TWI831059B - Fingerprint identification method, fingerprint identification device and information processing device - Google Patents
Fingerprint identification method, fingerprint identification device and information processing device Download PDFInfo
- Publication number
- TWI831059B TWI831059B TW110137788A TW110137788A TWI831059B TW I831059 B TWI831059 B TW I831059B TW 110137788 A TW110137788 A TW 110137788A TW 110137788 A TW110137788 A TW 110137788A TW I831059 B TWI831059 B TW I831059B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- fingerprint
- fingerprint image
- features
- classification
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000010365 information processing Effects 0.000 title claims description 8
- 238000013145 classification model Methods 0.000 claims abstract description 34
- 238000010801 machine learning Methods 0.000 claims description 35
- 238000012360 testing method Methods 0.000 claims description 12
- 238000000605 extraction Methods 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 5
- 238000013527 convolutional neural network Methods 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 5
- 238000012549 training Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000001815 facial effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Collating Specific Patterns (AREA)
Abstract
本發明主要揭示一種指紋識別方法,包括以下步驟:對一指紋圖像與一參考指紋圖像進行一圖像匹配操作;在該指紋圖像與該參考指紋圖像相互匹配之時,利用一指紋圖像分類模型對所述指紋圖像進行一圖像分類操作;以及在所述圖像分類操作確認該指紋圖像為一真實指紋圖像的情況下,確定指紋識別成功。簡單地說,除了傳統的指紋識別處理以外,本發明之指紋識別方法還進一步執行一真實(活體)指紋識別處理,從而在活體識別的基礎上實現指紋識別,有效地提高了指紋識別的安全性。The present invention mainly discloses a fingerprint identification method, which includes the following steps: performing an image matching operation on a fingerprint image and a reference fingerprint image; when the fingerprint image and the reference fingerprint image match each other, using a fingerprint The image classification model performs an image classification operation on the fingerprint image; and when the image classification operation confirms that the fingerprint image is a real fingerprint image, it is determined that the fingerprint recognition is successful. Simply put, in addition to the traditional fingerprint recognition process, the fingerprint recognition method of the present invention further performs a real (living body) fingerprint recognition process, thereby realizing fingerprint recognition on the basis of living body recognition, effectively improving the security of fingerprint recognition. .
Description
本發明係關於指紋識別之技術領域,尤指一種高安全性的指紋識別方法。The present invention relates to the technical field of fingerprint identification, and in particular, to a highly secure fingerprint identification method.
生物辨識技術係藉由採集人體固有的生理特徵作為個體生物的辨識依據,例如:虹膜特徵、臉部特徵、聲紋特徵、與指紋特徵。在各種生物辨識技術中,指紋識別技術發展最為成熟,因而以一指紋識別電路的形式被廣泛地應用在各種行動裝置中。進行指紋識別時,指紋識別電路係通過將一即時採集的指紋圖像與一預先錄製的指紋模板進行特徵匹配,從而完成指紋識別及用戶身分辨識。Biometric identification technology collects the inherent physiological characteristics of the human body as the basis for individual biological identification, such as: iris characteristics, facial characteristics, voiceprint characteristics, and fingerprint characteristics. Among various biometric identification technologies, fingerprint identification technology is the most mature and is widely used in various mobile devices in the form of a fingerprint identification circuit. When performing fingerprint recognition, the fingerprint recognition circuit completes fingerprint recognition and user identity recognition by matching features of a fingerprint image collected in real time with a pre-recorded fingerprint template.
實務經驗指出,在應用指紋識別技術實現用戶身分辨識的過程中,第三人可以拿著用戶的指紋複製物成功欺騙指紋識別電路,從而通過指紋識別以及用戶身分辨識。目前,已知的指紋複製物的取得或製造方法有很多種。第一種方法是讓目標手指按壓在一個稱為Plastiline的黏土上,這樣就可以獲得目標手指的指紋。第二種方法是目標手指按壓在機場、銀行和邊境口岸使用的指紋讀取器上按下指紋,然後利用彩色列印機印出指紋圖像。第三種分法是讓目標手指在一透明物品(如:玻璃板或玻璃杯)上留下指紋,然後對留在透明物品上的指紋拍照,從而取得目標手指的指紋圖像。Practical experience points out that in the process of applying fingerprint recognition technology to achieve user identity recognition, a third party can successfully deceive the fingerprint recognition circuit by holding a copy of the user's fingerprint, thereby identifying the user through fingerprint recognition. Currently, there are many known methods for obtaining or manufacturing fingerprint replicas. The first method is to obtain the fingerprint of the target finger by pressing it against a clay called Plastiline. The second method is to press the target's finger against a fingerprint reader used at airports, banks and border crossings, and then use a color printer to print out the fingerprint image. The third method is to leave a fingerprint of the target finger on a transparent object (such as a glass plate or glass), and then take a photo of the fingerprint left on the transparent object to obtain a fingerprint image of the target finger.
