化趨勢是否為控制性能惡化趨勢以及控制性能惡化趨勢是否對系統的性能惡化趨勢為決定性的。
根據所揭露的實施例的一個或多個態樣,每個預定的基本運動定義了模板運動,並且每個原位過程運動實質上地映射到該模板運動中相對應的一個之上。
根據所揭露的實施例的一個或多個態樣,每個模板運動係由來自裝置控制器的扭矩命令和位置命令中的至少一個來加以特徵化。
根據所揭露的實施例的一個或多個態樣,該至少一個扭矩命令和位置命令於運送裝置的至少一個運動自由度之中特徵化模板運動。
根據所揭露的實施例的一個或多個態樣,該方法還包括在裝置控制器的記錄表中記錄由裝置控制器命令的運動直方圖,該運動直方圖包括由運送裝置實現的原位過程運動,並且其中處理器分解了從位於記錄表中的定期存取運動直方圖的映射的運動。
根據所揭露的實施例的一個或多個態樣,預定運動基本組的預定基本運動包括定義基本運動類型的至少一個共同基本運動的統計特徵數量。
根據所揭露的實施例的一個或多個態樣,預定運動基本組的預定基本運動包括多個不同的基本運動類型,其中每個基本運動類型由運送裝置針對每個基本運動類型在共同運動的統計特徵數量中加以實現。
根據所揭露的實施例的一個或多個態樣,不同的基本運動類型中的每一個具有不同的相應的至少一個扭矩命令特性和位置命令特性,該扭矩命令特性和位置命令特性定義了與每個基本運動類型相應的不同的共同運動。
根據所揭露的實施例的一個或多個態樣,該方法還包括利用記錄系統記錄每個動態性能變數的趨勢資料,其中趨勢資料特徵化了相應的動態性能變數的惡化趨勢。
根據所揭露的實施例的一個或多個態樣,該方法進一步包括利用處理器聚集由運送裝置輸出的至少一個動態性能變數之具有最高惡化趨勢的動態性能變數,以及預測具有低於預定性能狀態的性能的運送裝置之事件的發生。
根據所揭露的實施例的一個或多個態樣,該方法進一步包括利用處理器基於動態性能變數之聚集向運送裝置的操作器提供關於具有低於預定性能狀態的性能的運送裝置之事件的發生的預測的指示。
根據所揭露的實施例的一個或多個態樣,一種用於評估包括運送裝置的系統的健康的健康評估裝置,該健康評估裝置包括:
記錄系統,其可通信地耦合到該運送裝置的運送裝置控制器,該記錄系統被配置為:
記錄體現了由該運送裝置輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現了預定基本運動的預定運動基本組,以及
記錄體現了由該運送裝置輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現了另一個預定運動組;以及
運動分解器,其可通信地耦合到該運送裝置控制器,該運動分解器被配置為:
從該運送裝置分解該裝置控制器的原位過程運動命令,其中由該運送裝置所實現的原位過程運動映射到該預定運動基本組的該預定基本運動,以及
利用該映射的原位過程運動定義該運送裝置的另一預定運動組;以及
處理器,其可通信地耦合到該記錄系統,該處理器被配置為:
確定基本值(C
pkBase),該基本值由運送裝置針對該預定運動基本組的每個運動所輸出的每個動態性能變數的機率密度函數來加以特徵化,以及
確定另一個值(C
pkOther),該另一個值由運送裝置所輸出的每個動態性能變數的機率密度函數來加以特徵化,該另一個值實現另一預定運動組之所映射之原位過程運動;以及,
針對由分別地對應於預定運動基本組和另一預定運動組的運送裝置所輸出的每個動態性能變數而將另一個值和基本值(C
pkBase)進行比較,以及
基於該比較評估運送工具的健康狀況;
其中運送裝置為預定運動基本組和另一預定運動組兩者的共同運送裝置。
根據所揭露的實施例的一個或多個態樣,每個預定的基本運動定義了模板運動,並且每個原位過程運動實質上地映射到該模板運動中相對應的一個之上。
根據所揭露的實施例的一個或多個態樣,每個模板運動被來自裝置控制器的扭矩命令和位置命令中的至少一個加以特徵化。
根據所揭露的實施例的一個或多個態樣,該至少一個扭矩命令和位置命令於運送裝置的至少一個運動自由度之中特徵化模板運動。
根據所揭露的實施例的一個或多個態樣,該運送裝置控制器包括記錄表,該記錄表被配置為記錄由該裝置控制器命令的運動直方圖,該運動直方圖包括由該運送裝置實現的原位過程運動,並且該處理器被進一步地配置為分解從位於該記錄表中的定期存取的該運動直方圖的映射的運動。
根據所揭露的實施例的一個或多個態樣,預定運動基本組的預定基本運動包括定義基本運動類型的至少一個共同基本運動的統計特徵數量。
