TWI829372B - Funding demand forecasting system and forecasting method - Google Patents
Funding demand forecasting system and forecasting method Download PDFInfo
- Publication number
- TWI829372B TWI829372B TW111137249A TW111137249A TWI829372B TW I829372 B TWI829372 B TW I829372B TW 111137249 A TW111137249 A TW 111137249A TW 111137249 A TW111137249 A TW 111137249A TW I829372 B TWI829372 B TW I829372B
- Authority
- TW
- Taiwan
- Prior art keywords
- user
- data
- iris
- identity
- computing device
- Prior art date
Links
- 238000013277 forecasting method Methods 0.000 title claims description 12
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000011156 evaluation Methods 0.000 claims abstract description 10
- 210000003462 vein Anatomy 0.000 claims description 35
- 230000017531 blood circulation Effects 0.000 claims description 9
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- 210000001747 pupil Anatomy 0.000 claims description 6
- 208000016339 iris pattern Diseases 0.000 claims description 5
- 210000003786 sclera Anatomy 0.000 claims description 5
- 230000002452 interceptive effect Effects 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 4
- 238000012795 verification Methods 0.000 claims description 3
- 210000001508 eye Anatomy 0.000 description 24
- 238000010586 diagram Methods 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 7
- 238000012546 transfer Methods 0.000 description 6
- 210000005252 bulbus oculi Anatomy 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000002939 conjugate gradient method Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 210000000554 iris Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
Images
Landscapes
- Collating Specific Patterns (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
本發明係關於一種資金需求預測系統及預測方法,特別是一種供應商資金需求預測系統及預測方法。 The invention relates to a capital demand prediction system and a prediction method, in particular to a supplier capital demand prediction system and a prediction method.
對於銀行來說,資金的流動除了可針對特定指標進行長期的趨勢預測之外,也會需要對供應商的短期性資金需求進行動態分析。特別來說,供應商的資金需求會隨經濟環境或各種因素波動,銀行卻往往僅能被動地待供應商提出資金需求後才予以協助,無法有效率地提供對應的服務。 For banks, in addition to long-term trend predictions for specific indicators, capital flows also require dynamic analysis of suppliers' short-term capital needs. In particular, suppliers' funding needs will fluctuate with the economic environment or various factors, but banks can often only passively wait for suppliers to request funding before providing assistance, and are unable to provide corresponding services efficiently.
鑒於上述,本發明提供一種供應商資金需求預測系統及預測方法。 In view of the above, the present invention provides a supplier fund demand forecasting system and forecasting method.
依據本發明一實施例的資金需求預測方法,包含以虹膜辨識裝置擷取使用者的一組待定虹膜特徵,並判斷是否存在與該組待定虹膜特徵相符的一組登錄虹膜特徵。若存在與該組待定虹膜特徵相符的一組登錄虹膜特徵,虹膜辨識裝置記錄使用者的身分為對應於所述登錄虹膜特徵的一認證身分;若不存在與該組待定虹膜特徵相符的一組登錄虹膜特徵,則記錄使用者的身分為對應於該待定虹膜特徵的一可疑身 分。當虹膜辨識裝置記錄使用者的身分為認證身分時,傳訊通知一運算裝置,運算裝置將多個預設資料呈現在一顯示器上,預設資料分別對應於多個資料類別。在顯示器示出預設資料後,運算裝置傳訊通知一眼球追蹤裝置追蹤使用者的視線,以鎖定預設資料中的多個目標資料。眼球追蹤裝置將被鎖定的目標資料傳輸至運算裝置,運算裝置根據目標資料分別所對應的資料類別,取得各自的目標權重。運算裝置將該些目標資料與對應的該些目標權重進行一加權總和,以得到一評估分數;以及根據評估分數計算得到一預測資金需求。 A fund demand forecasting method according to an embodiment of the present invention includes using an iris recognition device to capture a set of undetermined iris features of a user, and determining whether there is a set of registered iris features consistent with the set of undetermined iris features. If there is a set of logged-in iris features consistent with the set of pending iris features, the iris recognition device records the user's identity as an authentication identity corresponding to the logged-in iris features; if there is no set of logged-in iris features consistent with the set of pending iris features, If the iris feature is logged in, the user's identity is recorded as a suspicious identity corresponding to the undetermined iris feature. point. When the iris recognition device records the user's identity as the authenticated identity, it notifies a computing device, and the computing device presents a plurality of preset data on a display, and the preset data respectively corresponds to a plurality of data categories. After the display displays the default data, the computing device signals an eye-tracking device to track the user's gaze to lock multiple target data in the default data. The eye tracking device transmits the locked target data to the computing device, and the computing device obtains respective target weights based on the data categories corresponding to the target data. The computing device performs a weighted sum of the target data and the corresponding target weights to obtain an evaluation score; and calculates a predicted fund requirement based on the evaluation score.