進一步地,隨著3D列印技術的進步,利用3D列印機可以製造出具有指紋的假手指,從而利用該假手指成功欺騙指紋識別電路,通過指紋識別以及用戶身分辨識。必須注意的是,隨著金融科技的進步,民眾可以在不用臨櫃的情況下完成各種金融相關行為,例如:線上支付、線上轉帳、ATM提款、線上開戶、網路股票投資、利用網路銀行管理個人金融帳戶等,其中,絕大多數的金融科技都結合了指紋、臉部或虹膜辨識。換句話說,為了避免第三人可以拿著用戶的指紋複製物而登入用戶的金融帳戶以進行非法的線上金融行為,有必要對習知的指紋識別電路進行缺點改善,使其能夠透過活體檢測或辨識以偵測出非活體的指紋複製物,使非活體的指紋複製物無法通過指紋識別以及用戶身分辨識。Furthermore, with the advancement of 3D printing technology, 3D printers can be used to create fake fingers with fingerprints, thereby using the fake fingers to successfully deceive the fingerprint recognition circuit and identify the user's identity through fingerprint recognition. It must be noted that with the advancement of financial technology, people can complete various financial-related behaviors without going to the counter, such as: online payment, online transfer, ATM withdrawal, online account opening, online stock investment, using the Internet Banks manage personal financial accounts, etc. Among them, the vast majority of financial technologies combine fingerprint, facial or iris recognition. In other words, in order to prevent a third party from being able to log into the user's financial account with a copy of the user's fingerprint to conduct illegal online financial activities, it is necessary to improve the shortcomings of the conventional fingerprint recognition circuit so that it can pass the liveness detection Or identification to detect non-living fingerprint copies, so that non-living fingerprint copies cannot be used for fingerprint recognition and user identity identification.
由上述說明可知,本領域亟需一種高安全性的指紋識別方法。It can be seen from the above description that a highly secure fingerprint identification method is urgently needed in this field.
本發明之主要目的在於提供一種指紋識別方法,其應用在一指紋識別裝置之中,使該指紋識別裝置依序地對一指紋圖像的一指紋識別處理及一活體(真實)指紋識別處理,從而有效地提高了指紋識別的安全性。The main purpose of the present invention is to provide a fingerprint identification method, which is applied in a fingerprint identification device, so that the fingerprint identification device sequentially performs a fingerprint identification process on a fingerprint image and a living (real) fingerprint identification process. This effectively improves the security of fingerprint recognition.
為達成上述目的,本發明提出所述指紋識別方法的一實施例,其包括:To achieve the above object, the present invention proposes an embodiment of the fingerprint identification method, which includes:
對一指紋圖像與一參考指紋圖像進行一圖像匹配操作;Perform an image matching operation on a fingerprint image and a reference fingerprint image;
在確定該指紋圖像與該參考指紋圖像相互匹配的情況下,利用一指紋圖像分類模型對所述指紋圖像進行一圖像分類操作;以及When it is determined that the fingerprint image and the reference fingerprint image match each other, performing an image classification operation on the fingerprint image using a fingerprint image classification model; and
在所述圖像分類操作確認該指紋圖像為一真實指紋圖像的情況下,確定指紋識別成功。When the image classification operation confirms that the fingerprint image is a real fingerprint image, it is determined that the fingerprint identification is successful.
在一實施例中,該指紋圖像分類模型包括:In one embodiment, the fingerprint image classification model includes:
一特徵提取單元,用以自該指紋圖像提取出複數個子圖像特徵,從而依據所述複數個子圖像特徵確定代表該指紋圖像的一圖像特徵;以及A feature extraction unit used to extract a plurality of sub-image features from the fingerprint image, thereby determining an image feature representing the fingerprint image based on the plurality of sub-image features; and
一分類器,用以對該圖像特徵進行一分類操作,以將該圖像特徵分類為所述真實指紋圖像或一偽造指紋圖像。A classifier is used to perform a classification operation on the image feature to classify the image feature into the real fingerprint image or a fake fingerprint image.
在一實施例中,所述子圖像特徵包括選自於由脊線特徵、谷線特徵、灰度共生矩陣特徵、方向場特徵、全局直方圖特徵、和局部直方圖特徵所組成群組之中的至少一者。In one embodiment, the sub-image features include features selected from the group consisting of ridge features, valley features, gray level co-occurrence matrix features, direction field features, global histogram features, and local histogram features. at least one of them.