根據所揭露的實施例的一個或多個態樣,預定運動基本組的預定基本運動包括多個不同的基本運動類型,其中每個基本運動類型由運送裝置針對每個基本運動類型在共同運動的統計特徵數量中加以實現。
根據所揭露的實施例的一個或多個態樣,不同的基本運動類型中的每一個具有不同的相應的至少一個扭矩命令特性和位置命令特性,該扭矩命令特性和位置命令特性定義了與每個基本運動類型相應的不同的共同運動。
根據所揭露的實施例的一個或多個態樣,該記錄系統更進一步地被配置為記錄各該動態性能變數的趨勢資料,其中該趨勢資料特徵化了相應的動態性能變數的惡化趨勢。
根據所揭露的實施例的一個或多個態樣,該處理器更進一步地被配置為聚集由運送裝置輸出的至少一個動態性能變數之具有最高惡化趨勢的動態性能變數,以及預測具有低於預定性能狀態的性能的運送裝置之事件的發生。
根據所揭露的實施例的一個或多個態樣,處理器更進一步地被配置為基於動態性能變數之聚集向運送裝置的操作器提供關於具有低於預定性能狀態的性能的運送裝置之事件的發生的預測的指示。
根據所揭露的實施例的一個或多個態樣,一種用於評估包括運送裝置的系統的健康的健康評估裝置,該健康評估裝置包括:
記錄系統,其可通信地耦合到該運送裝置的運送裝置控制器,該記錄系統被配置為:
記錄體現了由運送裝置輸出的至少一個動態性能變數的預定操作資料,該預定操作資料運送裝置實現了被設置為定義預定基本運動的統計特徵的預定運動基本組,以及
記錄體現了由該運送裝置輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現了另一個預定運動組;
運動分解器,其可通信地耦合到該運送裝置控制器,該運動分解器被配置為:
從該運送裝置分解該裝置控制器的原位過程運動命令,其中由該運送裝置所實現的原位過程運動映射到該預定運動基本組的該預定基本運動,以及
利用該映射的原位過程運動定義運送裝置的另一個預定運動組;以及
處理器,其可通信地耦合到該記錄系統,該處理器被配置為:
確定歸一化值,該歸一化值統計上地特徵化了由運送裝置針對預定運動基本組的每個運動所輸出的每個動態性能變數的標稱性能,
確定另一個歸一化值,該另一個歸一化值統計上地特徵化了由運送裝置所輸出的每個動態性能變數的原位過程性能,該另一個歸一化值實現另一預定運動組之所映射之原位過程運動,
針對分別地對應於預定基本運動組和另一預定運動組的運送裝置的每個動態性能變數而將另一歸一化值和歸一化值進行比較,以及
基於該比較,從標稱性能確定運送裝置的性能惡化率;
其中該運送裝置為預定基本運動組和另一預定運動組兩者的共同運送裝置。
根據所揭露的實施例的一個或多個態樣,每個預定的基本運動定義了模板運動,並且每個原位過程運動實質上地映射到該模板運動中相對應的一個之上。
根據所揭露的實施例的一個或多個態樣,每個模板運動被來自裝置控制器的扭矩命令和位置命令中的至少一個加以特徵化。
根據所揭露的實施例的一個或多個態樣,該至少一個扭矩命令和位置命令於運送裝置的至少一個運動自由度之中特徵化模板運動。
根據所揭露的實施例的一個或多個態樣,該運送裝置控制器包括記錄表,該記錄表被配置為記錄由該裝置控制器命令的運動直方圖,該運動直方圖包括由該運送裝置實現的原位過程運動,並且該處理器被進一步地配置為分解從位於該記錄表中的定期存取的該運動直方圖的映射的運動。
根據所揭露的實施例的一個或多個態樣,預定運動基本組的預定基本運動包括定義基本運動類型的至少一個共同基本運動的統計特徵數量。
根據所揭露的實施例的一個或多個態樣,預定運動基本組的預定基本運動包括多個不同的基本運動類型,其中每個基本運動類型由運送裝置針對每個基本運動類型在共同運動的統計特徵數量中加以實現。
根據所揭露的實施例的一個或多個態樣,不同的基本運動類型中的每一個具有不同的相應的至少一個扭矩命令特性和位置命令特性,該扭矩命令特性和位置命令特性定義了與每個基本運動類型相應的不同的共同運動。
根據所揭露的實施例的一個或多個態樣,該記錄系統更進一步地被配置為記錄各該動態性能變數的趨勢資料,其中該趨勢資料特徵化了相應的動態性能變數的惡化趨勢。
根據所揭露的實施例的一個或多個態樣,該處理器更進一步地被配置為聚集由運送裝置輸出的至少一個動態性能變數之具有最高惡化趨勢的動態性能變數,以及預測具有低於預定性能狀態的性能的運送裝置之事件的發生。
根據所揭露的實施例的一個或多個態樣,處理器更進一步地被配置為基於動態性能變數之聚集向運送裝置的操作器提供關於具有低於預定性能狀態的性能的運送裝置之事件的發生的預測的指示。
