TWI830161B - 腦部腫瘤種類自動判別系統、其伺服計算機裝置及計算機可讀取的儲存媒體 - Google Patents

腦部腫瘤種類自動判別系統、其伺服計算機裝置及計算機可讀取的儲存媒體 Download PDF

Info

Publication number
TWI830161B
TWI830161B TW111107109A TW111107109A TWI830161B TW I830161 B TWI830161 B TW I830161B TW 111107109 A TW111107109 A TW 111107109A TW 111107109 A TW111107109 A TW 111107109A TW I830161 B TWI830161 B TW I830161B
Authority
TW
Taiwan
Prior art keywords
image
brain
module
computer device
images
Prior art date
Application number
TW111107109A
Other languages
English (en)
Other versions
TW202334990A (zh
Inventor
李政家
楊懷哲
鍾文裕
吳智君
郭萬祐
楊蕥瑄
黃梓軒
林駿亦
李唯愷
盧家鋒
吳育德
Original Assignee
國立陽明交通大學
臺北榮民總醫院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立陽明交通大學, 臺北榮民總醫院 filed Critical 國立陽明交通大學
Priority to TW111107109A priority Critical patent/TWI830161B/zh
Priority to JP2022118671A priority patent/JP2023124767A/ja
Priority to US17/888,798 priority patent/US20230274432A1/en
Priority to EP22199621.8A priority patent/EP4235567A3/en
Publication of TW202334990A publication Critical patent/TW202334990A/zh
Application granted granted Critical
Publication of TWI830161B publication Critical patent/TWI830161B/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/03Recognition of patterns in medical or anatomical images
    • G06V2201/031Recognition of patterns in medical or anatomical images of internal organs

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)

Abstract

本發明提供一種腦部腫瘤種類自動判別系統包括影像輸出裝置及伺服計算機裝置。影像輸出裝置輸出至少三個於腫瘤位置所擷取的腦部影像。伺服計算機裝置預存有複數個不同種類的腦部腫瘤的判別路徑。伺服計算機裝置包括影像接收模組、影像前置處理模組、資料比對模組及判別模組。影像接收模組接收腦部影像。影像前置處理模組對各腦部影像進行前置處理,分別得到其處理後影像。資料比對模組將各腦部影像及其處理後影像與該些判別路徑進行比對,以得到至少三個比對結果。判別模組依據該些比對結果進行統計及分析,以得到判別結果。

