TWI831997B - Lens device - Google Patents

Lens device Download PDF

Info

Publication number
TWI831997B
TWI831997B TW109128237A TW109128237A TWI831997B TW I831997 B TWI831997 B TW I831997B TW 109128237 A TW109128237 A TW 109128237A TW 109128237 A TW109128237 A TW 109128237A TW I831997 B TWI831997 B TW I831997B
Authority
TW
Taiwan
Prior art keywords
module
reflective
lens
light
optical path
Prior art date
Application number
TW109128237A
Other languages
Chinese (zh)
Other versions
TW202115452A (en
Inventor
林國泉
Original Assignee
大陸商信泰光學(深圳)有限公司
亞洲光學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201921676433.3U external-priority patent/CN211043769U/en
Priority claimed from CN201922145167.8U external-priority patent/CN211014973U/en
Priority claimed from CN201922291971.7U external-priority patent/CN211207029U/en
Priority claimed from CN201922387683.1U external-priority patent/CN211263930U/en
Application filed by 大陸商信泰光學(深圳)有限公司, 亞洲光學股份有限公司 filed Critical 大陸商信泰光學(深圳)有限公司
Priority to US17/035,977 priority Critical patent/US11528396B2/en
Publication of TW202115452A publication Critical patent/TW202115452A/en
Priority to US17/976,226 priority patent/US11863854B2/en
Application granted granted Critical
Publication of TWI831997B publication Critical patent/TWI831997B/en

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Lens Barrels (AREA)

Abstract

A lens device includes a first lens module, a first optical path turning module, and an image sensor. The first lens module, the first optical path turning module, and the image sensor are sequentially arranged along a travel path of a light beam. The optical path turning module is configurted to change the travel direction of the light beam so as to form an image on the image sensor after the light beam passes through the first lens module.

Description

鏡頭裝置 lens unit

本發明係有關於一種鏡頭裝置,特別是有關於一種鏡頭裝置及其音圈馬達結構。 The present invention relates to a lens device, and in particular to a lens device and its voice coil motor structure.

目前許多可擕式電子設備內都設置有鏡頭裝置。圖1是現有技術中一種鏡頭裝置1100的結構示意圖。如圖1所示,該鏡頭裝置1100包括光路轉折模組1101、透鏡模組1102、以及影像感測器1103,其中透鏡模組1102包含多個透鏡單元(未圖示),且具有沿著第一方向X的光軸。光路轉折模組1101、透鏡模組1102、以及影像感測器1103三者沿著第一方向X排列。光線沿著第二方向Y入射到光路轉折模組1101,經光路轉折模組1101反射後沿著第一方向X入射到透鏡模組1102,之後光線沿著第一方向X到達影像感測器1103並成像。其中第二方向Y與第一方向X垂直。 Currently, many portable electronic devices are equipped with lens devices. FIG. 1 is a schematic structural diagram of a lens device 1100 in the prior art. As shown in Figure 1, the lens device 1100 includes an optical path turning module 1101, a lens module 1102, and an image sensor 1103. The lens module 1102 includes a plurality of lens units (not shown) and has a An optical axis in the direction X. The optical path turning module 1101, the lens module 1102, and the image sensor 1103 are arranged along the first direction X. The light is incident on the light path turning module 1101 along the second direction Y, is reflected by the light path turning module 1101, and then is incident on the lens module 1102 along the first direction X, and then the light reaches the image sensor 1103 along the first direction X. and imaging. The second direction Y is perpendicular to the first direction X.

這種鏡頭裝置1100的缺陷在於,光路轉折模組1101、透鏡模組1102、以及影像感測器1103三者沿著第一方向X排列,隨著鏡頭裝置1100的變焦倍率的提高,其有效焦距(EFL,Effective Focal Length)會變長,這導致鏡頭裝置1100的長度變長,對可擕式電子設備內部有限的空間提出很大的挑戰。隨著可擕式電子設備的不斷發展,要求鏡頭裝置1100有全新的佈局,來適應可擕式電子設備的內部佈局。 The defect of this lens device 1100 is that the optical path turning module 1101, the lens module 1102, and the image sensor 1103 are arranged along the first direction X. As the zoom magnification of the lens device 1100 increases, its effective focal length (EFL, Effective Focal Length) will become longer, which causes the length of the lens device 1100 to become longer, posing a great challenge to the limited space inside the portable electronic device. With the continuous development of portable electronic equipment, the lens device 1100 is required to have a new layout to adapt to the internal layout of the portable electronic equipment.

圖2是現有技術中另一種鏡頭裝置2500的結構示意圖。如圖2所示,該鏡頭裝置2500包括基座(未圖示)、稜鏡模組2501、透鏡模組2502、 以及影像感測器2503。其中稜鏡模組2501用於將Y方向入射的光線反射到X方向,透鏡模組2502接收從稜鏡模組2501出射的光線,從透鏡模組2502出射的光線在影像感測器2503上形成影像。 FIG. 2 is a schematic structural diagram of another lens device 2500 in the prior art. As shown in Figure 2, the lens device 2500 includes a base (not shown), a lens module 2501, a lens module 2502, and image sensor 2503. The lens module 2501 is used to reflect the incident light in the Y direction to the X direction. The lens module 2502 receives the light emitted from the lens module 2501. The light emitted from the lens module 2502 is formed on the image sensor 2503. image.

這種鏡頭裝置2500的缺陷在於,在透鏡模組2502的透鏡單元的有效焦距逐漸加大的情況下,影像感測器有逐漸遠離透鏡模組2502的趨勢,導致鏡頭裝置2500的長度太長。 The defect of this lens device 2500 is that when the effective focal length of the lens unit of the lens module 2502 gradually increases, the image sensor tends to gradually move away from the lens module 2502, resulting in the length of the lens device 2500 being too long.

圖3是現有技術中又一種鏡頭裝置3100的結構示意圖。如圖3所示,該鏡頭裝置3100包括光路轉折模組3101、透鏡模組3102、以及影像感測器3103。其中光路轉折模組3101將沿著Y方向入射的光線反射到X方向,透鏡模組3102包括多個透鏡單元,且具有沿著X方向的光軸,從透鏡單元3102出射的光線最終在影像感測器3103上形成影像。 FIG. 3 is a schematic structural diagram of another lens device 3100 in the prior art. As shown in FIG. 3 , the lens device 3100 includes an optical path turning module 3101 , a lens module 3102 , and an image sensor 3103 . The optical path turning module 3101 reflects the incident light along the Y direction to the X direction. The lens module 3102 includes multiple lens units and has an optical axis along the X direction. The light emitted from the lens unit 3102 is finally reflected in the image sensor. An image is formed on the detector 3103.

這種鏡頭裝置3100的缺陷在於,只適用於低倍率的電子設備,不能達成多種倍率。 The disadvantage of this lens device 3100 is that it is only suitable for low-magnification electronic equipment and cannot achieve multiple magnifications.

音圈馬達(簡稱VCM)是一種將電能轉化為機械能的裝置,並實現直線型及有限擺角的運動。現有鏡頭裝置(例如潛望式鏡頭)通常包括稜鏡模組、透鏡模組及影像感測器,其中現有技術若要實現高倍率的光學變焦,必需要有更長的焦距值,如此一來會使得鏡頭模組尺寸變長變大,不利鏡頭裝置小型化的趨勢。 Voice coil motor (VCM for short) is a device that converts electrical energy into mechanical energy and achieves linear and limited swing angle motion. Existing lens devices (such as periscope lenses) usually include a lens module, a lens module and an image sensor. In order to achieve high-magnification optical zoom, the existing technology must have a longer focal length value. As a result, This will make the size of the lens module longer and larger, which is detrimental to the trend of miniaturization of lens devices.

有鑑於此,本發明的目的在於提供一種鏡頭裝置,具有全新的佈局,可有效減小其長度。 In view of this, the object of the present invention is to provide a lens device with a completely new layout that can effectively reduce its length.

本發明的另一目的在於提供一種鏡頭裝置,可達成多種倍率,且達成高倍率光學變焦並兼顧鏡頭模組小型化。 Another object of the present invention is to provide a lens device that can achieve multiple magnifications and achieve high-magnification optical zoom while taking into account the miniaturization of the lens module.

本發明的又一目的在於提供一種可以實現高倍率的光學變 焦、結構穩定的小型化音圈馬達結構及其鏡頭裝置。 Another object of the present invention is to provide an optical variable lens that can achieve high magnification. Miniaturized voice coil motor structure with focus and stable structure and its lens device.

本發明的再一目的在於提供一種鏡頭裝置以解決現有技術中的音圈馬達(VCM)結構中採用滑塊滑動導致因克服靜摩擦力而相互產生衝擊的技術問題。 Another object of the present invention is to provide a lens device to solve the technical problem in the prior art voice coil motor (VCM) structure that uses sliding blocks to slide, resulting in mutual impact due to overcoming static friction.

本發明的其中一實施例之鏡頭裝置包括第一透鏡模組、第一光路轉折模組以及影像感測器。所述第一透鏡模組、所述第一光路轉折模組及所述影像感測器沿一光線行進的路徑依序排列。所述第一光路轉折模組改變所述光線行進的方向,使通過所述第一透鏡模組的光線成像在所述影像感測器。 A lens device according to one embodiment of the present invention includes a first lens module, a first optical path turning module and an image sensor. The first lens module, the first optical path turning module and the image sensor are arranged in sequence along a path of light. The first optical path turning module changes the direction in which the light travels, so that the light passing through the first lens module is imaged on the image sensor.

本發明的另一實施例之鏡頭裝置更包括第二光路轉折模組,其中所述第一透鏡模組具有沿著第一方向的光軸;所述第二光路轉折模組用於接收沿著第二方向入射的光線並將其沿第一方向反射到所述第一透鏡模組;所述第一光路轉折模組設置在所述第一透鏡模組和所述影像感測器之間且包括第一稜鏡單元及第二稜鏡單元,所述第一稜鏡單元包括第一面、第二面以及第三面,光線從所述第一面入射到所述第一稜鏡單元,所述第二面與所述影像感測器彼此相對,光線在所述第一稜鏡單元內發生全反射並從所述第二面出射,所述第二稜鏡單元包括第四面以及第五面,第四面與所述第一透鏡模組彼此相對,第五面與所述第一面彼此相對且兩者之間留有空氣間隙。 A lens device according to another embodiment of the present invention further includes a second optical path turning module, wherein the first lens module has an optical axis along the first direction; the second optical path turning module is used to receive light along the first direction. The light incident from the second direction is reflected to the first lens module along the first direction; the first optical path turning module is disposed between the first lens module and the image sensor; It includes a first lens unit and a second lens unit, the first lens unit includes a first surface, a second surface and a third surface, and light is incident on the first lens unit from the first surface, The second surface and the image sensor are opposite to each other, and the light is totally reflected in the first lens unit and emitted from the second surface. The second lens unit includes a fourth surface and a third surface. Five surfaces, the fourth surface and the first lens module are opposite to each other, and the fifth surface and the first surface are opposite to each other with an air gap between them.

本發明的另一實施例中,所述第一光路轉折模組包括第一反射部件以及第二反射部件,該第一反射部件設置於該第一透鏡模組與該影像感測器之間,該第一反射部件包括第一勾股反射面、第二勾股反射面以及第一弦長面;該第二反射部件設置於該第一反射元件與該鏡頭模組之間,其具有第三勾股反射面、第四勾股反射面以及第二弦長面,且該第二 反射部件沿著平行於該第二弦長面方向移動進行影像手震補正,以及該第二反射部件沿著垂直於該第二弦長面方向移動進行焦距調整。 In another embodiment of the present invention, the first optical path turning module includes a first reflective component and a second reflective component, and the first reflective component is disposed between the first lens module and the image sensor, The first reflective component includes a first Pythagorean reflective surface, a second Pythagorean reflective surface and a first chord surface; the second reflective component is disposed between the first reflective element and the lens module, and has a third Pythagorean reflective surface, fourth Pythagorean reflective surface and second chord length surface, and the second The reflective component moves in a direction parallel to the second chord plane to correct image shake, and the second reflective component moves in a direction perpendicular to the second chord plane to adjust the focus.

本發明的另一實施例中,所述的鏡頭裝置更包括基座、第三光路轉折模組、第二光路轉折模組以及第二透鏡模組。第三光路轉折模組用於將沿著第二方向入射的光線反射到第一方向。第二光路轉折模組用於將沿著第二方向入射的光線反射到第一方向。第二透鏡模組用於接收所述第三光路轉折模組反射的光線且具有沿著第一方向的第二光軸。所述第一透鏡模組用於接收所述第二光路轉折模組反射的光線且具有沿著第一方向的第一光軸。所述第一光路轉折模組用於將經所述第一透鏡模組出射的光線反射到所述影像感測器。所述的第三光路轉折模組、第二透鏡模組、第二光路轉折模組、第一透鏡模組、第一光路轉折模組、影像感測器依光線行進的路徑順序設置在所述基座上。所述第二光路轉折模組在第一位置和第二位置之間切換,所述第一方向和第二方向相互垂直。當所述第二光路轉折模組在所述第一位置,所述第二光路轉折模組遮擋來自所述第二透鏡模組的光線;當所述第二光路轉折模組在所述第二位置,所述第二光路轉折模組偏離所述第二光軸,使得來自所述第二透鏡模組的光線進入所述第一透鏡模組。所述鏡頭裝置還包括驅動所述第二光路轉折模組沿著第三方向平移偏離到所述第二位置或回到所述第一位置的第二光路轉折模組驅動單元,所述第一、第二、第三方向相互垂直。 In another embodiment of the present invention, the lens device further includes a base, a third optical path turning module, a second optical path turning module and a second lens module. The third optical path turning module is used to reflect light incident along the second direction to the first direction. The second optical path turning module is used to reflect light incident along the second direction to the first direction. The second lens module is used to receive the light reflected by the third optical path turning module and has a second optical axis along the first direction. The first lens module is used to receive the light reflected by the second optical path turning module and has a first optical axis along a first direction. The first optical path turning module is used to reflect the light emitted through the first lens module to the image sensor. The third optical path turning module, the second lens module, the second optical path turning module, the first lens module, the first optical path turning module and the image sensor are arranged in the order of the light path according to the traveling path of the light. on the pedestal. The second optical path turning module switches between a first position and a second position, and the first direction and the second direction are perpendicular to each other. When the second light path turning module is in the first position, the second light path turning module blocks the light from the second lens module; when the second light path turning module is in the second Position, the second optical path turning module deviates from the second optical axis, so that the light from the second lens module enters the first lens module. The lens device further includes a second optical path turning module driving unit that drives the second optical path turning module to translate in a third direction to the second position or return to the first position. The first , the second and third directions are perpendicular to each other.

本發明的另一實施例中,所述第一透鏡模組具有沿著第一方向的光軸;所述第一光路轉折模組包括第一反射部件以及第二反射部件;所述的第一反射部件用於接收通過所述第一透鏡模組的光線並加以反射;所述第一反射部件可沿著與所述第一方向垂直的第三方向運動地設置在所述第一透鏡模組和影像感測器之間;所述的第二反射部件用於反射來自所 述第一反射部件的光線;所述第二反射部件可與所述第一反射部件同向或反向運動地設置在所述第一透鏡模組和影像感測器之間。 In another embodiment of the present invention, the first lens module has an optical axis along the first direction; the first optical path turning module includes a first reflective component and a second reflective component; the first The reflective component is used to receive the light passing through the first lens module and reflect it; the first reflective component is disposed on the first lens module movably along a third direction perpendicular to the first direction. and the image sensor; the second reflective component is used to reflect the The second reflective component can be disposed between the first lens module and the image sensor so as to move in the same direction or in the opposite direction as the first reflective component.

本發明的另一實施例中,所述第一透鏡模組具有沿著第一方向的光軸;所述第一光路轉折模組包括第一反射部件、第二反射部件以及第三反射部件;所述的第一反射部件用於接收通過所述第一透鏡模組的光線並加以反射,所述第一反射部件可沿著所述第一方向運動地設置在所述第一透鏡模組和影像感測器之間;所述的第二反射部件用於反射來自所述第一反射部件的光線,所述第二反射部件可與所述第一反射部件同向或反向運動地設置在所述第一透鏡模組和影像感測器之間;所述的第三反射部件用於將來自所述第一透鏡模組的光線反射到所述第一反射部件,所述第三反射部件設置在所述第一透鏡模組和影像感測器之間。 In another embodiment of the present invention, the first lens module has an optical axis along the first direction; the first optical path turning module includes a first reflective component, a second reflective component and a third reflective component; The first reflective component is used to receive and reflect the light passing through the first lens module. The first reflective component is movably disposed between the first lens module and the first lens module along the first direction. between the image sensors; the second reflective component is used to reflect the light from the first reflective component, and the second reflective component can be disposed in the same direction or opposite direction as the first reflective component. Between the first lens module and the image sensor; the third reflective component is used to reflect the light from the first lens module to the first reflective component; the third reflective component Disposed between the first lens module and the image sensor.

本發明的另一實施例中,所述的鏡頭裝置更包括第一反射模組、第二反射模組、滑動單元及第一基座,其中所述第一反射模組包括第一反射部件和第一載體,所述第一反射部件安裝在所述第一載體上;所述第二反射模組包括第二反射部件和第二載體,所述第二反射部件安裝在所述第二載體上,所述滑動單元為滾珠;所述第一載體和所述第一基座中的其中一者形成有用於供所述滾珠定位滾動的至少一第一容置槽,所述第一載體和所述第一基座中的另一者的相對應位置形成有沿所述第一載體的運動方向延伸的至少一第一滑槽;所述第二載體和所述第一基座中的其中一者形成有用於供所述滾珠定位滾動的至少一第二容置槽,所述第二載體和所述第一基座中的另一者的相對應位置形成有沿所述第二載體的運動方向延伸的至少一第二滑槽。 In another embodiment of the present invention, the lens device further includes a first reflective module, a second reflective module, a sliding unit and a first base, wherein the first reflective module includes a first reflective component and a first reflective module. The first carrier, the first reflective component is installed on the first carrier; the second reflective module includes a second reflective component and a second carrier, the second reflective component is installed on the second carrier , the sliding unit is a ball; one of the first carrier and the first base is formed with at least a first accommodation groove for the ball to position and roll, the first carrier and the first base are formed with at least one first accommodation groove for the ball to position and roll. The corresponding position of the other of the first bases is formed with at least one first chute extending along the movement direction of the first carrier; one of the second carrier and the first base is One is formed with at least one second accommodation groove for positioning and rolling of the ball, and the corresponding position of the other one of the second carrier and the first base is formed with movement along the second carrier. At least one second chute extending in the direction.

本發明的另一實施例中,所述的鏡頭裝置更包括一驅動單元,其中所述第一光路轉折模組包括第一反射模組以及第二反射模組;所 述第二反射模組用於反射來自所述第一反射模組的光線;所述驅動單元用於驅動所述第一反射模組和第二反射模組同向或反向運動;所述驅動單元包括基座、第一驅動元件和第二驅動元件,所述第一驅動元件和第二驅動元件驅動所述第一反射模組和第二反射模組可移動地設置在所述基座上;所述第一驅動元件還包括第一滑塊機構,第一滑塊機構與所述第一反射模組固定連接;所述第二驅動元件還包括第二滑塊機構,第二滑塊機構與所述第二反射模組固定連接;所述第一滑塊機構和第二滑塊機構與所述基座滑動連接;所述驅動單元還包括與所述基座固定連接的軸體,所述第一滑塊機構和第二滑塊機構套設在所述軸體上。 In another embodiment of the present invention, the lens device further includes a driving unit, wherein the first optical path turning module includes a first reflective module and a second reflective module; The second reflective module is used to reflect the light from the first reflective module; the driving unit is used to drive the first reflective module and the second reflective module to move in the same direction or in opposite directions; the driving unit The unit includes a base, a first driving element and a second driving element. The first driving element and the second driving element drive the first reflective module and the second reflective module to be movably disposed on the base. ; The first driving element also includes a first slider mechanism, which is fixedly connected to the first reflective module; the second driving element also includes a second slider mechanism, the second slider mechanism Fixedly connected to the second reflective module; the first slider mechanism and the second slider mechanism are slidingly connected to the base; the drive unit also includes a shaft fixedly connected to the base. The first slider mechanism and the second slider mechanism are sleeved on the shaft body.

本發明的另一實施例中,所述第一驅動組件包括設置在所述基座與所述第一反射模組其中一者上的第一磁鐵、以及設置在另一者上的第一印刷電路單元和第一吸引磁軛;所述第二驅動元件包括設置在所述基座與所述第二反射模組其中一者上的第二磁鐵、以及設置在另一者上的第二印刷電路單元和第二吸引磁軛;所述第一印刷電路單元包括第一線圈和第一電路板,所述第一線圈印刷在所述第一電路板與所述第一磁鐵相對的一面上;所述第二印刷電路單元包括第二線圈和第二電路板與所述第一磁鐵相對的一面上,所述第二線圈印刷在所述第二電路板與所述第二磁鐵相對的一面上;所述第一印刷電路單元還包括第一驅動晶片和第一晶片冷凝器,所述第一驅動晶片和第一晶片冷凝器安裝在所述第一電路板的另一面上;所述第二印刷電路單元還包括第二驅動晶片和第二晶片冷凝器,所述第二驅動晶片和第二晶片冷凝器安裝在所述第二電路板的另一面上。 In another embodiment of the present invention, the first driving component includes a first magnet disposed on one of the base and the first reflective module, and a first printing disposed on the other. The circuit unit and the first attracting yoke; the second driving element includes a second magnet provided on one of the base and the second reflective module, and a second printing provided on the other. a circuit unit and a second magnetic yoke; the first printed circuit unit includes a first coil and a first circuit board, the first coil is printed on the side of the first circuit board opposite to the first magnet; The second printed circuit unit includes a second coil and a second circuit board on a side opposite to the first magnet. The second coil is printed on a side of the second circuit board opposite to the second magnet. ; The first printed circuit unit also includes a first drive wafer and a first wafer condenser, the first drive wafer and the first wafer condenser are installed on the other side of the first circuit board; the second The printed circuit unit further includes a second driving wafer and a second wafer condenser, which are mounted on the other side of the second circuit board.

本發明的另一實施例之鏡頭裝置更包括第二光路轉折模組以及第二透鏡模組,其中所述第二光路轉折模組在第一位置和第二位置之間切換;所述第二透鏡模組具有沿著第一方向的第二光軸;當所述第二光 路轉折模組在所述第一位置,所述第二光路轉折模組遮擋來自所述第二透鏡模組的光線;當所述第二光路轉折模組在所述第二位置,所述第二光路轉折模組偏離所述第二光軸,使得來自所述第二透鏡模組的光線進入所述第一透鏡模組;所述鏡頭裝置還包括驅動第二光路轉折模組繞軸旋轉從而偏離到所述第二位置或回到所述第一位置的第二光路轉折模組驅動單元。 A lens device according to another embodiment of the present invention further includes a second optical path turning module and a second lens module, wherein the second optical path turning module switches between a first position and a second position; the second The lens module has a second optical axis along the first direction; when the second light When the path turning module is in the first position, the second optical path turning module blocks the light from the second lens module; when the second optical path turning module is in the second position, the second optical path turning module blocks the light from the second lens module. The two optical path turning modules deviate from the second optical axis so that the light from the second lens module enters the first lens module; the lens device also includes driving the second optical path turning module to rotate around the axis so that the light from the second lens module enters the first lens module. A second optical path turning module driving unit that deviates to the second position or returns to the first position.

本發明的另一實施例之鏡頭裝置更包括第一基座、第一驅動單元、滑動單元以及第二光路轉折模組,其中所述第一光路轉折模組包括第一反射模組以及第二反射模組;所述第二反射模組用於反射來自所述第一反射模組的光線;所述第一驅動單元用於驅動所述第一反射模組和所述第二反射模組在所述第一基座上同向運動或反向運動;所述第一反射模組和所述第二反射模組分別通過至少一滑動單元與所述第一基座滑動連接;所述第二光路轉折模組用於接收物側光線並加以反射,包括第三反射部件、第三載體、第二基座以及第二驅動單元,所述第三反射部件用於接收物側光線並加以反射,所述第三載體用於承載安裝所述第三反射部件,所述第二基座用於安裝所述第三載體,所述第三載體通過軸體相對於所述第二基座轉動,所述第三載體固定連接在所述軸體上,所述軸體的兩端分別與所述第二基座連接,所述第二驅動單元用於驅動所述第三載體轉動。 A lens device according to another embodiment of the present invention further includes a first base, a first driving unit, a sliding unit and a second optical path turning module, wherein the first optical path turning module includes a first reflective module and a second Reflective module; the second reflective module is used to reflect light from the first reflective module; the first driving unit is used to drive the first reflective module and the second reflective module in The first base moves in the same direction or in opposite directions; the first reflection module and the second reflection module are slidingly connected to the first base through at least one sliding unit; the second The optical path turning module is used to receive and reflect object-side light, and includes a third reflective component, a third carrier, a second base, and a second driving unit. The third reflective component is used to receive and reflect object-side light. The third carrier is used to carry and install the third reflective component, the second base is used to install the third carrier, and the third carrier rotates relative to the second base through a shaft, so The third carrier is fixedly connected to the shaft body, both ends of the shaft body are respectively connected to the second base, and the second driving unit is used to drive the third carrier to rotate.

本發明的另一實施例中,該第一光路轉折模組包括複數個反射部件,用於多次反射所述光線而後成像在所述影像感測器;所述第一透鏡模組具有沿著第一方向的光軸;所述影像感測器所在的平面與所述第一透鏡模組之光軸平行或相交形成不等於90度夾角。 In another embodiment of the present invention, the first optical path turning module includes a plurality of reflective components for reflecting the light multiple times and then imaging it on the image sensor; the first lens module has a The optical axis in the first direction; the plane where the image sensor is located is parallel to or intersects with the optical axis of the first lens module to form an included angle that is not equal to 90 degrees.

本發明的另一實施例中,該第一光路轉折模組包括複數個反射部件,用於多次反射所述光線而後成像在所述影像感測器;所述第一透鏡模組具有沿著第一方向的光軸;當所述影像感測器所在的平面與所述第 一透鏡模組之光軸垂直時,沿所述第一方向觀察所述第一透鏡模組與所述影像感測器所在的平面至少有部分重疊。 In another embodiment of the present invention, the first optical path turning module includes a plurality of reflective components for reflecting the light multiple times and then imaging it on the image sensor; the first lens module has a The optical axis in the first direction; when the plane where the image sensor is located and the third When the optical axis of a lens module is vertical, the first lens module and the plane where the image sensor is located when viewed along the first direction at least partially overlap.

本發明的另一實施例中,所述第一光路轉折模組包括第一稜鏡單元,所述第一稜鏡單元包括第一面、第二面以及第三面,光線從所述第一面入射所述第一稜鏡單元,在所述第一稜鏡單元內發生至少三次全反射,以垂直於所述第二面的方向從所述第二面出射;所述第一面與所述第一透鏡模組的光軸垂直,所述第一面與第二面夾角範圍為42.75度~47.25度,所述第二面與第三面夾角範圍為64.125度~70.875度,所述第一面與第三面夾角範圍為64.125度~70.875度。 In another embodiment of the present invention, the first optical path turning module includes a first lens unit, and the first lens unit includes a first surface, a second surface, and a third surface, and the light passes from the first surface to the third surface. The first surface is incident on the first surface unit, at least three total reflections occur in the first surface unit, and the light is emitted from the second surface in a direction perpendicular to the second surface; the first surface is connected to the first surface. The optical axis of the first lens module is vertical, the angle range between the first surface and the second surface is 42.75 degrees ~ 47.25 degrees, the angle range between the second surface and the third surface is 64.125 degrees ~ 70.875 degrees, and the angle range between the first surface and the second surface is 42.75 degrees ~ 47.25 degrees. The angle between one side and the third side ranges from 64.125 degrees to 70.875 degrees.

本發明的另一實施例中,所述第一光路轉折模組包括第一稜鏡單元以及第二稜鏡單元,所述第一稜鏡單元包括第一面、第二面以及第三面,所述第二稜鏡單元包括第四面、第五面以及第六面;所述第四面與所述第一透鏡模組彼此相對,所述第五面與所述第一面彼此相對且兩者之間留有空氣間隙;所述第三面上鍍有反射膜且朝向所述透鏡模組的方向傾斜設置;光線依序通過所述第二稜鏡單元以及所述第一稜鏡單元,在所述第一稜鏡單元內利用全反射以垂直於所述第二面的方向從所述第二面出射;所述第二面與所述第三面夾角範圍為85.5度~94.5度,所述第一面與所述第二面夾角範圍為47.5度~52.5度,所述第一面與所述第三面夾角範圍為38度~42度,所述第四面與所述第五面夾角範圍為28.5度~31.5度,所述第五面與所述第六面夾角範圍為57度~63度。 In another embodiment of the present invention, the first optical path turning module includes a first lens unit and a second lens unit, and the first lens unit includes a first surface, a second surface, and a third surface, The second lens unit includes a fourth surface, a fifth surface and a sixth surface; the fourth surface and the first lens module are opposite to each other, the fifth surface and the first surface are opposite to each other, and There is an air gap between the two; the third surface is coated with a reflective film and is tilted toward the direction of the lens module; light passes through the second lens unit and the first lens unit in sequence , using total reflection in the first lens unit to emit from the second surface in a direction perpendicular to the second surface; the angle range between the second surface and the third surface is 85.5 degrees ~ 94.5 degrees , the angle range between the first surface and the second surface is 47.5 degrees to 52.5 degrees, the angle range between the first surface and the third surface is 38 degrees to 42 degrees, and the fourth surface and the third surface are in a range of 38 degrees to 42 degrees. The included angle range of the five surfaces is 28.5 degrees to 31.5 degrees, and the included angle range of the fifth surface and the sixth surface is 57 degrees to 63 degrees.

