TWI830555B - Common path interferometric probe - Google Patents
Common path interferometric probe Download PDFInfo
- Publication number
- TWI830555B TWI830555B TW111150276A TW111150276A TWI830555B TW I830555 B TWI830555 B TW I830555B TW 111150276 A TW111150276 A TW 111150276A TW 111150276 A TW111150276 A TW 111150276A TW I830555 B TWI830555 B TW I830555B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- optical path
- self
- section
- focusing lens
- Prior art date
Links
- 239000000523 sample Substances 0.000 title claims abstract description 153
- 239000013307 optical fiber Substances 0.000 claims abstract description 44
- 230000003287 optical effect Effects 0.000 claims description 248
- 238000005070 sampling Methods 0.000 claims description 82
- 230000005540 biological transmission Effects 0.000 claims description 44
- 239000011521 glass Substances 0.000 claims description 34
- 230000001681 protective effect Effects 0.000 claims description 31
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 239000004020 conductor Substances 0.000 abstract 4
- 239000013256 coordination polymer Substances 0.000 description 54
- 238000002310 reflectometry Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 239000000835 fiber Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000005350 fused silica glass Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 3
- 238000012014 optical coherence tomography Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- 229910017855 NH 4 F Inorganic materials 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本申請係關於一種共光路干涉探頭。 This application relates to a common optical path interference probe.
傳統光學同調斷層掃描(Optical coherence tomography,OCT)系統有兩道光束,一道是樣品光束,另一道是參考光束,當兩道光束的光程長度相同時,才會產生干涉訊號,進而辨識組織或樣品。 The traditional optical coherence tomography (OCT) system has two beams, one is the sample beam and the other is the reference beam. When the optical path lengths of the two beams are the same, interference signals will be generated to identify tissues or Sample.
光纖式OCT探針可用於氣管或腦組織等斷層掃描影像。然而,在操作過程中,有可能因為光纖的移動或彎曲,使得兩道光束的光程差產生變化,造成影像品質不佳甚或無法成像。此外,所生產的每支探針的光纖長度因製造公差而存在著微小的差異,因此每次更換使用新探針時,須將參考光束的光程重新調整成適合新探針的路徑長度,從而需要耗費更多的時間或人力資源。 Fiber optic OCT probes can be used for tomography images of trachea or brain tissue. However, during operation, the optical path difference between the two beams may change due to the movement or bending of the optical fiber, resulting in poor image quality or even failure to form an image. In addition, the fiber length of each probe produced has slight differences due to manufacturing tolerances. Therefore, every time a new probe is replaced, the optical path of the reference beam must be readjusted to the path length suitable for the new probe. This requires more time or human resources.
為了改善上述問題,有業者已發展出共光路探針以避免因為光纖的移動或彎曲造成兩道光束的光程差產生變化。然而,在習知的共光路探針中,通常是將部分反射面設置於自聚焦透鏡遠離光纖的端面上,在這樣的配置下,難以有效補償兩道光 束的光路光程差異,造成影像品質受到影響。此外,為了確保樣品光束可以聚焦在光纖端面上時,需要在自聚焦透鏡的折射率、自聚焦透鏡長度、自聚焦透鏡與光纖的間距以及探針和樣品間的物距等參數之間取得平衡,然而這樣配置卻難以確保參考光束也可以同時聚焦在光纖端面上,造成參考光束的回光光點過大,使得參考光束的收光效率不佳。 In order to improve the above problems, some industry players have developed common optical path probes to avoid changes in the optical path difference of the two beams due to movement or bending of the optical fiber. However, in conventional common optical path probes, a partial reflective surface is usually disposed on the end face of the self-focusing lens away from the optical fiber. Under such a configuration, it is difficult to effectively compensate for the two rays of light. The difference in optical path length of the beam affects the image quality. In addition, in order to ensure that the sample beam can be focused on the fiber end face, a balance needs to be struck between parameters such as the refractive index of the self-focusing lens, the length of the self-focusing lens, the distance between the self-focusing lens and the fiber, and the object distance between the probe and the sample. , however, this configuration makes it difficult to ensure that the reference beam can also be focused on the fiber end face at the same time, causing the return light spot of the reference beam to be too large, resulting in poor light collection efficiency of the reference beam.
本申請揭露之共光路干涉探頭適於辨識一樣品,其包含一光纖、一光傳導元件、一自聚焦透鏡構件、一反射面以及一分光面。光纖具有一光收發端面,適於從光收發端面發射出一光束。光傳導元件適於傳導光束且具有相對的一第一連接端面以及一第二連接端面,且光纖的光收發端面連接於第一連接端面。自聚焦透鏡構件適於匯聚光束並包含相連的一準直段以及一聚焦段,聚焦段較準直段遠離光傳導元件。自聚焦透鏡構件具有一接合面,其中接合面位於準直段遠離聚焦段的一側,且接合面連接於光傳導元件的第二連接端面。反射面設置於光傳導元件的第一連接端面並位於光收發端面的一側,且反射面適於反射參考光。分光面設置於準直段並實質上位於準直段的一半長度處,其中分光面與反射面彼此對向設置,且分光面適於反射參考光並供取樣光透射。其中,光束由光纖之光收發端面發射,經過光傳導元件到達分光面時,部分光束會被分光面反射而形成參考光,另一部 分光束會穿透分光面而形成取樣光,參考光藉由反射面與分光面的反射而回到光收發端面,且取樣光在穿透自聚焦透鏡構件後到達樣品,並經樣品反射而回到光收發端面。 The common optical path interference probe disclosed in this application is suitable for identifying a sample and includes an optical fiber, a light conductive element, a self-focusing lens component, a reflective surface and a light splitting surface. The optical fiber has an optical transceiver end face and is suitable for emitting a light beam from the optical transceiver end face. The light transmission element is suitable for transmitting light beams and has a first connection end face and a second connection end face opposite to each other, and the optical transceiver end face of the optical fiber is connected to the first connection end face. The self-focusing lens component is suitable for converging light beams and includes a connected collimating section and a focusing section. The focusing section is further away from the light conductive element than the collimating section. The self-focusing lens component has a joint surface, wherein the joint surface is located on a side of the collimating section away from the focusing section, and the joint surface is connected to the second connection end surface of the light conductive element. The reflective surface is disposed on the first connection end surface of the light conductive element and is located on one side of the light transceiver end surface, and the reflective surface is suitable for reflecting the reference light. The light splitting surface is arranged on the collimation section and is located substantially at half the length of the collimation section, wherein the light splitting surface and the reflection surface are arranged opposite to each other, and the light splitting surface is suitable for reflecting the reference light and transmitting the sampling light. Among them, the light beam is emitted from the light receiving and transmitting end face of the optical fiber. When it passes through the light conductive element and reaches the light splitting surface, part of the light beam will be reflected by the light splitting surface to form a reference light, and the other part will be reflected by the light splitting surface. The split beam will penetrate the splitting surface to form the sampling light. The reference light will return to the light transmitting and receiving end surface through reflection from the reflective surface and the splitting surface. The sampling light will reach the sample after penetrating the self-focusing lens component, and will be reflected by the sample and return. to the optical transceiver end.
以上關於本申請內容的說明及以下實施方式的說明係適於示範與解釋本申請的原理,並且提供本申請的專利申請範圍更進一步的解釋。 The above description of the content of the present application and the following description of the embodiments are suitable to demonstrate and explain the principles of the present application, and provide further explanation of the patent application scope of the present application.