Description

腦部腫瘤種類自動判別系統、其伺服計算機裝置及計算機可讀取的儲存媒體
本發明是關於一種腦部腫瘤種類自動判別系統、其伺服計算機裝置及計算機可讀取的儲存媒體,特別關於一種用於在處理腦部腫瘤前進行其腫瘤種類判別的系統、伺服計算機裝置及計算機可讀取的儲存媒體。
腦部為人體的重要器官,其功能無法被其他器官取代,故需格外重視腦部的健康,而容易影響腦部健康的主要原因之一為腦部腫瘤。腦部腫瘤的種類複雜,一般可分為良性腦瘤與惡性腦瘤。惡性腦瘤包含癌細胞,生長快速,當其侵犯腦組織時會影響到腦區的正常功能,故具有致命性;良性腦瘤雖不含癌細胞且不會侵犯到鄰近組織,但是當良性腫瘤位於維持生命功能的腦區時,也會壓迫到腦組織,而對該腦區的功能產生影響。
不同種類的腦部腫瘤的處理方式各有不同,且腦部腫瘤的存活率也會因年齡、腫瘤類型和分期而異。因此,準確、及時地判別腦部腫瘤的種類對於制定有效的治療計劃具有重要作用。腦部腫瘤的判別大致可分為侵入性和非侵入性。一般而言,腦部腫瘤種類判別的黃金標準是病理診斷,然而,病理診斷為侵入性檢查,其不僅耗時也容易因觀察切片的醫護人員的主觀判斷而使診斷結果產生差異。另一種更安全的方法是通過影像學檢查,但需由有經驗的外科醫生進行大量的腦部影像觀察,來判斷腫瘤的種類,故此方式也很主觀且耗時。
因此,現仍亟需提供一種安全且快速的方式,來自動依據腦部腫瘤影像判別患者腦部腫瘤種類,以提供醫護人員腦部腫瘤種類的判別結果,以利於醫護人員針對不同的患者分別提供較佳的處理方法,進而提高處理的效果,以避免因處理結果不佳而使患者產生疑慮並造成醫護人員的心理壓力、甚至延誤治療時機。
本發明的目的為提供一種自動依據腦部腫瘤影像來判別患者腦部腫瘤種類的系統,其可快速提供醫護人員腦部腫瘤種類的判別結果,以便於醫護人員針對不同的患者分別提供較佳的處理方法,進而提高處理的效果。
為達上述目的,本發明提供一種腦部腫瘤種類自動判別系統,包括一影像輸出裝置以及一伺服計算機裝置。影像輸出裝置用以輸出至少三個於腫瘤位置所擷取的腦部影像。伺服計算機裝置預存有複數個不同種類的腦部腫瘤的判別路徑。伺服計算機裝置包括一影像接收模組、一影像前置處理模組、一資料比對模組以及一判別模組。影像接收模組接收該些腦部影像。影像前置處理模組對各腦部影像進行前置處理,以分別得到其處理後影像。資料比對模組將各腦部影像及其處理後影像與該些判別路徑進行比對,以得到至少三個比對結果。判別模組依據該些比對結果進行統計及分析,以得到一判別結果。
在一實施例中,判別模組包括一評分單元以及一判別單元。評分單元對各比對結果進行評分,以分別得到一評分結果。判別單元對該些評分結果進行統計並分析,以得到判別結果。
在一實施例中,各比對結果為聽神經瘤、腦膜瘤、腦下垂體瘤、神經鞘細胞瘤、神經膠質細胞瘤、或腦轉移瘤。
在一實施例中,評分單元針對腦膜瘤的比對結果更進行一加權,以得到一加權後的評分結果。
在一實施例中,伺服計算機裝置更預存有複數個不同種類的腦部腫瘤的好發位置資訊,資料比對模組更將各腦部影像及其處理後影像與該些好發位置資訊進行比對,以得到至少三個好發位置比對結果,判別模組依據該些比對結果及該些好發位置比對結果進行統計及分析,以得到判別結果。
在一實施例中,影像前置處理模組包括一遮罩處理單元。遮罩處理單元對各腦部影像進行自動偵測並圈選出腦部腫瘤的位置,以分別得到一遮罩。
在一實施例中,影像前置處理模組更包括一局部影像擷取單元。局部影像擷取單元對各腦部影像中腦部腫瘤的位置進行局部影像擷取,以分別得到一局部影像。
在一實施例中,處理後影像為遮罩及/或局部影像。
在一實施例中,伺服計算機裝置更包括一判別結果輸出模組,輸出判別結果。
在一實施例中,伺服計算機裝置更包括一處理器,處理器執行影像接收模組、影像前置處理模組、資料比對模組、判別模組及判別結果輸出模組。
在一實施例中,腦部腫瘤種類自動判別系統更包括一使用者計算機裝置,用以接收伺服計算機裝置輸出的判別結果。
在一實施例中,判別路徑係伺服計算機裝置對複數個不同種類的腦部腫瘤參考影像進行分析所獲得。
為達上述目的,本發明另提供一種伺服計算機裝置,係應用於一腦部腫瘤種類自動判別系統。腦部腫瘤種類自動判別系統包括一影像輸出裝置以及伺服計算機裝置。影像輸出裝置用以輸出至少三個於腫瘤位置所擷取的腦部影像。伺服計算機裝置預存有複數個不同種類的腦部腫瘤的判別路徑。伺服計算機裝置包括一影像接收模組、一影像前置處理模組、一資料比對模組以及一判別模組。影像接收模組接收該些腦部影像。影像前置處理模組對各腦部影像進行前置處理,以分別得到其處理後影像。資料比對模組將各腦部影像及其處理後影像與該些判別路徑進行比對,以得到至少三個比對結果。判別模組依據該些比對結果進行統計及分析,以得到一判別結果。
在一實施例中,判別模組包括一評分單元以及一判別單元。評分單元對各比對結果進行評分,以分別得到一評分結果。判別單元對該些評分結果進行統計並分析,以得到判別結果。
在一實施例中,各比對結果為聽神經瘤、腦膜瘤、腦下垂體瘤、神經鞘細胞瘤、神經膠質細胞瘤、或腦轉移瘤。
在一實施例中,評分單元針對腦膜瘤的比對結果更進行一加權,以得到一加權後的評分結果。
在一實施例中,伺服計算機裝置更預存有複數個不同種類的腦部腫瘤的好發位置資訊,資料比對模組更將各腦部影像及其處理後影像與該些好發位置資訊進行比對,以得到至少三個好發位置比對結果,判別模組依據該些比對結果及該些好發位置比對結果進行統計及分析,以得到判別結果。
在一實施例中,影像前置處理模組包括一遮罩處理單元。遮罩處理單元對各腦部影像進行自動偵測並圈選出腦部腫瘤的位置,以分別得到一遮罩。
在一實施例中,影像前置處理模組更包括一局部影像擷取單元。局部影像擷取單元對各腦部影像中腦部腫瘤的位置進行局部影像擷取,以分別得到一局部影像。
在一實施例中,處理後影像為遮罩及/或局部影像。
在一實施例中,伺服計算機裝置更包括一判別結果輸出模組,輸出判別結果。
在一實施例中,伺服計算機裝置更包括一處理器,處理器執行影像接收模組、影像前置處理模組、資料比對模組、判別模組及判別結果輸出模組。
在一實施例中,判別路徑係該伺服計算機裝置對複數個不同種類的腦部腫瘤參考影像進行分析所獲得。
為達上述目的,本發明又提供一種計算機可讀取的儲存媒體,應用於前述腦部腫瘤種類自動分類判別系統,儲存媒體儲存一如前所述的模組,該些模組可供一計算機裝置的一處理器執行。
綜上所述,本發明的腦部腫瘤種類自動判別系統可自動依據腦部腫瘤影像來判別患者腦部腫瘤種類,其可提供醫護人員腦部腫瘤種類的判別結果,以利於醫護人員針對不同的患者分別提供較佳的處理方法,進而提高處理的效果。
以下將參照相關圖式,說明依據本發明腦部腫瘤種類自動判別系統、伺服計算機裝置及計算機可讀取的儲存媒體的較佳實施例,其中相同的元件將以相同的參照符號加以說明。
本發明的腦部腫瘤種類自動判別系統可自動依據腦部腫瘤影像來判別患者腦部腫瘤種類,其可提供醫護人員腦部腫瘤種類的判別結果,以利於醫護人員針對不同的患者分別提供較佳的處理方法,進而提高處理的效果。