1100:鏡頭裝置 1100:Lens device

1101:光路轉折模組 1101: Optical path turning module

1102:透鏡模組 1102: Lens module

1103:影像感測器 1103:Image sensor

1200:鏡頭裝置 1200:Lens device

1201:第二光路轉折模組 1201: Second optical path turning module

1202:第一透鏡模組 1202: First lens module

1203:第一光路轉折模組 1203: The first light path turning module

1204:影像感測器 1204:Image sensor

12011:光路轉折單元底座 12011: Optical path turning unit base

12012:光路轉折單元 12012: Optical path turning unit

12021:透鏡單元固定座 12021: Lens unit holder

12031:第一稜鏡單元 12031:The first unit

12031a:第一面 12031a: Side 1

12031b:第二面 12031b:Second side

12031c:第三面 12031c:The third side

12041:成像單元 12041: Imaging unit

1300:鏡頭裝置 1300:Lens device

1301:第二光路轉折模組 1301: Second optical path turning module

1302:第一透鏡模組 1302: First lens module

1303:第一光路轉折模組 1303: The first light path turning module

1304:影像感測器 1304:Image sensor

13011:光路轉折單元底座 13011: Optical path turning unit base

13012:光路轉折單元 13012: Optical path turning unit

13021:透鏡單元固定座 13021: Lens unit holder

13031:第一稜鏡單元 13031:The first unit

13031a:第一面 13031a: Side 1

13031b:第二面 13031b:Second side

13031c:第三面 13031c:The third side

13032:第二稜鏡單元 13032:The second unit

13032a:第四面 13032a: Side 4

13032b:第五面 13032b:The fifth side

13032c:第六面 13032c:Sixth side

13041:成像單元 13041: Imaging unit

210:第一反射部件 210: First reflective component

211:第一勾股反射面 211: First Pythagorean reflective surface

212:第二勾股反射面 212: Second Pythagorean reflective surface

213:弦長面 213: Chord length surface

220:第一透鏡模組 220:First lens module

230:影像感測器 230:Image sensor

240:第二反射部件 240: Second reflective component

241:第三勾股反射面 241: The third Pythagorean reflective surface

242:第四勾股反射面 242: The fourth Pythagorean reflective surface

243:第二弦長面 243:Second chord long surface

250:第三反射部件 250:Third reflective component

2100:鏡頭裝置 2100:Lens device

2200:鏡頭裝置 2200:Lens device

2300:鏡頭裝置 2300:Lens device

2500:鏡頭裝置 2500:Lens device

2501:稜鏡模組 2501:稜鏡module

2502:透鏡模組 2502: Lens module

2503:影像感測器 2503:Image sensor

3100:鏡頭裝置 3100:Lens device

3101:光路轉折模組 3101: Optical path turning module

3102:透鏡模組 3102: Lens module

3103:影像感測器 3103:Image sensor

3200:鏡頭裝置 3200:Lens device

3201:第三光路轉折模組 3201: The third optical path turning module

3202:第二透鏡模組 3202: Second lens module

3203:第二光路轉折模組 3203: Second optical path turning module

3204:第一透鏡模組 3204: First lens module

3205:影像感測器 3205:Image sensor

3206:第一光路轉折模組 3206: The first light path turning module

3207:基座 3207:Pedestal

32061:第一反射部件 32061: First reflective component

32062:第二反射部件 32062: Second reflective component

4200:鏡頭裝置 4200:Lens device

4201:透鏡模組 4201: Lens module

4202:第一反射部件 4202: First reflective component

4203:第二反射部件 4203: Second reflective component

4204:影像感測器 4204:Image sensor

4205:第三反射部件 4205:Third reflective component

4206:基座 4206:Pedestal

4207:第一反射部件載體 4207: First reflective component carrier

4208:第二反射部件載體 4208: Second reflective component carrier

4209:外蓋 4209: Outer cover

4211:第一反射部件載體滑動槽 4211: First reflective component carrier sliding groove

4212:第二反射部件載體滑動槽 4212: Second reflective component carrier sliding groove

4213:第一運動件 4213: First moving part

4214:第二運動件 4214: Second moving part

4215:第一驅動元件 4215: First drive element

4216:第二驅動元件 4216: Second drive element

42021:第一反射面 42021: First reflective surface

42031:第二反射面 42031: Second reflective surface

42051:第三反射面 42051:Third reflective surface

42091:孔 42091:hole

4300:鏡頭裝置 4300:Lens device

4301:透鏡模組 4301: Lens module

4302:第一反射部件 4302: First reflective component

4303:第二反射部件 4303: Second reflective component

4304:影像感測器 4304:Image sensor

4305:第三反射部件 4305:Third reflective component

43021:第一反射面 43021: First reflective surface

43031:第二反射面 43031: Second reflective surface

43051:第三反射面 43051:Third reflective surface

43052:第四反射面 43052: The fourth reflective surface

510:音圈馬達結構 510:Voice coil motor structure

5100:驅動單元 5100: drive unit

5110:基座 5110: base

5120:第一驅動組件 5120: First drive component

5121:第一止擋部 5121: First stopper

5122:第一磁鐵 5122:First magnet

5123:第一滑塊機構 5123: First slider mechanism

5124:第一吸引磁軛 5124:First attraction yoke

5125:第一印刷電路單元 5125: First printed circuit unit

51251:第一電路板 51251:First circuit board

51252:第一線圈 51252:First coil

51253:第一驅動晶片 51253: First driver chip

51254:第一晶片冷凝器 51254:First wafer condenser

5130:第二驅動元件 5130: Second drive element

5131:第二止擋部 5131: Second stopper

5132:第二磁鐵 5132:Second magnet

5133:第二滑塊機構 5133: Second slider mechanism

5134:第二吸引磁軛 5134: Second attraction yoke

5135:第二印刷電路單元 5135: Second printed circuit unit

51351:第二電路板 51351: Second circuit board

51352:第二線圈 51352: Second coil

51353:第二驅動晶片 51353: Second driver chip

51354:第二晶片冷凝器 51354: Second wafer condenser

5140:軸體 5140:Shaft body

5150:後蓋 5150: back cover

5200:第一反射模組 5200: The first reflective module

5210:第一反射部件 5210: First reflective component

5211:第一反射面 5211: First reflective surface

5220:第一反射載體 5220: First reflective carrier

5300:第二反射模組 5300: Second reflective module

5310:第二反射部件 5310: Second reflective component

5311:第二反射面 5311: Second reflective surface

5320:第二反射載體 5320: Second reflective carrier

5400:外罩 5400: Outer cover

5410:外罩孔 5410: Cover hole

520:第二光路轉折模組 520: Second light path turning module

530:第一透鏡模組 530: First lens module

540:影像感測器 540:Image sensor

61:音圈馬達結構 61:Voice coil motor structure

62:第二光路轉折模組 62: Second light path turning module

63:第一透鏡模組 63:First lens module

64:連結單元 64: Link unit

611:第一反射模組 611: The first reflective module

612:第二反射模組 612: Second reflection module

613:外罩 613:Outer cover

614:後蓋 614:Back cover

615:第一基座 615:First pedestal

616:第一驅動單元 616: First drive unit

617:滑動單元 617:Sliding unit

6100:第一磁鐵 6100:The first magnet

6101:第一容置槽 6101: First accommodation tank

6102:第二容置槽 6102: Second storage tank

6111:第一反射部件 6111: First reflective component

6112:第一載體 6112:First carrier

6121:第二反射部件 6121: Second reflective component

6122:第二載體 6122: Second carrier

6151:第一通孔 6151: First through hole

6152:第二通孔 6152: Second through hole

6153:第一凹部 6153:First concave part

6154:第二凹部 6154:Second recess

6161:第一驅動組件 6161: First drive component

6162:第二驅動元件 6162: Second drive element

61611:第一驅動磁鐵 61611: First drive magnet

61612:第一印刷電路單元 61612: First printed circuit unit

61613:第一吸引磁軛 61613:First attraction yoke

61621:第二驅動磁鐵 61621: Second drive magnet

61622:第二印刷電路單元 61622: Second printed circuit unit

61623:第二吸引磁軛 61623: Second attraction yoke

621:第三反射部件 621: The third reflective component

622:第三載體 622:Third carrier

623:第二基座 623:Second pedestal

624:第二驅動單元 624: Second drive unit

625:軸體 625:Shaft body

626:抵接件 626:Butt piece

627:降阻結構 627:Reducing resistance structure

6200:第二磁鐵 6200: Second magnet

6201:第一滑槽 6201: First chute

6202:第二滑槽 6202: Second chute

6221:傾斜板 6221:tilt plate

6222:側板 6222:Side panel

6223:固定孔 6223:Fixing hole

6224:第二凹槽 6224: Second groove

6225:第二沉孔 6225: Second counterbore

6231:底板 6231: Base plate

6232:支撐板 6232:Support plate

6233:軸孔 6233: Shaft hole

6234:第一凹槽 6234: first groove

6235:第一沉孔 6235: First counterbore

6241:第三驅動磁鐵 6241:Third drive magnet

6242:第三線圈 6242:Third coil

6300:貫穿孔 6300:Through hole

L1:移動距離 L1: moving distance

L2:移動距離 L2: moving distance

X:第一方向 X: first direction

Y:第二方向 Y: second direction

Z:第三方向 Z: third direction

圖1是現有技術中一種鏡頭裝置的結構示意圖; Figure 1 is a schematic structural diagram of a lens device in the prior art;

圖2是現有技術中另一種鏡頭裝置的結構示意圖; Figure 2 is a schematic structural diagram of another lens device in the prior art;

圖3是現有技術中一種潛望式鏡頭的結構示意圖; Figure 3 is a schematic structural diagram of a periscope lens in the prior art;

圖4是根據本發明第一實施例的鏡頭裝置的結構示意圖; Figure 4 is a schematic structural diagram of a lens device according to the first embodiment of the present invention;

圖5是根據本發明第一實施例的鏡頭裝置的分解示意圖; Figure 5 is an exploded schematic view of a lens device according to the first embodiment of the present invention;

圖6是根據本發明第一實施例的鏡頭裝置的光路示意圖; Figure 6 is a schematic diagram of the optical path of the lens device according to the first embodiment of the present invention;

圖7是根據本發明第二實施例的鏡頭裝置的結構示意圖; Figure 7 is a schematic structural diagram of a lens device according to a second embodiment of the present invention;

圖8是根據本發明第二實施例的鏡頭裝置的分解示意圖; Figure 8 is an exploded schematic view of a lens device according to a second embodiment of the present invention;

圖9是根據本發明第二實施例的鏡頭裝置的俯視圖; Figure 9 is a top view of a lens device according to a second embodiment of the present invention;

圖10是根據本發明第二實施例的鏡頭裝置的光路示意圖; Figure 10 is a schematic diagram of an optical path of a lens device according to a second embodiment of the present invention;

圖11A是根據本發明的反射部件的示意圖; Figure 11A is a schematic diagram of a reflective component according to the present invention;

圖11B是根據本發明的反射部件的另一示意圖; Figure 11B is another schematic diagram of a reflective component according to the present invention;

圖12A是根據本發明第三實施例的鏡頭裝置的結構示意圖; Figure 12A is a schematic structural diagram of a lens device according to a third embodiment of the present invention;

圖12B是根據本發明第三實施例的鏡頭裝置的光路示意圖; Figure 12B is a schematic diagram of an optical path of a lens device according to a third embodiment of the present invention;

圖12C是根據本發明第三實施例、鏡頭裝置的反射部件在X軸上移動時的光路示意圖; 12C is a schematic diagram of the optical path when the reflective component of the lens device moves on the X-axis according to the third embodiment of the present invention;

圖12D是根據本發明第三實施例、鏡頭裝置的反射部件在Y軸上移動時的光路示意圖; 12D is a schematic diagram of the optical path when the reflective component of the lens device moves on the Y-axis according to the third embodiment of the present invention;

圖13A是根據本發明第四實施例的鏡頭裝置的結構示意圖; Figure 13A is a schematic structural diagram of a lens device according to a fourth embodiment of the present invention;

圖13B是根據本發明第四實施例的鏡頭裝置的光路示意圖; Figure 13B is a schematic diagram of an optical path of a lens device according to a fourth embodiment of the present invention;

圖13C是根據本發明第四實施例、鏡頭裝置的第一反射部件在X軸上移動時的光路示意圖; 13C is a schematic diagram of the optical path when the first reflective component of the lens device moves on the X-axis according to the fourth embodiment of the present invention;

圖13D是根據本發明第四實施例、鏡頭裝置的第一反射部件在Y軸上移動時的光路示意圖; 13D is a schematic diagram of the optical path when the first reflective component of the lens device moves on the Y-axis according to the fourth embodiment of the present invention;

圖14A是根據本發明第五實施例的鏡頭裝置的結構示意圖; Figure 14A is a schematic structural diagram of a lens device according to a fifth embodiment of the present invention;

圖14B是根據本發明第五實施例的鏡頭裝置的光路示意圖; Figure 14B is a schematic diagram of the optical path of a lens device according to the fifth embodiment of the present invention;

圖14C是根據本發明第五實施例、鏡頭裝置的第二反射部件在X軸上移動時的光路示意圖; 14C is a schematic diagram of the optical path when the second reflective component of the lens device moves on the X-axis according to the fifth embodiment of the present invention;

圖14D是根據本發明第五實施例、鏡頭裝置的第二反射部件在Y軸上移動時的光路示意圖; 14D is a schematic diagram of the optical path when the second reflective component of the lens device moves on the Y-axis according to the fifth embodiment of the present invention;

圖14E是根據本發明第五實施例、鏡頭裝置的第二反射部件繞著Z軸轉動時的光路示意圖; 14E is a schematic diagram of the optical path when the second reflective component of the lens device rotates around the Z-axis according to the fifth embodiment of the present invention;

圖14F是根據本發明第五實施例、鏡頭裝置的第一反射部件X軸上移動時的光路示意圖; 14F is a schematic diagram of the optical path when the first reflective component of the lens device moves on the X-axis according to the fifth embodiment of the present invention;

圖14G是根據本發明第五實施例、鏡頭裝置的第一反射部件Y軸上移動時的光路示意圖; 14G is a schematic diagram of the optical path when the first reflective component of the lens device moves on the Y-axis according to the fifth embodiment of the present invention;

圖15是根據本發明第六實施例的潛望式鏡頭的結構示意圖,其中第二光路轉折模組處於第一位置; Figure 15 is a schematic structural diagram of a periscope lens according to the sixth embodiment of the present invention, in which the second optical path turning module is in the first position;

圖16是圖15的俯視圖; Figure 16 is a top view of Figure 15;

圖17是圖15的側視圖; Figure 17 is a side view of Figure 15;

圖18是根據本發明第六實施例的潛望式鏡頭的結構示意圖,其中第二光路轉折模組處於第二位置; Figure 18 is a schematic structural diagram of a periscope lens according to the sixth embodiment of the present invention, in which the second optical path turning module is in the second position;

圖19是圖18的俯視圖; Figure 19 is a top view of Figure 18;

圖20是圖18的側視圖; Figure 20 is a side view of Figure 18;

圖21是根據本發明第七實施例的潛望式鏡頭的結構示意圖,其中第二光路轉折模組處於第二位置; Figure 21 is a schematic structural diagram of a periscope lens according to the seventh embodiment of the present invention, in which the second optical path turning module is in the second position;

圖22是圖21的俯視圖; Figure 22 is a top view of Figure 21;

圖23是圖21的側視圖; Figure 23 is a side view of Figure 21;

圖24是根據本發明第八實施例的鏡頭裝置的部分元件的結構示意圖; Figure 24 is a schematic structural diagram of some components of a lens device according to an eighth embodiment of the present invention;

圖25是根據本發明第八實施例的鏡頭裝置的光路示意圖; Figure 25 is a schematic optical path diagram of a lens device according to an eighth embodiment of the present invention;

圖26是根據本發明第八實施例、鏡頭裝置的第一反射部件和第二反射部件在第二方向上反向運動時的光路示意圖; Figure 26 is a schematic diagram of the optical path when the first reflective component and the second reflective component of the lens device move in reverse direction in the second direction according to the eighth embodiment of the present invention;

圖27是根據本發明第八實施例、鏡頭裝置的第一反射部件和第二反射部件在第二方向上同向運動時的光路示意圖; Figure 27 is a schematic diagram of the optical path when the first reflective component and the second reflective component of the lens device move in the same direction in the second direction according to the eighth embodiment of the present invention;

圖28是根據本發明第八實施例的鏡頭裝置的部分元件的另一結構示意圖; Figure 28 is another structural schematic diagram of some components of a lens device according to an eighth embodiment of the present invention;

圖29是圖25中鏡頭裝置的部分元件的俯視圖; Figure 29 is a top view of some components of the lens device in Figure 25;

圖30是圖25中鏡頭裝置的部分元件的分解示意圖; Figure 30 is an exploded schematic view of some components of the lens device in Figure 25;

圖31圖25中鏡頭裝置的部分元件的另一分解示意圖; Figure 31 is another exploded schematic view of some components of the lens device in Figure 25;

圖32是根據本發明的第九實施例、鏡頭裝置的光路示意圖; Figure 32 is a schematic diagram of the optical path of the lens device according to the ninth embodiment of the present invention;

圖33是根據本發明第九實施例、鏡頭裝置的第一反射部件和第二反射部件在第一方向上反向運動時的光路示意圖; Figure 33 is a schematic diagram of the optical path when the first reflective component and the second reflective component of the lens device move in reverse direction in the first direction according to the ninth embodiment of the present invention;

圖34是根據本發明第九實施例、鏡頭裝置的第一反射部件和第二反射部件在第一方向上同向運動時的光路示意圖; Figure 34 is a schematic diagram of the optical path when the first reflective component and the second reflective component of the lens device move in the same direction in the first direction according to the ninth embodiment of the present invention;

圖35為本發明的音圈馬達結構在第十實施例中去掉外罩後的爆炸圖; Figure 35 is an exploded view of the voice coil motor structure of the present invention with the outer cover removed in the tenth embodiment;

圖36為本發明的音圈馬達結構在第十實施例中的立體結構示意圖; Figure 36 is a schematic three-dimensional structural diagram of the voice coil motor structure in the tenth embodiment of the present invention;

圖37為本發明的第一反射模組和第二反射模組在第十實施例中的立體結構示意圖; Figure 37 is a schematic three-dimensional structural diagram of the first reflective module and the second reflective module in the tenth embodiment of the present invention;

圖38為本發明的音圈馬達結構在第十實施例中的爆炸圖; Figure 38 is an exploded view of the voice coil motor structure in the tenth embodiment of the present invention;

圖39為本發明的驅動單元在第十實施例中的爆炸圖; Figure 39 is an exploded view of the driving unit of the present invention in the tenth embodiment;

圖40為本發明的第一反射模組和第一驅動組件在第十實施例中的立體結構示意圖; Figure 40 is a schematic three-dimensional structural diagram of the first reflective module and the first driving assembly in the tenth embodiment of the present invention;

圖41為本發明的第一反射模組和第一驅動組件在第十實施例中的爆炸圖; Figure 41 is an exploded view of the first reflective module and the first driving assembly in the tenth embodiment of the present invention;

圖42為本發明的第一反射模組和第二反射模組在第十實施例中的俯視圖; Figure 42 is a top view of the first reflective module and the second reflective module of the present invention in the tenth embodiment;

圖43為本發明的圖42的A-A剖視圖; Figure 43 is a cross-sectional view along line A-A of Figure 42 of the present invention;

圖44為本發明的第一印刷電路單元、第二印刷電路單元和基座在第十實施例中一個角度的立體結構示意圖; Figure 44 is a schematic three-dimensional structural diagram of the first printed circuit unit, the second printed circuit unit and the base in the tenth embodiment of the present invention from one angle;

圖45為本發明的第一印刷電路單元、第二印刷電路單元和基座在第十實施例中另一個角度的立體結構示意圖; Figure 45 is a schematic three-dimensional structural diagram of the first printed circuit unit, the second printed circuit unit and the base in the tenth embodiment of the present invention from another angle;

圖46為本發明的鏡頭裝置在第十一實施例中的立體結構示意圖; Figure 46 is a schematic three-dimensional structural diagram of the lens device in the eleventh embodiment of the present invention;

圖47為本發明的鏡頭裝置的結構示意圖; Figure 47 is a schematic structural diagram of the lens device of the present invention;

圖48為本發明的第十二實施例中的音圈馬達結構的爆炸圖; Figure 48 is an exploded view of the voice coil motor structure in the twelfth embodiment of the present invention;

圖49為本發明的第十二實施例中的音圈馬達結構中的第一反射模組和第二反射模組與第一基座組裝後的結構示意圖; Figure 49 is a schematic structural diagram of the first reflection module and the second reflection module in the voice coil motor structure according to the twelfth embodiment of the present invention after they are assembled with the first base;

圖50為本發明的第十二實施例中的音圈馬達結構中的第二反射模組的結構示意圖; Figure 50 is a schematic structural diagram of the second reflection module in the voice coil motor structure in the twelfth embodiment of the present invention;

圖51為本發明的第十二實施例中的音圈馬達結構中的第一基座的結構示意圖; Figure 51 is a schematic structural diagram of the first base in the voice coil motor structure in the twelfth embodiment of the present invention;

圖52為本發明的第十二實施例中的音圈馬達結構中的第一基座的分解結構示意圖; Figure 52 is an exploded structural schematic diagram of the first base in the voice coil motor structure in the twelfth embodiment of the present invention;

圖53為本發明的第十二實施例中的音圈馬達結構中的第一驅動單元的爆炸圖; Figure 53 is an exploded view of the first drive unit in the voice coil motor structure in the twelfth embodiment of the present invention;

圖54為本發明的第十三實施例中的第二光路轉折模組的結構示意圖; Figure 54 is a schematic structural diagram of the second optical path turning module in the thirteenth embodiment of the present invention;

圖55為本發明的第十三實施例中的第二光路轉折模組的第一技術方案的爆炸圖; Figure 55 is an exploded view of the first technical solution of the second optical path turning module in the thirteenth embodiment of the present invention;

圖56為本發明的第十三實施例中的第二光路轉折模組的第二技術方案 的爆炸圖; Figure 56 is a second technical solution of the second optical path turning module in the thirteenth embodiment of the present invention. explosion diagram;

圖57為本發明的第十三實施例中的第二光路轉折模組的第三技術方案的爆炸圖; Figure 57 is an exploded view of the third technical solution of the second optical path turning module in the thirteenth embodiment of the present invention;

圖58為本發明的第十四實施例中的第二光路轉折模組的第一技術方案的爆炸圖; Figure 58 is an exploded view of the first technical solution of the second optical path turning module in the fourteenth embodiment of the present invention;

圖59為本發明的第十四實施例中的第二光路轉折模組的第二技術方案的爆炸圖。 Figure 59 is an exploded view of the second technical solution of the second optical path turning module in the fourteenth embodiment of the present invention.

為了使本發明的目的、技術方案及優點更加清楚明白,以下結合附圖及實施例,對本發明進行進一步詳細說明。應當理解,此處所描述的具體實施例僅僅用以解釋本發明,並不用於限定本發明。 In order to make the purpose, technical solutions and advantages of the present invention more clear, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention and are not intended to limit the present invention.

圖4是根據本發明第一實施例的鏡頭裝置1200的結構示意圖;圖5是根據本發明第一實施例的鏡頭裝置1200的分解示意圖;圖6是根據本發明第一實施例的鏡頭裝置1200的光路示意圖。如圖4-6所示,在本發明的第一實施例中,鏡頭裝置1200包括第二光路轉折模組1201、第一透鏡模組1202、第一光路轉折模組1203、以及影像感測器1204,其中第一透鏡模組1202包含多個透鏡單元(未圖示),且具有沿著第一方向X的光軸。 FIG. 4 is a schematic structural diagram of the lens device 1200 according to the first embodiment of the present invention; FIG. 5 is an exploded schematic diagram of the lens device 1200 according to the first embodiment of the present invention; FIG. 6 is a schematic diagram of the lens device 1200 according to the first embodiment of the present invention. Schematic diagram of the light path. As shown in Figures 4-6, in the first embodiment of the present invention, the lens device 1200 includes a second optical path turning module 1201, a first lens module 1202, a first optical path turning module 1203, and an image sensor. 1204, wherein the first lens module 1202 includes a plurality of lens units (not shown) and has an optical axis along the first direction X.

第二光路轉折模組1201、第一透鏡模組1202、第一光路轉折模組1203三者沿著第一方向X排列。光線沿著第二方向Y入射到第二光路轉折模組1201,經第二光路轉折模組1201反射後沿著第一方向X入射到第一透鏡模組1202,之後光線沿著第一方向X到達第一光路轉折模組1203。其中第二方向Y與第一方向X垂直。 The second optical path turning module 1201, the first lens module 1202, and the first optical path turning module 1203 are arranged along the first direction X. The light is incident on the second optical path turning module 1201 along the second direction Y. After being reflected by the second optical path turning module 1201, the light is incident on the first lens module 1202 along the first direction X. Then the light is incident on the first lens module 1202 along the first direction X. Arrive at the first optical path turning module 1203. The second direction Y is perpendicular to the first direction X.

第二光路轉折模組1201包括光路轉折單元底座12011、設置在光路轉折單元底座12011內的光路轉折單元載體(未圖示)、以及固定在 光路轉折單元載體內的光路轉折單元12012。該光路轉折單元12012可以是例如稜鏡單元或者反射鏡,具有反射面,用於將沿著第二光軸Y方向入射的光線經由反射面朝向第一透鏡模組1202反射。 The second optical path turning module 1201 includes an optical path turning unit base 12011, an optical path turning unit carrier (not shown) disposed in the light path turning unit base 12011, and an optical path turning unit carrier (not shown) fixed in the optical path turning unit base 12011. The optical path turning unit 12012 in the optical path turning unit carrier. The optical path turning unit 12012 may be, for example, a mirror unit or a reflecting mirror, having a reflecting surface, for reflecting light incident along the second optical axis Y direction toward the first lens module 1202 via the reflecting surface.

第一透鏡模組1202包括:透鏡單元固定座12021;透鏡單元,具有沿著第一方向X的光軸;透鏡單元主載體,承載透鏡單元;透鏡單元副載體,用於容納透鏡單元主載體且連接在透鏡單元固定座12021中,其中透鏡單元主載體可相對於透鏡單元副載體在第一方向X、第二方向Y、第三方向Z的其中至少一個方向上運動,透鏡單元副載體可相對於透鏡單元固定座12021在第一方向X、第二方向Y、第三方向Z中除上述至少一個方向的剩餘方向上運動;第一透鏡模組1202還包括驅動透鏡單元主載體相對於透鏡單元副載體運動、驅動透鏡單元副載體相對於透鏡單元固定座12021運動的驅動件(未圖示),從而實現第一方向X上的對焦、以及第二方向Y和第三方向Z上的振動補償。其中第三方向Z與第一方向X、第二方向Y垂直。 The first lens module 1202 includes: a lens unit fixing base 12021; a lens unit having an optical axis along the first direction X; a lens unit main carrier carrying the lens unit; a lens unit sub-carrier used to accommodate the lens unit main carrier and Connected in the lens unit fixing base 12021, wherein the lens unit main carrier can move relative to the lens unit auxiliary carrier in at least one of the first direction X, the second direction Y, and the third direction Z, and the lens unit auxiliary carrier can move relative to the lens unit auxiliary carrier When the lens unit holder 12021 moves in the remaining directions except at least one of the above-mentioned directions among the first direction X, the second direction Y, and the third direction Z; the first lens module 1202 also includes driving the lens unit main carrier relative to the lens unit. The sub-carrier moves and drives the driving member (not shown) of the lens unit sub-carrier to move relative to the lens unit fixing base 12021, thereby achieving focusing in the first direction X and vibration compensation in the second direction Y and the third direction Z. . The third direction Z is perpendicular to the first direction X and the second direction Y.

但本發明不限於此,第一透鏡模組1202也可以僅實現在第一方向X上的對焦、以及第二方向Y或第三方向Z上的振動補償。即,其振動補償可以僅僅在一個方向上。 However, the present invention is not limited thereto. The first lens module 1202 may also only implement focusing in the first direction X and vibration compensation in the second direction Y or the third direction Z. That is, its vibration compensation can be in only one direction.

第一光路轉折模組1203設置在第一透鏡模組1202和影像感測器1204之間,包括第一稜鏡單元12031、以及固定第一稜鏡單元12031的稜鏡單元固定座(未圖示)。其中第一稜鏡單元12031包括第一面12031a、第二面12031b、以及第三面12031c。該第一稜鏡單元12031可以是例如三角稜鏡。第一面12031a與第一透鏡模組1202彼此相對,第二面12031b與影像感測器1204彼此相對。 The first optical path turning module 1203 is disposed between the first lens module 1202 and the image sensor 1204, and includes a first lens unit 12031 and a lens unit fixing base (not shown) for fixing the first lens unit 12031. ). The first surface unit 12031 includes a first surface 12031a, a second surface 12031b, and a third surface 12031c. The first housing unit 12031 may be, for example, a triangular housing. The first surface 12031a and the first lens module 1202 face each other, and the second surface 12031b and the image sensor 1204 face each other.

從第一透鏡模組1202出射的光線經第一面12031a入射到第一稜鏡單元12031內,優選地,第一面12031a與第一方向X垂直,光線入射 到第一面12031a。第二面12031b朝向第一透鏡模組1202的方向傾斜設置,入射到第一稜鏡單元12031內的光線入射到第二面12031b上並在第二面12031b上已大於臨界角度因此會發生全反射。第三面12031c上可鍍有反射膜,第二面12031b反射的光線入射到第三面12031c上,並在第三面12031c上因所述反射膜而發生反射。被第三面12031c反射的光線入射到第一面12031a上,並已大於臨界角度因此會在第一面12031a上發生全反射。之後,被第一面12031a反射的光線從第二面12031b出射,並到達影像感測器1204,並由影像感測器1204成像,優選地,被第一面12031a反射的光線垂直入射到第二面12031b上。其中,第一面12031a與第二面12031b是根據斯涅爾定律(Snell's Law),當光波從一種介質傳播到另一種具有不同折射率的介質時會發生折射現象,如果當光由折射率較大的介質射入折射率較小的介質時,其入射角超過臨界角,光線將不再折射而是全部反射回原疏介質,即不存在折射光只存在反射光,即形成全反射現象(Total Reflection),臨界角是促使全反射發生的最小入射角,滿足全反射角度的光線會直接進行全反射而不會穿透,利用此特性使得第一面12031a的光線沿第一方向X入射進來,在被第三面12031c反射的光線入射到第一面12031a上時不會穿透而是形成全反射,且沿第一方向X經第一面12031a入射進來的光線在第二面12031b上發生全反射。第一稜鏡單元12031可以為全反射稜鏡。 The light emitted from the first lens module 1202 is incident into the first lens unit 12031 through the first surface 12031a. Preferably, the first surface 12031a is perpendicular to the first direction X, and the light is incident Go to side 12031a. The second surface 12031b is tilted toward the direction of the first lens module 1202. The light incident into the first lens unit 12031 is incident on the second surface 12031b and is greater than the critical angle on the second surface 12031b, so total reflection occurs. . The third surface 12031c may be coated with a reflective film. The light reflected by the second surface 12031b is incident on the third surface 12031c and is reflected by the reflective film on the third surface 12031c. The light reflected by the third surface 12031c is incident on the first surface 12031a, and is greater than the critical angle, so total reflection occurs on the first surface 12031a. After that, the light reflected by the first surface 12031a emerges from the second surface 12031b, reaches the image sensor 1204, and is imaged by the image sensor 1204. Preferably, the light reflected by the first surface 12031a is vertically incident on the second surface. On page 12031b. Among them, the first surface 12031a and the second surface 12031b are based on Snell's Law. When light waves propagate from one medium to another medium with a different refractive index, refraction occurs. When a large medium enters a medium with a small refractive index, and its incident angle exceeds the critical angle, the light will no longer be refracted but will all be reflected back to the original sparse medium, that is, there is no refracted light and only reflected light, which forms a total reflection phenomenon ( Total Reflection), the critical angle is the minimum incident angle that causes total reflection to occur. Light that satisfies the total reflection angle will be directly reflected without penetrating. This characteristic is used to make the light from the first surface 12031a incident along the first direction X. , when the light reflected by the third surface 12031c is incident on the first surface 12031a, it will not penetrate but form total reflection, and the light incident along the first direction X through the first surface 12031a will occur on the second surface 12031b total reflection. The first lens unit 12031 may be a total reflection lens.

第一面12031a與第一透鏡模組1202的光軸(或第一方向X)垂直,第一面12031a與第二面12031b夾角範圍為42.75度~47.25度,第二面12031b與第三面12031c夾角範圍為64.125度~70.875度,第一面12031a與第三面12031c夾角範圍為64.125度~70.875度。優選地,第一面12031a與第一方向X垂直,第二面12031b與第一面12031a夾45度角,第二面12031b與第三面12031c夾67.5度角,第一面12031a與第三面12031c夾67.5度角,以保證光 線能夠沿著上述路線行進。但本發明不限於此,也可以採用其他合適的角度。 The first surface 12031a is perpendicular to the optical axis (or the first direction The included angle range is 64.125 degrees to 70.875 degrees, and the included angle range between the first surface 12031a and the third surface 12031c is 64.125 degrees to 70.875 degrees. Preferably, the first surface 12031a is perpendicular to the first direction 12031c clamps at 67.5 degree angle to ensure light The line can travel along the above mentioned route. However, the present invention is not limited to this, and other suitable angles may also be adopted.

影像感測器1204包括成像單元12041,成像單元12041與第二面12031b平行設置。 The image sensor 1204 includes an imaging unit 12041, which is arranged parallel to the second surface 12031b.

