TWI828723B - Methods and apparatus for cleaning substrates - Google Patents

Methods and apparatus for cleaning substrates Download PDF

Info

Publication number
TWI828723B
TWI828723B TW108125729A TW108125729A TWI828723B TW I828723 B TWI828723 B TW I828723B TW 108125729 A TW108125729 A TW 108125729A TW 108125729 A TW108125729 A TW 108125729A TW I828723 B TWI828723 B TW I828723B
Authority
TW
Taiwan
Prior art keywords
substrate
megasonic
ultrasonic
bubbles
cleaning
Prior art date
Application number
TW108125729A
Other languages
Chinese (zh)
Other versions
TW202105554A (en
Inventor
王暉
王希
張曉燕
陳福發
Original Assignee
大陸商盛美半導體設備(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商盛美半導體設備(上海)股份有限公司 filed Critical 大陸商盛美半導體設備(上海)股份有限公司
Priority to TW108125729A priority Critical patent/TWI828723B/en
Publication of TW202105554A publication Critical patent/TW202105554A/en
Application granted granted Critical
Publication of TWI828723B publication Critical patent/TWI828723B/en

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

The present invention discloses a substrate cleaning method comprising the steps of: placing a substrate on a substrate holder; delivering cleaning liquid onto the surface of the substrate; implementing a pre-treatment process to detach bubbles from the surface of the substrate; and then implementing an ultra or mega sonic cleaning process for cleaning the substrate.

Description

基板的清洗方法及裝置 Substrate cleaning method and device

本發明關於基板的清洗方法及裝置,更具體地,關於從基板表面分離氣泡以避免在清洗過程中氣泡破壞性內爆,從而更有效地去除基板上圖案結構中的微小顆粒。 The present invention relates to a method and device for cleaning a substrate, and more specifically, to separating bubbles from the surface of the substrate to avoid destructive implosion of the bubbles during the cleaning process, thereby more effectively removing tiny particles in pattern structures on the substrate.

半導體器件是在半導體基板上經過一系列不同的加工步驟形成電晶體和互連線而製成的。近年來,電晶體的建立由兩維發展到三維,例如鰭型場效應電晶體和3D NAND記憶體。為了使電晶體終端能和半導體基板電連接在一起,需要在半導體基板的介質材料上做出導電的(例如金屬)槽、孔及其他類似的結構作為半導體器件的一部分。槽和孔可以在電晶體之間、內部電路以及外部電路傳遞電信號和能量。 Semiconductor devices are made by forming transistors and interconnects on a semiconductor substrate through a series of different processing steps. In recent years, the construction of transistors has developed from two dimensions to three dimensions, such as fin field effect transistors and 3D NAND memories. In order to enable the transistor terminals to be electrically connected to the semiconductor substrate, conductive (eg metal) grooves, holes and other similar structures need to be made on the dielectric material of the semiconductor substrate as part of the semiconductor device. Slots and holes carry electrical signals and energy between transistors, internal circuits, and external circuits.

為了在半導體基板上形成鰭型場效應電晶體和互連結構,半導體基板需要經過多個步驟,如掩膜、刻蝕和沉積來形成所需的電子線路。特別是,多層掩膜和等離子體刻蝕步驟可以在半導體基板的電介質層形成鰭型場效應電晶體、3D NAND快閃記憶體單元和/或凹陷區域的圖案作為 電晶體的鰭和/或互連結構的槽和通孔。為了去除刻蝕或光刻膠灰化過程中在鰭結構和/或槽和通孔中的顆粒和污染物,需要進行濕法清洗。特別是,當器件製造節點延伸至16或14nm以及更小時,鰭和/或槽和通孔的側壁損失是維持臨界尺寸的關鍵。為了減小或消除側壁損失,應用溫和的、稀釋的化學試劑,或有時只用去離子水是非常重要。然而,稀釋的化學試劑或去離子水通常不能有效去除鰭結構、3DNAND孔和/或槽和通孔內的微粒。因此,需要使用機械力,例如超聲波或兆聲波,來有效去除這些微粒。超聲波或兆聲波會產生氣穴振盪為基板結構提供機械力,這些猛烈的氣穴振盪例如不穩定的氣穴振盪或微噴射將損傷這些圖案結構。維持穩定或可控的氣穴振盪是控制機械力損傷限度並有效去除微粒的關鍵參數。 In order to form fin field effect transistors and interconnect structures on a semiconductor substrate, the semiconductor substrate needs to go through multiple steps, such as masking, etching and deposition to form the required electronic circuits. In particular, multi-layer masking and plasma etching steps can form patterns of fin field effect transistors, 3D NAND flash memory cells and/or recessed areas in dielectric layers of a semiconductor substrate as Fins of transistors and/or slots and vias of interconnect structures. Wet cleaning is required to remove particles and contaminants in fin structures and/or trenches and vias during etching or photoresist ashing. In particular, as device fabrication nodes extend to 16 or 14nm and beyond, fin and/or sidewall losses of trenches and vias are key to maintaining critical dimensions. To reduce or eliminate sidewall losses, it is important to apply mild, dilute chemicals, or sometimes just deionized water. However, dilute chemicals or deionized water are generally not effective in removing particles within the fin structure, 3D NAND pores, and/or slots and vias. Therefore, mechanical forces, such as ultrasonic or megasonic waves, are required to effectively remove these particles. Ultrasonic waves or megasonic waves will generate cavitation oscillations to provide mechanical force to the substrate structure. These violent cavitation oscillations, such as unstable cavitation oscillations or micro-jet, will damage these pattern structures. Maintaining stable or controllable cavitation oscillation is a key parameter to control the limit of mechanical force damage and effectively remove particles.

圖1A和圖1B描述了在清洗過程中,不穩定的氣穴振盪損壞基板1010上的圖案結構1030。不穩定的氣穴振盪可由用於清洗基板1010的聲能產生。如圖1A和圖1B所示,由氣泡1050內爆產生的微噴射發生在圖案結構1030頂部的上方且非常猛烈(能達到幾千大氣壓及幾千攝氏度),這將會損壞基板1010上的圖案結構1030,尤其當特徵尺寸t縮小到70nm或更小時。 1A and 1B illustrate that during the cleaning process, unstable cavitation oscillation damages the pattern structure 1030 on the substrate 1010. Unstable cavitation oscillations may be generated by the acoustic energy used to clean the substrate 1010. As shown in FIGS. 1A and 1B , the microjet generated by the implosion of the bubble 1050 occurs above the top of the pattern structure 1030 and is very violent (can reach thousands of atmospheres and thousands of degrees Celsius), which will damage the pattern on the substrate 1010 Structure 1030, especially as the feature size t shrinks to 70 nm or less.

通過控制清洗過程中的氣泡的氣穴振盪克服了由氣泡內爆引起的微噴射導致的基板圖案結構損壞。可以在整個基板上實現穩定或可控的氣穴振盪,以避免圖案結構的 損壞,這已在2015年5月20日提交的專利申請號為PCT/CN2015/079342中公開。 Damage to the substrate pattern structure caused by micro-jet caused by bubble implosion is overcome by controlling the cavitation oscillation of the bubbles during the cleaning process. Stable or controllable cavitation oscillation can be achieved across the entire substrate to avoid distortion of the pattern structure Damage, which has been disclosed in patent application number PCT/CN2015/079342 filed on May 20, 2015.

在某些情況下,即使將用於清洗基板的超聲波或兆聲波的功率強度降至很低(幾乎沒有顆粒去除率),基板圖案結構的損壞仍會發生,損壞的數量僅為少數(100以下)。然而,在超聲波或兆聲波輔助的清洗過程中,氣泡的數量通常有數萬個。基板圖案結構的損壞數量與氣泡的數量是不匹配的,這種現象的機理尚不清楚。 In some cases, even if the power intensity of ultrasonic or megasonic waves used to clean the substrate is reduced to a very low level (almost no particle removal rate), damage to the pattern structure of the substrate still occurs, and the number of damage is only a few (less than 100 ). However, in ultrasonic or megasonic assisted cleaning processes, the number of bubbles is often in the tens of thousands. The amount of damage to the substrate pattern structure does not match the number of bubbles, and the mechanism of this phenomenon is not yet clear.

根據本發明的一個方面,揭示一種基板清洗方法,包括以下步驟:將基板放置在基板保持器上;將清洗液輸送到基板表面;實施預處理工藝以從基板表面分離氣泡;以及實施超聲波或兆聲波清洗工藝以清洗基板。 According to one aspect of the present invention, a substrate cleaning method is disclosed, including the following steps: placing the substrate on a substrate holder; delivering cleaning liquid to the substrate surface; implementing a pretreatment process to separate air bubbles from the substrate surface; and implementing ultrasonic or megasonic waves. Sonic cleaning process to clean substrates.