應該理解的是,前面的描述僅僅是對所揭露實施例的各個態樣之說明。本領域技術人士可以設計出各種替代方案和改良而不背離所揭露的實施例的態樣。因此,所揭露的實施例的態樣旨在涵蓋落入所附申請專利範圍內的所有這些替代方案、改良和變化。此外,不同特徵在相互不同的附屬請求項或獨立請求項中被列舉的單純事實並不表示不能有利地使用這些特徵的組合,這樣的組合仍然在本發明的態樣之範圍內。
100:控制器
105:處理器
110:唯讀記憶體
115:隨機存取記憶體
120:程式儲存器
125:用戶介面
130:網路介面
135:內建快取記憶體
140:顯示器
145:滑鼠
150:用戶介面控制器
155:鍵盤
190:通信網路
300:自動化材料處理平台
301:大氣部分
302:真空部分
303:處理模組
304:外殼
305:裝載端口
306:大氣機器人操縱器
307:基底對準器
308:風扇過濾器單元
309:真空室
310:負載鎖
311:真空機器人操縱器
312:真空泵
313:狹縫閥
314:工具控制器
315:大氣部分控制器
316:真空部分控制器
317:處理控制器
318:裝載端口控制器
319:大氣機器人控制器
320:對準器控制器
321:風扇過濾器單元控制器
322:電動機控制器
323:真空機器人控制器
400:機器人操縱器
401:機器人方塊架
402:安裝凸緣
403:垂直導軌
404:線性軸承
405:載運器
406:垂直驅動電動機
407:滾珠螺桿
408:上電動機
409:下電動機
410:編碼器1
411:編碼器2
412:外軸
413:內軸
414:第一連桿
415:皮帶主動桿2
416:第二連桿
417A:電動機A
417B:電動機B
418A:皮帶驅動的第一階段A
418B:皮帶驅動的第一階段B
419A:皮帶驅動的第二階段A
419B:皮帶驅動的第二階段B
420A:上端接器
420B:下端接器
421A,421B:端接器A和B之有效負載
422:主控制器
423A,423B,423C:電動機控制器
424A,424B:端接器A和B的電子單元
425:通信網路
426:滑環
428A,428B:映射感測器
429:電源供應器
430:真空泵
431A,431B:閥
432A,432B:壓力感測器
433,434A,434B:唇形密封
435:制動器
501:基本移動1
502:基本移動2
503:基本移動3
501’,502’,503’:原位過程移動
STN1-STN6:基底保持站
700:原位移動命令直方圖
700R:記錄表
800:運動分解器
801:資料緩衝器
801R:記錄系統
810:機器人控制器
810P:處理器
820,820A,820B,820C:運動基本組
830,830A,830B,830C:預定運動組
840:記錄表
B10,B20,B50,1300,1310,1320,1330,1340,1350,1360,1400,1401,1402,1403,1500,1501,1502,1503,1504,1505:方塊
870:趨勢/評估單元
890:基本運動組
890AG:單個聚集運動
TDR:暫存器
A1-An:評估
LTM,LTM1-LTMn:線性趨勢模型
C
pkBasei:歸一化值
App1-Appn:獨特的裝置
C
pkOther(1-n):其他的值
WS:第一預定評估值
TD:趨勢資料
ES:第二預定評估值
t
warn,t
warnLTM1,t
warnLTM2,t
errorLTM1,t
error:時間
結合附圖,在以下描述中解釋所揭露的實施例之前述的態樣和其他特徵,其中:
[圖1]是用於自動化裝置的控制器的示意圖,例如根據所揭露的實施例的態樣之自動化材料處理平台;
[圖2]是根據所揭露的實施例的態樣之自動化材料處理平台的示意圖;
[圖2A]是根據所揭露的實施例的態樣之包括多個不同的獨特裝置的系統的示意圖;
[圖3]是根據所揭露實施例的態樣之自動化材料處理裝置的裝置(例如運送機器人)的示意圖;
[圖4A~4E]是根據所揭露的實施例的態樣之圖3的裝置的不同臂配置的示意圖;
[圖5A]是根據所揭露實施例的態樣之顯示出基本移動和原位過程移動的自動化材料處理平台的一部分的示意圖;
[圖5B和5C]是根據所揭露的實施例的態樣之簡單和複雜移動的示意圖;
[圖6]是示例性圖表,其示例出由根據所揭露的實施例的態樣之圖3的裝置所執行的移動樣本的統計收斂;
[圖7]是根據所揭露實施例的態樣之示例性移動直方圖;
[圖8A]是根據所揭露的實施例的態樣之示例性過程流程的示意圖;
[圖8B]是根據所揭露實施例的態樣之圖8A的示例性過程流程的一部分的示意圖;