在一實施例中,所述指紋圖像分類模型係利用以下步驟產生:In one embodiment, the fingerprint image classification model is generated using the following steps:
將複數個樣本圖像輸入一機器學習模型,獲得各所述樣本圖像的一預測類別資訊;其中,所述複數個樣本圖像包括複數個偽造指紋圖像以及所述真實指紋圖像,且各所述樣本圖像皆攜帶一類別標籤;Input a plurality of sample images into a machine learning model to obtain a predicted category information for each sample image; wherein the plurality of sample images include a plurality of forged fingerprint images and the real fingerprint image, and Each of the sample images carries a category label;
根據所述樣本圖像的該預測類別信息與該類別標籤之間的差異,調整所述機器學習模型的模型參數,從而獲得一調整後的機器學習模型;Adjust the model parameters of the machine learning model according to the difference between the predicted category information and the category label of the sample image, thereby obtaining an adjusted machine learning model;
利用調整後的機器學習模型對複數個測試圖像進行分類,獲得一分類準確率;Use the adjusted machine learning model to classify multiple test images to obtain a classification accuracy;
在該分類準確率未達到一準確率閥值的情況下重複執行前述之所有步驟;以及Repeat all the aforementioned steps if the classification accuracy does not reach an accuracy threshold; and
在該分類準確率達到所述準確率閥值的情況下,以該調整後的機器學習模型作為所述指紋圖像分類模型。When the classification accuracy reaches the accuracy threshold, the adjusted machine learning model is used as the fingerprint image classification model.
並且,本發明同時提供一指紋識別裝置,其包括:Furthermore, the present invention also provides a fingerprint identification device, which includes:
一感測器陣列;以及a sensor array; and
一指紋識別電路,耦接該感測器陣列,用以驅動該感測器陣列對一手指進行一圖像採集操作以獲得一指紋圖像,且包括:A fingerprint identification circuit coupled to the sensor array is used to drive the sensor array to perform an image acquisition operation on a finger to obtain a fingerprint image, and includes:
一識別單元,用以對該指紋圖像與一參考指紋圖像進行一圖像匹配操作;An identification unit used to perform an image matching operation on the fingerprint image and a reference fingerprint image;
一分類單元,用以利用一指紋圖像分類模型對所述指紋圖像進行一圖像分類操作;以及A classification unit used to perform an image classification operation on the fingerprint image using a fingerprint image classification model; and
一確定單元,用以依據所述圖像分類操作之結果判斷該指紋圖像是否為一真實指紋圖像,接著確定指紋識別成功。A determination unit used to determine whether the fingerprint image is a real fingerprint image according to the result of the image classification operation, and then determine that the fingerprint recognition is successful.
在一實施例中,該指紋圖像分類模型包括:In one embodiment, the fingerprint image classification model includes:
一特徵提取單元,用以自該指紋圖像提取出複數個子圖像特徵,從而依據所述複數個子圖像特徵確定代表該指紋圖像的一圖像特徵;以及A feature extraction unit used to extract a plurality of sub-image features from the fingerprint image, thereby determining an image feature representing the fingerprint image based on the plurality of sub-image features; and
一分類器,用以對該圖像特徵進行一分類操作,以將該圖像特徵分類為所述真實指紋圖像或一偽造指紋圖像。A classifier is used to perform a classification operation on the image feature to classify the image feature into the real fingerprint image or a fake fingerprint image.
在一實施例中,所述子圖像特徵包括選自於由脊線特徵、谷線特徵、灰度共生矩陣特徵、方向場特徵、全局直方圖特徵、和局部直方圖特徵所組成群組之中的至少一者。In one embodiment, the sub-image features include features selected from the group consisting of ridge features, valley features, gray level co-occurrence matrix features, direction field features, global histogram features, and local histogram features. at least one of them.
在一實施例中,所述指紋圖像分類模型係利用以下步驟產生:In one embodiment, the fingerprint image classification model is generated using the following steps:
將複數個樣本圖像輸入一機器學習模型,獲得各所述樣本圖像的一預測類別資訊;其中,所述複數個樣本圖像包括複數個偽造指紋圖像以及所述真實指紋圖像,且各所述樣本圖像皆攜帶一類別標籤;Input a plurality of sample images into a machine learning model to obtain a predicted category information for each sample image; wherein the plurality of sample images include a plurality of forged fingerprint images and the real fingerprint image, and Each of the sample images carries a category label;
根據所述樣本圖像的該預測類別信息與該類別標籤之間的差異,調整所述機器學習模型的模型參數,從而獲得一調整後的機器學習模型;Adjust the model parameters of the machine learning model according to the difference between the predicted category information and the category label of the sample image, thereby obtaining an adjusted machine learning model;
利用調整後的機器學習模型對複數個測試圖像進行分類,獲得一分類準確率;Use the adjusted machine learning model to classify multiple test images to obtain a classification accuracy;
在該分類準確率未達到一準確率閥值的情況下重複執行前述之所有步驟;以及Repeat all the aforementioned steps if the classification accuracy does not reach an accuracy threshold; and
在該分類準確率達到所述準確率閥值的情況下,以該調整後的機器學習模型作為所述指紋圖像分類模型。When the classification accuracy reaches the accuracy threshold, the adjusted machine learning model is used as the fingerprint image classification model.