藉由上述結構,本案所揭示的資金需求預測系統及預測方法,可透過虹膜辨識裝置對一使用者進行生物驗證以確保使用者的身分無誤,透過眼球追蹤裝置確定使用者眼球所注視的目標資料以選取跟供應商有關的資金資訊,再透過運算裝置對選取的資訊進行權重運算,因此可基於供應商的多筆資料得到其資金預測需求。如此一來,使用者或銀行方可提前準備適當數量的資金,而有效率地提供相應的協助及服務。 With the above structure, the fund demand forecasting system and forecasting method disclosed in this case can perform biometric verification on a user through an iris recognition device to ensure that the user's identity is correct, and determine the target data on which the user's eyes are looking through an eye-tracking device. To select the funding information related to the supplier, and then perform weight calculation on the selected information through the computing device, so the forecast funding requirements of the supplier can be obtained based on multiple pieces of data from the supplier. In this way, users or banks can prepare an appropriate amount of funds in advance and provide corresponding assistance and services efficiently.
以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。 The above description of the present disclosure and the following description of the embodiments are used to demonstrate and explain the spirit and principles of the present invention, and to provide further explanation of the patent application scope of the present invention.
1,1’:資金需求預測系統 1,1’: Funding demand forecasting system
10:虹膜辨識裝置 10: Iris recognition device
20:運算裝置 20:Computing device
30:顯示器 30:Display
40:眼球追蹤裝置 40: Eye tracking device
41:紅外線發光器 41: Infrared emitter
42:紅外線攝像機 42:Infrared camera
50:指靜脈辨識裝置 50:Finger vein identification device
D:視線方向 D: sight direction
E:眼球 E: Eyeball
I:虹膜 I:iris
P:瞳孔 P:pupil
S:鞏膜 S: sclera
S100~S108,S201~S209,S301~S303:步驟 S100~S108, S201~S209, S301~S303: steps
圖1係依據本發明一實施例所繪示的資金需求預測系統的方塊圖。 FIG. 1 is a block diagram of a fund demand forecasting system according to an embodiment of the present invention.
圖2係依據本發明一實施例所繪示的資金需求預測方法的虹膜辨識的示意圖。 FIG. 2 is a schematic diagram of iris recognition of a fund demand prediction method according to an embodiment of the present invention.
圖3係依據本發明一實施例所繪示的資金需求預測系統的眼球追蹤裝置的示意圖。 FIG. 3 is a schematic diagram of an eye tracking device of a fund demand prediction system according to an embodiment of the present invention.
圖4係依據本發明一實施例所繪示的資金需求預測方法的方塊流程圖。 FIG. 4 is a block flow chart of a method for forecasting capital needs according to an embodiment of the present invention.
圖5係依據本發明一實施例所繪示的資金需求預測系統的選擇目標資料的示意圖。 FIG. 5 is a schematic diagram of selecting target data of the fund demand forecasting system according to an embodiment of the present invention.
圖6係依據本發明另一實施例所繪示的資金需求預測系統的方塊圖。 FIG. 6 is a block diagram of a fund demand forecasting system according to another embodiment of the present invention.
圖7係依據本發明另一實施例所繪示的資金需求預測方法的方塊流程圖。 FIG. 7 is a block flow chart of a method for forecasting capital needs according to another embodiment of the present invention.
圖8係依據本發明又一實施例所繪示的資金需求預測方法的方塊流程圖。 FIG. 8 is a block flow chart of a method for forecasting capital requirements according to another embodiment of the present invention.
以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。 The detailed features and advantages of the present invention are described in detail below in the implementation mode. The content is sufficient to enable anyone skilled in the relevant art to understand the technical content of the present invention and implement it according to the content disclosed in this specification, the patent scope and the drawings. , anyone familiar with the relevant art can easily understand the relevant objectives and advantages of the present invention. The following examples further illustrate the aspects of the present invention in detail, but do not limit the scope of the present invention in any way.