1,1b,1c,1d:共光路干涉探頭 1,1b,1c,1d: Common optical path interference probe
10:光纖 10: Optical fiber
11:光收發端面 11: Optical transceiver end face
13:核芯端面 13:Core end face
20:光傳導元件 20:Light conductive element
21:第一連接端面 21: First connection end face
22:第二連接端面 22: Second connection end face
30,30c:自聚焦透鏡構件 30,30c: Self-focusing lens component
CP:準直段 CP: collimation section
FP:聚焦段 FP: focus segment
31:第一自聚焦透鏡 31: First self-focusing lens
32:第二自聚焦透鏡 32: Second self-focusing lens
321:第一段 321: First paragraph
322:第二段 322:Second paragraph
33:接合面 33:joint surface
34:連接面 34:Connection surface
35c:寬徑部 35c: Wide diameter part
351c:環形表面 351c: Annular surface
36c:窄徑部 36c: Narrow diameter part
361c:前段 361c: Front section
362c:後段 362c: rear section
37c:交界處 37c: Junction
40:反射面 40: Reflective surface
50,50b,50c:分光面 50,50b,50c: spectroscopic surface
51,51c:透射區域 51,51c: Transmission area
52,52c:反射區域 52,52c: Reflective area
7d:光轉折元件 7d: Light turning element
8d:保護玻璃 8d: Protective glass
9:樣品 9:Sample
AD:軸向 AD: axial
D1,D2:距離 D1, D2: distance
FL,DL,EL,WL,AL1,AL2,GL,AL3:光程 FL,DL,EL,WL,AL1,AL2,GL,AL3: optical path
L1,L2,PFL:長度 L1,L2,PFL: length
LF:光束 LF: beam
LR:參考光 LR: reference light
LS:取樣光 LS: sampling light
△OPL:半光程差異 △OPL: half optical path difference
R:反射率 R: reflectivity
RP:空間 RP: space
圖1為根據本申請的第一實施例所述之共光路干涉探頭和樣品的示意圖。 Figure 1 is a schematic diagram of a common optical path interference probe and a sample according to the first embodiment of the present application.
圖2為圖1之第一連接端面、光收發端面、核芯端面以及反射面的示意圖。 FIG. 2 is a schematic diagram of the first connection end face, the optical transceiver end face, the core end face and the reflective surface of FIG. 1 .
圖3為圖1之分光面的正視示意圖。 Figure 3 is a schematic front view of the light splitting surface of Figure 1.
圖4為根據本申請的第二實施例所述之共光路干涉探頭和樣品的示意圖。 Figure 4 is a schematic diagram of a common optical path interference probe and a sample according to the second embodiment of the present application.
圖5為圖4之分光面的正視示意圖。 Figure 5 is a schematic front view of the light splitting surface of Figure 4.
圖6為根據本申請的第三實施例所述之共光路干涉探頭和樣品的示意圖。 Figure 6 is a schematic diagram of a common optical path interference probe and a sample according to the third embodiment of the present application.
圖7為圖6之分光面以及環形表面的正視示意圖。 FIG. 7 is a schematic front view of the light splitting surface and annular surface of FIG. 6 .
圖8為根據本申請的第四實施例所述之共光路干涉探頭和樣品的示意圖。 Figure 8 is a schematic diagram of a common optical path interference probe and a sample according to the fourth embodiment of the present application.
以下在實施方式中詳細敘述本申請之實施例之詳細特徵以及優點,其內容足以使任何本領域中具通常知識者了解本申請之實施例之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何本領域中具通常知識者可輕易地理解本申請相關之目的及優點。以下之實施例係進一步詳細說明本申請之觀點,但非以任何觀點限制本申請之範疇。 The detailed features and advantages of the embodiments of the present application are described in detail below in the implementation mode. The content is sufficient to enable anyone with ordinary knowledge in the art to understand the technical content of the embodiments of the present application and implement them accordingly, and based on the disclosure of this specification Anyone with ordinary knowledge in the art can easily understand the relevant purposes and advantages of this application. The following examples further illustrate the concepts of this application in detail, but do not limit the scope of this application in any way.
請參照圖1至圖3,其中圖1為根據本申請的第一實施例所述之共光路干涉探頭和樣品的示意圖,圖2為圖1之第一連接端面、光收發端面、核芯端面以及反射面的示意圖,且圖3為圖1之一實施例之分光面的正視示意圖。 Please refer to Figures 1 to 3. Figure 1 is a schematic diagram of a common optical path interference probe and a sample according to the first embodiment of the present application. Figure 2 is a first connection end face, an optical transceiver end face, and a core end face of Figure 1. and a schematic diagram of the reflective surface, and FIG. 3 is a schematic front view of the light splitting surface of the embodiment of FIG. 1 .
本實施例之共光路干涉探頭1適於辨識一樣品9,且共光路干涉探頭1包含一光纖10、一光傳導元件20、一自聚焦透鏡構件30、一反射面40以及一分光面50。
The common optical
光纖10具有一光收發端面11,且光纖10適於從光收發端面11發射出一光束LF,且光束LF的波長例如係在0.84微米(μm)至1.37μm的範圍中。在本實施例中,光纖10為單模光纖,且光纖10具有一核芯端面13,其中核芯端面13位於光收發端面11的軸心處,且核芯端面13適於發射和接收光束LF。然而,本申請的光纖不以單模光纖為限,在其他實施例中,光纖可例如為多模光纖。
The
光傳導元件20適於傳導光束LF且具有相對的一第
一連接端面21以及一第二連接端面22,且光纖10的光收發端面11連接於第一連接端面21。其中,第一連接端面21的面積大於光收發端面11的面積。光傳導元件20為具有光傳導性質的元件所構成,在一實施例中,光傳導元件20可為無芯光纖(coreless fiber)或是柱狀玻璃等,並不以所列舉者為限。