根據本發明的另一個方面,揭示一種基板清洗裝置,包括:基板保持器,被配置為保持基板;至少一個進液口,被配置為輸送清洗液到基板表面;超聲波或兆聲波裝置,被配置為向清洗液傳遞聲能;一個或多個控制器,被配置為:控制超聲波或兆聲波裝置具有第一功率以實施預處理工藝以從基板表面分離氣泡,以及控制超聲波或兆聲波裝置具有第二功率以實施超聲波或兆聲波清洗工藝以清洗基板,第二功率高於第一功率。 According to another aspect of the present invention, a substrate cleaning device is disclosed, including: a substrate holder configured to hold the substrate; at least one liquid inlet configured to deliver cleaning liquid to the substrate surface; an ultrasonic or megasonic device configured To deliver acoustic energy to the cleaning fluid; one or more controllers configured to: control the ultrasonic or megasonic device to have a first power to perform a pretreatment process to separate bubbles from the substrate surface, and control the ultrasonic or megasonic device to have a first power The second power is used to implement an ultrasonic or megasonic cleaning process to clean the substrate, and the second power is higher than the first power.

根據本發明的又一個方面,揭示一種基板清洗裝置,包括:基板保持器,被配置為保持基板;一個或多個 進液口,被配置為輸送清洗液到基板表面以清洗基板,以及輸送化學溶液到基板表面以實施預處理工藝以從基板表面分離氣泡;超聲波或兆聲波裝置,被配置為向清洗液傳遞聲能以清洗基板。 According to yet another aspect of the present invention, a substrate cleaning device is disclosed, including: a substrate holder configured to hold a substrate; one or more The liquid inlet is configured to deliver a cleaning liquid to the substrate surface to clean the substrate, and to deliver a chemical solution to the substrate surface to implement a pretreatment process to separate bubbles from the substrate surface; an ultrasonic or megasonic device is configured to transmit sound to the cleaning liquid Can clean the substrate.

1010‧‧‧基板 1010‧‧‧Substrate

1030‧‧‧圖案結構 1030‧‧‧Pattern structure

1050‧‧‧氣泡 1050‧‧‧Bubbles

1303‧‧‧超聲波或兆聲波裝置 1303‧‧‧Ultrasonic or megasonic devices

1304‧‧‧壓電式感測器 1304‧‧‧Piezoelectric sensor

1306‧‧‧豎直驅動模組 1306‧‧‧Vertical drive module

1307‧‧‧臂 1307‧‧‧Arm

1308‧‧‧聲學共振器 1308‧‧‧Acoustic Resonator

1310‧‧‧基板 1310‧‧‧Substrate

1312‧‧‧噴頭 1312‧‧‧Nozzle

1314‧‧‧基板保持器 1314‧‧‧Substrate holder

1316‧‧‧旋轉驅動模組 1316‧‧‧Rotation drive module

1370‧‧‧清洗液(化學溶液) 1370‧‧‧Cleaning fluid (chemical solution)

1388‧‧‧控制器 1388‧‧‧Controller

2010‧‧‧基板 2010‧‧‧Substrate

2030‧‧‧圖案結構 2030‧‧‧Pattern Structure

2050‧‧‧氣泡 2050‧‧‧Bubbles

2052‧‧‧氣泡 2052‧‧‧Bubbles

3010‧‧‧基板 3010‧‧‧Substrate

3030‧‧‧圖案結構 3030‧‧‧Pattern structure

3050‧‧‧氣泡 3050‧‧‧Bubbles

3051‧‧‧氣泡內爆 3051‧‧‧Bubble implosion

3070‧‧‧清洗液 3070‧‧‧Cleaning fluid

4010‧‧‧基板 4010‧‧‧Substrate

4030‧‧‧圖案結構 4030‧‧‧Pattern structure

4050‧‧‧氣泡 4050‧‧‧Bubbles

4070‧‧‧清洗液 4070‧‧‧Cleaning fluid

5010‧‧‧基板 5010‧‧‧Substrate

5030‧‧‧圖案結構 5030‧‧‧Pattern structure

5050‧‧‧氣泡 5050‧‧‧Bubbles

5090‧‧‧雜質 5090‧‧‧Impurities

6030‧‧‧圖案結構 6030‧‧‧Pattern structure

6050‧‧‧氣泡 6050‧‧‧Bubbles

6090‧‧‧雜質 6090‧‧‧Impurities

7010‧‧‧基板 7010‧‧‧Substrate

7030‧‧‧圖案結構 7030‧‧‧Pattern structure

7052‧‧‧氣泡 7052‧‧‧Bubbles

7054‧‧‧氣泡 7054‧‧‧Bubbles

7056‧‧‧氣泡 7056‧‧‧Bubbles

7070‧‧‧清洗液 7070‧‧‧Cleaning fluid

7090‧‧‧顆粒 7090‧‧‧Particles

8010‧‧‧基板 8010‧‧‧Substrate

8030‧‧‧圖案結構 8030‧‧‧Pattern structure

8052‧‧‧氣泡 8052‧‧‧Bubbles

8054‧‧‧氣泡 8054‧‧‧Bubbles

8056‧‧‧氣泡 8056‧‧‧Bubbles

8070‧‧‧化學溶液 8070‧‧‧Chemical solution

8090‧‧‧顆粒 8090‧‧‧Particles

F1‧‧‧作用在氣泡上的超聲波或兆聲波壓力 F1‧‧‧Ultrasonic or megasonic pressure acting on the bubble

F1’‧‧‧氣泡推清洗液的力 F1’‧‧‧The force of bubbles pushing the cleaning fluid

F1”‧‧‧產生作用在清洗液上的內爆力 F1”‧‧‧produces implosion force acting on the cleaning fluid

F2‧‧‧氣泡壓在基板上時,由基板產生的作用在氣泡上的反作用力 F2‧‧‧When the bubble is pressed against the substrate, the reaction force generated by the substrate acting on the bubble

F2’‧‧‧氣泡推基板的力 F2’‧‧‧The force of the bubble pushing the substrate

F2”‧‧‧作用於基板的力 F2”‧‧‧The force acting on the substrate

F3‧‧‧氣泡壓在圖形結構的側壁上時,由圖形結構的側壁產生的作用在氣泡上的反作用力 F3‧‧‧When the bubble presses on the side wall of the graphic structure, the reaction force acting on the bubble is generated by the side wall of the graphic structure.

F3’‧‧‧氣泡推圖案結構側壁的力 F3’‧‧‧The force of the bubble pushing the side wall of the pattern structure

F3”‧‧‧作用於圖案結構側壁的力 F3”‧‧‧The force acting on the side wall of the pattern structure

D1‧‧‧圖案結構的固體表面方向 D1‧‧‧Solid surface direction of patterned structure

D2‧‧‧基板4010的固體表面方向 D2‧‧‧Solid surface direction of substrate 4010

f1‧‧‧氣穴振盪產生的機械力 f1‧‧‧Mechanical force generated by cavitation oscillation

f2‧‧‧氣穴振盪產生的機械力 f2‧‧‧Mechanical force generated by cavitation oscillation

f3‧‧‧氣穴振盪產生的機械力 f3‧‧‧Mechanical force generated by cavitation oscillation

圖1A及圖1B揭示了在清洗過程中不穩定的氣穴振盪損壞基板上的圖案結構的示意圖。 1A and 1B reveal a schematic diagram of unstable cavitation oscillation damaging the pattern structure on the substrate during the cleaning process.

圖2A至圖2D揭示了附著在基板上的圖案結構表面的氣泡內爆造成圖案結構損壞的示意圖。 2A to 2D reveal schematic diagrams of damage to the pattern structure caused by implosion of bubbles attached to the surface of the pattern structure on the substrate.

圖3A至圖3H揭示了附著在基板上的圖案結構表面的氣泡內爆造成圖案結構損壞的機理的示意圖。 3A to 3H reveal a schematic diagram of the mechanism of damage to the pattern structure caused by implosion of bubbles attached to the surface of the pattern structure on the substrate.

圖4A至圖4B揭示了從基板上的圖案結構表面分離氣泡的示例性方法的示意圖,其中,氣泡附著在圖案結構及基板的表面。 4A to 4B reveal schematic diagrams of an exemplary method of separating bubbles from the surface of a pattern structure on a substrate, wherein the bubbles adhere to the surface of the pattern structure and the substrate.

圖5A至圖5C揭示了從基板上的圖案結構表面分離氣泡的示例性方法的示意圖,其中,氣泡附著在雜質上。 5A to 5C reveal schematic diagrams of an exemplary method of separating bubbles from the surface of a pattern structure on a substrate, wherein the bubbles are attached to impurities.

圖6A至圖6C揭示了從基板上的圖案結構表面分離氣泡的另一示例性方法的示意圖,其中,氣泡附著在雜質上。 6A to 6C reveal schematic diagrams of another exemplary method of separating bubbles from the surface of a pattern structure on a substrate, wherein the bubbles are attached to impurities.

