TWI831033B - Electricity usage scheduling system and electricity usage scheduling method - Google Patents

Electricity usage scheduling system and electricity usage scheduling method Download PDF

Info

Publication number
TWI831033B
TWI831033B TW110127766A TW110127766A TWI831033B TW I831033 B TWI831033 B TW I831033B TW 110127766 A TW110127766 A TW 110127766A TW 110127766 A TW110127766 A TW 110127766A TW I831033 B TWI831033 B TW I831033B
Authority
TW
Taiwan
Prior art keywords
parameter
data
power consumption
power
temperature
Prior art date
Application number
TW110127766A
Other languages
Chinese (zh)
Other versions
TW202305722A (en
Inventor
廖育佐
許文正
Original Assignee
財團法人紡織產業綜合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人紡織產業綜合研究所 filed Critical 財團法人紡織產業綜合研究所
Priority to TW110127766A priority Critical patent/TWI831033B/en
Priority to CN202111211142.9A priority patent/CN115700648A/en
Publication of TW202305722A publication Critical patent/TW202305722A/en
Application granted granted Critical
Publication of TWI831033B publication Critical patent/TWI831033B/en

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

A electricity usage scheduling system includes several machines, a smart box, and a process planning device. The several machines include several power load data and several temperature data. The smart box is connected to the several machines, and the smart box is configured to input several power load data and several temperature data into a neural network like model to generate power consumption prediction results. The process planning device is configured to generate power usage schedules for the several machines according to the power consumption prediction results.

Description

用電排程系統以及用電排程方法Electricity scheduling system and electricity scheduling method

本揭示中所述實施例內容是有關於一種用電排程系統以及用電排程方法,特別關於一種用電量預測的用電排程系統以及用電排程方法。The embodiments described in this disclosure relate to a power usage scheduling system and a power usage scheduling method, and in particular to a power usage scheduling system and power usage scheduling method for power consumption prediction.

在包含很多機台的廠區,機台設備的用電量極高,一有不慎電力負荷即超過契約須量額度。以往倚賴人工監控,定期巡查或被動關閉其他設備用電,效益待加強。傳統上,生產排程只能被動接受用電超載帶來的影響,如此,機台設備的生產品質也會受到影響。In a factory area containing many machines, the power consumption of the machine equipment is extremely high. If the power load is accidentally exceeded, the contracted quota will be exceeded. In the past, we relied on manual monitoring, regular inspections or passively shutting down the power consumption of other equipment, but the efficiency needs to be improved. Traditionally, production schedules can only passively accept the impact of power overload. In this way, the production quality of machine equipment will also be affected.

本揭示之一些實施方式是關於一種用電排程系統,包括多個機台、智慧機上盒以及製程規劃裝置。多個機台包括多個電力負載量資料以及多個溫度資料。智慧機上盒連接於多個機台,用以將多個電力負載量資料以及多個溫度資料輸入至類神經網路模型中,以產生用電預測結果。製程規劃裝置用以依據用電預測結果產生多個機台的用電排程。Some embodiments of the present disclosure relate to a power scheduling system, including multiple machines, smart set-top boxes, and process planning devices. Multiple machines include multiple power load data and multiple temperature data. The smart set-top box is connected to multiple machines to input multiple power load data and multiple temperature data into the neural network model to generate power consumption prediction results. The process planning device is used to generate power consumption schedules for multiple machines based on the power consumption prediction results.

本揭示之一些實施方式是關於一種用電排程方法,包括以下步驟。由多個機台傳送多個機台的多個電力負載量資料以及多個溫度資料至智慧機上盒。由智慧機上盒將多個電力負載量資料以及多個溫度資料輸入至類神經網路模型中,以產生用電預測結果。由製程規劃裝置依據用電預測結果產生多個機台的用電排程。Some embodiments of the present disclosure relate to a power scheduling method, which includes the following steps. Multiple power load data and multiple temperature data of multiple machines are transmitted from multiple machines to the smart set-top box. The smart set-top box inputs multiple power load data and multiple temperature data into the neural network model to generate power consumption prediction results. The process planning device generates power consumption schedules for multiple machines based on the power consumption prediction results.