The light
自聚焦透鏡構件30適於匯聚光束LF並包含相連的一準直段CP以及一聚焦段FP,且聚焦段FP較準直段CP遠離光傳導元件20。自聚焦透鏡構件30具有一接合面33,其中接合面33位於準直段CP遠離聚焦段FP的一側,且接合面33連接於光傳導元件20的第二連接端面22。其中,通過準直段CP後的光束LF以平行光進入聚焦段FP。
The self-focusing
在本實施例中,自聚焦透鏡構件30包含同軸設置的一第一自聚焦透鏡31以及一第二自聚焦透鏡32,其中第二自聚焦透鏡32較第一自聚焦透鏡31遠離光傳導元件20,第二自聚焦透鏡32連接於第一自聚焦透鏡31,且第一自聚焦透鏡31與第二自聚焦透鏡32之間具有一連接面34。此外,第二自聚焦透鏡32包含相連的一第一段321以及一第二段322,其中第一段321連接於第一自聚焦透鏡31,且第一段321與第一自聚焦透鏡31在軸向AD上的長度實質上相等並共同構成準直段CP。在這樣的配置中,接合面33係位於第一自聚焦透鏡31遠離第二自聚焦透鏡32的一側,且連接面34係位於第一自聚焦透鏡31以及第二自聚
焦透鏡32的第一段321之間。所述第二自聚焦透鏡32的第一段321與第一自聚焦透鏡31在軸向AD上的長度“實質上”相等,係指兩者在軸向AD上的長度相等,或者兩者在軸向AD上的長度可有例如因為製造公差所造成的15%以內的差異量。
In this embodiment, the self-focusing
反射面40設置於光傳導元件20的第一連接端面21並位於光收發端面11的一側,且反射面40適於反射參考光LR。在本實施例中,光纖10的光收發端面11連接於光傳導元件20的第一連接端面21的近軸處,反射面40位於第一連接端面21的離軸處且為一環形反射面,且反射面40環繞光收發端面11。反射面40的反射率可為100%或接近100%,但本申請不以此為限。在其他實施例中,反射面的反射率可依實際需求而調整成例如大於50%且小於或等於100%。
The
分光面50設置於準直段CP並實質上位於準直段CP的一半長度處,且分光面50適於反射參考光LR並供取樣光LS透射。進一步來說,分光面50係設置於第一自聚焦透鏡31與第二自聚焦透鏡32之間的連接面34,且分光面50與反射面40彼此對向設置。所述準直段CP的一半長度處,係指準直段CP在軸向AD上的一半長度處,也可以理解為是準直段CP在軸向AD上的中間位置處。另外,所述分光面50“實質上”位於準直段CP的一半長度處,係指分光面50至接合面33之間的距離D1相等於分光面50至準直段CP和聚焦段FP的交界處的距離D2,或者分
光面50至接合面33之間的距離D1與分光面50至準直段CP和聚焦段FP的交界處的距離D2之間可有例如因為製造公差所造成的15%以內的差異量。
The
在本實施例中,如圖3所示,分光面50具有一透射區域51以及一反射區域52,透射區域51位於分光面50的近軸(即內圓)處,且反射區域52位於分光面50的離軸(即外環)處。當光纖10由光收發端面11發射出的光束LF,經過光傳導元件20到達自聚焦透鏡構件30中的第一自聚焦透鏡31(或是準直段CP的前半段)時,光束LF會被準直並於分光面50分光。詳細來說,照射到透射區域51的部分光束LF會穿透分光面50而形成取樣光LS進入至第二自聚焦透鏡32,且照射到反射區域52的另一部分光束LF會被反射區域52反射而形成參考光LR。進一步來說,分光面50的反射區域52為一環形反射面,且反射區域52環繞透射區域51。在本實施例中,分光面50與反射面40彼此平行且皆與軸向AD垂直。
In this embodiment, as shown in Figure 3, the
透過上述的配置,使自光收發端面11發出的光束LF可藉由分光面50的分光,而形成參考光LR與取樣光LS。參考光LR可藉由反射面40與分光面50中反射區域52的反射而回到光收發端面11,而取樣光LS可在穿透自聚焦透鏡構件30的第二自聚焦透鏡32後到達樣品9,並經樣品9反射而回到光收發端面11。
Through the above configuration, the light beam LF emitted from the light
詳細來說,如圖1所示,光束LF自光收發端面11上的核芯端面13射向設置於準直段CP的分光面50而被分光形成參考光LR與取樣光LS。參考光LR經準直段CP的準直而以平行的準直光線射向反射面40,再經反射面40之反射而往回射向分光面50的反射區域52,最後再經分光面50的反射區域52之反射與準直段CP的匯聚而聚焦在光收發端面11上的核芯端面13。另一方面,取樣光LS經由自聚焦透鏡構件30之準直段CP與聚焦段FP聚焦後聚焦在樣品9,再經樣品9反射而往回經過自聚焦透鏡構件30,並穿透透射區域51而最終聚焦在光收發端面11上的核芯端面13。
Specifically, as shown in FIG. 1 , the light beam LF is emitted from the
值得注意的是,由於分光面50係位於準直段CP的一半長度處,故參考光LR在由分光面50行進到達光傳導元件20的距離D1,係相同於取樣光LS在由分光面50行進到達聚焦段FP的距離D2,所以參考光LR與取樣光LS在第一次從準直段CP出射時一樣都是平行的準直光線。
It is worth noting that since the
在本實施例中,分光面50的反射區域52由塗覆於連接面34的離軸處的環形鍍膜形成,但本申請不以此為限。在其他實施例中,反射區域52可由設置於連接面34離軸處的反射元件形成,例如為面鏡。此外,反射區域52的反射率可為100%或接近100%,但本申請不以此為限。在其他實施例中,反射區域的反射率可依實際設計需求而調整成例如大於或等於50%且小於
100%。
In this embodiment, the
圖2中所繪示反射面40在第一連接端面21上的範圍比例僅為示例,本申請不以此為限。在其他實施例中,反射面可依實際設計需求而有不同於圖2所呈現的範圍比例。同理,圖3中所繪示分光面50的透射區域51和反射區域52的範圍比例僅為示例,本申請不以此為限。在其他實施例中,分光面的透射區域和反射區域可依實際設計需求而有不同於圖3所呈現的範圍比例。
The proportion of the range of the
如圖1所示,取樣光LS從分光面50到達樣品9的光學路徑依序經過了自聚焦透鏡構件30的準直段CP的後半段(即準直段CP較遠離光傳導元件20的半段)和聚焦段FP(即第二自聚焦透鏡32)以及自聚焦透鏡構件30和樣品9之間的空氣間隔。因此,取樣光LS包含光束LF段的半光程長度L1為光束LF行經光傳導元件20的光程FL、行經準直段CP的光程DL、行經聚焦段FP的光程EL以及行經自聚焦透鏡構件30和樣品9之間空氣間隔的光程WL的總和(即L1=FL+DL+EL+WL)。其中,自聚焦透鏡構件30和樣品9之間的空氣間隔可視為共光路干涉探頭1的工作距離。
As shown in FIG. 1 , the optical path of the sampling light LS from the
另一方面,參考光LR從分光面50到達反射面40的光學路徑上依序經過了自聚焦透鏡構件30的準直段CP的前半段(即準直段CP較靠近光傳導元件20的半段)以及光傳導元件20。
也就是說,參考光LR因為反射面40的反射而在其光學路徑上兩次行經光傳導元件20以及準直段CP的前半段。因此,參考光LR包含光束LF段的半光程長度L2為光束LF行經光傳導元件20的光程FL、行經準直段CP的前半段的光程0.5DL、參考光LR行經準直段CP的前半段的光程0.5DL以及行經光傳導元件20的光程FL的總和(即L2=FL+0.5DL+0.5DL+FL)。
On the other hand, the reference light LR sequentially passes through the first half of the collimation section CP of the self-focusing lens component 30 (that is, the half of the collimation section CP closer to the light conductive element 20) on the optical path from the
由以上說明可知,參考光LR與取樣光LS之間的半光程差異△OPL為參考光LR的半光程長度L2和取樣光LS的半光程長度L1之間的差值,亦即△OPL=L2-L1=(FL+0.5DL+0.5DL+FL)-(FL+DL+EL+WL)=FL-(EL+WL),其中定義(EL+WL)為待補償光程長度,且FL為補償光程長度,其中EL為取樣光LS行經聚焦段FP的光程,WL為取樣光LS行經自聚焦透鏡構件30和樣品9之間空氣間隔的光程,且FL為光束LF行經光傳導元件20的光程。
From the above description, it can be seen that the half-optical path difference △OPL between the reference light LR and the sampling light LS is the difference between the half-optical path length L2 of the reference light LR and the half-optical path length L1 of the sampling light LS, that is, △ OPL=L2-L1=(FL+0.5DL+0.5DL+FL)-(FL+DL+EL+WL)=FL-(EL+WL), where (EL+WL) is defined as the optical path length to be compensated, And FL is the compensation optical path length, where EL is the optical path of the sampling light LS traveling through the focusing section FP, WL is the optical path of the sampling light LS traveling through the air gap between the self-focusing