圖7A至圖7B揭示了從基板上的圖案結構表面分離氣泡的示例性方法的示意圖,其中,氣泡附著在顆粒上。 7A-7B disclose schematic diagrams of an exemplary method of separating bubbles from the surface of a patterned structure on a substrate, wherein the bubbles are attached to particles.

圖8A至圖8B揭示了從基板上的圖案結構表面分離氣泡的另一示例性方法的示意圖,其中,氣泡附著在顆粒上。 8A to 8B reveal schematic diagrams of another exemplary method of separating bubbles from the surface of a patterned structure on a substrate, wherein the bubbles are attached to particles.

圖9揭示了根據本發明的清洗基板的一個示例性方法的示意圖。 Figure 9 discloses a schematic diagram of an exemplary method of cleaning a substrate according to the present invention.

圖10揭示了根據本發明的清洗基板的另一個示例性方法的示意圖。 Figure 10 discloses a schematic diagram of another exemplary method of cleaning a substrate according to the present invention.

圖11揭示了根據本發明的清洗基板的又一個示例性方法的示意圖。 Figure 11 discloses a schematic diagram of yet another exemplary method of cleaning a substrate according to the present invention.

圖12揭示了根據本發明的清洗基板的又一個示例性方法的示意圖。 Figure 12 reveals a schematic diagram of yet another exemplary method of cleaning a substrate according to the present invention.

圖13A至圖13B揭示了根據本發明的清洗基板的一個示例性裝置的示意圖。 13A to 13B reveal a schematic diagram of an exemplary device for cleaning a substrate according to the present invention.

參考圖2A所示,在使用超聲波或兆聲波輔助基板清洗過程中,有一種現象是,即使將清洗基板2010的超聲波或兆聲波的功率強度降低到非常低的水準(幾乎沒有顆粒去除率),基板2010上的圖案結構2030損壞仍然會發生。此外,通常情況下是圖案結構2030的單壁受到損壞。圖2A舉例說明了兩種損壞情況。一個例子是,圖案結構2030的單壁朝一側剝落。另一個例子是,圖案結構2030的單壁的一部分被去除。儘管圖2A舉例說明了兩個例子,但應認識到可能會發生其他類似的損壞。造成這些損壞的原因是什麼? Referring to FIG. 2A , in the process of using ultrasonic waves or megasonic waves to assist in substrate cleaning, there is a phenomenon that even if the power intensity of the ultrasonic waves or megasonic waves used to clean the substrate 2010 is reduced to a very low level (almost no particle removal rate), Damage to the pattern structure 2030 on the substrate 2010 may still occur. Furthermore, it is typically a single wall of the pattern structure 2030 that is damaged. Figure 2A illustrates two damage scenarios. One example is when a single wall of the pattern structure 2030 peels off to one side. As another example, a portion of a single wall of pattern structure 2030 is removed. Although Figure 2A illustrates two examples, it should be recognized that other similar damage may occur. What causes these damages?

參考圖2B至圖2D所示,在基板的清洗過程中,小氣泡2050、2052趨於附著在固體表面上,例如基板2010 的表面或圖案結構2030的側壁,如圖2B和圖2C所示。當氣泡2050、2052附著在基板2010的表面上或是圖案結構2030的側壁上時,例如氣泡2052附著在圖案結構2030的底部角落,氣泡2050附著在圖案結構2030的單側壁上,一旦這些氣泡2050、2052發生內爆,圖案結構2030朝向氣泡內爆力作用於單側壁的方向從基板2010的子層剝離或圖案結構2030的單側壁的一部分被去除,如圖2A所示。雖然氣泡內爆不如微噴射那樣劇烈,但是,由於氣泡2050、2052附著在基板2010的表面及圖案結構2030的側壁,小氣泡內爆所產生的能量依然會損壞圖案結構2030。 Referring to FIGS. 2B to 2D , during the cleaning process of the substrate, small bubbles 2050 and 2052 tend to adhere to the solid surface, such as the substrate 2010 The surface or sidewall of the pattern structure 2030, as shown in Figures 2B and 2C. When bubbles 2050 and 2052 are attached to the surface of the substrate 2010 or the side wall of the pattern structure 2030, for example, the bubble 2052 is attached to the bottom corner of the pattern structure 2030, and the bubble 2050 is attached to a single side wall of the pattern structure 2030. Once these bubbles 2050 , 2052 implosion occurs, and the pattern structure 2030 is peeled off from the sub-layer of the substrate 2010 toward the direction in which the bubble implosion force acts on the single side wall or a part of the single side wall of the pattern structure 2030 is removed, as shown in FIG. 2A . Although the bubble implosion is not as violent as micro-jet, since the bubbles 2050 and 2052 are attached to the surface of the substrate 2010 and the side walls of the pattern structure 2030, the energy generated by the implosion of the small bubbles will still damage the pattern structure 2030.

此外,在濕法工藝中,小氣泡可能合併成較大的氣泡。由於氣泡趨向於附著在固體表面,圖案結構及基板等固體表面上氣泡的合併增加了氣泡內爆發生在圖案結構上的風險,尤其是在臨界幾何部分。 Additionally, in wet processes, small bubbles may coalesce into larger bubbles. Since bubbles tend to adhere to solid surfaces, the coalescence of bubbles on solid surfaces such as pattern structures and substrates increases the risk of bubble implosion occurring on pattern structures, especially in critical geometric sections.

圖3A至圖3H描述了在根據本發明的超聲波或超聲波輔助濕法清洗過程中附著在基板上的氣泡的內爆損壞基板上的圖案結構的機理。圖3A示意了清洗液3070輸送到包括圖案結構3030的基板3010的表面,且至少有一個氣泡3050附著在圖案結構3030的底部角落。在圖3B所示的超聲波或兆聲波正的聲壓工作過程中,F1是作用在氣泡3050上的超聲波或兆聲波壓力,F2是氣泡3050壓在基板3010上時,由基板3010產生的作用在氣泡3050上的反作用力,F3是氣泡3050壓在圖形結構3030的側壁上時,由圖形結構3030的側壁產生的作用在氣泡3050上的反作用力。在圖3C 和圖3D所示的超聲波或兆聲波負的聲壓工作過程中,由於超聲波或兆聲波負力拉伸氣泡3050,氣泡3050膨脹變大。在氣泡體積膨脹的過程中,F1’是氣泡3050推清洗液3070的力,F2’是氣泡3050推基板3010的力,F3’是氣泡3050推圖案結構3030側壁的力。超聲波或兆聲波正的聲壓和負的聲壓交替作用數個週期後,氣泡內的氣體溫度越來越高,氣泡體積越來越大,最終發生氣泡內爆3051,其產生作用在清洗液3070上的內爆力F1”,作用於基板3010的力F2”,作用於圖案結構3030側壁的力F3”,如圖3G所示。內爆力導致圖案結構3030的側壁被損壞,如圖3H所示。 3A to 3H describe the mechanism by which the pattern structure on the substrate is damaged by the implosion of bubbles attached to the substrate during ultrasonic or ultrasonic-assisted wet cleaning according to the present invention. FIG. 3A illustrates that the cleaning liquid 3070 is delivered to the surface of the substrate 3010 including the pattern structure 3030, and at least one bubble 3050 is attached to the bottom corner of the pattern structure 3030. In the positive ultrasonic or megasonic sound pressure working process shown in Figure 3B, F1 is the ultrasonic or megasonic pressure acting on the bubble 3050, and F2 is the pressure produced by the substrate 3010 when the bubble 3050 is pressed on the substrate 3010. The reaction force on the bubble 3050, F3, is the reaction force generated by the side wall of the graphic structure 3030 that acts on the bubble 3050 when the bubble 3050 presses against the side wall of the graphic structure 3030. In Figure 3C During the ultrasonic or megasonic negative sound pressure operation process shown in Figure 3D, the bubble 3050 expands due to the negative force of the ultrasonic or megasonic stretching of the bubble 3050. During the volume expansion of the bubble, F1’ is the force of the bubble 3050 pushing the cleaning liquid 3070, F2’ is the force of the bubble 3050 pushing the substrate 3010, and F3’ is the force of the bubble 3050 pushing the side wall of the pattern structure 3030. After several cycles of alternating positive and negative sound pressures of ultrasonic or megasonic waves, the temperature of the gas in the bubble becomes higher and higher, the volume of the bubble becomes larger and larger, and finally bubble implosion 3051 occurs, which acts on the cleaning fluid. The implosion force F1" on 3070, the force F2" acting on the substrate 3010, and the force F3" acting on the side wall of the pattern structure 3030, as shown in Figure 3G. The implosion force causes the side wall of the pattern structure 3030 to be damaged, as shown in Figure 3H shown.