請參考圖1,圖1係依據本發明一實施例所繪示的資金需求預測系統的方塊圖。如圖1所示,資金需求預測系統1包含虹膜辨識裝
置10、運算裝置20、顯示器30以及眼球追蹤裝置40,其中運算裝置20作為訊號處理中心連接於其他裝置。需要理解的是,雖然本例的運算裝置20連接於其他裝置,且其他裝置各自透過運算裝置20產生連接,然而在其他實施例中,其他裝置之間(如顯示器30與眼球追蹤裝置40之間)可以具有直接的訊號連接關係,本案不限於此。
Please refer to FIG. 1 , which is a block diagram of a fund demand forecasting system according to an embodiment of the present invention. As shown in Figure 1, the capital
請結合圖1參考圖2,圖2係依據本發明一實施例所繪示的資金需求預測方法的虹膜辨識的示意圖。在本例中,虹膜辨識裝置10可為具有機器視覺能力的處理器(如中央處理器、微控制器或可程式化邏輯控制器)搭配一專用攝像機,用於擷取一使用者的一組待定虹膜特徵,並判斷是否存在與該組待定虹膜特徵相符的一組登錄虹膜特徵。舉例來說,所述虹膜特徵可包含虹膜紋路、虹膜顏色、虹膜I與瞳孔P的邊界及虹膜I與鞏膜S的邊界。具體來說,一個眼睛上的虹膜可以被找出約240個特徵點,即每個人的虹膜都具有獨一無二的圖樣供虹膜辨識裝置10識別。
Please refer to FIG. 2 in conjunction with FIG. 1. FIG. 2 is a schematic diagram of iris recognition of a fund demand prediction method according to an embodiment of the present invention. In this example, the
請結合圖1參考圖3,圖3係依據本發明一實施例所繪示的資金需求預測系統的眼球追蹤裝置的示意圖。在本例中,眼球追蹤裝置40用於追蹤該使用者的視線,以鎖定在資料選取環節中的目標資料。舉例來說,眼球追蹤裝置40可為一種具有處理器(如中央處理器、微控制器或可程式化邏輯控制器)的穿戴式裝置(如眼鏡)以較佳地追蹤使用者眼球的運動。如圖3所示,眼球追蹤裝置40可包含紅外線發光器41及紅外線攝像機42,可分別用於照射紅外光至眼球表面及接收來自眼球表面反射的紅外光。具體來說,眼球追蹤的原理可基於如圖2所示的根據虹膜I、
瞳孔P及鞏膜S對紅外光的反射率不同以辨識出瞳孔P或虹膜I的位置以計算得到使用者的視線方向,相關細節如具本領域通常知識者能理解故在此不贅述。此外,在其他實施例中,眼球追蹤裝置40可非為穿戴式裝置而是一種外部裝置,如具有具有機器視覺能力的處理器搭配一專用攝像機以識別使用者的視線方向,本案不限於此。
Please refer to FIG. 3 in conjunction with FIG. 1 . FIG. 3 is a schematic diagram of an eye tracking device of a fund demand prediction system according to an embodiment of the present invention. In this example, the
請結合圖1參考圖4,圖4係依據本發明一實施例所繪示的資金需求預測方法的方塊流程圖。如圖4所示,資金需求的預測方法包含步驟S100:以虹膜辨識裝置10擷取使用者的一組待定虹膜特徵、步驟S101:以虹膜辨識裝置10判斷是否存在與待定虹膜特徵相符的一組登錄虹膜特徵,若不存在則進入步驟S102,存在則進入步驟S103、步驟S102:虹膜辨識裝置10記錄使用者的身分為對應於所述待定虹膜特徵的一可疑身分、步驟S103:虹膜辨識裝置10記錄使用者的身分為對應於所述登錄虹膜特徵的一認證身分、步驟S104:顯示器30呈現圖形使用者介面並示出多個預設資料、步驟S105:眼球追蹤裝置40追蹤使用者的視線以鎖定預設資料中的目標資料、步驟S106:運算裝置20根據目標資料的資料類別取得多個目標權重、步驟S107:運算裝置20將目標資料與對應的目標權重進行一加權總和以得到評估分數、步驟S108:運算裝置20根據評估分數計算得到一預測資金需求。
Please refer to FIG. 4 in conjunction with FIG. 1 . FIG. 4 is a block flow chart of a method for forecasting capital needs according to an embodiment of the present invention. As shown in Figure 4, the method for predicting financial requirements includes step S100: using the
以下針對圖4所示的各步驟進行舉例及詳細說明。在步驟S100中,虹膜辨識裝置10可拍攝使用者的眼睛影像,該影像可包含瞳孔、虹膜及鞏膜等,再透過內部的處理單元擷取眼睛影像的待定虹膜特徵。在步驟S101中,虹膜辨識裝置10可將步驟S100中取得的待定虹膜特徵
與內部預存的多組登錄虹膜特徵進行比對,以判斷是否存在與該組待定虹膜特徵相符的一組登錄虹膜特徵。在一實施態樣中,可界定相符的條件特徵符合率需達到90%,然本案不限於此。需要注意的是,如果存在多組登錄虹膜特徵與該組待定虹膜特徵相符,則仍然不符合「存在與待定虹膜特徵相符的一組虹膜特徵」之判斷,即被判斷為不存在只有一組相符的登錄虹膜特徵。
Examples and detailed descriptions of each step shown in Figure 4 are given below. In step S100, the