圖7是根據本發明第二實施例的鏡頭裝置1300的結構示意圖;圖8是根據本發明第二實施例的鏡頭裝置1300的分解示意圖;圖9是根據本發明第二實施例的鏡頭裝置1300的俯視圖;圖10是根據本發明第二實施例的鏡頭裝置1300的光路示意圖。如圖7-10所示,在本發明的第二實施例中,鏡頭裝置1300包括第二光路轉折模組1301、第一透鏡模組1302、第一光路轉折模組1303、以及影像感測器1304,其中第一透鏡模組1302包含多個透鏡單元(未圖示),且具有沿著第一方向X的光軸。 FIG. 7 is a schematic structural diagram of a lens device 1300 according to a second embodiment of the present invention; FIG. 8 is an exploded schematic diagram of a lens device 1300 according to a second embodiment of the present invention; FIG. 9 is a schematic diagram of a lens device 1300 according to a second embodiment of the present invention. top view; Figure 10 is a schematic optical path diagram of a lens device 1300 according to a second embodiment of the present invention. As shown in Figures 7-10, in the second embodiment of the present invention, the lens device 1300 includes a second optical path turning module 1301, a first lens module 1302, a first optical path turning module 1303, and an image sensor. 1304, wherein the first lens module 1302 includes a plurality of lens units (not shown) and has an optical axis along the first direction X.

第二光路轉折模組1301、第一透鏡模組1302、第一光路轉折模組1303三者沿著第一方向X排列。光線沿著第二方向Y入射到第二光路轉折模組1301,經第二光路轉折模組1301反射後沿著第一方向X入射到第一透鏡模組1302,之後光線沿著第一方向X到達第一光路轉折模組1303。其中第二方向Y與第一方向X垂直。 The second optical path turning module 1301, the first lens module 1302, and the first optical path turning module 1303 are arranged along the first direction X. The light is incident on the second optical path turning module 1301 along the second direction Y. After being reflected by the second optical path turning module 1301, the light is incident on the first lens module 1302 along the first direction X. Then the light is incident along the first direction X. Arrive at the first optical path turning module 1303. The second direction Y is perpendicular to the first direction X.

第二光路轉折模組1301包括光路轉折單元底座13011、設置在光路轉折單元底座13011內的光路轉折單元載體(未圖示)、以及固定在光路轉折單元載體內的光路轉折單元13012。該光路轉折單元13012可以是例如稜鏡單元或者反射鏡,具有反射面,用於將沿著第二光軸Y方向入射的光線經由反射面朝向第一透鏡模組1302反射。 The second optical path turning module 1301 includes an optical path turning unit base 13011, an optical path turning unit carrier (not shown) provided in the optical path turning unit base 13011, and an optical path turning unit 13012 fixed in the optical path turning unit carrier. The light path turning unit 13012 may be, for example, a lens unit or a reflecting mirror, having a reflecting surface, for reflecting light incident along the second optical axis Y direction toward the first lens module 1302 via the reflecting surface.

第一透鏡模組1302包括:透鏡單元固定座13021;透鏡單元,具有沿著第一方向X的光軸;透鏡單元主載體,承載透鏡單元;透鏡單元副載體,用於容納透鏡單元主載體且連接在透鏡單元固定座13021中,其中透鏡單元主載體可相對於透鏡單元副載體在第一方向X、第二方向Y、第三方 向Z的其中至少一個方向上運動,透鏡單元副載體可相對於透鏡單元固定座13021在第一方向X、第二方向Y、第三方向Z中除上述至少一個方向的剩餘方向上運動;第一透鏡模組1302還包括驅動透鏡單元主載體相對於透鏡單元副載體運動、驅動透鏡單元副載體相對於透鏡單元固定座13021運動的驅動件(未圖示),從而實現第一方向X上的對焦、以及第二方向Y和第三方向Z上的振動補償。其中第三方向Z與第一方向X、第二方向Y垂直。 The first lens module 1302 includes: a lens unit fixing base 13021; a lens unit having an optical axis along the first direction X; a lens unit main carrier carrying the lens unit; a lens unit sub-carrier used to accommodate the lens unit main carrier and Connected in the lens unit fixing base 13021, wherein the lens unit main carrier can be in the first direction X, the second direction Y, the third direction relative to the lens unit auxiliary carrier Moving in at least one direction of Z, the lens unit sub-carrier can move in the remaining directions among the first direction X, the second direction Y, and the third direction Z relative to the lens unit fixing base 13021 except at least one of the above directions; A lens module 1302 also includes a driving member (not shown) that drives the lens unit main carrier to move relative to the lens unit auxiliary carrier, and drives the lens unit auxiliary carrier to move relative to the lens unit fixing base 13021, thereby achieving the first direction X. Focus, and vibration compensation in the second direction Y and the third direction Z. The third direction Z is perpendicular to the first direction X and the second direction Y.

但本發明不限於此,第一透鏡模組1302也可以僅實現在第一方向X上的對焦、以及第二方向Y或第三方向Z上的振動補償。即,其振動補償可以僅僅在一個方向上。 However, the present invention is not limited thereto. The first lens module 1302 may also only implement focusing in the first direction X and vibration compensation in the second direction Y or the third direction Z. That is, its vibration compensation can be in only one direction.

第一光路轉折模組1303包括第一稜鏡單元13031、第二稜鏡單元13032、以及固定第一稜鏡單元13031和第二稜鏡單元13032的稜鏡單元固定座(未圖示)。其中第一稜鏡單元13031包括第一面13031a、第二面13031b、以及第三面13031c。第二稜鏡單元13032包括第四面13032a、第五面13032b以及第六面13032c。該第一稜鏡單元13031和第二稜鏡單元13032可以是例如三角稜鏡。 The first optical path turning module 1303 includes a first lens unit 13031, a second lens unit 13032, and a lens unit fixing base (not shown) for fixing the first lens unit 13031 and the second lens unit 13032. The first surface unit 13031 includes a first surface 13031a, a second surface 13031b, and a third surface 13031c. The second surface unit 13032 includes a fourth surface 13032a, a fifth surface 13032b, and a sixth surface 13032c. The first housing unit 13031 and the second housing unit 13032 may be, for example, triangular housings.

其中第四面13032a與第一透鏡模組1302彼此相對,第五面13032b與第一面13031a彼此平行相對且兩者之間留有空氣間隙,可以是0.01mm的空氣間隙。第二面13031b與影像感測器1304彼此相對。 The fourth surface 13032a and the first lens module 1302 are opposite to each other, and the fifth surface 13032b and the first surface 13031a are parallel to each other and there is an air gap between them, which may be an air gap of 0.01 mm. The second surface 13031b and the image sensor 1304 are opposite to each other.

從第一透鏡模組1302出射的光線經第四面13032a入射到第二稜鏡單元13032內,並從第五面13032b出射。之後,從第五面13032b出射的光線經空氣間隙後從第一面13031a入射到第一稜鏡單元13031內。第三面13031c朝向第一透鏡模組1302的方向傾斜設置且其上可鍍有反射膜,入射到第一稜鏡單元13031內的光線入射到第三面13031c上,並在第三面13031c上因所述反射膜而發生反射。被第三面13031c反射的光線入射到第一面 13031a上,並已大於臨界角度因此會在第一面13031a上發生全反射。之後,被第一面13031a反射的光線從第二面13031b出射,並到達影像感測器1304,並由影像感測器1304成像。其中,第一面13031a是根據斯涅爾定律(Snell's Law),當光波從一種介質傳播到另一種具有不同折射率的介質時會發生折射現象,如果當光由折射率較大的介質射入折射率較小的介質時,其入射角超過臨界角,光線將不再折射而是全部反射回原疏介質,即不存在折射光只存在反射光,即形成全反射現象(Total Reflection),臨界角是促使全反射發生的最小入射角,滿足全反射角度的光線會直接進行全反射而不會穿透,利用此特性使得從第五面13032b出射經空氣間隙後從第一面13031a入射到第一稜鏡單元13031內的光線,在被第三面13031c反射的光線入射到第一面13031a上時不會穿透而是形成全反射。第一稜鏡單元13031可以為全反射稜鏡。 The light emitted from the first lens module 1302 is incident into the second lens unit 13032 through the fourth surface 13032a, and emitted from the fifth surface 13032b. Afterwards, the light emitted from the fifth surface 13032b passes through the air gap and then enters the first surface 13031a from the first surface 13031a. The third surface 13031c is inclined toward the direction of the first lens module 1302 and can be coated with a reflective film. The light incident on the first lens unit 13031 is incident on the third surface 13031c and is reflected on the third surface 13031c. Reflection occurs due to the reflective film. The light reflected by the third surface 13031c is incident on the first surface 13031a, and is greater than the critical angle, so total reflection will occur on the first surface 13031a. Afterwards, the light reflected by the first surface 13031a emerges from the second surface 13031b, reaches the image sensor 1304, and is imaged by the image sensor 1304. Among them, the first surface 13031a is based on Snell's Law. When light waves propagate from one medium to another medium with a different refractive index, refraction will occur. If the light is incident from a medium with a larger refractive index, When the incident angle of a medium with a small refractive index exceeds the critical angle, the light will no longer be refracted but will be completely reflected back to the original sparse medium, that is, there is no refracted light and only reflected light, which forms a total reflection phenomenon (Total Reflection). Angle is the minimum incident angle that causes total reflection to occur. Light that satisfies the total reflection angle will be directly reflected without penetrating. This characteristic is used to make the light emitted from the fifth surface 13032b pass through the air gap and then incident from the first surface 13031a to the third surface. When the light reflected by the third surface 13031c is incident on the first surface 13031a, the light in the first surface 13031 will not penetrate but will form total reflection. The first lens unit 13031 may be a total reflection lens.

第四面13032a與第一方向X垂直,所述第二面13031b與所述第三面13031c夾角範圍為85.5度~94.5度,所述第一面13031a與所述第二面13031b夾角範圍為47.5度~52.5度,所述第一面13031a與所述第三面13031c夾角範圍為38度~42度,所述第四面13032a與所述第五面13032b夾角範圍為28.5度~31.5度,所述第五面13032b與所述第六面13032c夾角範圍為57度~63度。優選地,第四面13032a與第一方向X垂直,第二面13031b與第三面13031c垂直。第一面13031a可以與第二面13031b呈例如50度角,第一面13031a可以與第三面13031c呈例如40度角,第四面13032a可以與第五面13032b呈例如30度角,第五面13032b可以與第六面13032c呈例如60度角。但本發明不限於此,也可以採用其他合適的角度。 The fourth surface 13032a is perpendicular to the first direction degrees to 52.5 degrees, the angle range between the first surface 13031a and the third surface 13031c is 38 degrees to 42 degrees, the angle range between the fourth surface 13032a and the fifth surface 13032b is 28.5 degrees to 31.5 degrees, so The angle range between the fifth surface 13032b and the sixth surface 13032c is 57 degrees to 63 degrees. Preferably, the fourth surface 13032a is perpendicular to the first direction X, and the second surface 13031b is perpendicular to the third surface 13031c. The first surface 13031a may form an angle of, for example, 50 degrees with the second surface 13031b, the first surface 13031a may form, with the third surface 13031c, an angle of, for example, 40 degrees, the fourth surface 13032a may form an angle with the fifth surface 13032b, for example, 30 degrees. Face 13032b may be at an angle of, for example, 60 degrees to sixth face 13032c. However, the present invention is not limited to this, and other suitable angles may also be adopted.

影像感測器1304包括成像單元13041,成像單元13041與第二面13031b平行設置。 The image sensor 1304 includes an imaging unit 13041, which is arranged parallel to the second surface 13031b.

由以上實施例可知,本發明的鏡頭裝置具有與現有技術中不同的佈局,可更加靈活地適應電子設備的發展。 It can be seen from the above embodiments that the lens device of the present invention has a different layout from that in the prior art, and can more flexibly adapt to the development of electronic equipment.

如圖11A所示,在本發明的鏡頭裝置特徵在於,包含第一反射部件210,該第一反射部件210具有兩個互為垂直的第一勾股反射面211、第二勾股反射面212,以及光線進出的弦長面213。如圖11A所示,當第一反射部件210位於初始位置時,第一勾股反射面211、第二勾股反射面212以及弦長面213皆以實線表示;當該第一反射部件210沿著平行於弦長面213的負Z軸方向向右移動距離L至第一位置時,第一勾股反射面211、第二勾股反射面212以及弦長面213皆以虛線表示。當該第一反射部件210沿著平行於弦長面213的負Z軸方向向右移動至第一位置時,與初始位置相比較,第一勾股反射面211將提早反射入射光線且第二勾股反射面212將延後反射入射光線,使得光線離開弦長面213時,向負Z軸方向偏移2L的距離。相同地,第一反射部件210亦可沿著平行於弦長面213的正Z軸方向向左移動距離L至第二位置,與初始位置相比較,第一勾股反射面211將延後反射入射光線且第二勾股反射面212將提早反射入射光線,使得光線離開弦長面213時,向正Z軸方向偏移2L的距離。如此沿著平行於弦長面213的Z軸往復移動第一反射部件210,可達到抑制因為手震造成的影像模糊,修正平行於弦長面213軸方向的手震影像。 As shown in FIG. 11A , the lens device of the present invention is characterized in that it includes a first reflective component 210 . The first reflective component 210 has two mutually perpendicular first Pythagorean reflective surfaces 211 and a second Pythagorean reflective surface 212 . , and the chord length surface 213 through which light enters and exits. As shown in FIG. 11A , when the first reflective component 210 is in the initial position, the first Pythagorean reflective surface 211 , the second Pythagorean reflective surface 212 and the chord length surface 213 are all represented by solid lines; when the first reflective component 210 When moving a distance L to the right along the negative Z-axis direction parallel to the chord surface 213 to the first position, the first Pythagorean reflection surface 211 , the second Pythagorean reflection surface 212 and the chord surface 213 are all represented by dotted lines. When the first reflective component 210 moves to the right along the negative Z-axis direction parallel to the chord surface 213 to the first position, compared with the initial position, the first Pythagorean reflective surface 211 will reflect the incident light earlier and the second The Pythagorean reflective surface 212 will delayly reflect the incident light, so that when the light leaves the chord surface 213, it will be offset by a distance of 2L in the negative Z-axis direction. Similarly, the first reflective component 210 can also move a distance L to the left along the positive Z-axis direction parallel to the chord surface 213 to the second position. Compared with the initial position, the first Pythagorean reflective surface 211 will delay reflection. The second Pythagorean reflective surface 212 will reflect the incident light early, so that when the light leaves the chord surface 213, it will be offset by a distance of 2L in the positive Z-axis direction. By reciprocating the first reflective component 210 along the Z-axis parallel to the chord plane 213 , image blur caused by hand shake can be suppressed and the hand shake image parallel to the chord plane 213 can be corrected.

如圖11B所示,當第一反射部件210位於初始位置時,第一勾股反射面211、第二勾股反射面212以及弦長面213皆以實線表示;當該第一反射部件210沿著垂直於弦長面213的負X軸方向向下移動距離L至第一位置時,第一勾股反射面211、第二勾股反射面212以及弦長面213皆以虛線表示。當該第一反射部件210沿著垂直於弦長面213的負X軸方向向下移動距離L至第一位置時,與初始位置相比較,第一勾股反射面211將提早反射入射 光線且第二勾股反射面212將提早反射入射光線,使得光線離開弦長面213時,向負X軸方向偏移2L的距離,如此一來造成焦距長度的縮減,形成縮短焦距長度的變化效果,使得光學系統焦距長度變短。相同地,第一反射部件210亦可沿著垂直於弦長面213的正X軸方向向上移動距離L至第二位置,與初始位置相比較,第一勾股反射面211將延後反射入射光線且第二勾股反射面212將延後反射入射光線,使得光線離開弦長面213時,向正X軸方向偏移2L的距離,如此一來造成焦距長度的增加,形成拉長焦距長度的變化效果,使得光學系統焦距長度變長。如此沿著垂直於弦長面213的X軸移動第一反射部件210,可達到調整焦距值的功效。 As shown in FIG. 11B , when the first reflective component 210 is in the initial position, the first Pythagorean reflective surface 211 , the second Pythagorean reflective surface 212 and the chord length surface 213 are all represented by solid lines; when the first reflective component 210 When moving downward by a distance L to the first position along the negative When the first reflective component 210 moves downward a distance L to the first position along the negative The light and the second Pythagorean reflective surface 212 will reflect the incident light early, so that when the light leaves the chord surface 213, it will be offset by a distance of 2L in the negative X-axis direction. This will cause the focal length to be reduced, resulting in a shortening of the focal length. The effect is to shorten the focal length of the optical system. Similarly, the first reflective component 210 can also move upward by a distance L along the positive X-axis direction perpendicular to the chord surface 213 to the second position. Compared with the initial position, the first Pythagorean reflective surface 211 will delay the incident reflection. The light and the second Pythagorean reflective surface 212 will delay the reflection of the incident light, so that when the light leaves the chord surface 213, it will be offset by a distance of 2L in the positive X-axis direction. This will increase the focal length and form a lengthened focal length. The changing effect makes the focal length of the optical system longer. By moving the first reflective component 210 along the X-axis perpendicular to the chord plane 213 in this way, the effect of adjusting the focal length value can be achieved.

如圖12A以及圖12B所示,在本發明的鏡頭裝置的第三實施例中,鏡頭裝置2100包括第一光路轉折模組、第一透鏡模組220以及影像感測器230,在本實施例中第一光路轉折模組包括第一反射部件210;當光線通過第一透鏡模組220後,將自長弦面213進入到第一反射部件210內,並依序由第一勾股反射面211以及第二勾股反射面212反射,之後再由長弦面213離開第一反射部件210,最後光線成像於影像感測器230上。 As shown in Figure 12A and Figure 12B, in the third embodiment of the lens device of the present invention, the lens device 2100 includes a first optical path turning module, a first lens module 220 and an image sensor 230. In this embodiment The first optical path turning module includes a first reflective component 210; when the light passes through the first lens module 220, it will enter the first reflective component 210 from the long chord surface 213, and sequentially pass through the first Pythagorean reflective surface. 211 and the second Pythagorean reflective surface 212, and then leave the first reflective component 210 through the long chord surface 213, and finally the light is imaged on the image sensor 230.

在圖12C示出的本發明的鏡頭裝置第三實施例中,當第一反射部件210位於初始位置時,第一勾股反射面211、第二勾股反射面212以及弦長面213皆以實線表示;當該第一反射部件210沿著平行於弦長面213的負Z軸方向向右移動距離L至第一位置時,第一勾股反射面211、第二勾股反射面212以及弦長面213皆以虛線表示。當該第一反射部件210沿著平行於弦長面213的負Z軸方向向右移動至第一位置時,與初始位置相比較,第一勾股反射面211將提早反射入射光線且第二勾股反射面212將延後反射入射光線,使得光線離開弦長面213時,向負Z軸方向偏移2L的距離。相同地,第一反射部件210亦可沿著平行於弦長面213的正Z軸方向向左移動距離L至第 二位置,與初始位置相比較,第一勾股反射面211將延後反射入射光線且第二勾股反射面212將提早反射入射光線,使得光線離開弦長面213時,向負Z軸方向偏移2L的距離。如此沿著平行於弦長面213的Z軸往復移動第一反射部件210,可達到抑制因為手震造成的影像模糊,修正平行於弦長面213軸方向的手震影像。 In the third embodiment of the lens device of the present invention shown in FIG. 12C , when the first reflective component 210 is in the initial position, the first Pythagorean reflective surface 211 , the second Pythagorean reflective surface 212 and the chord length surface 213 are all The solid line indicates that when the first reflective component 210 moves a distance L to the right along the negative Z-axis direction parallel to the chord plane 213 to the first position, the first Pythagorean reflective surface 211 and the second Pythagorean reflective surface 212 and the chord length surface 213 are all represented by dotted lines. When the first reflective component 210 moves to the right along the negative Z-axis direction parallel to the chord surface 213 to the first position, compared with the initial position, the first Pythagorean reflective surface 211 will reflect the incident light earlier and the second The Pythagorean reflective surface 212 will delayly reflect the incident light, so that when the light leaves the chord surface 213, it will be offset by a distance of 2L in the negative Z-axis direction. Similarly, the first reflective component 210 can also move a distance L to the left along the positive Z-axis direction parallel to the chord plane 213 to the first In the second position, compared with the initial position, the first Pythagorean reflective surface 211 will reflect the incident light later and the second Pythagorean reflective surface 212 will reflect the incident light earlier, so that when the light leaves the chord surface 213, it will move in the negative Z-axis direction. Offset by a distance of 2L. By reciprocating the first reflective component 210 along the Z-axis parallel to the chord plane 213, the image blur caused by hand shake can be suppressed and the hand shake image parallel to the chord plane 213 axis can be corrected.

在圖12D示出的本發明的鏡頭裝置第三實施例中,當第一反射部件210位於初始位置時,第一勾股反射面211、第二勾股反射面212以及弦長面213皆以實線表示;當該第一反射部件210沿著垂直於弦長面213的負X軸方向向下移動距離L至第一位置時,第一勾股反射面211、第二勾股反射面212以及弦長面213皆以虛線表示。當該第一反射部件210沿著垂直於弦長面213的負X軸方向向下移動距離L至第一位置時,與初始位置相比較,第一勾股反射面211將提早反射入射光線且第二勾股反射面212將提早反射入射光線,使得光線離開弦長面213時,向負X軸方向偏移2L的距離,,如此一來造成焦距長度的縮減,形成縮短焦距長度的變化效果,使得光學系統焦距長度變短。相同地,第一反射部件210亦可沿著垂直於弦長面213的正X軸方向向上移動距離L至第二位置,與初始位置相比較,第一勾股反射面211將延後反射入射光線且第二勾股反射面212將延後反射入射光線,使得光線離開弦長面213時,向正X軸方向偏移2L的距離,如此一來造成焦距長度的增加,形成拉長焦距長度的變化效果,使得光學系統焦距長度變長。如此沿著垂直於弦長面213的X軸移動第一反射部件210,可達到調整焦距值的功效。 In the third embodiment of the lens device of the present invention shown in FIG. 12D, when the first reflective component 210 is in the initial position, the first Pythagorean reflective surface 211, the second Pythagorean reflective surface 212 and the chord length surface 213 are all The solid line indicates that when the first reflective component 210 moves downward a distance L to the first position along the negative and the chord length surface 213 are all represented by dotted lines. When the first reflective component 210 moves downward a distance L to the first position along the negative The second Pythagorean reflective surface 212 will reflect the incident light early, so that when the light leaves the chord surface 213, it will be offset by a distance of 2L in the negative X-axis direction. This will cause the focal length to be reduced, forming a change effect of shortening the focal length. , making the focal length of the optical system shorter. Similarly, the first reflective component 210 can also move upward by a distance L along the positive X-axis direction perpendicular to the chord surface 213 to the second position. Compared with the initial position, the first Pythagorean reflective surface 211 will delay the incident reflection. The light and the second Pythagorean reflective surface 212 will delay the reflection of the incident light, so that when the light leaves the chord surface 213, it will be offset by a distance of 2L in the positive X-axis direction. This will increase the focal length and form a lengthened focal length. The changing effect makes the focal length of the optical system longer. By moving the first reflective component 210 along the X-axis perpendicular to the chord plane 213 in this way, the effect of adjusting the focal length value can be achieved.

如圖13A以及圖13B所示,在本發明的鏡頭裝置的第四實施例中,鏡頭裝置2200包括第一光路轉折模組、第一透鏡模組220以及影像感測器230,在本實施例中第一光路轉折模組包括第一反射部件210以及第二 反射部件240;當光線通過第一透鏡模組220後,將自長弦面213進入到第一反射部件210內,並依序由第一勾股反射面211以及第二勾股反射面212反射,之後再由長弦面213離開第一反射部件210。接著,光線再經由第二反射部件240反射後,光線成像於影像感測器230上。 As shown in FIGS. 13A and 13B , in the fourth embodiment of the lens device of the present invention, the lens device 2200 includes a first optical path turning module, a first lens module 220 and an image sensor 230 . In this embodiment, The first optical path turning module includes a first reflective component 210 and a second Reflective component 240; when the light passes through the first lens module 220, it will enter the first reflective component 210 from the long chord surface 213, and will be reflected by the first Pythagorean reflective surface 211 and the second Pythagorean reflective surface 212 in sequence. , and then leaves the first reflective component 210 through the long chord surface 213 . Then, after the light is reflected by the second reflective component 240, the light is imaged on the image sensor 230.

在圖13C示出的本發明的鏡頭裝置第四實施例中,當第一反射部件210位於初始位置時,第一勾股反射面211、第二勾股反射面212以及弦長面213皆以實線表示;當該第一反射部件210沿著平行於弦長面213的負Z軸方向向右移動距離L至第一位置時,第一勾股反射面211、第二勾股反射面212以及弦長面213皆以虛線表示。當該第一反射部件210沿著平行於弦長面213的負Z軸方向向右移動至第一位置時,與初始位置相比較,第一勾股反射面211將提早反射入射光線且第二勾股反射面212將延後反射入射光線。接著光線進入第二反射部件240,並藉由第二反射部件240的第二弦長面243將光線反射至影像感測器230。使得光線離開第二反射部件240後,向負X軸方向偏移2L的距離。相同地,第一反射部件210亦可沿著平行於弦長面213的正Z軸方向向左移動距離L至第二位置,與初始位置相比較,第一勾股反射面211將延後反射入射光線且第二勾股反射面212將提早反射入射光線。接著光線進入第二反射部件240,並藉由第二反射部件240的第二弦長面243將光線反射至影像感測器230。使得光線離開第二反射部件240後,向正X軸方向偏移2L的距離。如此沿著平行於弦長面213的Z軸往復移動第一反射部件210,可達到抑制因為手震造成的影像模糊,修正垂直於弦長面213方向的手震影像。 In the fourth embodiment of the lens device of the present invention shown in FIG. 13C , when the first reflective component 210 is in the initial position, the first Pythagorean reflective surface 211 , the second Pythagorean reflective surface 212 and the chord length surface 213 are all The solid line indicates that when the first reflective component 210 moves a distance L to the right along the negative Z-axis direction parallel to the chord plane 213 to the first position, the first Pythagorean reflective surface 211 and the second Pythagorean reflective surface 212 and the chord length surface 213 are all represented by dotted lines. When the first reflective component 210 moves to the right along the negative Z-axis direction parallel to the chord surface 213 to the first position, compared with the initial position, the first Pythagorean reflective surface 211 will reflect the incident light earlier and the second The Pythagorean reflective surface 212 will delayly reflect the incident light. Then the light enters the second reflective component 240 and is reflected to the image sensor 230 through the second chord surface 243 of the second reflective component 240 . After the light leaves the second reflective component 240, it is offset by a distance of 2L in the negative X-axis direction. Similarly, the first reflective component 210 can also move a distance L to the left along the positive Z-axis direction parallel to the chord surface 213 to the second position. Compared with the initial position, the first Pythagorean reflective surface 211 will delay reflection. The second Pythagorean reflective surface 212 will reflect the incident light early. Then the light enters the second reflective component 240 and is reflected to the image sensor 230 through the second chord surface 243 of the second reflective component 240 . After the light leaves the second reflective component 240, it is offset by a distance of 2L in the positive X-axis direction. By reciprocating the first reflective component 210 along the Z-axis parallel to the chord plane 213 in this way, the image blur caused by hand shake can be suppressed and the hand shake image perpendicular to the chord plane 213 can be corrected.

在圖13D示出的本發明的鏡頭裝置第四實施例中,當第一反射部件210位於初始位置時,第一勾股反射面211、第二勾股反射面212以及弦長面213皆以實線表示;當該第一反射部件210沿著垂直於弦長面213的正 X軸方向向上移動距離L至第一位置時,第一勾股反射面211、第二勾股反射面212以及弦長面213皆以虛線表示。當該第一反射部件210沿著垂直於弦長面213的正X軸方向向上移動距離L至第一位置時,與初始位置相比較,第一勾股反射面211將延後反射入射光線且第二勾股反射面212將延後反射入射光線。接著光線進入第二反射部件240,並藉由第二反射部件240的第二弦長面243將光線反射至影像感測器230。使得光線離開第二反射部件240後,向正X軸方向偏移2L的距離,如此一來造成焦距長度的增加,形成拉長焦距長度的變化效果,使得光學系統焦距長度變長。相同地,第一反射部件210亦可沿著垂直於弦長面213的負X軸方向向下移動距離L至第二位置,與初始位置相比較,第一勾股反射面211將提早反射入射光線且第二勾股反射面212將提早反射入射光線。接著光線進入第二反射部件240,並藉由第二反射部件240的第二弦長面243將光線反射至影像感測器230。使得光線離開第二反射部件240後,向負X軸方向偏移2L的距離,如此一來造成焦距長度的縮減,形成縮短焦距長度的變化效果,使得光學系統焦距長度變短。如此沿著垂直於弦長面213的X軸移動第一反射部件210,可達到調整焦距值的功效。 In the fourth embodiment of the lens device of the present invention shown in FIG. 13D , when the first reflective component 210 is in the initial position, the first Pythagorean reflective surface 211 , the second Pythagorean reflective surface 212 and the chord length surface 213 are all The solid line indicates that when the first reflective component 210 is along the normal direction perpendicular to the chord plane 213 When the X-axis direction moves upward by a distance L to the first position, the first Pythagorean reflective surface 211 , the second Pythagorean reflective surface 212 and the chord length surface 213 are all represented by dotted lines. When the first reflective component 210 moves upward a distance L to the first position along the positive The second Pythagorean reflective surface 212 will delayly reflect the incident light. Then the light enters the second reflective component 240 and is reflected to the image sensor 230 through the second chord surface 243 of the second reflective component 240 . After the light leaves the second reflective component 240, it is offset by a distance of 2L in the positive X-axis direction. This causes the focal length to increase, forming a change effect of lengthening the focal length, and making the focal length of the optical system longer. Similarly, the first reflective component 210 can also move downward a distance L along the negative X-axis direction perpendicular to the chord surface 213 to the second position. Compared with the initial position, the first Pythagorean reflective surface 211 will reflect the incident earlier The second Pythagorean reflective surface 212 will reflect the incident light early. Then the light enters the second reflective component 240 and is reflected to the image sensor 230 through the second chord surface 243 of the second reflective component 240 . After the light leaves the second reflective component 240, it is offset by a distance of 2L in the negative X-axis direction. This causes the focal length to be reduced, resulting in a change effect of shortening the focal length, and making the focal length of the optical system shorter. By moving the first reflective component 210 along the X-axis perpendicular to the chord plane 213 in this way, the effect of adjusting the focal length value can be achieved.

於本發明第四實施例中,影像感測器230所在的平面與第一透鏡模組220之光軸平行。第二反射部件可以是直角稜鏡;第二反射部件亦可藉由一個反射鏡所構成,即第三弦長面是反射鏡。 In the fourth embodiment of the present invention, the plane where the image sensor 230 is located is parallel to the optical axis of the first lens module 220 . The second reflective component can be a right-angle mirror; the second reflective component can also be composed of a reflector, that is, the third chord length surface is a reflector.

如圖14A以及圖14B所示,在本發明的鏡頭裝置的第五實施例中,鏡頭裝置2200包括第三反射部件250、第一透鏡模組220、影像感測器230、第二反射部件240以及第一反射部件210;當光線經由第三反射部件250反射後進入第一透鏡模組220,通過第一透鏡模組220後,藉由第二反射部件240的第三勾股反射面241反射,經由第一反射部件210的第一弦長面 213進入到第一反射部件210內,並依序藉由第一勾股反射面211以及第二勾股反射面212進行二次反射。接著,光線自第一反射部件210的第一弦長面213離開後,再經由第二反射部件240的第四勾股反射面242反射後,光線成像於影像感測器230上。在第五實施例中,第一勾股反射面211與第三勾股反射面241互為平行設置,第二勾股反射面212與第四勾股反射面242互為平行設置,以及第一弦長面213與第二弦長面243互為平行設置。 As shown in FIGS. 14A and 14B , in the fifth embodiment of the lens device of the present invention, the lens device 2200 includes a third reflective component 250 , a first lens module 220 , an image sensor 230 , and a second reflective component 240 and the first reflective component 210; when the light enters the first lens module 220 after being reflected by the third reflective component 250, after passing through the first lens module 220, it is reflected by the third Pythagorean reflective surface 241 of the second reflective component 240 , through the first chordal surface of the first reflective component 210 213 enters the first reflective component 210 and is reflected twice by the first Pythagorean reflective surface 211 and the second Pythagorean reflective surface 212 in sequence. Then, after the light leaves the first chord surface 213 of the first reflective component 210 and is reflected by the fourth Pythagorean reflective surface 242 of the second reflective component 240, the light is imaged on the image sensor 230. In the fifth embodiment, the first Pythagorean reflective surface 211 and the third Pythagorean reflective surface 241 are arranged parallel to each other, the second Pythagorean reflective surface 212 and the fourth Pythagorean reflective surface 242 are arranged parallel to each other, and the first Pythagorean reflective surface 212 and the fourth Pythagorean reflective surface 242 are arranged parallel to each other. The chord surface 213 and the second chord surface 243 are arranged parallel to each other.