為了避免在使用超聲波或兆聲波輔助濕法清洗過程中因氣泡內爆導致基板上的圖案結構被損壞,較佳者,在將聲能施加到清洗液以清洗基板之前,將氣泡從圖案結構表面和基板分離。 In order to avoid damage to the pattern structure on the substrate due to bubble implosion during ultrasonic or megasonic assisted wet cleaning, preferably, the bubbles are removed from the surface of the pattern structure before applying sonic energy to the cleaning solution to clean the substrate. separated from the substrate.

下文揭示了從圖案結構表面和基板分離氣泡的多種方法。 Various methods for isolating bubbles from patterned structure surfaces and substrates are revealed below.

圖4A及圖4B揭示了根據本發明的基板預處理以從基板上的圖案結構表面分離氣泡的一個實施例。當清洗液4070被輸送到包括圖案結構4030的基板4010的表面時,至少一個氣泡4050附著在圖案結構4030的底部角落,如圖4A所示。因此,在使用超聲波或兆聲波清洗基板之前,需要進行氣泡分離預處理。在氣泡分離預處理工藝中,一種方法,例如分別從沿著圖案結構4030的固體表面方向D1和基板4010的固體表面方向D2增加圖案結構4030的表面潤 濕性,或者使用最小機械力從方向D1和方向D2進行干涉,以使圖案結構4030表面和氣泡4050之間的介面以及基板4010表面和氣泡4050之間的介面逐漸收縮,從而達到從圖案結構4030表面和基板4010上分離氣泡的目的,如圖4B所示。 4A and 4B reveal an embodiment of substrate pretreatment according to the present invention to separate bubbles from the surface of a pattern structure on the substrate. When the cleaning liquid 4070 is delivered to the surface of the substrate 4010 including the pattern structure 4030, at least one bubble 4050 is attached to the bottom corner of the pattern structure 4030, as shown in FIG. 4A. Therefore, bubble separation pretreatment is required before using ultrasonic or megasonic waves to clean substrates. In the bubble separation pretreatment process, a method, such as increasing surface moistening of the pattern structure 4030 from the solid surface direction D1 along the pattern structure 4030 and the solid surface direction D2 of the substrate 4010, respectively. wetness, or use minimum mechanical force to interfere from the direction D1 and the direction D2, so that the interface between the surface of the pattern structure 4030 and the bubble 4050 and the interface between the surface of the substrate 4010 and the bubble 4050 gradually shrink, so as to achieve the desired effect from the pattern structure 4030 The purpose is to separate bubbles on the surface and substrate 4010, as shown in Figure 4B.

根據本發明的氣泡分離預處理工藝的一個實施例,是通過在基板4010表面提供化學溶液,將基板4010表面從疏水性改為親水性,例如,提供化學溶液,在基板4010表面形成親水塗層,或者使用例如臭氧溶液或SC1溶液(氫氧化銨,雙氧水,水的混合物)等化學溶液將疏水性表面材料例如矽或多晶矽層氧化成親水性氧化矽層。 One embodiment of the bubble separation pretreatment process according to the present invention is to change the surface of the substrate 4010 from hydrophobicity to hydrophilicity by providing a chemical solution on the surface of the substrate 4010, for example, providing a chemical solution to form a hydrophilic coating on the surface of the substrate 4010 , or use chemical solutions such as ozone solution or SC1 solution (a mixture of ammonium hydroxide, hydrogen peroxide, water) to oxidize hydrophobic surface materials such as silicon or polycrystalline silicon layers into hydrophilic silicon oxide layers.

根據本發明的氣泡分離預處理工藝的一個實施例,是向基板4010表面提供含有表面活性劑、添加劑或螯合劑的化學溶液。含有表面活性劑、添加劑或螯合劑的化學溶液能夠增加該化學溶液在基板4010表面的潤濕性,從而分離附著在圖案結構4030表面及基板4010上的氣泡。化學品例如含羧基的乙二胺四乙酸(EDTA)、四羧基乙二胺四丙酸(EDTP)酸/鹽等用作表面活性劑摻雜在化學溶液中以提高化學溶液的潤濕性。 According to one embodiment of the bubble separation pretreatment process of the present invention, a chemical solution containing surfactants, additives or chelating agents is provided to the surface of the substrate 4010 . A chemical solution containing surfactants, additives or chelating agents can increase the wettability of the chemical solution on the surface of the substrate 4010, thereby separating bubbles attached to the surface of the pattern structure 4030 and the substrate 4010. Chemicals such as carboxyl-containing ethylenediaminetetraacetic acid (EDTA), tetracarboxyethylenediaminetetrapropionic acid (EDTP) acid/salt, etc. are used as surfactants doped in chemical solutions to improve the wettability of chemical solutions.

此外,低功率的超聲波或兆聲波能夠被結合到上述各實施例中以提高氣泡分離效率。低功率的超聲波或兆聲波產生小的機械力有助於穩定的氣穴振盪,從而產生機械力將氣泡4050從圖案結構4030表面及基板4010表面上分離。低功率超聲波或兆聲波能夠在連續模式(非脈衝模式) 下運行,功率密度可以是,例如,1mw/cm2-15mw/cm2。應用具有連續模式的低功率超聲波或兆聲波到清洗液中以從圖案結構4030表面及基板4010表面上分離氣泡的持續時間可以是,例如,10s-60s。2008年12月12日提交的PCT/CN2008/073471號專利申請公開了將連續模式的超聲波或兆聲波應用於清洗液的更詳細描述,所有這些都通過引用併入本文中。低功率的超聲波或兆聲波能夠以脈衝模式運行,功率密度可以是,例如,15mw/cm2-200mw/cm2。應用具有脈衝模式的低功率超聲波或兆聲波到清洗液中以從圖案結構4030表面及基板4010表面上分離氣泡的持續時間可以是,例如,10s-120s。2015年5月20日提交的PCT/CN2015/079342號專利申請公開了將脈衝模式的超聲波或兆聲波應用於清洗液的更詳細描述,所有這些都通過引用併入本文中。 In addition, low-power ultrasonic waves or megasonic waves can be incorporated into the above embodiments to improve bubble separation efficiency. Low-power ultrasonic waves or megasonic waves generate small mechanical forces that contribute to stable cavitation oscillation, thereby generating mechanical forces to separate the bubbles 4050 from the surface of the pattern structure 4030 and the surface of the substrate 4010. Low power ultrasound or megasonic waves can operate in continuous mode (non-pulsed mode) and the power density can be, for example, 1 mw/cm 2 -15 mw/cm 2 . The duration of applying low-power ultrasonic waves or megasonic waves in a continuous mode to the cleaning solution to separate bubbles from the surface of the pattern structure 4030 and the surface of the substrate 4010 may be, for example, 10s-60s. Patent application No. PCT/CN2008/073471, filed on December 12, 2008, discloses a more detailed description of the application of continuous mode ultrasonic or megasonic waves to cleaning fluids, all of which are incorporated herein by reference. Low power ultrasonic or megasonic waves can be operated in pulse mode and the power density can be, for example, 15 mw/cm 2 -200 mw/cm 2 . The duration of applying low-power ultrasonic waves or megasonic waves with a pulse mode into the cleaning solution to separate bubbles from the surface of the pattern structure 4030 and the surface of the substrate 4010 may be, for example, 10s-120s. Patent application No. PCT/CN2015/079342, filed on May 20, 2015, discloses a more detailed description of the application of pulsed mode ultrasonic or megasonic waves to cleaning fluids, all of which are incorporated herein by reference.

參考圖5A至圖5C所示,揭示了根據本發明的氣泡分離預處理工藝的一個實施例,是去除附著在基板表面的雜質,例如金屬雜質、有機污染物和聚合物殘留物。氣泡5050容易附著在基板5010表面上的金屬雜質、有機污染物和聚合物殘留物等雜質5090周圍,因此附著在圖案結構5030及基板5010表面的氣泡5050在隨後的超聲波或兆聲波清洗過程中有內爆並損壞基板5010上的圖案結構5030的風險。一種在基板5010表面提供化學溶液的預處理方法,有助於在超聲波或兆聲波清洗工藝之前去除基板5010表面的雜質5090,例如金屬雜質和聚合物殘留物,例如, 利用臭氧溶液氧化表層聚合物殘留物,或者利用高溫(90-150℃)SPM溶液(硫酸、雙氧水混合物)碳化表層聚合物殘留物。在另一個實施例中,化學品例如EDTA也可用於表面金屬離子螯合,以去除金屬雜質。 Referring to FIGS. 5A to 5C , it is revealed that one embodiment of the bubble separation pretreatment process according to the present invention is to remove impurities attached to the surface of the substrate, such as metal impurities, organic pollutants and polymer residues. Bubbles 5050 are easily attached around impurities 5090 such as metal impurities, organic pollutants, and polymer residues on the surface of the substrate 5010. Therefore, the bubbles 5050 attached to the pattern structure 5030 and the surface of the substrate 5010 may have problems during the subsequent ultrasonic or megasonic cleaning process. Risk of imploding and damaging pattern structure 5030 on substrate 5010. A pretreatment method that provides a chemical solution on the surface of a substrate 5010 to help remove impurities 5090 such as metal impurities and polymer residues from the surface of the substrate 5010 prior to an ultrasonic or megasonic cleaning process, e.g. Use ozone solution to oxidize the surface polymer residue, or use high temperature (90-150°C) SPM solution (sulfuric acid, hydrogen peroxide mixture) to carbonize the surface polymer residue. In another example, chemicals such as EDTA can also be used to chelate surface metal ions to remove metal impurities.