在步驟S102中,由於無法恰當地判斷使用者的待定虹膜特徵對應於資料庫中的哪一個登錄虹膜特徵,虹膜辨識裝置10會將使用者的身分記錄為可疑身分在運算裝置20的內建記憶體中。在步驟S103中,虹膜辨識裝置10將使用者的身分紀錄為認證身分在運算裝置20的內建記憶體中,並傳訊通知運算裝置20,運算裝置20再將多個預設資料傳輸給顯示器30。在步驟S104中,顯示器30接收來自運算裝置20的預設資料並將其顯示在一圖形使用者介面上並回傳一訊號給運算裝置20。在步驟S105中,運算裝置20會傳訊通知眼球追蹤裝置40追蹤使用者的視線,眼球追蹤裝置40會回傳使用者的視線給運算裝置20以鎖定所述視線之延長線相交於顯示器30的圖形使用者介面上的預設資料中的目標資料。在步驟S106中,運算裝置20根據該些目標資料分別所對應的多個資料類別,取得多個目標權重。在步驟S107中,運算裝置20將該些目標資料與對應的該些目標權重進行一加權總和,以得到一評估分數。在步驟S108中,運算裝置20根據評估分數計算得到一預測資金需求。舉例來說,若評估一供應商各月份發現其5月的評估分數為最高,可根據一比例於5月適當分配一預留資金作為該供應商的資金需求預測。
In step S102, since it cannot properly determine which registered iris feature in the database the user's pending iris feature corresponds to, the
在一實施態樣中,上述目標資料可包含一上游廠商進貨往來資料,對應於第一權重、一中心廠交易往來資料,對應於第二權重、一授信資料,對應於第三權重、一財務資料,對應於第四權重,以及一外部經濟資料,對應於第五權重。以下舉出一例子進行說明。 In an implementation form, the above target data may include an upstream manufacturer's purchase transaction data, corresponding to the first weight, a central factory transaction data, a second weight, a credit information, a third weight, a financial data, corresponding to the fourth weight, and an external economic data, corresponding to the fifth weight. An example is given below to illustrate.
將與上游廠商進貨往來情形對應的第一權重設為30分(總分為100分),其中「預約資訊上傳/訂單月份筆數」佔9分,「預約轉帳/憑證金額」佔12分,「轉帳/約交日天數」佔9分。計算方式如下表1。 The first weight corresponding to the purchase and transaction situation of the upstream manufacturer is set to 30 points (total score is 100 points), of which "appointment information upload/number of orders per month" accounts for 9 points, and "appointment transfer/voucher amount" accounts for 12 points. "Transfer/Number of delivery dates" accounts for 9 points. The calculation method is as follows Table 1.
將與中心廠交易往來情形對應的第二權重設為25分,其中「預約資訊上傳/訂單月份筆數」佔7.5分,「憑證金額」佔10分,「轉帳/約交日天數」佔7.5分。計算方式如下表2。 Set the second weight corresponding to the central factory's transactions to 25 points, of which "appointment information upload/number of orders per month" accounts for 7.5 points, "voucher amount" accounts for 10 points, and "transfer/number of delivery days" accounts for 7.5 point. The calculation method is as follows in Table 2.
將授信情形對應的第三權重設為20分,其中「額度核准金額」佔2分,「當月動撥金額」佔10分,「當月動撥筆數」佔4分,「平均動撥利率與同業比較」佔4分。計算方式如下表3。 Set the third weight corresponding to the credit situation to 20 points, of which "approved amount of quota" accounts for 2 points, "amount of automatic transfers for the month" accounts for 10 points, "number of transfers for the month" accounts for 4 points, "average transfer interest rate and "Comparison with peers" accounted for 4 points. The calculation method is as follows in Table 3.