除非另外定義,否則本文使用的所有技術和科學術語具有與本發明所屬技術領域的通常知識者理解的相同的含義。儘管在本發明的測試實驗中可以使用與本文描述的那些相似或等同的任何方法和材料,但是本文描述了優選的材料和方法。在描述和要求保護本發明時,將使用以下術語。應該理解的是,這裡使用的術語的目的僅用於描述特定實施例,而非對本發明的限制。
術語「腦部腫瘤」是指發生於腦部的腫瘤,不限良性腫瘤或惡性腫瘤,例如但不限於聽神經瘤、腦膜瘤、腦下垂體瘤、神經鞘細胞瘤、神經膠質細胞瘤、或腦轉移瘤,於本文中,術語「腦部腫瘤」亦可簡稱為「腫瘤」。
術語「VGG16模型」是指一種由卷積神經網路(CNN)衍伸出的一種深度學習的模型,用於辨識影像中的內容,特別用於醫療影像的辨識,VGG16模型用於辨識醫療影像的實例請參照如Chelghoum, R等人,於Transfer Learning Using Convolutional Neural Network Architectures for Brain Tumor Classification from MRI Images. 2020. Cham: Springer International Publishing的文獻中所述內容,VGG16模型由13層卷積組成,並具有3個全連接層(FC)。在VGG16模型中,所有卷積層皆使用ReLU做為激活函數,在最後的全連接層將結果傳遞至Softmax函數以對結果進行歸一化。
術語「修正過的VGG16模型」是指將「VGG16模型」改良後的模型。在本發明中,是由13層卷積組成,具有1個全連接層(FC)及1個全域平均池化層(global average pooling,GAP)。在本模型中,在每一個卷積層中進行歸一化,再進行全連接層(FC)及全域平均池化層(GAP),最後,將結果傳遞至Softmax函數以對結果進行歸一化。本發明的修正過的VGG16模型使得辨識影像的流程能更順暢、亦可減少深度學習時所使用的空間參數,使模型能更穩定。
術語「數據增強」(Data Augmentation)是指對影像進行旋轉及翻轉,以產生數據增強後的影像,用以進行「修正過的VGG16模型」的訓練。於此,各影像是以-10至10度之間的角度進行隨機旋轉;或者,沿影像的Y軸,以0.5%的概率進行左右翻轉。
請參照圖1A,圖1A為本發明腦部腫瘤種類自動判別系統之較佳實施例的示意圖。在本實施例中,腦部腫瘤種類自動判別系統100包括一影像輸出裝置1以及一伺服計算機裝置2。
請同時參照圖1A及圖4A,圖4A至圖4C為本發明腦部腫瘤種類自動判別系統所處理的影像的示意圖。圖4A顯示腦部影像的示意圖。影像輸出裝置1用以輸出至少三個於腫瘤位置所擷取的腦部影像I1。舉例來說,腦部腫瘤例如但不限於為聽神經瘤、腦膜瘤、腦下垂體瘤、神經鞘細胞瘤、神經膠質細胞瘤、或腦轉移瘤。腦部影像I1為核磁共振造影(Magnetic Resonance Imaging,MRI)影像。詳細來說,三個於腫瘤位置所擷取的腦部影像I1是在腦部腫瘤的位置,用核磁共振造影儀器進行造影所得到的至少三個不同切片的腦部影像,例如但不限於T1-加權(T1-weighted,T1W)、T2-加權(T2-weighted,T2W)、或T1-加權對比增強(T1- weighted gadolinium contrast enhanced,T1W + C)的影像。
如圖1A所示,在本實施例中,伺服計算機裝置2包括一影像接收模組21、一影像前置處理模組22、一資料比對模組23以及一判別模組24。伺服計算機裝置2預存有複數個不同種類的腦部腫瘤的判別路徑。舉例來說,判別路徑可儲存於伺服計算機裝置2的資料庫或其他任何模組中,例如但不限於資料比對模組23。判別路徑係伺服計算機裝置2對複數個不同種類的腦部腫瘤參考影像進行分析所獲得,腦部腫瘤的種類已描述於前,於此不再重複贅述。詳細來說,伺服計算機裝置2藉由修正過的VGG16模型對複數個不同種類的腦部腫瘤參考影像進行分析,以依據不同種類的腦部腫瘤分別產生對應的判別路徑,並儲存於伺服計算機裝置2中,以用於分析欲判別的腦部影像I1較符合哪一個判別路徑,而得到其腦部腫瘤種類的判別結果,詳細的過程描述於後,於此不重複贅述。
在其他實施例中,伺服計算機裝置2可更預存有複數個不同種類的腦部腫瘤的好發位置資訊。舉例來說,好發位置資訊可儲存於伺服計算機裝置2的資料庫或其他任何模組中,例如但不限於資料比對模組23。好發位置資訊係伺服計算機裝置2對複數個不同種類的腦部腫瘤參考影像進行分析所獲得;或者,好發位置資訊係不同種類的腦部腫瘤的標準好發位置影像,腦部腫瘤的種類已描述於前,於此不再重複贅述。
請同時參照圖1A及圖4A至圖4C,用以解釋各個模組的作用。圖4B及圖4C顯示處理後影像的示意圖,圖4B的處理後影像為遮罩、圖4C的處理後影像為局部影像。
如圖1A及圖4A所示,影像接收模組21用以接收影像輸出裝置1所輸出的至少三個於腫瘤位置所擷取的腦部影像I1。
如圖1A、圖1C、圖4A至圖4C所示,圖1C為圖1A所示的影像前置處理模組的示意圖。影像前置處理模組22對各個腦部影像I1進行影像前置處理,以分別得到其處理後影像。詳細而言,請同時參照圖1A及圖1C,影像前置處理模組22可包括一遮罩處理單元221、或一局部影像擷取單元222、或同時包括遮罩處理單元221及局部影像擷取單元222。遮罩處理單元221可對各腦部影像I1進行自動偵測並圈選出腦部腫瘤的位置,以分別得到其對應的遮罩I2。局部影像擷取單元222可對各腦部影像I1中腦部腫瘤的位置進行局部影像擷取,以分別得到其對應的局部影像I3。也就是說,處理後影像的影像可以是遮罩I2、或局部影像I3、或遮罩I2及局部影像I3。
如圖1A、圖4A至圖4C所示,資料比對模組23將各腦部影像I1及其處理後影像(遮罩I2、或局部影像I3、或遮罩I2及局部影像I3)與前述判別路徑進行比對,以得到至少三個比對結果。詳細而言,資料比對模組23可以是透過修正過的VGG16模型將各腦部影像I1及其處理後影像(遮罩I2、或局部影像I3、或遮罩I2及局部影像I3)與判別路徑進行比對,以判別各腦部影像I1及其處理後影像較符合哪一個判別路徑。舉例來說,若資料比對模組23判別腦部影像I1及其處理後影像較符合聽神經瘤的判別路徑,則其對應的比對結果為聽神經瘤;若資料比對模組23判別腦部影像I1及其處理後影像較符合腦膜瘤的判別路徑,則其對應的比對結果為腦膜瘤。特別的,腦部影像I1的數量與比對結果的數量是互相對應的,也就是說,若影像輸出裝置1輸出三個腦部影像I1,資料比對模組23可以獲得三個比對結果,依此類推。