在一些情況中,當雜質5090例如有機污染物或聚合物殘留物等積聚在圖案結構5030的角落時,由於化學溶液在雜質5090的表面潤濕性差,氣泡5050容易附著在雜質5090上,這可能會導致在圖案結構5030表面發生破壞性內爆。以下揭示了兩種去除雜質5090和分離積聚的氣泡5050的方法。在一個實施例中,在預處理步驟中使用化學溶液去除雜質5090,如圖5A所示利用臭氧溶液或SC1溶液去除有機污染物。當化學溶液與雜質5090反應時,雜質5090的尺寸正在縮小,如圖5B所示。由於雜質5090被從圖案結構5030和基板5010的表面去除,化學溶液的潤濕性增加,使氣泡5050離開圖案結構5030表面,如圖5C所示。 In some cases, when impurities 5090 such as organic pollutants or polymer residues accumulate at the corners of the pattern structure 5030, due to poor wettability of the chemical solution on the surface of the impurities 5090, the bubbles 5050 are easily attached to the impurities 5090, which may This results in a destructive implosion on the surface of the pattern structure 5030. Two methods of removing impurities 5090 and separating accumulated air bubbles 5050 are disclosed below. In one embodiment, a chemical solution is used to remove impurities 5090 in the pretreatment step, as shown in Figure 5A using ozone solution or SC1 solution to remove organic pollutants. As the chemical solution reacts with the impurity 5090, the impurity 5090 is shrinking in size, as shown in Figure 5B. As the impurities 5090 are removed from the surface of the pattern structure 5030 and the substrate 5010, the wettability of the chemical solution increases, causing the bubbles 5050 to leave the surface of the pattern structure 5030, as shown in Figure 5C.

參考圖6A至圖6C所示,根據本發明的另一個實施例,在預處理步驟中,使用低功率超聲波或兆聲波工藝來提高雜質6090的去除效率,如使用臭氧溶液或SC1溶液去除有機污染物,如圖6A所示。由於施加了低功率的超聲波或兆聲波,氣泡6050的體積交替膨脹和收縮,從而使雜質6090充分接觸化學溶液,進一步與化學溶液發生反應。這個過程加速了化學溶液與雜質6090的反應效率。由於雜質6090從圖案結構6030表面被去除,化學溶液的潤濕性增加使得氣泡6050離開圖案結構6030的表面,如圖6C所示。低 功率超聲波或兆聲波能夠在連續模式(非脈衝模式)下運行,功率密度可以是,例如1mw/cm2-15mw/cm2。低功率超聲波或兆聲波也能夠在脈衝模式下運行,功率密度可以是,例如15mw/cm2-200mw/cm2Referring to FIGS. 6A to 6C , according to another embodiment of the present invention, in the pretreatment step, a low-power ultrasonic or megasonic wave process is used to improve the removal efficiency of impurities 6090, such as using ozone solution or SC1 solution to remove organic pollution. object, as shown in Figure 6A. Due to the application of low-power ultrasonic waves or megasonic waves, the volume of the bubble 6050 alternately expands and contracts, thereby allowing the impurities 6090 to fully contact the chemical solution and further react with the chemical solution. This process accelerates the reaction efficiency of the chemical solution with impurities 6090. As impurities 6090 are removed from the surface of pattern structure 6030, the wettability of the chemical solution increases causing bubbles 6050 to leave the surface of pattern structure 6030, as shown in Figure 6C. Low power ultrasound or megasonic waves can operate in continuous mode (non-pulsed mode) and the power density can be, for example, 1 mw/cm 2 -15 mw/cm 2 . Low power ultrasonic or megasonic waves can also be operated in pulsed mode and the power density can be, for example, 15 mw/cm 2 -200 mw/cm 2 .

圖7A及圖7B揭示了根據本發明的從基板上的圖案結構表面分離氣泡的一個實施例。如果顆粒7090被困在基板7010的圖案結構7030的角落,由於顆粒的形狀不規則,氣泡7052、7054、7056更容易在顆粒7090表面周圍聚集。附著在圖案結構7030表面及顆粒7090表面上的氣泡7052、7054、7056具有內爆和損壞圖案結構7030的風險。因此,在進行超聲波或兆聲波清洗工藝之前,需要進行顆粒去除及氣泡分離預處理工藝。 7A and 7B reveal an embodiment of separating bubbles from the surface of a pattern structure on a substrate according to the present invention. If the particles 7090 are trapped in the corners of the pattern structure 7030 of the substrate 7010, air bubbles 7052, 7054, 7056 are more likely to accumulate around the surface of the particles 7090 due to the irregular shape of the particles. The bubbles 7052, 7054, and 7056 attached to the surface of the pattern structure 7030 and the surface of the particles 7090 have the risk of imploding and damaging the pattern structure 7030. Therefore, before performing ultrasonic or megasonic cleaning processes, particle removal and bubble separation pretreatment processes are required.

如圖7A及圖7B所示,在預處理工藝中,先去除顆粒7090,以便進一步從圖案結構7030表面及基板7010表面分離氣泡7052、7054、7056。在超聲波或兆聲波清洗工藝之前,可以對清洗液7070施加低功率的超聲波或兆聲波以去除顆粒7090並從圖案結構7030表面及基板7010表面分離氣泡7052、7054、7056。低功率超聲波或兆聲波在氣泡7052、7054、7056上產生氣穴振盪。氣泡7052、7054、7056的氣穴振盪產生的機械力f1、f2、f3以及合力F向外推動顆粒7090,如圖7A所示。顆粒7090最終被向上推起,氣泡7052、7054、7056氣穴振盪力也會產生聲波攪動將氣泡7052、7054、7056從圖案結構7030表面及基板7010表面分離。低功率的超聲波或兆聲波能夠在連續模式(非脈衝 模式)下運行,功率密度可以是,例如1mw/cm2-15mw/cm2。低功率的超聲波或兆聲波也能夠在脈衝模式下運行,功率密度可以是,例如15mw/cm2-200mw/cm2As shown in FIGS. 7A and 7B , in the pretreatment process, particles 7090 are first removed to further separate bubbles 7052 , 7054 , and 7056 from the surface of the pattern structure 7030 and the surface of the substrate 7010 . Before the ultrasonic or megasonic cleaning process, low-power ultrasonic or megasonic waves may be applied to the cleaning liquid 7070 to remove particles 7090 and separate bubbles 7052, 7054, and 7056 from the surface of the pattern structure 7030 and the surface of the substrate 7010. Low-power ultrasonic waves or megasonic waves generate cavitation oscillations on the bubbles 7052, 7054, and 7056. The mechanical forces f1, f2, f3 and the resultant force F generated by the cavitation oscillation of the bubbles 7052, 7054, 7056 push the particles 7090 outward, as shown in Figure 7A. The particles 7090 are finally pushed upward, and the oscillation force of the air pockets of the bubbles 7052, 7054, and 7056 will also generate acoustic agitation to separate the bubbles 7052, 7054, and 7056 from the surface of the pattern structure 7030 and the surface of the substrate 7010. Low-power ultrasound or megasonic waves can operate in continuous mode (non-pulse mode), and the power density can be, for example, 1 mw/cm 2 -15 mw/cm 2 . Low power ultrasonic or megasonic waves can also be operated in pulsed mode and the power density can be, for example, 15 mw/cm 2 -200 mw/cm 2 .