在本文中所使用的用詞『耦接』亦可指『電性耦接』,且用詞『連接』亦可指『電性連接』。『耦接』及『連接』亦可指二個或多個元件相互配合或相互互動。The term "coupling" used in this article may also refer to "electrical coupling", and the term "connection" may also refer to "electrical connection". "Coupling" and "connection" can also refer to the cooperation or interaction of two or more components with each other.

參考第1圖。第1圖是依照本揭示一些實施例所繪示的用電排程系統100的示意圖。Refer to Figure 1. FIG. 1 is a schematic diagram of a power scheduling system 100 according to some embodiments of the present disclosure.

以第1圖示例而言,用電排程系統100包含多個機台110A至110C、智慧機上盒130、製程規劃裝置150以及訂單裝置170。於連接關係上,智慧機上盒130連接於多個機台110A至110C,製程規劃裝置150連接於機上盒,而訂單裝置170連接於製程規劃裝置150。Taking the example in Figure 1 as an example, the power scheduling system 100 includes a plurality of machines 110A to 110C, a smart set-top box 130, a process planning device 150 and an ordering device 170. In terms of connection relationship, the smart set-top box 130 is connected to a plurality of machines 110A to 110C, the process planning device 150 is connected to the set-top box, and the ordering device 170 is connected to the process planning device 150 .

如第1圖所示的用電排程系統100僅為例示說明之用,本案的實施方式不以此為限制。舉例而言,於其他一些實施例中,製程規劃裝置150連接於多台智慧機上盒,多台智慧機上盒又分別連接於多個機台。用電排程系統100的各種配置皆在本揭示的範圍中。The power scheduling system 100 shown in Figure 1 is only for illustration, and the implementation of the present application is not limited thereto. For example, in some other embodiments, the process planning device 150 is connected to multiple smart set-top boxes, and the multiple smart set-top boxes are connected to multiple machines respectively. Various configurations of the power scheduling system 100 are within the scope of this disclosure.

以染整工廠為例,第1圖中的機台110A至110C可分別例如是織機、染色機、定型機、脫水機、擴布機、驗布機、剖布機、染色助劑自動計量系統、空調壓縮機、捲布機、廢棄水洗處理裝置、蒸氣鍋爐、單針平縫車、廠區溫控設備等。Taking a dyeing and finishing factory as an example, the machines 110A to 110C in Figure 1 can be, respectively, a loom, a dyeing machine, a setting machine, a dehydration machine, a spreading machine, a cloth inspection machine, a cloth slitting machine, and a dyeing auxiliary automatic metering system. , air conditioning compressor, cloth rolling machine, waste water washing treatment device, steam boiler, single needle sewing machine, factory temperature control equipment, etc.

關於用電排程系統100的詳細操作方式,將於以下配合第2圖一併進行說明。The detailed operation method of the power scheduling system 100 will be explained below with reference to Figure 2 .

第2圖是依照本揭示一些實施例所繪示的用電排程方法200的流程圖。用電排程方法200可應用於如第1圖的用電排程系統100。以下請一併參考第1圖至第2圖。FIG. 2 is a flowchart of a power scheduling method 200 according to some embodiments of the present disclosure. The power scheduling method 200 can be applied to the power scheduling system 100 shown in FIG. 1 . Please refer to Figure 1 to Figure 2 below.

在步驟S210中,傳送多個機台的多個電力負載量資料以及多個溫度資料至智慧機上盒。於部分實施例中,步驟S210係由如第1圖所繪示的機台110A至110C將各自的電力負載量資料以及溫度資料傳送至智慧機上盒130。In step S210, multiple power load data and multiple temperature data of multiple machines are transmitted to the smart set-top box. In some embodiments, step S210 is performed by the machines 110A to 110C as shown in FIG. 1 transmitting their respective power load data and temperature data to the smart set-top box 130 .