[圖9]是根據所揭露實施例的態樣之指示上限和下限的移動樣本的示例性高斯分佈;
[圖10]是根據所揭露的實施例的態樣之基線值與從原位過程移動所產生的另一個值之間的比較的圖例;
[圖11]是根據所揭露的實施例的態樣之關於預測診斷之圖3的裝置的健康評估的應用的示例性圖示;
[圖12]是根據所揭露實施例的態樣之健康評估指示的示例性圖示;
[圖13]是根據所揭露的實施例的態樣之示例性流程圖;
[圖14]是根據所揭露實施例的態樣之流程圖;以及
[圖15]是根據所揭露實施例的態樣之流程圖。
830,830A,830B,830C:預定運動組
870:趨勢/評估單元
890:基本運動組
890AG:單個聚集運動
TDR:暫存器
700:原位移動命令直方圖
700R:記錄表
800:運動分解器
801:資料緩衝器
801R:記錄系統
810:機器人控制器
810P:處理器
820,820A,820B,820C:運動基本組
840:記錄表
Claims (22)
- 一種用於包含運送裝置之系統的健康評估方法,該方法包括: 利用可通信地耦合到裝置控制器的記錄系統記錄體現了由該運送裝置之至少一個裝置組件所輸出的至少一個動態性能變數的預定操作資料,該預定操作資料實現該運送裝置之預定基本扭矩命令的預定命令扭矩基本組; 利用可通信地耦合到該記錄系統的處理器來確定基本值,該基本值係由該至少一個裝置組件針對該預定命令扭矩基本組的每個扭矩命令所輸出的各該動態性能變數的機率密度函數來加以特徵化; 利用與該裝置控制器可通信地耦合的分解器,從該至少一個裝置組件分解該裝置控制器的原位過程扭矩命令,其中,由該至少一個裝置組件實現的該原位過程扭矩映射到該預定命令扭矩基本組的該等預定基本扭矩命令,並且用該映射的原位過程扭矩來定義該運送裝置的另一個預定命令扭矩組,其對應於該預定命令扭矩基本組的該運送裝置;以及 利用該記錄系統記錄體現了由該至少一個裝置組件所輸出之該至少一個動態性能變數的預定操作資料,該預定操作資料實現另一預定命令扭矩組,並且利用該處理器來確定另一個值,該另一個值由該至少一個裝置組件所輸出之該等動態性能變數的每一個的該機率密度函數來加以特徵化,該另一個值實現該另一預定命令扭矩組之所映射的原位過程扭矩,用以將該另一個值和該基本值進行比較,並且基於該比較來評估該運送裝置的該健康。
- 如請求項1之方法,另包括利用該處理器來針對由該至少一個裝置組件分別地對應於該預定命令扭矩基本組和該另一預定命令扭矩組所輸出之該等動態性能變數的每一個而將該另一個值和該基本值進行比較。
- 如請求項1之方法,其中,該運送裝置對於該預定命令扭矩基本組和該另一預定命令扭矩組兩者而言為唯一的運送裝置。
- 如請求項1之方法,其中,該等預定基本命令扭矩的每一個定義了模板命令扭矩,並且每一個原位過程扭矩映射到該等模板命令扭矩之相對應的一個。
- 如請求項1之方法,另包括在該裝置控制器的記錄表中記錄由該裝置控制器所命令的扭矩直方圖,該扭矩直方圖包含由該至少一個裝置組件所實現的原位過程扭矩,並且其中,該處理器分解了從位於該記錄表中之定期存取的該扭矩直方圖之該映射的原位過程扭矩。
- 如請求項1之方法,其中,該預定命令扭矩基本組的該等預定基本命令扭矩包含定義基本命令扭矩類型之至少一個共同基本命令扭矩的統計特徵數量。
- 如請求項1之方法,其中,該預定命令扭矩基本組的該預定基本命令扭矩包含多個不同的基本命令扭矩類型,該等基本命令扭矩類型的每一個係由該至少一個裝置組件針對各個基本命令扭矩類型在共同命令扭矩的統計特徵數量中來加以實現。
- 如請求項7之方法,其中,該等不同的基本命令扭矩類型的每一個具有不同之相應的至少一個扭矩命令特性和位置命令特性,該扭矩命令特性和該位置命令特性定義了與各個基本命令扭矩類型相應之不同的共同命令扭矩。
- 如請求項1之方法,另包括利用該記錄系統記錄該動態性能變數各自的趨勢資料,其中,該趨勢資料特徵化了相應之動態性能變數的惡化趨勢。
- 如請求項9之方法,另包括利用該處理器聚集由該至少一個裝置組件所輸出的該至少一個動態性能變數之具有最高之該惡化趨勢的動態性能變數,以及預測具有低於預定性能狀態的性能的該運送裝置之事件的發生。
- 如請求項10項之方法,另包括利用該處理器基於該動態性能變數之該聚集向該運送裝置的操作器提供關於具有低於預定性能狀態的性能的該運送裝置之該事件的發生的預測的指示。