將客戶之財務狀況對應的第四權重設為15分,其中「淨值比率」佔3分,「營收成長率」佔3分,「速動比率」佔3分,「現金流量比率」佔3分,「聯徵中心借款餘額增減」佔3分。計算方式如下表4。 Set the fourth weight corresponding to the customer's financial status to 15 points, of which "net worth ratio" accounts for 3 points, "revenue growth rate" accounts for 3 points, "quick ratio" accounts for 3 points, and "cash flow ratio" accounts for 3 points "Increase or decrease in loan balance of Lianzheng Center" accounts for 3 points. The calculation method is as follows in Table 4.
將經濟及產業情勢對應的第五權重設為10分,其中「產業天氣分布概況」佔2分,「採購經理人指數」佔2分,「生產者物價指數」佔2分,「產業/財經新聞」佔4分。計算方式如下表5。 The fifth weight corresponding to the economic and industrial situation is set to 10 points, of which "industrial weather distribution overview" accounts for 2 points, "purchasing managers index" accounts for 2 points, "producer price index" accounts for 2 points, and "industry/finance" News" accounted for 4 points. The calculation method is as shown in Table 5 below.
經過上述表列各項因素的預測分數,可統計當月分數為表6。 After predicting the scores of each factor listed in the above table, the scores for the current month can be calculated as Table 6.
進一步,可統計近五年之情形,如下表7所示。 Furthermore, the situation in the past five years can be analyzed, as shown in Table 7 below.
因此,可推算供應商各月份資金需求的評估分數,以預測未來資金需求月份落點,讓銀行方及早因應,如下表8所示。 Therefore, the assessment score of the supplier's capital needs in each month can be calculated to predict the monthly location of future capital needs, allowing banks to respond as early as possible, as shown in Table 8 below.
從上述例子可以理解,影響供應商的資金需求的因素眾多,因此在另一實施例中,可藉由機器學習的演算法來調整各項目標權重,以優化對於資金需求的預測準確率。由運算裝置決定目標權重的步驟包含:取得多筆歷史資金需求、取得多筆歷史資料,該些歷史資料中的每一者包含一歷史上游廠商進貨往來子資料、一歷史中心廠交易往來子資料、一歷史授信子資料、一歷史財務子資料及一歷史外部經濟子資料、運算裝置將該些歷史資料與多個預設調變權重進行該加權總和,得到一測試資金需求,並得到該測試資金需求與該歷史資金需求的一差異,其中該些預設調變權重分別對應於該歷史上游廠商進貨往來子資料、該歷史中心廠交易往來子資料、一歷史授信子資料、一歷史財務子資料及一歷史外部經濟子資料、運算裝置透過一梯度下降演算法(Gradient descent algorithm)調整該些預設調變權重,並將該些歷史資料與經調整的該些預設調變權重經過上述加權總合重新計算另一差異,直到該另一差異達到一極小值以取得多個確認調變權重,以及記錄該些確認調變權重為該些目標權重。 It can be understood from the above examples that there are many factors that affect a supplier's capital requirements. Therefore, in another embodiment, a machine learning algorithm can be used to adjust the weight of each target to optimize the prediction accuracy of capital requirements. The steps of determining the target weight by the computing device include: obtaining a plurality of historical fund requirements and obtaining a plurality of historical data. Each of the historical data includes a historical upstream manufacturer purchase transaction sub-data and a historical central factory transaction transaction sub-data. , a historical credit sub-data, a historical financial sub-data and a historical external economic sub-data, the computing device performs the weighted sum of the historical data and a plurality of preset modulation weights to obtain a test fund requirement, and obtain the test A difference between the capital demand and the historical capital demand, wherein the preset adjustment weights respectively correspond to the historical upstream manufacturer purchase transaction sub-data, the historical central factory transaction transaction sub-data, a historical credit sub-data, and a historical financial sub-data Data and a historical external economic sub-data, the computing device adjusts the preset modulation weights through a gradient descent algorithm, and passes the historical data and the adjusted preset modulation weights through the above-mentioned The weighted summation recalculates another difference until the other difference reaches a minimum value to obtain a plurality of confirmed modulation weights, and records the confirmed modulation weights as the target weights.