在圖14C示出的本發明的鏡頭裝置第五實施例中,當第二反射部件240位於初始位置時,第三勾股反射面241、第四勾股反射面242以及第二弦長面243皆以實線表示;當該第二反射部件240沿著平行於第二弦長面243的負X軸方向向左移動距離L至第一位置時,第三勾股反射面241、第四勾股反射面242以及第二弦長面243皆以虛線表示。當該第二反射部件240沿著平行於第二弦長面243的負X軸方向向左移動距離L至第一位置時,與初始位置相比較,第三勾股反射面241將提早反射入射光線,使光線自第一反射部件210的第一弦長面213進入,並依序藉由第一勾股反射面211及第二勾股反射面212反射後,光線再自第一弦長面213離開朝向第四勾股反射面242前進,第四勾股反射面242將延後反射入射光線,使得光線離開第二反射部件240時,向負Z軸方向偏移2L的距離。相同地,第二反射部件240亦可沿著平行於第二弦長面243的正X軸方向向右移動距離L至第二位置,與初始位置相比較,第三勾股反射面241將延後反射入射光線,使光線自第一反射部件210的第一弦長面213進入,並依序藉由第一勾股反射面211及第二勾股反射面212反射後,光線再自第一弦長面213離開朝向第四勾股反射面242前進,第四勾股反射面242將提早反射入射光線,使得光線離開第二反射部件240時,向正Z軸方向偏移2L的距離。如此沿著平行於第二弦長面243的X軸往復移動第二反射部件240,可達到抑制因為手震造成的影像模糊,修正手震 影像。 In the fifth embodiment of the lens device of the present invention shown in FIG. 14C , when the second reflective component 240 is in the initial position, the third Pythagorean reflective surface 241 , the fourth Pythagorean reflective surface 242 and the second chord surface 243 All are represented by solid lines; when the second reflective component 240 moves a distance L to the left along the negative X-axis direction parallel to the second chord surface 243 to the first position, the third Pythagorean reflective surface 241 and the fourth hook The reflection surface 242 and the second chord surface 243 are both represented by dotted lines. When the second reflective component 240 moves a distance L to the left along the negative The light enters from the first chord surface 213 of the first reflective component 210 and is sequentially reflected by the first Pythagorean reflective surface 211 and the second Pythagorean reflective surface 212, and then the light rays enter from the first chord surface 213. 213 leaves and moves toward the fourth Pythagorean reflective surface 242. The fourth Pythagorean reflective surface 242 will reflect the incident light after a delay, so that when the light leaves the second reflective component 240, it is offset by a distance of 2L in the negative Z-axis direction. Similarly, the second reflective component 240 can also move a distance L to the right along the positive X-axis direction parallel to the second chord surface 243 to the second position. Compared with the initial position, the third Pythagorean reflective surface 241 will extend. The incident light is back-reflected so that the light enters from the first chord surface 213 of the first reflective component 210 and is sequentially reflected by the first Pythagorean reflective surface 211 and the second Pythagorean reflective surface 212. The chord surface 213 moves away from the fourth Pythagorean reflective surface 242, and the fourth Pythagorean reflective surface 242 will reflect the incident light early, so that when the light leaves the second reflective component 240, it will be offset by a distance of 2L in the positive Z-axis direction. By moving the second reflective component 240 reciprocally along the X-axis parallel to the second chord plane 243 in this way, the image blur caused by hand tremors can be suppressed and the hand tremors can be corrected. image.

在圖14D示出的本發明的鏡頭裝置第五實施例中,當第二反射部件240位於初始位置時,第三勾股反射面241、第四勾股反射面242以及第二弦長面243皆以實線表示;當該第二反射部件240沿著垂直於第二弦長面243的負Z軸方向向下移動距離L至第一位置時,第三勾股反射面241、第四勾股反射面242以及第二弦長面243皆以虛線表示。當該第二反射部件240沿著垂直於第二弦長面243的負Z軸方向向下移動距離L至第一位置時,與初始位置相比較,第三勾股反射面241將延後反射入射光線,使光線自第一反射部件210的第一弦長面213進入,並依序藉由第一勾股反射面211及第二勾股反射面212反射後,光線再自第一弦長面213離開朝向第四勾股反射面242前進,第四勾股反射面242將延後反射入射光線,使得光線離開第二反射部件240時,向負X軸方向偏移2L的距離,亦即成像面朝負X軸方向移動2L的距離,如此一來造成焦距長度的縮減,形成縮短焦距長度的變化效果,使得光學系統焦距長度變短。相同地,第二反射部件240亦可沿著垂直於第二弦長面243的正Z軸方向向上移動距離L至第二位置,與初始位置相比較,第三勾股反射面241將提早反射入射光線,使光線自第一反射部件210的第一弦長面213進入,並依序藉由第一勾股反射面211及第二勾股反射面212反射後,光線再自第一弦長面213離開朝向第四勾股反射面242前進,第四勾股反射面242將提早反射入射光線,使得光線離開第二反射部件240時,向正X軸方向偏移2L的距離,亦即成像面朝正X軸方向移動2L的距離,如此一來造成焦距長度的增加,形成拉長焦距長度的變化效果,使得光學系統焦距長度變長。如此沿著垂直於第二弦長面243的Z軸移動第二反射部件240,可達到調整焦距值的功效。 In the fifth embodiment of the lens device of the present invention shown in FIG. 14D , when the second reflective component 240 is in the initial position, the third Pythagorean reflective surface 241 , the fourth Pythagorean reflective surface 242 and the second chord surface 243 All are represented by solid lines; when the second reflective component 240 moves downward by a distance L along the negative Z-axis direction perpendicular to the second chord surface 243 to the first position, the third Pythagorean reflective surface 241 and the fourth hook The reflection surface 242 and the second chord surface 243 are both represented by dotted lines. When the second reflective component 240 moves downward a distance L along the negative Z-axis direction perpendicular to the second chord surface 243 to the first position, compared with the initial position, the third Pythagorean reflective surface 241 will delay reflection. The incident light enters from the first chord surface 213 of the first reflective component 210 and is sequentially reflected by the first Pythagorean reflective surface 211 and the second Pythagorean reflective surface 212. The light then passes through the first chord surface 213. The surface 213 leaves and moves toward the fourth Pythagorean reflective surface 242. The fourth Pythagorean reflective surface 242 will delay the reflection of the incident light, so that when the light leaves the second reflective component 240, it is offset by a distance of 2L in the negative X-axis direction, that is, The imaging surface moves a distance of 2L toward the negative Similarly, the second reflective component 240 can also move upward by a distance L along the positive Z-axis direction perpendicular to the second chord surface 243 to the second position. Compared with the initial position, the third Pythagorean reflective surface 241 will reflect earlier. The incident light enters from the first chord surface 213 of the first reflective component 210 and is sequentially reflected by the first Pythagorean reflective surface 211 and the second Pythagorean reflective surface 212. The light then passes through the first chord surface 213. The surface 213 moves away from the fourth Pythagorean reflective surface 242, and the fourth Pythagorean reflective surface 242 will reflect the incident light early, so that when the light leaves the second reflective component 240, it will be offset by a distance of 2L in the positive X-axis direction, that is, it will form an image. Moving a distance of 2L toward the positive By moving the second reflective component 240 along the Z-axis perpendicular to the second chord plane 243, the focal length value can be adjusted.

在圖14E示出的本發明的鏡頭裝置第五實施例中,當第二反 射部件240位於初始位置時,第三勾股反射面241、第四勾股反射面242以及第二弦長面243皆以實線表示;當該第二反射部件240沿著共同平行於第三勾股反射面241、第四勾股反射面242以及第二弦長面243的Y軸方向順時針旋轉角度θ至第一位置時,第三勾股反射面241、第四勾股反射面242以及第二弦長面243皆以虛線表示。當該第二反射部件240沿著共同平行於第三勾股反射面241、第四勾股反射面242以及第二弦長面243的Y軸方向順時針旋轉角度θ至第一位置時,與初始位置相比較,第三勾股反射面241將提早反射入射光線,使光線自第一反射部件210的第一弦長面213進入,並依序藉由第一勾股反射面211及第二勾股反射面212反射後,光線再自第一弦長面213離開朝向第四勾股反射面242前進,第四勾股反射面242將延後反射入射光線,使得光線離開第二反射部件240時,向負Z軸方向偏移特定距離。相同地,第二反射部件240亦可沿著共同平行於第三勾股反射面241、第四勾股反射面242以及第二弦長面243的Y軸方向逆時針旋轉角度θ至第二位置,與初始位置相比較,第三勾股反射面241將延後反射入射光線,使光線自第一反射部件210的第一弦長面213進入,並依序藉由第一勾股反射面211及第二勾股反射面212反射後,光線再自第一弦長面213離開朝向第四勾股反射面242前進,第四勾股反射面242將提早反射入射光線,使得光線離開第二反射部件240時,向正Z軸方向偏移特定距離。如此沿著共同平行於第三勾股反射面241、第四勾股反射面242以及第二弦長面243的Y軸方向往復轉動第二反射部件240,可達到抑制因為手震造成的影像模糊,修正手震影像。 In the fifth embodiment of the lens device of the present invention shown in FIG. 14E, when the second reflection When the reflection component 240 is in the initial position, the third Pythagorean reflection surface 241, the fourth Pythagorean reflection surface 242 and the second chord length surface 243 are all represented by solid lines; when the second reflection component 240 is parallel to the third When the Y-axis direction of the Pythagorean reflective surface 241, the fourth Pythagorean reflective surface 242 and the second chordal surface 243 is rotated clockwise by an angle θ to the first position, the third Pythagorean reflective surface 241, the fourth Pythagorean reflective surface 242 and the second chord surface 243 are all represented by dotted lines. When the second reflective component 240 rotates clockwise by an angle θ to the first position along the Y-axis direction that is parallel to the third Pythagorean reflective surface 241 , the fourth Pythagorean reflective surface 242 and the second chord surface 243 , Compared with the initial position, the third Pythagorean reflective surface 241 will reflect the incident light earlier, so that the light enters from the first chord surface 213 of the first reflective component 210 and sequentially passes through the first Pythagorean reflective surface 211 and the second After reflection by the Pythagorean reflective surface 212, the light ray leaves from the first chord surface 213 and moves toward the fourth Pythagorean reflective surface 242. The fourth Pythagorean reflective surface 242 will delay the reflection of the incident light, causing the light to leave the second reflective component 240. , offset a specific distance in the negative Z-axis direction. Similarly, the second reflective component 240 can also be rotated counterclockwise by an angle θ to the second position along the Y-axis direction that is commonly parallel to the third Pythagorean reflective surface 241 , the fourth Pythagorean reflective surface 242 and the second chord surface 243 . , compared with the initial position, the third Pythagorean reflective surface 241 will delay the reflection of the incident light, so that the light enters from the first chord surface 213 of the first reflective component 210 and sequentially passes through the first Pythagorean reflective surface 211 After being reflected by the second Pythagorean reflective surface 212, the light ray leaves from the first chord surface 213 and moves toward the fourth Pythagorean reflective surface 242. The fourth Pythagorean reflective surface 242 will reflect the incident light early, causing the light to leave the second reflection surface. Component 240 is offset by a specific distance in the positive Z-axis direction. In this way, the second reflective component 240 is reciprocally rotated along the Y-axis direction that is parallel to the third Pythagorean reflective surface 241, the fourth Pythagorean reflective surface 242 and the second chord surface 243, thereby suppressing image blur caused by hand shake. , correct the hand shake image.

在圖14F示出的本發明的鏡頭裝置第五實施例中,當第一反射部件210位於初始位置時,第一勾股反射面211、第二勾股反射面212以及第一弦長面213皆以實線表示;當該第一反射部件210沿著平行於第一弦長面213的正X軸方向向右移動距離L至第一位置時,第一勾股反射面211、第 二勾股反射面212以及第一弦長面213皆以虛線表示,此時第二反射部件240固定不動。來自第一透鏡模組220的光線經由第二反射部件240的第三勾股反射面241反射並藉由第一弦長面213進入第一反射部件210;當該第一反射部件210沿著平行於第一弦長面213的正X軸方向向右移動距離L至第一位置時,與初始位置相比較,第一勾股反射面211將提早反射入射光線且第二勾股反射面212將延後反射入射光線。之後,光線自第一弦長面213離開朝向第四勾股反射面242前進,第四勾股反射面242反射光線後使得光線最終離開第二反射部件240時,向負Z軸方向偏移2L的距離。相同地,來自第一透鏡模組220的光線經由第二反射部件240的第三勾股反射面241反射並藉由第一弦長面213進入第一反射部件210,第一反射部件210沿著平行於第一弦長面213的負X軸方向向左移動距離L至第二位置,與初始位置相比較,第一勾股反射面211將延後反射入射光線且第二勾股反射面212將提早反射入射光線。之後,光線自第一弦長面213離開朝向第四勾股反射面242前進,第四勾股反射面242反射光線後使得光線最終離開第二反射部件240時,向正Z軸方向偏移2L的距離。如此沿著平行於第一弦長面213的X軸往復移動第一反射部件210,可達到抑制因為手震造成的影像模糊,修正手震影像。 In the fifth embodiment of the lens device of the present invention shown in FIG. 14F, when the first reflective component 210 is in the initial position, the first Pythagorean reflective surface 211, the second Pythagorean reflective surface 212 and the first chord surface 213 are all represented by solid lines; when the first reflective component 210 moves a distance L to the right along the positive X-axis direction parallel to the first chordal surface 213 to the first position, the first Pythagorean reflective surface 211 and the The two Pythagorean reflective surfaces 212 and the first chord surface 213 are both represented by dotted lines. At this time, the second reflective component 240 is fixed. The light from the first lens module 220 is reflected by the third Pythagorean reflective surface 241 of the second reflective component 240 and enters the first reflective component 210 through the first chord surface 213; when the first reflective component 210 is parallel to When the first chordal surface 213 moves a distance L to the right in the direction of the positive Delayed reflection of incoming light. After that, the light leaves from the first chord surface 213 and moves toward the fourth Pythagorean reflective surface 242. After the fourth Pythagorean reflective surface 242 reflects the light, when the light finally leaves the second reflective component 240, it is offset by 2L in the negative Z-axis direction. distance. Similarly, the light from the first lens module 220 is reflected by the third Pythagorean reflective surface 241 of the second reflective component 240 and enters the first reflective component 210 through the first chord surface 213. The first reflective component 210 passes along The negative Incident light will be reflected early. After that, the light leaves from the first chord surface 213 and moves toward the fourth Pythagorean reflective surface 242. After the fourth Pythagorean reflective surface 242 reflects the light, when the light finally leaves the second reflective component 240, it is offset by 2L in the positive Z-axis direction. distance. By reciprocating the first reflective component 210 along the X-axis parallel to the first chordal plane 213 in this way, image blur caused by hand tremor can be suppressed and the hand tremor image can be corrected.

在圖14G示出的本發明的鏡頭裝置第五實施例中,當第一反射部件210位於初始位置時,第一勾股反射面211、第二勾股反射面212以及第一弦長面213皆以實線表示;當該第一反射部件210沿著垂直於第一弦長面213的負Z軸方向向下移動距離L至第一位置時,第一勾股反射面211、第二勾股反射面212以及第一弦長面213皆以虛線表示,此時第二反射部件240固定不動。來自第一透鏡模組220的光線經由第二反射部件240的第三勾股反射面241反射並藉由第一弦長面213進入第一反射部件210;當該第一反射部件210沿著垂直於第一弦長面213的負Z軸方向向下移動距離L至第一位置 時,與初始位置相比較,第一勾股反射面211將提前反射入射光線且第二勾股反射面212將提前反射入射光線。之後,光線自第一弦長面213離開朝向第四勾股反射面242前進,第四勾股反射面242反射光線後使得光線最終離開第二反射部件240時,向負X軸方向偏移2L的距離,亦即成像面朝負X軸方向移動2L的距離,如此一來造成焦距長度的縮減,形成縮短焦距長度的變化效果,使得光學系統焦距長度變短。相同地,來自第一透鏡模組220的光線經由第二反射部件240的第三勾股反射面241反射並藉由第一弦長面213進入第一反射部件210,第一反射部件210沿著垂直於第一弦長面213的正Z軸方向向上移動距離L至第二位置,與初始位置相比較,第一勾股反射面211將延後反射入射光線且第二勾股反射面212將延後反射入射光線。之後,光線自第一弦長面213離開朝向第四勾股反射面242前進,第四勾股反射面242反射光線後使得光線最終離開第二射元件240時,向正X軸方向偏移2L的距離,亦即成像面朝正X軸方向移動2L的距離,如此一來造成焦距長度的增加,形成拉長焦距長度的變化效果,使得光學系統焦距長度變長。如此沿著垂直於第一弦長面213的Z軸移動第一反射部件210,可達到調整焦距值的功效。 In the fifth embodiment of the lens device of the present invention shown in FIG. 14G, when the first reflective component 210 is in the initial position, the first Pythagorean reflective surface 211, the second Pythagorean reflective surface 212 and the first chord surface 213 All are represented by solid lines; when the first reflective component 210 moves downward by a distance L along the negative Z-axis direction perpendicular to the first chord surface 213 to the first position, the first Pythagorean reflective surface 211 and the second hook The strand reflective surface 212 and the first chord surface 213 are both represented by dotted lines. At this time, the second reflective component 240 is fixed. The light from the first lens module 220 is reflected by the third Pythagorean reflective surface 241 of the second reflective component 240 and enters the first reflective component 210 through the first chord surface 213; when the first reflective component 210 moves along the vertical Move downward the distance L in the negative Z-axis direction of the first chord surface 213 to the first position. When compared with the initial position, the first Pythagorean reflective surface 211 will reflect the incident light in advance and the second Pythagorean reflective surface 212 will reflect the incident light in advance. After that, the light leaves from the first chord surface 213 and moves toward the fourth Pythagorean reflective surface 242. After the fourth Pythagorean reflective surface 242 reflects the light, when the light finally leaves the second reflective component 240, it is offset by 2L in the negative X-axis direction. distance, that is, the imaging surface moves 2L in the direction of the negative Similarly, the light from the first lens module 220 is reflected by the third Pythagorean reflective surface 241 of the second reflective component 240 and enters the first reflective component 210 through the first chord surface 213. The first reflective component 210 passes along The positive Z-axis direction perpendicular to the first chord surface 213 moves upward by a distance L to the second position. Compared with the initial position, the first Pythagorean reflective surface 211 will reflect the incident light with delay and the second Pythagorean reflective surface 212 will Delayed reflection of incoming light. After that, the light leaves from the first chord surface 213 and moves toward the fourth Pythagorean reflective surface 242. After the fourth Pythagorean reflective surface 242 reflects the light, when the light finally leaves the second emitting element 240, it is offset by 2L in the positive X-axis direction. distance, that is, the imaging surface moves 2L in the direction of the positive By moving the first reflective component 210 along the Z-axis perpendicular to the first chord plane 213 in this way, the effect of adjusting the focal length value can be achieved.

綜合圖14C以及圖14F,第一反射部件210以及第二反射部件240彼此在平行於弦長面方向上產生相對性運動時,便可達到抑制因為手震造成的影像模糊,修正手震影像。綜合圖14D以及圖14G,第一反射部件210以及第二反射部件240彼此在垂直於弦長面方向上產生相對性運動時,可達到調整焦距值的功效。 14C and 14F, when the first reflective component 210 and the second reflective component 240 move relative to each other in the direction parallel to the chord plane, the image blur caused by hand tremor can be suppressed and the hand tremor image can be corrected. Based on FIG. 14D and FIG. 14G , when the first reflective component 210 and the second reflective component 240 move relative to each other in the direction perpendicular to the chord plane, the effect of adjusting the focal length value can be achieved.

於本發明第三、第四及第五實施例中,第一反射部件可以是直角稜鏡;第一反射部件亦可藉由兩個反射鏡所構成,即第一勾股反射面與第二勾股反射面皆是反射鏡。 In the third, fourth and fifth embodiments of the present invention, the first reflective component may be a right-angle mirror; the first reflective component may also be composed of two reflective mirrors, namely a first Pythagorean reflective surface and a second reflective mirror. Pythagorean reflective surfaces are all reflectors.

於本發明第五實施例中,第二反射部件可以是直角稜鏡;第二反射部件亦可藉由兩個反射鏡所構成,即第三勾股反射面與第四勾股反射面皆是反射鏡。另外,影像感測器230所在的平面與第一透鏡模組220之光軸垂直,且沿光軸方向觀察第一透鏡模組220與影像感測器230所在的平面有重疊。 In the fifth embodiment of the present invention, the second reflective component may be a right-angle mirror; the second reflective component may also be composed of two reflectors, that is, both the third Pythagorean reflective surface and the fourth Pythagorean reflective surface are Reflector. In addition, the plane where the image sensor 230 is located is perpendicular to the optical axis of the first lens module 220 , and the first lens module 220 and the plane where the image sensor 230 is located overlap when viewed along the optical axis direction.

值得注意的是,於本發明第四實施例中,影像感測器230所在的平面與第一透鏡模組220之光軸平行,而於本發明第五實施例中,影像感測器230所在的平面與第一透鏡模組220之光軸垂直。然而可以了解到,在一些其他的實施例中,影像感測器230所在的平面與所述第一透鏡模組220之光軸並非平行或垂直,而是相交形成不等於90度夾角。 It is worth noting that in the fourth embodiment of the present invention, the plane where the image sensor 230 is located is parallel to the optical axis of the first lens module 220 , while in the fifth embodiment of the present invention, the plane where the image sensor 230 is located is parallel to the optical axis of the first lens module 220 . The plane is perpendicular to the optical axis of the first lens module 220. However, it can be understood that in some other embodiments, the plane where the image sensor 230 is located and the optical axis of the first lens module 220 are not parallel or perpendicular, but intersect to form an included angle that is not equal to 90 degrees.

圖15是根據本發明第六實施例的鏡頭裝置3200的結構示意圖,其中第二光路轉折模組3203處於第一位置;圖16是圖15的俯視圖;圖17是圖15的側視圖。如圖15-17所示,本發明的鏡頭裝置3200包括基座3207、以及依序設置在基座3207上的:第三光路轉折模組3201,用於將沿著第二方向Y入射的光線反射到第一方向X;第二透鏡模組3202,包括一個或多個透鏡,且具有沿著第一方向X的第二光軸;第二光路轉折模組3203,用於將沿著第二方向Y入射的光線反射到第一方向X;以及第一透鏡模組3204,包括一個或多個透鏡,且具有沿著第一方向X的第一光軸。其中第一光軸與第二光軸重合。該鏡頭裝置3200還包括影像感測器3205,用於形成影像。值得注意的是,第一透鏡模組3204之第一光軸與影像感測器3205所在的平面垂直,且沿第一方向X觀察第一透鏡模組3204與影像感測器3205所在的平面有重疊。 Figure 15 is a schematic structural diagram of a lens device 3200 according to the sixth embodiment of the present invention, in which the second optical path turning module 3203 is in the first position; Figure 16 is a top view of Figure 15; Figure 17 is a side view of Figure 15. As shown in Figures 15-17, the lens device 3200 of the present invention includes a base 3207, and a third optical path turning module 3201 sequentially disposed on the base 3207 for converting light incident along the second direction Y. Reflected to the first direction X; the second lens module 3202 includes one or more lenses and has a second optical axis along the first direction Light incident in the direction Y is reflected to the first direction X; and the first lens module 3204 includes one or more lenses and has a first optical axis along the first direction X. The first optical axis coincides with the second optical axis. The lens device 3200 also includes an image sensor 3205 for forming images. It is worth noting that the first optical axis of the first lens module 3204 is perpendicular to the plane where the image sensor 3205 is located, and when viewed along the first direction overlap.

第三光路轉折模組3201用於將沿著第二方向Y入射的光線反射到第二透鏡模組3203,其中第一方向X與第二方向Y垂直。第二光路轉 折模組3203可以在第一和第二位置之間切換,即第二光路轉折模組3203可在第一位置和第二位置之間移動,在第一位置,第二光路轉折模組3203遮擋來自第二透鏡模組3202的光線,在第二位置,第二光路轉折模組3203偏離第一光軸和第二光軸,使得來自第二透鏡模組3202的光線進入第一透鏡模組3204。第三光路轉折模組3201和第二光路轉折模組3203可以是反射稜鏡或者反射鏡。 The third optical path turning module 3201 is used to reflect the incident light along the second direction Y to the second lens module 3203, where the first direction X is perpendicular to the second direction Y. The second light path turns The folding module 3203 can switch between the first and second positions, that is, the second optical path turning module 3203 can move between the first position and the second position. In the first position, the second optical path turning module 3203 blocks The light from the second lens module 3202 is at the second position, and the second optical path turning module 3203 deviates from the first optical axis and the second optical axis, so that the light from the second lens module 3202 enters the first lens module 3204 . The third optical path turning module 3201 and the second optical path turning module 3203 may be reflective mirrors or mirrors.

在可選的一個實施例中,影像感測器3205可以設置在第一光軸上,從第一透鏡模組3204出射的光線直接在影像感測器3205上成像。 In an optional embodiment, the image sensor 3205 may be disposed on the first optical axis, and the light emitted from the first lens module 3204 is directly imaged on the image sensor 3205.

在可選的另一個實施例中,為了達成高倍率光學變焦且兼顧模組小型化以及減小鏡頭裝置3200的長度,影像感測器3205並不設置在第一光軸上,在第一透鏡模組3204和影像感測器3205之間的光路上,還設置有第一光路轉折模組。該第一光路轉折模組可以包括第一反射面,該第一反射面將來自第二透鏡模組3202或第一透鏡模組3204的光線反射到影像感測器3205上成像。 In another optional embodiment, in order to achieve high-magnification optical zoom while taking into account module miniaturization and reducing the length of the lens device 3200, the image sensor 3205 is not disposed on the first optical axis, but on the first lens. A first optical path turning module is also provided on the optical path between the module 3204 and the image sensor 3205. The first optical path turning module may include a first reflective surface that reflects the light from the second lens module 3202 or the first lens module 3204 to the image sensor 3205 for imaging.

如圖所示,在可選的另一個實施例中,為了達成高倍率光學變焦且兼顧模組小型化以及減小鏡頭裝置3200的長度,影像感測器3205並不設置在第一光軸上,在第一透鏡模組3204和影像感測器3205之間的光路上,還設置有第一光路轉折模組3206。該第一光路轉折模組3206包括第一反射部件32061和第二反射部件32062,第一反射部件32061和第二反射部件32062可以相互垂直,且第一反射部件32061與第二光軸夾45度角。第一反射部件32061將來自第二透鏡模組3202或第一透鏡模組3204的光線反射到第二反射部件32062,第二反射部件32062進一步將光線反射到影像感測器3205。 As shown in the figure, in another optional embodiment, in order to achieve high-magnification optical zoom while taking into account the miniaturization of the module and the reduction of the length of the lens device 3200, the image sensor 3205 is not disposed on the first optical axis. , a first optical path turning module 3206 is also provided on the optical path between the first lens module 3204 and the image sensor 3205. The first optical path turning module 3206 includes a first reflective component 32061 and a second reflective component 32062. The first reflective component 32061 and the second reflective component 32062 can be perpendicular to each other, and the first reflective component 32061 and the second optical axis are sandwiched by 45 degrees. horn. The first reflective component 32061 reflects the light from the second lens module 3202 or the first lens module 3204 to the second reflective component 32062, and the second reflective component 32062 further reflects the light to the image sensor 3205.

在圖示的實施例中,第一反射部件32061和第二反射部件 32062可以一體設置,兩者一起運動。該鏡頭裝置3200還包括驅動第一光路轉折模組3206在第一方向X上移動的第一方向驅動單元(未圖示)、以及驅動第一光路轉折模組3206在第三方向Z上移動的第三方向驅動單元(未圖示),該第三方向Z垂直於第一方向X和第二方向Y。當第一光路轉折模組3206在第一方向X上移動時,該鏡頭裝置3200的光程會發生變化,從而實現自動對焦;當第一光路轉折模組3206在第三方向Z上移動時,該鏡頭裝置3200在影像感測器3205上的成像位置會發生變化,從而實現防振,同時光程也會發生變化。在本發明的另一種實施方式中,該鏡頭裝置3200可以僅包括驅動第一光路轉折模組3206在第一方向X上移動的第一方向驅動單元、或者僅包括驅動第一光路轉折模組3206在第三方向Z上移動的第三方向驅動單元。 In the illustrated embodiment, the first reflective component 32061 and the second reflective component 32062 can be set up in one piece, and the two move together. The lens device 3200 also includes a first direction driving unit (not shown) that drives the first optical path turning module 3206 to move in the first direction X, and a first direction driving unit (not shown) that drives the first optical path turning module 3206 to move in the third direction Z. A third direction driving unit (not shown), the third direction Z is perpendicular to the first direction X and the second direction Y. When the first optical path turning module 3206 moves in the first direction X, the optical path of the lens device 3200 will change, thereby achieving automatic focusing; when the first optical path turning module 3206 moves in the third direction Z, The imaging position of the lens device 3200 on the image sensor 3205 will change to achieve anti-vibration, and the optical path will also change. In another embodiment of the present invention, the lens device 3200 may only include a first direction driving unit that drives the first optical path turning module 3206 to move in the first direction X, or may only include driving the first optical path turning module 3206 A third direction drive unit that moves in the third direction Z.

在本發明的另一種實施方式中,第一反射部件32061和第二反射部件32062彼此獨立,該鏡頭裝置3200還包括驅動第一反射部件32061在第三方向Z上移動的第一反射面驅動單元(未圖示)、以及驅動第二反射部件32062在第三方向Z上移動的第二反射面驅動單元(未圖示),該第三方向Z垂直於第一方向X和第二方向Y。當第一反射部件32061和第二反射部件32062在第三方向Z上移動時,根據兩者的移動的距離,可以實現自動對焦、或者防振、或者同時實現自動對焦和防振。 In another embodiment of the present invention, the first reflective component 32061 and the second reflective component 32062 are independent of each other, and the lens device 3200 further includes a first reflective surface driving unit that drives the first reflective component 32061 to move in the third direction Z. (not shown), and a second reflective surface driving unit (not shown) that drives the second reflective component 32062 to move in the third direction Z, which is perpendicular to the first direction X and the second direction Y. When the first reflective component 32061 and the second reflective component 32062 move in the third direction Z, depending on the distance of their movement, autofocus, anti-vibration, or both autofocus and anti-vibration can be achieved.