請同時參照圖1A、圖1B及圖4A至圖4C,圖1B為圖1A所示的判別模組的示意圖。在本實施例中,判別模組24依據前述比對結果進行統計及分析,以得到一判別結果。詳細而言,判別模組24可包括一評分單元241以及一判別單元242。評分單元241對各比對結果進行評分,以分別得到一評分結果。判別單元242對該些評分結果進行統計並分析,以得到判別結果。舉例來說,以影像輸出裝置輸出五個於腫瘤位置所擷取的腦部影像I1為例,當資料比對模組23將其中三個腦部影像I1及其處理後影像(遮罩I2、或局部影像I3、或遮罩I2及局部影像I3)比對為聽神經瘤、將其中二個腦部影像I1及其處理後影像(遮罩I2、或局部影像I3、或遮罩I2及局部影像I3)比對為腦下垂體瘤時,評分單元241依據前述比對結果進行評分,使其對應的評分結果為聽神經瘤3分、腦下垂體瘤2分,接下來,判別單元242對該些評分結果進行統計並分析,分析出聽神經瘤分數較腦下垂體瘤高,故得到聽神經瘤的判別結果,將腦部影像I1中的腫瘤判別為聽神經瘤。再舉例來說,若前述五個於腫瘤位置所擷取的腦部影像I1中,其中三個腦部影像I1及其處理後影像被資料比對模組23比對為聽神經瘤、其中二個腦部影像I1及其處理後影像被資料比對模組23比對為腦膜瘤,評分單元241依據前述比對結果進行評分,並對腦膜瘤的比對結果進行加權,使其對應的評分結果為聽神經瘤3分、腦膜瘤2分,其加權後的評分結果也為2分(計算方式為腦部影像數量X閾值 = 加權後的評分結果,於此腦部影像數量為5個、閾值為0.4,故腦膜瘤加權後的評分結果 = 5 x 0.4 = 2),接下來,判別單元242對該些評分結果進行統計並分析,分析出聽神經瘤分數較腦膜瘤高,但腦膜瘤的評分結果已到達其加權後的評分結果的分數,故將腦部影像I1中的腫瘤判別為腦膜瘤,得到腦膜瘤的判別結果。也就是說,當腦部影像的比對結果出現腦膜瘤時,評分單元241除了依據原比對結果產生分數以外,更產生一個加權後的評分結果,而判別單元242會先比對腦膜瘤的評分結果與加權後的評分結果進行分析,判別腦膜瘤的評分結果是否大於或等於加權後的評分結果,若腦膜瘤的評分結果大於或等於加權後的評分結果,則將該腦部影像判別為腦膜瘤;若腦膜瘤的評分結果小於加權後的評分結果,則分析原評分結果,分析出聽神經瘤分數較腦膜瘤高,則判別為聽神經瘤。特別的,此處腦部影像的數量及閾值僅用以舉例說明,皆可進行調整,本發明不作限制。
另外,當伺服計算機裝置2更預存有複數個不同種類的腦部腫瘤的好發位置資訊,資料比對模組23可更將各腦部影像I1及其處理後影像(遮罩I2、或局部影像I3、或遮罩I2及局部影像I3)與該些好發位置資訊進行比對,以得到至少三個好發位置比對結果。判別模組24依據該些比對結果及該些好發位置比對結果進行統計及分析,以得到判別結果。詳細來說,伺服計算機裝置2的資料比對模組23可更將各腦部影像I1及其處理後影像(遮罩I2、或局部影像I3、或遮罩I2及局部影像I3)與好發位置資訊進行比對,以將各腦部影像I1及其處理後影像(遮罩I2、或局部影像I3、或遮罩I2及局部影像I3)中的腫瘤位置進行定位,並根據定位結果判別各腦部影像I1及其處理後影像(遮罩I2、或局部影像I3、或遮罩I2及局部影像I3)較符合哪一種腦部腫瘤的好發位置資訊,以得到好發位置比對結果,判別模組24依據該些好發位置比對結果及前述比對結果一起進行判別,可得到更精準的判別結果。舉例來說,腦下垂體瘤的好發位置為腦下垂體,故其好發位置資訊為腦下垂體的的影像、或腦下垂體瘤的標準好發位置影像,當資料比對模組23將各腦部影像I1及其處理後影像(遮罩I2、或局部影像I3、或遮罩I2及局部影像I3)與好發位置資訊進行比對,以將各腦部影像I1及其處理後影像(遮罩I2、或局部影像I3、或遮罩I2及局部影像I3)中的腫瘤位置進行定位後,比對出該定位結果符合腦下垂體瘤的好發位置資訊時,會得到腦下垂體瘤的好發位置比對結果,判別模組24再依據腦下垂體瘤的好發位置比對結果及前述比對結果一起進行判別,以得到更精準的判別結果。
請再參照圖1A,在本實施例中,在本實施例中,伺服計算機裝置2可更包括一判別結果輸出模組25,用於輸出判別結果。於此,判別結果例如但不限於聽神經瘤、腦膜瘤、腦下垂體瘤、神經鞘細胞瘤、神經膠質細胞瘤、或腦轉移瘤。
請再參照圖1A,在本實施例中,伺服計算機裝置2可更包括一處理器S1,處理器S1執行如前所述的影像接收模組21、影像前置處理模組22、資料比對模組23、判別模組24以及判別結果輸出模組25,以進行如前所述的處理流程。
請再參照圖1A,在本實施例中,腦部腫瘤種類自動判別系統100可更包括一使用者計算機裝置3,用以接收伺服計算機裝置2輸出的判別結果。
請參照圖2並同時參照圖1A,圖2為本發明腦部腫瘤種類自動判別系統之伺服計算機裝置的示意圖。伺服計算機裝置2係應用於一腦部腫瘤種類自動判別系統100。腦部腫瘤種類自動判別系統100包括一影像輸出裝置1以及伺服計算機裝置2。伺服計算機裝置2可包括如前所述的模組並預存有複數個不同種類的腦部腫瘤的判別路徑,判別路徑的獲得方法、各模組執行的處理程序及功能已詳細描述於前,於此不再重複贅述。
如圖2所示,伺服計算機裝置2可更包括一計算機可讀取的儲存媒體S2、一通訊元件S3、一顯示元件S4、一輸入元件S5、以及一殼體(圖未示),伺服計算機裝置2可以例如是伺服器、手機、平板、筆記型電腦、桌上型電腦或其他計算機裝置。伺服器、手機、平板、筆記型電腦、桌上型電腦包括殼體來容置處理器S1、計算機可讀取的儲存媒體S2、及通訊元件S3;手機、平板、筆記型電腦的顯示元件S4及輸入元件S5是安裝在殼體上,伺服器、桌上型電腦連接主機以外的顯示元件S4及輸入元件S5。
處理器S1耦接計算機可讀取的儲存媒體S2、通訊元件S3、顯示元件S4、及輸入元件S5,配置來執行如前所述的影像接收模組21、影像前置處理模組22、資料比對模組23、判別模組24以及判別結果輸出模組25。處理器S1例如是能執行模組(例如模組、程式碼或指令)的處理器S1,伺服計算機裝置2可包括一或多個處理器S1,處理器S1可包括一或多個核心。計算機可讀取的儲存媒體S2包括隨機記憶體或非揮發式計算機可讀取的儲存媒體等,非揮發式計算機可讀取的儲存媒體例如是硬碟、固態硬碟(SSD)、快閃記憶體等,其儲存處理器S1可執行的模組(例如模組、程式碼或指令),處理器S1可以將模組(例如模組、程式碼或指令)從非揮發式計算機可讀取的儲存媒體載入至隨機記憶體並加以執行。通訊元件S3例如是網路卡、網路晶片、數據機等能提供網路連線的裝置。顯示元件S4包括顯示卡、顯示晶片、顯示器等,輸入元件S5例如是鍵盤、滑鼠或觸控螢幕等。
在上述實施例中,是將影像接收模組21、影像前置處理模組22、資料比對模組23、判別模組24以及判別結果輸出模組25以軟體(Software)形式存取在計算機可讀取的儲存媒體S2中且可供計算機裝置的處理器S1執行為例,然而,影像接收模組21、影像前置處理模組22、資料比對模組23、判別模組24以及判別結果輸出模組25亦可以軟體(Software)形式存取在處理器S1的隨機記憶體中(圖未示);或者,影像接收模組21、影像前置處理模組22、資料比對模組23、判別模組24以及判別結果輸出模組25可以是硬體(Hardware)形式(例如但不限於特殊應用積體電路,ASIC),與處理器S1耦接(圖未示)以執行其功能;或者,影像接收模組21、影像前置處理模組22、資料比對模組23、判別模組24以及判別結果輸出模組25可以是韌體(Firmware)形式,例如嵌入特殊應用積體電路的軟體(圖未示),本發明並無限制。
另外,使用者計算機裝置3也可包括一處理器、一計算機可讀取的儲存媒體、一通訊元件、一顯示元件、一輸入元件、以及一殼體(圖未示),使用者計算機裝置3可以例如是手機、平板、筆記型電腦、桌上型電腦或其他計算機裝置。手機、平板、筆記型電腦、桌上型電腦包括殼體來容置處理器、計算機可讀取的儲存媒體、及通訊元件;手機、平板、筆記型電腦的顯示元件及輸入元件是安裝在殼體上,桌上型電腦連接主機以外的顯示元件及輸入元件。使用者計算機裝置3透過例如但不限於網路與伺服計算機裝置2通訊連接,用以接收伺服計算機裝置2輸出的判斷結果。