本申請藉由配合共光路干涉探頭1中光傳導元件20和自聚焦透鏡構件30等元件的折射係數來設計調整各元件的實體長度以及共光路干涉探頭1的工作距離,使補償光程長度(即FL)實質上相等於待補償光程長度(即EL+WL),來達到光程完全補償或接近完全補償的目的,從而使參考光LR與取樣光LS之間實質上具有相同的光路光程(亦即參考光LR與取樣光LS之間的半光程差異△OPL等於零)。藉以,可有效補償取樣光LS的待補
償光程,並同時使參考光LR的回光光點有效聚焦,從而提升參考光LR的收光效率。
This application designs and adjusts the physical length of each element and the working distance of the common optical
以下提供共光路干涉探頭1的其中一具體示例以及光學參數範圍及條件設定。
The following provides a specific example of the common optical
首先,光學參數範圍及條件設定包含:一、光纖10發出的光束LF的波長範圍為1.31±0.06μm;二、光傳導元件20採用熔融石英無芯光纖(Fused Silica Coreless fiber),其中熔融石英無芯光纖對於光束LF的中心波長1.31μm以及兩端值波長1.37μm和1.25μm的折射率分別為1.44680、1.44612以及1.44748;以及三、第一自聚焦透鏡31和第二自聚焦透鏡32皆採用型號為SLW-1.8的自聚焦透鏡,其中SLW-1.8自聚焦透鏡對於光束LF的中心波長1.31μm以及兩端值波長1.37μm和1.25μm的折射率分別為1.59154、1.59114以及1.59201。
First, the optical parameter range and condition settings include: 1. The wavelength range of the light beam LF emitted by the
在共光路干涉探頭1的設計上,首先確定自聚焦透鏡構件30的聚焦段FP的實體長度為2.332公釐(mm),並確定自聚焦透鏡構件30和樣品9之間的空氣間隔距離(即工作距離)為2.0mm。接著,依據光束LF的中心波長1.31μm所對應的第二自聚焦透鏡32的折射率為1.59154,可求得待補償光程長度(EL+WL)約為5.711mm,亦即EL+WL=2.332mm×1.59154+2.0
mm=5.711mm。
In the design of the common optical
然後,基於本申請中補償光程長度(FL)實質上相等於待補償光程長度(EL+WL)的特徵,並依據光束LF的中心波長1.31μm所對應的光傳導元件20的折射率為1.44680,可透過FL=EL+WL=5.711mm的關係式求得光傳導元件20的實體長度PFL為3.947mm,亦即FL=PFL×1.44680=5.711mm,則PFL=5.711mm/1.44680=3.947mm。
Then, based on the feature in this application that the compensated optical path length (FL) is substantially equal to the optical path length to be compensated (EL+WL), and based on the refractive index of the
最後,由所計算出的光傳導元件20的實體長度PFL為3.947mm,可模擬出準直段CP的實體長度為1.873mm。
Finally, the calculated physical length PFL of the light
在本實施例中,第一自聚焦透鏡31的實體長度為準直段CP實體長度的一半,故第一自聚焦透鏡31的實體長度為0.9365mm。並且,第二自聚焦透鏡32的第一段321的實體長度為準直段CP實體長度的一半,且第二自聚焦透鏡32的第二段322的實體長度為聚焦段FP的實體長度,故第二自聚焦透鏡32的實體長度為3.2685mm(即0.9365mm+2.332mm=3.2685mm)。
In this embodiment, the physical length of the first self-focusing
上述共光路干涉探頭1的具體示例的配置,可確保光束LF的整個波長範圍1.31±0.06μm皆能達到光程完全補償或接近完全補償的效果。
The configuration of the above-mentioned specific example of the common optical
詳細來說,針對光束LF的其中一端值波長1.37μm,其待補償光程長度(EL+WL)約為5.711mm(即2.332mm×1.59114+2.0mm=5.711mm),且補償光程長度(FL)約為5.709
mm(即3.947mm×1.44612=5.709mm),從而補償光程長度(FL)與待補償光程長度(EL+WL)之間的差值為0.002mm,其遠小於共光路干涉探頭1的工作距離(2.0mm)。由此可知,光束LF中波長為1.37μm的端值部分在共光路干涉探頭1中亦能達到接近完全補償的效果。
Specifically, for one of the end value wavelengths of the beam LF, 1.37μm, the optical path length to be compensated (EL+WL) is approximately 5.711mm (i.e. 2.332mm×1.59114+2.0mm=5.711mm), and the compensated optical path length ( FL) is about 5.709
mm (ie 3.947mm×1.44612=5.709mm), so the difference between the compensated optical path length (FL) and the optical path length to be compensated (EL+WL) is 0.002mm, which is much smaller than the work of the common optical
另一方面,針對光束LF的另一端值波長1.25μm,其待補償光程長度(EL+WL)約為5.713mm(即2.332mm×1.59201+2.0mm=5.713mm),且補償光程長度(FL)約為5.715mm(即3.947mm×1.44748=5.715mm),從而補償光程長度(FL)與待補償光程長度(EL+WL)之間的差值為0.002mm,其遠小於共光路干涉探頭1的工作距離(2.0mm)。由此可知,光束LF中波長為1.25μm的端值部分在共光路干涉探頭1中亦能達到接近完全補償的效果。
On the other hand, for the other end value wavelength of the beam LF, 1.25μm, the optical path length to be compensated (EL+WL) is approximately 5.713mm (i.e. 2.332mm×1.59201+2.0mm=5.713mm), and the compensated optical path length ( FL) is about 5.715mm (ie 3.947mm×1.44748=5.715mm), so the difference between the compensated optical path length (FL) and the optical path length to be compensated (EL+WL) is 0.002mm, which is much smaller than the common optical path Working distance of interference probe 1 (2.0mm). It can be seen from this that the end value part of the wavelength 1.25 μm in the beam LF can also achieve a nearly complete compensation effect in the common optical
本實施例中的共光路干涉探頭1透過上述的配置,可使光束LF(或參考光LR)行經光傳導元件20的光程FL實質上相等於取樣光LS從準直段CP與聚焦段FP的交界處行進至樣品9之光程(EL+WL),亦即補償光程長度(FL)實質上相等於待補償光程長度(EL+WL)。需要說明的是,所述補償光程長度(FL)實質上相等於待補償光程長度(EL+WL),係指補償光程長度(FL)與待補償光程長度(EL+WL)之間的差值遠小於共光路干涉探頭1與樣品9之間的光程(即工作距離),且本文所述“遠小於”係指一數
值小於另一數值達二個數量級(即差異量達一百倍)。
Through the above configuration, the common optical