圖8A及圖8B揭示了根據本發明的從基板上的圖案結構表面分離氣泡的另一個實施例。在預處理工藝中,通過在基板8010表面提供化學溶液8070使之與顆粒8090反應或溶解顆粒8090,去除顆粒8090,以便進一步將氣泡8052、8054、8056從圖案結構8030表面及基板8010表面分離。化學溶液可以是臭氧溶液或SC1溶液,氧化聚合物顆粒。在這個過程中,在隨後的超聲波或兆聲波清洗工藝之前,也可以採用低功率的超聲波或兆聲波工藝來輔助化學反應或溶解。低功率的超聲波或兆聲波在被困在圖案結構8030角落的顆粒8090周圍的氣泡8052、8054、8056上產生氣穴振盪。氣泡8052、8054、8056氣穴振盪所產生的機械力f1、f2、f3和合力F向外推動顆粒8090。化學溶液反應或溶解顆粒8090再結合低功率的超聲波或兆聲波產生的機械力使顆粒8090最終向上推起。氣泡8052、8054、8056氣穴振盪力也會產生聲波攪動將氣泡8052、8054、8056從圖案結構8030表面及基板8010表面分離。 8A and 8B reveal another embodiment of separating bubbles from the surface of a pattern structure on a substrate according to the present invention. In the pretreatment process, the particles 8090 are removed by providing a chemical solution 8070 on the surface of the substrate 8010 to react with the particles 8090 or dissolve the particles 8090, so as to further separate the bubbles 8052, 8054, and 8056 from the surface of the pattern structure 8030 and the surface of the substrate 8010. The chemical solution can be an ozone solution or SC1 solution, which oxidizes the polymer particles. In this process, low-power ultrasonic or megasonic processes can also be used to assist chemical reactions or dissolution before subsequent ultrasonic or megasonic cleaning processes. Low-power ultrasonic or megasonic waves generate cavitation oscillations on bubbles 8052, 8054, 8056 surrounding particles 8090 trapped in the corners of pattern structure 8030. The mechanical forces f1, f2, f3 and the resultant force F generated by the cavitation oscillation of the bubbles 8052, 8054, and 8056 push the particles 8090 outward. The chemical solution reacts or dissolves the particles 8090 and combines with the mechanical force generated by low-power ultrasonic or megasonic waves to eventually push the particles 8090 upward. The oscillation force of the air pockets of the bubbles 8052, 8054, and 8056 will also generate acoustic agitation to separate the bubbles 8052, 8054, and 8056 from the surface of the pattern structure 8030 and the surface of the substrate 8010.

本發明揭示一種基板清洗方法,包括以下步驟: The invention discloses a substrate cleaning method, which includes the following steps:

將基板放置在基板保持器上; Place the substrate on the substrate holder;

輸送清洗液至基板表面; Deliver cleaning fluid to the substrate surface;

實施預處理工藝以從基板表面分離氣泡;以及 Implementing a pretreatment process to separate air bubbles from the substrate surface; and

實施超聲波或兆聲波清洗工藝以清洗基板。 Implement ultrasonic or megasonic cleaning processes to clean substrates.

實施預處理工藝的持續時間為5秒或多於5秒。 The duration of performing the pretreatment process is 5 seconds or more.

圖9揭示了根據本發明的基板清洗方法的一個實施例。在這個實施例中,在脈衝模式下運行的超聲波或兆聲波被應用於預處理工藝中以從基板表面分離氣泡。超聲波或兆聲波具有第一功率,功率密度可以是,例如15mw/cm2-200mw/cm2。應用脈衝模式的低功率超聲波或兆聲波分離氣泡的持續時間可以是,例如10s-120s。從基板表面分離氣泡之後,隨後,在脈衝模式下運行的超聲波或兆聲波被應用於實施超聲波或兆聲波清洗工藝以清洗基板。該超聲波或兆聲波具有第二功率,第二功率高於第一功率,第二功率的功率密度可以是,例如0.2w/cm2-2w/cm2。應用脈衝模式的高功率超聲波或兆聲波清洗基板的持續時間可以是,例如600s以內。 Figure 9 reveals an embodiment of a substrate cleaning method according to the present invention. In this embodiment, ultrasonic or megasonic waves operating in pulsed mode are applied in the pretreatment process to detach bubbles from the substrate surface. The ultrasonic wave or megasonic wave has a first power, and the power density may be, for example, 15 mw/cm 2 -200 mw/cm 2 . The duration of application of pulsed mode low-power ultrasound or megasonic waves to separate the bubbles may be, for example, 10s-120s. After detaching the bubbles from the substrate surface, ultrasonic or megasonic waves operating in pulse mode are then applied to implement an ultrasonic or megasonic cleaning process to clean the substrate. The ultrasonic wave or megasonic wave has a second power, the second power is higher than the first power, and the power density of the second power may be, for example, 0.2w/cm 2 -2w/cm 2 . The duration of applying high-power ultrasonic waves or megasonic waves in pulse mode to clean the substrate may be, for example, within 600 s.

圖10揭示了根據本發明的基板清洗方法的另一個實施例。在該實施例中,在連續模式(非脈衝模式)下運行的超聲波或兆聲波被應用於預處理工藝以從基板表面分離氣泡。該超聲波或兆聲波具有第一功率,功率密度可以是,例如1mw/cm2-15mw/cm2。應用連續模式的低功率超聲波或兆聲波分離氣泡的持續時間可以是,例如10s-60s。從基板表面分離氣泡之後,隨後,在脈衝模式下運行的超聲波或兆聲波被應用於實施超聲波或兆聲波清洗工藝以清洗基板。該超聲波或兆聲波具有第二功率,第二功率高於第一功率,第二功率的功率密度可以是,例如0.2w/cm2-2w/cm2。 應用脈衝模式的高功率超聲波或兆聲波清洗基板的持續時間可以是,例如600s以內。 Figure 10 reveals another embodiment of a substrate cleaning method according to the present invention. In this embodiment, ultrasonic or megasonic waves operating in continuous mode (non-pulsed mode) are applied to the pretreatment process to separate bubbles from the substrate surface. The ultrasonic wave or megasonic wave has a first power, and the power density may be, for example, 1 mw/cm 2 -15 mw/cm 2 . The duration of applying continuous mode low-power ultrasonic or megasonic waves to separate the bubbles may be, for example, 10s-60s. After detaching the bubbles from the substrate surface, ultrasonic or megasonic waves operating in pulse mode are then applied to implement an ultrasonic or megasonic cleaning process to clean the substrate. The ultrasonic wave or megasonic wave has a second power, the second power is higher than the first power, and the power density of the second power may be, for example, 0.2w/cm 2 -2w/cm 2 . The duration of applying high-power ultrasonic waves or megasonic waves in pulse mode to clean the substrate may be, for example, within 600 s.

圖11揭示了根據本發明的基板清洗方法的又一個實施例。在該實施例中,在脈衝模式下運行的超聲波或兆聲波被應用於預處理工藝中以從基板表面分離氣泡。該超聲波或兆聲波具有第一功率,功率密度可以是,例如15mw/cm2-200mw/cm2。應用脈衝模式的低功率超聲波或兆聲波分離氣泡的持續時間可以是,例如10s-120s。從基板表面分離氣泡之後,隨後,在連續模式(非脈衝模式)下運行的超聲波或兆聲波被應用於實施超聲波或兆聲波清洗工藝以清洗基板。該超聲波或兆聲波具有第二功率,第二功率高於第一功率,第二功率的功率密度可以是,例如15mw/cm2-500mw/cm2。應用連續模式的高功率超聲波或兆聲波清洗基板的持續時間t2可以是,例如10s-60s。在t2時間段,可能發生氣泡內爆或不穩定的氣穴振盪,然而,由於其發生在結構的上方,因此由微噴射所產生的衝擊力可能不會損壞到基板上的圖案結構。 Figure 11 reveals yet another embodiment of a substrate cleaning method according to the present invention. In this embodiment, ultrasonic or megasonic waves operating in pulsed mode are applied in the pretreatment process to detach bubbles from the substrate surface. The ultrasonic wave or megasonic wave has a first power, and the power density may be, for example, 15 mw/cm 2 -200 mw/cm 2 . The duration of application of pulsed mode low-power ultrasound or megasonic waves to separate the bubbles may be, for example, 10s-120s. After detaching the bubbles from the substrate surface, ultrasonic or megasonic waves operating in a continuous mode (non-pulsed mode) are subsequently applied to implement an ultrasonic or megasonic cleaning process to clean the substrate. The ultrasonic wave or megasonic wave has a second power, the second power is higher than the first power, and the power density of the second power may be, for example, 15 mw/cm 2 -500 mw/cm 2 . The duration t2 of applying continuous mode high-power ultrasonic or megasonic cleaning of the substrate may be, for example, 10s-60s. During the t2 time period, bubble implosion or unstable cavitation oscillation may occur. However, since it occurs above the structure, the impact force generated by the micro-jet may not damage the pattern structure on the substrate.

圖12揭示了根據本發明的基板清洗方法的再一個實施例。在該實施例中,在連續模式(非脈衝模式)下運行的超聲波或兆聲波被應用於預處理工藝中以從基板表面分離氣泡。該超聲波或兆聲波具有第一功率,功率密度可以是,例如1mw/cm2-15mw/cm2。應用連續模式的低功率超聲波或兆聲波分離氣泡的持續時間可以是,例如5s-60s。從基板表面分離氣泡之後,隨後,在連續模式(非脈衝模式) 下運行的超聲波或兆聲波被應用於實施超聲波或兆聲波清洗工藝以清洗基板。該超聲波或兆聲波具有第二功率,第二功率高於第一功率,第二功率的功率密度可以是,例如15mw/cm2-500mw/cm2。應用連續模式的高功率超聲波或兆聲波清洗基板的持續時間可以是,例如10s-120s。 Figure 12 reveals yet another embodiment of the substrate cleaning method according to the present invention. In this embodiment, ultrasonic or megasonic waves operating in continuous mode (non-pulsed mode) are applied in the pretreatment process to separate bubbles from the substrate surface. The ultrasonic wave or megasonic wave has a first power, and the power density may be, for example, 1 mw/cm 2 -15 mw/cm 2 . The duration of application of continuous mode low-power ultrasonic or megasonic waves to separate the bubbles may be, for example, 5s-60s. After detaching the bubbles from the substrate surface, ultrasonic or megasonic waves operating in a continuous mode (non-pulsed mode) are subsequently applied to implement an ultrasonic or megasonic cleaning process to clean the substrate. The ultrasonic wave or megasonic wave has a second power, the second power is higher than the first power, and the power density of the second power may be, for example, 15 mw/cm 2 -500 mw/cm 2 . The duration of applying continuous mode high-power ultrasonic or megasonic cleaning of the substrate may be, for example, 10s-120s.