請參照圖3並同時參照圖1A至圖1C、圖4A至圖4C,用以說明本發明腦部腫瘤種類自動判別系統100的運作方式。圖3為本發明腦部腫瘤種類自動判別系統之實施流程示意圖。
首先,透過影像輸出裝置1將至少三個在腫瘤位置所擷取的腦部影像I1輸出至伺服計算機裝置2。
接著,伺服計算機裝置2透過影像接收模組21接收影像輸出裝置1所輸出的腦部影像I1。伺服計算機裝置2再透過影像前置處理模組22分別對各個腦部影像I1進行影像前置處理,以分別得到其對應的處理後影像(處理後影像可以是遮罩I2、或局部影像I3、或遮罩I2及局部影像I3),其中,影像前置處理包括對各腦部影像I1進行自動偵測並圈選出腦部腫瘤的位置,以分別得到其對應的遮罩I2;及/或對各腦部影像I1中腦部腫瘤的位置進行局部影像擷取,以分別得到其對應的局部影像I3。
接下來,伺服計算機裝置2再透過資料比對模組23將各腦部影像I1及其處理後影像(遮罩I2、或局部影像I3、或遮罩I2及局部影像I3)與前述判別路徑及/或好發位置資訊進行比對,以得到至少三個比對結果及/或好發位置比對結果。接著,伺服計算機裝置2再透過判別模組24依據前述比對結果及/或好發位置比對結果進行統計及分析,以得到一判別結果,其中,判別模組24包括評分單元241以及判別單元242,評分單元241對各比對結果進行評分,以分別得到評分結果;判別單元242對該些評分結果進行統計並分析,以得到判別結果。需注意的是,當比對結果為腦膜瘤時,評分單元241更對該腦膜瘤的比對結果進行加權,以得到加權後的評分結果。
接下來,伺服計算機裝置2再透過判別結果輸出模組25,輸出該判別結果至使用者計算機裝置3。最後,使用者計算機裝置3接收伺服計算機裝置2輸出的判斷結果。
簡言之,影像輸出裝置1在腫瘤位置所擷取的腦部影像I1至伺服計算機裝置2,伺服計算機裝置2透過各種模組對該腦部影像I1進行自動處理後,以得到判別結果,並將該判別結果輸出至使用者計算機裝置3。於此,影像輸出裝置1例如但不限於通用序列匯流排(Universal Serial Bus,USB)埠、光碟片、磁碟片、計算機裝置、或核磁共振造影儀器等可儲存並輸出影像的裝置。伺服計算機裝置2、使用者計算機裝置3的實例已詳細描述於前,於此不再重複贅述。
實驗例
參考影像資料庫
參考影像是來自台北榮民總醫院於2000年至2017所蒐集的不同種類的腦部腫瘤的患者的腦部影像,本研究已獲得經該院的研究作業倫理規範審議小組(Institutional Review Board,IRB)的批准。腦部影像是透過使用1.5-T MR掃描儀(GE Medical System)所獲得的MRI影像,其為T1W + C 影像,隨後由經驗豐富的神經放射科醫生對這些腦部影像進行辨識及判別,以判斷該些腦部影像的腦部腫瘤的種類。表1列出了各種不同種類的腦部腫瘤的患者的數量。
表1:參考影像資料庫中各種不同腫瘤的患者的數量統計
腫瘤種類 患者數量
聽神經瘤 560
神經膠質細胞瘤 159
腦膜瘤 877
腦轉移瘤 590
腦下垂體瘤 135
神經鞘細胞瘤 117
正常* 540
*正常是指該些患者的腦部影像中沒有腫瘤
如表1所示,表1列出了六種不同種類的腦部腫瘤的患者數量,於此,聽神經瘤共有560個患者、神經膠質細胞瘤共有159個患者、腦膜瘤共有877個患者、腦轉移瘤共有590個患者、腦下垂體瘤共有135個患者、神經鞘細胞瘤共有117個患者,而正常是指該些患者的腦部影像中沒有腫瘤,共有540個患者。
參考影像資料庫中患者的腦部影像之處理方式
前述所有患者皆分別擷取至少一個MRI影像,預存至伺服計算機裝置中,接著對這些MRI影像進行前處理,以減少影像參數的差異並提高後續分析的可靠性。
首先將所有預存至伺服計算機裝置中的MRI影像調整為正方形,並裁剪出大腦區域,隨後,對應腫瘤位置生成遮罩,再進一步沿著腫瘤的邊緣擷取出腫瘤的局部影像。
值得一提的是,因腫瘤為3D立體的結構,故其MRI影像為3D影像,在此3D影像中,依據不同的深度可產生複數個切片影像,此切片影像為2D影像,本實驗例中所使用的參考影像即為從各個患者的3D影像中所取得的各個不同深度的2D影像。舉例來說,一個患者的腫瘤的MRI成像後的影像可為3D影像,依據腫瘤的不同深度可產生例如但不限於20個2D的切片影像,則這20個2D影像皆可做為該患者所產生的參考影像;若產生的切片影像大於20個,則伺服計算機裝置取其中間深度的該2D影像及其前後1/3數量的影像作為該患者所產生的參考影像,例如若產生60個2D的切片影像,則中間深度為第30張2D影像並取其前後1/3數量的切片影像,也就是第10至29張及第31至50張一同做為參考影像,換言之,此患者所產生的參考影像為其MRI影像的第10至50張切片影像,且這些切片影像為2D影像。
參考影像資料庫中參考影像的數量
因一個患者的MRI影像可產生至少一個參考影像,故將所有患者依據其腫瘤種類進行分類及統計,以得出不同種類的腦部腫瘤對應的參考影像的數量,請參照下表2,表2列出了各種不同種類的腦部腫瘤的參考影像的數量。
表2:參考影像資料庫中各種不同腫瘤的參考影像的數量統計
腫瘤種類 參考影像數量
聽神經瘤 3367
神經膠質細胞瘤 4397
腦膜瘤 17325
腦轉移瘤 6944
腦下垂體瘤 2436
神經鞘細胞瘤 2505
正常* 27697
總計 64671
*正常是指該些參考影像中沒有腫瘤
判別路徑的建立
接著,以前述參考影像訓練「修正過的VGG16模型」,使其可依據影像的特徵與其對應的腫瘤種類生成判別路徑,用以自動判別後續新輸入的腦部影像的腫瘤種類。
「修正過的 VGG16 模型」的訓練方式
需注意的是,因各種不同種類的腦部腫瘤的參考影像的數量不同,故本實驗例分別採用3種不同的訓練方式,詳細描述如下:
訓練方式A:使用所有的參考影像訓練「修正過的VGG16模型」,並重複進行訓練。
訓練方式B:用以訓練「修正過的VGG16模型」是以數量最少的腦部腫瘤(即腦下垂體瘤)的參考影像的數量,隨機從其他不同種類的腦部腫瘤的參考影像中抽取相同的數量,來進行「修正過的VGG16模型」的訓練。舉例來說,所有種類的參考影像可都隨機抽取1500個影像來進行「修正過的VGG16模型」的訓練,以增加「修正過的VGG16模型」的準確度。於此,影像的數量僅用以舉例說明,也可使用其他數量來進行模型的訓練,只要數量小於或等於數量最少的腦部腫瘤(即腦下垂體瘤)的參考影像即可。每次訓練使用的參考影像是從各個不同種類的腦部腫瘤的參考影像中重新隨機抽取的。
訓練方式C:與訓練方式B類似,差異在於每次訓練使用的參考影像是固定的,僅抽取一次,並非每次從各個不同種類的腦部腫瘤的參考影像中重新隨機抽取。
下表3顯示不同訓練方式對於判別各個不同種類腦部腫瘤的靈敏度比較。
表3:訓練方式對於判別各個不同種類腦部腫瘤的靈敏度的比較
訓練方式 各種不同腦部腫瘤種類的靈敏度 平均
VS G M Mets PA S N
A 80.14% 43.73% 65.09% 97.52% 69.82% 52.76% 97.37% 72.35%