進一步地,本發明還提供一種資訊處理裝置,其特徵在於,具有如前所述本發明之指紋識別裝置。在可行的實施例中,該資訊處理裝置為選自於由平板電腦、筆記型電腦、一體式電腦、智慧型手機、智慧型手錶、金融交易電子裝置、打卡裝置、門禁裝置、和電子式門鎖所組成群組之中的一種電子裝置。Furthermore, the present invention also provides an information processing device, which is characterized by having the fingerprint identification device of the present invention as described above. In a feasible embodiment, the information processing device is selected from a tablet computer, a notebook computer, an all-in-one computer, a smart phone, a smart watch, an electronic financial transaction device, a clock card device, an access control device, and an electronic door. An electronic device in a group of locks.
為使 貴審查委員能進一步瞭解本發明之結構、特徵、目的、與其優點,茲附以圖式及較佳具體實施例之詳細說明如後。In order to enable the review committee to further understand the structure, characteristics, purpose, and advantages of the present invention, drawings and detailed descriptions of preferred embodiments are attached below.
圖1顯示本發明之一種指紋識別裝置的方塊圖。如圖1所示,該指紋識別裝置1包括一感測器陣列11以及耦接該感測器陣列11的一指紋識別電路12,且該指紋識別電路12具有一識別單元121、一分類單元122以及一確定單元123。依據本發明之設計,在驅動該感測器陣列11對一手指進行一圖像採集操作以獲得一指紋圖像之後,該指紋識別電路12利用該識別單元121對該指紋圖像與一參考指紋圖像進行一圖像匹配操作,從而確認該指紋圖像是否與該參考指紋圖像相互匹配。並且,在確定該指紋圖像與該參考指紋圖像相互匹配的情況下,該分類單元122利用一指紋圖像分類模型對所述指紋圖像進行一圖像分類操作,以確認該指紋圖像為一真實指紋圖像或一偽造指紋圖像。進一步地,在確認該指紋圖像為一真實指紋圖像的情況下,該確定單元123確定指紋識別成功。Figure 1 shows a block diagram of a fingerprint identification device according to the present invention. As shown in FIG. 1 , the fingerprint identification device 1 includes a sensor array 11 and a fingerprint identification circuit 12 coupled to the sensor array 11 , and the fingerprint identification circuit 12 has an identification unit 121 and a
圖2顯示本發明之一種指紋識別方法的流程圖。如圖2所示,本發明之指紋識別方法首先執行步驟S1:對一指紋圖像與一參考指紋圖像進行一圖像匹配操作。接著,方法流程係執行步驟S2:在確定該指紋圖像與該參考指紋圖像相互匹配的情況下,利用一指紋圖像分類模型對所述指紋圖像進行一圖像分類操作。最終,方法流程係執行步驟S3:在所述圖像分類操作確認該指紋圖像為一真實指紋圖像的情況下,確定指紋識別成功。Figure 2 shows a flow chart of a fingerprint identification method of the present invention. As shown in Figure 2, the fingerprint identification method of the present invention first performs step S1: performing an image matching operation on a fingerprint image and a reference fingerprint image. Next, the method flow executes step S2: when it is determined that the fingerprint image and the reference fingerprint image match each other, use a fingerprint image classification model to perform an image classification operation on the fingerprint image. Finally, the method flow executes step S3: when the image classification operation confirms that the fingerprint image is a real fingerprint image, it is determined that the fingerprint identification is successful.