圖18是本發明中鏡頭裝置3200的結構示意圖,其中第二光路轉折模組3203處於第二位置;圖19是圖18的俯視圖;圖20是圖18的側視圖。結合圖15-圖20,第二光路轉折模組3203處於第一位置時,光線從第二方向Y進入第三光路轉折模組3201,並被反射到第二透鏡模組3202。由於第二光路轉折模組3203處於第一位置,從第二透鏡模組3202出射的光線被阻斷。光線從第二方向Y進入第二光路轉折模組3203,並被反射到第一透鏡模組 3204,之後從第一透鏡模組3204出射,並經第一光路轉折模組3206反射到影像感測器成像。此時鏡頭裝置3200的倍率由第一透鏡模組3204決定。 Figure 18 is a schematic structural diagram of the lens device 3200 of the present invention, in which the second optical path turning module 3203 is in the second position; Figure 19 is a top view of Figure 18; Figure 20 is a side view of Figure 18. 15-20, when the second optical path turning module 3203 is in the first position, light enters the third optical path turning module 3201 from the second direction Y and is reflected to the second lens module 3202. Since the second optical path turning module 3203 is in the first position, the light emitted from the second lens module 3202 is blocked. The light enters the second optical path turning module 3203 from the second direction Y and is reflected to the first lens module 3204, then emerges from the first lens module 3204, and is reflected by the first optical path turning module 3206 to the image sensor for imaging. At this time, the magnification of the lens device 3200 is determined by the first lens module 3204.

第二光路轉折模組3203處於第二位置時,光線從第二方向Y進入第三光路轉折模組3201,並被反射到第二透鏡模組3202,由於第二光路轉折模組3203處於第二位置,從第二透鏡模組3202出射的光線通過第一透鏡模組3204,之後從第一透鏡模組3204出射,並經第一光路轉折模組3206反射到影像感測器成像。此時鏡頭裝置3200的倍率由第二透鏡模組3202和第一透鏡模組3204決定。 When the second optical path turning module 3203 is in the second position, light enters the third optical path turning module 3201 from the second direction Y and is reflected to the second lens module 3202. Since the second optical path turning module 3203 is in the second position, position, the light emitted from the second lens module 3202 passes through the first lens module 3204, and then emerges from the first lens module 3204, and is reflected by the first optical path turning module 3206 to the image sensor for imaging. At this time, the magnification of the lens device 3200 is determined by the second lens module 3202 and the first lens module 3204.

這樣,當第二光路轉折模組3203在第一位置和第二位置之間切換時,就實現了不同倍率的切換。 In this way, when the second optical path turning module 3203 switches between the first position and the second position, switching of different magnifications is achieved.

第二光路轉折模組3203在第一位置和第二位置之間可以通過以下結構來實現:在第二光路轉折模組3203和基座3207的一者上設置有滑動機構、另一者上設置有導向機構,該滑動機構可以是例如滑塊或者滾珠,該導向機構可以是例如與之配合的滑槽。鏡頭裝置3200還包括驅動第二光路轉折模組3203沿著第三方向Z平移偏離到第二位置或回到第一位置的第二光路轉折模組驅動單元。該第二光路轉折模組驅動單元可以包括設置在第二光路轉折模組3203和基座3207的一者上的線圈、以及設置在另一者上的磁鐵。 The second optical path turning module 3203 can be implemented between the first position and the second position through the following structure: a sliding mechanism is provided on one of the second optical path turning module 3203 and the base 3207, and a sliding mechanism is provided on the other. There is a guide mechanism. The sliding mechanism can be, for example, a slide block or a ball. The guide mechanism can be, for example, a slide groove that cooperates with it. The lens device 3200 further includes a second optical path turning module driving unit that drives the second optical path turning module 3203 to translate along the third direction Z to deviate to the second position or return to the first position. The second optical path turning module driving unit may include a coil provided on one of the second light path turning module 3203 and the base 3207, and a magnet provided on the other.

圖21是根據本發明第七實施例的鏡頭裝置3200的結構示意圖,其中第二光路轉折模組3203處於第二位置;圖22是圖21的俯視圖;圖23是圖21的側視圖。在本發明的第七實施例中,與第六實施例相同或類似的部分不再贅述。與第六實施例不同的,在第七實施例中,第二光路轉折模組3203不是沿著第三方向Z偏離到第二位置或回到第一位置,而是通過旋轉的方式偏離到第二位置或回到第一位置。 Figure 21 is a schematic structural diagram of a lens device 3200 according to the seventh embodiment of the present invention, in which the second optical path turning module 3203 is in the second position; Figure 22 is a top view of Figure 21; Figure 23 is a side view of Figure 21. In the seventh embodiment of the present invention, the same or similar parts as those in the sixth embodiment will not be described again. Different from the sixth embodiment, in the seventh embodiment, the second optical path turning module 3203 does not deviate to the second position or return to the first position along the third direction Z, but deviates to the third position by rotation. Second position or return to first position.

具體而言,在該實施例中,第二光路轉折模組3203優選為反射鏡,可以繞其上端的旋轉軸旋轉,旋轉軸平行於第三方向Z,從而在第一位置和第二位置之間切換,在第二位置,第二光路轉折模組3203平行於第一光軸,並位於第一光軸上方。該鏡頭裝置3200還包括驅動第二光路轉折模組3203繞軸旋轉從而偏離到所述第二位置或回到所述第一位置的第二光路轉折模組驅動單元。該第七實施例可以達成與第六實施例相同的效果。 Specifically, in this embodiment, the second optical path turning module 3203 is preferably a reflector, which can rotate around the rotation axis at its upper end, and the rotation axis is parallel to the third direction Z, so that between the first position and the second position In the second position, the second optical path turning module 3203 is parallel to the first optical axis and located above the first optical axis. The lens device 3200 further includes a second optical path turning module driving unit that drives the second optical path turning module 3203 to rotate around an axis to deviate to the second position or return to the first position. The seventh embodiment can achieve the same effect as the sixth embodiment.

由以上敘述可知,相比於現有技術,本發明的鏡頭裝置可以實現多種倍率的切換,且達成高倍率光學變焦並兼顧鏡頭模組小型化。 It can be seen from the above description that compared with the prior art, the lens device of the present invention can realize switching of multiple magnifications, achieve high-magnification optical zoom, and take into account the miniaturization of the lens module.

圖24是根據本發明第八實施例的鏡頭裝置4200的部分元件的結構示意圖。如圖24所示,根據本發明的第八實施例,該鏡頭裝置4200包括:第一透鏡模組4201,具有沿著第一方向X的光軸;用於接收通過第一透鏡模組4201的光線並加以反射的第一反射部件4202;用於反射來自第一反射部件4202的光線的第二反射部件4203,沿著第三方向Z與第一反射部件4202相對設置;影像感測器4204;以及第三反射部件4205,該第三反射部件4205將來自第二反射部件4203的光線反射到影像感測器4204。該第一反射部件4202、第二反射部件4203、第三反射部件4205設置在第一透鏡模組4201與影像感測器4204之間,並且組合成第一光路轉折模組。 FIG. 24 is a schematic structural diagram of some components of a lens device 4200 according to the eighth embodiment of the present invention. As shown in Figure 24, according to the eighth embodiment of the present invention, the lens device 4200 includes: a first lens module 4201 having an optical axis along the first direction The first reflective component 4202 for reflecting light; the second reflective component 4203 for reflecting the light from the first reflective component 4202, which is arranged opposite to the first reflective component 4202 along the third direction Z; the image sensor 4204; and a third reflective component 4205 that reflects the light from the second reflective component 4203 to the image sensor 4204. The first reflective component 4202, the second reflective component 4203, and the third reflective component 4205 are disposed between the first lens module 4201 and the image sensor 4204, and are combined to form a first optical path turning module.

其中第一反射部件4202具有第一反射面42021,第二反射部件4203具有第二反射面42031。第一反射面42021與第一方向X呈45度角,且第一反射面42021與第二反射面42031相互垂直,兩者在第三方向Z上相對設置。第三反射部件4205在第一方向X上與第二反射部件4203相對設置,第三反射部件4205具有第三反射面42051,第三反射面42051與第二反射面42031在第一方向X上相對設置,優選地,第三反射面42051與第二反射面42031平行,但本發明不限於此。本領域的技術人員可理解,第三反射部件4205 並不是必要的元件,影像感測器4204可以與第二反射部件4203相對設置,經第二反射部件4203反射的光線可不經第三反射部件4205直接到達影像感測器4204。在本發明中,“相對設置”並不意味著兩者相互平行正對,而是意味著經其中一者的光線可以到達另一者。 The first reflective component 4202 has a first reflective surface 42021, and the second reflective component 4203 has a second reflective surface 42031. The first reflective surface 42021 forms an angle of 45 degrees with the first direction X, and the first reflective surface 42021 and the second reflective surface 42031 are perpendicular to each other, and they are arranged oppositely in the third direction Z. The third reflective component 4205 is arranged opposite to the second reflective component 4203 in the first direction It is provided that, preferably, the third reflective surface 42051 is parallel to the second reflective surface 42031, but the present invention is not limited thereto. Those skilled in the art can understand that the third reflective component 4205 It is not a necessary component. The image sensor 4204 can be disposed opposite the second reflective component 4203, and the light reflected by the second reflective component 4203 can directly reach the image sensor 4204 without going through the third reflective component 4205. In the present invention, "relatively arranged" does not mean that the two are parallel to each other, but means that the light passing through one of them can reach the other.

在本發明中,第一反射部件4202、第二反射部件4203、第三反射部件4205可以是反射稜鏡或者反射鏡等。 In the present invention, the first reflective component 4202, the second reflective component 4203, and the third reflective component 4205 may be reflective mirrors or reflective mirrors.

圖25是根據本發明第八實施例的鏡頭裝置4200的光路示意圖。如圖25所示,光線沿著第一方向X進入第一透鏡模組4201,之後從第一透鏡模組4201出射,並到達第一反射面42021,經第一反射面42021反射後,到達第二反射面42031,之後經第二反射面42031反射並到達第三反射面42051,最後經第三反射面42051反射後到達影像感測器4204,形成影像。 FIG. 25 is a schematic diagram of an optical path of a lens device 4200 according to the eighth embodiment of the present invention. As shown in Figure 25, the light enters the first lens module 4201 along the first direction The second reflective surface 42031 is then reflected by the second reflective surface 42031 and reaches the third reflective surface 42051, and finally is reflected by the third reflective surface 42051 before reaching the image sensor 4204 to form an image.

圖26是根據本發明第八實施例、鏡頭裝置4200的第一反射部件4202和第二反射部件4203在第三方向Z上反向運動的光路示意圖。如圖26所示,其中實線所示為第一反射部件4202和第二反射部件4203的初始位置,虛線所示為第一反射部件4202和第二反射部件4203移動後的位置。第一反射部件4202在第三方向Z上移動距離L1,第二反射部件4203在第三方向Z上反向移動距離L2,使得兩者相互遠離,此時第一透鏡模組4201與影像感測器4204之間的光程會增加△S=L1+L2,從而實現鏡頭裝置200的自動對焦。其中L1、L2為絕對值。 FIG. 26 is a schematic optical path diagram of the first reflective component 4202 and the second reflective component 4203 of the lens device 4200 moving in reverse direction in the third direction Z according to the eighth embodiment of the present invention. As shown in Figure 26, the solid lines show the initial positions of the first reflective component 4202 and the second reflective component 4203, and the dotted lines show the positions after the first reflective component 4202 and the second reflective component 4203 move. The first reflective component 4202 moves a distance L1 in the third direction Z, and the second reflective component 4203 moves reversely a distance L2 in the third direction Z, so that the two move away from each other. At this time, the first lens module 4201 and the image sensor The optical path between the sensors 4204 will increase △S=L1+L2, thereby realizing the automatic focusing of the lens device 200. Among them, L1 and L2 are absolute values.

類似地,第一反射部件4202在第三方向Z上移動距離L1,第二反射部件4203在第三方向Z上反向移動距離L2,使得兩者相互靠近,此時第一透鏡模組4201與影像感測器4204之間的光程會減少△S=L1+L2,從而實現鏡頭裝置4200的自動對焦。 Similarly, the first reflective component 4202 moves a distance L1 in the third direction Z, and the second reflective component 4203 moves reversely a distance L2 in the third direction Z, so that the two are close to each other. At this time, the first lens module 4201 and The optical path between the image sensors 4204 will be reduced by ΔS=L1+L2, thereby achieving automatic focusing of the lens device 4200.

本領域的技術人員可理解,當L1與L2的數值相等時,光線 被第二反射部件4203反射後,仍然會沿著與移動前重合的路徑前進,此時光線在影像感測器4204上的成像位置不會發生變化,鏡頭裝置4200僅僅實現自動對焦。而當L1和L2的數值不等時,光線被第二反射部件4203反射後,會偏離移動前的路徑,此時光線在影像感測器4204上的成像位置會發生偏離,相對於移動前偏離的距離為S=|L1-L2|。 Those skilled in the art can understand that when the values of L1 and L2 are equal, the light After being reflected by the second reflective component 4203, it will still move along the path that coincides with the path before movement. At this time, the imaging position of the light on the image sensor 4204 will not change, and the lens device 4200 only implements autofocus. When the values of L1 and L2 are not equal, the light will deviate from the path before movement after being reflected by the second reflective component 4203. At this time, the imaging position of the light on the image sensor 4204 will deviate from the path before movement. The distance is S=|L1-L2|.

具體而言,在圖示的實施例中,在第一反射部件4202和第二反射部件4203在第三方向Z上反向移動、使得兩者相互遠離的情況下,當第一反射部件4202在第三方向Z上移動的距離L1大於第二反射部件4203在第三方向Z上反向移動的距離L2時,光線在影像感測器4204上的成像位置在第一方向X的正向上發生偏離S=|L1-L2|;第一反射部件4202在第三方向Z上移動的距離L1小於第二反射部件4203在第三方向Z上反向移動的距離L2時,光線在影像感測器4204上的成像位置在第一方向X的負向上發生偏離S=|L1-L2|。在第一反射部件4202和第二反射部件4203在第三方向Z上反向移動、使得兩者相互靠近的情況下,當第一反射部件4202在第三方向Z上移動的距離L1大於第二反射部件4203在第三方向Z上反向移動的距離L2時,光線在影像感測器4204上的成像位置在第一方向X的負向上發生偏離S=|L1-L2|;第一反射部件4202在第三方向Z上移動的距離L1小於第二反射部件4203在第三方向Z上反向移動的距離L2時,光線S=|L1-L2|在第一方向X的正向上發生偏離S=|L1-L2|。 Specifically, in the illustrated embodiment, when the first reflective component 4202 and the second reflective component 4203 move in opposite directions in the third direction Z so that they are away from each other, when the first reflective component 4202 moves in opposite directions, When the distance L1 moved in the third direction Z is greater than the distance L2 moved in the reverse direction by the second reflective component 4203 in the third direction Z, the imaging position of the light on the image sensor 4204 deviates in the positive direction of the first direction X. S=|L1-L2|; When the distance L1 that the first reflective component 4202 moves in the third direction Z is less than the distance L2 that the second reflective component 4203 moves reversely in the third direction Z, the light rays pass through the image sensor 4204 The imaging position on is deviated in the negative direction of the first direction X by S=|L1-L2|. When the first reflective component 4202 and the second reflective component 4203 move in opposite directions in the third direction Z so that they are close to each other, when the distance L1 moved by the first reflective component 4202 in the third direction Z is greater than the second When the reflective component 4203 moves reversely by the distance L2 in the third direction Z, the imaging position of the light on the image sensor 4204 deviates in the negative direction of the first direction X by S=|L1-L2|; the first reflective component When the distance L1 that 4202 moves in the third direction Z is less than the distance L2 that the second reflective component 4203 moves reversely in the third direction Z, the light S=|L1-L2| deviates S in the positive direction of the first direction X =|L1-L2|.

如此,鏡頭裝置4200實現自動對焦的同時,還實現了防振動補償。 In this way, the lens device 4200 achieves automatic focusing and anti-vibration compensation at the same time.

圖27是根據本發明第八實施例、鏡頭裝置4200的第一反射部件4202和第二反射部件4203在第三方向Z上同向運動時的光路示意圖。如圖27所示,其中實線所示為第一反射部件4202和第二反射部件4203的初始位 置,虛線所示為第一反射部件4202和第二反射部件4203移動後的位置。第一反射部件4202在第三方向Z上移動距離L1,第二反射部件4203在第三方向Z上同向移動距離L2,此時光線在影像感測器4204上的成像位置發生偏離,相對於移動前偏離的距離為S=L1+L2,從而實現了防振動補償。其中L1、L2為絕對值。 FIG. 27 is a schematic diagram of the optical path when the first reflective component 4202 and the second reflective component 4203 of the lens device 4200 move in the same direction in the third direction Z according to the eighth embodiment of the present invention. As shown in Figure 27, the solid line shows the initial position of the first reflective component 4202 and the second reflective component 4203. position, and the dotted lines show the positions of the first reflective component 4202 and the second reflective component 4203 after movement. The first reflective component 4202 moves a distance L1 in the third direction Z, and the second reflective component 4203 moves a distance L2 in the third direction Z in the same direction. At this time, the imaging position of the light on the image sensor 4204 deviates, relative to The deviation distance before movement is S=L1+L2, thus achieving anti-vibration compensation. Among them, L1 and L2 are absolute values.

在圖27所示的實施例中,第一反射部件4202和第二反射部件4203均沿著第三方向Z正向移動,光線在影像感測器4204上的成像位置的偏離方向為第一方向X的正向;當第一反射部件4202和第二反射部件4203均沿著第三方向Z負向移動,則光線在影像感測器4204上的成像位置的偏離方向為第一方向X的負向。 In the embodiment shown in FIG. 27 , both the first reflective component 4202 and the second reflective component 4203 move forward along the third direction Z, and the deviation direction of the imaging position of the light on the image sensor 4204 is the first direction. The positive direction of Towards.

本領域的技術人員可理解,當L1與L2的數值相等時,光線在影像感測器4204上的成像位置發生變化,偏離的距離為S=L1+L2=2L1=2L2。此時第一透鏡模組4201與影像感測器4204之間的光程保持不變。當L1與L2的數值不等時,光線在影像感測器4204上的成像位置發生變化,偏離的距離為S=L1+L2,此時第一透鏡模組4201與影像感測器4204之間的光程也會發生變化,變化的距離為△S=|L1-L2|。 Those skilled in the art can understand that when the values of L1 and L2 are equal, the imaging position of the light on the image sensor 4204 changes, and the deviation distance is S=L1+L2=2L1=2L2. At this time, the optical path between the first lens module 4201 and the image sensor 4204 remains unchanged. When the values of L1 and L2 are different, the imaging position of the light on the image sensor 4204 changes, and the deviation distance is S=L1+L2. At this time, the distance between the first lens module 4201 and the image sensor 4204 The optical path will also change, and the changing distance is △S=|L1-L2|.

具體而言,在第一反射部件4202和第二反射部件4203沿著第三方向Z分別正向移動距離L1、L2的情況下,當L1>L2時,光程會增加,增加的距離為△S=|L1-L2|;當L1<L2時,光程會減小,減小的距離為△S=|L1-L2|。在第一反射部件4202和第二反射部件4203沿著第三方向Z分別負向移動距離L1、L2的情況下,當L1>L2時,光程會減小,減小的距離為△S=|L1-L2|;當L1<L2時,光程會增加,增加的距離為△S=|L1-L2|。 Specifically, when the first reflective component 4202 and the second reflective component 4203 move forward by distances L1 and L2 respectively along the third direction Z, when L1>L2, the optical path will increase, and the increased distance is Δ S=|L1-L2|; when L1<L2, the optical path will be reduced, and the reduced distance is △S=|L1-L2|. When the first reflective component 4202 and the second reflective component 4203 move in the negative direction along the third direction Z by distances L1 and L2 respectively, when L1>L2, the optical path will be reduced, and the reduced distance is △S= |L1-L2|; When L1<L2, the optical path will increase, and the increased distance is △S=|L1-L2|.

如此,鏡頭裝置4200在實現防振動補償的同時,還實現了自動對焦。 In this way, the lens device 4200 not only achieves anti-vibration compensation, but also achieves automatic focusing.

圖28是根據本發明第八實施例的鏡頭裝置4200的部分元件的另一結構示意圖;圖29是圖3中鏡頭裝置4200的部分元件的俯視圖;圖30是圖26中鏡頭裝置4200的部分元件的分解示意圖;圖31是圖26中鏡頭裝置4200的部分元件的另一分解示意圖。如圖28-31所示,鏡頭裝置4200還包括:基座4206,所述第一透鏡模組4201和第三反射部件4205均固定在該基座4206上;用於承載第一反射部件4202的第一反射部件載體4207,可沿著第三方向Z移動地設置在基座4206上;用於承載第二反射部件4203的第二反射部件載體4208,可沿著第三方向Z移動地設置在基座4206上;以及外蓋4209,連接在基座4206上從而形成容納空間,將上述其它元件容納在其中;在外蓋4209上,設置有供光線進入第一透鏡模組4201的孔42091。 Figure 28 is another structural schematic diagram of some components of the lens device 4200 according to the eighth embodiment of the present invention; Figure 29 is a top view of some components of the lens device 4200 in Figure 3; Figure 30 is a partial component of the lens device 4200 in Figure 26 31 is another exploded schematic view of some components of the lens device 4200 in FIG. 26 . As shown in Figures 28-31, the lens device 4200 also includes: a base 4206, on which the first lens module 4201 and the third reflective component 4205 are fixed; and a base for carrying the first reflective component 4202. The first reflective component carrier 4207 is disposed on the base 4206 movably along the third direction Z; the second reflective component carrier 4208 for carrying the second reflective component 4203 is disposed movably along the third direction Z. on the base 4206; and the outer cover 4209, which is connected to the base 4206 to form a receiving space to accommodate the other components mentioned above; on the outer cover 4209, a hole 42091 is provided for light to enter the first lens module 4201.

為了實現第一反射部件4202和第二反射部件4203在第三方向Z上的運動,在基座4206上設置有沿著第三方向Z延伸的第一反射部件載體滑動槽4211和第二反射部件載體滑動槽4212。為了保持運動時的穩定性,第一反射部件載體滑動槽4211和第二反射部件載體滑動槽4212可以均為多個,且兩者可以在鄰接處共用一條較長的滑動槽。在第一反射部件載體4207的底部,設置有與第一反射部件載體滑動槽4211配合的第一運動件4213,在第二反射部件載體4208的底部,設置有與第二反射部件載體滑動槽4212配合的第二運動件4214。 In order to realize the movement of the first reflective component 4202 and the second reflective component 4203 in the third direction Z, the first reflective component carrier sliding groove 4211 and the second reflective component extending along the third direction Z are provided on the base 4206 Carrier sliding groove 4212. In order to maintain stability during movement, there may be multiple first reflective component carrier sliding grooves 4211 and second reflective component carrier sliding grooves 4212, and they may share a longer sliding groove at the adjacent location. At the bottom of the first reflective component carrier 4207, a first moving part 4213 is provided that cooperates with the first reflective component carrier sliding groove 4211. At the bottom of the second reflective component carrier 4208, a first moving component 4213 is provided with a second reflective component carrier sliding groove 4212. The mating second moving part 4214.

該第一運動件4213可以包括設置在第一反射部件載體4207底部的第一容納槽、以及設置在第一容納槽內的第一滾珠,該第一滾珠可以在第一容納槽和第一反射部件載體滑動槽4211內滾動,從而帶動第一反射部件載體4207沿著第三方向Z運動。該第二運動件4214可以包括設置在第二反射部件載體4208底部的第二容納槽、以及設置在第二容納槽內的第二滾珠,該第二滾珠可以在第二容納槽和第二反射部件載體滑動槽4212內滾 動,從而帶動第二反射部件載體4208沿著第三方向Z運動。但本發明不限於此,第一運動件4213和第二運動件4214也可以採取其他的結構,例如滑塊等。 The first moving part 4213 may include a first receiving groove disposed at the bottom of the first reflective component carrier 4207 and a first ball disposed in the first receiving groove. The first ball may be between the first receiving groove and the first reflecting member. The component carrier rolls in the sliding groove 4211, thereby driving the first reflective component carrier 4207 to move along the third direction Z. The second moving part 4214 may include a second receiving groove disposed at the bottom of the second reflective component carrier 4208 and a second ball disposed in the second receiving groove. The second ball may be between the second receiving groove and the second reflective component. Component carrier sliding groove 4212 rolls inside move, thereby driving the second reflective component carrier 4208 to move along the third direction Z. However, the present invention is not limited thereto. The first moving part 4213 and the second moving part 4214 may also adopt other structures, such as sliders, etc.

為了進一步加強運動時的穩定性,在外蓋4209內,也設置有沿著第三方向Z延伸的第一反射部件載體滑動槽4211和第二反射部件載體滑動槽4212。在第一反射件載體4207的頂部,設置有與外蓋4209的第一反射部件載體滑動槽4211配合的第一運動件4213,在第二反射部件載體4208的頂部,設置有與外蓋4209的第二反射部件載體滑動槽4212配合的第二運動件4214。第一運動件4213和第二運動件4214的結構均與前述類似,不再贅述。 In order to further enhance the stability during movement, the outer cover 4209 is also provided with a first reflective component carrier sliding groove 4211 and a second reflective component carrier sliding groove 4212 extending along the third direction Z. On the top of the first reflective component carrier 4207, there is provided a first moving component 4213 that cooperates with the first reflective component carrier sliding groove 4211 of the outer cover 4209. On the top of the second reflective component carrier 4208, there is a first moving component 4213 that cooperates with the first reflective component carrier sliding groove 4211 of the outer cover 4209. The second reflective component carrier sliding groove 4212 cooperates with the second moving component 4214. The structures of the first moving part 4213 and the second moving part 4214 are similar to those described above and will not be described again.

在外蓋4209與第一反射部件載體4207之間設置有第一驅動元件4215,該第一驅動組件4215包括設置在外蓋4209與第一反射部件載體4207其中一者上的磁鐵、以及設置在另一者上的線圈,通電後,在電磁力的作用下,可驅動第一反射部件載體4207沿著第三方向Z運動。在外蓋4209與第二反射部件載體4208之間設置有第二驅動元件4216,該第二驅動元件4216包括設置在外蓋4209與第二反射部件載體4208其中一者上的磁鐵、以及設置在另一者上的線圈,通電後,在電磁力的作用下,可驅動第二反射部件載體4208沿著第三方向Z運動。 A first driving element 4215 is disposed between the outer cover 4209 and the first reflective component carrier 4207. The first driving component 4215 includes a magnet disposed on one of the outer cover 4209 and the first reflective component carrier 4207, and a magnet disposed on the other. After the coil on the carrier is energized, the first reflective component carrier 4207 can be driven to move along the third direction Z under the action of electromagnetic force. A second driving element 4216 is disposed between the outer cover 4209 and the second reflective component carrier 4208. The second driving element 4216 includes a magnet disposed on one of the outer cover 4209 and the second reflective component carrier 4208, and a magnet disposed on the other. After the coil on the carrier is energized, the second reflective component carrier 4208 can be driven to move along the third direction Z under the action of electromagnetic force.

圖32是根據本發明的第九實施例、鏡頭裝置4300的光路示意圖。如圖32所示,該鏡頭裝置4300包括:第一透鏡模組4301,具有沿著第一方向X的光軸;第一反射部件4302;用於反射來自第一反射部件4302的光線的第二反射部件4303,沿著第一方向X與第一反射部件4302相對設置;影像感測器4304;以及第三反射部件4305,該第三反射部件4305將來自第一透鏡模組4301的光線反射到第一反射部件4302、並將來自第二反射部件 4303的光線反射到影像感測器4304。該第一反射部件4302、第二反射部件4303、第三反射部件4305組合成第一光路轉折模組。 FIG. 32 is a schematic diagram of an optical path of a lens device 4300 according to the ninth embodiment of the present invention. As shown in Figure 32, the lens device 4300 includes: a first lens module 4301 having an optical axis along the first direction X; a first reflective component 4302; and a second lens module for reflecting light from the first reflective component 4302. The reflective component 4303 is arranged opposite the first reflective component 4302 along the first direction X; the image sensor 4304; and the third reflective component 4305, which reflects the light from the first lens module 4301 to The first reflective component 4302 and will come from the second reflective component The light from 4303 is reflected to the image sensor 4304. The first reflective component 4302, the second reflective component 4303, and the third reflective component 4305 are combined to form a first optical path turning module.

其中第一反射部件4302具有第一反射面43021,第二反射部件4303具有第二反射面43031,第一反射面43021和第二反射面43031在第一方向X上相對設置。第一反射面43021與第一方向X呈45度角,且第一反射面43021與第二反射面43031相互垂直,兩者在第一方向X上相對設置。第三反射部件4305具有第三反射面43051和第四反射面43052,第三反射面43051在第一方向X上與第一透鏡模組4301相對設置、在第三方向Z上與第一反射組面43021相對設置,第四反射面43052在第三方向Z上與第二反射面43031相對設置。 The first reflective component 4302 has a first reflective surface 43021, the second reflective component 4303 has a second reflective surface 43031, and the first reflective surface 43021 and the second reflective surface 43031 are oppositely arranged in the first direction X. The first reflective surface 43021 forms an angle of 45 degrees with the first direction X, and the first reflective surface 43021 and the second reflective surface 43031 are perpendicular to each other, and they are arranged opposite to each other in the first direction X. The third reflective component 4305 has a third reflective surface 43051 and a fourth reflective surface 43052. The third reflective surface 43051 is arranged opposite to the first lens module 4301 in the first direction X and is opposite to the first reflective group in the third direction Z. The fourth reflective surface 43052 is opposite to the second reflective surface 43031 in the third direction Z.

優選地,第三反射面42051與第一反射面43021平行,第四反射面43052與第二反射面43031平行。本領域的技術人員可理解,第四反射面43052並不是必要的,影像感測器4304可以與第二反射部件4303相對設置,經第二反射部件4303反射的光線可不經第四反射面43052直接到達影像感測器4304。在本發明中,“相對設置”並不意味著兩者相互平行正對,而是意味著經其中一者的光線可以到達另一者。 Preferably, the third reflective surface 42051 is parallel to the first reflective surface 43021, and the fourth reflective surface 43052 is parallel to the second reflective surface 43031. Those skilled in the art can understand that the fourth reflective surface 43052 is not necessary, the image sensor 4304 can be disposed opposite the second reflective component 4303, and the light reflected by the second reflective component 4303 can be directed directly without passing through the fourth reflective surface 43052. Arrive at image sensor 4304. In the present invention, "relatively arranged" does not mean that the two are parallel to each other, but means that the light passing through one of them can reach the other.

在本發明中,第一反射部件4302、第二反射部件4303、第三反射部件4305可以是反射稜鏡或者反射鏡等。 In the present invention, the first reflective component 4302, the second reflective component 4303, and the third reflective component 4305 may be reflective mirrors or reflective mirrors.

光線沿著第一方向X進入第一透鏡模組4301,之後從第一透鏡模組4301出射,並到達第三反射面43051,經第三反射面43051反射後,到達第一反射面43021,之後經第一反射面43021反射並到達第二反射面43031,之後經第二反射面43031反射後到達第四反射面43052,最後經第四反射面43052反射到達影像感測器4304,形成影像。 The light enters the first lens module 4301 along the first direction It is reflected by the first reflective surface 43021 and reaches the second reflective surface 43031, then is reflected by the second reflective surface 43031 and reaches the fourth reflective surface 43052, and finally is reflected by the fourth reflective surface 43052 and reaches the image sensor 4304, forming an image.

圖33是根據本發明第九實施例、鏡頭裝置4300的第一反射部 件4302和第二反射部件4303在第一方向上反向運動時的光路示意圖。如圖33所示,其中實線所示為第一反射部件4302和第二反射部件4303的初始位置,虛線所示為第一反射部件4302和第二反射部件4303移動後的位置。第一反射部件4302在第一方向X上移動距離L1,第二反射部件4303在第一方向X上反向移動距離L2,使得兩者相互遠離,此時第一透鏡模組4301與影像感測器4304之間的光程會增加△S=L1+L2,從而實現鏡頭裝置300的自動對焦。其中L1、L2為絕對值。 Figure 33 is a first reflective part of a lens device 4300 according to the ninth embodiment of the present invention. schematic diagram of the optical path when the member 4302 and the second reflective member 4303 move in reverse direction in the first direction. As shown in FIG. 33 , the solid lines show the initial positions of the first reflective component 4302 and the second reflective component 4303 , and the dotted lines show the positions of the first reflective component 4302 and the second reflective component 4303 after movement. The first reflective component 4302 moves a distance L1 in the first direction X, and the second reflective component 4303 moves reversely a distance L2 in the first direction The optical path between the sensors 4304 will increase △S=L1+L2, thereby realizing the automatic focusing of the lens device 300. Among them, L1 and L2 are absolute values.