B 97.92% 56.76% 53.90% 96.11% 89.19% 95.28% 73.10% 80.32%
C 96.30% 62.90% 51.69% 97.17% 92.12% 82.68% 83.55% 80.92%
VS:聽神經瘤;G:神經膠質細胞瘤;M:腦膜瘤;Mets:腦轉移瘤;PA:腦下垂體瘤;S:神經鞘細胞瘤;N:正常(指沒有腫瘤)
如表3所示,訓練方式B及訓練方式C具有較高的靈敏度,故隨後針對此兩種訓練方式,搭配「數據增強」進行「修正過的VGG16模型」的訓練,以提高系統判別腦部腫瘤種類的靈敏度。有無搭配「數據增強」進行訓練對於判別各個不同腦部腫瘤種類的靈敏度比較如下表4。
表4:有無搭配「數據增強」進行訓練對於判別各個不同腦部腫瘤種類的靈敏度的比較
訓練方式 數據增強 各種不同腦部腫瘤種類的靈敏度 平均
VS G M Mets PA S N
B 97.92% 56.76% 53.90% 96.11% 89.19% 95.28% 73.10% 80.32%
97.23% 67.57% 59.04% 97.17% 87.39% 77.95% 85.21% 81.65%
C 96.30% 62.90% 51.69% 97.17% 92.12% 82.68% 83.55% 80.92%
97.46% 68.30% 47.16% 90.92% 90.09% 75.59% 72.98% 77.50%
VS:聽神經瘤;G:神經膠質細胞瘤;M:腦膜瘤;Mets:腦轉移瘤;PA:腦下垂體瘤;S:神經鞘細胞瘤;N:正常(指沒有腫瘤)
由表4可知,訓練方式B搭配「數據增強」進行「修正過的VGG16模型」對於判別各種不同類型的腦部腫瘤具有最佳的靈敏度,故本發明的修正過的VGG16模型」是使用此訓練方式進行訓練的。
腦部影像類型的選擇
如前述實施例所述,每個參考影像皆有產生其對應的遮罩及局部影像,而使用不同的影像以「修正過的VGG16模型」進行分析後,對於各個不同種類的腦部腫瘤判別的靈敏度也有所不同,統計結果如下表5。
表5:使用不同腦部影像類型進行判別對應的靈敏度比較
影像類型 各種不同腦部腫瘤種類的靈敏度 平均
VS G M Mets PA S N
參考影像 97.23% 67.57% 59.05% 97.17% 87.39% 77.95% 85.21% 81.65%
參考影像+ 遮罩 97.46% 89.68% 63.90% 98.11% 97.30% 98.43% 99.91% 92.11%
參考影像 + 局部影像 97.69% 84.52% 73.83% 96.34% 98.87% 99.21% 99.97% 92.92%
VS:聽神經瘤;G:神經膠質細胞瘤;M:腦膜瘤;Mets:腦轉移瘤;PA:腦下垂體瘤;S:神經鞘細胞瘤;N:正常(指沒有腫瘤)
由表5的結果可知同時輸入參考影像+遮罩、或參考影像+局部影像,讓伺服計算機裝置進行分析,對於各種腦部腫瘤的種類判別的靈敏度都較單獨使用參考影像進行分析高,且靈敏度增加了10~12%。然而,從表5中可以發現,系統針對腦膜瘤的判別結果,其判別的靈敏度明顯的較其他腫瘤低,故後續將針對腦膜瘤的判別靈敏度進行改善。
進行加權評分以改善腦膜瘤的判別靈敏度
以前述實施例中所述方法對於腦膜瘤的比對結果進行加權,以獲得加權後的評分結果,將有使用加權後的評分結果與僅使用未加權的評分結果進行判別的靈敏度的比較列於下表6中。
表6:使用不同腦部影像類型並搭配/不搭配加權進行判別所對應的靈敏度比較
影像類型 加權 各種不同腦部腫瘤種類的靈敏度 平均
VS G M Mets PA S N
參考影像 98.57% 68.75% 52.85% 98.63% 100.00% 85.71% 98.59% 86.16%
98.57% 62.50% 56.91% 98.63% 95.24% 85.71% 98.59% 85.17%
參考影像+ 遮罩 98.57% 93.75% 61.79% 98.63% 100.00% 100.00% 100.00% 93.25%
98.57% 93.75% 64.23% 98.63% 100.00% 100.00% 100.00% 93.60%
參考影像 + 局部影像 98.57% 93.75% 73.17% 98.63% 100.00% 100.00% 100.00% 94.87%
98.57% 93.75% 76.42% 98.63% 100.00% 100.00% 100.00% 95.34%
VS:聽神經瘤;G:神經膠質細胞瘤;M:腦膜瘤;Mets:腦轉移瘤;PA:腦下垂體瘤;S:神經鞘細胞瘤;N:正常(指沒有腫瘤)
由表6的結果可知同時輸入參考影像+遮罩、或參考影像+局部影像,讓伺服計算機裝置進行分析,對於各種腫瘤的判別的靈敏度都較單獨使用參考影像進行分析高。同時,若評分單元更針對腦膜瘤的比對結果進行加權,更可提高腦膜瘤的判別靈敏度,進而增加腦部腫瘤種類自動判別系統針對各種不同腦部腫瘤種類的判別的平均靈敏度。以上描述腦部腫瘤種類自動判別系統中伺服計算機裝置的模組中的判別路徑及修正過的VGG16模型的訓練方式,以本發明上述方式訓練的腦部腫瘤種類自動判別系統具有較佳的判別靈敏度,且已分析出可用於判別腫瘤類型的較佳影像類型。
故而,當後續進行新的患者的腫瘤影像的判別時,將使用其腦部影像搭配對應的遮罩、或腦部影像搭配對應的局部影像、或腦部影像搭配對應的遮罩及局部影像,讓腦部腫瘤種類自動判別系統進行判別。
綜上所述,本發明的腦部腫瘤種類自動判別系統可自動依據腦部腫瘤影像來判別患者腦部腫瘤種類,其可提供醫護人員腦部腫瘤種類的判別結果,以利於醫護人員針對不同的患者分別提供較佳的處理方法,進而提高處理的效果。
以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。
100:腦部腫瘤種類自動判別系統 1:影像輸出裝置 2:伺服計算機裝置 21:影像接收模組 22:影像前置處理模組 221:遮罩處理單元 222:局部影像擷取單元 23:資料比對模組 24:判別模組 241:評分單元 242:判別單元 25:判別結果輸出模組 3:使用者計算機裝置 I1:腦部影像 I2:遮罩 I3:局部影像 S1:處理器 S2:計算機可讀取的儲存媒體 S3:通訊元件 S4:顯示元件 S5:輸入元件
圖1A為本發明腦部腫瘤種類自動判別系統之較佳實施例的示意圖。 圖1B為圖1A所示的判別模組的示意圖。 圖1C為圖1A所示的影像前置處理模組的示意圖。 圖2為本發明腦部腫瘤種類自動判別系統之伺服計算機裝置的示意圖。 圖3為本發明腦部腫瘤種類自動判別系統之實施流程示意圖。 圖4A至圖4C為本發明腦部腫瘤種類自動判別系統所處理的影像的示意圖。圖4A顯示腦部影像的示意圖;圖4B及圖4C顯示處理後影像的示意圖,圖4B的處理後影像為遮罩、圖4C的處理後影像為局部影像。
100:腦部腫瘤種類自動判別系統
1:影像輸出裝置
2:伺服計算機裝置
21:影像接收模組
22:影像前置處理模組
23:資料比對模組
24:判別模組
25:判別結果輸出模組
3:使用者計算機裝置
S1:處理器
S2:計算機可讀取的儲存媒體