進一步地,在上述具體示例中,可確定分光面50的反射區域52的鍍膜範圍。詳細來說,光纖10可採用型號為SMF-28的單模光纖,其在中心波長1.31μm的模場直徑(Mode Field Diameter)為9.2μm。經計算,若以中心波長為1.31μm的光束LF從光纖10出射到達光傳導元件20的第二連接端面22後,在第二連接端面22上的半徑約為0.244mm。考量光束LF的波長範圍1.31±0.06μm,將光束LF視為近似滿足高斯函數的高斯光束(Gaussian beam),則光束LF於第二連接端面22上取半徑為0.31mm的範圍內的部分即包含整個高斯光束中96%的能量。接著,於第二連接端面22上半徑0.31mm範圍內的光束LF行進至分光面50時,經準直段CP的前半段之後在分光面50上對應的半徑擴大為0.362mm。因此,在分光面50所設置的連接面34上,於連接面34的半徑0.362mm以外的區域鍍反射膜以形成反射區域52,從而連接面34的半徑0.362mm以內的範圍為透射區域51。在這樣的範圍配置下,可供包含光束LF中96%能量的部分穿透成為取樣光LS,而其餘的部分則被反射區域52反射成為參考光LR。
Furthermore, in the above specific example, the coating range of the
請同時參照圖1、圖4和圖5,其中圖4為根據本申請的第二實施例所述之共光路干涉探頭和樣品的示意圖,且圖5為圖4之分光面的正視示意圖。本實施例(對應圖4)之共光路
干涉探頭1b與前述圖1之共光路干涉探頭1相似,並以相同的標號來表示相同的元件,各元件具備的功能與效果皆與前述相同,於此不再贅述。
Please refer to Figures 1, 4 and 5 at the same time. Figure 4 is a schematic diagram of a common optical path interference probe and a sample according to the second embodiment of the present application, and Figure 5 is a schematic front view of the light splitting surface of Figure 4. The common optical path of this embodiment (corresponding to Figure 4)
The
如第一實施例之共光路干涉探頭1,分光面50具有一透射區域51以及一反射區域52。但在第二實施例之共光路干涉探頭1b中,分光面50b是以一個部分反射面來涵蓋連接面34的整個區域。並且,分光面50b的反射率可依實際設計需求而為4%至50%之間,本申請不以此為限。詳細來說,由於分光面50b是一個部分反射面,當光束LF自光收發端面11經光傳導元件20、第一自聚焦透鏡31而到達分光面50b時,光束LF會被分光面50b部分反射與部分穿透而分別形成參考光LR與取樣光LS。因此,形成的參考光LR不會如第一實施例(對應圖1)中僅準直射入於第一連接端面21的離軸(即外環)處,而是準直射入於整個第一連接端面21。基於此,反射面40可適應性的增加面積,變成遍佈於光傳導元件20的第一連接端面21上除了設有光收發端面11以外的其餘區域,以避免參考光LR的收光效率降低。
Like the common optical
在本實施例中,分光面50b由塗覆於整個連接面34的鍍膜形成,但本申請不以此為限。在其他實施例中,分光面50b可由設置於連接面34之反射元件形成,例如為面鏡。
In this embodiment, the
此外,基於前述之光學參數範圍及條件設定,可確定本實施例之分光面50b的反射率R。詳細來說,假設反射面40是
遍佈於光傳導元件20的第一連接端面21上除了設有光收發端面11以外的其餘區域,且反射面40的反射率約為100%。並且,假設樣品9的反射率為4%,且共光路干涉探頭1b的材料不吸收光。則參考光LR的回光比例約為R×100%×R=R2,且取樣光LS的回光比例為(1-R)×4%×(1-R)=0.04×(1-R)2,其中R為分光面50b的反射率。當參考光LR與取樣光LS的收光強度相同時,則應用共光路干涉探頭1b的系統可獲得最大訊號對比。因此,透過使參考光LR的回光比例相等於取樣光LS的回光比例,亦即R2=0.04×(1-R)2,可計算得知分光面50b在反射率R約為16.7%之情形下,共光路干涉探頭1b具有良好的訊號對比。
In addition, based on the aforementioned optical parameter range and condition settings, the reflectance R of the
請參照圖6和圖7,其中圖6為根據本申請的第三實施例所述之共光路干涉探頭和樣品的示意圖,且圖7為圖6之分光面以及環形表面的正視示意圖。本實施例(對應圖6)之共光路干涉探頭1c與前述圖1之共光路干涉探頭1相似,並以相同的標號來表示相同的元件,各元件具備的功能與效果皆與前述相同,於此不再贅述。
Please refer to FIGS. 6 and 7 . FIG. 6 is a schematic diagram of a common optical path interference probe and a sample according to the third embodiment of the present application, and FIG. 7 is a schematic front view of the light splitting surface and annular surface of FIG. 6 . The common optical
要注意的是,本實施例之共光路干涉探頭1c中的自聚焦透鏡構件30c包含一體成形的一寬徑部35c以及一窄徑部36c,其中寬徑部35c的外徑大於窄徑部36c的外徑,且窄徑部36c較寬徑部35c遠離光傳導元件20。窄徑部36c與寬徑部35c之間有一交界處37c,且寬徑部35c具有環繞交界處37c的一環
形表面351c。此外,窄徑部36c包含相連的一前段361c以及一後段362c,其中前段361c連接於寬徑部35c,且前段361c與寬徑部35c在軸向AD上的長度實質上相等並共同構成準直段CP。在這樣的配置中,接合面33係位於寬徑部35c遠離窄徑部36c的一側。所述窄徑部36c的前段361c與寬徑部35c在軸向AD上的長度“實質上”相等,係指兩者在軸向AD上的長度相等,或者兩者在軸向AD上的長度可有例如因為製造公差所造成的15%以內的差異量。
It should be noted that the self-focusing
分光面50c設置於準直段CP並實質上位於準直段CP的一半長度處,且分光面50c適於反射參考光LR並供取樣光LS透射。進一步來說,如圖7所示,分光面50c具有一透射區域51c以及一反射區域52c,透射區域51c位於自聚焦透鏡構件30c的寬徑部35c與窄徑部36c的交界處37c,且反射區域52c位於寬徑部35c的環形表面351c上,從而反射區域52c為一環形反射面並環繞透射區域51c。其中,由光纖10發射出的光束LF形成取樣光LS與參考光LR的機制以及取樣光LS與參考光LR回光的機制皆與前述第一實施例之共光路干涉探頭1相同,於此不再重複贅述。因此可知,透射區域51c適於供取樣光LS透射,且反射區域52c適於反射參考光LR。在本實施例中,分光面50c與反射面40彼此對向設置,且分光面50c與反射面40彼此平行且皆與軸向AD垂直。所述準直段CP的一半長度處,係指準直段CP
在軸向AD上的一半長度處,也可以理解為是準直段CP在軸向AD上的中間位置處。另外,所述分光面50c“實質上”位於準直段CP的一半長度處,係指分光面50c至接合面33之間的距離D1相等於分光面50c至準直段CP和聚焦段FP的交界處的距離D2,或者分光面50c至接合面33之間的距離D1與分光面50c至準直段CP和聚焦段FP的交界處的距離D2之間可有例如因為製造公差所造成的15%以內的差異量。
The
透過上述的配置,使自光收發端面11發出的光束LF可藉由分光面50c的分光,而形成參考光LR與取樣光LS。參考光LR可藉由反射面40與分光面50c中反射區域52c的反射而回到光收發端面11,並使自光收發端面11發出的光束LF的取樣光LS可在穿透自聚焦透鏡30c的窄徑部36c後到達樣品9,並經樣品9反射而回到光收發端面11。
Through the above configuration, the light beam LF emitted from the light transmitting and receiving
在本實施例中,分光面50c的反射區域52c由塗覆於環形表面351c的環形鍍膜形成,但本申請不以此為限。在其他實施例中,反射區域52c可由設置於環形表面351c之反射元件形成,例如為面鏡。此外,反射區域52c的反射率可為100%或接近100%,但本申請不以此為限。在其他實施例中,反射區域的反射率可依實際設計需求而調整成例如大於或等於50%且小於100%。
In this embodiment, the
在本實施例中,雖然自聚焦透鏡構件30c所包含之一體成形的寬徑部35c以及窄徑部36c與第一實施例之自聚焦透
鏡構件30在外形上有所不同,但對應比較二者,仍可發現自聚焦透鏡構件30c中的寬徑部35c與窄徑部36c在功能及光學參數設計上,皆與自聚焦透鏡構件30中之第一自聚焦透鏡31與第二自聚焦透鏡32相同,於此不予贅述。
In this embodiment, although the self-focusing