舉例來說,歷史資金需求及歷史資料包含近五年的一月份的資料。一開始,可利用預設調變權重與歷史資料計算資金需求的誤差值,再透過梯度下降演算法調變各個權重以降低所述誤差值直到誤差值達到極小值,並記錄該些調變權重為目標權重。也就是說,對於近五年的一月份而言,演算得到的目標權重可以是一組能夠較佳地符合近五年的資金需求情形的一組目標權重。此外,除了梯度下降法以外,也可採用其他最佳化演算法以得到不同的收斂速度或準確率,例如隨機梯度 下降法(Stochastic gradient descent,SGD)、適應學習率方法(Adaptive Learning Rate Method)或共軛梯度方法(Conjugate Gradient Method)等,本案不限於此。 For example, historical funding requirements and historical data include January data for the past five years. Initially, the error value of the capital demand can be calculated using the preset adjustment weights and historical data, and then the gradient descent algorithm is used to adjust each weight to reduce the error value until the error value reaches a minimum value, and these adjustment weights are recorded. is the target weight. That is to say, for January in the past five years, the calculated target weights can be a set of target weights that can better meet the funding demand situation in the past five years. In addition, in addition to the gradient descent method, other optimization algorithms can also be used to obtain different convergence speeds or accuracy rates, such as stochastic gradient Stochastic gradient descent (SGD), adaptive learning rate method (Adaptive Learning Rate Method) or conjugate gradient method (Conjugate Gradient Method), etc. This case is not limited to these.
在操作介面上,請參考圖5,圖5係依據本發明一實施例所繪示的資金需求預測系統的選擇目標資料的示意圖。如圖5所示,在使用者完成身分辨識後,可透過眼球追蹤裝置40及顯示器30開始選擇目標資料,即透過眼球追蹤裝置40追蹤使用者眼球E的視線方向D相交於圖形使用者介面上的一點所對應的目標資料完成選取資料的操作。
On the operation interface, please refer to FIG. 5 , which is a schematic diagram of selecting target data of the fund demand forecasting system according to an embodiment of the present invention. As shown in FIG. 5 , after the user completes the identity recognition, the user can start selecting target data through the
請參考圖6,圖6係依據本發明另一實施例所繪示的資金需求預測系統的方塊圖。在本例中,資金需求預測系統1’除了上述的虹膜辨識裝置10、運算裝置20、顯示器30及眼球追蹤裝置40外,更包含用於擷取使用者的一組待定指靜脈特徵並判斷待定指靜脈特徵及對應於使用者的身分的登錄指靜脈特徵是否相符,以及用於量測該使用者的一指靜脈血流速度並判斷該指靜脈血流速度是否大於一預設速度的指靜脈辨識裝置50,訊號連接於運算裝置20。指靜脈辨識裝置50具有處理器(如中央處理器、微控制器或可程式化邏輯控制器)以進行上述判斷。此外,本例的資金需求預測系統1’還可包含一專用隱形眼鏡(圖未示),讓該使用者配戴,用於藉由專用隱形眼鏡本身的一人造圖騰加上使用者的一虹膜圖案產生虹膜辨識裝置10中預存的登錄虹膜特徵。也就是說,該組待定虹膜特徵對應於該使用者配戴一專用隱形眼鏡後的虹膜影像,且該虹膜辨識裝置中預存的該組登錄虹膜特徵包含該使用者本身的一虹膜圖案加上一專用隱形眼鏡的一人造圖騰,其中虹膜辨識裝置10更用於
事先於一註冊階段取得人造圖騰加上使用者的虹膜圖案的一疊合圖案以作為該組登錄虹膜特徵。如此一來可防止惡意使用者透過配戴具有特殊圖樣的隱形眼鏡來偽造身分。
Please refer to FIG. 6 , which is a block diagram of a fund demand forecasting system according to another embodiment of the present invention. In this example, the fund demand prediction system 1', in addition to the above-mentioned
請結合圖4及圖6參考圖7,圖7係依據本發明另一實施例所繪示的資金需求預測方法的方塊流程圖。如圖7所示,在步驟S104(顯示器30示出預設資料)後,運算裝置20可判斷眼球追蹤裝置40是否無法鎖定眼球注視的目標資料達一預設時間如20秒(步驟S201)。若否,則進行步驟S105,眼球追蹤裝置40追蹤使用者的視線以鎖定預設資料中的目標資料;若是,則運算裝置20可傳訊通知該顯示器開啟一互動教學頁面(步驟S202)。具體來說,使用者的視線無法鎖定目標資料可能意味著以下情形,包含使用者不理解操作方式或使用者同時觀看其他設備。