類似地,第一反射部件4302在第一方向X上移動距離L1,第二反射部件4303在第一方向X上反向移動距離L2,使得兩者相互靠近,此時第一透鏡模組4301與影像感測器4304之間的光程會減少△S=L1+L2,從而實現鏡頭裝置4300的自動對焦。 Similarly, the first reflective component 4302 moves a distance L1 in the first direction X, and the second reflective component 4303 moves reversely a distance L2 in the first direction The optical path between the image sensors 4304 will be reduced by ΔS=L1+L2, thereby achieving automatic focusing of the lens device 4300.

本領域的技術人員可理解,當L1與L2的數值相等時,光線被第二反射部件4303反射後,仍然會沿著與移動前重合的路徑前進,此時光線在影像感測器4304上的成像位置不會發生變化,鏡頭裝置4300僅僅實現自動對焦。而當L1和L2的數值不等時,光線被第二反射部件4303反射後,會偏離移動前的路徑,此時光線在影像感測器4304上的成像位置會發生偏離,相對於移動前偏離的距離為S=|L1-L2|。 Those skilled in the art can understand that when the values of L1 and L2 are equal, after the light is reflected by the second reflective component 4303, it will still proceed along the path that coincides with the path before moving. At this time, the light on the image sensor 4304 The imaging position will not change, and the lens device 4300 only implements autofocus. When the values of L1 and L2 are different, the light will deviate from the path before movement after being reflected by the second reflective component 4303. At this time, the imaging position of the light on the image sensor 4304 will deviate from the path before movement. The distance is S=|L1-L2|.

具體而言,在圖示的實施例中,在第一反射部件4302和第二反射部件4303在第一方向X上反向移動、使得兩者相互遠離的情況下,當第一反射部件4302在第一方向X上移動的距離L1大於第二反射部件4303在第一方向X上反向移動的距離L2時,光線在影像感測器4304上的成像位置在第三方向Z的正向上發生偏離S=|L1-L2|;第一反射部件4302在第一方向X上移動的距離L1小於第二反射部件4303在第一方向X上反向移動的距離L2時,光線在影像感測器4204上的成像位置在第三方向Z的負向上發生偏離 S=|L1-L2|。在第一反射部件4302和第二反射部件4303在第一方向X上反向移動、使得兩者相互靠近的情況下,當第一反射部件4302在第一方向X上移動的距離L1大於第二反射部件4303在第一方向X上反向移動的距離L2時,光線在影像感測器4204上的成像位置在第三方向Z的負向上發生偏離S=|L1-L2|;第一反射部件4302在第一方向X上移動的距離L1小於第二反射部件4303在第一方向X上反向移動的距離L2時,光線S=|L1-L2|在第三方向Z的正向上發生偏離S=|L1-L2|。 Specifically, in the illustrated embodiment, when the first reflective component 4302 and the second reflective component 4303 move in opposite directions in the first direction When the distance L1 moved in the first direction X is greater than the distance L2 moved in the opposite direction by the second reflective component 4303 in the first direction S=|L1-L2|; When the distance L1 that the first reflective component 4302 moves in the first direction X is less than the distance L2 that the second reflective component 4303 moves reversely in the first direction The imaging position on is deviated in the negative direction of the third direction Z S=|L1-L2|. When the first reflective component 4302 and the second reflective component 4303 move in opposite directions in the first direction X so that they are close to each other, when the first reflective component 4302 moves the distance L1 in the first direction When the reflective component 4303 moves reversely by the distance L2 in the first direction X, the imaging position of the light on the image sensor 4204 deviates in the negative direction of the third direction Z by S=|L1-L2|; When the distance L1 that 4302 moves in the first direction X is less than the distance L2 that the second reflective component 4303 moves reversely in the first direction =|L1-L2|.

如此,鏡頭裝置4300實現自動對焦的同時,還實現了防振動補償。 In this way, the lens device 4300 not only achieves automatic focusing, but also achieves anti-vibration compensation.

圖34是根據本發明第九實施例、鏡頭裝置4300的第一反射部件4302和第二反射部件4303在第一方向X上同向運動時的光路示意圖。如圖34所示,其中實線所示為第一反射部件4302和第二反射部件4303的初始位置,虛線所示為第一反射部件4302和第二反射部件4303移動後的位置。第一反射部件4302在第一方向X上移動距離L1,第二反射部件4303在第一方向X上同向移動距離L2,此時光線在影像感測器4304上的成像位置發生偏離,相對於移動前偏離的距離為S=L1+L2,從而實現了防振動補償。其中L1、L2為絕對值。 34 is a schematic diagram of the optical path when the first reflective component 4302 and the second reflective component 4303 of the lens device 4300 move in the same direction in the first direction X according to the ninth embodiment of the present invention. As shown in FIG. 34 , the solid lines show the initial positions of the first reflective component 4302 and the second reflective component 4303 , and the dotted lines show the positions after movement of the first reflective component 4302 and the second reflective component 4303 . The first reflective component 4302 moves a distance L1 in the first direction X, and the second reflective component 4303 moves a distance L2 in the first direction The deviation distance before movement is S=L1+L2, thus achieving anti-vibration compensation. Among them, L1 and L2 are absolute values.

在圖34所示的實施例中,第一反射部件4302和第二反射部件4303均沿著第一方向X負向移動,光線在影像感測器4304上的成像位置的偏離方向為第三方向Z的正向;當第一反射部件4302和第二反射部件4303均沿著第一方向X正向移動,則光線在影像感測器4304上的成像位置的偏離方向為第三方向Z的負向。 In the embodiment shown in FIG. 34 , both the first reflective component 4302 and the second reflective component 4303 move negatively along the first direction X, and the deviation direction of the imaging position of the light on the image sensor 4304 is the third direction. The positive direction of Z; when the first reflective component 4302 and the second reflective component 4303 both move in the positive direction along the first direction X, the deviation direction of the imaging position of the light on the image sensor 4304 is the negative direction of the third direction Z. Towards.

本領域的技術人員可理解,當L1與L2的數值相等時,光線在影像感測器4304上的成像位置發生變化,偏離的距離為S= L1+L2=2L1=2L2。此時第一透鏡模組4301與影像感測器4304之間的光程保持不變。當L1與L2的數值不等時,光線在影像感測器4304上的成像位置發生變化,偏離的距離為S=L1+L2,此時第一透鏡模組4301與影像感測器4304之間的光程也會發生變化,變化的距離為△S=|L1-L2|。 Those skilled in the art can understand that when the values of L1 and L2 are equal, the imaging position of the light on the image sensor 4304 changes, and the deviation distance is S= L1+L2=2L1=2L2. At this time, the optical path between the first lens module 4301 and the image sensor 4304 remains unchanged. When the values of L1 and L2 are different, the imaging position of the light on the image sensor 4304 changes, and the deviation distance is S=L1+L2. At this time, the distance between the first lens module 4301 and the image sensor 4304 The optical path will also change, and the changing distance is △S=|L1-L2|.

具體而言,在第一反射部件4302和第二反射部件4303沿著第一方向X分別正向移動距離L1、L2的情況下,當L1>L2時,光程會增加,增加的距離為△S=|L1-L2|;當L1<L2時,光程會減小,減小的距離為△S=|L1-L2|。在第一反射部件4302和第二反射部件4303沿著第一方向X分別負向移動距離L1、L2的情況下,當L1>L2時,光程會減小,減小的距離為△S=|L1-L2|;當L1<L2時,光程會增加,增加的距離為△S=|L1-L2|。 Specifically, when the first reflective component 4302 and the second reflective component 4303 move forward by distances L1 and L2 respectively along the first direction X, when L1>L2, the optical path will increase, and the increased distance is Δ S=|L1-L2|; when L1<L2, the optical path will be reduced, and the reduced distance is △S=|L1-L2|. When the first reflective component 4302 and the second reflective component 4303 move in the negative direction by distances L1 and L2 respectively along the first direction |L1-L2|; When L1<L2, the optical path will increase, and the increased distance is △S=|L1-L2|.

如此,鏡頭裝置4300在實現防振動補償的同時,還實現了自動對焦。 In this way, the lens device 4300 not only achieves anti-vibration compensation, but also achieves automatic focusing.

在本發明的第九實施例中,鏡頭裝置4300還包括:基座,所述第一透鏡模組4301和第三反射部件4305均固定在該基座上;用於承載第一反射部件4302的第一反射部件載體,可沿著第一方向X移動地設置在基座上;用於承載第二反射部件4303的第二反射部件載體4308,可沿著第一方向X移動地設置在基座上;以及外蓋,連接在基座上從而形成容納空間,將上述其它元件容納在其中;在外蓋上,設置有供光線進入第一透鏡模組4301的孔。在該實施例中,除了第一反射部件載體和第二反射部件載體的移動方向與第八實施例不同,其他均與第八實施例類似,在此不再贅述。 In the ninth embodiment of the present invention, the lens device 4300 further includes: a base on which the first lens module 4301 and the third reflective component 4305 are fixed; and a base for carrying the first reflective component 4302. The first reflective component carrier is movably disposed on the base along the first direction X; the second reflective component carrier 4308 for carrying the second reflective component 4303 is movably disposed on the base along the first direction X. and an outer cover, which is connected to the base to form a receiving space in which the other components mentioned above are accommodated; and the outer cover is provided with a hole for light to enter the first lens module 4301. In this embodiment, except that the moving directions of the first reflective component carrier and the second reflective component carrier are different from those in the eighth embodiment, the rest are similar to the eighth embodiment and will not be described again.

圖35和圖36所示為本發明的第十實施例之音圈馬達結構510,其包括: Figures 35 and 36 show a voice coil motor structure 510 according to a tenth embodiment of the present invention, which includes:

第一光路轉折模組,包括第一反射模組5200以及第二反射模組5300,第二反射模組5300用於反射來自所述第一反射模組5200的光線; The first optical path turning module includes a first reflection module 5200 and a second reflection module 5300. The second reflection module 5300 is used to reflect light from the first reflection module 5200;

驅動單元5100,用於驅動所述第一反射模組5200和第二反射模組5300同向或反向運動; Driving unit 5100, used to drive the first reflective module 5200 and the second reflective module 5300 to move in the same direction or in opposite directions;

所述驅動單元5100包括基座5110、第一驅動元件5120和第二驅動元件5130,所述第一驅動元件5120和第二驅動元件5130驅動所述第一反射模組5200和第二反射模組5300可移動地設置在所述基座5110上;所述第一驅動組件5120包括設置在所述基座5110與所述第一反射模組5200其中一者上的第一磁鐵5122、以及設置在另一者上的第一印刷電路單元5125和第一吸引磁軛5124;所述第二驅動元件5130包括設置在所述基座5110與所述第二反射模組5300其中一者上的第二磁鐵5132、以及設置在另一者上的第二電路板(PCB)單元5135和第二吸引磁軛5134。以下對上述各個組成部分分別作進一步詳細介紹。 The driving unit 5100 includes a base 5110, a first driving element 5120 and a second driving element 5130. The first driving element 5120 and the second driving element 5130 drive the first reflective module 5200 and the second reflective module. 5300 is movably disposed on the base 5110; the first driving component 5120 includes a first magnet 5122 disposed on one of the base 5110 and the first reflective module 5200, and a The first printed circuit unit 5125 and the first attracting yoke 5124 on the other; the second driving element 5130 includes a second one provided on one of the base 5110 and the second reflective module 5300 The magnet 5132, and the second circuit board (PCB) unit 5135 and the second attraction yoke 5134 are provided on the other. Each of the above components is introduced in further detail below.

如圖36所示,音圈馬達結構510主要包括驅動單元5100、第一反射模組5200、第二反射模組5300和外罩5400。第一反射模組5200和第二反射模組5300與驅動單元5100連接,驅動單元5100驅動所述第一反射模組5200和第二反射模組5300同向或反向運動。外罩5400罩設在驅動單元5100上,用以保持音圈馬達結構510的外型。 As shown in Figure 36, the voice coil motor structure 510 mainly includes a driving unit 5100, a first reflection module 5200, a second reflection module 5300 and an outer cover 5400. The first reflective module 5200 and the second reflective module 5300 are connected to the driving unit 5100. The driving unit 5100 drives the first reflective module 5200 and the second reflective module 5300 to move in the same direction or in opposite directions. The outer cover 5400 is provided on the driving unit 5100 to maintain the appearance of the voice coil motor structure 510 .

如圖37所示,第一反射模組5200包括第一反射部件5210和第一反射載體5220,所述第一反射部件5210具有第一反射面5211。所述第二反射模組5300包括第二反射部件5310和第二反射載體5320,所述第二反射部件5310具有第二反射面5311。 As shown in Figure 37, the first reflective module 5200 includes a first reflective component 5210 and a first reflective carrier 5220. The first reflective component 5210 has a first reflective surface 5211. The second reflective module 5300 includes a second reflective component 5310 and a second reflective carrier 5320. The second reflective component 5310 has a second reflective surface 5311.

所述第一反射部件5210與第二反射部件5310相對設置,優選地,所述第一反射面5211與第二反射面5311相互垂直。在本發明中,“相對設置”並不意味著兩者相互平行正對,而是意味著經其中一者的光線可以到達另一者。 The first reflective component 5210 and the second reflective component 5310 are arranged oppositely. Preferably, the first reflective surface 5211 and the second reflective surface 5311 are perpendicular to each other. In the present invention, "relatively arranged" does not mean that the two are parallel to each other, but means that the light passing through one of them can reach the other.

在本發明中,第一反射部件5210與第二反射部件5310可以是稜鏡、反射稜鏡或者反射鏡等。 In the present invention, the first reflective component 5210 and the second reflective component 5310 may be mirrors, reflective mirrors, or reflective mirrors.

第一反射部件5210固定安裝在第一反射載體5220上,由第一反射載體5220保持第一反射部件5210的相對位置。第二反射部件5310固定安裝在第二反射載體5320上,由第二反射載體5320保持第二反射部件5310的相對位置。 The first reflective component 5210 is fixedly installed on the first reflective carrier 5220, and the first reflective carrier 5220 maintains the relative position of the first reflective component 5210. The second reflective component 5310 is fixedly installed on the second reflective carrier 5320, and the second reflective carrier 5320 maintains the relative position of the second reflective component 5310.

如圖38和圖39所示,其中驅動單元5100包括基座5110、第一驅動元件5120、第二驅動元件5130、軸體5140和後蓋5150。 As shown in Figures 38 and 39, the driving unit 5100 includes a base 5110, a first driving element 5120, a second driving element 5130, a shaft 5140 and a back cover 5150.

其中,基座5110朝向第一反射模組5200和第二反射模組5300的一面敞開,即基座5110具有開口部且所述開口部朝向第一反射模組5200和第二反射模組5300,便於安裝承載第一反射模組5200的第一反射載體5220以及承載第二反射模組5300的第二反射載體5320。 The base 5110 is open toward the first reflective module 5200 and the second reflective module 5300, that is, the base 5110 has an opening and the opening faces the first reflective module 5200 and the second reflective module 5300, It is convenient to install the first reflective carrier 5220 carrying the first reflective module 5200 and the second reflective carrier 5320 carrying the second reflective module 5300.

第一驅動元件5120與第一反射載體5220固定連接,驅動第一反射載體5220在基座5110上移動。第二驅動元件5130與第二反射載體5320固定連接,驅動第二反射載體5320在基座5110上移動。 The first driving element 5120 is fixedly connected to the first reflective carrier 5220, and drives the first reflective carrier 5220 to move on the base 5110. The second driving element 5130 is fixedly connected to the second reflective carrier 5320, and drives the second reflective carrier 5320 to move on the base 5110.

第一驅動元件5120包括第一止擋部5121、第一磁鐵5122、第一滑塊機構5123、第一吸引磁軛5124和第一印刷電路單元5125,而第一印刷電路單元5125包括第一線圈51252。第二驅動元件5130包括第二止擋部5131、第二磁鐵5132、第二滑塊機構5133第二吸引磁軛5134和第二印刷電路單元5135,而第二印刷電路單元5135包括第二線圈51352。其中,在本實施例中第一印刷電路單元5125與第二印刷電路單元5135相互連結且一體成形為單一組件,但並不以此為限,亦可為分開的組件。 The first driving element 5120 includes a first stopper 5121, a first magnet 5122, a first slider mechanism 5123, a first attraction yoke 5124, and a first printed circuit unit 5125, and the first printed circuit unit 5125 includes a first coil 51252. The second driving element 5130 includes a second stopper 5131, a second magnet 5132, a second slider mechanism 5133, a second attraction yoke 5134, and a second printed circuit unit 5135, and the second printed circuit unit 5135 includes a second coil 51352 . In this embodiment, the first printed circuit unit 5125 and the second printed circuit unit 5135 are connected to each other and integrally formed into a single component, but they are not limited to this and may also be separate components.

其中,如圖40和圖41所示,第一滑塊機構5123與第一反射載體5220固定連接,第二滑塊機構5133與第二反射載體5320固定連接;所述 第一滑塊機構5123和第二滑塊機構5133與所述基座5110滑動連接。具體地,軸體5140固定安裝在基座5110上,所述第一滑塊機構5123和第二滑塊機構5133可移動地套設在所述軸體5140上。優選地,軸體5140是由不導磁的材料製成的,避免影響驅動單元5100的電磁力作動。如此設置,可以達成最小的光學偏差。 40 and 41, the first slider mechanism 5123 is fixedly connected to the first reflective carrier 5220, and the second slider mechanism 5133 is fixedly connected to the second reflective carrier 5320; The first slider mechanism 5123 and the second slider mechanism 5133 are slidingly connected to the base 5110 . Specifically, the shaft body 5140 is fixedly installed on the base 5110, and the first slider mechanism 5123 and the second slider mechanism 5133 are movably sleeved on the shaft body 5140. Preferably, the shaft body 5140 is made of non-magnetic material to avoid affecting the electromagnetic force of the driving unit 5100. With this arrangement, minimal optical deviation can be achieved.

第一磁鐵5122、第一印刷電路單元5125以及第二磁鐵5132、第二印刷電路單元5135分別為第一滑塊機構5123以及第二滑塊機構5133提供同向或反向運動的動力。具體地,第一印刷電路單元5125(第一線圈51252)和第二印刷電路單元5135(第二線圈51352)通電後產生磁場,第一磁鐵5122和第二磁鐵5132受到推力,在電磁力的作用下,可驅使第一滑塊機構5123和第二滑塊機構5133沿著軸體5140同向或反方向的平移,使安裝該音圈馬達結構510的鏡頭裝置實現自動對焦和光學防手震的功能。 The first magnet 5122, the first printed circuit unit 5125 and the second magnet 5132 and the second printed circuit unit 5135 respectively provide the first slider mechanism 5123 and the second slider mechanism 5133 with power to move in the same direction or in opposite directions. Specifically, the first printed circuit unit 5125 (first coil 51252) and the second printed circuit unit 5135 (second coil 51352) generate a magnetic field after being energized, and the first magnet 5122 and the second magnet 5132 receive thrust. Under the action of electromagnetic force, , the first slider mechanism 5123 and the second slider mechanism 5133 can be driven to translate in the same or opposite directions along the shaft 5140, so that the lens device equipped with the voice coil motor structure 510 can achieve automatic focusing and optical anti-shake. Function.

第一磁鐵5122設置在基座5110與所述第一反射載體5220其中一者上,第一印刷電路單元5125(第一線圈51252)和第一吸引磁軛5124設置在另一者上。例如在本實施例中,如圖40和圖41所示,第一磁鐵5122固定安裝在第一滑塊機構5123上,而第一印刷電路單元5125(第一線圈51252)和第一吸引磁軛5124設置在基座5110上。 The first magnet 5122 is provided on one of the base 5110 and the first reflective carrier 5220, and the first printed circuit unit 5125 (first coil 51252) and the first attraction yoke 5124 are provided on the other. For example, in this embodiment, as shown in Figures 40 and 41, the first magnet 5122 is fixedly installed on the first slider mechanism 5123, and the first printed circuit unit 5125 (first coil 51252) and the first attraction yoke 5124 is provided on the base 5110.

第二磁鐵5132設置在所述基座5110與第二反射載體5320其中一者上,第二印刷電路單元5135(第二線圈51352)和第二吸引磁軛5134設置在另一者上。與此相似地,在本實施例中,如圖38所示,第二磁鐵5132固定安裝在第二滑塊機構5133上,而如圖39所示,第二印刷電路單元5135(第二線圈1352)和第二吸引磁軛5134設置在基座5110上。 The second magnet 5132 is provided on one of the base 5110 and the second reflective carrier 5320, and the second printed circuit unit 5135 (second coil 51352) and the second attraction yoke 5134 are provided on the other. Similarly, in this embodiment, as shown in Figure 38, the second magnet 5132 is fixedly installed on the second slider mechanism 5133, and as shown in Figure 39, the second printed circuit unit 5135 (the second coil 1352 ) and the second attraction yoke 5134 are provided on the base 5110.

第一吸引磁軛5124和第二吸引磁軛5134通過後蓋5150固定在基座5110上。第一磁鐵5122與第一吸引磁軛5124相互吸引,第二磁鐵5132 與第二吸引磁軛5134相互吸引,使第一反射載體5220和第二反射載體5320能緊固地抵靠在基座5110上,確保第一反射部件5210和第二反射部件5310與光路垂直。 The first attraction yoke 5124 and the second attraction yoke 5134 are fixed on the base 5110 through the back cover 5150 . The first magnet 5122 and the first attraction yoke 5124 attract each other, and the second magnet 5132 The second magnetic yoke 5134 attracts each other, so that the first reflective carrier 5220 and the second reflective carrier 5320 can tightly abut the base 5110, ensuring that the first reflective component 5210 and the second reflective component 5310 are perpendicular to the optical path.

優選地,如圖42和圖43所示,第一止擋部5121和第二止擋部5131均固定安裝在基座5110上,藉由第一磁鐵5122與第一吸引磁軛5124之間的吸引力,第二磁鐵5132與第二吸引磁軛5134之間的吸引力,使第一反射載體5220和第二反射載體5320能分別緊固地抵靠在第一止擋部5121和第二止擋部5131上,從而確保第一反射部件5210和第二反射部件5310與光路垂直,使鏡頭模組能獲得較佳的成像品質。 Preferably, as shown in FIGS. 42 and 43 , the first stopper 5121 and the second stopper 5131 are both fixedly installed on the base 5110 . The attractive force between the second magnet 5132 and the second attractive yoke 5134 enables the first reflective carrier 5220 and the second reflective carrier 5320 to tightly abut the first stopper 5121 and the second stopper respectively. on the blocking portion 5131 to ensure that the first reflective component 5210 and the second reflective component 5310 are perpendicular to the optical path, so that the lens module can obtain better imaging quality.

如圖44和45所示,所述第一印刷電路單元5125具體包括第一電路板51251、第一線圈51252、第一驅動晶片51253和第一晶片冷凝器51254。其中,所述第一線圈51252印刷在所述第一電路板51251與所述第一磁鐵5122相對的一面上,優選地,本實施例中在所述第一電路板51251印刷有9層線圈。所述第一驅動晶片51253和第一晶片冷凝器51254安裝在所述第一電路板51251的另一面上。 As shown in Figures 44 and 45, the first printed circuit unit 5125 specifically includes a first circuit board 51251, a first coil 51252, a first driving chip 51253, and a first wafer condenser 51254. The first coil 51252 is printed on the side of the first circuit board 51251 opposite to the first magnet 5122. Preferably, in this embodiment, nine layers of coils are printed on the first circuit board 51251. The first driving wafer 51253 and the first wafer condenser 51254 are installed on the other side of the first circuit board 51251.

第二印刷電路單元5135具體包括第二電路板51351、第二線圈51352、第二驅動晶片51353和第二晶片冷凝器51354。其中,所述第二線圈51352印刷在所述第二電路板51351與所述第二磁鐵5132相對的一面上,優選地,本實施例中在所述第二電路板51351印刷有9層線圈。所述第二驅動晶片51353和第二晶片冷凝器51354安裝在所述第二電路板51351的另一面上。 The second printed circuit unit 5135 specifically includes a second circuit board 51351, a second coil 51352, a second driving wafer 51353, and a second wafer condenser 51354. The second coil 51352 is printed on the side of the second circuit board 51351 opposite to the second magnet 5132. Preferably, in this embodiment, nine layers of coils are printed on the second circuit board 51351. The second driving wafer 51353 and the second wafer condenser 51354 are installed on the other side of the second circuit board 51351.

外罩5400連接在基座5110上從而形成容納空間,將上述其它元件容納在其中。在外罩5400上,設置有供光線進入的外罩孔5410。 The outer cover 5400 is connected to the base 5110 to form a receiving space to accommodate the other components mentioned above. The cover 5400 is provided with a cover hole 5410 for light to enter.

如圖46所示,第十一實施例的鏡頭裝置包括第十實施例所述 的音圈馬達結構510、第二光路轉折模組520、第一透鏡模組530和影像感測器540。其中,第二光路轉折模組520用於接收物側光線並加以反射,第一透鏡模組530用於接收所述第二光路轉折模組520反射後的光線。 As shown in Figure 46, the lens device of the eleventh embodiment includes the The voice coil motor structure 510, the second optical path turning module 520, the first lens module 530 and the image sensor 540. The second optical path turning module 520 is used to receive object-side light and reflect it, and the first lens module 530 is used to receive the light reflected by the second optical path turning module 520 .

所述音圈馬達結構510設置在所述第一透鏡模組530與影像感測器540之間,所述第一反射模組5200接收通過所述第一透鏡模組530的光線,並將所述光線反射向所述第二反射模組5300,所述第二反射模組5300接收所述光線,並將所述光線反射向所述影像感測器540。 The voice coil motor structure 510 is disposed between the first lens module 530 and the image sensor 540. The first reflection module 5200 receives the light passing through the first lens module 530 and converts the light. The light is reflected to the second reflective module 5300 , and the second reflective module 5300 receives the light and reflects the light to the image sensor 540 .

具體而言,物側光線先沿著第二方向進入第二光路轉折模組520,之後由第二光路轉折模組520將光線沿著第一方向反射到第一透鏡模組530,光線通過第一透鏡模組530後射向第一反射模組5200的第一反射面5211,經第一反射面5211將光線沿著第三方向反射後,到達第二反射模組5300的第二反射面5311,最後經第二反射面5311將光線沿著第一方向反射後到達影像感測器540並形成影像。 Specifically, the object-side light first enters the second optical path turning module 520 along the second direction, and then the second optical path turning module 520 reflects the light along the first direction to the first lens module 530, and the light passes through the second optical path turning module 520. A lens module 530 then radiates to the first reflective surface 5211 of the first reflective module 5200. After the light is reflected along the third direction through the first reflective surface 5211, it reaches the second reflective surface 5311 of the second reflective module 5300. , and finally the light is reflected along the first direction through the second reflective surface 5311 and then reaches the image sensor 540 and forms an image.

可以理解的是,第一透鏡模組530具有沿著第一方向的光軸,第一透鏡模組530包括至少三個透鏡以及光圈,其中,這些透鏡中至少有一個透鏡具有正屈光力,即焦距值為正,且最靠近物側的透鏡可以具有正屈光力而其物側面可以為凸面,以及至少有一個透鏡具有負屈光力,即焦距值為負,並且這些透鏡中至少有一個透鏡的外周部形狀為非圓形,即沿著光軸方向正視所述透鏡,其外周部形狀可以為非圓形,例如多邊形、與光軸對稱的多邊形、跑道形、樽形、橡木桶形或紅酒瓶上半部等形狀。此外所述光圈的形狀也可以是非圓形,即沿著光軸方向正視所述光圈,其外周部形狀可以為非圓形,例如多邊形、與光軸對稱的多邊形、跑道形、樽形、橡木桶形或紅酒瓶上半部等形狀。優選地,該鏡頭裝置中具有至少一個透鏡以及光圈的外周部形狀為非圓形,如此設計有利於鏡頭模組整體 有效減小尺寸、厚度及體積,使該鏡頭裝置有效的薄型化。但本案不以此為限,所述透鏡以及所述光圈的形狀亦可為圓形。 It can be understood that the first lens module 530 has an optical axis along the first direction, and the first lens module 530 includes at least three lenses and an aperture, wherein at least one of these lenses has positive refractive power, that is, a focal length. The value is positive, and the lens closest to the object side can have positive refractive power and its object side can be convex, and at least one lens has negative refractive power, that is, the focal length value is negative, and at least one of these lenses has a peripheral shape It is non-circular, that is, when viewing the lens along the direction of the optical axis, its outer peripheral shape may be non-circular, such as a polygon, a polygon symmetrical to the optical axis, a racetrack shape, a bottle shape, an oak barrel shape, or the upper half of a red wine bottle. Parts and other shapes. In addition, the shape of the aperture may also be non-circular, that is, when viewing the aperture along the optical axis direction, the outer peripheral shape may be non-circular, such as polygon, polygon symmetrical to the optical axis, racetrack shape, bottle shape, oak shape Shapes such as a barrel or the top half of a wine bottle. Preferably, the lens device has at least one lens and an outer peripheral shape of the aperture that is non-circular. This design is beneficial to the overall lens module. The size, thickness and volume are effectively reduced, making the lens device effectively thinner. However, this case is not limited to this. The shape of the lens and the aperture can also be circular.

該鏡頭裝置具有更長的焦距值能夠有更高倍率的光學變焦,且同時有效減少鏡頭尺寸長度兼具鏡頭模組小型化,以及反射鏡體配合軸體5140達成最小的光學偏差。 The lens device has a longer focal length value and can achieve higher magnification optical zoom, and at the same time effectively reduces the size and length of the lens, miniaturizes the lens module, and the mirror body cooperates with the axis 5140 to achieve minimal optical deviation.

如圖47所示,本發明提供一種鏡頭裝置,該鏡頭裝置包括音圈馬達結構(VCM結構)61、第二光路轉折模組62、第一透鏡模組63、連結單元64和影像感測器(未繪示)。其中,第二光路轉折模組62用於接收物側光線並加以反射,第一透鏡模組63用於接收第二光路轉折模組62反射後的光線。其中,音圈馬達結構(VCM結構)61提供自動對焦及影像防抖功能。 As shown in Figure 47, the present invention provides a lens device. The lens device includes a voice coil motor structure (VCM structure) 61, a second optical path turning module 62, a first lens module 63, a connecting unit 64 and an image sensor. (not shown). Among them, the second optical path turning module 62 is used to receive the object side light and reflect it, and the first lens module 63 is used to receive the light reflected by the second optical path turning module 62 . Among them, the voice coil motor structure (VCM structure) 61 provides autofocus and image anti-shake functions.

連結單元64用以讓第一透鏡模組63可更穩定的與音圈馬達結構61相互連結,供第一透鏡模組63可快速定位在音圈馬達結構61的機構,本領域的技術人員可瞭解,連結單元64並非必要的元件,也可以省略連結單元64,或者以其他方式替代,本發明不限於此。 The connection unit 64 is used to allow the first lens module 63 to be more stably connected to the voice coil motor structure 61, and to provide a mechanism for the first lens module 63 to be quickly positioned on the voice coil motor structure 61. Those skilled in the art can It is understood that the connecting unit 64 is not a necessary component, and the connecting unit 64 may be omitted or replaced in other ways, and the present invention is not limited thereto.