- 一種用於評估包含運送裝置之系統的健康的健康評估裝置,該健康評估裝置包括: 記錄系統,其可通信地耦合到該運送裝置的運送裝置控制器,該記錄系統被配置成: 記錄體現了由該運送裝置之至少一個裝置組件所輸出之至少一個動態性能變數的預定操作資料,該預定操作資料實現了該運送裝置之預定基本扭矩命令的預定命令扭矩基本組,以及 記錄體現了由該至少一個裝置組件所輸出之至少一個動態性能變數的預定操作資料,該預定操作資料實現了另一個預定命令扭矩組;以及 分解器,其可通信地耦合到該運送裝置控制器,該分解器被配置成: 從該至少一個裝置組件分解該裝置控制器的原位過程扭矩命令,其中,由該至少一個裝置組件所實現的原位過程扭矩映射到該預定扭矩命令基本組的該等預定基本扭矩命令,以及 利用該映射的原位過程扭矩定義該運送裝置的另一預定命令扭矩組,其對應於該預定命令扭矩基本組的該運送裝置;以及 處理器,其可通信地耦合到該記錄系統,該處理器被配置成: 確定基本值,該基本值係由該至少一個裝置組件針對該預定命令扭矩基本組的每一個扭矩命令所輸出之該動態性能變數各自的機率密度函數來加以特徵化,以及 確定另一個值,該另一個值係由該至少一個裝置組件所輸出之該動態性能變數各自的該機率密度函數來加以特徵化,該另一個值實現該另一預定命令扭矩組之該映射的原位過程扭矩,用以將該另一個值和該基本值進行比較,並且基於該比較來評估該運送裝置的該健康。
- 如請求項12之裝置,其中,該處理器另被配置成針對由該至少一個裝置組件分別地對應於該預定命令扭矩基本組和該另一預定命令扭矩組所輸出之該動態性能變數的每一個而將該另一個值和該基本值進行比較。
- 如請求項12之裝置,其中,該運送裝置對於該預定命令扭矩基本組和該另一預定命令扭矩組兩者而言為唯一的運送裝置。
- 如請求項12之裝置,其中,該等預定基本命令扭矩的每一個定義了模板命令扭矩,並且每一個原位過程扭矩映射到該等模板命令扭矩之相對應的一個。
- 如請求項12之裝置,其中,該運送裝置控制器包括記錄表,該記錄表被配置成記錄由該裝置控制器所命令的扭矩直方圖,該裝置控制器包含由該至少一個裝置組件所實現的原位過程扭矩,並且該處理器另被配置成分解從位於該記錄表中之定期存取的該扭矩直方圖之該映射的原位過程扭矩。
- 如請求項12之裝置,其中,該預定命令扭矩基本組的該等預定基本命令扭矩包含定義基本命令扭矩類型之至少一個共同基本命令扭矩的統計特徵數量。
- 如請求項12之裝置,其中,該預定命令扭矩基本組的該等預定基本命令扭矩包含多個不同的基本命令扭矩類型,其中,該等基本命令扭矩類型的每一個係由該至少一個裝置組件針對各個基本命令扭矩類型在共同命令扭矩的統計特徵數量中來加以實現。
- 如請求項18之裝置,其中,該等不同的基本運動類型的每一個具有不同之相應的至少一個扭矩命令特性和位置命令特性,該扭矩命令特性和該位置命令特性定義了與各個基本命令扭矩類型相應之不同的共同命令扭矩。
- 如請求項12之裝置,其中,該記錄系統另被配置成記錄該動態性能變數之每一個的趨勢資料,其中,該趨勢資料特徵化了相應之動態性能變數的惡化趨勢。
- 如請求項20之裝置,其中,該處理器另被配置成聚集由該至少一個裝置組件所輸出的該至少一個動態性能變數之具有最高之該惡化趨勢的動態性能變數,以及預測具有低於預定性能狀態的性能的該運送裝置之事件的發生。
- 如請求項21之裝置,其中,該處理器另被配置成基於該動態性能變數之該聚集向該運送裝置的操作器提供關於具有低於預定性能狀態的性能的該運送裝置之該事件的發生的預測的指示。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762502292P | 2017-05-05 | 2017-05-05 | |
US62/502,292 | 2017-05-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202324011A TW202324011A (zh) | 2023-06-16 |
TWI832691B true TWI832691B (zh) | 2024-02-11 |
Family
ID=66590051
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107115457A TWI794229B (zh) | 2017-05-05 | 2018-05-07 | 用於運送裝置的健康評估的方法及裝置 |
TW112103840A TWI832691B (zh) | 2017-05-05 | 2018-05-07 | 用於運送裝置的健康評估的方法及裝置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107115457A TWI794229B (zh) | 2017-05-05 | 2018-05-07 | 用於運送裝置的健康評估的方法及裝置 |