Claims (22)

  1. 一種腦部腫瘤種類自動判別系統,包括:一影像輸出裝置,用以輸出至少三個於腫瘤位置所擷取的腦部影像;以及一伺服計算機裝置,該伺服計算機裝置預存有複數個不同種類的腦部腫瘤的判別路徑,該伺服計算機裝置包括:一影像接收模組,接收該些腦部影像;一影像前置處理模組,對各該腦部影像進行前置處理,以分別得到其處理後影像;一資料比對模組,將各該腦部影像及其處理後影像與該些判別路徑進行比對,以得到至少三個比對結果;及一判別模組,依據該些比對結果進行統計及分析,以得到一判別結果,且其中該腦部影像為核磁共振造影儀器進行造影所得到的腦部影像,且各該比對結果為選自聽神經瘤、腦膜瘤、腦下垂體瘤、神經鞘細胞瘤、神經膠質細胞瘤、或腦轉移瘤所組成群組的腦部腫瘤比對結果。
  2. 如請求項1所述的腦部腫瘤種類自動判別系統,其中該判別模組包括:一評分單元,對各該比對結果進行評分,以分別得到一評分結果;及一判別單元,對該些評分結果進行統計並分析,以得到該判別結果。
  3. 如請求項1所述的腦部腫瘤種類自動判別系統,其中該評分單元針對腦膜瘤的比對結果更進行一加權,以得到一加權後的評分結果。
  4. 如請求項1所述的腦部腫瘤種類自動判別系統,其中該伺服計算機裝置更預存有複數個不同種類的腦部腫瘤的好發位置資訊,該資料比對模組更將各該腦部影像及其處理後影像與該些好發位置資訊進行比對,以得到至少三個好發位置比對結果,該判別模組依據該些比對結果及該些好發位置比對結果進行統計及分析,以得到該判別結果。
  5. 如請求項1所述的腦部腫瘤種類自動判別系統,其中該影像前置處理模組包括:一遮罩處理單元,對各該腦部影像進行自動偵測並圈選出該腦部腫瘤的位置, 以分別得到一遮罩。
  6. 如請求項5所述的腦部腫瘤種類自動判別系統,其中該影像前置處理模組更包括:一局部影像擷取單元,對各該腦部影像中的該位置進行局部影像擷取,以分別得到一局部影像。
  7. 如請求項6所述的腦部腫瘤種類自動判別系統,其中該處理後影像為該遮罩及/或該局部影像。
  8. 如請求項1所述的腦部腫瘤種類自動判別系統,其中該伺服計算機裝置更包括一判別結果輸出模組,輸出該判別結果。
  9. 如請求項8所述的腦部腫瘤種類自動判別系統,其中該伺服計算機裝置更包括一處理器,該處理器執行該影像接收模組、該影像前置處理模組、該資料比對模組、該判別模組及該判別結果輸出模組。
  10. 如請求項8所述的腦部腫瘤種類自動判別系統,更包括一使用者計算機裝置,用以接收伺服計算機裝置輸出的判別結果。
  11. 如請求項1所述的腦部腫瘤種類自動判別系統,其中該些判別路徑係該伺服計算機裝置對複數個不同種類的腦部腫瘤參考影像進行分析所獲得。
  12. 一種伺服計算機裝置,係應用於一腦部腫瘤種類自動判別系統,該腦部腫瘤種類自動判別系統包括一影像輸出裝置以及該伺服計算機裝置,該影像輸出裝置用以輸出至少三個於腫瘤位置所擷取的腦部影像,該伺服計算機裝置預存有複數個不同種類的腦部腫瘤的判別路徑,該伺服計算機裝置包括:一影像接收模組,接收該些腦部影像;一影像前置處理模組,對各該腦部影像進行前置處理,以分別得到其處理後影像;一資料比對模組,將各該影像及其處理後影像與該些判別路徑進行比對,以得到至少三個比對結果;以及一判別模組,依據該些比對結果進行統計及分析,以得到一判別結果;且其中該腦部影像為核磁共振造影儀器進行造影所得到的腦部影像,且各該比對結果為選自聽神經瘤、腦膜瘤、腦下垂體瘤、神經鞘細胞瘤、神經膠質細胞瘤、 或腦轉移瘤所組成群組的腦部腫瘤比對結果。
  13. 如請求項12所述的伺服計算機裝置,其中該判別模組包括:一評分單元,對各該比對結果進行評分,以分別得到一評分結果;及一判別單元,對該些評分結果進行統計並分析,以得到該判別結果。
  14. 如請求項12所述的伺服計算機裝置,其中該評分單元針對腦膜瘤的比對結果更進行一加權,以得到一加權後的評分結果。
  15. 如請求項12所述的伺服計算機裝置,更預存有複數個不同種類的腦部腫瘤的好發位置資訊,該資料比對模組更將各該腦部影像及其處理後影像與該些好發位置資訊進行比對,以得到至少三個好發位置比對結果,該判別模組依據該些比對結果及該些好發位置比對結果進行統計及分析,以得到該判別結果。
  16. 如請求項12所述的伺服計算機裝置,其中該影像前置處理模組包括:一遮罩處理單元,對各該腦部影像進行自動偵測並圈選出該腦部腫瘤的位置,以分別得到一遮罩。
  17. 如請求項16所述的伺服計算機裝置,其中該影像前置處理模組更包括:一局部影像擷取單元,對各該腦部影像中的該位置進行局部影像擷取,以分別得到一局部影像。
  18. 如請求項17所述的伺服計算機裝置,其中該處理後影像為該遮罩及/或該局部影像。
  19. 如請求項12所述的伺服計算機裝置,更包括一判別結果輸出模組,輸出該判別結果。
  20. 如請求項19所述的伺服計算機裝置,更包括一處理器,該處理器執行該影像接收模組、該影像前置處理模組、該資料比對模組、該判別模組及該判別結果輸出模組。
  21. 如請求項12所述的伺服計算機裝置,其中該些判別路徑係該伺服計算機裝置對複數個不同種類的腦部腫瘤參考影像進行分析所獲得。
  22. 一種計算機可讀取的儲存媒體,應用於一腦部腫瘤種類自動分類判別系統,該儲存媒體儲存一如請求項1至8任一項所述的模組,該些模組可供一計算機裝置的一處理器執行。
TW111107109A 2022-02-25 2022-02-25 腦部腫瘤種類自動判別系統、其伺服計算機裝置及計算機可讀取的儲存媒體 TWI830161B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW111107109A TWI830161B (zh) 2022-02-25 2022-02-25 腦部腫瘤種類自動判別系統、其伺服計算機裝置及計算機可讀取的儲存媒體
JP2022118671A JP2023124767A (ja) 2022-02-25 2022-07-26 脳腫瘍種類の自動判別システム
US17/888,798 US20230274432A1 (en) 2022-02-25 2022-08-16 Brain tumor types distinguish system, server computing device thereof and computer readable storage medium
EP22199621.8A EP4235567A3 (en) 2022-02-25 2022-10-04 Brain tumor types distinguish system, server computing device thereof and computer readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111107109A TWI830161B (zh) 2022-02-25 2022-02-25 腦部腫瘤種類自動判別系統、其伺服計算機裝置及計算機可讀取的儲存媒體