於部分實施例中,多個電力負載量資料包括平均負載量參數以及尖峰負載量參數,多個溫度資料包括平均溫度參數、最高溫度參數以及最低溫度參數。In some embodiments, the plurality of power load data includes an average load parameter and a peak load parameter, and the plurality of temperature data includes an average temperature parameter, a maximum temperature parameter, and a minimum temperature parameter.

在步驟S230中,將多個電力負載量資料以及多個溫度資料輸入至類神經網路模型中,以產生用電預測結果。於部分實施例中,步驟S230係由如第1圖所繪示的智慧機上盒130所執行。In step S230, a plurality of electric load data and a plurality of temperature data are input into the neural network model to generate a power consumption prediction result. In some embodiments, step S230 is performed by the smart set-top box 130 as shown in Figure 1 .

請參閱第3圖。第3圖是依照本揭示一些實施例所繪示的類神經網路模型300的示意圖。如第3圖所示,類神經網路模型300包含兩個隱藏層H1和H2以及一個輸出層OP。See picture 3. FIG. 3 is a schematic diagram of a neural network model 300 according to some embodiments of the present disclosure. As shown in Figure 3, the neural network model 300 includes two hidden layers H1 and H2 and an output layer OP.

詳細而言,輸入層包含由多個電力負載量資料以及多個溫度資料所組成的向量I。依據向量I產生向量B11,且向量B11經過隱藏層H1的函數F11計算後產生向量L1。向量L1輸入至隱藏層H2後,經過隱藏層H2的函數F12計算後產生向量L2。然後,依據向量L1和向量L2產生向量B2,且向量B2經由輸出層OP的函數F2後產生用電預測結果S。Specifically, the input layer includes a vector I composed of multiple electrical load data and multiple temperature data. Vector B11 is generated based on vector I, and vector B11 is calculated by function F11 of hidden layer H1 to generate vector L1. After the vector L1 is input to the hidden layer H2, the vector L2 is generated after being calculated by the function F12 of the hidden layer H2. Then, the vector B2 is generated according to the vector L1 and the vector L2, and the vector B2 is passed through the function F2 of the output layer OP to generate the power consumption prediction result S.

於部分實施例中,函數F11和函數F12的轉移函數係為正切雙彎曲轉移函數,而函數F2係為線性轉移函數。於部分實施例中,隱藏層H1的節點數為12,隱藏層H2的節點數為12。於部分實施例中,類神經網路模型300的網路訓練方法為LM演算法(萊文貝格-馬夸特演算法)搭配BasDavid Mackay的貝萊斯(Bayesian)結構,且網路訓練的最大循環次數為6000。In some embodiments, the transfer functions of function F11 and function F12 are tangent double bending transfer functions, and the function F2 is a linear transfer function. In some embodiments, the number of nodes in the hidden layer H1 is 12, and the number of nodes in the hidden layer H2 is 12. In some embodiments, the network training method of the neural network model 300 is the LM algorithm (Lewenberg-Marquardt algorithm) combined with BasDavid Mackay's Bayesian structure, and the network training method is The maximum number of cycles is 6000.

於部分實施例中,類神經網路模型300的輸出層OP產生預測模型,預測模型為預計用電量=第一參數×所述平均負載量參數-第二參數×所述最高溫度參數×所述尖峰負載量參數-第三參數×所述平均溫度參數+第四參數×所述最低溫度參數×所述平均負載量參數+第五參數×(所述尖峰負載量參數) 1/2×所述平均負載量參數。 In some embodiments, the output layer OP of the neural network model 300 generates a prediction model. The prediction model is estimated power consumption = first parameter × the average load parameter - second parameter × the maximum temperature parameter × all The peak load parameter - the third parameter × the average temperature parameter + the fourth parameter × the lowest temperature parameter × the average load parameter + the fifth parameter × (the peak load parameter) 1/2 × all Describe the average load parameters.