圖3為圖1所示之分類單元的方塊圖。應可理解,為了使如圖1所示之指紋識別裝置1能夠依序地對一指紋圖像的一指紋識別處理及一活體(真實)指紋識別處理,本發明特別令該指紋識別電路12具有一識別單元121、一分類單元122以及一確定單元123,且令所述分類單元122包含一指紋圖像分類模型1221。在一實施例中,該指紋圖像分類模型包括:一特徵提取單元與一分類器。Figure 3 is a block diagram of the classification unit shown in Figure 1. It should be understood that in order to enable the fingerprint identification device 1 as shown in FIG. 1 to sequentially perform a fingerprint identification process on a fingerprint image and a living (real) fingerprint identification process, the present invention specifically makes the fingerprint identification circuit 12 have A recognition unit 121, a
圖4為圖3所示之指紋圖像分類模型進行所述圖像分類操作的流程圖。如圖4所示,執行所述圖像分類操作時,首先,該指紋圖像分類模型1221的該特徵提取單元自該指紋圖像提取出複數個子圖像特徵,從而依據所述複數個子圖像特徵確定代表該指紋圖像的一圖像特徵(即,執行步驟S21)。在可行的實施例中,所述子圖像特徵可以包括脊線特徵、谷線特徵、灰度共生矩陣特徵、方向場特徵、全局直方圖特徵、局部直方圖特徵中一種或多種的組合。接著,該分類器對該圖像特徵進行一分類操作,以將該圖像特徵分類為所述真實指紋圖像或一偽造指紋圖像(即,執行步驟S22)。FIG. 4 is a flow chart of the image classification operation performed by the fingerprint image classification model shown in FIG. 3 . As shown in Figure 4, when performing the image classification operation, first, the feature extraction unit of the fingerprint
本發明並不限定所述分類器的演算法。在可行的實施例中,用以建置所述分類器的演算法可以是支持向量機(Support Vector Machine, SVM)、softmax、卷積神經網路(Convolutional Neural Networks, CNN)、或貝氏分類法Naive Bayes Classification)。The present invention does not limit the algorithm of the classifier. In a feasible embodiment, the algorithm used to construct the classifier may be a Support Vector Machine (SVM), softmax, Convolutional Neural Networks (CNN), or Bayesian classification. French Naive Bayes Classification).
此外,常見的可以用於建置所述分類器的演算法還包括:全卷積網路演算法(Fully convolutional neural network, FCN)、基於區域的卷積網路演算法(Region-based convolutional neural network, R-CNN)、快速的基於區域的卷積網路演算法(Fast region-based convolutional neural network, fast R-CNN)、或更加快速的基於區域的卷積網路演算法(Faster region-based convolutional neural network, faster R-CNN)、使用遮罩的基於區域的卷積網路演算法(Mask R-CNN)、即時物體檢測演算法YOLOv1、物體檢測演算法YOLOv2、物體檢測演算法YOLOv3、即時物體檢測框架演算法(Single-shot multiBox detector, SSD)等諸多類型,本發明並無特別限制。In addition, common algorithms that can be used to build the classifier also include: fully convolutional neural network (FCN), region-based convolutional neural network (Region-based convolutional neural network, R-CNN), Fast region-based convolutional neural network (fast R-CNN), or Faster region-based convolutional neural network (Faster region-based convolutional neural network) , faster R-CNN), region-based convolutional network algorithm using mask (Mask R-CNN), real-time object detection algorithm YOLOv1, object detection algorithm YOLOv2, object detection algorithm YOLOv3, real-time object detection framework algorithm (Single-shot multiBox detector, SSD) and many other types, the present invention is not particularly limited.
應可理解,所述指紋圖像分類模型係利用複數個樣本圖像(training sample)對一機器學習模型進行分類訓練以及利用複數個測試圖像(test sample)對已訓練之機器學習模型進行分類測試之後而完成。圖5為圖3所示之指紋圖像分類模型的產生流程圖。如圖5所示,所述指紋圖像分類模型1221係利用以下步驟產生:It should be understood that the fingerprint image classification model uses a plurality of sample images (training samples) to perform classification training on a machine learning model and uses a plurality of test images (test samples) to classify the trained machine learning model. Completed after testing. Figure 5 is a flow chart for generating the fingerprint image classification model shown in Figure 3. As shown in Figure 5, the fingerprint
步驟S1a:將複數個樣本圖像輸入一機器學習模型,獲得各所述樣本圖像的一預測類別資訊; 其中,所述複數個樣本圖像包括複數個偽造指紋圖像以及所述真實指紋圖像,且各所述樣本圖像皆攜帶一類別標籤;Step S1a: Input a plurality of sample images into a machine learning model to obtain a predicted category information for each sample image; wherein the plurality of sample images include a plurality of forged fingerprint images and the real fingerprint image. image, and each sample image carries a category label;
步驟S2a:根據所述樣本圖像的該預測類別信息與該類別標籤之間的差異,調整所述機器學習模型的模型參數,從而獲得一調整後的機器學習模型;Step S2a: Adjust the model parameters of the machine learning model according to the difference between the predicted category information and the category label of the sample image, thereby obtaining an adjusted machine learning model;
步驟S3a:利用調整後的機器學習模型對複數個測試圖像進行分類,獲得一分類準確率;Step S3a: Use the adjusted machine learning model to classify a plurality of test images to obtain a classification accuracy;
步驟S4a:在該分類準確率未達到一準確率閥值的情況下重複執行前述之所有步驟;以及Step S4a: Repeat all the aforementioned steps if the classification accuracy does not reach an accuracy threshold; and
步驟S5a:在該分類準確率達到所述準確率閥值的情況下,以該調整後的機器學習模型作為所述指紋圖像分類模型。Step S5a: When the classification accuracy reaches the accuracy threshold, use the adjusted machine learning model as the fingerprint image classification model.