影像感測器設置在第二反射模組612的出光處,即音圈馬達結構61與第三方向平行的側壁上,接收被第二反射模組612反射的光。在其它實施例中,影像感測器也可以設置在第一反射模組611的出光處,即音圈馬達結構61與第一方向平行的側壁上。 The image sensor is disposed at the light outlet of the second reflective module 612 , that is, on the side wall of the voice coil motor structure 61 parallel to the third direction, and receives the light reflected by the second reflective module 612 . In other embodiments, the image sensor may also be disposed at the light exit point of the first reflective module 611 , that is, on the side wall of the voice coil motor structure 61 that is parallel to the first direction.

音圈馬達結構61設置在第一透鏡模組63與影像感測器之間,參見圖48,音圈馬達結構61包括由第一反射模組611和第二反射模組612組成的第一光路轉折模組,第一反射模組611接收通過第一透鏡模組63的光線,並將光線反射向第二反射模組612,第二反射模組612接收光線,並將光線反射向影像感測器。 The voice coil motor structure 61 is disposed between the first lens module 63 and the image sensor. Referring to Figure 48, the voice coil motor structure 61 includes a first optical path composed of a first reflection module 611 and a second reflection module 612. Turning module, the first reflective module 611 receives the light passing through the first lens module 63 and reflects the light to the second reflective module 612. The second reflective module 612 receives the light and reflects the light to the image sensor. device.

具體而言,物側光線先沿著第二方向進入第二光路轉折模組 62,之後由第二光路轉折模組62將光線沿著第一方向反射到第一透鏡模組63,光線通過第一透鏡模組63後射向第一反射模組611,經第一反射模組611將光線沿著第三方向反射後到達第二反射模組612,最後經第二反射模組612將光線沿著第一方向反射後到達影像感測器並形成影像。換言之,來自物側的光線依序沿第二方向進入第二光路轉折模組62,之後沿著第一方向反射到第一透鏡模組63、第一反射模組611,再沿著第三方向到達第二反射模組612,最後沿著第一方向到達影像感測器。 Specifically, the object-side light first enters the second optical path turning module along the second direction. 62, and then the second optical path turning module 62 reflects the light along the first direction to the first lens module 63. The light passes through the first lens module 63 and then is emitted to the first reflection module 611. The group 611 reflects the light along the third direction and then reaches the second reflection module 612. Finally, the second reflection module 612 reflects the light along the first direction before reaching the image sensor and forming an image. In other words, the light from the object side sequentially enters the second optical path turning module 62 along the second direction, and then is reflected along the first direction to the first lens module 63 and the first reflection module 611, and then along the third direction. It reaches the second reflective module 612 and finally reaches the image sensor along the first direction.

可以理解的是,第一透鏡模組63具有沿著第一方向的光軸,第一透鏡模組63包括至少三個透鏡以及光圈,其中,這些透鏡中至少有一個透鏡具有正屈光力,即焦距值為正,且最靠近物側的透鏡可以具有正屈光力而其物側面可以為凸面,以及至少有一個透鏡具有負屈光力,即焦距值為負,並且這些透鏡中至少有一個透鏡的外周部形狀為非圓形,即沿著光軸方向正視所述透鏡,其外周部形狀可以為非圓形,例如多邊形、與光軸對稱的多邊形、跑道形、樽形、橡木桶形或紅酒瓶上半部等形狀。此外所述光圈的形狀也可以是非圓形,即沿著光軸方向正視所述光圈,其外周部形狀可以為非圓形,例如多邊形、與光軸對稱的多邊形、跑道形、樽形、橡木桶形或紅酒瓶上半部等形狀。優選地,該鏡頭裝置中具有至少一個透鏡以及光圈的外周部形狀為非圓形,如此設計有利於鏡頭模組整體有效減小尺寸、厚度及體積,使該鏡頭裝置有效的薄型化。但本案不以此為限,所述透鏡以及所述光圈的形狀亦可為圓形。 It can be understood that the first lens module 63 has an optical axis along the first direction, and the first lens module 63 includes at least three lenses and an aperture, wherein at least one of these lenses has positive refractive power, that is, a focal length. The value is positive, and the lens closest to the object side can have positive refractive power and its object side can be convex, and at least one lens has negative refractive power, that is, the focal length value is negative, and at least one of these lenses has a peripheral shape It is non-circular, that is, when viewing the lens along the direction of the optical axis, its outer peripheral shape may be non-circular, such as a polygon, a polygon symmetrical to the optical axis, a racetrack shape, a bottle shape, an oak barrel shape, or the upper half of a red wine bottle. Parts and other shapes. In addition, the shape of the aperture may also be non-circular, that is, when viewing the aperture along the optical axis direction, the outer peripheral shape may be non-circular, such as polygon, polygon symmetrical to the optical axis, racetrack shape, bottle shape, oak shape Shapes such as a barrel or the top half of a wine bottle. Preferably, the peripheral shape of at least one lens and the aperture in the lens device is non-circular. Such a design is conducive to effectively reducing the size, thickness and volume of the entire lens module, making the lens device effectively thinner. However, this case is not limited to this. The shape of the lens and the aperture can also be circular.

請參照圖48和圖49,為本發明的第十二實施例,音圈馬達結構61包括外罩613、後蓋614、第一基座615、第一反射模組611、用於反射來自第一反射模組611的光線的第二反射模組612、以及用於驅動第一反射模組611和第二反射模組612在第一基座615上同向運動或反向運動的第 一驅動單元616,第一反射模組611和第二反射模組612分別通過至少一個滑動單元617與第一基座615滑動連接。值得注意的是,滑動單元可以是滾珠、輥筒、軸體或者其他可產生滑動機構的部件。 Please refer to FIG. 48 and FIG. 49 , which is a twelfth embodiment of the present invention. The voice coil motor structure 61 includes an outer cover 613, a back cover 614, a first base 615, and a first reflection module 611 for reflecting light from the first The second reflective module 612 that reflects the light of the module 611, and the third reflective module 612 that drives the first reflective module 611 and the second reflective module 612 to move in the same direction or in opposite directions on the first base 615. A driving unit 616, the first reflective module 611 and the second reflective module 612 are respectively slidably connected to the first base 615 through at least one sliding unit 617. It is worth noting that the sliding unit can be a ball, a roller, a shaft or other components that can produce a sliding mechanism.

其中,第一基座615大致為中空的框體,且中空的框體的上框壁具有缺口,以便於裝配有第一反射模組611和第二反射模組612。 The first base 615 is generally a hollow frame, and the upper frame wall of the hollow frame has a gap to facilitate the assembly of the first reflection module 611 and the second reflection module 612 .

外罩613與後蓋614圍合形成容納空間,將上述其它元件容納在其中,同時用以保持音圈馬達結構61的外型。且後蓋614蓋設在靠近第一基座615的一端。 The outer cover 613 and the back cover 614 enclose a receiving space to accommodate the other components mentioned above while maintaining the appearance of the voice coil motor structure 61 . And the back cover 614 is located at one end close to the first base 615 .

參見圖49,第一反射模組611和第二反射模組612滑動安裝在第一基座615內。第一反射模組611包括第一反射部件6111和第一載體6112,第一反射部件6111安裝在第一載體6112上;第二反射模組612包括第二反射部件6121和第二載體6122,第二反射部件6121安裝在第二載體6122上。第一反射部件6111與第二反射部件6121相對設置,此處“相對設置”並不意味著兩者相互平行正對,而是意味著經其中一者的光線可以到達另一者。優選地,第一反射部件6111的反射面與第二反射部件6121的反射面相互垂直。 Referring to Figure 49, the first reflective module 611 and the second reflective module 612 are slidably installed in the first base 615. The first reflective module 611 includes a first reflective component 6111 and a first carrier 6112. The first reflective component 6111 is installed on the first carrier 6112; the second reflective module 612 includes a second reflective component 6121 and a second carrier 6122. The two reflective components 6121 are installed on the second carrier 6122. The first reflective component 6111 and the second reflective component 6121 are disposed oppositely. Here, "relatively disposed" does not mean that they are parallel to each other, but means that the light passing through one of them can reach the other. Preferably, the reflective surface of the first reflective component 6111 and the reflective surface of the second reflective component 6121 are perpendicular to each other.

在本發明中,第一反射部件6111與第二反射部件6121可以是稜鏡、反射稜鏡或者反射鏡等。第一反射部件6111固定安裝在第一載體6112上,由第一載體6112保持第一反射部件6111的相對位置。第二反射部件6121固定安裝在第二載體6122上,由第二載體6122保持第二反射部件6121的相對位置。 In the present invention, the first reflective component 6111 and the second reflective component 6121 may be mirrors, reflective mirrors, or reflective mirrors. The first reflective component 6111 is fixedly installed on the first carrier 6112, and the first carrier 6112 maintains the relative position of the first reflective component 6111. The second reflective component 6121 is fixedly installed on the second carrier 6122, and the second carrier 6122 maintains the relative position of the second reflective component 6121.

參見圖48、圖50、圖51、圖52第一載體6112和第一基座615中的其中一者形成有用於供滑動單元617定位滾動的至少一個第一容置槽6101,第一載體6112和第一基座615中的另一者的相對應位置形成有沿第一載體6112的運動方向延伸的至少一條第一滑槽6201;第二載體6122和第一 基座615中的其中一者形成有用於供所述滑動單元617定位滾動的至少一個第二容置槽6102,第二載體6122和第一基座615中的另一者的相對應位置形成有沿第二載體6122的運動方向延伸的至少一條第二滑槽6202。 Referring to Figures 48, 50, 51, and 52, one of the first carrier 6112 and the first base 615 is formed with at least one first accommodation groove 6101 for positioning and rolling of the sliding unit 617. The first carrier 6112 At least one first chute 6201 extending along the movement direction of the first carrier 6112 is formed at the corresponding position of the other one of the first bases 615; the second carrier 6122 and the first One of the bases 615 is formed with at least one second receiving groove 6102 for positioning and rolling of the sliding unit 617. The corresponding position of the second carrier 6122 and the other of the first base 615 is formed with At least one second slide groove 6202 extends along the movement direction of the second carrier 6122.

參見圖48和圖50,在本較佳實施例中,在第一載體6112的上側和下側分別開設有第一滑槽6201,第一滑槽6201的截面大致呈V型,可以減少與滑動單元617的接觸面積。在第二載體6122的上側和下兩側分別開設有第二滑槽6202,第二滑槽6202的截面大致呈V型,可以減少與滑動單元617的接觸面積。在其它實施例中,第一滑槽6201、第二滑槽6202的截面也可以為弧型、半圓形或其他形狀等。 Referring to Figures 48 and 50, in this preferred embodiment, first chute 6201 is provided on the upper and lower sides of the first carrier 6112. The cross-section of the first chute 6201 is roughly V-shaped, which can reduce the risk of sliding. Contact area of unit 617. Second slide grooves 6202 are respectively provided on the upper and lower sides of the second carrier 6122. The cross section of the second slide groove 6202 is generally V-shaped, which can reduce the contact area with the sliding unit 617. In other embodiments, the cross-sections of the first chute 6201 and the second chute 6202 may also be arc-shaped, semicircular, or other shapes.

參見圖49、圖51,在本實施例中,第一基座615的下框壁與第一載體6112下側的第一滑槽6201相對應的位置設置有兩個第一容置槽6101,第一基座615的下框壁與第二載體6122下側的第二滑槽6202相對應的位置設置有兩個第二容置槽6102;第一基座615的上框壁與第一載體6112上側的第一滑槽6201相對應的位置設置有兩個第一容置槽6101,第一基座615的上框壁與第二載體6122上側的第二滑槽6202相對應的位置設置有兩個第二容置槽6102。需要說明的是,第一容置槽6101和第二容置槽6102的數量根據滑動單元617數量而定,滑動單元617數量根據需要而定,不作限制。 Referring to Figures 49 and 51, in this embodiment, two first accommodating grooves 6101 are provided on the lower frame wall of the first base 615 at positions corresponding to the first chute 6201 on the lower side of the first carrier 6112. Two second receiving grooves 6102 are provided at positions corresponding to the lower frame wall of the first base 615 and the second chute 6202 on the lower side of the second carrier 6122; the upper frame wall of the first base 615 and the first carrier Two first accommodating grooves 6101 are provided at positions corresponding to the first chute 6201 on the upper side of the second carrier 6112. The upper frame wall of the first base 615 is provided at positions corresponding to the second chute 6202 on the upper side of the second carrier 6122. Two second receiving slots 6102. It should be noted that the number of the first accommodating groove 6101 and the second accommodating groove 6102 is determined according to the number of the sliding units 617, and the number of the sliding units 617 is determined according to the needs and is not limited.

參見圖52,在本實施例中,在第一基座615與第一載體6112的第一滑槽6201相對應的位置開設有第一通孔6151,在第一通孔6151內嵌入呈T型的第一凹部6153,進而在第一通孔6151內形成兩個第一容置槽6101;同樣地,在第一基座615上與第二載體6122上的第二滑槽6202相對應的位置開設有第二通孔6152,在第二通孔6152內嵌入呈T型的第二凹部6154,進而在第二通孔6152內形成兩個第二容置槽6102,以方便滑動單元617的組裝。在其它實施例中,也可以第一基座615上直接開設盲孔、穿孔 或孔洞作為第一容置槽6101和第二容置槽6102。 Referring to Figure 52, in this embodiment, a first through hole 6151 is opened at a position corresponding to the first chute 6201 of the first carrier 6112 on the first base 615, and is embedded in a T-shape inside the first through hole 6151. The first recess 6153 is formed in the first through hole 6151, and two first receiving grooves 6101 are formed in the first through hole 6151; similarly, the position corresponding to the second slide groove 6202 on the second carrier 6122 is formed on the first base 615. A second through hole 6152 is opened, a T-shaped second recess 6154 is embedded in the second through hole 6152, and two second receiving grooves 6102 are formed in the second through hole 6152 to facilitate the assembly of the sliding unit 617. . In other embodiments, blind holes or perforations can also be directly opened on the first base 615 Or holes serve as the first accommodation groove 6101 and the second accommodation groove 6102.

其中,滑動單元617在沿著第一滑槽6201和第二滑槽6202滾動的同時定位在第一容置槽6101和第二容置槽6102內轉動,利用滑動單元617避免了因克服靜摩擦力而產生的衝擊,使得作動時更加順暢並獲得良好的動作效果。 Among them, the sliding unit 617 is positioned to rotate in the first accommodating groove 6101 and the second accommodating groove 6102 while rolling along the first chute 6201 and the second chute 6202. The sliding unit 617 is used to avoid overcoming the static friction force. The impact generated makes the action smoother and achieves good action effects.

參見圖48、圖49、圖53,第一驅動單元616包括用於驅動第一反射模組611的第一驅動元件6161和用於驅動第二反射模組612的第二驅動元件6162。 Referring to Figures 48, 49, and 53, the first driving unit 616 includes a first driving element 6161 for driving the first reflective module 611 and a second driving element 6162 for driving the second reflective module 612.

第一驅動組件6161包括設置在後蓋614與第一載體6112其中一者上的第一驅動磁鐵61611、以及設置在另一者上的第一印刷電路單元61612和第一吸引磁軛61613;第二驅動元件6162包括設置在後蓋614與第二載體6122其中一者上的第二驅動磁鐵61621、以及設置在另一者上的第二印刷電路單元61622和第二吸引磁軛61623。 The first driving assembly 6161 includes a first driving magnet 61611 provided on one of the back cover 614 and the first carrier 6112, and a first printed circuit unit 61612 and a first attraction yoke 61613 provided on the other; The two driving elements 6162 include a second driving magnet 61621 provided on one of the back cover 614 and the second carrier 6122, and a second printed circuit unit 61622 and a second attraction yoke 61623 provided on the other.

在本較佳實施例中,第一驅動磁鐵61611設置在第一載體6112與後蓋614相對的一側,第二驅動磁鐵61621設置在第二載體6122與後蓋614相對的一側。第一印刷電路單元61612、第一吸引磁軛61613、第二印刷電路單元61622和第二吸引磁軛61623設置在後蓋614上。第一驅動磁鐵61611與第一吸引磁軛61613相互吸引,第二驅動磁鐵61621與第二吸引磁軛61623相互吸引,使第一載體6112和第二載體6122能緊固地抵靠在第一基座615上,確保第一反射部件6111和第二反射部件6121與光路垂直。 In this preferred embodiment, the first driving magnet 61611 is disposed on the side of the first carrier 6112 opposite to the back cover 614, and the second driving magnet 61621 is disposed on the side of the second carrier 6122 opposite to the back cover 614. The first printed circuit unit 61612, the first attracting yoke 61613, the second printed circuit unit 61622 and the second attracting yoke 61623 are provided on the back cover 614. The first driving magnet 61611 and the first attracting yoke 61613 attract each other, and the second driving magnet 61621 and the second attracting yoke 61623 attract each other, so that the first carrier 6112 and the second carrier 6122 can tightly abut against the first base. On the seat 615, ensure that the first reflective component 6111 and the second reflective component 6121 are perpendicular to the optical path.

其中,在本實施例中第一印刷電路單元61612與第二印刷電路單元61622相互連結且一體成形為單一組件,但並不以此為限,亦可為分開的組件。 In this embodiment, the first printed circuit unit 61612 and the second printed circuit unit 61622 are connected to each other and integrally formed into a single component, but they are not limited to this and may also be separate components.

第一印刷電路單元61612包括第一線圈和第一電路板,第一 線圈印刷在第一電路板與第一驅動磁鐵61611相對的一面上,第二印刷電路單元61622包括第二線圈和第二電路板,第二線圈印刷在第二電路板與第二驅動磁鐵61621相對的一面上。具體地,第一印刷電路單元61612的第一線圈和第二印刷電路單元61622的第二線圈通電後產生磁場,第一驅動磁鐵61611和第二驅動磁鐵61621受到推力,在電磁力的作用下,可驅使第一載體6112和第二載體6122分別沿著第一滑槽6201和第二滑槽6202同向或反方向的平移,使安裝該音圈馬達結構61的鏡頭裝置實現自動對焦和光學防手震的功能。 The first printed circuit unit 61612 includes a first coil and a first circuit board, and the first The coil is printed on the side of the first circuit board opposite to the first driving magnet 61611. The second printed circuit unit 61622 includes a second coil and a second circuit board. The second coil is printed on the second circuit board opposite to the second driving magnet 61621. on one side. Specifically, the first coil of the first printed circuit unit 61612 and the second coil of the second printed circuit unit 61622 generate a magnetic field after being energized, and the first driving magnet 61611 and the second driving magnet 61621 receive thrust. Under the action of electromagnetic force, The first carrier 6112 and the second carrier 6122 can be driven to translate in the same direction or in opposite directions along the first chute 6201 and the second chute 6202 respectively, so that the lens device equipped with the voice coil motor structure 61 can achieve automatic focusing and optical protection. Hand shake function.

第一印刷電路單元61612還包括第一驅動晶片和第一晶片冷凝器。其中,所述第一線圈印刷在第一電路板與第一驅動磁鐵61611相對的一面上,第一驅動晶片和第一晶片冷凝器安裝在第一電路板的另一面上。第二印刷電路單元61622還包括第二驅動晶片和第二晶片冷凝器。其中,所述第二線圈印刷在第二電路板與第二驅動磁鐵61621相對的一面上,第二驅動晶片和第二晶片冷凝器安裝在第二電路板的另一面上。 The first printed circuit unit 61612 also includes a first driver wafer and a first wafer condenser. Wherein, the first coil is printed on the side of the first circuit board opposite to the first driving magnet 61611, and the first driving wafer and the first wafer condenser are installed on the other side of the first circuit board. The second printed circuit unit 61622 also includes a second driver wafer and a second wafer condenser. Wherein, the second coil is printed on the side of the second circuit board opposite to the second driving magnet 61621, and the second driving wafer and the second wafer condenser are installed on the other side of the second circuit board.

第十三實施例如圖54-57所示,在第十二實施例的基礎上還進一步地,第二光路轉折模組62包括用於接收物側光線並加以反射的第三反射部件621、用於承載安裝所述第三反射部件621的第三載體622、用於安裝第三載體622的第二基座623、用於驅動第三載體622轉動的第二驅動單元624,第三載體622通過軸體625相對於第二基座623轉動,第三載體622固定連接在軸體25上,軸體625的兩端分別與第二基座623連接。 The Thirteenth Embodiment is shown in Figures 54-57. Based on the twelfth embodiment, the second optical path turning module 62 includes a third reflective component 621 for receiving and reflecting object side light. The third carrier 622 carries and installs the third reflective component 621, the second base 623 for installing the third carrier 622, and the second driving unit 624 for driving the third carrier 622 to rotate. The third carrier 622 passes The shaft 625 rotates relative to the second base 623, the third carrier 622 is fixedly connected to the shaft 25, and both ends of the shaft 625 are connected to the second base 623 respectively.

其中,第三反射部件621可以是稜鏡、反射稜鏡或者反射鏡等。 The third reflective component 621 may be a mirror, a reflective mirror, a reflective mirror, or the like.

參見圖55,第三載體622包括傾斜的傾斜板6221,第三反射部件621安裝在該傾斜板6221傾斜向上的表面上,第三載體622還包括位於 傾斜板6221兩端的側板6222,兩端的側板6222上分別開設有固定孔6223,軸體625的兩端緊密穿插固定在固定孔6223內,即軸體625的兩端凸出於側板6222的表面。 Referring to Figure 55, the third carrier 622 includes an inclined inclined plate 6221. The third reflective component 621 is installed on an upward inclined surface of the inclined plate 6221. The third carrier 622 also includes a The side plates 6222 at both ends of the inclined plate 6221 are respectively provided with fixing holes 6223. The two ends of the shaft 625 are tightly inserted and fixed in the fixing holes 6223, that is, the two ends of the shaft 625 protrude from the surface of the side plates 6222.

參見圖55,第二基座623包括底板6231和豎立於底板6231上的兩個支撐板6232,第三載體622安裝在兩個所述支撐板6232之間,兩個支撐板6232上分別開設有與固定孔6223相對設置的軸孔6233,軸體625的兩端分別插入軸孔6233內與第二基座623轉動連接。 Referring to Figure 55, the second base 623 includes a bottom plate 6231 and two support plates 6232 erected on the bottom plate 6231. The third carrier 622 is installed between the two support plates 6232. The two support plates 6232 are respectively provided with There is a shaft hole 6233 provided opposite to the fixing hole 6223. Both ends of the shaft body 625 are respectively inserted into the shaft hole 6233 and are rotationally connected to the second base 623.

參見圖54-55第二驅動單元624包括第三驅動磁鐵6241和第三線圈6242。其中,第三驅動磁鐵6241和第三線圈6242的其中一者設置在第二基座623的底板6231朝向第三載體622的一側,第三驅動磁鐵6241和第三線圈6242的另一者設置在第三載體622與第二基座623的底板6231相對應的位置。例如,圖55-57所示,將第三線圈6242設置在第二基座623的底板6231朝向第三載體622的一側,第三驅動磁鐵6241設置在第三載體622上;反之亦然。在本較佳實施例中,參見圖54,第三驅動磁鐵6241呈L型,包覆在第三載體622靠近第三線圈6242的轉角處。 Referring to Figures 54-55, the second driving unit 624 includes a third driving magnet 6241 and a third coil 6242. Among them, one of the third driving magnet 6241 and the third coil 6242 is disposed on the side of the bottom plate 6231 of the second base 623 facing the third carrier 622, and the other of the third driving magnet 6241 and the third coil 6242 is disposed. At a position where the third carrier 622 corresponds to the bottom plate 6231 of the second base 623 . For example, as shown in Figures 55-57, the third coil 6242 is disposed on the side of the bottom plate 6231 of the second base 623 facing the third carrier 622, and the third driving magnet 6241 is disposed on the third carrier 622; vice versa. In this preferred embodiment, referring to FIG. 54 , the third driving magnet 6241 is L-shaped and wrapped at the corner of the third carrier 622 close to the third coil 6242 .

第三線圈6242通電後產生磁場後與第三驅動磁鐵6241產生相互作用力,進而推動第三載體622以軸體625為中心往復轉動一定角度。 After the third coil 6242 is energized, it generates a magnetic field and generates an interaction force with the third driving magnet 6241, thereby pushing the third carrier 622 to reciprocate at a certain angle with the shaft 625 as the center.

軸體625的兩端配有用於抵接軸體625的抵接件626,抵接件626固定於支撐板6232上,抵接件626為片體,軸體625的兩端端面呈平面狀。具體地,抵接件626固定於支撐板6232遠離軸體625的另一側表面。軸體625的兩端分別與相對應的抵接件626之間設有用於減少轉動摩擦阻力的降阻結構627。 The two ends of the shaft body 625 are equipped with abutting pieces 626 for abutting the shaft body 625. The abutting pieces 626 are fixed on the support plate 6232. The abutting pieces 626 are pieces, and the two end surfaces of the shaft body 625 are flat. Specifically, the contact member 626 is fixed to the other side surface of the support plate 6232 away from the shaft 625 . Resistance reducing structures 627 for reducing rotational friction resistance are provided between the two ends of the shaft 625 and the corresponding contact pieces 626 respectively.

參見圖55,在一些實施例中,降阻結構627是在軸體625與抵接件626之間設置的獨立的球體結構,為一種球形體結構件,其大致呈圓球 體狀。其中,軸體625的兩端的端面為平面狀。抵接件626為片狀。軸體625的一端端面和抵接件626的表面分別抵接在降阻結構627的兩側。軸體625的另一端端面和另一個抵接件626的表面分別抵接在另一個降阻結構627的兩側。 Referring to Figure 55, in some embodiments, the drag reduction structure 627 is an independent spherical structure provided between the shaft 625 and the contact member 626. It is a spherical structure member, which is generally in the shape of a sphere. body shape. The end surfaces of both ends of the shaft 625 are flat. The contact piece 626 is in a sheet shape. One end surface of the shaft body 625 and the surface of the contact member 626 are respectively in contact with both sides of the drag reduction structure 627 . The other end surface of the shaft body 625 and the surface of the other contact member 626 are respectively in contact with both sides of the other drag reducing structure 627.

參見圖56,在另一些實施例中,降阻結構627是在抵接件626朝向軸體625的一側凸伸形成的半球體結構,為一種半球體結構部,即在片體的抵接件626上凸伸形成的半球體。軸體625的兩端的端面為平面狀。軸體625的一端端面抵接在抵接件626上的降阻結構627上,軸體625的另一端端面抵接在另一個抵接件626上的降阻結構627上。 Referring to Figure 56, in other embodiments, the drag reduction structure 627 is a hemispherical structure formed by protruding from the side of the abutment member 626 toward the shaft 625. It is a hemispherical structure part, that is, the abutment of the sheet body. A hemisphere formed by protruding from member 626. The end surfaces of both ends of the shaft 625 are flat. One end surface of the shaft body 625 is in contact with the resistance reducing structure 627 on the abutment member 626 , and the other end surface of the shaft body 625 is in contact with the resistance reduction structure 627 on the other abutment member 626 .

參見圖57,在另一些實施例中,降阻結構627是在軸體625的兩端端面形成的球體結構,為一種圓頭部,抵接件626為片狀。兩個抵接件626分別抵接在軸體625的兩端的降阻結構627上。 Referring to FIG. 57 , in other embodiments, the drag reduction structure 627 is a spherical structure formed on both ends of the shaft 625 , which is a round head, and the contact member 626 is in the shape of a sheet. The two contact pieces 626 respectively contact the resistance reducing structures 627 at both ends of the shaft body 625 .

通過上述設計,軸體625的兩端分別與相對應的抵接件626之間設有降阻結構627,可以減少轉動摩擦阻力。 Through the above design, resistance reducing structures 627 are provided between the two ends of the shaft body 625 and the corresponding contact pieces 626, which can reduce the rotational friction resistance.

第十四實施例如圖58-59所示,在第十三實施例的基礎上進一步地,兩個支撐板6232與第三載體622的兩側側板6222分別設置有相互排斥的至少一對磁鐵元件,每一對磁鐵元件包括第一磁鐵6100和第二磁鐵6200,第一磁鐵6100與第二磁鐵6200的相同磁極相對設置,即第一磁鐵6100的S極與第二磁鐵6200的S極相對設置,或者第一磁鐵6100的N極與第二磁鐵6200的N相對設置。 The Fourteenth Embodiment is shown in Figures 58-59. Based on the Thirteenth Embodiment, further, the two support plates 6232 and the side plates 6222 on both sides of the third carrier 622 are respectively provided with at least one pair of mutually exclusive magnet elements. , each pair of magnet elements includes a first magnet 6100 and a second magnet 6200. The same magnetic poles of the first magnet 6100 and the second magnet 6200 are arranged oppositely, that is, the S pole of the first magnet 6100 is arranged opposite to the S pole of the second magnet 6200. , or the N pole of the first magnet 6100 and the N pole of the second magnet 6200 are arranged opposite to each other.

通過在第三載體622的兩側與第二基座623之間分別設計一對相斥的磁鐵,防止第三載體622在以軸體625轉動時產生其它方向(如左右方向)的偏擺,確保OIS執行的精密度,同時也使得第三載體622可因磁力抵接固定在第二基座623上。 By designing a pair of mutually repelling magnets between both sides of the third carrier 622 and the second base 623, the third carrier 622 is prevented from deflecting in other directions (such as the left and right directions) when rotating with the shaft 625. This ensures the precision of OIS execution and also allows the third carrier 622 to be abutted and fixed on the second base 623 due to magnetic force.

參見圖58,在一些實施例中,第二基座623的每一個支撐板6232朝向第三載體622的一側開設有第一凹槽6234,第一磁鐵6100與第一凹槽6234相適配且設置在第一凹槽6234內;第三載體622朝向支撐板6232的兩側分別與第一凹槽6234相對應的位置開設有第二凹槽6224,第二磁鐵6200與第二凹槽6224相適配且設置在第二凹槽6224內。其中,第一凹槽6234是獨立於軸孔6233另外開設在支撐板6232上的,同樣地,第二凹槽6224也是獨立於固定孔6223另外開設在第三載體622的側板6222上的。 Referring to Figure 58, in some embodiments, each support plate 6232 of the second base 623 is provided with a first groove 6234 on the side facing the third carrier 622, and the first magnet 6100 is adapted to the first groove 6234. and is disposed in the first groove 6234; the third carrier 622 is provided with second grooves 6224 at positions corresponding to the first groove 6234 on both sides of the support plate 6232. The second magnet 6200 and the second groove 6224 Adapted and arranged in the second groove 6224. The first groove 6234 is formed on the support plate 6232 independently of the shaft hole 6233. Similarly, the second groove 6224 is formed on the side plate 6222 of the third carrier 622 independently of the fixing hole 6223.

參見圖59,在另外一些實施例中,每一個支撐板6232朝向第三載體622的一側在軸孔6233周圍形成有環狀的第一沉孔6235,第一沉孔6235是非貫通的孔,軸孔6233是貫通的孔且位於第一沉孔6235的中心。第一沉孔6235可以是圓環狀的、三角環狀的、方環狀的任意形的環狀。第一磁鐵6100與第一沉孔6235相適配且設置在第一沉孔6235內,第一磁鐵6100上開設有用於穿插所述軸體625的貫穿孔6300。第三載體622朝向支撐板6232的兩側在固定孔6223的周圍形成有環狀的第二沉孔6225,第二沉孔6225是非貫通的孔,固定孔6223是貫通的孔且位於第二沉孔6225的中心。第二磁鐵6200與第二沉孔6225相適配且設置在第二沉孔6225內,第二磁鐵6200上開設有用於穿插軸體625的貫穿孔6300。 Referring to Figure 59, in some other embodiments, an annular first counterbore 6235 is formed around the shaft hole 6233 on the side of each support plate 6232 facing the third carrier 622. The first counterbore 6235 is a non-through hole. The shaft hole 6233 is a through hole and is located at the center of the first counterbore 6235 . The first counterbore 6235 may be a circular ring, a triangular ring, a square ring, or any other ring shape. The first magnet 6100 is adapted to the first counterbore 6235 and is disposed in the first counterbore 6235. The first magnet 6100 is provided with a through hole 6300 for inserting the shaft 625. An annular second countersunk hole 6225 is formed around the fixing hole 6223 on both sides of the third carrier 622 facing the support plate 6232. The second countersunk hole 6225 is a non-through hole, and the fixing hole 6223 is a through hole and is located in the second countersunk hole. The center of hole 6225. The second magnet 6200 is adapted to the second counterbore 6225 and is disposed in the second counterbore 6225. The second magnet 6200 is provided with a through hole 6300 for inserting the shaft 625.