於部分實施例中,上述第一參數、第二參數、第三參數、第四參數與第五參數為類神經網路模型300所產生。In some embodiments, the first parameter, the second parameter, the third parameter, the fourth parameter and the fifth parameter are generated by the neural network model 300 .

於部分實施例中,第3圖中的用電預測結果S係依據預測模型所產生,以預測各個時間區間的用電量。In some embodiments, the electricity consumption prediction result S in Figure 3 is generated based on the prediction model to predict the electricity consumption in each time interval.

於部分實施例中,7.21≦第一參數≦8.81,18.33≦第二參數≦22.40,1.44≦第三參數≦1.76,1.10≦第四參數≦1.34,2.22≦第五參數≦2.72。於一較佳實施例中,第一參數係為8.0136,第二參數係為20.363,第三參數係為1.6,第四參數係為1.22,第五參數係為2.471。In some embodiments, 7.21≦first parameter≦8.81, 18.33≦second parameter≦22.40, 1.44≦third parameter≦1.76, 1.10≦fourth parameter≦1.34, 2.22≦fifth parameter≦2.72. In a preferred embodiment, the first parameter is 8.0136, the second parameter is 20.363, the third parameter is 1.6, the fourth parameter is 1.22, and the fifth parameter is 2.471.

請回頭參閱第2圖。於步驟S250中,依據用電預測結果產生多個機台的用電排程。於部分實施例中,步驟S250係由如第1圖所繪示的製程規劃裝置150執行。Please refer back to Figure 2. In step S250, power consumption schedules for multiple machines are generated based on the power consumption prediction results. In some embodiments, step S250 is performed by the process planning device 150 as shown in FIG. 1 .

於部分實施例中,步驟S250更包含由第1圖中的訂單裝置170傳送多個客戶資料以及多個出貨資料至製程規劃裝置150。製程規劃裝置150並依據用電預測結果、多個客戶資料以及多個出貨資料產生多個機台110A至110C的用電排程。In some embodiments, step S250 further includes sending a plurality of customer data and a plurality of shipping data to the process planning device 150 from the order device 170 in Figure 1 . The process planning device 150 generates power consumption schedules for the plurality of machines 110A to 110C based on the power consumption prediction results, multiple customer data, and multiple shipment data.

請參閱第4圖。第4圖是依照本揭示一些實施例所繪示的用電排程400的示意圖。如第4圖所繪示,用電排程400包含第1圖中的機台110A、機台110B和機台110C於00:00至09:00針對製程1至製程3的工作時間。如第4圖所示的用電排程400僅為例示說明之用,本案的實施方式不以此為限制。See picture 4. FIG. 4 is a schematic diagram of a power schedule 400 according to some embodiments of the present disclosure. As shown in Figure 4, the power consumption schedule 400 includes the working time of the machine 110A, the machine 110B and the machine 110C in Figure 1 from 00:00 to 09:00 for processes 1 to 3. The power schedule 400 shown in Figure 4 is only for illustration, and the implementation of the present application is not limited thereto.