熟悉影像識別軟體之設計與製作的電子工程師應當知道,所述準確率閥值為一經驗值,例如為93%。另外,補充說明的是, 該複數個樣本圖像通常被整理為一訓練樣本集,且包括所述複數個樣本圖像包括複數個偽造指紋圖像以及所述真實指紋圖像,各所述樣本圖像皆攜帶一類別標籤。另一方面,該複數個測試圖像則被整理為一測試樣本集。並且,於步驟S2a之中,用以對所述機器學習模型進行指紋圖像分類訓練的一上位機係依據損失函數評估該預測類別信息與該類別標籤之間的差異,從而根據該差異調整所述機器學習模型的模型參數。最終,經過多次迭代訓練之後(即,重複執行步驟S1a~S3a複數次),通過測試集評估的機器學習模型即作為該分類單元122所包含之指紋圖像分類模型1221。Electronic engineers who are familiar with the design and production of image recognition software should know that the accuracy threshold is an empirical value, such as 93%. In addition, it should be supplemented that the plurality of sample images are usually organized into a training sample set, and include the plurality of sample images including a plurality of forged fingerprint images and the real fingerprint image, each of the samples Images all carry a category label. On the other hand, the plurality of test images are organized into a test sample set. Moreover, in step S2a, a host computer used to perform fingerprint image classification training on the machine learning model evaluates the difference between the predicted category information and the category label based on the loss function, thereby adjusting the result according to the difference. Describe the model parameters of the machine learning model. Finally, after multiple iterative trainings (ie, steps S1a to S3a are repeated multiple times), the machine learning model evaluated by the test set is used as the fingerprint
如此,上述已完整且清楚地說明本發明之一種指紋識別的方法;並且,經由上述可得知本發明具有下列優點:In this way, the above has completely and clearly explained a fingerprint identification method of the present invention; and from the above, it can be seen that the present invention has the following advantages:
(1)本發明揭示一種指紋識別方法,其應用在一指紋識別裝置之中,使該指紋識別裝置依序地對一指紋圖像的一指紋識別處理及一活體(真實)指紋識別處理,從而有效地提高了指紋識別的安全性。(1) The present invention discloses a fingerprint identification method, which is applied in a fingerprint identification device so that the fingerprint identification device sequentially performs a fingerprint identification process on a fingerprint image and a living (real) fingerprint identification process, thereby Effectively improve the security of fingerprint recognition.
(2)並且,本發明同時提出一種指紋識別裝置,其包括一感測器陣列以及一指紋識別電路;其特徵在於,該指紋識別電路具有一識別單元、一分類單元以及一確定單元,從而能夠執行如前所述本發明之一種指紋識別方法。(2) Moreover, the present invention also proposes a fingerprint identification device, which includes a sensor array and a fingerprint identification circuit; it is characterized in that the fingerprint identification circuit has an identification unit, a classification unit and a determination unit, so as to be able to A fingerprint identification method of the present invention is performed as described above.
(3)進一步地,本發明還提出一種資訊處理裝置,其具有如前所述本發明之指紋識別裝置,且該資訊處理裝置為選自於由平板電腦、筆記型電腦、一體式電腦、智慧型手機、智慧型手錶、金融交易電子裝置、打卡裝置、門禁裝置、和電子式門鎖所組成群組之中的一種電子裝置。(3) Further, the present invention also proposes an information processing device, which has the fingerprint identification device of the present invention as described above, and the information processing device is selected from the group consisting of tablet computers, notebook computers, all-in-one computers, and smart phones. It is an electronic device among the group consisting of mobile phones, smart watches, financial transaction electronic devices, clock-in devices, access control devices, and electronic door locks.
必須加以強調的是,前述本案所揭示者乃為較佳實施例,舉凡局部之變更或修飾而源於本案之技術思想而為熟習該項技藝之人所易於推知者,俱不脫本案之專利權範疇。It must be emphasized that the foregoing disclosed in this case are preferred embodiments. Any partial changes or modifications derived from the technical ideas of this case and easily inferred by those familiar with the art do not deviate from the patent of this case. category of rights.