圖4A至圖8B所揭示的分離氣泡的預處理方法可以被應用或結合在圖9至圖12所揭示的方法中。 The pretreatment method for separating bubbles disclosed in FIGS. 4A to 8B can be applied or combined with the method disclosed in FIGS. 9 to 12 .

參考圖13A和圖13B所示,揭示了根據本發明的基板清洗裝置的一個實施例。圖13A是該基板清洗裝置的剖視圖,該基板清洗裝置包括:用於保持基板1310的基板保持器1314、驅動基板保持器1314的旋轉驅動模組1316、輸送清洗液及化學溶液1370至基板1310表面的噴頭1312。該基板清洗裝置還包括位於基板1310上方的超聲波或兆聲波裝置1303。該超聲波或兆聲波裝置1303進一步包括壓電式感測器1304及與其配對的聲學共振器1308。壓電式感測器1304通電後作用如振動,聲學共振器1308將低聲能或高聲能傳遞到清洗液或化學溶液中。由低聲能產生的氣泡氣穴振盪使氣泡從基板1310表面分離。由高聲能產生的氣泡氣穴振盪使基板1310表面上的雜質顆粒等污染物振動鬆動去除。 Referring to FIGS. 13A and 13B , an embodiment of a substrate cleaning device according to the present invention is disclosed. 13A is a cross-sectional view of the substrate cleaning device. The substrate cleaning device includes: a substrate holder 1314 for holding the substrate 1310, a rotation driving module 1316 for driving the substrate holder 1314, and transporting cleaning liquid and chemical solution 1370 to the surface of the substrate 1310. Nozzle 1312. The substrate cleaning device also includes an ultrasonic or megasonic device 1303 located above the substrate 1310 . The ultrasonic or megasonic device 1303 further includes a piezoelectric sensor 1304 and an acoustic resonator 1308 paired therewith. The piezoelectric sensor 1304 acts like a vibration when energized, and the acoustic resonator 1308 transmits low or high acoustic energy to the cleaning fluid or chemical solution. The bubble cavitation oscillation generated by the low sound energy causes the bubbles to detach from the substrate 1310 surface. The bubble cavitation oscillation generated by high acoustic energy vibrates and loosens contaminants such as impurity particles on the surface of the substrate 1310 to remove them.

再次參考圖13A所示,該基板清洗裝置還包括與超聲波或兆聲波裝置1303相連接的臂1307,該臂1307用於在豎直方向Z上移動超聲波或兆聲波裝置1303,從而改變液膜厚度d。豎直驅動模組1306驅動臂1307豎直移動。 豎直驅動模組1306及旋轉驅動模組1316都由控制器1388控制。 Referring again to Figure 13A, the substrate cleaning device also includes an arm 1307 connected to the ultrasonic or megasonic device 1303. The arm 1307 is used to move the ultrasonic or megasonic device 1303 in the vertical direction Z, thereby changing the liquid film thickness. d. The vertical driving module 1306 drives the arm 1307 to move vertically. Both the vertical driving module 1306 and the rotating driving module 1316 are controlled by the controller 1388 .

圖13B是圖13A所示的基板清洗裝置的頂視圖。超聲波或兆聲波裝置1303僅覆蓋了基板1310的一小部分區域,因此需要旋轉才能在整個基板1310上獲得均勻的聲波能量。儘管在圖13A及13B中僅示出了一個超聲波或兆聲波裝置1303,然而在其他實施例中,也可以同時或間斷地使用兩個或兩個以上的聲波裝置。同樣的,也可以使用兩個或兩個以上的噴頭1312,分別用於輸送清洗液或化學溶液到基板1310表面。 FIG. 13B is a top view of the substrate cleaning device shown in FIG. 13A. The ultrasonic or megasonic device 1303 covers only a small area of the substrate 1310 and therefore requires rotation to obtain uniform sonic energy across the entire substrate 1310. Although only one ultrasonic or megasonic device 1303 is shown in Figures 13A and 13B, in other embodiments, two or more sonic devices may be used simultaneously or intermittently. Similarly, two or more nozzles 1312 may be used to deliver cleaning liquid or chemical solution to the surface of the substrate 1310 respectively.

在本發明的一些方面,基板保持器的旋轉及聲能的應用可以由一個或多個控制器控制,比如設備的軟體可程式設計控制。一個或多個控制器也可以包括一個或多個計時器,以控制旋轉和/或能量應用的時間。 In some aspects of the invention, the rotation of the substrate holder and the application of acoustic energy may be controlled by one or more controllers, such as software programmable control of the device. The one or more controllers may also include one or more timers to control the timing of rotation and/or energy application.

綜上所述,本發明通過上述實施方式及相關圖式說明,己具體、詳實的揭露了相關技術,使本領域的技術人員可以據以實施。而以上所述實施例只是用來說明本發明,而不是用來限制本發明的,本發明的權利範圍,應由本發明的申請專利範圍來界定。至於本文中所述元件數目的改變或等效元件的代替等仍都應屬於本發明的權利範圍。 To sum up, the present invention has specifically disclosed the relevant technology through the above embodiments and related drawings, so that those skilled in the art can implement it accordingly. The above-mentioned embodiments are only used to illustrate the present invention, but not to limit the present invention. The scope of rights of the present invention should be defined by the patent application scope of the present invention. Any change in the number of elements described herein or the substitution of equivalent elements shall still fall within the scope of the present invention.

4010‧‧‧基板 4010‧‧‧Substrate

4030‧‧‧圖案結構 4030‧‧‧Pattern structure

4050‧‧‧氣泡 4050‧‧‧Bubbles

4070‧‧‧清洗液 4070‧‧‧Cleaning fluid

D1‧‧‧圖案結構的固體表面方向 D1‧‧‧Solid surface direction of patterned structure

D2‧‧‧基板4010的固體表面方向 D2‧‧‧Solid surface direction of substrate 4010

Claims (25)