於部分實施例中,製程規劃裝置150可提供最佳化的用電排程400給製程人員參考,以減少修正用電排程400的時間。在用電排程400中,製程規劃裝置150可依用電量的多寡將製程1至3進行分類。舉例來說,製程規劃裝置150可依製程1至3的用電量的高、中、低而將其分類為紅、黃、綠三種顏色。如此,製程人員可依據用電排程400的分類來調整製程1至3的順序。在考量製程等待時間及出貨時間的情況下,製程人員可適當地調整製程1至3的先後順序或重疊時序,以避免高用電負載的情形,並藉此提高電力系統的可靠度或者降低相關電費。在部分實施例中,製程規劃裝置150更可記錄及分析調整後的用電排程400,從而在下一次提供更精準的建議。In some embodiments, the process planning device 150 can provide the optimized power schedule 400 for reference by process personnel to reduce the time of revising the power schedule 400 . In the power consumption schedule 400, the process planning device 150 can classify processes 1 to 3 according to the amount of power consumption. For example, the process planning device 150 can classify processes 1 to 3 into three colors: red, yellow, and green according to their high, medium, and low power consumption. In this way, the process personnel can adjust the order of processes 1 to 3 according to the classification of the power schedule 400 . Taking the process waiting time and shipping time into consideration, the process personnel can appropriately adjust the sequence or overlapping timing of processes 1 to 3 to avoid high power load situations and thereby improve the reliability of the power system or reduce the Related electricity bills. In some embodiments, the process planning device 150 can further record and analyze the adjusted power consumption schedule 400 to provide more accurate suggestions next time.

於部分實施例中,本案的用電排程系統100以及用電排程方法200適用於染整工廠。然而,本案的實施方式不以此為限制。In some embodiments, the power scheduling system 100 and the power scheduling method 200 of this case are suitable for dyeing and finishing factories. However, the implementation of this case is not limited to this.

綜上所述,本揭示提供一種用電排程系統以及用電排程方法,透過智慧機上盒收集與整合多個機台各自的電力負載量資料以及多個溫度資料,經由類神經網路模型分析並預測多個機台的用電預測結果,再由製程規劃裝置整合用電預測結果、客戶資料以及出貨資料以產生多個機台的用電排程。製程人員於參考用電排程後,可更適當地調整多個製程於多個機台上的操作順序或時序。如此,可有效避免多個機台同時進行多個製程時用電量超載的情況,進而控制廠區的用電量及用電費用。To sum up, this disclosure provides a power scheduling system and power scheduling method that collects and integrates the power load data and temperature data of multiple machines through a smart set-top box, and uses a neural network to The model analyzes and predicts the power consumption forecast results of multiple machines, and then the process planning device integrates the power consumption forecast results, customer information, and shipping data to generate power consumption schedules for multiple machines. After referring to the power consumption schedule, process personnel can more appropriately adjust the operation sequence or timing of multiple processes on multiple machines. In this way, power consumption overload when multiple machines are performing multiple processes at the same time can be effectively avoided, thereby controlling power consumption and electricity costs in the factory.

各種功能性元件已於此公開。對於本技術領域具通常知識者而言,功能性元件可由電路(不論是專用電路,或是於一或多個處理器及編碼指令控制下操作的通用電路)實現。Various functional elements are disclosed herein. It will be apparent to one of ordinary skill in the art that functional elements may be implemented by circuitry, whether dedicated circuitry or general purpose circuitry operating under the control of one or more processors and coded instructions.

雖然本揭示已以實施方式揭露如上,然其並非用以限定本揭示,任何本領域具通常知識者,在不脫離本揭示之精神和範圍內,當可作各種之更動與潤飾,因此本揭示之保護範圍當視後附之申請專利範圍所界定者為準。Although the disclosure has been disclosed in the above embodiments, it is not intended to limit the disclosure. Anyone with ordinary knowledge in the art can make various modifications and modifications without departing from the spirit and scope of the disclosure. Therefore, the disclosure The scope of protection shall be subject to the scope of the patent application attached.