綜上所陳,本案無論目的、手段與功效,皆顯示其迥異於習知技術,且其首先發明合於實用,確實符合發明之專利要件,懇請 貴審查委員明察,並早日賜予專利俾嘉惠社會,是為至禱。To sum up, regardless of the purpose, means and effects of this case, it shows that it is completely different from the conventional technology, and that the invention is practical first, and indeed meets the patent requirements for inventions. I sincerely ask the review committee to take a clear look and grant the patent as soon as possible for your benefit. Society is a prayer for the Supreme Being.
1:指紋識別裝置 11:感測器陣列 12:指紋識別電路 121:識別單元 122:分類單元 1221:指紋圖像分類模型 123:確定單元 S1:對一指紋圖像與一參考指紋圖像進行一圖像匹配操作 S2:在確定該指紋圖像與該參考指紋圖像相互匹配的情況下,利用一指紋圖像分類模型對所述指紋圖像進行一圖像分類操作 S3:在所述圖像分類操作確認該指紋圖像為一真實指紋圖像的情況下,確定指紋識別成功 S21:該特徵提取單元自該指紋圖像提取出複數個子圖像特徵,從而依據所述複數個子圖像特徵確定代表該指紋圖像的一圖像特徵 S22:該分類器對該圖像特徵進行一分類操作,以將該圖像特徵分類為所述真實指紋圖像或一偽造指紋圖像 S1a:將複數個樣本圖像輸入一機器學習模型,獲得各所述樣本圖像的一預測類別資訊; 其中,所述複數個樣本圖像包括複數個偽造指紋圖像以及所述真實指紋圖像,且各所述樣本圖像皆攜帶一類別標籤 S2a:根據所述樣本圖像的該預測類別信息與該類別標籤之間的差異,調整所述機器學習模型的模型參數,從而獲得一調整後的機器學習模型 S3a:利用調整後的機器學習模型對複數個測試圖像進行分類,獲得一分類準確率 S4a:在該分類準確率未達到一準確率閥值的情況下重複執行前述之所有步驟 S5a:在該分類準確率達到所述準確率閥值的情況下,以該調整後的機器學習模型作為所述指紋圖像分類模型 1:Fingerprint recognition device 11: Sensor array 12:Fingerprint recognition circuit 121:Identification unit 122: Taxon 1221:Fingerprint image classification model 123: Determine unit S1: Perform an image matching operation on a fingerprint image and a reference fingerprint image S2: When it is determined that the fingerprint image and the reference fingerprint image match each other, use a fingerprint image classification model to perform an image classification operation on the fingerprint image. S3: When the image classification operation confirms that the fingerprint image is a real fingerprint image, determine that the fingerprint identification is successful. S21: The feature extraction unit extracts a plurality of sub-image features from the fingerprint image, thereby determining an image feature representing the fingerprint image based on the plurality of sub-image features. S22: The classifier performs a classification operation on the image feature to classify the image feature into the real fingerprint image or a fake fingerprint image. S1a: Input a plurality of sample images into a machine learning model to obtain a predicted category information for each sample image; wherein the plurality of sample images include a plurality of forged fingerprint images and the real fingerprint image , and each sample image carries a category label S2a: Adjust the model parameters of the machine learning model according to the difference between the predicted category information and the category label of the sample image, thereby obtaining an adjusted machine learning model S3a: Use the adjusted machine learning model to classify multiple test images and obtain a classification accuracy rate S4a: Repeat all the above steps if the classification accuracy does not reach an accuracy threshold. S5a: When the classification accuracy reaches the accuracy threshold, use the adjusted machine learning model as the fingerprint image classification model
圖1為本發明之一種指紋識別裝置的方塊圖; 圖2為本發明之一種指紋識別方法的流程圖; 圖3為圖1所示的一分類單元的方塊圖; 圖4為圖3所示的一指紋圖像分類模型進行一圖像分類操作的流程圖;以及 圖5為圖3所示之指紋圖像分類模型的產生流程圖。 Figure 1 is a block diagram of a fingerprint identification device according to the present invention; Figure 2 is a flow chart of a fingerprint identification method according to the present invention; Figure 3 is a block diagram of a taxon shown in Figure 1; Figure 4 is a flow chart of an image classification operation performed by a fingerprint image classification model shown in Figure 3; and Figure 5 is a flow chart for generating the fingerprint image classification model shown in Figure 3.