以上內容僅為本發明的較佳實施例,對於本領域的普通技術人員,依據本發明的思想,在具體實施方式及應用範圍上可以作出許多變化,只要這些變化未脫離本發明的構思,均屬於本發明的保護範圍。 The above contents are only preferred embodiments of the present invention. For those of ordinary skill in the art, many changes can be made in the specific implementation modes and application scope according to the ideas of the present invention. As long as these changes do not deviate from the concept of the present invention, they are not affected by the present invention. belong to the protection scope of the present invention.

1200:鏡頭裝置 1200:Lens device

1201:第二光路轉折模組 1201: Second optical path turning module

1202:第一透鏡模組 1202: First lens module

1203:第一光路轉折模組 1203: The first light path turning module

1204:影像感測器 1204:Image sensor

12011:光路轉折單元底座 12011: Optical path turning unit base

12012:光路轉折單元 12012: Optical path turning unit

12021:透鏡單元固定座 12021: Lens unit holder

12031:第一稜鏡單元 12031:The first unit

12031a:第一面 12031a: Side 1

2031b:第二面 2031b: Side 2

12031c:第三面 12031c:The third side

12041:成像單元 12041: Imaging unit

Claims (13)

一種鏡頭裝置,包括:第一透鏡模組;第一光路轉折模組包括第一反射模組以及第二反射模組;影像感測器;基座;第一滑塊機構;第二滑塊機構;其中所述第一透鏡模組、所述第一光路轉折模組及所述影像感測器沿一光線行進的路徑依序排列;其中所述第一光路轉折模組改變所述光線行進的方向,使通過所述第一透鏡模組的光線成像在所述影像感測器;所述第一反射模組和第二反射模組可移動地設置在所述基座上;所述第一滑塊機構和第二滑塊機構與所述基座滑動連接。 A lens device, including: a first lens module; a first optical path turning module including a first reflection module and a second reflection module; an image sensor; a base; a first slider mechanism; a second slider mechanism ; wherein the first lens module, the first optical path turning module and the image sensor are arranged in sequence along a path of light; wherein the first optical path turning module changes the path of the light direction, so that the light passing through the first lens module is imaged on the image sensor; the first reflection module and the second reflection module are movably arranged on the base; the first The slider mechanism and the second slider mechanism are slidingly connected with the base. 一種鏡頭裝置,包括:第一透鏡模組;第一光路轉折模組包括第一反射模組以及第二反射模組;影像感測器;第一基座;其中所述第一透鏡模組、所述第一光路轉折模組及所述影像感測器沿一光線行進的路徑依序排列;其中所述第一光路轉折模組改變所述光線行進的方向,使通過所述第一透鏡模組的光線成像在所述影像感測器;所述第一反射模組和所述第二反射模組分別通過至少一滑動單元與所 述第一基座滑動連接。 A lens device, including: a first lens module; a first optical path turning module including a first reflection module and a second reflection module; an image sensor; a first base; wherein the first lens module, The first optical path turning module and the image sensor are arranged in sequence along a path of light; wherein the first optical path turning module changes the direction of the light so that it passes through the first lens module. A set of light is imaged on the image sensor; the first reflective module and the second reflective module are connected to each other through at least one sliding unit. The first base is slidingly connected. 一種鏡頭裝置,包括:第一透鏡模組;第一光路轉折模組,包括第一反射模組以及第二反射模組;影像感測器;滑動單元;及第一基座;其中所述第一反射模組包括第一反射部件和第一載體,所述第一反射部件安裝在所述第一載體上;其中所述第二反射模組包括第二反射部件和第二載體,所述第二反射部件安裝在所述第二載體上;其中所述第一透鏡模組、所述第一光路轉折模組、所述影像感測器依光線行進的路徑依序排列;其中所述第一光路轉折模組改變所述光線行進的方向,使通過所述第一透鏡模組的光線成像在所述影像感測器;沿一第一方向觀察所述第一透鏡模組與所述影像感測器所在的平面至少有部分重疊;其中所述第一反射模組和所述第二反射模組分別通過至少一個所述的滑動單元與所述第一基座滑動連接。 A lens device, including: a first lens module; a first optical path turning module, including a first reflection module and a second reflection module; an image sensor; a sliding unit; and a first base; wherein the third A reflective module includes a first reflective component and a first carrier, and the first reflective component is installed on the first carrier; wherein the second reflective module includes a second reflective component and a second carrier, and the first reflective component is mounted on the first carrier. Two reflective components are installed on the second carrier; wherein the first lens module, the first optical path turning module, and the image sensor are arranged in sequence according to the path of light; wherein the first The light path turning module changes the direction in which the light travels, so that the light passing through the first lens module is imaged on the image sensor; the first lens module and the image sensor are observed along a first direction. The plane where the detector is located at least partially overlaps; wherein the first reflection module and the second reflection module are slidingly connected to the first base through at least one of the sliding units. 一種鏡頭裝置,包括:第一透鏡模組;第一光路轉折模組包括第一面、第二面以及第三面;影像感測器;基座; 其中所述第一透鏡模組、所述第一光路轉折模組及所述影像感測器沿一光線行進的路徑依序排列;其中所述第一光路轉折模組改變所述光線行進的方向,使通過所述第一透鏡模組的光線成像在所述影像感測器;其中所述第一光路轉折模組通過至少一滑動單元與所述基座滑動連接;其中所述第一面與所述第一透鏡模組的光軸垂直;其中所述第二面與第三面夾角範圍為64.125度~70.875度。 A lens device, including: a first lens module; a first optical path turning module including a first surface, a second surface and a third surface; an image sensor; a base; The first lens module, the first light path turning module and the image sensor are arranged in sequence along a path of light; wherein the first light path turning module changes the direction of the light. , so that the light passing through the first lens module is imaged on the image sensor; wherein the first optical path turning module is slidingly connected to the base through at least one sliding unit; wherein the first surface is The optical axis of the first lens module is vertical; the angle range between the second surface and the third surface is 64.125 degrees to 70.875 degrees. 一種鏡頭裝置,包括:第一透鏡模組;第一光路轉折模組包括第一稜鏡單元,所述第一稜鏡單元包括第一面、第二面以及第三面;影像感測器;基座;其中所述第一透鏡模組、所述第一光路轉折模組及所述影像感測器沿一光線行進的路徑依序排列;其中所述第一光路轉折模組改變所述光線行進的方向,使通過所述第一透鏡模組的光線成像在所述影像感測器;其中所述第一光路轉折模組通過至少一滑動單元與所述基座滑動連接;其中所述第三面上鍍有反射膜;其中在所述第一稜鏡單元內利用全反射以垂直於所述第二面的方向從所述第二面出射;其中所述第一面與所述第二面夾角範圍為47.5度~52.5度。 A lens device, including: a first lens module; a first optical path turning module including a first lens unit, the first lens unit including a first surface, a second surface and a third surface; an image sensor; Base; wherein the first lens module, the first optical path turning module and the image sensor are sequentially arranged along a path of light; wherein the first optical path turning module changes the light The direction of travel is such that the light passing through the first lens module is imaged on the image sensor; wherein the first optical path turning module is slidingly connected to the base through at least one sliding unit; wherein the third Three surfaces are coated with reflective films; wherein total reflection is used in the first reflection unit to emit from the second surface in a direction perpendicular to the second surface; wherein the first surface and the second surface are The included angle range is 47.5 degrees to 52.5 degrees. 如申請專利範圍第2項所述的鏡頭裝置,其中:所述第一反射模組包括第一反射部件和第一載體,所述第一反射部件安 裝在所述第一載體上;所述第二反射模組包括第二反射部件和第二載體,所述第二反射部件安裝在所述第二載體上,所述滑動單元為滾珠;所述第一載體和所述第一基座中的其中一者形成有用於供所述滾珠定位滾動的至少一第一容置槽,所述第一載體和所述第一基座中的另一者的相對應位置形成有沿所述第一載體的運動方向延伸的至少一第一滑槽;所述第二載體和所述第一基座中的其中一者形成有用於供所述滾珠定位滾動的至少一第二容置槽,所述第二載體和所述第一基座中的另一者的相對應位置形成有沿所述第二載體的運動方向延伸的至少一第二滑槽。 The lens device as described in item 2 of the patent application, wherein: the first reflective module includes a first reflective component and a first carrier, and the first reflective component is installed Mounted on the first carrier; the second reflective module includes a second reflective component and a second carrier, the second reflective component is installed on the second carrier, the sliding unit is a ball; the One of the first carrier and the first base is formed with at least one first accommodation groove for positioning and rolling of the ball, and the other of the first carrier and the first base is formed At least one first chute extending along the movement direction of the first carrier is formed at the corresponding position; one of the second carrier and the first base is formed with a groove for positioning and rolling of the ball. At least one second receiving groove is provided, and at least one second slide groove extending along the movement direction of the second carrier is formed at a corresponding position of the other one of the second carrier and the first base. 如申請專利範圍第2項、第3項、第4項、或第5項所述的鏡頭裝置,更包括一驅動單元,其中:所述第一光路轉折模組包括第一反射模組以及第二反射模組;所述第二反射模組用於反射來自所述第一反射模組的光線;所述驅動單元用於驅動所述第一反射模組和第二反射模組同向或反向運動;所述驅動單元包括基座、第一驅動元件和第二驅動元件,所述第一驅動元件和第二驅動元件驅動所述第一反射模組和第二反射模組可移動地設置在所述基座上;其中,所述第一驅動元件還包括第一滑塊機構,第一滑塊機構與所述第一反射模組固定連接;所述第二驅動元件還包括第二滑塊機構,第二滑塊機構與所述第二反射模組固定連接;所述第一滑塊機構和第二滑塊機構與所述基座滑動連接;所述驅動單元還包括與所述基座固定連接的軸體,所述第一滑塊機構和 第二滑塊機構套設在所述軸體上。 The lens device as described in Item 2, Item 3, Item 4, or Item 5 of the patent application further includes a driving unit, wherein: the first optical path turning module includes a first reflective module and a third Two reflective modules; the second reflective module is used to reflect the light from the first reflective module; the driving unit is used to drive the first reflective module and the second reflective module in the same direction or in opposite directions. to move; the driving unit includes a base, a first driving element and a second driving element, the first driving element and the second driving element drive the first reflective module and the second reflective module to be movably arranged On the base; wherein, the first driving element also includes a first slider mechanism, which is fixedly connected to the first reflective module; the second driving element also includes a second slider mechanism. The second slider mechanism is fixedly connected to the second reflective module; the first slider mechanism and the second slider mechanism are slidingly connected to the base; the drive unit also includes a The shaft body is fixedly connected to the seat, the first slider mechanism and The second slider mechanism is sleeved on the shaft body. 如申請專利範圍第7項所述的鏡頭裝置,其中:所述第一驅動元件包括設置在所述基座與所述第一反射模組其中一者上的第一磁鐵、以及設置在另一者上的第一印刷電路單元和第一吸引磁軛;所述第二驅動元件包括設置在所述基座與所述第二反射模組其中一者上的第二磁鐵、以及設置在另一者上的第二印刷電路單元和第二吸引磁軛;所述第一印刷電路單元包括第一線圈和第一電路板,所述第一線圈印刷在所述第一電路板與所述第一磁鐵相對的一面上;所述第二印刷電路單元包括第二線圈和第二電路板,所述第二線圈印刷在所述第二電路板與所述第二磁鐵相對的一面上;所述第一印刷電路單元還包括第一驅動晶片和第一晶片冷凝器,所述第一驅動晶片和第一晶片冷凝器安裝在所述第一電路板的另一面上;所述第二印刷電路單元還包括第二驅動晶片和第二晶片冷凝器,所述第二驅動晶片和第二晶片冷凝器安裝在所述第二電路板的另一面上。 The lens device according to claim 7, wherein the first driving element includes a first magnet provided on one of the base and the first reflective module, and a first magnet provided on the other the first printed circuit unit and the first magnetic yoke; the second driving element includes a second magnet provided on one of the base and the second reflective module, and a second magnet provided on the other a second printed circuit unit and a second attracting yoke; the first printed circuit unit includes a first coil and a first circuit board, and the first coil is printed on the first circuit board and the first on the side opposite to the magnet; the second printed circuit unit includes a second coil and a second circuit board, and the second coil is printed on the side opposite to the second circuit board and the second magnet; A printed circuit unit also includes a first driving chip and a first wafer condenser, the first driving chip and the first wafer condenser are installed on the other side of the first circuit board; the second printed circuit unit also It includes a second driving wafer and a second wafer condenser, and the second driving wafer and the second wafer condenser are installed on the other side of the second circuit board. 如申請專利範圍第1項、第3項、第4項、或第5項所述的鏡頭裝置,更包括第一基座、第一驅動單元、滑動單元以及第二光路轉折模組,其中:所述第一光路轉折模組包括第一反射模組以及第二反射模組;所述第二反射模組用於反射來自所述第一反射模組的光線;所述第一驅動單元用於驅動所述第一反射模組和所述第二反射模組在所述第一基座上同向運動或反向運動;所述第一反射模組和所述第二反射模組分別通過至少一滑動單元與所述第一基座滑動連接; 所述第二光路轉折模組用於接收物側光線並加以反射,包括第三反射部件、第三載體、第二基座以及第二驅動單元,所述第三反射部件用於接收物側光線並加以反射,所述第三載體用於承載安裝所述第三反射部件,所述第二基座用於安裝所述第三載體,所述第三載體通過軸體相對於所述第二基座轉動,所述第三載體固定連接在所述軸體上,所述軸體的兩端分別與所述第二基座連接,所述第二驅動單元用於驅動所述第三載體轉動。 The lens device as described in Item 1, Item 3, Item 4, or Item 5 of the patent application further includes a first base, a first driving unit, a sliding unit and a second optical path turning module, wherein: The first optical path turning module includes a first reflective module and a second reflective module; the second reflective module is used to reflect light from the first reflective module; the first driving unit is used to The first reflective module and the second reflective module are driven to move in the same direction or in opposite directions on the first base; the first reflective module and the second reflective module pass through at least A sliding unit is slidingly connected to the first base; The second optical path turning module is used to receive and reflect object-side light, and includes a third reflective component, a third carrier, a second base, and a second driving unit. The third reflective component is used to receive object-side light. and reflect, the third carrier is used to carry and install the third reflective component, the second base is used to install the third carrier, and the third carrier is relative to the second base through a shaft. The base rotates, the third carrier is fixedly connected to the shaft body, both ends of the shaft body are respectively connected to the second base, and the second driving unit is used to drive the third carrier to rotate. 如申請專利範圍第1項所述的鏡頭裝置,其中:所述第一透鏡模組具有沿著第一方向的光軸;所述第二光路轉折模組用於接收沿著第二方向入射的光線並將其沿第一方向反射到所述第一透鏡模組;所述第一光路轉折模組設置在所述第一透鏡模組和所述影像感測器之間且包括第一稜鏡單元及第二稜鏡單元,所述第一稜鏡單元包括第一面、第二面以及第三面,光線從所述第一面入射到所述第一稜鏡單元,所述第二面與所述影像感測器彼此相對,光線在所述第一稜鏡單元內發生全反射並從所述第二面出射,所述第二稜鏡單元包括第四面以及第五面,第四面與所述第一透鏡模組彼此相對,第五面與所述第一面彼此相對且兩者之間留有空氣間隙;或者所述第一光路轉折模組包括第一反射部件以及第二反射部件,該第一反射部件設置於該第一透鏡模組與該影像感測器之間,該第一反射部件包括第一勾股反射面、第二勾股反射面以及第一弦長面;該第二反射部件設置於該第一反射部件與該第一透鏡模組之間,其具有第三勾股反射面、第四勾股反射面以及第二弦長面,且該第二反射部件沿著平行於該第二弦長面方向移動進行影像手震補正,以及該第二反射部件沿著垂直於該第二弦長面方向移動進行焦距調整;或者 所述鏡頭裝置更包括基座、第三光路轉折模組、第二光路轉折模組、以及第二透鏡模組;所述第三光路轉折模組用於將沿著第二方向入射的光線反射到第一方向;所述第二光路轉折模組用於將沿著第二方向入射的光線反射到第一方向;所述第二透鏡模組用於接收所述第三光路轉折模組反射的光線且具有沿著第一方向的第二光軸;所述第一透鏡模組用於接收所述第二光路轉折模組反射的光線且具有沿著第一方向的第一光軸;所述第一光路轉折模組用於將經所述第一透鏡模組出射的光線反射到所述影像感測器;所述的第三光路轉折模組、第二透鏡模組、第二光路轉折模組、第一透鏡模組、第一光路轉折模組、影像感測器依光線行進的路徑順序設置在所述基座上;所述第二光路轉折模組在第一位置和第二位置之間切換,所述第一方向和第二方向相互垂直;當所述第二光路轉折模組在所述第一位置,所述第二光路轉折模組遮擋來自所述第二透鏡模組的光線;當所述第二光路轉折模組在所述第二位置,所述第二光路轉折模組偏離所述第二光軸,使得來自所述第二透鏡模組的光線進入所述第一透鏡模組;所述鏡頭裝置還包括驅動所述第二光路轉折模組沿著第三方向平移偏離到所述第二位置或回到所述第一位置的第二光路轉折模組驅動單元,所述第一、第二、第三方向相互垂直;或者所述第一透鏡模組具有沿著第一方向的光軸;所述第一光路轉折模組包括第一反射部件以及第二反射部件;所述的第一反射部件用於接收通過所述第一透鏡模組的光線並加以反射;所述第一反射部件可沿著與所述第一方向垂直的第三方向運動地設置在所述第一透鏡模組和影像感測器之間;所述的第二反射部件用於反射來自所述第一反射部件的光線;所述第二反射部件可與所述第一反射部件同向或反向運動地設置在所述第一透鏡模組和影像感測器之間;或者 所述第一透鏡模組具有沿著第一方向的光軸;所述第一光路轉折模組包括第一反射部件、第二反射部件以及第三反射部件;所述的第一反射部件用於接收通過所述第一透鏡模組的光線並加以反射,所述第一反射部件可沿著所述第一方向運動地設置在所述第一透鏡模組和影像感測器之間;所述的第二反射部件用於反射來自所述第一反射部件的光線,所述第二反射部件可與所述第一反射部件同向或反向運動地設置在所述第一透鏡模組和影像感測器之間;所述的第三反射部件用於將來自所述第一透鏡模組的光線反射到所述第一反射部件,所述第三反射部件設置在所述第一透鏡模組和影像感測器之間;或者所述的鏡頭裝置更包括第二光路轉折模組以及第二透鏡模組;所述第二光路轉折模組在第一位置和第二位置之間切換;所述第二透鏡模組具有沿著第一方向的第二光軸;當所述第二光路轉折模組在所述第一位置,所述第二光路轉折模組遮擋來自所述第二透鏡模組的光線;當所述第二光路轉折模組在所述第二位置,所述第二光路轉折模組偏離所述第二光軸,使得來自所述第二透鏡模組的光線進入所述第一透鏡模組;所述鏡頭裝置還包括驅動第二光路轉折模組繞軸旋轉從而偏離到所述第二位置或回到所述第一位置的第二光路轉折模組驅動單元;或者該第一光路轉折模組包括複數個反射部件,用於多次反射所述光線而後成像在所述影像感測器;所述第一透鏡模組具有沿著第一方向的光軸;所述影像感測器所在的平面與所述第一透鏡模組之光軸平行或相交形成不等於90度夾角。 The lens device as described in item 1 of the patent application, wherein: the first lens module has an optical axis along the first direction; the second optical path turning module is used to receive incident light along the second direction. The light is reflected along the first direction to the first lens module; the first optical path turning module is disposed between the first lens module and the image sensor and includes a first lens module unit and a second pixel unit, the first pixel unit includes a first surface, a second surface and a third surface, light is incident from the first surface to the first pixel unit, the second surface Opposite to the image sensors, the light is totally reflected in the first lens unit and emerges from the second surface. The second lens unit includes a fourth surface and a fifth surface. The fourth surface The surface and the first lens module are opposite to each other, the fifth surface and the first surface are opposite to each other, and there is an air gap between them; or the first optical path turning module includes a first reflective component and a second Reflective component. The first reflective component is disposed between the first lens module and the image sensor. The first reflective component includes a first Pythagorean reflective surface, a second Pythagorean reflective surface and a first chord surface. ; The second reflective component is disposed between the first reflective component and the first lens module, and has a third Pythagorean reflective surface, a fourth Pythagorean reflective surface and a second chord surface, and the second reflective component The component moves in a direction parallel to the second chord plane to correct image shake, and the second reflective component moves in a direction perpendicular to the second chord plane to adjust the focus; or The lens device further includes a base, a third light path turning module, a second light path turning module, and a second lens module; the third light path turning module is used to reflect light incident along the second direction. to the first direction; the second optical path turning module is used to reflect the light incident along the second direction to the first direction; the second lens module is used to receive the light reflected by the third optical path turning module The light has a second optical axis along the first direction; the first lens module is used to receive the light reflected by the second optical path turning module and has a first optical axis along the first direction; the The first optical path turning module is used to reflect the light emitted through the first lens module to the image sensor; the third optical path turning module, the second lens module, and the second optical path turning module The group, the first lens module, the first optical path turning module, and the image sensor are arranged on the base in sequence according to the path of the light; the second optical path turning module is between the first position and the second position. Switch between, the first direction and the second direction are perpendicular to each other; when the second optical path turning module is in the first position, the second optical path turning module blocks the light from the second lens module ; When the second optical path turning module is in the second position, the second optical path turning module deviates from the second optical axis, so that the light from the second lens module enters the first lens Module; the lens device further includes a second optical path turning module driving unit that drives the second optical path turning module to translate in a third direction and deviate to the second position or return to the first position, so The first, second, and third directions are perpendicular to each other; or the first lens module has an optical axis along the first direction; the first optical path turning module includes a first reflective component and a second reflective component; The first reflective component is used to receive and reflect light passing through the first lens module; the first reflective component is movably disposed on the third direction along a third direction perpendicular to the first direction. Between the first lens module and the image sensor; the second reflective component is used to reflect the light from the first reflective component; the second reflective component can be in the same direction as the first reflective component or Disposed between the first lens module and the image sensor with reverse movement; or The first lens module has an optical axis along the first direction; the first optical path turning module includes a first reflective component, a second reflective component and a third reflective component; the first reflective component is used to Receive the light passing through the first lens module and reflect it, and the first reflective component is disposed movably along the first direction between the first lens module and the image sensor; The second reflective component is used to reflect the light from the first reflective component. The second reflective component can be disposed between the first lens module and the image in the same direction or opposite direction as the first reflective component. between the sensors; the third reflective component is used to reflect the light from the first lens module to the first reflective component, and the third reflective component is disposed on the first lens module and the image sensor; or the lens device further includes a second optical path turning module and a second lens module; the second optical path turning module switches between the first position and the second position; so The second lens module has a second optical axis along the first direction; when the second optical path turning module is in the first position, the second optical path turning module blocks the light from the second lens module. group of light rays; when the second optical path turning module is in the second position, the second optical path turning module deviates from the second optical axis, so that the light from the second lens module enters the a first lens module; the lens device further includes a second optical path turning module driving unit that drives the second optical path turning module to rotate around an axis to deviate to the second position or return to the first position; or the The first optical path turning module includes a plurality of reflective components for reflecting the light multiple times and then imaging it on the image sensor; the first lens module has an optical axis along the first direction; the image The plane where the sensor is located is parallel to or intersects with the optical axis of the first lens module to form an included angle that is not equal to 90 degrees. 如申請專利範圍第1項、第2項、第4項、或第5項所述的鏡頭裝置,其中:該第一光路轉折模組包括複數個反射部件,用於多次反射所述光線而後成像在所述影像感測器; 所述第一透鏡模組具有沿著第一方向的光軸;當所述影像感測器所在的平面與所述第一透鏡模組之光軸垂直時,沿所述第一方向觀察所述第一透鏡模組與所述影像感測器所在的平面至少有部分重疊。 The lens device as described in Item 1, Item 2, Item 4, or Item 5 of the patent application, wherein: the first optical path turning module includes a plurality of reflective components for reflecting the light multiple times and then Imaging on the image sensor; The first lens module has an optical axis along a first direction; when the plane where the image sensor is located is perpendicular to the optical axis of the first lens module, the first lens module is viewed along the first direction. The first lens module at least partially overlaps the plane where the image sensor is located. 如申請專利範圍第1項、第2項、第3項、或第5項所述的鏡頭裝置,其中:所述第一光路轉折模組包括第一稜鏡單元,所述第一稜鏡單元包括第一面、第二面以及第三面,光線從所述第一面入射所述第一稜鏡單元,在所述第一稜鏡單元內發生至少三次全反射,以垂直於所述第二面的方向從所述第二面出射;所述第一面與所述第一透鏡模組的光軸垂直,所述第一面與第二面夾角範圍為42.75度~47.25度,所述第二面與第三面夾角範圍為64.125度~70.875度,所述第一面與第三面夾角範圍為64.125度~70.875度。 The lens device as described in Item 1, Item 2, Item 3, or Item 5 of the patent application, wherein: the first optical path turning module includes a first lens unit, and the first lens unit It includes a first surface, a second surface and a third surface. Light is incident on the first surface unit from the first surface and undergoes at least three total reflections in the first surface unit to be perpendicular to the third surface. The direction of the two surfaces emerges from the second surface; the first surface is perpendicular to the optical axis of the first lens module, and the angle range between the first surface and the second surface is 42.75 degrees to 47.25 degrees. The angle range between the second surface and the third surface is 64.125 degrees to 70.875 degrees, and the angle range between the first surface and the third surface is 64.125 degrees to 70.875 degrees. 如申請專利範圍第1項、第2項、第3項、或第4項所述的鏡頭裝置,其中:所述第一光路轉折模組包括第一稜鏡單元以及第二稜鏡單元,所述第一稜鏡單元包括第一面、第二面以及第三面,所述第二稜鏡單元包括第四面、第五面以及第六面;所述第四面與所述第一透鏡模組彼此相對,所述第五面與所述第一面彼此相對且兩者之間留有空氣間隙;所述第三面上鍍有反射膜且朝向所述第一透鏡模組的方向傾斜設置;光線依序通過所述第二稜鏡單元以及所述第一稜鏡單元,在所述第一稜鏡單元內利用全反射以垂直於所述第二面的方向從所述第二面出射;所述第二面與所述第三面夾角範圍為85.5度~94.5度,所述第一面與所述第二面夾角範圍為47.5度~52.5度,所述第一面與所述第三面夾角範圍為38度~42度,所述第四面與所述第五面夾角範圍為28.5度~31.5度,所述 第五面與所述第六面夾角範圍為57度~63度。 The lens device as described in Item 1, Item 2, Item 3, or Item 4 of the patent application, wherein: the first optical path turning module includes a first lens unit and a second lens unit, so The first lens unit includes a first surface, a second surface and a third surface, the second lens unit includes a fourth surface, a fifth surface and a sixth surface; the fourth surface and the first lens The modules are opposite to each other, and the fifth surface and the first surface are opposite to each other with an air gap between them; the third surface is coated with a reflective film and is tilted toward the direction of the first lens module. Set; the light passes through the second lens unit and the first lens unit sequentially, and uses total reflection in the first lens unit to pass from the second surface in a direction perpendicular to the second surface. Ejection; the angle range between the second surface and the third surface is 85.5 degrees ~ 94.5 degrees, the angle range between the first surface and the second surface is 47.5 degrees ~ 52.5 degrees, the first surface and the The included angle range of the third surface is 38 degrees to 42 degrees, and the included angle range of the fourth surface and the fifth surface is 28.5 degrees to 31.5 degrees. The angle range between the fifth surface and the sixth surface is 57 degrees to 63 degrees.
TW109128237A 2019-10-08 2020-08-19 Lens device TWI831997B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/035,977 US11528396B2 (en) 2019-10-08 2020-09-29 Lens device
US17/976,226 US11863854B2 (en) 2019-10-08 2022-10-28 Lens device capable of operation of multi-magnifications, optical zoom in high magnification, and miniaturization of the lens module thereof

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201921676433.3 2019-10-08
CN201921676433.3U CN211043769U (en) 2019-10-08 2019-10-08 Lens device
CN201922145167.8U CN211014973U (en) 2019-11-29 2019-11-29 Camera lens
CN201922145167.8 2019-11-29
CN201922291971.7U CN211207029U (en) 2019-12-18 2019-12-18 Lens device
CN201922291971.7 2019-12-18
CN201922387683.1U CN211263930U (en) 2019-12-25 2019-12-25 Periscopic lens
CN201922387683.1 2019-12-25
CN202020206031.3 2020-02-24
CN202020206031 2020-02-24
CN202020291929.5 2020-03-10
CN202020291929 2020-03-10

Publications (2)

Publication Number Publication Date
TW202115452A TW202115452A (en) 2021-04-16
TWI831997B true TWI831997B (en) 2024-02-11

Family

ID=76604330

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109128237A TWI831997B (en) 2019-10-08 2020-08-19 Lens device

Country Status (1)

Country Link
TW (1) TWI831997B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100451717C (en) * 2005-11-16 2009-01-14 索尼株式会社 Image capture apparatus and zoom lens
US7515194B2 (en) * 2003-07-31 2009-04-07 Olympus Corporation Image pickup optical system and optical apparatus using the same
CN206421098U (en) * 2016-10-17 2017-08-18 陈松明 A kind of ultra-thin single sensitive chip zoom twin-lens for mobile phone
TW201939151A (en) * 2018-01-25 2019-10-01 台灣東電化股份有限公司 Optical system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7515194B2 (en) * 2003-07-31 2009-04-07 Olympus Corporation Image pickup optical system and optical apparatus using the same
CN100451717C (en) * 2005-11-16 2009-01-14 索尼株式会社 Image capture apparatus and zoom lens
CN206421098U (en) * 2016-10-17 2017-08-18 陈松明 A kind of ultra-thin single sensitive chip zoom twin-lens for mobile phone
TW201939151A (en) * 2018-01-25 2019-10-01 台灣東電化股份有限公司 Optical system

Also Published As

Publication number Publication date
TW202115452A (en) 2021-04-16

Similar Documents

Publication Publication Date Title
US11297236B2 (en) Camera device with hand shake correction function
CN117289438A (en) Periscope type optical module and optical system
JP7153746B2 (en) Electronics
KR102451232B1 (en) Reflective module and camera module including same
KR102550129B1 (en) Folded module and portable electronic device including the same
JP2015099361A (en) Imaging device
JP2015099360A (en) Imaging device
JP2015114400A (en) Curve imaging device
CN211206941U (en) Periscopic optical module and optical system
JP2015099359A (en) Imaging device
US20220390707A1 (en) Actuator for reflector and camera module including the same
KR20200119630A (en) Camera module and Camera Apparatus including the same
KR20230074443A (en) camera module
KR102345120B1 (en) A Folding Module, Camera Module and Mobile Terminal having the Same
CN213633958U (en) Optical element driving mechanism
TWI831997B (en) Lens device
CN212460156U (en) Periscopic lens module
US11543675B2 (en) Actuator for optical image stabilization with reflector
US11863854B2 (en) Lens device capable of operation of multi-magnifications, optical zoom in high magnification, and miniaturization of the lens module thereof
CN213718058U (en) Camera module and electronic equipment
KR102344510B1 (en) Camera Module
CN110062070B (en) Imaging module, camera assembly and electronic device
KR20230083907A (en) Camera module
CN212808759U (en) Voice coil motor structure and periscopic lens module thereof
US20240231031A9 (en) Actuator for camera