100:用電排程系統 110A,110B,110C:機台 130:智慧機上盒 150:製程規劃裝置 170:訂單裝置 200:用電排程方法 S210,S230,S250:步驟 300:類神經網路模型 I:向量 H1,H2:隱藏層 OP:輸出層 B11,B2:向量 L1,L2:向量 F11,F12,F2:函數 S:用電預測結果 400:用電排程 100: Electricity scheduling system 110A, 110B, 110C: Machine 130:Smart set-top box 150:Process planning device 170:Order device 200: Electricity scheduling method S210, S230, S250: steps 300:Neural network model I: vector H1, H2: hidden layer OP: output layer B11,B2: vector L1, L2: vector F11, F12, F2: function S: Electricity consumption forecast results 400: Electricity schedule

為讓本揭示之上述和其他目的、特徵、優點與實施例能夠更明顯易懂,所附圖式之說明如下: 第1圖是依照本揭示一些實施例所繪示的用電排程系統的示意圖; 第2圖是依照本揭示一些實施例所繪示的用電排程方法的流程圖; 第3圖是依照本揭示一些實施例所繪示的類神經網路模型的示意圖;以及 第4圖是依照本揭示一些實施例所繪示的用電排程的示意圖。 In order to make the above and other objects, features, advantages and embodiments of the present disclosure more obvious and understandable, the accompanying drawings are described as follows: Figure 1 is a schematic diagram of a power scheduling system according to some embodiments of the present disclosure; Figure 2 is a flow chart of a power scheduling method according to some embodiments of the present disclosure; Figure 3 is a schematic diagram of a neural network model according to some embodiments of the present disclosure; and FIG. 4 is a schematic diagram of power schedule according to some embodiments of the present disclosure.

100:用電排程系統 100: Electricity scheduling system

110A,110B,110C:機台 110A, 110B, 110C: Machine

130:智慧機上盒 130:Smart set-top box

150:製程規劃裝置 150:Process planning device

170:訂單裝置 170:Order device

Claims (8)