S1:對一指紋圖像與一參考指紋圖像進行一圖像匹配操作 S1: Perform an image matching operation on a fingerprint image and a reference fingerprint image
S2:在確定該指紋圖像與該參考指紋圖像相互匹配的情況下,利用一指紋圖像分類模型對所述指紋圖像進行一圖像分類操作 S2: When it is determined that the fingerprint image and the reference fingerprint image match each other, use a fingerprint image classification model to perform an image classification operation on the fingerprint image.
S3:在所述圖像分類操作確認該指紋圖像為一真實指紋圖像的情況下,確定指紋識別成功 S3: When the image classification operation confirms that the fingerprint image is a real fingerprint image, determine that the fingerprint identification is successful.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110137788A TWI831059B (en) | 2021-10-12 | 2021-10-12 | Fingerprint identification method, fingerprint identification device and information processing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110137788A TWI831059B (en) | 2021-10-12 | 2021-10-12 | Fingerprint identification method, fingerprint identification device and information processing device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202316311A TW202316311A (en) | 2023-04-16 |
TWI831059B true TWI831059B (en) | 2024-02-01 |
Family
ID=86943203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110137788A TWI831059B (en) | 2021-10-12 | 2021-10-12 | Fingerprint identification method, fingerprint identification device and information processing device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI831059B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI609339B (en) * | 2016-07-17 | 2017-12-21 | 金佶科技股份有限公司 | Fingerprint identification module and fingerprint identification method |
US20200184182A1 (en) * | 2018-12-07 | 2020-06-11 | Shanghai Harvest Intelligence Technology Co., Ltd. | Fingerprint Identification Method and Device, Storage Medium and Terminal |
TWI737040B (en) * | 2019-09-12 | 2021-08-21 | 大陸商敦泰電子(深圳)有限公司 | Fingerprint recognition method, chip and electronic device |
-
2021
- 2021-10-12 TW TW110137788A patent/TWI831059B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI609339B (en) * | 2016-07-17 | 2017-12-21 | 金佶科技股份有限公司 | Fingerprint identification module and fingerprint identification method |
US20200184182A1 (en) * | 2018-12-07 | 2020-06-11 | Shanghai Harvest Intelligence Technology Co., Ltd. | Fingerprint Identification Method and Device, Storage Medium and Terminal |
TWI737040B (en) * | 2019-09-12 | 2021-08-21 | 大陸商敦泰電子(深圳)有限公司 | Fingerprint recognition method, chip and electronic device |
Also Published As
Publication number | Publication date |
---|---|
TW202316311A (en) | 2023-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Charity et al. | A bimodal biometrie student attendance system | |
Kodituwakku | Biometric authentication: A review | |
Oleiwi et al. | Integrated different fingerprint identification and classification systems based deep learning | |
Shawkat et al. | The new hand geometry system and automatic identification | |
Deriche | Trends and challenges in mono and multi biometrics | |
Bhavani et al. | A multi-dimensional review on handwritten signature verification: strengths and gaps | |
Kumar et al. | Convolutional Neural Network Approach for Multimodal Biometric Recognition System for Banking Sector on Fusion of Face and Finger | |
Ebrahimpour | Iris recognition using mobilenet for biometric authentication | |
TWI831059B (en) | Fingerprint identification method, fingerprint identification device and information processing device | |
Kulkarni | Fingerprint feature extraction and classification by learning the characteristics of fingerprint patterns | |
Lu et al. | Person identification from lip texture analysis | |
Agarwal et al. | Human identification and verification based on signature, fingerprint and iris integration | |
Mahanta et al. | A study on handwritten signature | |
Shivthare et al. | Multimodal Biometric in Computer Vision | |
Maltoni et al. | Latent fingerprint recognition | |
Charishma et al. | Smart Attendance System with and Without Mask using Face Recognition | |
Choudhary et al. | Secured Automated Certificate Creation Based on Multimodal Biometric Verification | |
TWI792380B (en) | Multi-template image recognition method, biological feature recognition device, and information processing device | |
Kakulapati et al. | Fingerprint Recognition Using the HoG and Lime Algorithm | |
Benson-Emenike Mercy et al. | Trimodal Biometric Authentication System using Cascaded Link-based Feed forward Neural Network [CLBFFNN] | |
Moniga et al. | Deep Learning-Based Person Authentication Using Convolutional Neural Architecture Hand Radiographs: A Forensic Approach | |
Raghavendra et al. | Exploring the Frontiers of Security: Comprehensive Biometric Security Solution with Multiple Modalities Enhanced by Machine Learning | |
Naji et al. | Increased Efficient and Robust 3D Palm Print Identification using Deep Learning | |
Yao | Digital Fingerprint Quality Assessment | |
Akinpelu | Palmprint and Face Biometrics for Person Authentication Using Color Images |