一種基板清洗方法,包括:將基板放置在基板保持器上;將清洗液輸送到基板表面;實施預處理工藝以從基板表面分離氣泡;以及實施超聲波或兆聲波清洗工藝以清洗基板。 A substrate cleaning method includes: placing the substrate on a substrate holder; delivering cleaning liquid to the surface of the substrate; implementing a pretreatment process to separate air bubbles from the surface of the substrate; and implementing an ultrasonic or megasonic cleaning process to clean the substrate. 如請求項1所述的方法,其中,實施預處理工藝的持續時間為5秒或多於5秒。 The method of claim 1, wherein the duration of performing the pretreatment process is 5 seconds or more. 如請求項1所述的方法,其中,實施預處理工藝以從基板表面分離氣泡的步驟包括通過提供化學溶液在基板表面形成親水塗層來將基板表面從疏水性變為親水性。 The method of claim 1, wherein the step of implementing a pretreatment process to separate air bubbles from the substrate surface includes changing the substrate surface from hydrophobic to hydrophilic by providing a chemical solution to form a hydrophilic coating on the substrate surface. 如請求項1所述的方法,其中,實施預處理工藝以從基板表面分離氣泡的步驟包括通過提供化學溶液將疏水性基板表面氧化成親水性氧化層來將基板表面從疏水性變為親水性。 The method of claim 1, wherein the step of implementing a pretreatment process to separate air bubbles from the substrate surface includes changing the substrate surface from hydrophobic to hydrophilic by providing a chemical solution to oxidize the hydrophobic substrate surface into a hydrophilic oxide layer . 如請求項1所述的方法,其中,實施預處理工藝以從基板表面分離氣泡的步驟包括在基板表面提供化學溶液以增加化學溶液在基板表面的潤濕性。 The method of claim 1, wherein the step of implementing a pretreatment process to separate bubbles from the substrate surface includes providing a chemical solution on the substrate surface to increase the wettability of the chemical solution on the substrate surface. 如請求項1所述的方法,其中,實施預處理工藝以從基板表面分離氣泡的步驟包括對清洗液施加具有第一功率的超聲波或兆聲波以產生穩定的氣泡氣穴振盪。 The method of claim 1, wherein the step of implementing a pretreatment process to separate bubbles from the substrate surface includes applying ultrasonic waves or megasonic waves with a first power to the cleaning liquid to generate stable bubble cavitation oscillations. 如請求項6所述的方法,其中,所述超聲波或兆聲波在連續模式或脈衝模式下運行。 The method of claim 6, wherein the ultrasonic wave or megasonic wave operates in a continuous mode or a pulse mode. 如請求項1所述的方法,其中,實施預處理工藝以從基板表面分離氣泡的步驟包括去除附著在基板表面的雜質。 The method of claim 1, wherein the step of implementing a pretreatment process to separate bubbles from the surface of the substrate includes removing impurities attached to the surface of the substrate. 如請求項8所述的方法,其中,使用化學溶液去除基板表面的雜質。 The method of claim 8, wherein a chemical solution is used to remove impurities on the surface of the substrate. 如請求項9所述的方法,進一步包括對化學溶液施加具有第一功率的超聲波或兆聲波以產生穩定的氣泡氣穴振盪。 The method of claim 9, further comprising applying ultrasonic waves or megasonic waves with a first power to the chemical solution to generate stable bubble cavitation oscillations. 如請求項10所述的方法,其中,所述超聲波或兆聲波在連續模式或脈衝模式下運行。 The method of claim 10, wherein the ultrasonic wave or megasonic wave operates in a continuous mode or a pulse mode. 如請求項1所述的方法,其中,實施預處理工藝以從基板表面分離氣泡的步驟包括去除顆粒,然後從基板表面分離氣泡。 The method of claim 1, wherein the step of implementing a pretreatment process to separate bubbles from the substrate surface includes removing particles and then separating the bubbles from the substrate surface. 如請求項12所述的方法,其中,對清洗液施加具有第一功率的超聲波或兆聲波以去除顆粒和從基板表面分離氣泡。 The method of claim 12, wherein ultrasonic waves or megasonic waves with a first power are applied to the cleaning liquid to remove particles and separate bubbles from the substrate surface. 如請求項13所述的方法,其中,所述超聲波或兆聲波在連續模式或脈衝模式下運行。 The method of claim 13, wherein the ultrasonic wave or megasonic wave operates in a continuous mode or a pulse mode. 如請求項12所述的方法,其中,向基板表面提供化學溶液以反應或溶解顆粒。 The method of claim 12, wherein a chemical solution is provided to the surface of the substrate to react or dissolve the particles. 如請求項1所述的方法,其中,實施超聲波或兆聲波清洗工藝以清洗基板的步驟包括將具有第二功率的超聲波或兆聲波應用於實施超聲波或兆聲波清洗工藝以清洗基板,所述超聲波或兆聲波在連續模式或脈衝模式下運行。 The method of claim 1, wherein the step of implementing an ultrasonic or megasonic cleaning process to clean the substrate includes applying ultrasonic or megasonic waves with a second power to implement an ultrasonic or megasonic cleaning process to clean the substrate, the ultrasonic wave or megasonic operating in continuous mode or pulsed mode. 一種基板清洗裝置,包括:基板保持器,被配置為保持基板;至少一個進液口,被配置為輸送清洗液到基板表面;超聲波或兆聲波裝置,被配置為向清洗液傳遞聲能;一個或多個控制器,被配置為:控制超聲波或兆聲波裝置具有第一功率以實施預處理工藝以從基板表面分離氣泡,以及 控制超聲波或兆聲波裝置具有第二功率以實施超聲波或兆聲波清洗工藝以清洗基板,第二功率高於第一功率。 A substrate cleaning device, including: a substrate holder configured to hold the substrate; at least one liquid inlet configured to deliver cleaning liquid to the surface of the substrate; an ultrasonic or megasonic device configured to transmit sound energy to the cleaning liquid; a or a plurality of controllers configured to: control the ultrasonic or megasonic device to have a first power to perform a pretreatment process to separate bubbles from the substrate surface, and The ultrasonic or megasonic device is controlled to have a second power to implement an ultrasonic or megasonic cleaning process to clean the substrate, and the second power is higher than the first power. 如請求項17所述的裝置,其中,所述超聲波或兆聲波裝置在連續模式或脈衝模式下運行。 The device of claim 17, wherein the ultrasonic or megasonic device operates in a continuous mode or a pulsed mode. 如請求項17所述的裝置,其中,所述進液口輸送化學溶液以將基板表面由疏水性變為親水性來從基板表面分離氣泡。 The device of claim 17, wherein the liquid inlet delivers a chemical solution to change the surface of the substrate from hydrophobic to hydrophilic to separate bubbles from the surface of the substrate. 如請求項17所述的裝置,其中,所述進液口輸送化學溶液到基板表面以增加化學溶液在基板表面上的潤濕性來從基板表面分離氣泡。 The device of claim 17, wherein the liquid inlet delivers the chemical solution to the surface of the substrate to increase the wettability of the chemical solution on the surface of the substrate to separate bubbles from the surface of the substrate. 如請求項17所述的裝置,其中,所述進液口輸送化學溶液去除附著在基板表面的雜質來從基板表面分離氣泡。 The device of claim 17, wherein the liquid inlet delivers a chemical solution to remove impurities attached to the surface of the substrate to separate bubbles from the surface of the substrate. 如請求項17所述的裝置,其中,所述進液口輸送化學溶液到基板表面以反應或溶解顆粒來從基板表面分離氣泡。 The device of claim 17, wherein the liquid inlet delivers a chemical solution to the surface of the substrate to react or dissolve particles to separate bubbles from the surface of the substrate. 一種基板清洗裝置,包括:基板保持器,被配置為保持基板; 一個或多個進液口,被配置為輸送清洗液到基板表面以清洗基板,以及輸送化學溶液到基板表面以實施預處理工藝以從基板表面分離氣泡;超聲波或兆聲波裝置,被配置為向清洗液傳遞聲能以清洗基板。 A substrate cleaning device includes: a substrate holder configured to hold the substrate; One or more liquid inlets configured to deliver a cleaning liquid to the substrate surface to clean the substrate, and to deliver a chemical solution to the substrate surface to implement a pretreatment process to separate bubbles from the substrate surface; an ultrasonic or megasonic device configured to The cleaning fluid delivers acoustic energy to clean the substrate. 如請求項23所述的裝置,其中,實施預處理工藝的持續時間為5秒或多於5秒。 The device of claim 23, wherein the duration of performing the pretreatment process is 5 seconds or more. 如請求項23所述的裝置,其中,所述超聲波或兆聲波裝置在連續模式或脈衝模式下運行。 The device of claim 23, wherein the ultrasonic or megasonic device operates in a continuous mode or a pulsed mode.
TW108125729A 2019-07-19 2019-07-19 Methods and apparatus for cleaning substrates TWI828723B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108125729A TWI828723B (en) 2019-07-19 2019-07-19 Methods and apparatus for cleaning substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108125729A TWI828723B (en) 2019-07-19 2019-07-19 Methods and apparatus for cleaning substrates

Publications (2)

Publication Number Publication Date
TW202105554A TW202105554A (en) 2021-02-01
TWI828723B true TWI828723B (en) 2024-01-11

Family

ID=75745167

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108125729A TWI828723B (en) 2019-07-19 2019-07-19 Methods and apparatus for cleaning substrates

Country Status (1)

Country Link
TW (1) TWI828723B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201817503A (en) * 2016-11-02 2018-05-16 盛美半導體設備(上海)有限公司 Method and device for cleaning the substrate to remove particles without damaging the device structure on the substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201817503A (en) * 2016-11-02 2018-05-16 盛美半導體設備(上海)有限公司 Method and device for cleaning the substrate to remove particles without damaging the device structure on the substrate

Also Published As

Publication number Publication date
TW202105554A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
US7033068B2 (en) Substrate processing apparatus for processing substrates using dense phase gas and sonic waves
US7682457B2 (en) Frontside structure damage protected megasonics clean
KR20180010232A (en) Method and apparatus for cleaning a semiconductor wafer
SG174616A1 (en) Methods and apparatus for cleaning semiconductor wafers
TW201718117A (en) GIGASONIC cleaning techniques
WO2016183707A1 (en) Methods and apparatus for cleaning semiconductor wafers
TWI828723B (en) Methods and apparatus for cleaning substrates
KR102655533B1 (en) Method and device for cleaning a substrate
JP7217280B2 (en) SUBSTRATE CLEANING METHOD AND CLEANING APPARATUS
KR102603465B1 (en) Method and device for cleaning a substrate
US20210233782A1 (en) Methods and apparatus for cleaning semiconductor wafers
JP7373492B2 (en) Substrate cleaning method and cleaning device
TW202105532A (en) Method and apparatus for cleaning substrates
KR102548592B1 (en) Substrate cleaning method and apparatus
JP7437499B2 (en) Substrate cleaning method and cleaning device
TWI835822B (en) Methods and apparatus for cleaning substrates