一種用電排程系統,包括:多個機台,包括多個電力負載量資料以及多個溫度資料;智慧機上盒,連接於所述多個機台,用以將所述多個電力負載量資料以及所述多個溫度資料輸入至類神經網路模型中,以產生用電預測結果;製程規劃裝置;以及訂單裝置,用以傳送多個客戶資料以及多個出貨資料至所述製程規劃裝置;其中所述製程規劃裝置更用以依據所述用電預測結果、所述多個客戶資料以及所述多個出貨資料以產生所述多個機台的所述用電排程。 A power scheduling system includes: a plurality of machines, including a plurality of electric load data and a plurality of temperature data; a smart set-top box, connected to the plurality of machines, for connecting the plurality of electric loads The quantity data and the plurality of temperature data are input into the neural network model to generate power consumption prediction results; a process planning device; and an order device to transmit a plurality of customer data and a plurality of shipment data to the process. Planning device; wherein the process planning device is further used to generate the power consumption schedules for the plurality of machines based on the power consumption prediction results, the plurality of customer data and the plurality of shipment data. 如請求項1所述的用電排程系統,其中所述類神經模型包括二個隱藏層以及一個輸出層。 The power scheduling system according to claim 1, wherein the neural model includes two hidden layers and an output layer. 如請求項1所述的用電排程系統,其中所述多個電力負載量資料包括平均負載量參數以及尖峰負載量參數,其中所述多個溫度資料包括平均溫度參數、最高溫度參數以及最低溫度參數。 The power scheduling system according to claim 1, wherein the plurality of power load data includes an average load parameter and a peak load parameter, and the plurality of temperature data includes an average temperature parameter, a maximum temperature parameter, and a minimum temperature parameter. temperature parameters. 如請求項3所述的用電排程系統,其中所述類神經模型用以產生預測模型,以經由所述預測模型產生 所述用電預測結果,所述預測模型為[預計用電量=第一參數×所述平均負載量參數-第二參數×所述最高溫度參數×所述尖峰負載量參數-第三參數×所述平均溫度參數+第四參數×所述最低溫度參數×所述平均負載量參數+第五參數×(所述尖峰負載量參數)1/2×所述平均負載量參數]。 The power consumption scheduling system according to claim 3, wherein the neural-like model is used to generate a prediction model to generate the power consumption prediction result through the prediction model, and the prediction model is [estimated power consumption = The first parameter × the average load parameter - the second parameter × the maximum temperature parameter × the peak load parameter - the third parameter × the average temperature parameter + the fourth parameter × the minimum temperature parameter × the Average load parameter + fifth parameter × (the peak load parameter) 1/2 × the average load parameter]. 一種用電排程方法,包括:由多個機台傳送多個機台的多個電力負載量資料以及多個溫度資料至智慧機上盒;由所述智慧機上盒將所述多個電力負載量資料以及所述多個溫度資料輸入至類神經網路模型中,以產生用電預測結果;由訂單裝置傳送多個客戶資料以及多個出貨資料至製程規劃裝置;以及由所述製程規劃裝置依據所述用電預測結果、所述多個客戶資料以及所述多個出貨資料以產生所述多個機台的所述用電排程。 A power scheduling method includes: transmitting multiple power load data and multiple temperature data of multiple machines to a smart set-top box from multiple machines; using the smart set-top box to transmit the multiple power The load data and the plurality of temperature data are input into the neural network model to generate a power consumption prediction result; the ordering device transmits the plurality of customer data and the plurality of shipment data to the process planning device; and the process planning device The planning device generates the power consumption schedules for the plurality of machines based on the power consumption prediction results, the plurality of customer data, and the plurality of shipping data. 如請求項5所述的用電排程方法,更包括:由所述類神經模型產生預測模型,以經由所述預測模型產生所述用電預測結果。 The power consumption scheduling method according to claim 5, further comprising: generating a prediction model from the neural-like model to generate the power consumption prediction result through the prediction model. 如請求項6所述的用電排程方法,其中所述預測模型為[預計用電量=第一參數×平均負載量參數-第 二參數×最高溫度參數×尖峰負載量參數-第三參數×平均溫度參數+第四參數×最低溫度參數×所述平均負載量參數+第五參數×(尖峰負載量參數)1/2×平均負載量參數]。 The power scheduling method as described in claim 6, wherein the prediction model is [estimated power consumption = first parameter × average load parameter - second parameter × maximum temperature parameter × peak load parameter - third parameter × average temperature parameter + fourth parameter × minimum temperature parameter × said average load parameter + fifth parameter × (peak load parameter) 1/2 × average load parameter]. 如請求項7所述的用電排程方法,其中7.21≦第一參數≦8.81,18.33≦第二參數≦22.40,1.44≦第三參數≦1.76,1.10≦第四參數≦1.34,2.22<第五參數≦2.72。 The power scheduling method as described in request item 7, wherein 7.21≦first parameter≦8.81, 18.33≦second parameter≦22.40, 1.44≦third parameter≦1.76, 1.10≦fourth parameter≦1.34, 2.22<fifth parameter Parameter ≦2.72.
TW110127766A 2021-07-28 2021-07-28 Electricity usage scheduling system and electricity usage scheduling method TWI831033B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110127766A TWI831033B (en) 2021-07-28 2021-07-28 Electricity usage scheduling system and electricity usage scheduling method
CN202111211142.9A CN115700648A (en) 2021-07-28 2021-10-18 Power utilization scheduling system and power utilization scheduling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110127766A TWI831033B (en) 2021-07-28 2021-07-28 Electricity usage scheduling system and electricity usage scheduling method

Publications (2)

Publication Number Publication Date
TW202305722A TW202305722A (en) 2023-02-01
TWI831033B true TWI831033B (en) 2024-02-01

Family

ID=85121060

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110127766A TWI831033B (en) 2021-07-28 2021-07-28 Electricity usage scheduling system and electricity usage scheduling method

Country Status (2)