Country Status (1)
Country | Link |
---|---|
TW (2) | TWI794229B (zh) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6411908B1 (en) * | 2000-04-27 | 2002-06-25 | Machinery Prognosis, Inc. | Condition-based prognosis for machinery |
CN1496932A (zh) * | 2002-10-04 | 2004-05-19 | ʿ | 用于监控货物的方法 |
US7308385B2 (en) * | 2001-04-10 | 2007-12-11 | Wegerich Stephan W | Diagnostic systems and methods for predictive condition monitoring |
CN101395577A (zh) * | 2006-03-02 | 2009-03-25 | Abb公司 | 用于评估的方法、自动化系统和控制器 |
US7567878B2 (en) * | 2005-12-07 | 2009-07-28 | Siemens Corporate Research, Inc. | Evaluating anomaly for one class classifiers in machine condition monitoring |
CN101657765A (zh) * | 2007-03-12 | 2010-02-24 | 艾默生过程管理电力和水力解决方案有限公司 | 利用从统计和实时数据得到的可达到性能对设备进行通用性能评估的方法和装置 |
US20110173496A1 (en) * | 2005-07-11 | 2011-07-14 | Brooks Automation, Inc. | Intelligent condition monitoring and fault diagnostic system for preventative maintenance |
US8352216B2 (en) * | 2008-05-29 | 2013-01-08 | General Electric Company | System and method for advanced condition monitoring of an asset system |
US8494817B1 (en) * | 2006-11-30 | 2013-07-23 | Pdf Solutions, Inc. | Methods for yield variability benchmarking, assessment, quantification, and localization |
US20140222352A1 (en) * | 2011-10-03 | 2014-08-07 | Shiva Sander-Tavallaey | Condition Monitoring Of An Industrial Robot |
US20140336791A1 (en) * | 2013-05-09 | 2014-11-13 | Rockwell Automation Technologies, Inc. | Predictive maintenance for industrial products using big data |
-
2018
- 2018-05-07 TW TW107115457A patent/TWI794229B/zh active
- 2018-05-07 TW TW112103840A patent/TWI832691B/zh active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6411908B1 (en) * | 2000-04-27 | 2002-06-25 | Machinery Prognosis, Inc. | Condition-based prognosis for machinery |