如同前述第一實施例中的各項光學參數之設計,對應在本實施例中,寬徑部35c的實體長度為0.9365mm。並且,窄徑部36c的實體長度為3.2685mm(即0.9365mm+2.332mm=3.2685mm)。在確定自聚焦透鏡構件30c的寬徑部35c和窄徑部36c各自的實體長度以及依實際設計需求確定出窄徑部36c的外徑後,可透過蝕刻等方式移除部分的自聚焦透鏡構件來形成窄徑部36c(圖6中所標示的空間RP係示意自聚焦透鏡構件透過蝕刻移除的部分在被移除前所在的空間)。從而,在形成窄徑部36c之後,於寬徑部35c上形成有環形表面351c。接著,即可在環形表面351c上塗覆環形鍍膜以形成分光面50c的反射區域52c。其中,蝕刻可例如為乾式蝕刻與濕式蝕刻,但本申請不以此為限。此外,濕式蝕刻可例如以氟化銨及氫氟酸(NH4F+HF)所形成之緩衝溶液來蝕刻自聚焦透鏡構件,但本申請不以此為限。
Similar to the design of various optical parameters in the aforementioned first embodiment, correspondingly in this embodiment, the physical length of the wide-
進一步地,在前述具體示例中,可確定分光面50c的反射區域52c的鍍膜範圍,從而可確定出窄徑部36c的外徑。詳細來說,光纖10可採用型號為SMF-28的單模光纖,其在中心波長1.31μm的模場直徑(Mode Field Diameter)為9.2μm。經計算,
若以中心波長1.31μm的光束LF從光纖10出射到達光傳導元件20的第二連接端面22後,在第二連接端面22上的半徑約為0.244mm。考量光束LF的波長範圍1.31±0.06μm,將光束LF視為近似滿足高斯函數的高斯光束(Gaussian beam),則光束LF於第二連接端面22上取半徑為0.31mm的範圍內的部分即包含整個高斯光束中96%的能量。接著,於第二連接端面22上半徑0.31mm範圍內的光束LF行進至分光面50c時,經準直段CP的前半段之後在分光面50c上對應的半徑擴大為0.362mm。因此,可設計窄徑部36c的半徑為0.362mm,以對應於分光面50c的透射區域51c,進而可確定寬徑部35c的環形表面351c的內徑大小。另一方面,由於窄徑部36c與寬徑部35c的交界處37c定義了透射區域51c,故透射區域51c的外徑尺寸即為窄徑部36c的外徑尺寸。因此,這樣的透射區域51c的範圍係可供包含光束LF中96%能量的部分穿透成為取樣光LS,而光束LF的其餘部分則被反射區域52c反射成為參考光LR。
Furthermore, in the aforementioned specific example, the coating range of the
請同時參照圖1與圖8,其中圖8係為根據本申請的第四實施例所述之共光路干涉探頭和樣品的示意圖。本實施例(對應圖8)之共光路干涉探頭1d與前述圖1之共光路干涉探頭1相似,並以相同的標號來表示相同的元件,各元件具備的功能與效果皆與前述相同,於此不再贅述。
Please refer to FIG. 1 and FIG. 8 at the same time. FIG. 8 is a schematic diagram of a common optical path interference probe and a sample according to the fourth embodiment of the present application. The common optical
要注意的是,本實施例之共光路干涉探頭1d更包含
一光轉折元件7d以及一保護玻璃8d。
It should be noted that the common optical
光轉折元件7d設置於自聚焦透鏡構件30與樣品9之間,且光轉折元件7d適於轉折取樣光LS。在本實施例中,光轉折元件7d為反射鏡,但本申請不以此為限。在其他實施例中,光轉折元件可例如為稜鏡。
The
保護玻璃8d設置於光轉折元件7d與樣品9之間,且保護玻璃8d適於對共光路干涉探頭1d提供防護,以避免元件直接接觸到樣品9,並可避免異物進入共光路干涉探頭1d中。
The
透過上述的配置,光束LF自光收發端面11上的核芯端面13射向設置於準直段CP的分光面50而被分光形成參考光LR與取樣光LS。參考光LR的路徑與前述第一實施例相同,與此不再贅述。取樣光LS經由第二自聚焦透鏡32的準直與聚焦後,先入射至光轉折元件7d,並經光轉折元件7d的轉折而改變傳遞方向以朝向樣品9行進。此外,取樣光LS在轉折後穿透保護玻璃8d而聚焦在樣品9。接著,取樣光LS在經樣品9反射後沿原路徑先穿透保護玻璃8d到達光轉折元件7d,並經光轉折元件7d的轉折而改變傳遞方向以朝向自聚焦透鏡構件30行進,最終回到光收發端面11。
Through the above configuration, the light beam LF is emitted from the
如圖8所示,取樣光LS從分光面50到達樣品9的光學路徑依序經過了自聚焦透鏡構件30的準直段CP的後半段(即準直段CP較遠離光傳導元件20的半段)和聚焦段FP(即第二
自聚焦透鏡32)、自聚焦透鏡構件30和光轉折元件7d之間的空氣間隔、光轉折元件7d和保護玻璃8d之間的空氣間隔、保護玻璃8d以及保護玻璃8d和樣品9之間的空氣間隔。因此,取樣光LS包含光束LF段的半光程長度L1為光束LF行經光傳導元件20的光程FL、行經準直段CP的光程DL、行經聚焦段FP的光程EL、行經自聚焦透鏡構件30和光轉折元件7d之間空氣間隔的光程AL1、行經光轉折元件7d和保護玻璃8d之間空氣間隔的光程AL2、行經保護玻璃8d的光程GL以及行經保護玻璃8d和樣品9之間空氣間隔的光程AL3的總和(即L1=FL+DL+EL+AL1+AL2+GL+AL3)。其中,自聚焦透鏡構件30和樣品9之間的光程可視為共光路干涉探頭1d的工作距離(即AL1+AL2+GL+AL3)。另一方面,本實施例中的參考光LR路徑與前述第一實施例相同,因此,參考光LR包含光束LF段的半光程長度L2為光束LF行經光傳導元件20的光程FL、行經準直段CP的前半段的光程0.5DL、參考光LR行經準直段CP的前半段的光程0.5DL以及行經光傳導元件20的光程FL的總和(即L2=FL+0.5DL+0.5DL+FL)。
As shown in FIG. 8 , the optical path of the sampling light LS from the
由以上說明可知,參考光LR與取樣光LS之間的半光程差異△OPL為參考光LR的半光程長度L2和取樣光LS的半光程長度L1之間的差值,亦即△OPL=L2-L1=(FL+0.5DL+0.5DL+FL)-(FL+DL+EL+AL1+AL2+GL+AL3)=FL-(EL+AL1+AL2+GL+AL3),其中定義(EL+AL1+AL2+GL+AL3)為待 補償光程長度,且FL為補償光程長度,其中EL為取樣光LS行經聚焦段FP的光程,AL1為取樣光LS行經自聚焦透鏡構件30和光轉折元件7d之間空氣間隔的光程,AL2為取樣光LS行經光轉折元件7d和保護玻璃8d之間空氣間隔的光程,GL為取樣光LS行經保護玻璃8d的光程,AL3為取樣光LS行經保護玻璃8d和樣品9之間空氣間隔的光程,且FL為光束LF行經光傳導元件20的光程。 From the above description, it can be seen that the half-optical path difference △OPL between the reference light LR and the sampling light LS is the difference between the half-optical path length L2 of the reference light LR and the half-optical path length L1 of the sampling light LS, that is, △ OPL=L2-L1=(FL+0.5DL+0.5DL+FL)-(FL+DL+EL+AL1+AL2+GL+AL3)=FL-(EL+AL1+AL2+GL+AL3), where defined (EL+AL1+AL2+GL+AL3) is to be Compensation optical path length, and FL is the compensation optical path length, where EL is the optical path of the sampling light LS traveling through the focusing section FP, AL1 is the optical path of the sampling light LS traveling through the air gap between the self-focusing lens component 30 and the light turning element 7d, AL2 is the optical path of the sampling light LS traveling through the air gap between the light turning element 7d and the protective glass 8d, GL is the optical path of the sampling light LS traveling through the protective glass 8d, AL3 is the optical path of the sampling light LS traveling through the air between the protective glass 8d and the sample 9 spaced optical path, and FL is the optical path of the light beam LF traveling through the light conductive element 20 .