Please refer to FIG. 7 in conjunction with FIG. 4 and FIG. 6 . FIG. 7 is a block flow chart of a fund demand forecasting method according to another embodiment of the present invention. As shown in FIG. 7 , after step S104 (the
接著,運算裝置20傳訊可通知指靜脈辨識裝置50執行截取使用者的一組待定指靜脈特徵並判斷該組待定指靜脈特徵及對應於該使用者的該身分的一登錄指靜脈特徵是否相符(步驟S203及S205),並且量測該使用者的一指靜脈血流速度並判斷該指靜脈血流速度是否大於一預設速度(步驟S203及S204)。基於上述兩個判斷,進一步檢查使用者的身分是否可疑,即若登錄指靜脈特徵與待定指靜脈特徵不相符,或若指靜脈血流速度大於所述預設速度,則指靜脈辨識裝置50記錄使用者的身分為可疑身分(步驟S206)。一旦使用者的身分被記錄為可疑身分,則停止該使用者的一使用權限並記錄使用者提供的所有資料(步驟S207)。
Then, the
另一方面,若指靜脈辨識裝置50判斷登錄指靜脈特徵與待定指靜脈特徵相符,則記錄該使用者的身分為一雙重認證身分(步驟S208)。因此,只要使用者的身分未被記錄為可疑身分,運算裝置20就會允許使用者繼續進行操作(步驟S209)。需要注意的是,本例的「可疑身分」及「認證身分」可同時存在於使用者的身分中,然而運算裝置20對於是否要停止使用者的使用權限之判斷是基於「是否具有可疑身分」。也就是說,一個指靜脈特徵沒問題的使用者可能因為指靜脈血流速度異常而被停止權限,藉此可防止具有合理身分的使用者欲進行異常操作的情形。
On the other hand, if the finger
請結合圖4參考圖8,圖8係依據本發明又一實施例所繪示的資金需求預測方法的方塊流程圖。如圖8所示,在虹膜辨識裝置10擷取使用者的待定虹膜特徵(即步驟S100)後,虹膜辨識裝置10可判斷待定虹膜特徵在一預設時段內是否皆無動態變化(步驟S301),若是,則虹膜辨識裝置10將使用者的身分記錄為可疑身分,並停止使用者的使用權限且記錄使用者提供的所有資料(步驟S303);若否,則運算裝置20允許該使用者繼續進行操作(步驟S101),之後進入上述步驟S101。
Please refer to FIG. 8 in conjunction with FIG. 4. FIG. 8 is a block flow chart of a method for forecasting capital needs according to another embodiment of the present invention. As shown in FIG. 8 , after the
藉由上述結構,本案所揭示的供應商資金需求預測系統及預測方法,可透過虹膜辨識裝置及指靜脈辨識裝置對一使用者進行多重驗證以確保使用者的身分及操作無誤,透過眼球追蹤裝置確定使用者眼球所注視的目標資料以選取跟供應商有關的資金資訊,再透過運算裝置對選取的資訊進行權重運算,因此可基於供應商的多筆資料得到其資 金預測需求。如此一來,使用者或銀行方可提前準備適當數量的資金,而有效率地提供相應的協助及服務。 With the above structure, the supplier's funding demand forecasting system and forecasting method disclosed in this case can perform multiple verifications on a user through the iris recognition device and the finger vein recognition device to ensure that the user's identity and operation are correct, and through the eye tracking device Determine the target data that the user is looking at to select financial information related to the supplier, and then perform weighting calculations on the selected information through the computing device, so that the information can be obtained based on multiple pieces of data from the supplier. gold forecast demand. In this way, users or banks can prepare an appropriate amount of funds in advance and provide corresponding assistance and services efficiently.
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。 Although the present invention is disclosed in the foregoing embodiments, they are not intended to limit the present invention. All changes and modifications made without departing from the spirit and scope of the present invention shall fall within the scope of patent protection of the present invention. Regarding the protection scope defined by the present invention, please refer to the attached patent application scope.