Country Link
CN (1) CN115700648A (en)
TW (1) TWI831033B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383023A (en) * 2008-10-22 2009-03-11 西安交通大学 Neural network short-term electric load prediction based on sample dynamic organization and temperature compensation
CN101782258A (en) * 2009-01-19 2010-07-21 中华电信股份有限公司 Energy-saving method for air conditioner
TW201319833A (en) * 2011-11-15 2013-05-16 Univ Kun Shan Short-term load forecasting method for smart grid
TW201346515A (en) * 2012-05-03 2013-11-16 Univ Tunghai Smart energy-saving control method and system
US9911163B2 (en) * 2013-03-15 2018-03-06 Rockwell Automation Technologies, Inc. Systems and methods for determining energy information using an organizational model of an industrial automation system
CN111047094A (en) * 2019-12-12 2020-04-21 国网浙江省电力有限公司 Meter reading data anomaly analysis method based on deep learning algorithm
CN112215426A (en) * 2020-10-16 2021-01-12 国网山东省电力公司信息通信公司 Short-term power load prediction method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383023A (en) * 2008-10-22 2009-03-11 西安交通大学 Neural network short-term electric load prediction based on sample dynamic organization and temperature compensation
CN101782258A (en) * 2009-01-19 2010-07-21 中华电信股份有限公司 Energy-saving method for air conditioner
TW201319833A (en) * 2011-11-15 2013-05-16 Univ Kun Shan Short-term load forecasting method for smart grid
TW201346515A (en) * 2012-05-03 2013-11-16 Univ Tunghai Smart energy-saving control method and system
US9911163B2 (en) * 2013-03-15 2018-03-06 Rockwell Automation Technologies, Inc. Systems and methods for determining energy information using an organizational model of an industrial automation system
CN111047094A (en) * 2019-12-12 2020-04-21 国网浙江省电力有限公司 Meter reading data anomaly analysis method based on deep learning algorithm
CN112215426A (en) * 2020-10-16 2021-01-12 国网山东省电力公司信息通信公司 Short-term power load prediction method

Also Published As

Publication number Publication date
TW202305722A (en) 2023-02-01
CN115700648A (en) 2023-02-07

Similar Documents

Publication Publication Date Title
US11334036B2 (en) Power grid aware machine learning device
US11209184B2 (en) Control system for central energy facility with distributed energy storage
US11507033B2 (en) HVAC control system with model driven deep learning
Ozturk et al. An intelligent home energy management system to improve demand response
Agnetis et al. Load scheduling for household energy consumption optimization
Anjos et al. A decentralized framework for the optimal coordination of distributed energy resources
EP2500853A2 (en) Graphical language for optimization and use
EP2500787A1 (en) Transparent models for large scale optimization and control
Mohagheghi et al. Intelligent demand response scheme for energy management of industrial systems
Mahmud et al. The impact of prediction errors in the domestic peak power demand management
CN104424512A (en) Operation plan decision method and operation plan decision system
Jiang et al. Demand side management in power grid enterprise control: A comparison of industrial & social welfare approaches
Chandra et al. Transactive energy market framework for decentralized coordination of demand side management within a cluster of buildings
Ho et al. Predicting chiller system performance using ARIMA-regression models
Nezhad et al. Joint Peak Clipping and Load Scheduling Based on User Behavior Monitoring in an IoT Platform
TWI831033B (en) Electricity usage scheduling system and electricity usage scheduling method
Aghelinejad et al. Single-machine scheduling problem with total energy consumption costs minimization
Kim et al. A multiagent system for residential DC microgrids
Wang et al. Ancillary service for frequency regulation based on multi-energy virtual power plant aggregating factory load
Martins et al. A resource-based model for home energy management using multi-agent systems
Kumari et al. Reinforcement learning for multiagent-based residential energy management system
CN110826776B (en) Initial solution optimization method based on dynamic programming in distribution network line transformation relation identification
Verma Application of computational techniques in demand response: A review
Buraimoh et al. Virtual Power Plant with Demand Response Control in Aggregated Distributed Energy Resources of Microgrid
Sabapathi et al. Management in Industrial Sectors using Neuro-Fuzzy Controller and Deep Learning