本申請藉由配合共光路干涉探頭1d中光傳導元件20和自聚焦透鏡構件30等元件的折射係數來設計調整各元件的實體長度以及共光路干涉探頭1d的工作距離,使補償光程長度(即FL)實質上相等於待補償光程長度(即EL+AL1+AL2+GL+AL3),來達到光程完全補償或接近完全補償的目的,從而使參考光LR與取樣光LS之間實質上具有相同的光路光程(亦即參考光LR與取樣光LS之間的半光程差異△OPL等於零)。藉以,可有效補償取樣光LS的待補償光程,並同時使參考光LR的回光光點有效聚焦,從而提升參考光LR的收光效率。
This application designs and adjusts the physical length of each element and the working distance of the common optical
以下提供共光路干涉探頭1d的其中一具體示例以及光學參數範圍及條件設定。
The following provides a specific example of the common optical
首先,光學參數範圍及條件設定包含:一、光纖10發出的光束LF的波長範圍為0.88±0.04μm;
二、光傳導元件20採用熔融石英無芯光纖(Fused Silica Coreless fiber),其中熔融石英無芯光纖對於光束LF的中心波長0.88μm以及兩端值波長0.92μm和0.84μm的折射率分別為1.45190、1.45147以及1.45266;三、第一自聚焦透鏡31和第二自聚焦透鏡32皆採用型號為SLW-2.0的自聚焦透鏡,其中SLW-2.0自聚焦透鏡對於光束LF的中心波長0.88μm以及兩端值波長0.92μm和0.84μm的折射率分別為1.59731、1.59642以及1.59834;以及四、保護玻璃8d的材質為有機玻璃(Polymethyl methacrylate,PMMA),其中有機玻璃於光束LF的中心波長0.88μm以及兩端值波長0.92μm和0.84μm的折射率分別為1.48458、1.48408以及1.48515。
First, the optical parameter range and condition settings include: 1. The wavelength range of the beam LF emitted by the
在共光路干涉探頭1d的設計上,首先確定自聚焦透鏡構件30的聚焦段FP的實體長度為2.247mm,自聚焦透鏡構件30和光轉折元件7d之間的空氣間隔距離為1.5mm,光轉折元件7d和保護玻璃8d之間的空氣間隔距離為0.8mm,保護玻璃8d的實體長度為0.2mm,並確定保護玻璃8d和樣品9之間的空氣間隔距離為0.5mm。接著,依據光束LF的中心波長0.88μm所對應的第二自聚焦透鏡32的折射率為1.59731,且保護玻璃8d的折射率為1.48458,可求得待補償光程長度(EL+AL1+AL2+GL+AL3)約為6.686mm,亦即EL+AL1+AL2+GL+AL3=2.247mm×1.59731+1.5mm+0.8mm+0.2
mm×1.48458+0.5mm=6.686mm。
In the design of the common optical
然後,基於本申請中補償光程長度(FL)實質上相等於待補償光程長度(EL+AL1+AL2+GL+AL3)的特徵,並依據光束LF的中心波長0.88μm所對應的光傳導元件20的折射率為1.45190,可透過FL=EL+AL1+AL2+GL+AL3=6.686mm的關係式求得光傳導元件20的實體長度PFL為4.605mm,亦即FL=PFL×1.45190=6.686mm,則PFL=6.686mm/1.45190=4.605mm。
Then, based on the characteristics of the compensation optical path length (FL) in this application that is substantially equal to the optical path length to be compensated (EL+AL1+AL2+GL+AL3), and based on the light transmission corresponding to the central wavelength of the beam LF of 0.88 μm The refractive index of the
最後,由所計算出的光傳導元件20的實體長度PFL為4.605mm,可模擬出準直段CP的實體長度為0.804mm。
Finally, the calculated physical length PFL of the light
在本實施例中,第一自聚焦透鏡31的實體長度為準直段CP實體長度的一半,故第一自聚焦透鏡31的實體長度為0.402mm。並且,第二自聚焦透鏡32的第一段321的實體長度為準直段CP實體長度的一半,且第二自聚焦透鏡32的第二段322的實體長度為聚焦段FP的實體長度,故第二自聚焦透鏡32的實體長度為2.649mm(即0.402mm+2.247mm=2.649mm)。
In this embodiment, the physical length of the first self-focusing
上述共光路干涉探頭1d的具體示例的配置,可確保光束LF的整個波長範圍0.88±0.04μm皆能達到光程完全補償或接近完全補償的效果。
The configuration of the specific example of the above-mentioned common optical
詳細來說,針對光束LF的其中一端值波長0.92μm,其待補償光程長度(EL+AL1+AL2+GL+AL3)約為6.684mm(即2.247mm×1.59642+1.5mm+0.8mm+0.2mm×1.48408+0.5mm=6.684mm),且補償光程長度(FL)約為6.684mm(即4.605
mm×1.45147=6.684mm),從而補償光程長度(FL)與待補償光程長度(EL+AL1+AL2+GL+AL3)之間的差值為0。由此可知,光束LF中波長為0.92μm的端值部分在共光路干涉探頭1d中亦能達到完全補償的效果。
Specifically, for one of the end value wavelengths of the beam LF, 0.92μm, the optical path length to be compensated (EL+AL1+AL2+GL+AL3) is approximately 6.684mm (i.e. 2.247mm×1.59642+1.5mm+0.8mm+0.2 mm×1.48408+0.5mm=6.684mm), and the compensation optical path length (FL) is approximately 6.684mm (i.e. 4.605
mm×1.45147=6.684mm), so the difference between the compensated optical path length (FL) and the optical path length to be compensated (EL+AL1+AL2+GL+AL3) is 0. It can be seen that the end value part with a wavelength of 0.92 μm in the beam LF can also achieve a complete compensation effect in the common optical
另一方面,針對光束LF的另一端值波長0.84μm,其待補償光程長度(EL+AL1+AL2+GL+AL3)約為6.688mm(即2.247mm×1.59834+1.5mm+0.8mm+0.2mm×1.48515+0.5mm=6.688mm),且補償光程長度(FL)約為6.689mm(即4.605mm×1.45266=6.689mm),從而補償光程長度(FL)與待補償光程長度(EL+AL1+AL2+GL+AL3)之間的差值為0.001mm,其遠小於共光路干涉探頭1d的工作距離(即AL1+AL2+GL+AL3=1.5mm+0.8mm+0.2mm×1.48458+0.5mm=3.097mm)。由此可知,光束LF中波長為0.84μm的端值部分在共光路干涉探頭1d中亦能達到接近完全補償的效果。
On the other hand, for the other end value wavelength of the beam LF, 0.84μm, the optical path length to be compensated (EL+AL1+AL2+GL+AL3) is approximately 6.688mm (i.e. 2.247mm×1.59834+1.5mm+0.8mm+0.2 mm×1.48515+0.5mm=6.688mm), and the compensated optical path length (FL) is about 6.689mm (i.e. 4.605mm×1.45266=6.689mm), so that the compensated optical path length (FL) and the optical path length to be compensated (EL +AL1+AL2+GL+AL3) is 0.001mm, which is much smaller than the working distance of the common optical
本實施例中的共光路干涉探頭1d透過上述的配置,可使光束LF行經光傳導元件20的光程FL實質上相等於取樣光LS從準直段CP與聚焦段FP的交界處行進至樣品9之光程(EL+AL1+AL2+GL+AL3),亦即補償光程長度(FL)實質上相等於待補償光程長度(EL+AL1+AL2+GL+AL3)。需要說明的是,所述補償光程長度(FL)實質上相等於待補償光程長度(EL+AL1+AL2+GL+AL3),係指補償光程長度(FL)與待補償光程長度(EL+AL1+AL2+GL+AL3)之間的差值遠小於共光路干涉探頭
1d與樣品9之間的光程(即工作距離),且本文所述“遠小於”係指一數值小於另一數值達二個數量級(即差異量達一百倍)。
Through the above configuration, the common optical
在上述各實施例的說明中,所述“垂直”係指兩元件之間的關係彼此為實質上垂直,且所述“平行”係指兩元件之間的關係彼此實質上平行,其皆可包含例如因為製造公差所造成的些微誤差。 In the description of the above embodiments, the "perpendicular" means that the relationship between the two elements is substantially perpendicular to each other, and the "parallel" means that the relationship between the two elements is substantially parallel to each other, either of which can be Includes slight errors due to manufacturing tolerances, for example.