S100~S108:步驟 S100~S108: steps
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111137249A TWI829372B (en) | 2022-09-30 | 2022-09-30 | Funding demand forecasting system and forecasting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111137249A TWI829372B (en) | 2022-09-30 | 2022-09-30 | Funding demand forecasting system and forecasting method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI829372B true TWI829372B (en) | 2024-01-11 |
TW202416206A TW202416206A (en) | 2024-04-16 |
Family
ID=90458989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111137249A TWI829372B (en) | 2022-09-30 | 2022-09-30 | Funding demand forecasting system and forecasting method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI829372B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7963652B2 (en) * | 2003-11-14 | 2011-06-21 | Queen's University At Kingston | Method and apparatus for calibration-free eye tracking |
CN107705164A (en) * | 2017-11-14 | 2018-02-16 | 宜宾维特瑞安科技有限公司 | A kind of market survey device, system and method based on eyeball tracking technology |
CN109918561A (en) * | 2019-01-10 | 2019-06-21 | 王妃 | A kind of study recommended method of library's (studying space) |
WO2020125839A1 (en) * | 2018-12-18 | 2020-06-25 | GRID INVENT gGmbH | Electronic element and electrically controlled display element |
TWI755322B (en) * | 2019-12-31 | 2022-02-11 | 華南商業銀行股份有限公司 | Funding demand forecasting method and system |
TWM638542U (en) * | 2022-09-30 | 2023-03-11 | 華南商業銀行股份有限公司 | Fund demand prediction system |
-
2022
- 2022-09-30 TW TW111137249A patent/TWI829372B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7963652B2 (en) * | 2003-11-14 | 2011-06-21 | Queen's University At Kingston | Method and apparatus for calibration-free eye tracking |
CN107705164A (en) * | 2017-11-14 | 2018-02-16 | 宜宾维特瑞安科技有限公司 | A kind of market survey device, system and method based on eyeball tracking technology |
WO2020125839A1 (en) * | 2018-12-18 | 2020-06-25 | GRID INVENT gGmbH | Electronic element and electrically controlled display element |
CN109918561A (en) * | 2019-01-10 | 2019-06-21 | 王妃 | A kind of study recommended method of library's (studying space) |
TWI755322B (en) * | 2019-12-31 | 2022-02-11 | 華南商業銀行股份有限公司 | Funding demand forecasting method and system |
TWM638542U (en) * | 2022-09-30 | 2023-03-11 | 華南商業銀行股份有限公司 | Fund demand prediction system |
Also Published As
Publication number | Publication date |
---|---|
TW202416206A (en) | 2024-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4057531B2 (en) | Glasses / contact lens selection system and method | |
JP6563918B2 (en) | Method for determining at least one optical design parameter for an ophthalmic progressive lens | |
JP5539987B2 (en) | Method for optimizing the settings of a spectacle system | |
US20020184103A1 (en) | Active transaction generation, processing, and routing system | |
JP2019512793A (en) | Head mounted display system configured to exchange biometric information | |
US11847699B2 (en) | Systems and methods for providing non-fully-transparent markets | |
WO2020232855A1 (en) | Method and apparatus for adjusting screen display on the basis of subtle expression | |
US20220198789A1 (en) | Systems and methods for determining one or more parameters of a user's eye | |
TWM638542U (en) | Fund demand prediction system | |
JP2002078681A (en) | Unmanned method and device for transmitting information on lens | |
JP7263825B2 (en) | Information processing device, information processing method, and information processing program | |
JP6724090B2 (en) | Information processing apparatus, information processing method, and information processing program | |
TWI829372B (en) | Funding demand forecasting system and forecasting method | |
AU2019262151B2 (en) | System and method for obtaining and utilizing measurements to enable customized eyewear to be purchased online | |
TWI851506B (en) | Funding demand forecasting system and forecasting method based on dynamic iris feature recognition | |
TW202427338A (en) | Funding demand forecasting system and forecasting method based on dynamic iris feature recognition | |
TW202418194A (en) | Funding demand forecasting system and forecasting method based on weighting calculation algorithm | |
TWI755322B (en) | Funding demand forecasting method and system | |
JP2002078679A (en) | Unmanned device and method for transmitting information on spectacles | |
TWM593030U (en) | Fund demand prediction system | |
TWI727585B (en) | Funding demand forecasting method and system | |
US20240362662A1 (en) | Self-disclosed identity on a network | |
WO2024150306A1 (en) | Information processing device, information processing method, and recording medium | |
JP7365384B2 (en) | Information processing device, method and program | |
EP4220282A1 (en) | Determining a lens shape for producing an optical lens for an eye of a person |