US7308385B2 (en) * | 2001-04-10 | 2007-12-11 | Wegerich Stephan W | Diagnostic systems and methods for predictive condition monitoring |
CN1496932A (zh) * | 2002-10-04 | 2004-05-19 | ʿ | 用于监控货物的方法 |
US20110173496A1 (en) * | 2005-07-11 | 2011-07-14 | Brooks Automation, Inc. | Intelligent condition monitoring and fault diagnostic system for preventative maintenance |
US7567878B2 (en) * | 2005-12-07 | 2009-07-28 | Siemens Corporate Research, Inc. | Evaluating anomaly for one class classifiers in machine condition monitoring |
CN101395577A (zh) * | 2006-03-02 | 2009-03-25 | Abb公司 | 用于评估的方法、自动化系统和控制器 |
US8494817B1 (en) * | 2006-11-30 | 2013-07-23 | Pdf Solutions, Inc. | Methods for yield variability benchmarking, assessment, quantification, and localization |
CN101657765A (zh) * | 2007-03-12 | 2010-02-24 | 艾默生过程管理电力和水力解决方案有限公司 | 利用从统计和实时数据得到的可达到性能对设备进行通用性能评估的方法和装置 |
US8352216B2 (en) * | 2008-05-29 | 2013-01-08 | General Electric Company | System and method for advanced condition monitoring of an asset system |
US20140222352A1 (en) * | 2011-10-03 | 2014-08-07 | Shiva Sander-Tavallaey | Condition Monitoring Of An Industrial Robot |
US20140336791A1 (en) * | 2013-05-09 | 2014-11-13 | Rockwell Automation Technologies, Inc. | Predictive maintenance for industrial products using big data |
Also Published As
Publication number | Publication date |
---|---|
TW202324011A (zh) | 2023-06-16 |
TW201908895A (zh) | 2019-03-01 |
TWI794229B (zh) | 2023-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102495944B1 (ko) | 이송 장치의 건강 평가를 위한 방법 및 장치 | |
US11650581B2 (en) | Intelligent condition monitoring and fault diagnostic system for preventative maintenance | |
TWI470385B (zh) | 自動化製造器具所用之智慧型狀態監控及故障診斷系統 | |
JPWO2019106963A1 (ja) | 機械設備制御システム、機械設備制御装置、及び機械設備制御方法 | |
US11664265B2 (en) | Systems and methods for robotic arm sensing | |
TWI832691B (zh) | 用於運送裝置的健康評估的方法及裝置 | |
US11249455B2 (en) | Automation system and wear detection controller |