根據上述實施例之共光路干涉探頭,透過將分光面設置於準直段並實質上位於準直段的一半長度處,使部分光束被分光面反射做為參考光,且部分光束穿透分光面做為取樣光,其中參考光藉由反射面的反射而可循原路徑返回至光收發端面,而取樣光經樣品反射而循原路徑返回光收發端面。藉此,可針對參考光和取樣光的光程搭配調整光傳導元件和自聚焦透鏡構件的實體長度,確保參考光和取樣光的光路光程實質上彼此相等,並使參考光和取樣光經反射後皆能聚焦在光纖的光收發端面上,從而同時確保參考光和取樣光的收光效率,達到可有效補償取樣光的待補償光程並同時使參考光的回光光點有效聚焦的目的,藉以在手持或動態操作等環境下皆能提供穩定的組織斷層影像,以協助醫護人員更精確判斷組織或樣品狀態,並能減少不必要的時間及人力的成本。 According to the common optical path interference probe of the above embodiment, by arranging the light splitting surface in the collimation section and substantially at half the length of the collimation section, part of the light beam is reflected by the light splitting surface as the reference light, and part of the light beam penetrates the light splitting surface. As the sampling light, the reference light can return to the optical transceiver end surface along the original path through reflection from the reflective surface, while the sampling light is reflected by the sample and returns to the optical transceiver end surface along the original path. Thereby, the physical lengths of the light transmission element and the self-focusing lens component can be adjusted according to the optical path lengths of the reference light and the sampling light, ensuring that the optical paths of the reference light and the sampling light are substantially equal to each other, and allowing the reference light and the sampling light to pass through After reflection, it can be focused on the optical transceiver end face of the optical fiber, thereby ensuring the light collection efficiency of the reference light and the sampling light at the same time, effectively compensating the optical path to be compensated for the sampling light, and at the same time effectively focusing the return light spot of the reference light. The purpose is to provide stable tissue cross-sectional images in handheld or dynamic operation environments, to assist medical staff in more accurately judging the status of tissues or samples, and to reduce unnecessary time and labor costs.
此外,透過將分光面設置於準直段的一半長度處,有利於確定共光路干涉探頭的待補償光程長度和補償光程長度與 光傳導元件和自聚焦透鏡構件之間的位置關係,從而可簡單地由聚焦段的實體長度和共光路干涉探頭的工作距離推得光傳導元件的實體長度,並由光傳導元件的實體長度模擬出準直段的實體長度,藉以可較容易地達到有效補償取樣光待補償光程的目的。 In addition, by setting the light splitting surface at half the length of the collimation section, it is helpful to determine the optical path length to be compensated and the compensation optical path length of the common optical path interference probe. The positional relationship between the light conductive element and the self-focusing lens component can be simply derived from the physical length of the focusing section and the working distance of the common optical path interference probe, and is simulated by the physical length of the light conductive element By determining the physical length of the collimation section, the purpose of effectively compensating the optical path of the sampling light to be compensated can be more easily achieved.
雖然本申請以前述之較佳實施例揭露如上,然其並非適於限定本申請,任何熟習相像技藝者,在不脫離本申請之精神和範圍內,當可作些許之更動與潤飾,因此本申請之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。 Although the present application has been disclosed with the foregoing preferred embodiments, they are not intended to limit the present application. Anyone skilled in the similar art may make slight changes and modifications without departing from the spirit and scope of the present application. Therefore, this application is The scope of patent protection applied for shall be determined by the scope of patent application attached to this specification.
1:共光路干涉探頭 1: Common optical path interference probe
10:光纖 10: Optical fiber
11:光收發端面 11: Optical transceiver end face
20:光傳導元件 20:Light conductive element
21:第一連接端面 21: First connection end face
22:第二連接端面 22: Second connection end face
30:自聚焦透鏡構件 30:Self-focusing lens component
CP:準直段 CP: collimation section
FP:聚焦段 FP: focus segment
31:第一自聚焦透鏡 31: First self-focusing lens
32:第二自聚焦透鏡 32: Second self-focusing lens
321:第一段 321: First paragraph
322:第二段 322:Second paragraph
33:接合面 33:joint surface
34:連接面 34:Connection surface
40:反射面 40: Reflective surface
50:分光面 50: Spectral surface
9:樣品 9:Sample
AD:軸向 AD: axial
D1:距離 D1: distance
D2:距離 D2: distance
LF:光束 LF: beam
LR:參考光 LR: reference light
LS:取樣光 LS: sampling light
PFL:長度 PFL: length
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111150276A TWI830555B (en) | 2022-12-28 | 2022-12-28 | Common path interferometric probe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111150276A TWI830555B (en) | 2022-12-28 | 2022-12-28 | Common path interferometric probe |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI830555B true TWI830555B (en) | 2024-01-21 |
TW202425909A TW202425909A (en) | 2024-07-01 |
Family
ID=90459263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111150276A TWI830555B (en) | 2022-12-28 | 2022-12-28 | Common path interferometric probe |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI830555B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7995210B2 (en) * | 2004-11-24 | 2011-08-09 | The General Hospital Corporation | Devices and arrangements for performing coherence range imaging using a common path interferometer |
TW201516495A (en) * | 2013-10-30 | 2015-05-01 | Ind Tech Res Inst | Fiber probe |
US20200000341A1 (en) * | 2017-03-06 | 2020-01-02 | Grintech Gmbh | Optical probe and method of operating the optical probe |
CN110742574A (en) * | 2019-11-27 | 2020-02-04 | 佛山光微科技有限公司 | OCT (optical coherence tomography) confocal common-path dual-mode endoscopic probe and imaging method |
-
2022
- 2022-12-28 TW TW111150276A patent/TWI830555B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7995210B2 (en) * | 2004-11-24 | 2011-08-09 | The General Hospital Corporation | Devices and arrangements for performing coherence range imaging using a common path interferometer |
TW201516495A (en) * | 2013-10-30 | 2015-05-01 | Ind Tech Res Inst | Fiber probe |
US20200000341A1 (en) * | 2017-03-06 | 2020-01-02 | Grintech Gmbh | Optical probe and method of operating the optical probe |
CN110742574A (en) * | 2019-11-27 | 2020-02-04 | 佛山光微科技有限公司 | OCT (optical coherence tomography) confocal common-path dual-mode endoscopic probe and imaging method |
Also Published As
Publication number | Publication date |
---|---|
TW202425909A (en) | 2024-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7202341B2 (en) | Optical coherence tomography system | |
US10816789B2 (en) | Optical probes that include optical-correction components for astigmatism correction | |
JP6823091B2 (en) | Optical probe with reflective components for astigmatism correction | |
JP6273256B2 (en) | Monolithic beam shaping optics and method for OCT probe | |
JP5192247B2 (en) | OCT probe | |
US10806329B2 (en) | Optical probes with optical-correction components | |
US20120099112A1 (en) | Multi-core low reflection lateral output fiber probe | |
US9645322B2 (en) | Optical probe for optical coherence tomography and manufacturing method therefor | |
US6885808B2 (en) | Optical probe and optical pick-up apparatus | |
JP2001311880A (en) | Compact confocal optical system | |
US10162114B2 (en) | Reflective optical coherence tomography probe | |
US9933244B2 (en) | Reduced back reflection optical coherence tomography probe | |
US20080094619A1 (en) | Optical measuring device and optical measuring method | |
TWI830555B (en) | Common path interferometric probe | |
US20240219646A1 (en) | Common path interferometric probe | |
JP2013202295A (en) | Optical probe | |
CN115327556A (en) | Fiber optic point probe and distance measuring system with fiber optic point probe | |
TWI832624B (en) | Optical coherence tomography common-path probe | |
US20240210159A1 (en) | Optical coherence tomography common-path probe | |
US20050185887A1 (en) | Optical fiber collimator | |
WO2016167204A1 (en) | Optical probe | |
JPS62202813U (en) | ||
Shishkov et al. | Scultpured optical fiber tips for narrow diameter optical catheters | |
JP2003066252A (en) | Collimated lens fiber | |
CN117084628A (en) | Multifocal multi-modality imaging catheter |