Publications (2)

Publication Number Publication Date
TW202334990A TW202334990A (zh) 2023-09-01
TWI830161B true TWI830161B (zh) 2024-01-21

Family

ID=83594275

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111107109A TWI830161B (zh) 2022-02-25 2022-02-25 腦部腫瘤種類自動判別系統、其伺服計算機裝置及計算機可讀取的儲存媒體

Country Status (4)

Country Link
US (1) US20230274432A1 (zh)
EP (1) EP4235567A3 (zh)
JP (1) JP2023124767A (zh)
TW (1) TWI830161B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105447872A (zh) * 2015-12-03 2016-03-30 中山大学 一种在超声影像中自动识别肝脏肿瘤类型的方法
US20190156159A1 (en) * 2017-11-20 2019-05-23 Kavya Venkata Kota Sai KOPPARAPU System and method for automatic assessment of cancer
TW201941217A (zh) * 2018-02-12 2019-10-16 美商史柯比人工智慧股份有限公司 用於診斷腸胃腫瘤的系統和方法
TW202121435A (zh) * 2019-11-21 2021-06-01 粘曉菁 肝腫瘤智慧分析方法
US11257213B2 (en) * 2018-10-25 2022-02-22 Koninklijke Philips N.V. Tumor boundary reconstruction using hyperspectral imaging

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5243865B2 (ja) * 2008-07-07 2013-07-24 浜松ホトニクス株式会社 脳疾患診断システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105447872A (zh) * 2015-12-03 2016-03-30 中山大学 一种在超声影像中自动识别肝脏肿瘤类型的方法
US20190156159A1 (en) * 2017-11-20 2019-05-23 Kavya Venkata Kota Sai KOPPARAPU System and method for automatic assessment of cancer
TW201941217A (zh) * 2018-02-12 2019-10-16 美商史柯比人工智慧股份有限公司 用於診斷腸胃腫瘤的系統和方法
US11257213B2 (en) * 2018-10-25 2022-02-22 Koninklijke Philips N.V. Tumor boundary reconstruction using hyperspectral imaging
TW202121435A (zh) * 2019-11-21 2021-06-01 粘曉菁 肝腫瘤智慧分析方法

Also Published As

Publication number Publication date
EP4235567A2 (en) 2023-08-30
TW202334990A (zh) 2023-09-01
JP2023124767A (ja) 2023-09-06
US20230274432A1 (en) 2023-08-31
EP4235567A3 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
Samant et al. Machine learning techniques for medical diagnosis of diabetes using iris images
Chen et al. Standard plane localization in fetal ultrasound via domain transferred deep neural networks
Brunetti et al. Computer-assisted frameworks for classification of liver, breast and blood neoplasias via neural networks: A survey based on medical images
US7905599B2 (en) Methods for diagnosing glaucoma utilizing combinations of FD-OCT measurements from three anatomical regions of the eye
Mangaokar et al. Jekyll: Attacking medical image diagnostics using deep generative models
TWI743693B (zh) 良性腫瘤發展趨勢評估系統、其伺服計算機裝置及計算機可讀取的儲存媒體
Lei et al. A deep residual networks classification algorithm of fetal heart CT images
CN114038564A (zh) 一种糖尿病无创风险预测方法
Lin et al. Using deep learning in ultrasound imaging of bicipital peritendinous effusion to grade inflammation severity
Shi et al. Automatic detection of pulmonary nodules in CT images based on 3D Res-I network
Sarpotdar Cardiomegaly detection using deep convolutional neural network with U-net
TWI830161B (zh) 腦部腫瘤種類自動判別系統、其伺服計算機裝置及計算機可讀取的儲存媒體
Lu et al. RETRACTED: A Deep Learning Model for Three-Dimensional Nystagmus Detection and Its Preliminary Application
Zhang et al. Analysis of the application value of ultrasound imaging diagnosis in the clinical staging of thyroid cancer
Vocaturo et al. Artificial intelligence approaches on ultrasound for breast cancer diagnosis
Ullah et al. Enhancement of Pre-Trained Deep Learning Models to Improve Brain Tumor Classification
Randhawa et al. Prediction of liver cirrhosis using weighted fisher discriminant ratio algorithm
TWI768288B (zh) 腎臟功能評估方法、腎臟功能評估系統及腎臟照護裝置
AU2020103785A4 (en) Method for improving recognition rates of mri images of prostate tumors based on cad system
US20230093471A1 (en) Methods and systems for predicting rates of progression of age-related macular degeneration
Kurup et al. Automated malarial retinopathy detection using transfer learning and multi-camera retinal images
Koh et al. Myofascial Trigger Point Identification in B-Mode Ultrasound: Texture Analysis Versus a Convolutional Neural Network Approach
Rani et al. Skin disease classification using machine learning and data mining algorithms
Liu et al. Gastrointestinal stromal tumors diagnosis on multi-center endoscopic ultrasound images using multi-scale image normalization and transfer learning
Sohaib et al. Artificial intelligence based prediction on lung cancer risk factors using deep learning